
 
 

Delft University of Technology

Global correction of optical distortions in multicolor single-molecule microscopy using
Zernike polynomial gradients

MCCLUSKEY, KALEY A.; VAN VEEN, EDO N.W.; CNOSSEN, JELMER P.; WESSELINK, WOUTER J.;
ASSCHER, FILIP M.; SMITH, CARLAS S.; DEKKER, NYNKE H.
DOI
10.1364/OE.445230
Publication date
2021
Document Version
Final published version
Published in
Optics Express

Citation (APA)
MCCLUSKEY, KALEY. A., VAN VEEN, EDO. N. W., CNOSSEN, JELMER. P., WESSELINK, WOUTER. J.,
ASSCHER, FILIP. M., SMITH, CARLAS. S., & DEKKER, NYNKE. H. (2021). Global correction of optical
distortions in multicolor single-molecule microscopy using Zernike polynomial gradients. Optics Express,
29(25), 42251-42264. https://doi.org/10.1364/OE.445230
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1364/OE.445230
https://doi.org/10.1364/OE.445230


Research Article Vol. 29, No. 25 / 6 Dec 2021 / Optics Express 42251

Global correction of optical distortions in
multicolor single-molecule microscopy using
Zernike polynomial gradients

KALEY A. MCCLUSKEY,1,4 EDO N. W. VAN VEEN,1,4 JELMER P.
CNOSSEN,2 WOUTER J. WESSELINK,1 FILIP M. ASSCHER,1 CARLAS
S. SMITH,2,3,5 AND NYNKE H. DEKKER1,6

1Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The
Netherlands
2Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands
3Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
4Joint first author
5c.s.smith@tudelft.nl
6n.h.dekker@tudelft.nl

Abstract: Accurate image alignment is critical in multicolor single-molecule fluorescence
microscopy. Global alignment using affine transformations leaves residual errors due to the
nonlinearity of the distortions, which decreases the effective field of view. Subsequent local
refinement demands either large amounts of reference data and processing time or specialized
imaging techniques like active stabilization. Here, we present a global alignment method, S/T
polynomial decomposition, that uses sums of Zernike polynomial gradients to decompose the
distortion between two images, correcting both linear and nonlinear distortions simultaneously.
With minimal reference data, we gain diagnostic information about the distortion and achieve a
colocalization accuracy comparable to local registration methods across the entire field of view.

© 2021 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Modern biology has advanced through an ever-deeper understanding of the workings of cellular
processes. To obtain how the dynamics of such cellular processes are governed at the molecular
scale, the focus of study moves to smaller (sub-)systems, including individual biological molecules.
Frequently, such individual molecules are tagged with fluorescent markers, making it possible to
e.g. visualise their localization and/or dynamics. Similarly, labelling different types of biological
molecules in distinct colors makes it possible to monitor the interactions between them at the
single-molecule level.

Two types of widefield, multicolor single-molecule fluorescence microscopy are frequently
applied to examine molecular interactions. Multi-colour [1–3] Förster Resonance Energy Transfer
(FRET) microscopy exploits the nonradiative dipole-dipole coupling energy transfer between
two fluorescent markers to report on distances between them of 1 – 10 nm [4]. CoSMoS
(Colocalization Single-Molecule Spectroscopy) and SHREC (Single-molecule High-Resolution
Colocalization) rely on the coincidence of components labeled in distinct colors to deduce the
composition and accompanying kinetics of macromolecular complexes [5–8]. Both approaches
rely on accurate registration of images in multiple wavelengths (Fig. 1(a)). FRET measurements
require that fluorescent spots in multiple colors be linked with high confidence to calculate a
meaningful energy transfer efficiency. In CoSMoS, an accuracy in the 10s of nm is necessary to
reliably distinguish true complexes from mere binding at proximal sites.

FRET and CoSMoS have especially extreme colocalization requirements, but the need to
accurately register images in multiple color channels is common to many more microscopy
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Fig. 1. Connection of Zernike polynomials to CoSMoS image analysis. (a) Schematic
of the detection pathway in a multicolor CoSMoS microscope. Fluorescence from multiple
fluorophores is split into multiple channels, which are imaged on different sections of a
camera chip. In our setup, the two halves of an EMCCD chip are used, but the schematic
is general. In principle, the two images are identical and can be overlaid to extract precise
localization and colocalization information. However, in practice, chromatic distortions and
differential optical imperfections between the color channels lead to distortions between
the images that prevent precise colocalization and result in information loss. (b) The first
21 Zernike polynomials, which are scalar functions on the unit disk. Rows of the pyramid
correspond to the maximum power of the radial coordinate, r. The inset illustrates the
relationship between the Zernike polynomials and the vectorial S/T polynomials using S6.
S6 =

