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Directional Singularity Escape and Avoidance for Single-Gimbal
Control Moment Gyroscopes *†

Laurens Valk‡, Andrew Berry§, and Heike Vallery¶

Delft University of Technology, Delft, 2628 CD, The Netherlands

Despite the long history of studies on the singularity problem inherent to single-gimbal control moment gyro-
scopes, few existing gimbal steering laws can both accurately track moments and escape or avoid every type of
singularity. The most-referenced steering laws perturb the system suboptimally at every singularity to enforce
escape, which creates a tradeoff between minimizing escape time and minimizing transient tracking errors and
gimbal rates. It is shown that no such tradeoff is necessary by proposing new singularity measures to quantify the
current and future reference moment tracking capabilities and defining explicitly how an anticipated singularity
can be avoided or escaped. Using these measures to separate and prioritize the tasks of moment tracking, gimbal
damping, and singularity escape and avoidance, a gimbal steering law is designed that accurately tracks moments
and avoids singularities when possible while escaping them with a minimal error moment otherwise. The steering
law has smaller overall tracking errors and lower peak gimbal rates, and it achieves singularity escape faster than
existing methods, as demonstrated analytically and using simulations.

Nomenclature

n Number of single-gimbal control moment gyroscopes

m Nominal output moment dimension

i Gimbal index

j Singular component index

t Time

0n, In n × n zero and identity matrix

γi, γ̇i, Ωi i-th gimbal angle, gimbal rate, and flywheel rate

f̂i, ĝi, ĥi i-th gimbal frame unit vectors

F, G, H m × n matrices of gimbal frame vectors

S, U, V Singular value decomposition matrices of F

σ j, û j, v̂ j j-th singular value and vectors of F

ŝ Singular direction

F◦, α Filtered pseudoinverse of F, damping factor α

γ̇, γ̇c Actual and commanded gimbal rates

γ̇p, γ̇e Pseudoinverse and escape components of γ̇c

γ̇s, θ Secondary task gimbal rates and directions

I, ∅ Set of anti-saturated gimbals and empty set

ρ, ω Satellite attitude and angular velocity

Mext External moment acting on whole satellite

Mint Moment between satellite body and gyroscopes

M... Other moments to evaluate equations of motion
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J ... Inertia parameters

Md Gyroscopic moment due to satellite rotation

τ, τc Gyroscopic moment due to γ̇ or γ̇c

τs Gyroscopic moment due to γ̇s

τref , e Gyroscopic moment reference and error

J, P, Q Cost function and weighing matrices

Ωc, µ Rate and momentum magnitude of one flywheel

bi Projection of τ̂ref on plane orthogonal to ĝi

ψi Angle between ĥi and bi

pi, di Gimbal potential and escape potential

δman Manipulability measure

δtrack, δpot Tracking index and total gimbal potential

z j, κ j Tracking index parameters

σmin Singular value below which damping is applied

σacp Singular value for tracking with acceptable rates

kγ̇, kΩ Gimbal and flywheel motor gains

ω̇c Body acceleration for computing motor torques

β, kp, kv Satellite and attitude control constants

τmin, τmax Minimum and maximum moment magnitude

η, d0, ζ DSEA control parameters

λ, φ, ε, Wi o-DSR control parameters

RA Left superscript denoting evaluation at nearest

reference-aligned singularity
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I. Introduction
Single-gimbal control moment gyroscopes (SGCMGs) are powerful
actuators capable of imparting free moments on the body to which they
attach. High output moments can be achieved using motors with rel-
atively limited capabilities, making them attractive for space applica-
tions like satellite attitude control [1], space manipulators [2], and as-
tronaut mobility [3], but also for improving stability in human rehabil-
itation technology [4] and robotics [5]. However, their use is hampered
by singularities, which can prohibit SGCMGs from exerting moments
in the desired direction, and can lead to gimbal lock or excessive gim-
bal rates.

Each single-gimbal control moment gyroscope consists of a spin-
ning flywheel of which the spin axis can be made to pivot about a fixed
orthogonal gimbal axis. This changes the direction of the flywheel an-
gular momentum vector, as well as the angular momentum of the body
to which it is attached, in the opposite sense. The internal moment as-
sociated with this angular momentum exchange is usually much larger
than the moment needed to rotate the gimbal. Nominally, away from
singularities, this amplified moment is adjusted as desired by coordi-
nating the gimbal rotation rates of several SGCMGs.

If a system with SGCMGs can be modeled accurately enough to
predict future states, either offline or online, singularities are dealt with
implicitly by optimizing gimbal motion to achieve a prescribed mo-
mentum trajectory [6, 7]. In unpredictable environments and low-cost
applications where planning methods may not provide a satisfactory
solution on time [4], the use of instantaneous (nonpredictive) gimbal
steering laws remains essential. However, instantaneous methods must
explicitly identify when a singularity is approached and modify the
gimbal rates to mitigate the undesirable effects incurred by the singu-
larity.

The properties of singularities and the design of gimbal steering
laws to explicitly overcome tracking issues have been studied exten-
sively. Viewed as a geometric problem, Margulies and Aubrun set
out the coordinate-free theory to analyze singular directions and allow-
able angular momentum trajectories near singularities [8]. A survey by
Kurokawa related this theory to the predominant gimbal steering laws
in the literature [9].

Because the gyroscopic moment is instantaneously linearly related
to the gimbal angular rates, the rates are typically computed using pseu-
doinverse methods, possibly augmented with so-called null motion [9].
This enables redundant SGCMG configurations to adjust gimbal rates
without directly affecting the output moment in order to complete ad-
ditional tasks such as singularity avoidance. Singularity problems can
be partially mitigated by varying the flywheel rotation rate as well [10],
but this may compromise the energy and cost savings arising from the
moment amplification effect.

Well-known gimbal steering laws that nominally accomplish
good tracking while applying damping near singularities include the
singularity-robust (SR) steering law [11] and the singular direction
avoidance (SDA) steering law [12]. They originate from robot se-
rial manipulator control, which is mathematically similar [13]. Unlike
in robot manipulators, each SGCMG independently contributes to the
output moment, simplifying the singularity analysis in the configura-
tion space [14]. Although some controllers provide accurate tracking
in specific regions of the momentum space [15] and avoid some singu-
larities, they can still become trapped if there is no singularity escape
strategy.

One of the few steering laws that escapes from every singularity
when properly tuned for each maneuver is the offdiagonal singularity-
robust (o-DSR) steering law developed by Wie [1], which modifies
the pseudoinverse to enforce escape. Other methods enhance existing
steering laws by perturbing the reference moment [16, 17]. In either of
these approaches, the pseudoinverse is used to both enforce escape and
to damp excessive gimbal rates, presenting a tradeoff between minimiz-
ing escape time and minimizing oscillatory error moments and gimbal
rates [18].

An additional limitation of many steering laws is that all singulari-
ties are characterized as properties of the SGCMG configuration alone
and treated equally by the escape method. Singularities are often de-
tected using the manipulability measure or smallest singular value, and
they are sometimes classified based on the possibility of singularity es-

cape through null motion [13]. By also considering the assigned task
(tracking a moment in the reference direction), an escape method can
be optimized to achieve escape in the desired direction, as well as to
avoid inducing dithering signals when none are needed. For example,
Yamada and Jikuya described the geometric properties of singularity
escape in specific directions of the momentum space [19].

In this paper, we study the properties of singularities and the refer-
ence direction in the configuration space. We introduce a new singular-
ity measure called the tracking index, which quantifies the ability of the
system to produce the current reference moment with acceptable gim-
bal rates. The tracking index distinguishes singularities that prohibit
moment tracking from those that do not, and anticipates singularities
much sooner as compared to conventional singularity measures, mak-
ing singularity avoidance methods more effective. We also propose the
quantity of gimbal potential, to characterize the future ability to pro-
duce the reference moment, according to the alignment of each gimbal
frame with respect to the reference direction. This generalizes and for-
malizes our previous method, where Berry et al. outlined a control
method for a collinear configuration of two gimbals [20].

Based on these singularity measures, this paper proposes the direc-
tional singularity escape and avoidance (DSEA) steering law to address
the limitations of existing laws. A generic escape and avoidance strat-
egy is developed that uses null motion for singularity avoidance when
possible while enforcing escape using a small moment error in the sin-
gular direction when necessary. Because escape is decoupled from the
moment tracking task, no tradeoff is necessary between fast escape and
avoiding excessive gimbal rates that cause transient errors. Instead, a
task-priority mechanism is used to integrate the escape task with mo-
ment tracking, where the tracking task priority is reduced as a function
of proximity to a singularity [21].

The proposed DSEA steering law results in smaller tracking errors,
lower peak gimbal rates, and faster singularity escape as compared
to existing methods. It is studied analytically, and its performance is
demonstrated using simulations of a satellite with a pyramid configu-
ration of four control moment gyroscopes.

