
Asking the Right Question in Collaborative Q&A systems

Jie Yang, Claudia Hauff, Alessandro Bozzon, Geert-Jan Houben
Delft University of Technology

Mekelweg 4, 2628 CD
Delft, The Netherlands

{j.yang-3, c.hauff, a.bozzon, g.j.p.m.houben}@tudelft.nl

ABSTRACT
Collaborative Question Answering (cQA) platforms are a
very popular repository of crowd-generated knowledge. By
formulating questions, users express needs that other mem-
bers of the cQA community try to collaboratively satisfy.
Poorly formulated questions are less likely to receive useful
responses, thus hindering the overall knowledge generation
process. Users are often asked to reformulate their needs,
adding specific details, providing examples, or simply clari-
fying the context of their requests. Formulating a good ques-
tion is a task that might require several interactions between
the asker and other community members, thus delaying the
actual answering and, possibly, decreasing the interest of the
community in the issue. This paper contributes new insights
to the study of cQA platforms by investigating the editing
behaviour of users. We identify a number of editing actions,
and provide a two-step approach for the automatic sugges-
tion of the most likely editing actions to be performed for
a newly created question. We evaluated our approach in
the context of the Stack Overflow cQA system, demonstrat-
ing how, for given types of editing actions, it is possible to
provide accurate reformulation suggestions.

Categories and Subject Descriptors: H.3.3 Information
Storage and Retrieval: Information Search and Retrieval
General Terms: Experimentation
Keywords: Collaborative Question Answering; Classifica-
tion; Stack Overflow

1. INTRODUCTION
Collaborative Question Answering (cQA) systems are highly

popular Web portals where everyone can ask questions, and
(self-appointed) experts jointly contribute to the creation of
evolving, crowdsourced, and peer-assessed knowledge bases
[5][19], often in a reliable, quick and detailed fashion. Ex-
amples of such portals are Yahoo! Answers1 (for all kinds of

1http://answers.yahoo.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HT’14, September 1–4, 2014, Santiago, Chile.
Copyright 2014 ACM 978-1-4503-2954-5/14/09 ...$15.00.
http://dx.doi.org/10.1145/2631775.2631809.

questions) and Stack Exchange2, which consists of a number
of sub portals, each dedicated to a particular topic, such as
travelling, mathematics or programming.

In cQA systems users (askers) post questions, and rely on
other community members to provide a suitable solution to
their information need. Potential answerers (users that an-
swer questions) look through the list of existing questions,
typically ordered by recency, and decide whether or not to
contribute to ongoing discussions. Such decisions are influ-
enced by a multitude of factors, including time constraints,
quality and difficulty of the question, and the knowledge of
the answerer. Users can often also comment or vote on ex-
isting questions and answers. Commonly, when satisfied, an
asker can mark an answer as accepted, thus declaring her
need satisfied. Incentives to answer are often based on gam-
ification features of a platform, such as reputation points
[3].

Although the median time until a first answer is posted in
response to a question can be in the order of a few minutes
(as shown for instance for Stack Overflow [16]), more and
more questions [4] remain ignored or without an accepted
answer. Questions are unanswered when their meaning is
not clear to the community members, or when it is not pos-
sible, given the available information, to understand the na-
ture of the problem (e.g. the source code that produces a
compiling error is missing). A good question should have
enough details (but not too much), enough depth (with-
out drifting from the core subject), examples (if applica-
ble) as well as avenues already investigated by the asker
[17]. Well-formed questions attract more high-quality an-
swers than poorly formed questions, as subject experts are
more likely to help users that already put some effort into
finding an answer themselves [4, 16, 21].