1√
12
∇Z6, where Z6 is indicated in red. Since gradients of Zernike polynomials are

sums of other Zernike polynomials, S6 can also be expressed as S6 =
1√
2
(Z2x̂ − Z3ŷ), where

Z2 and Z3 are circled in blue.

techniques. A practical challenge to all of these approaches is that widefield images in multiple
color channels are typically distorted relative to one another due to slight differences in the imaging
optics. This introduces differences in translation, rotation, and scale, as well as additional optical
distortions. Even if multicolor imaging is performed using only a single imaging channel (e.g.
through alternating excitation), the wavelengths still experience different chromatic distortions
[9], and the final images will be slightly different.

The twin issues of localization and colocalization—the precision with which the locations of
individual PSFs can be defined and the accuracy with which PSFs in different images can be located
relative to each other, respectively—must be addressed separately. Super-resolution techniques
like PALM and STORM typically localize individual fluorophores with nm precision [10–13].
Subnanometer precisions are possible, even in three dimensions [14], through careful theoretical
treatment of point spread functions with high photon counts [15–17]; thorough calibration of
each element of the microscope; and fitting of the remaining variations [14,18,19]. One downside
of the techniques with the highest localization precisions is that reference fluorophores must be
imaged simultaneously with the sample [14], which is common in cell and nanomaterial imaging,
but less so in CoSMoS and FRET microscopy.

However, high localization precision does not translate automatically into accurate colocaliza-
tion [19]. Chromatic and other optical distortions will lead to differences between images in
multiple color channels, whether they are collected through the same optics or not.

Relative distortions between images can be corrected either globally or on a PSF-by-PSF basis.
The simplest global distortions between two images, so-called "affine" distortions, are relative
translation (shift), rotation, and scaling (magnification), sometimes with the inclusion of shear.
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The affine shift between any two images can be calculated by interpolating between a selection of
reference points (for example, fluorescent calibration beads or an etched reference grid) and then
applying the inverse transformation to align the two (or more) images [5,20].

The affine correction does not take into account the higher-order distortions that may be present
in an image. In particular, if the image is optically distorted at its edges, affine transformation
cannot improve the image quality. For this reason, higher-order corrections are often employed.
For example, the Traces algorithm [21] removes residual distortions by globally fitting the
difference between the affine-corrected image and the reference image with a fourth-order
polynomial in the radial coordinate r.

Even higher alignment accuracy is possible if one employs active feedback controls [22] or
performs PSF correction locally rather than globally [8,17,23]. Friedman et al. [23] used a
local correction method in which the exact local offset between channels was calculated for each
reference fluorophore in a sample of several hundred spanning the field of view. Colocalizations
with a residual mapping error as low as 20 nm could then be achieved by interpolating the
correction from the table of local correction values. In a related technique called "piecewise
affine correction," a local affine transformation was defined by the reference fluorophores in each
discrete region of the field of view and applied to any experimental probes therein [24].

The disadvantage of local affine approaches is that a significant amount of calibration data
is required to robustly estimate the large number of parameters (usually multiple images of
a standard calibration bead slide). Moreover, the number of reference spots required and the
number of localizations to be done increase proportionally to the area of the field of view, as
does, in consequence, the computing time required.

Given the cumbersome implementation of local correction, a global correction method that
provides similar accuracy would be ideal. In this paper, we propose such a solution. We begin by
observing that the distortions we see in microscopy images can be both predicted and modeled.
The well-known optical distortions in play—spherical aberration, astigmatism, and so on—can
be mathematically described by the Zernike polynomials [18] (see Fig. 1(b)).

Sums of Zernike polynomials are already used in some applications to improve the localization
precision of fluorescence imaging [14,19]. However, the Zernike polynomials are scalar functions.
To refine the colocalization of two images, a vector quantity that can describe the distortion
between the images is necessary. Recently, Zhao and Burge proposed a basis set of vector
polynomials on the unit disk—the so-called S and T polynomials—that use sums of Zernike
polynomial gradients to describe vector fields subject to these distortions [25,26]. The S
polynomials describe distortions related to curl-less distortions such as astigmatism, while the T
polynomials describe the rotational versions of these distortions associated with non-zero curl.
One S polynomial, S6, and its relationship to the Zernike polynomials are shown in the inset to
Fig. 1(b).