Section II presents the dynamics of a satellite equipped with
SGCMGs and the resulting singularity problem, for which new sin-
gularity measures are presented in Sec. III. The DSEA steering law
is described in Secs. IV and V. It is evaluated and compared with [1]
using simulationsa in Sec. VI.

II. Modeling Systems with SGCMGS
A. System Model

The rigid-body dynamics of a satellite with n SGCMGs can be de-
scribed using Newton–Euler equations as done by Schaub et al. [10].
The model consists of the satellite body with a body-fixed coordinate
frame B : {b̂x, b̂y, b̂z} and an array of n identical but arbitrarily oriented
gimbal assemblies, each containing a gimbal and an axisymmetric fly-
wheel, as shown in Fig. 1. All position vectors and inertia tensors are
defined in coordinate frame B.

Each gimbal assembly i ∈ {1, . . . , n} has an associated coordinate
frame Gi : { f̂i, ĝi, ĥi}, representing the gyroscopic moment output axis,
gimbal axis, and flywheel spin axis, respectively, defined as unit vectors
inB coordinates. Flywheel i spins about the ĥi axis with an angular rate
Ωi. The gimbal axis ĝi is fixed in B, whereas ĥi(γi) and f̂i(γi) rotate in
a plane perpendicular to ĝi by a gimbal angle γi:

ĥi(γi) = ĥi(0) cos γi + f̂i(0) sin γi (1)

f̂i(γi) = −ĥi(0) sin γi + f̂i(0) cos γi (2)

A positive gimbal rate γ̇i is accompanied by a gyroscopic moment in
the direction f̂i acting on the SGCMG.

The satellite body inertia tensor is JB = diag(JBx, JBy, JBz), in-
cluding the contribution of the gimbal assembly masses. The gim-
bal inertia is JG = diag(JG f , JGg, JGh), the flywheel inertia is JW =
diag(JW f , JWg, JWh), and the combined inertia of a gimbal assembly is
denoted JT = JG + JW . The system’s total inertia matrix is

JS = JB + JT f FFT + JTgGGT + JTh HHT

aThe MATLAB source code is available at: http://doi.org/10.
4121/uuid:fe0d2307-354f-449d-b786-f063df1723c2

http://doi.org/10.4121/uuid:fe0d2307-354f-449d-b786-f063df1723c2
http://doi.org/10.4121/uuid:fe0d2307-354f-449d-b786-f063df1723c2
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Figure 1. Frame definitions for the ith single-gimbal control moment gy-
roscope.

where F, G, and H are collections of gimbal frame axes:

F =

[
f̂1 · · · f̂n

]
(3)

G =

[
ĝ1 · · · ĝn

]
(4)

H =

[
ĥ1 · · · ĥn

]
(5)

For satellite attitude control, the SGCMG system is usually de-
signed to nominally produce moments in any direction (R3). This pa-
per considers SGCMG designs where the fixed ĝi are not all coplanar
to minimize the worst-case tracking loss [9], called independent con-
figurations. This class includes the well-known pyramid configuration
with four SGCMGs.

The proposed singularity measures and steering law are also suited
to a class of SGCMG systems that nominally produce moments in a
body-fixed plane (R2), using a collinear configuration of gimbal axes
orthogonal to that plane. By appropriately selecting the body frame B,
the matrices of Eqs. (3–5) can be adapted to remove the out-of-plane
component when evaluating the controller equations. An example of
a planar system for a wearable balancing assistance device was given
in [4]. Both classes can be studied in terms of the task of producing a
moment in Rm with an array of n ≥ m gimbals, where m = 2 or m = 3.

B. Equations of Motion

The equations of motion are obtained from [10]. Rewriting the model
to use motor torques as inputs and angular accelerations as outputs
gives 

ω̇

γ̈

Ω̇

 = Φ−1



Mext

Mg

Mh

 +


−Mω − ω × (JS ω)

Mγ

MΩ


 (6)

where the generalized mass matrix Φ is given by

Φ =


JS JTgG JWh H

JTgGT JTg In 0n

JWh HT 0n JWh In

 (7)

In this model,ω ∈ R3 is the satellite angular velocity with respect to the
inertial frame expressed in B coordinates, γ ∈ Rn contains the gimbal
angles, and Ω ∈ Rn contains the flywheel angular rates. The inputs
are the gimbal motor torques Mg ∈ Rn, the flywheel motor torques
Mh ∈ Rn, and any external disturbance moment Mext ∈ R3 acting on
the satellite, defined in theB-frame. The n×n identity and zero matrices
are denoted In and 0n. The quantities Mω, Mγ, and MΩ are introduced

for brevity of notation:

Mω = JWh F diag (Ω) γ̇

+ JWh F diag (Ω) GTω − JWhG diag (Ω) FTω

+ (JTh − JT f + JTg)H diag
(
FTω

)
γ̇

+ (JTh − JT f − JTg)F diag
(
HTω

)
γ̇ (8)

Mγ = diag
(
FTω

) (
(JTh − JT f )HTω + JWhΩ

)
(9)

MΩ = − JWh diag
(
FTω

)
γ̇ (10)

C. Simplified Control Problem

The satellite can alter its angular velocity and attitude by exchanging
angular momentum with the array of SGCMGs, which is accomplished
by rotating one or more gimbals. The exchange manifests itself as an
internal moment Mint acting on the array of SGCMGs or, equivalently,
a reaction moment −Mint acting on the satellite body. The equations
of motion for the satellite body can be obtained from (6), revealing the
expression for this internal moment:

JS ω̇ + ω × (JS ω) = Mext − Mω − JTgGγ̈ − JWh HΩ̇
= Mext − Mint (11)

If we assume that the gimbal assembly moment of inertia JT is
small compared to the satellite body inertia JB , then JS ≈ JB and Eq.
(11) represents the equations of motion for the satellite body subject to
a moment Mext − Mint. All flywheels rotate at a constant rate Ωc, such
that Ω̇ = 0. If the gimbal accelerations γ̈ are also small, then Mint ≈

Mω. Noting that ||ω|| � Ωc further simplifies the approximation:

Mint ≈ τ + Md, (12)

where
τ = µFγ̇ (13)

is a gyroscopic moment that can be adjusted by choosing the gimbal
rotation rate γ̇, and

Md = µ(FGT
− GFT )ω (14)

is a disturbance gyroscopic moment due to the satellite rotation rate ω.
The constant µ = JWhΩc is the spin angular momentum magnitude of
one flywheel. Because of the importance of the adjustable gyroscopic
moment in the remainder of this paper, it is designated by the symbol
τ to distinguish it from all other moments, denoted by the letter M.

The goal is to regulate the internal moment Mint in Eq. (12) to
reproduce a reference moment Mint,ref, in order to make the satellite
complete a maneuver or reject an external disturbance. Doing so is
accomplished by choosing gimbal rotation rates γ̇ that make the gy-
roscopic moment τ in Eq. (13) reproduce the gyroscopic reference
moment

τref = Mint,ref − Md (15)

as accurately as possible. In practice, the gimbal rates cannot change
instantaneously. Instead, we select commanded gimbal rates γ̇c and use
the acceleration law

γ̈ = kγ̇
(
γ̇c − γ̇

)
(16)

to ensure that γ̇ follows γ̇c asymptotically [22], where kγ̇ > 0 is a
design parameter.

D. Singularity Problem

With the given simplifications, the control objective is to find the com-
manded rates γ̇c that produce an achievable output moment τc as close
to τref as possible. The output moment may be written as

τc = µFγ̇c = µ
∑

i

f̂iγ̇c,i (17)

where γ̇c,i is the commanded rate of the ith gimbal. The total output τc

is a linear combination of the vectors f̂i(γi) ∈ Rm that describe the di-
rections in which each individual gimbal i can instantaneously produce
a moment.
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Nominally, the vectors { f̂1, . . . , f̂n} collectively span Rm (rank F =
m) and any moment can be produced. When the gimbals are instan-
taneously oriented such that the output vectors collectively span only
Rm−1 (rank F = m − 1), there is a direction ŝ (and −ŝ) orthogonal to all
f̂i in which no moment can be produced ( f̂ T

i ŝ = 0 for all i). Moment
tracking is disrupted in this so-called singular direction ŝ, and the sys-
tem is said to encounter a singularity. For independent-type systems
(m = 3), a singularity occurs when all f̂i lie in one plane, and ŝ is the
vector normal to this plane. For collinear systems (m = 2), it occurs
when all f̂i lie (anti)parallel to one another, and the singular direction
is (anti)parallel to all ĥi. For both types, rank(F) ≥ m − 1.