We focus on Stack Overflow3, a cQA platform covering
a large variety of topics related to the software development
domain. Introduced in 2008, Stack Overflow features more
than 5 million questions, and 10 million answers provided by
more than 2 million users4. To manage and increase the like-
lihood of good and useful answers, users are provided with
editing functionality, which allows the improvement of ques-
tions based on the feedback from other community members.
Edits usually happen in response to comments or answers, a
process which might require several interactions (asker waits
for comments or answers, adapts the question, waits again,

2http://stackexchange.com/
3http://stackoverflow.com/
4These numbers are based on the Stack Overflow data re-
leased in September 2013.

179

etc.) and, ultimately, might cause the question to sink in
the list of open issues.

Our work contributes a novel approach to improve the
question formulation process. We envision a system that
upon question submission, provides askers with feedback
about the aspects of the question they need to change (im-
prove) in order to phrase their needs in the right way. This
in turn is more likely to attract the right answerers.

Here, we perform a first study to investigate the feasibility
of this idea. In particular, we propose and evaluate the
following two-step approach:

1. Determine whether the question is of high quality or
whether it requires an edit (Question Editing Pre-
diction).

2. When an edit is required, identify which aspect(s) of
the question need(s) to be improved to turn it into a
high quality question (Edit Type Prediction).

In the process, we address the following research questions:

• RQ1: To what extent are traces of question edits (and
the lack of edits) indicative of well or poorly formed
questions?

• RQ2: Given sets of properly/poorly formed questions,
is it possible to automatically detect which category
the question belongs to?

• RQ3: Is it possible to predict the type of action re-
quired to make a question “better”, i.e. improve its
quality?

Our results show that:

1. The need for edits is indeed indicative of a question’s
quality.

2. The need for a question to be edited can be predicted
with high accuracy.

3. The identification of the type of required edit is much
more difficult to predict: we classified edit types in
three categories, and found that only one of them can
be accurately predicted.

In the remainder of this paper we first briefly cover re-
lated work in Section 2. Then, in Section 3 we present our
methodology and developed hypotheses. The experimental
setup and the experiments are presented in Sections 4 and 5
respectively. Finally, we discuss our findings and present
future work in Section 6.

2. RELATED WORK
Collaborative question answering systems have been emerg-

ing as important collective intelligence platforms. Domain
specific cQA platforms such as Stack Overflow are trans-
forming the way people share experience, create knowledge
and, ultimately, contribute to the evolution of a given field
[22, 23].

Several works focused on the issue of question and answers
quality in cQA systems, providing a solid scientific support
to the premises of our work. Burns and Kotval [6] describe
thirteen dimensions that can be used to distinguish ques-
tions, including answer factuality, complexity, and depth of

answer needed. Dearman and Truong [7] surveyed 135 active
members of the Yahoo! Answers platform, identifying the
composition of the question as one of the main factors lead-
ing to its consideration by the community. Harper et al. [10]
investigated predictors of answer quality in several cQA sites,
identifying as relevant dimensions the question topic, type
(e.g. factual, opinion), and prior effort (i.e. the requester
clearly indicated a previous attempt to solve the problem).
On a higher abstraction level, an investigation into Stack
Overflow identified four main types of questions [17]: Need-
To-Known, Debug/Corrective, How-To-Do-It, and Seeking-
Different-Solution. Recent work has also considered the evo-
lution of user behaviour over time: Ahn et al. [1] studied
whether users learn to be better question askers over time,
by correlating past actions (e.g. receiving upvotes or com-
ments, accepting answers, etc.) with the quality of the sub-
sequent ones. Past work has also investigated the nature of
unanswered questions on Stack Overflow [4, 16, 21] - two of
the main reasons behind a question remaining unanswered
are the lack of clarity and the lack of required information
(source code, etc.).

Previous work has also focused on a variety of prediction
tasks, including question difficulty prediction [9], question
longevity, user expertise estimation and question recommen-
dation. Anderson et al. [2] studied the factors that con-
tribute to the long-lasting value of questions in Stack Over-
flow. Liu et al. [13] proposed a competition-based model for
estimating question difficulty by leveraging pairwise compar-
isons between questions and users. Another area related to
our work is the estimation of user expertise in cQA systems.
In [24] it was found that the expertise networks in cQA sys-
tems possess different characteristics from traditional social
networks, and based on this finding an expertise metric was
proposed. Similar aspects were also studied in [12, 19]. Rel-
evant examples of contributions addressing the problem of
routing questions to the right answerer can be found in [14,
15] and [25].