S/T polynomial decomposition has several advantages compared to the alternative methods.
First, the decomposition is physically meaningful compared to a generic polynomial fit because
distortions that play a greater role in the field will be more significant in the sum. In addition,
four low-order S and T polynomials describe x and y translation, scale, and rotation, allowing one
to directly integrate the simple affine corrections with the higher-order corrections. Compared
to local affine approaches, S/T decomposition has a much smaller number of free parameters,
allowing it to be performed with far less calibration data. Finally, it specifically addresses the
issue of image degradation at the edges of a field of view.

In this paper, we use S/T polynomial decomposition (STPD) to model the distortions between a
pair of reference images taken on a commercial TIRF microscope using an EMCCD camera with
two color channels. Our localization precision approaches the Cramér-Rao lower bound—the
theoretical lower limit defined by the illumination intensity, camera noise threshold, magnification,
and other parameters [27]. By subtracting the modeled field from the distortion field, we reduce
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the mean residual colocalization error in a DNA-PAINT nanoruler image from 62 nm to 17
nm. The residual error remains less than 20 nm more than 30 µm from the center of the image,
whereas with affine correction only, the accuracy degrades past this benchmark 11 µm from the
center. STPD is easy to implement in combination with open-source analysis software such as
Picasso [13].

2. Methods

2.1. S/T polynomial decomposition

The S/T polynomials (Sj, Tj) are a set of complete, orthonormal vector fields over the unit circle,
given in two papers by Zhao and Burge [25,26] They are defined as linear combinations of
derivatives of the Zernike polynomials Zj; these derivatives are given by recurrence relations
[28].

Our distortion map D is defined at a finite set of N coordinates rk (Supplement 1, Fig. S1). In
this case, we can calculate decomposition coefficients using:

aS,j =
1
N

N∑︂
k=1

D(rk) · Sj(rk), (1)

aT ,j =
1
N

N∑︂
k=1

D(rk) · Tj(rk). (2)

The distortion field D can be approximated by a correction field:

D̃ =
jSmax∑︂
j=1

aS,jSj +

jTmax∑︂
j=1

aT ,jTj ≈ D, (3)

where the decomposition coefficients aS,j, aT ,j are computed up to orders jSmax and jTmax
respectively.

It is important to note that the S/T polynomials are not strictly orthonormal on the finite grid
defined by rk, which means that the initial correction field D̃ is not optimal. In other words,
the residual field R = D − D̃ would have nonzero decomposition coefficients if we were to
apply the decomposition procedure again. Hence, we propose an iterative procedure, where the
decomposition is calculated for the residual field until the result converges.

The procedure looks as follows:

1. Calculate D̃(1), given by a(1)S,j , a
(1)
T ,j, from the distortion map D (Eqs. (1), (2), (3)).

2. Calculate the residual distortion map R(1) = D − D̃(1).

3. Calculate D̃(i+1), given by a(i+1)
S,j , a(i+1)

T ,j , from the residual distortion map R(i) = D−
∑︁i

l=1 D̃(l)

iteratively until convergence.

4. The final correction field D̃ is given by the coefficients aS,j =
∑︁

l a(l)S,j, aT ,j =
∑︁

l a(l)T ,j.

Convergence is reached once the mean absolute residual error (MARE = 1
N
∑︁N

k=1 |R
(i)(rk)|)

remains approximately constant (∆MARE<10−6) for increasing i. In general, the iterative
procedure converges more quickly for denser populations of reference points. Figure 2(a) and (b)
show a vector field with randomly-generated S/T coefficients (jSmax = 45, jTmax = 45) on a sparse
circular grid (76 points) and the same field up-sampled to 2892 points. Figure 2(c) shows that
the decomposition of the dense field in (b) converges to a MARE of 2.7 × 10−9 in 68 iterations

https://doi.org/10.6084/m9.figshare.17074967
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Fig. 2. Iterative determination of an optimal S/T polynomial decomposition set. (a)
A randomly-generated, sparse distortion field (76 points). (b) The same distortion field
as in (a), up-sampled to 2892 points. (c) Mean residual error versus iteration number for
distortion fields ranging from 21 points to 2892 points. The field in (a) is shown in orange
dots, and the field in (b) is shown in purple. The mean absolute residual error (MARE) from
iteratively decomposing the dense grid in (b) reaches 2.7 × 10−9 in 68 iterations, while the
MARE of the sparse grid in (a) converges to 10−8 in 180 iterations. Grids with 180 or 2892
points (green or purple dots, respectively) converge in less than 100 iterations, while a very
sparse grid (blue dots) diverges.

(purple dots), while the sparse field in (a) converges to MARE = 10−8 in 180 iterations (orange
dots). Grids with sampling densities between the two also converge, while for an undersampled
grid (21 points; blue dots) the procedure can diverge.