E. Singular Value Decomposition

Another useful tool for parameterizing moment tracking performance
is the singular value decomposition of the F matrix, given by [12]

F = USVT

=

[
û1 · · · ûm

] 
σ1 0 · · · 0

. . .
...

0 σm · · · 0





v̂T
1

...

v̂T
m

...

v̂T
n


(18)

where û j ∈ Rm are the left singular vectors, spanning the m-
dimensional moment output space; v̂ j ∈ Rn are the right singular vec-
tors, spanning the n-dimensional gimbal rate input space; and σ j are
the singular values, ordered such that σ1 ≥ · · · ≥ σm ≥ 0. The gimbal
rate vector and the resulting output moment vector may be decomposed
into their singular components as

γ̇c =

n∑
j=1

v̂ j(v̂T
j γ̇c) (19)

τc =

m∑
j=1

û j(ûT
j τc) (20)

The singular values σ j represent the gain between gimbal rates in
the input direction v̂ j and associated gyroscopic output moment in the
direction û j, such that the total output moment may be written as

τc = µ

m∑
j=1

σ jû j(v̂T
j γ̇c) (21)

It follows that only the gimbal rate direction vectors v̂ j with j =
1, . . . ,m produce an output moment. The remaining gimbal rate vectors
v̂ j with j = m + 1, . . . , n span the null space of F. Gimbal motion
composed of these vectors is called null motion and does not result in
any output moment τc.

Close to a singularity, σm is small, and high gimbal rates in the
direction v̂m are required to produce a moment in the ûm direction.
Exactly at the singularity, σm = 0, at which point the vector v̂m also
becomes part of the null space of F, and motion in this direction
ceases to produce an output moment in the ŝ = ûm direction. Because
rank(F) ≥ m−1 for the discussed configurations, it follows that σ j > 0
for all j < m. This means that only σm poses a threat to performance
near singularities.

III. Singularity Measures
A. Configuration-Based Singularities

Usually, the proximity to a singular configuration is quantified as a
property of F alone, measuring the ability to produce a moment in the
ûm direction. Common singularity measures of this type are based on
the manipulability [11] or smallest singular value σm [12]. Normal-
ized to equal one when σm reaches its maximum, the manipulability
measure δman is

δman =

(m
n

) m
2
√

det(FFT ) (22)

where a value close to zero indicates that the system is close to a sin-
gular configuration. Configuration-based singularities may be further
classified according to their momentum state or null-motion proper-
ties [8]. For example, configurations with all ĥi vectors maximally
projected in one direction are denoted external singularities, and the
remaining configurations are denoted internal singularities.

Configuration-based measures are often used to determine when
to insert damping to prevent excessive gimbal rates, as well as when
to insert dithering signals to escape from a singularity [1]. However,
doing so is not necessary at all types of singularities, and can even
degrade system performance in some cases.

B. Singularities and the Assigned Task

Instead of considering the capability of producing a moment along ûm,
it is sufficient to quantify the ability to accomplish the assigned task:
that is, to produce the reference moment τref , as discussed in robotics
literature [23]. It can be shown that the moment tracking error e =
τref −τc associated with some pseudoinverse variant # has the magnitude

||e#|| = ||τref − µFγ̇#
c ||

= ||τref ||

√√ m∑
j=1

(1 − z#
j )2(ûT

j τ̂ref )2 (23)

where τ̂ref = τref /||τref || is the reference moment unit vector and 0 ≤
z#

j (σ j) ≤ 1 are functions of the singular values that differ for each

method. For example, in the SR inverse, zSR
j = σ2

j

(
σ2

j + λ
)−1

for some
damping parameter λ [11], whereas in the SDA inverse, zSDA

j = 1 for

j < m and zSDA
m = σ2

m

(
σ2

m + λ
)−1

[12]. Perfect tracking is possible
whenever ||e#|| = 0, while it is impossible when ||e#|| = ||τref ||.

To characterize the instantaneous ability to track a moment in the
direction τ̂ref , we propose a new dimensionless singularity measure
called the tracking index, which is defined by

δtrack = 1 −

√√ m∑
j=1

(1 − z j)2(ûT
j τ̂ref )2 (24)

The tracking index ranges from 0, indicating that producing τ̂ref is
impossible, to 1, indicating that perfect tracking is possible. The index
is not defined when no reference is requested (τref = 0), but no value is
needed in this case, as will be shown later.

When applied directly for control, the functions z j in Eq. (23) are
normally chosen to minimize the moment tracking error, but we choose
different z j for the tracking index δtrack in Eq. (24) to allow singularities
to be anticipated even when the system is still relatively far from a
singular configuration. To accomplish this, we let each z j approach
zero as soon as σ j is smaller than a predefined acceptable value σacp
that facilitates tracking with acceptable gimbal rates, using

z j =
σ2

j

σ2
j + κ j

(25)

where
κ j = σ2

acpeη(σ2
acp−σ

2
j ) (26)

With this choice, z j ≈ 0 when σ j � σacp, z j = 0.5 when σ j = σacp,
and z j ≈ 1 when σ j � σacp. The design parameter η > 0 defines the
transition steepness of this sigmoidlike function in Eq. (25). The pa-
rameter σacp can be selected to obtain the desired sensitivity: a higher
value results in earlier anticipation of singularities, and vice versa.
Using the same z j for all singular components j ensures that δtrack is
smooth, even when the system reconfigures and the order of the singu-
lar components û j interchanges.

In addition to incorporating the reference direction in the singu-
larity measure, the proposed tracking index is much more sensitive to
singularities than conventional measures like the manipulability. The
tracking index foresees singularities that prohibit tracking well before
they are reached, allowing some singularities to be avoided entirely.
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C. Reference-Aligned Singularities

The singularity measure δman approaches zero as σm approaches zero,
reflecting the inability to produce a moment in the ûm direction. This
is overly conservative because the reference moment might not have a
component in that direction. In contrast, the tracking index δtrack ap-
proaches zero only if the system is unable to produce a moment in the
τ̂ref direction, which occurs when, simultaneously, σm approaches zero
and ûm aligns with ±τ̂ref . Consequently, δtrack = 0 identifies singulari-
ties that prohibit moment tracking in the reference direction. In damped
pseudoinverse methods, these singularities result in gimbal lock.

For the configurations considered in this paper, σ j > 0 for j < m
and σm ≥ 0, which ensures that z j > 0 for j < m and zm ≥ 0. Then,
using Eq. (24), it follows that δtrack = 0 if and only if σm = 0 and
ûT

mτ̂ref = ±1. We can assume that ûT
mτ̂ref ≥ 0, because Eq. (18) remains

valid when changing the sign of both ûm and v̂m. Consequently, for the
subset of singularities that satisfy δtrack = 0 we may write

δtrack = 0⇒ ŝ = ûm = τ̂ref (27)

We denote the subset of singularities with this property reference-
aligned (RA) singularities. Any other singularities (satisfying δman =
0 but δtrack 6= 0) are reference-unaligned singularities. Whereas
reference-aligned singularities instantaneously completely prohibit
moment tracking, the reference-unaligned singularities do not, as sum-
marized in Table 1.

The orthogonality index presented by Oh and Vadali [22] used in
our previous study [20] also identified reference-aligned singularities
(δtrack = 0), but it did not unambiguously identify configurations that
allowed good reference tracking (δtrack = 1), making it less effective for
the design of a steering law.

Table 1. Singularities and reference alignment

reference- instantaneous

σm singularity |ûT
mτ̂ref | aligned δtrack tracking

≈ 0 yes ≈ 0 no ≈ 1 yes

≈ 0 yes ≈ 1 yes ≈ 0 no

� 0 no ≈ 0 no ≈ 1 yes

� 0 no ≈ 1 yes ≈ 1 yes

D. Nearest Reference-Aligned Singularity

As the system arrives at a reference-aligned singularity during nom-
inal operation of a pseudoinverse method, the gimbal rates must be
adjusted to achieve avoidance or escape. To determine which gimbals
can increase their angular momentum in the direction of the reference
after escaping from their locked state, it is instructive to describe the
orientation of each gimbal with respect to the reference moment [14].
Figure 2a depicts the general situation, where τ̂ref may have an arbitrary
orientation with respect to the Gi frame axes. The vector projection of
τ̂ref onto the plane orthogonal to ĝi is denoted bi, and the angle between
ĥi and bi is denoted −π ≤ ψi ≤ π. They satisfy the properties

||bi|| =

√
1 − ( ĝT

i τ̂ref )2 (28)

cosψi =
1
||bi||

ĥT
i τ̂ref (29)

Previously, it was established that any singularity implies f̂ T
i ŝ = 0

for all i. Combined with Eq. (27) we find a more specific result for
reference-aligned singularities:

δtrack = 0 ⇒ f̂ T
i τ̂ref = 0, i ∈ {1, . . . , n} (30)