To the best of our knowledge, no previous work has tar-
geted the problem of question editing in cQA systems. Iba
et al. [11] analysed editing patterns of Wikipedia contribu-
tors using dynamic social network analysis; although several
observations are related to our setting, the nature and pur-
pose of wikis is different from the one of cQAs. The type and
nature of collaborative acts was studied in [20] on the specific
example of users proposing novel mathematical problems, or
contributing to their solutions. While providing important
insights, [20] focused on a qualitative assessment of the col-
laboration problem. The application of those insights, e.g.
by means of automatic analysis methods, was not investi-
gated.

3. METHODOLOGY
This section describes our experimental methodology. We

first discuss and present the types of question edits typi-
cally encountered on Stack Overflow. Publicly available data
dumps5 contain the entire history of all questions posted to
Stack Overflow. Every revision of a question includes in-
formation about the editor (the asker or another user) and
the time of the edit. We considered only questions whose
question body was edited, thus ignoring changes in the title
or in the tags.

5https://archive.org/details/stackexchange

180

Then, we discuss how we approached the edit prediction
task as well as the edit type prediction task (Section 3.2).
Finally, Section 3.3 presents a number of hypotheses, derived
from our research questions of Section 1.

3.1 Common Question Edits
We first need to define when we consider a question to be

of high and of low quality respectively.
A question is of high quality and thus well formed if:

1. it has not been edited in the past; and,

2. it has received at least two answers (the median num-
ber of answers for questions on Stack Overflow).

Previous work [18] relies on the number of positive pref-
erences (upvotes) as question quality indicator. Due to the
significant correlation between upvotes and number of an-
swers6 we settled on the number of answers as indicator.

In contrast, we hypothesise that a question might be ini-
tially of poor quality if it does not receive an answer within
12 minutes after its publication (the median answer time on
Stack Overflow), or if it is edited one or more times before
it receives the first answer.

However, not all edits are equal: a question may be edited
by the asker herself or by a different Stack Overflow user7;
an edit can lead to a major change in semantics or be sim-
ply a correction of a spelling error or a re-formatting of the
question.

In order to gain qualitative insights, we first conducted
a small-scale study aimed at eliciting the most important
edit categories on Stack Overflow. We define as important
the first edit (in the sequence of edits) that is temporally
followed by one or more answers.

We randomly selected 600 (question,important edit) pairs,
and had three trusted annotators describing the nature of
the observed changes. We found that most of our edits fall
into one (or more) of the following eight categories:

• Source code refinement: the provided source code
is modified; additions are more frequent than removal
or truncation.

• Context: the asker provides additional context and
clarifies what she wants to do/achieve, as well as in-
formation about the “bigger picture” of this question.

• HW/SW details: inclusion of additional details about
the hardware and/or software used (software version,
processor specification, etc.).

• Example: the asker provides examples of inputs, or
describes the expected results.

• Problem statement: the asker clarifies the technical
nature of the problem by posting an error message,
stack traces or log messages.

• Attempt: the asker details the attempts she already
made in order to solve the problem, either before pos-
ing the question or in response to comments or posted
answers.

6In our dataset with 5M questions, we observed a linear
correlation coefficient of 0.25, p-value<0.001.
7Stack Overflow users are allowed to edit other users’ ques-
tions after they reach a particular reputation level.

• Solution: the asker adds/comments on the solution
found for the question. The Stack Overflow commu-
nity explicitly encourages contributions where the user
asking the question also provides the final answer. Some
askers append their solutions, others create an answer
in the discussion.

• Formatting: the asker fixes small issues including
spelling errors and code formatting.