The S and T polynomial series are infinite in length, but in practice, the maximum orders
used in the decomposition, jSmax and jTmax, are limited by the resolution of the reference grid (or
more generally, the density of reference probe fluorophores). To determine jSmax and jTmax, the
optimization procedure above is performed for a range of values of jSmax and jTmax. As illustrated
in Fig. 1(b), the Zernike and S/T polynomials depend on powers of the radial coordinate r that
systematically increase with jSmax and jTmax. We performed the decomposition by adding S/T
polynomials in blocks that correspond to powers of r. The j values that result in the lowest
residual error are used.

The residual error of an iterative polynomial decomposition also depends on the density of
reference probes. As discussed in the context of Fig. 3(d) and in Supplement 1, Fig. S1(d), higher
sampling density leads to convergence of higher-order polynomials, but not necessarily improved
residual error. For a very dense grid, the optimal jSmax, jTmax values could tend to infinity.

2.2. Microscopy

Data were collected on a TIRF microscope assembled from commercial parts at the Kavli
Nanolab Imaging Center at Delft University of Technology. The microscope comprises a Ti2-E
inverted microscope base (Nikon), a Nikon Apo TIRF 100x objective (1.49 NA), a commercial
illumination module (iLAS 2, Gataca Systems), and an iXON Ultra EMCCD camera (Andor).
Excitation at 561 and 642 nm was interleaved with 100 ms exposure time.

https://doi.org/10.6084/m9.figshare.17074967
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2.3. Samples

Reference data were collected using a PSFcheck slide [29] (PSFcheck, Exeter, UK), which contains
several laser-written patterns that can be used for 2D and 3D microscope calibration. Briefly,
high-intensity infrared laser pulses are used to create microscopic voids in three-dimensional
patterns in a glass substrate. The dense layer of material around the void regions exhibits increased
autofluorescence [29]. We imaged the ‘3D point array,’ a grid of 350 nm diameter features with
10 µm spacing under 561 nm and 642 nm illumination for 100 frames, then translated the grid by
5 ± 0.5 µm and repeated the measurement. By translating the grid twice more and concatenating
the four image stacks, we generated a grid with effective, though approximate, 5 ± 0.5 µm spacing
and four times greater point density.

Validation data were collected using a Gatta-PAINT 80RY DNA-PAINT calibration sample
obtained from GATTAquant DNA Nanotechnologies (Gräfelfing, Germany). Gatta-PAINT
"nanorulers" are DNA origami structures with precisely-spaced binding sites for one or more
fluorophores, sold by GATTAquant pre-mounted on a microscope slide. 80RY nanorulers have
three binding sites arranged linearly and spaced by 80 ± 5 nm. Each site can transiently bind
either ATTO 655 (red) or ATTO 565 (green/yellow).

2.4. Data analysis

Initial localization of reference grid points and nanorulers was performed using Picasso Localize
[13] (EM gain 1, baseline 135, sensitivity 0.06 (calculated using [30]), and quantum efficiency 1).
Images of the DNA-PAINT nanorulers were generated in Picasso Render [13] using pixel size
125 nm, and selection of localizations for quantification was performed in the same software.
Throughout the manuscript, the brighter, green channel has been rendered in red, while the red
channel is shown in green. The rendering software did not permit separate intensity scaling of
the two channels, and we found that inverting the false color made the PSFs easier to see in print
format, particularly in Fig. 4.

All polynomial decomposition and image correction were performed using a custom Python
library, Naclib, written in-house and available with documentation at [31].

3. Results

The calibration workflow for STPD is shown in Fig. 3(a), which includes references to subse-
quent figure panels. In short, the vector distortion field, D, between reference images in two
color channels is calculated by determining the offset between the fitted centroid positions of
corresponding fluorescent spots. Since the reference sample has a finite number of points, there
will be an optimal number of S/T polynomials to include in the polynomial decomposition of the
distortion field. We determine the optimal number, calculate the correction field, D̃, and export
the decomposition coefficients, which can then be used to correct experimental images taken on
the same microscope. These coefficients characterize the relative distortion between the red and
green channels of the imaging pathway (optics and EMCCD camera).

The reference images that we use to illustrate STPD are shown in Fig. 3(b). The upper panel
depicts the PSFcheck reference grid, an array of etched fluorescent features (350 nm, grid spacing
10 × 10 µm [29]). To increase the feature density, we translated the grid three times by ∼5 µm
and projected the resulting image stacks. The final reference image in the green channel is shown
in the center panel, and the red channel in the lower panel. Some large-scale affine differences,
especially differences of translation and scale, are visible when comparing the green and red
channels by eye.