Consequently, when the tracking index is zero, each gimbal is ei-
ther fully saturated in the direction of the reference (ĥi is maximally
projected onto τ̂ref ), as shown in Fig. 2b, or fully antisaturated (ĥi is
minimally projected onto τ̂ref ), as shown in Fig. 2c. For a system with

Figure 2. a) Arbitrary gimbal orientation. b) Reference-aligned saturated
orientation. c) Reference-aligned anti-saturated orientation.

n SGCMGs, this leads to a total of 2n possible singular configurations.
A gimbal is closest to the fully saturated state when |ψi| <

1
2π (equiv-

alently, ĥT
i τ̂ref > 0) and closest to the fully antisaturated state when

|ψi| >
1
2π (equivalently, ĥT

i τ̂ref < 0). Given the current state and refer-
ence, we can express f̂i and ĥi at the nearest (anti)saturated state as

RA f̂i =


ĝi × τ̂ref

|| ĝi × τ̂ref ||
if ĥT

i τ̂ref > 0

−
ĝi × τ̂ref

|| ĝi × τ̂ref ||
if ĥT

i τ̂ref < 0
(31)

RA ĥi = RA f̂i × ĝi (32)

We define the configuration with the properties of Eqs. (31, 32) as
the nearest reference-aligned singularity of the system. The left super-
script RA indicates the evaluation of a system property precisely at this
state. Although Eq. (31) is undefined when the reference moment is
(almost) parallel to a gimbal axis ( ĝi × τ̂ref = 0 and ĥT

i τ̂ref = 0), it will
be shown that no expressions for RA f̂i and RA ĥi are needed in this case.

By establishing that moment tracking is prohibited completely
when ŝ = τ̂ref , the gimbal configuration of the nearest reference-aligned
singularity for the current reference τref can be described using Eq.
(31). This prediction facilitates the design of strategies to escape from
such a singular state in the desired direction, or even to avoid it entirely.

E. Gimbal Saturation and Escape Potential

At a reference-aligned singularity, all gimbals are either fully saturated
or antisaturated. Whereas they are instantaneously unable to produce a
moment in the reference direction, an antisaturated gimbal (see Fig. 2c)
can still increase the projection of its angular momentum vector onto
the reference direction, by rotating the gimbal from |ψi| = π towards
ψi = 0, thereby producing a moment with a component in the reference
direction.

To this end, we propose the gimbal potential pi as a per-gimbal
measure for the available increase of angular momentum in the direc-
tion of the reference moment, which is defined by

pi =
1
2
||bi||(1 − cosψi) =

1
2

(||bi|| − ĥ
T
i τ̂ref ) (33)

where the term 1
2 (1 − cosψi) varies between 0 (fully saturated) and 1

(fully antisaturated). The scaling factor 0 ≤ ||bi|| ≤ 1 accounts for the
orientation of the gimbal with respect to the reference, such that gim-
bals that can contribute more angular momentum towards the reference
direction have a correspondingly larger potential, which is in contrast
to a similar saturation index proposed by Oh and Vadali [22].

The weighted sum of the gimbal potentials is a measure for the
potential of the whole system to continue increasing the angular mo-
mentum in the reference direction:

δpot =
1
n

n∑
i

pi (34)

When δpot = 0, no further increase of momentum in the reference
direction is possible, meaning that the system is at a saturation singu-
larity with respect to the reference. Some existing singularity escape
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methods insert dithering signals at every singularity, regardless of the
reference moment or singularity type [1]. When δpot = 0, however,
no escape is possible in the direction of τ̂ref , and escape should not be
attempted in order to avoid inducing unnecessary tracking errors.

If the system is at a reference-aligned singularity where δpot > 0,
escaping the singularity is worthwhile, and it can be accomplished by
deterministically steering antisaturated gimbals away from their anti-
saturated state. Because this has the effect of steering the angular mo-
mentum vectors towards the reference, the escape is said to be in the
direction of the reference, even if the escape briefly leads to a small
moment error in the opposite direction.

To select the gimbal rate magnitude to push it from its antisatu-
rated state, we introduce a per-gimbal dimensionless function called
the escape potential, which is defined by the following:

di =

{
bT

i bi cos2 ψi if ĥT
i τ̂ref < 0

0 otherwise

= (min(ĥT
i τ̂ref , 0))2 (35)

This expression ensures that the escape potential di is maximal
when gimbal i is in its antisaturated state (|ψi| = π), and decays to zero
as it approaches |ψi| = 1

2π, where ĥT
i τ̂ref = 0; at which point pushing

the gimbal away is no longer needed. The scaling by bT
i bi ensures that

more effectively positioned gimbals are pushed away faster than others,
allowing moment tracking to resume more quickly. Those gimbals that
do not require escape can be coordinated to compensate any tracking
error incurred through this operation, minimizing or even eliminating
errors altogether.

To visualize the concept of deterministically pushing a gimbal
from its antisaturated state, consider the pyramid arrangement of four
SGCMGs [18], initially in the zero-momentum configuration of Fig.
3a, with a reference moment along the satellite body x axis. When us-
ing a pseudoinverse method, gimbals 1 and 3 would initially produce
the requested moment until the system arrives at the singular configu-
ration shown in Fig. 3b.

Although no moment can be instantaneously produced in the di-
rection of the reference, gimbal 2 clearly has the potential to further in-
crease the angular momentum in the direction of the reference (p2 > 0),
whereas the others do not (p1 = p3 = p4 = 0). The steering law pre-
sented in the next section escapes this singularity by rotating gimbal 2
away from its antisaturated state (away from ψ2 = π) while using the
other gimbals to almost completely offset the moment error associated
with doing so.

IV. Dynamic Task Allocation

A. Primary and Secondary Tasks

The primary task of the steering law is to generate gimbal rates that
result in the desired gyroscopic moment τref whenever possible. The
secondary task is to track gimbal rates γ̇s that provide singularity avoid-
ance or escape while minimally impacting the primary task. Nominally,
the primary task produces moments in the directions û1, . . . , ûm using
gimbal rates in the directions v̂1, . . . , v̂m, while the secondary task em-
ploys only null motion, with gimbal rates in the directions v̂m+1, . . . , v̂n.

Precisely at the singularity, the rank of F drops (σm = 0), and the
system fails to produce a moment in the ûm direction regardless of the
gimbal rates in the v̂m direction. Consequently, the primary task loses
a degree of freedom (DOF), and it is constrained to produce moments
in the directions û1, . . . , ûm−1 using gimbal rates v̂1, . . . , v̂m−1. The sec-
ondary task gains a degree of freedom, now operating with gimbal rates
in the directions v̂m, . . . , v̂n, without conflicting with the primary task.

By making the transition from nominal behavior to singular behav-
ior smooth rather than abrupt, the secondary task can use v̂m motion:
not only precisely at the singular configuration, but also close to it,
which is essential to our singularity escape method. The correspond-
ing moment in the ûm direction only minimally affects the primary task
because σm is very small. The dynamic transition can be accomplished
optimally by selecting gimbal rates γ̇c that minimize the objective func-

tion given by

min
γ̇c
||γ̇c − γ̇s|| subject to min

γ̇c
J (36)

J =
(
τref − µFγ̇c

)T P
(
τref − µFγ̇c

)
+

(
γ̇s − γ̇c

)T µ2Q
(
γ̇s − γ̇c

)
(37)

with P = I3 and Q = αv̂mv̂T
m ≥ 0n, where α is a damping parameter.

The primary task is accomplished by minimization of the con-
straint cost function J, which nominally penalizes the moment tracking
error e = τref − τc. This leads to an underdetermined set of equations,
resolved by the secondary task of minimizing ||γ̇c − γ̇s|| to make the
selected gimbal rates γ̇c track the secondary task rates γ̇s as well as
possible, using null motion. By letting α increase close to singularities,
the primary task no longer attempts to track a moment in the ûm direc-
tion, but instead uses gimbal rates in the v̂m direction as an additional
degree of freedom for the secondary task to facilitate escape.

B. Directional Singularity Escape and Avoidance Steering Law

The optimal solution γ̇c that minimizes Eq. (36) is given by Chiaverini
[21] as

γ̇c =
1
µ

F◦τref + (In − F◦F) γ̇s (38)

where F◦ ∈ Rn×m is the right pseudoinverse with numerical filtering
[23]:

F◦ = FT
(
FFT + αûmûT

m

)−1
(39)

The damping parameter α ≥ 0 facilitates the dynamic transition in
control behavior. When σm becomes smaller than σmin (the threshold
below which damping is deemed necessary to prevent excessive gimbal
rates), the damping value α increases, using

α = σ2
mineη(σ2

min−σ
2
m) (40)

The crucial step is then to select the secondary task rates γ̇s ∈ Rn

to ensure singularity escape and avoidance, which will be discussed in
detail in the remainder of this paper. Owing to the strategy of selecting
the secondary task rates to deal with singularities based on their prop-
erties with respect to the reference direction, we name our method the
directional singularity escape and avoidance (DSEA) steering law.