Figure 3(c) shows the distortion field (displacement vectors) between the green PSF positions
and the red ones. We designate (arbitrarily) the red channel as the reference and apply all
corrections to the green channel. In Fig. 3(c), the arrow color indicates the magnitude of the
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distortion at each grid point, while the size is scaled for visual clarity. The distortion magnitude is
smaller at the center of the image, and the divergence of the field indicates that scaling differences
play a large role in the distortion.

Fig. 3. S/T polynomial decomposition of a reference distortion field. (a) Workflow for
calibration of image distortions using STPD. (b) The calibration sample, a PSFcheck slide
with laser-written features [29]. The point array is in the upper left of the top panel. (Image
reproduced from https://www.psfcheck.com/psfcheck-slides.) The calibration images in
the green (middle) and red (bottom) channels are composed of four superimposed images
of the grid, translated by approx. 5 µm each time. (c) The measured vectorial distortion
field between the green and red reference images. (d) Selection of the optimal polynomial
decomposition set. The S/T polynomial set truncating at fifth order in S (S28) and third
order in T (T15) minimizes the residual field, as measured by the mean absolute residual
error (MARE) of the distortion vectors. The optimal MARE is 0.085 px. (e) The correction
field, with coefficients optimized to model the input distortion field. (Compare panels c and
e.) (f) The residual field following subtraction of (e) from (c). Panels c, e, and f have the
same color scale, although the arrow lengths are scaled differently for visual clarity. (g) The
coefficients of the terms in the S/T polynomial sum, with S polynomial coefficients in red
and T polynomial coefficients in navy. Vector fields are shown as insets for the polynomials
with the largest weights: S4, T7, S11, and S12.

We computed the S/T polynomial decomposition of this distortion field for Sj, Tj combinations
up to jmax = 45, which corresponds to seventh-order distortions in the radial coordinate r
(Fig. 3(d)). We imposed that jTmax ≤ jSmax, since in our experience the maximum required order
of T was consistently less than that of S.

Figure 3(d) shows the mean absolute residual error (MARE) of the residual field computed
for each polynomial tested, beginning with polynomials that are first order in r (j = 2, 3). A
decomposition that includes polynomials up to S28 and T15 minimizes the residual (MARE = 0.085
px), corresponding to S polynomials up to fifth order in r and T polynomials up to third order in r.
The MARE diverges for most higher-order polynomials (grey cells). We selected the polynomial
ending at S28, T15 to define our correction field. The affine correction alone is not shown in
Fig. 3(d) because it ends at j = 4, which does not correspond to a complete order of r. (The first
order in r includes the astigmatism terms, j = 5, 6.) However, its mean residual, 0.186 px, is
comparable to that shown for the polynomial ending at j = 3.
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The optimal correction field is shown in Fig. 3(e), with the residual distortions that remain
after correction shown in Fig. 3(f). The residual distortions are far smaller than the ones in the
original field (Fig. 3(c)). Before correction, the maximum displacement vector magnitude was
0.94 px (118 nm), and the MARE was 0.50 px (63 nm). and After STPD correction (Fig. 3(f)),
the maximum displacement vector magnitude was only 0.21 px (27 nm), compared to a MARE
of 0.085 px, or 10.6 nm.

The polynomial coefficients in the optimal decomposition field are shown in Fig. 3(g). Not
every T polynomial with j ≤ 15 has a coefficient because many T polynomials are identical to
the corresponding S polynomials. These T polynomials are excluded from our analyses. The
primary contributions come from S4 (the affine scale term), S8 (coma), S11 (spherical), S12
(second-order astigmatism) and S14 (tetrafoil). The strongest T-polynomial contribution is T7,
coma with rotation.

The scaling difference between the red and green channels was apparent from visual inspection
of the distortion field (Fig. 3(c)), while the higher-order components reveal the most significant
optical distortions in the system. It is important to recall that these are relative distortions between
the reference channel and the other channel or channels. The choice of reference is arbitrary in
principle, but if one channel is known to be nearly distortion-free, then the polynomial coefficients
meaningfully identify the real distortions present in the optical system and can allow informed
inference as to their possible causes. Below, we will discuss ways to achieve absolute distortion
diagnosis even if there is no such "ideal" reference image.

The polynomial coefficients of the optimal decomposition field contain all the relevant
information for experimental image correction, and they can be saved in a small csv file (< 1 KB).
To implement STPD correction, the polynomial coefficients are used to shift the (x, y) positions
of the superresolved fluorescent features in an experimental image. The full (vector) value of the
correction field at each location is subtracted from the (x, y) coordinates, and the corrected spot
positions are saved (Fig. 4(a)).

We used STPD correction to align two-color images of DNA-PAINT nanorulers (GattaPAINT
80RY, GATTAquant). These DNA nanostructures have three binding sites for the dyes ATTO
655 and ATTO 565, arranged linearly and separated by 80± 5 nm. Either dye can bind transiently
at each site, so a well-aligned image will show colocalization at each site and clear separation of
the sites on each nanoruler.

We illuminated the nanoruler sample with green and red excitation light (561 and 642 nm,
respectively) and collected a 5000-frame image stack (Fig. 4(b) (left panel) and Supplement
1, Figs. S2(a) and (b)). We used Picasso Localize [13] to fit each PSF, then determined their
positions with a localization precision of 1.8 ± 0.5 nm in the green channel and 4.6 ± 1.2 nm
in the red channel (Supplement 1, Fig. S2(c) and (d)). The difference was due to the lower
photon counts and larger diffraction-limited PSF in the red channel, both of which decrease the
maximum achievable localization precision.

To highlight the variation in the distortion across the field of view and the effect of correction,
we show close views of clusters of nanorulers in three different parts of the 512 × 256 px
(64 × 32 µm) field of view in Fig. 4(c)-(e): the top left (first column), middle (second column),
and bottom right (third column). The first row (c) shows the localizations identified in the raw
image, the second (d) shows the localizations after the green image has been affine-corrected
relative to the red image, and the third (e) shows the STPD-corrected localizations, all generated
in Picasso Render.

It is clear from the middle column of Fig. 4(c)-(e) (the insets from the center of the FOV)
that image correction has little impact at the center of the image. Since distortions tend to be
worse at larger r, this is to be expected. However, at opposite corners of the image, approximately
72 µm apart, the uncorrected channels deviate from one another in different directions due to

https://doi.org/10.6084/m9.figshare.17074967
https://doi.org/10.6084/m9.figshare.17074967
https://doi.org/10.6084/m9.figshare.17074967
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Fig. 4. Correction of CoSMoS images using STPD. (a) Workflow for the correction of
relative distortions between images with STPD. (b) The reference probes are DNA PAINT
nanorulers (GATTAquant) with three binding sites spaced by 80 ± 5 nm, which can be
bound by either ATTO 655 or ATTO 565. The two channels are colored red and green, and
pixels where the PSFs overlap are shown in yellow. (c) Insets from (i) the top left, (ii) the
center, and (iii) the bottom right of a 64×32 µm field of view. (iv) Histogram of residual
colocalization distances between red and green localizations that correspond to the same
binding site with mean ± standard deviation (s.d.) 61.6 ± 26.7 nm. (d) Nanorulers (i-iii) and
colocalization distances (iv) after affine correction. The mean ± s.d. is 22.7 ± 13.3 nm. (e)
Nanorulers (i-iii) and colocalization distances (iv) after STPD correction. The mean ± s.d.
is 17.3 ± 9.5 nm. (f) The colocalization distance as a function of distance from the center
of the image. Data points and clouds are the mean and s.d. within each 20-px bin. For
the uncorrected images (red), the slope (m) of the linear fit is 0.327 nm/px with intercept
(b) 17.0 nm. After affine correction (green), m = 0.050 nm/px, and b = 15.6 nm. After
STPD correction (blue), m = 0.024 nm/px, and b = 13.9 nm. The dashed black line is 20
nm. (g) Colocalization distance distribution following image registration with a shear-affine
transformation. The mean ± s.d. is 18.4± 10.0 nm. (h) Following shear-affine registration, a
fourth-degree polynomial transformation was applied. The mean ± s.d. of the colocalization
distance distribution is 18.6 ± 10.5 nm. (i) The colocalization distance as a function of
distance from the center of the image. The affine-corrected and STPD-corrected data in
panel (f) are reproduced for comparison. After shear-affine correction (orange), the slope m
= 0.032 nm/px, with intercept b = 13.85 nm. After fourth-degree polynomial refinement
(purple), m = 0.027 nm/px, and b = 14.7 nm. The dashed black line is 20 nm.
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the nonlinear distortions between the images (compare c-i and c-iii), while affine and STPD
correction bring the red and green nanoruler images into progressively closer alignment.

The overall distribution of colocalization distances after each type of correction is shown in
Fig. 4(c)-(e), panels iv. Panel c-iv shows the raw, uncorrected distribution of residual distances
between colocalized binding site PSFs. The uncorrected colocalization distances [32] have mean
± standard deviation 61.6 ± 26.7 nm.