When γ̇s = 0, the DSEA steering law is equivalent to the SDA
strategy [12]. That is, the proposed steering law extends SDA control
with a singularity escape and avoidance method while maintaining the
minimal control error properties associated with modifying only the
gimbal rates corresponding to the smallest singular value.

The DSEA control error e = τref − τc is exclusively in the ûm direc-
tion, given by [21]

e = τref − µFγ̇c

=
α

σ2
m + α

(
ûT

mτref − µσm v̂T
mγ̇s

)
ûm (41)

Because the escape strategy is only active near singularities (where σm
is small) the additional error moment to facilitate escape is small. In
fact, depending on the selected secondary task rates γ̇s, the sign of v̂T

mγ̇s
can be the same as the sign of ûT

mτref , in which case the escape strategy
even serves to decrease the error.

Because the secondary task only minimally affects the tracking
task, it can be optimized separately. This avoids the tradeoff discussed
in [18] where low damping was desired for fast escape while high
damping was needed to prevent excessive gimbal rates and oscillatory
transient errors.

C. The Changing Role of the Singular Component

The DSEA gimbal rate command γ̇c in Eq. (38) may be decomposed
into the tracking task rates γ̇p and the singularity escape rates γ̇e. To
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Figure 3. a) Initial gimbal configuration. b) Reference-aligned singularity with nonzero potential, indicating that tracking can resume after escape. c)
Reference-aligned saturation singularity.

illustrate the controller properties, these may be further decomposed
using the singular value decomposition of F as

γ̇c = γ̇p + γ̇e (42)

γ̇p =
1
µ

F◦τref

=

m−1∑
j=1

1
µ

1
σ j

v̂ jûT
j τref +

1
µ

σm

σ2
m + α

v̂mûT
mτref (43)

γ̇e = (In − F◦F) γ̇s

=
α

σ2
m + α

v̂mv̂T
mγ̇s︸ ︷︷ ︸

Additional DOF near singularities

+

n∑
j=m+1

v̂ jv̂T
j γ̇s︸ ︷︷ ︸

null motion

(44)

The primary task gimbal rates γ̇p consist of a pseudoinverse solu-
tion, where the component in the direction v̂m is damped near singu-
larities to prevent excessive gimbal rates. Because σ j > 0 for j < m
and α > 0 when σm = 0, the filtered pseudoinverse F◦ is always well-
conditioned for the considered types of SGCMG configurations.

The secondary task gimbal rates γ̇s are not added to the pseudoin-
verse solution directly, but they are filtered to obtain the actual escape
rates γ̇e to minimize the impact on the primary task, as described by
Eq. (44). The amount of filtering depends on the damping parameter
α, which in turn depends on the proximity to a singularity.

Far from singularity α(σ2
m + α)−1 ≈ 0 and the v̂m component is ex-

cluded from the secondary task, resulting in pure null motion. Close to
or exactly at singularity, α(σ2

m +α)−1 ≈ 1 and the v̂m component is fully
included in γ̇e, augmenting the null motion with a degree of freedom in
the v̂m direction. This ensures continuity of the escape strategy in the
vicinity of those singularities where the null-motion component of γ̇s
ceases to exist.

Although the damping factor α does not take the reference direc-
tion τ̂ref into account, the desired effect of activating the secondary task
only near reference-aligned singularities can still be accomplished by
selecting nonzero γ̇s only when the tracking index δtrack is small.

V. Selecting Secondary Task Rates
A. Role of Magnitudes and Directions

The secondary task rates γ̇s are designed to avoid singularities if pos-
sible, as well as to escape them with minimal moment error and escape
time when needed. This is accomplished by forcing each antisaturated
gimbal away from its maximally antisaturated state with respect to the
reference. Cornick used a similar approach to avoid internal singular-
ities [14], but that method could not provide escape from every sin-
gularity type due to the choice of perturbation directions and the use
of null motion only [11]. In our approach, the escape magnitudes and
directions are selected to provide singularity escape using motion in
the null space augmented with the additional degree of freedom near
singularities.

For each gimbal i, the secondary task gimbal rate magnitude |γ̇s,i|

is selected based on the gimbal orientation with respect to the reference

direction τ̂ref . The direction θi ∈ {−1, 0, 1} is chosen to minimize the
singularity escape time, so that the secondary task rate for gimbal i
is γ̇s,i = θi |γ̇s,i|. Denoting θ = [θ1, . . . , θn]T as the vector of escape
directions, we get

γ̇s(θ) =

[
θ1|γ̇s,1| · · · θn|γ̇s,n|

]T
(45)

The magnitudes |γ̇s,i| are functions of the gimbal angles and decay to
zero as escape is accomplished, while the directions θi are selected to
be locally constant during the escape.

B. Selecting Secondary Task Magnitudes

Driving an antisaturated gimbal away from its antisaturated configura-
tion (with high escape potential di) when the system is near a reference-
aligned singularity (with low tracking index δtrack) can be accomplished
by making |γ̇s,i| proportional to di(1 − δtrack):

|γ̇s,i| = d0

∣∣∣∣∣∣∣∣∣∣ τref

τmax

∣∣∣∣∣∣∣∣∣∣ζ ||τref ||
3

||τref ||
3 + τ3

min

di(1 − δtrack)

= d0

∣∣∣∣∣∣∣∣∣∣ τref

τmax

∣∣∣∣∣∣∣∣∣∣ζ 1
||τref ||

3 + τ3
min

min(ĥT
i τref , 0)2

·

√√ m∑
j=1

(1 − z j)2(ûT
j τref )2 (46)

The regularization by ||τref ||
3(||τref ||

3 + τ3
min)−1 removes the depen-

dency on the unit vector τ̂ref in the definitions of δtrack and di, making
the result unambiguous even if the reference is zero. It ensures that
|γ̇s,i| = 0 if τref = 0, when no escape is needed.

The design parameter τmax is the maximum moment magnitude that
the system is allowed to generate, τmin is a lower limit below which mo-
ments are considered negligible, and d0 is the maximally allowed sec-
ondary task gimbal rate. Appropriate parameters values follow from
hardware specifications and a predefined maximum reference magni-
tude Mint,ref in Eq. (12). The parameter ζ sets the sensitivity of the
secondary task rates to the magnitude of τref , where a value 0 < ζ < 1
activates the escape strategy even for small reference moments while
a larger ζ ≥ 1 inhibits escape until the requested moment approaches
τmax.

This design also ensures that |γ̇s,i| = 0 if ĥT
i τref ≥ 0, so that satu-

rated gimbals are not explicitly perturbed; rather, they are used to offset
errors associated with pushing antisaturated gimbals away. At the near-
est reference-aligned singularity |γ̇s,i| =

RA|γ̇s,i| becomes

RA|γ̇s,i| =


d0

∣∣∣∣∣∣∣∣∣∣ τref

τmax

∣∣∣∣∣∣∣∣∣∣ζ ||τref ||

||τref ||
3 + τ3

min

·
(
τT

ref τref − ( ĝT
i τref )2

)
if ĥT

i τref < 0
0 otherwise

(47)
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C. Selecting Secondary Task Directions

The next step in the escape and avoidance strategy is to select the sec-
ondary task directions for each gimbal that minimize the escape time
and the induced escape error moment. Because |γ̇s,i| = 0 for gimbals
satisfying ĥT

i τref ≥ 0, we may select θi = 0 for these gimbals without
loss of generality. For the remaining nanti antisaturated gimbals satisfy-
ing ĥT

i τref < 0, we select θi ∈ {−1, 1} to facilitate escape, giving 2nanti

possible choices of θ.
The filtering step in Eq. (44) can change both the magnitude and

direction of the secondary task rates. This has the beneficial effect of
activating saturated gimbals to partially offset the errors produced by
pushing the antisaturated gimbals away, but reducing the magnitudes
too much can inhibit the escape. Because an antisaturated gimbal can
be pushed in either direction to escape its locked state, we are free to
coordinate the directions of all gimbals to minimize this inhibition. In
principle, this could be done by selecting the directions θ that minimize
the difference between the selected γ̇s and the actually applied escape
rates γ̇e:

argmin
θ
||γ̇s(θ) − γ̇e(θ)|| = argmin

θ
||F◦Fγ̇s(θ)|| (48)

Existing singularity avoidance methods that use null motion to
maximize some singularity measure via steepest ascent methods can
experience abrupt changes in the gimbal trajectory close to singulari-
ties, because small changes in the gimbal angles can rapidly change the
gradient direction of such a measure [6].