After affine correction (Fig. 4(d)-(iv)), the mean of the distribution decreases to 22.7 ± 13.3
nm. STPD correction (Fig. 4(e)-(iv)) decreases the mean residual separation further by ∼24% to
µ = 17.3 ± 9.5 nm. The mean accuracy is substantially improved by STPD, although the positive
skew toward larger separations (see Fig. 4(e)-(iv)) indicates that some image degradation still
occurs at the image periphery.

That said, Fig. 4(f) clearly shows that STPD correction largely compensates for this degradation
compared to the uncorrected or affine-corrected images. In Fig. 4(f), the colocalization distances
in 4(c,d,e)-(iv) are plotted as a function of distance from the center of the image with a bin size
of 20 px or 2.5 µm (markers are means, and clouds represent the standard deviation) and linearly
fitted.

Although all three methods perform similarly in the inner ∼40 px (5 µm) of the FOV, the
uncorrected colocalizations (red) degrade at a rate of 0.327 nm/px, leading to an average distance
of 20 nm between nominally colocalized spots at 10 pixels, and 100 nm at the image edge (256
px or 32 µm away). Since 20 nm is the mean colocalization error achieved across the entire FOV
using local affine correction [23], it is a useful metric to define the size of the effective FOV
achieved by our correction method. Before any correction, the effective FOV using this metric is
only 4.2 µm2.

Affine correction decreases the rate of degradation to only 0.050 nm/px, expanding the field of
view in square pixels by almost a factor of 100, to 375 µm2. STPD correction reduces the rate of
degradation by more than a factor of two, to 0.024 nm/px. As the mean colocalization distance
remains below 20 nm out to 254 px, this expands the effective area by an additional factor of 8,
allowing it to encompass almost the entire field of view (more than 3000 µm2). Importantly, this
enables colocalizations on the periphery of the image to be assessed with essentially the same
accuracy as those in the center.

Finally, we compared the performance of our S/T polynomial decomposition to two other
global approaches to channel registration: an affine transformation that includes shear based on
the CoSMoS Pipeline from Ref. [20], and a fourth-order polynomial decomposition based on the
Traces algorithm from Ref. [21]. Image shear does not correspond to an S or T polynomial, so its
inclusion is expected to provide better image correction than the STPD-based affine correction
that lacks it, while refining that transformation with a fourth-order polynomial interpolation is an
alternative way of capturing nonlinear distortions. We implemented both steps in MATLAB and
applied both approaches to the same data set shown in Fig. 4(c)-(e).

In Fig. 4(g), registration using a shear-affine transformation results in a residual colocalization
distance of 18.4 ± 10.0 nm . This is better than the affine correction implemented without shear
using S and T polynomials (22.7 nm), but not as accurate as STPD correction with higher-order
terms (17.3 nm). Figure 4(h) shows that following the shear-affine correction with a fourth-order
polynomial fit does not improve the fit (colocalization distance 18.6 ± 10.5 nm). The STPD
decomposition outperforms the general fourth-order polynomial correction.

Figure 4(i) compares the performance of these four channel registration approaches as a
function of position in the field of view. The shear-affine correction flattens the field of residual
colocalization distances to a degradation rate of 0.032 nm/px, again outperforming the affine
correction without shear at the image edges. Although fourth-order polynomial correction does
not improve the mean colocalization accuracy compared to shear-affine correction, it does flatten
the field of view to almost the same extent as STPD (slope = 0.027 nm/px, compared to 0.024
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nm/px for STPD). However, the polynomial-corrected data crosses the 20 nm threshold 198 px
from the image center, resulting in a FOV 60% the size of the one resulting from STPD.

4. Discussion

We have shown that a global image registration method can produce colocalization accuracies
similar to those reported for high-resolution local alignment procedures like those used by
Friedman and colleagues [23]. By decomposing the distortion between two images as a sum
of S/T polynomials, we can determine the highest-order optical distortion that contributes
significantly to the field, then apply the modeled field to experimental data to correct distortions
that degrade colocalization measurements. This global correction method outperforms three
other common approaches: affine correction with and without shear, and correction with a
generalized fourth-order polynomial.

Like the other global correction methods, STPD correction benefits from a dense field of
reference points, in particular because it can then accurately detect the contributions of higher-
order polynomials (Fig. 2(b)). However, the number of calculations required does not scale with
spot count or field of view size, remaining tractable over large chips or dense data sets. We found
that even with a comparatively sparse grid of 78 reference points, STPD correction increased
the accuracy of colocalization measurements on our instrument to ∼17 nm residual separation,
which exceeds the accuracy of local affine correction despite using an order of magnitude less
reference data. On an instrument with larger optical distortions, the improvement would be more
significant.

The primary advantage of local affine correction, aside from its high channel registration
accuracy, is the uniformity of the correction across a large FOV. Since every PSF registration
is calculated using only the nearest reference probes, the registration accuracy is essentially
independent of probe location. The quality of global corrections, especially affine corrections,
tends to vary across the FOV, reaching its best accuracy in the center of the FOV and degrading
toward the edges.

Although STPD is also a global correction technique, it decreases the rate of degradation
across the field of view by an order of magnitude compared to the uncorrected images, enabling
large-FOV, multiplexed measurements to be conducted with high accuracy without sacrificing
data at the image periphery or greatly increasing the computation time needed to perform the
correction, as with local affine methods. In addition, the underlying distribution of residual offsets
in the x and y directions is more uniform following STPD correction than an affine correction,
assisting data interpretation and distance measurements.

These features of STPD will gain value as sCMOS cameras with large detection chips become
more common in TIRF microscopy. The large chip allows a much larger field of view, and hence
more data, to be captured, improving experimental throughput. However, field distortions and
inhomogeneity in both detection sensitivity and noise can degrade image quality at the periphery
so much that only the middle portion of the chip can effectively be used, negating much of the
advantage [19]. STPD provides an efficient way to register microscopy data uniformly over
extra-large fields of view.

STPD operates by shifting the fitted (x,y) locations of the PSFs in one channel relative
to another, or relative to an absolute reference, as will be discussed below. Accordingly, it
is applicable to any microscopy technique in which PSFs can be localized in this way with
high precision. In particular, it can compensate for the larger fields of view in SIM and other
superresolution microscopies. In principle, STPD could also be applied to brightfield images by
shifting every pixel in a raw image using the correction field, then generating a corrected image
using pixel interpolation [33]. However, this is outside the scope of this work.

In addition, although the S/T polynomials have no extension to 3D, we envision that 2D
polynomial decomposition could be applied to each slice in an optically-sectioned volume,
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decomposing and correcting the more severe distortions encountered deeper into the sample
separately to the layers above. Care would have to be taken in volumetric imaging to ensure that
the decomposition varies approximately continuously from slice to slice.

The distortions we have been discussing are relative: one imaging channel compared to another.
However, even if two channels have been well aligned to one another, they could still be distorted
relative to a mathematically ideal plane. Copeland et al. have vividly illustrated that systematic
errors can lead to drastically incorrect distance measurements despite high localization precision
[19]. Although STPD allows high-accuracy registration of one channel to another, which is itself
sufficient for FRET or CoSMoS measurements, the reference channel may still have significant
distortions that would render distance measurements unreliable.

STPD allows one to correct these systematic errors, even in single-channel images, with the
addition of one element. If the images can be compared to a ground truth that can be accurately
modeled in silico—for example, a dense, evenly-spaced grid of points, or a single point being
translated across the FOV in uniform steps by a nanopositioning stage—then the measured (x,y)
positions in the image can be corrected relative to their simulated positions to determine the
absolute optical distortions in the image. The corrections in our Python library, Naclib, proceed
identically whether the reference points are experimental or simulated. Absolute correction in
this way would also permit accurate, distortion-corrected measurements of absolute distances in
microscopy images, provided that the nanopositioning stage or sample is itself well-characterized
[14].

Finally, STPD is information-rich, unlike the coefficients produced by a general high-order
polynomial correction. The coefficient magnitudes indicate the relative weight of specific field
distortions, which may provide useful information for optical system design and diagnostics. We
anticipate that S/T polynomial decomposition of microscopy images will provide a wealth of
insights into optical systems and increased flexibility for microscopists.

5. Conclusion

In this paper, we have shown that S/T Polynomial Decomposition (STPD) can be used to register
fluorescence microscopy images and correct relative distortions with comparable accuracy to
local registration, despite being a global registration technique. In STPD, we identify and correct
the nonlinear distortions in an image instead of fitting with generalized polynomials, which
decreases the number of fit variables and reference data points required. We needed fewer than
100 reference points to decrease the residual separation between colocalized nanoruler images
to 17 nm. Because STPD addresses the real distortions affecting an entire image, this high
degree of colocalization accuracy extends across the whole 64 x 32 µm field of view, largely
avoiding degradation and information loss at the edges. We expect that STPD will be useful
in single-molecule and superresolution microscopy to maximize the field of view and increase
experimental throughput.
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