To prevent such sudden changes in our method, the optimization
in Eq. (48) should be evaluated as if the system were precisely at the
nearest reference-aligned singularity. This makes the escape directions
θ local properties of the singularity, which are to be kept constant until
either the singularity is escaped or τ̂ref changes substantially, justifying
different escape directions.

Doing so would require predicting F at the nearest reference-
aligned singularity, denoted RA F. Because RA f̂i in Eq. (31) may be
undefined if τref happens to be parallel to a gimbal axis ĝi, we slightly
modify the optimization and use an objective that relies only on well-
defined RA f̂i axes. The minimization of Eq. (48) implies selecting θ to
minimize the moment-producing components in γ̇s, because γ̇e is ob-
tained by removing the moment-producing gimbal rates from γ̇s. This
is similar to choosing θ to minimize the moment τs that would be pro-
duced if γ̇s were applied directly, without filtering. The moment τs and
the modified minimization objective are written as

argmin
θ
||τs(θ)||, (49)

τs(θ) = µFγ̇s = µ

n∑
i=1

θi f̂i |γ̇s,i| (50)

Those gimbals for which RA f̂i is undefined have the property
ĥT

i τref = 0; from Eq. (46), |γ̇s,i| = 0, making the direction RA f̂i ir-
relevant. Consequently, this modified optimization can be evaluated at
the nearest reference-aligned singularity.

Note that, intuitively, this choice of secondary task directions ex-
ploits symmetry in the system when available, by choosing opposing
directions to let the antisaturated gimbals cancel the collectively pro-
duced moment τs as much as possible.

D. Algorithm to Select Optimal Secondary Task Rates

Optimizing Eq. (49) at the nearest reference-aligned singularity
amounts to evaluating ||RAτs(θ)|| for each of the allowed direction vec-
tors θ and selecting the option with the smallest moment. The proce-
dure is as follows. Denote I as the set of antisaturated gimbals:

I = {i | ĥT
i τref < 0} (51)

All 2nanti possible choices of the vector θ are obtained using θi ∈ {−1, 1}
if i ∈ I and θi = 0 otherwise. Evaluating all options to find the minimum
may be written more formally as:

θ̃ = argmin
θ
||RAτs(θ)|| (52)

RAτs(θ) = µ
∑
I
θi

RA f̂i
RA|γ̇s,i| (53)

The steps to evaluate Eqs. (51)–(53) and obtain the optimal sec-
ondary task rates γ̇s are summarized in Algorithm 1. Note that for
the choice θ̃, the directions −θ̃ produce the same ||RAτs||. Likewise,
for redundant systems with multiple equally-oriented gimbals, various
different θ may produce the same optimum.

To prevent rapid switching of directions from one control time
step to the next (known as chattering), we prevent a change in direc-
tion (enforce θtk = θtk−1 ) if the system is still dealing with the same
reference-aligned singularity as in the previous time step (if Itk = Itk−1 ),
and the change in ||RAτs|| due to switching is negligible (smaller than
τmin). Otherwise, if the directions must change, we choose either θ̃ or
−θ̃: whichever leads to the smallest change in γ̇s. The steps to obtain
these piece-wise constant optimal directions θ∗ may be summarized
as θ∗ = PreventChattering(̃θ), as described in Algorithm 2. The sub-
scripts tk and tk−1 denote the evaluation at current and previous control
time step, respectively.

Algorithm 1 Selecting optimal secondary task directions
1: if I = ∅ or ||τref || < τmin then . Eq. (51)
2: γ̇s = 0
3: else
4: for all i ∈ I do
5: Evaluate RA f̂i, |γ̇s,i|, andRA|γ̇s,i| . Eqs. (31,46,47)
6: for all 2nanti possible vectors θ do
7: Evaluate ||RAτs(θ)|| . Eq. (52)
8: From these options, take θ̃ = argmin ||RAτs(θ)||
9: θ∗ = PreventChattering(̃θ) . Alg. 2

10: γ̇s = γ̇s(θ
∗) . Eq. (45)

Algorithm 2 Evaluation of θ∗ = PreventChattering(̃θ)

1: Denote ∆ = ||RAτs (̃θ)|| − ||RAτs(θ∗tk−1
)||

2: if Itk = Itk−1 and |∆| < τmin then
3: θ∗tk = θ∗tk−1
4: else
5: if ||γ̇s (̃θ) − γ̇s,tk−1

|| < ||γ̇s (̃θ) + γ̇s,tk−1
|| then

6: θ∗tk = θ̃
7: else
8: θ∗tk = −θ̃

E. Existence of Singularity Escape Rates

Conventional null-space methods use only linear combinations of the
null-space vectors v̂m+1, . . . , v̂n, whereas the DSEA escape strategy can
also use gimbal motion along v̂m when close to singularities. This extra
degree of freedom comes with a small additional moment, yet it is cru-
cial to ensuring singularity escape. Because the dynamically enlarged
null space does not change abruptly at the singularity, any gimbal rate
γ̇e generated exactly at the singularity continues to exist close to the
singularity, thus allowing the escape to complete.

We will first demonstrate the existence of singularity escape rates
γ̇e capable of steering gimbals out of the antisaturated state, precisely
at the reference-aligned singularity, for independent-type systems (m =
3). Because the gimbal axes are assumed to be not all coplanar and
n ≥ 3, for any gimbal i there are at least two other gimbals k and l that
are not collinear, i.e. ĝi 6= ± ĝk 6= ± ĝl. Using Eq. (31), this implies
RA f̂i 6= ±

RA f̂k 6= ±
RA f̂l, yet Eq. (30) shows that they all lie in the same

plane orthogonal to τ̂ref , making them linearly dependent. That is, any
RA f̂i can be written as some linear combination of RA f̂k and RA f̂l.

Therefore, the effect of a secondary task gimbal rate involving gim-
bal i can be canceled using motion with gimbals k and l. In other words,
at the state of reference-aligned singularity there exists null motion that
can rotate any gimbal i, so that selecting nonzero γ̇s,i results in nonzero
γ̇e,i. In fact, the procedure in Eq. (52) implicitly selects the direction
vector θ that maximizes null motion, by minimizing the difference be-
teen γ̇e and γ̇s.

Because of continuity and the locally constant escape directions,
gimbals are driven out of the singular configuration and towards the
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reference until σm is no longer small: at this point the singularity is
escaped and the pseudoinverse component γ̇p in Eq. (42) takes over.

For collinear gimbal configurations for planar applications (m =

2), a reference-aligned singularity implies that all f̂i are collinear and
orthogonal to τ̂ref . Since n ≥ 2, for any gimbal i there is another gimbal
k that can cancel its moment exactly, meaning that null motion exists
exactly at the reference-aligned singularity. Escape rates continue to
exist beyond the singularity, following the same argument as previously
stated.

VI. Controller Evaluation
A. Simulation Properties

The simulation model comprises a satellite equipped with n = 4
SGCMGs positioned in a pyramid configuration with skew angle β,
as shown in Fig. 3. The gimbal axes and the angular momentum axes
for γi = 0 are given by

G =


sin β 0 − sin β 0

0 sin β 0 − sin β

cos β cos β cos β cos β

 (54)

H(0) =


0 −1 0 1

1 0 −1 0

0 0 0 0

 (55)

The transverse axes for γi = 0 follow using f̂i(0) = ĝi × ĥi(0) and
the axes orientations for arbitrary γi are obtained using Eq. (1). The
satellite model parameters are listed in Table 2. The values are based
on [18], but the inertia parameters are decreased by two orders of mag-
nitude, reflecting more recent developments of smaller satellites. Note
that because the controller requires only n ≥ m with non-coplanar gim-
bal axes, it is still applicable if one gyroscope fails, as long as control
parameters are adapted accordingly.

With n = 4 and m = 3, the satellite nominally produces moments
in any direction (primary task), and the avoidance strategy nominally
operates using only null-motion component v̂4 (secondary task). Near
a singularity, the primary task output reduces to a plane, where any
moment is produced using motion in the v̂1 and v̂2 directions, while
the secondary task uses v̂3 and v̂4 to provide singularity escape, with a
small moment in the û3 direction.

Table 2. Model parameters

Symbol Value Units Symbol Value Units

n 4 - µ 10 Nm · s

m 3 - Ωc 500 rad/s

β cos−1 0.6 rad kγ̇ 40 s−1

JWh 0.02 kg ·m2 kΩ 10−5 s−1

JT f ;JTg;JTh 0.01; 0.01; 0.02 kg ·m2 kp 7 s−2

JBx;JBy;JBz 214; 201; 50 kg ·m2 kv 3 s−1

The gimbal steering law is evaluated at a frequency of ν = 100 Hz.
At each time step, the gimbal rate command γ̇c is obtained using the
steering law in Eq. (38), for which the secondary rates γ̇s are ob-
tained using Algorithms 1 and 2. The necessary gimbal accelerations
given by Eq. (16) can be obtained using the gimbal and flywheel motor
torques [10, 22]

Mg = kγ̇
(
γ̇c − γ̇

)
JTg + JTgGT ω̇c − Mγ (56)

Mh = kΩ (Ωc −Ω) JWh + JWh HT ω̇c − MΩ, (57)

where Ωc is the constant vector of commanded flywheel rates (Ωc for
each flywheel), the control gains kγ̇ and kΩ specify the motor torques

for deviations from the commanded motor speeds, and ω̇c is the instan-
taneous satellite body angular acceleration obtained from (11) given
the imposed gimbal and flywheel accelerations:

ω̇c = J−1
S (Mext − Mω − ω × (JS ω))

− kγ̇JTg J−1
S G

(
γ̇c − γ̇

)
− kΩJWh J−1

S H (Ωc −Ω) (58)

The gimbal speed controller in Eqs. (56-58) runs in continuous
time. Although various simplifications were introduced in Section C
for the purpose of controller design, the full dynamical model of Eq.
(6) is used in these simulations. Modified Rodrigues Parameters (de-
noted ρ) and their shadow counterparts [10] are used for the satellite
kinematics. The equations of motion are integrated using a Runge-
Kutta 4 algorithm with a fixed 1 ms time step.

For all simulations, the gimbals are initially at rest [γ̇(t0) = 0] and
the satellite orientation is initially zero [ρ(t0) = 0]. The initial angular
velocity of the satellite is such that given the initial gimbal angles, the
overall momentum in the system equals 0, giving

ω(t0) = −µJ−1
S (t0)H(t0)Ω(t0) (59)

In the following simulations, moments are presented in terms of
the internal moment Mint, rather than τ. The difference is given in Eq.
(15), but because of the comparatively low rotation rate of the satellite
(up to 10 deg/s) it follows that τref ≈ Mint,ref. This is not a requirement
for using this control law, but it simplifies interpretation of the graphs.

B. Control Parameter Selection

The DSEA steering law parameters are given in Table 3, with τmin,
τmax, d0 and ζ selected as discussed in Section V. One can choose σmin
to limit the gimbal rates, by specifying an upper bound on the magni-
tude of the pseudoinverse component of the steering law. The highest
pseudoinverse gimbal rates γ̇p [Eq. (43)] occur when τref = τmaxûm.
Denoting γ̇max as the maximally allowed value of ||γ̇p||, we can use Eq.
(21) to obtain σmin = τmax/(µγ̇max). This conservatively limits the pseu-
doinverse component per gimbal because |γ̇p,i| ≤ ||γ̇p|| ≤ γ̇max. After
testing this initial choice of σmin, a higher value may be used to further
limit the gimbal rates if necessary, and vice versa. The escape strategy
may result in an additional gimbal rate of up to d0 such that, in princi-
ple, each gimbal rate is limited by |γ̇i| ≤ γ̇max + d0, although the gimbal
rates are generally much lower.

The parameter σacp used in the tracking index δtrack in Eq. (25)
is selected as σacp > σmin in order to anticipate singularities early on,
before any damping is applied. This allows the secondary task to begin
operating with null motion even while far from singularities, avoiding
some internal singularities.

C. o-DSR control

To enable easy comparison with the o-DSR controller proposed by Wie
[1], all simulations are repeated with the gimbal steering law of Eq.
(38) replaced by

γ̇oDSR
c =

1
µ

Q−1 FT
(
FQ−1 FT + P−1

)−1
τref (60)

P−1 = λ


1 ε3 ε2

ε3 1 ε1

ε2 ε1 1

 , Q−1 =


W1 λ λ λ

λ W2 λ λ

λ λ W3 λ

λ λ λ W4


(61)

λ = λ1 exp(−λ2 det(FFT )) (62)
ε j = ε0 sin(φ0t + φ j) (63)

with the control parameters listed in Table 3. The parameters Wi can
be used to adjust the amount of damping applied to each gimbal i. As
discussed in [24], preceding [1], these values are selected by trial and
error for each maneuver. Because the required damping for each gim-
bal varies with its orientation with respect to the reference signal (see
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Section E), selecting suitable Wi values depends on both the maneu-
ver direction and the gimbal angles before starting a maneuver. This
makes the o-DSR method difficult to use in general, except for maneu-
vers known in advance, which are tuned and tested to ensure feasibility.

To analyze the effect of the offdiagonal elements ε j and λ, first
denote the pseudoinverse component γ̇oDSR

p as in Eq. (60), but use
P−1 = λI3 and Q−1 = diag{W1,W2,W3,W4}. The remainder γ̇oDSR

e =
γ̇oDSR

c − γ̇oDSR
p are the gimbal rate variations that enforce singularity

escape, which may be used for comparison with the γ̇e component of
the DSEA steering law. Simulations show that γ̇oDSR

e is sinusoidal in
nature. If the singularity is not escaped within half of its period, the
gimbals reverse and return to the singular configuration, considerably
delaying escape. The o-DSR controller escape time can be decreased
by increasing the offdiagonal elements or decreasing damping, at the
cost of higher transient errors and oscillations in the moment output: a
tradeoff discussed in [18].

Table 3. DSEA and o-DSR control parameters

DSEA Value Units o-DSR Value Units

σacp 0.75 - λ1 0.01 -

σmin 0.25 - λ2 10 -

η 10 - φ0 π/2 rad/s

d0 3 rad/s φ j 0; π/2; π rad

τmin 0.001 Nm ε0 0.01 -

τmax 10 Nm

ζ 0.5 -

D. Distinguishing Singularities

Figure 4 demonstrates the DSEA controller response to the constant
internal moment reference signal Mint,ref = [7.07 7.07 0]T Nm when
the system starts in the zero-momentum configuration of Fig. 3a. After
accelerating the gimbals towards the commanded rates, the reference
is tracked accurately (see Fig. 4a). A singularity is encountered at
t = 1.6 s, as indicated by the manipulability measure δman approaching
zero (Fig. 4b). However, because the tracking index is high (δtrack = 1),
the controller continues to track the reference without relying on the
escape and avoidance strategy or perturbations.

Beyond t = 3 s, the system begins to approach another singularity.
While δman is still near its peak value, δtrack is already approaching 0,
anticipating a reference-aligned singularity. As indicated by δpot = 0,
this is a saturation singularity in the reference direction. Because there
is no escape possible outwards from the external singular surface, the
pseudoinverse solution is damped and the escape strategy is inactive in
order to avoid inducing perturbations.

Figure 4. Identification of singularity properties allows continued tracking
without explicitly inducing errors near reference-unaligned singularities.

E. Singularity Escape Performance for DSEA

The simulation in Fig. 5a–f demonstrates DSEA performance for the
constant reference signal Mint,ref = [10 0 0]T Nm when the system
starts in the zero-momentum configuration of Fig. 3a. After tracking

the reference moment for approximately one second, the system ap-
proaches the well-known singularity with γ1 = − π

2 , γ2 = 0, γ3 = π
2 ,

γ4 = 0, pictured in Fig. 3b. Because gimbal 2 is antisaturated with
respect to the reference, its gimbal potential is high and a nonzero sec-
ondary task rate γ̇s,2 is selected (see Fig. 5d), for which the magnitude
increases as the singularity approaches.

Although the secondary task activates some null motion before
t = 1 s, this is initially insufficient to avoid the singularity. As the
singularity is approached further, the secondary task becomes able to
steer gimbal 2 as desired in order to escape the singularity. As shown
in Figs. 5c and 5f, this causes gimbal 4 to move in order to partially
cancel the induced moment. This is accomplished using motion in the
−v̂m direction during t = 1–1.5 s and in the v̂m direction during t = 1.5–
2 s (see Fig. 5e), thus producing small moments in the −ûm and ûm
directions, respectively.

Because of the well-damped pseudoinverse and the consistent out-
put of the secondary task, the escape is accomplished quickly, with
limited peak gimbal rates and without any oscillations. Finally, the
controller continues tracking the reference until saturation is reached:
at this point the output is fully damped.

F. Singularity Escape Performance for o-DSR

Fig. 5g–i shows the results for the same simulation with the o-DSR
controller. The weights Wi are tuned to increase damping of gimbal
1 [1], by choosing W1 = 10−3 and W2 = W3 = W4 = 0.1. This causes
gimbals 1 and 3 to attain different rates, preventing gimbals 2 and 4
from locking up, thus skewing the singularity for this particular ma-
neuver. After briefly tracking the reference moment, gimbals 2 and 4
suddenly reverse at t = 0.4 s, inducing high gimbal rates and oscilla-
tions in the output moment, after which moment tracking resumes until
the singularity at t = 1 s. It is escaped after one second, and moment
tracking continues until reaching the saturation singularity at t = 4 s.
Though no escape is is possible, the gimbals continue to be perturbed,
leading to small but persistent oscillatory moment errors. This is not
shown in [1], where the results after t = 4 s are truncated.

The gimbal rate oscillations in the o-DSR simulation in Fig. 5g–i
(and Fig. 6g–i) are likely due to insufficient damping of the pseudoin-
verse combined with the nonzero inertia of the gimbal assemblies, the
finite controller sampling rate, and the actual gimbal rates γ̇ slightly
lagging the commanded rates γ̇c due to (16). Although these phenom-
ena are ignored in some literature by assuming that gimbal dynamics
are negligible, the oscillations may have a considerable impact on per-
formance and durability. This type of oscillation does not occur in the
DSEA controller because damping is not sacrificed to expedite singu-
larity escape.

Damping in the o-DSR controller is further limited because the
proximity to a singularity around t = 0.4 s goes almost unnoticed
(δman > 0.6), with the manipulability returning to its initial value
around t = 0.8 s (see Fig. 5h). By comparison, the tracking index
distinguishes the situation at t = 0.4—0.8 s from the one at t = 0 s, thus
identifying the tracking problem.

It is also worth noting that using the same Wi parameters for a y-
axis maneuver (Mint,ref = [0 10 0]T Nm) causes the o-DSR controller
to remain stuck in a singularity for over 6 seconds, highlighting the
sensitivity to the tuning parameters. By contrast, DSEA control perfor-
mance is identical for a y-axis maneuver, because the secondary task
rates are automatically adjusted to the changing reference signal and
gimbal angles.

G. Singularity Avoidance Performance

The simulation in Fig. 6a–f demonstrates the DSEA control perfor-
mance for the constant reference signal Mint,ref = [−10 0 0]T Nm
when the system starts in the external singularity depicted in Fig. 3c,
where γ1(t0) = − π

2 , γ2(t0) = π, γ3(t0) = π
2 , and γ4(t0) = 0 rad, as

reached at the end of the previous simulation. The angular accelera-
tion and deceleration in these simulations highlight typical elements of
a satellite maneuver. The system begins in a reference-aligned singu-
larity (δtrack = 0 and δman = 0), but the nonzero potential (δpot > 0)
indicates that escape in the reference direction is possible. All gimbals
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Figure 5. Early singularity anticipation and constant escape directions provide singularity escape with lower peak gimbal rates and without oscillations.

are initially π rad away from saturation in the reference direction, so
that |γ̇s,i| > 0 (see Fig. 6d).

Null motion is unsuitable for escaping this saturation singularity, so
Algorithm 1 selects the directions θ2 = θ4 = 1 and θ1 = θ3 = −1 to steer
all gimbals symmetrically away from the antialigned state, achieving
motion in the positive v̂m direction. The singularity is escaped and
the error is reduced, because the escape moment µσ3û3 v̂T

3 γ̇s is in the
direction û3 = τ̂ref . The initial overshoot of the reference moment in
Figs. 6a and 6g is attributable to the slight lag of γ̇ relative to the
commanded rates γ̇c.

After escaping the singularity at t = 0 s, the satellite tracks the
reference until it approaches an internal reference-aligned singularity
around t = 3 s (the tracking index δtrack becomes small), causing the
escape strategy to activate. Still being quite far from the singularity,
only the null-motion component v̂4 motion is available. As shown in
Figs. 6c–e, the directions θ1 = 1 and θ3 = −1 result in null motion that
causes the pairs of opposite gimbals 1&3 and 2&4, which are initially
moving at the same rate, to attain different rates. This steers gimbals
1 and 3 away from their antisaturated states, ultimately avoiding the
singularity at t = 4 s. After transferring all angular momentum to the
satellite body, a saturation singularity is reached, at which point all
gimbals are damped and the escape strategy deactivates.

In contrast, the o-DSR controller in Figs. 6g–i requires 0.2 s to ini-
tiate the escape from the initial singularity. The internal singularity at
4.3 s is not detected until it is fully encountered, leading to high gimbal
rates and moment errors to escape it. High oscillatory gimbal rates are
observed as the system settles in the final saturation singularity.

In this case, the o-DSR controller uses Wi = 1 for all gimbals.
While tuning can improve performance at the internal singularity near
t = 4 s, we found that doing so considerably delays the initial external
singularity escape, and vice versa. This is because different gimbals
must be damped at both singularities encountered in this simulation.

H. Performance of Attitude Control with Disturbance Rejection

This section demonstrates a pointing task while rejecting a small dis-
turbance. As noted in the survey by Kurokawa [9], few papers have
addressed this problem in detail. For simplicity, we use the reference
moment generator [10] given by

Mint,ref = JB

(
kpρ + kvω

)
+ Mext (64)

where ρ are the Modified Rodrigues Parameters representing the satel-
lite body attitude, kp and kv are proportionality and damping constants,

and Mext is a known disturbance.
The simulation in Fig. 7 demonstrates station-keeping perfor-

mance when the system is subject to a constant disturbance of Mext =
[0.5 0 0]T Nm: again starting in the zero-momentum configuration of
Fig. 3a. This amounts to steering the gimbals to continuously produce
a moment in the direction [1 0 0]T , with a small additional component
to stabilize the satellite when necessary, as shown in Fig. 7a. The error
magnitude |ρ| in Figs. 7d and 7j represents the principal angle devia-
tion from station keeping, in degrees. Note that the y axes use different
scales.

The disturbance causes the system to eventually encounter the
same singularity as in Fig. 3b, though at a much slower rate. This
gives the avoidance strategy more time to steer gimbal 2 away from
its antisaturated state almost entirely using null-motion component v̂4
(see Fig. 7e). Ultimately, some v̂3 motion with a small moment error
is needed to complete the escape just as the simulation of Fig. 5, but
tracking is almost uninterrupted, leading to only a minor deviation in
the satellite attitude.

Figures 7b and 7h demonstrate the effectiveness of the tracking
index δtrack, anticipating the singularity much sooner than the manip-
ulability measure δman. Because the o-DSR controller relies on δman,
its escape strategy is inactive until the singularity is fully encountered
around t = 24 s, at which point tracking is severely hampered.

Because the reference moment is initially small, the intrinsic per-
turbations of the o-DSR method are too small to result in singularity
escape. The reference moment magnitude ultimately grows along with
the increasing attitude error until escape is accomplished. The asso-
ciated attitude error of the o-DSR controller is more than 50 times as
high as with the DSEA controller, and higher gimbal rates are neces-
sary for the escape. Though Wi = 1 is used here for all gimbals, we
found that choosing other values does not substantially improve escape
time because of the equally delayed singularity detection.

VII. Conclusion and Discussion
The tracking index and gimbal potential represent new contributions
to solving the singularity problem of single-gimbal control moment
gyroscopes. These singularity measures distinguish singularities that
prohibit moment tracking from those that do not, and they exploit the
alignment of the reference moment and the singular direction to predict
the gimbal configuration at the nearest singularity.

Based on these properties, a directional singularity escape and
avoidance steering law has been designed that minimizes escape time
and the moment tracking error, with limited peak gimbal rates, using
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Figure 6. The secondary task symmetrically steers opposite gimbals apart to escape and avoid two singularities.

Figure 7. Disturbance rejection during station keeping. The secondary task avoids the internal singularity almost entirely using null motion.
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null motion whenever possible. By dynamically giving the escape strat-
egy an additional degree of freedom close to singularities, fast escape
can be enforced if requested, as shown analytically and as demonstrated
using simulations.

Compared to existing instantaneous gimbal steering laws, which
merge the moment tracking and singularity escape objectives by per-
turbing the system at every type of singularity, the presented steering
law operates with less moment error, less delay in singularity escape,
and lower peak gimbal rates, without tuning the controller separately
for each maneuver. Instead, the presented method exploits the whole
momentum space and efficiently deals with all types of singularities,
using a single set of control parameters that can be selected based on
physical and intuitive considerations.

The analytical study of the existence of singularity escape gimbal
rates provides stronger support for singularity escape in the reference
direction than guaranteeing nonzero gimbal rates, as done in most ex-
isting literature. However, although simulations have yet to disprove
our method, further research is needed to devise a formal proof.

Further confidence in the effectiveness of the DSEA method may
be obtained using simulations to validate singularity escape for a wide
variety of reference moment directions on the unit sphere and initial
gimbal angles along a full rotation, up to a desired level of accuracy.
Similar benchmarks may be used to evaluate rest-to-rest maneuvers or
to analyze new gimbal designs for comparison with the pyramid con-
figuration in terms of tracking errors.
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