Table 1 provides an example of each edit type found in
our data set (described in detail in Section 4), apart from
the formatting category. This initial study shows that the
most important edit types are related to question clarifica-
tion as well as to the description of attempts made to solve
the problem - including the working solution. We therefore
decided to not further consider the formatting category.

3.2 Predicting Edits and Edit Types

Extracting Useful Question Edits.
The purpose of this step is to create the training and test

data sets for our experiments. Our goal is to create a data
set characterised by the presence of two distinct classes of
questions, which will be used to train a classifier able to
properly identify edited questions from non-edited questions.

Edited questions were selected as follows. Let there be
n edits of question Qi expressed as revisions Ri1

ta1
, ..., Rin

tan
.

Here, Qi can also be considered as Ri0
ta0

, i.e. the original

question posted at time ta0 . Revision IDs are sorted ac-
cording to time, each subsequent revision is an edit of the
previous revision.

Users (the asker as well as anybody else) can also comment
on a question or answer it. Let Ci

tj be a comment on ques-

tion Qi or any of its revisions at time tj . Similarly, let Ai
tk

be an answer to question Qi (or any of its revisions) at time
tk. Which revision the comment or answer are referring to,
depends on the timestamp of the comment or answer. We
exploit these comments and answers and extract all pairs
of original & edited question, with the following sequence
characteristics:

Ri0
ta0
→ Ci

tj → Ri1
ta1
→ Ai

tk (1)

where ta0 < tj < ta1 < tk. The idea is to be able to au-
tomatically catch edits stimulated by discussions with the
community.

Intuitively, we consider edits that:

• have been made potentially in response to a first com-
ment; and

• after the edit, triggered the posting of an answer.

To further ensure that the edits occurred in response to
the posted comment, we only consider those pairs of original
and edited questions where there is some overlap in terms
between the comment and the added text in the edit.

As an example, in response to a comment:

“Please add some source code”

a user might edit a question and add:

“My code: [actual code].”

181

Edit Category Post ID Added Text (Excerpt)

Attempt (1st edit) 9943644 Update 1: I’ve tested the application with NHProf without much added
value: NHProf shows that the executed SQL is ...

HW/SW details (1st
edit)

7473762 I’m running OS 10.6.8

Source code refine-
ment (1st edit)

13318757 Here is the code:

import android.content.Context;

import android.graphics.Matrix;

...

Problem statement
(1st edit)

7500461 The Error:
Exception in thread "AWT-EventQueue-0"

com.google.gson.JsonParseException: The JsonDeserializer

com.google.gson.DefaultTypeAdapters$CollectionTypeAdapter@4e76fba0

failed to deserialize json object

Example (1st edit) 11875006 I have a list of numbers like this in PHP array, and I just want to
make this list a little bit smaller.

2000: 3 6 7 11 15 17 25 36 42 43 45 ...

Context (1st edit) 13923053 EDIT: I have ’jquery-1.8.3.min.js’ included first, then I have the line
$.noConflict();. Then I have includes for external files using the pro-
totype framework. then I include my user defined function and finally
call it. But, I figured ...

Solution (2nd edit) 9215463 **EDIT 2: **Okay that’s done the trick. Using @Dervall ’s advice I
replaced the MessageBox line with a hidden window like this:

MSG msg;

HWND hwnd;

WNDCLASSEX wcx;

Table 1: Each edit type example shows part of the text added in the first or second edit respectively.
The Post ID is the Stack Overflow ID. Note that revisions of post with ID postID can be accessed via
http://stackoverflow.com/posts/ postID/revisions.

With this basic filtering step we were able to capture
around 170K quality-enhancing edits. The resulting question-
edit pairs were then ranked according to the amount of edit-
ing, measured by the number of characters changed in the
edited and original version of the question.

Our non-edited questions were selected from among all
questions that were never edited and have received at least
one answer. We ranked the non-edited questions according
to their number of received answers – intuitively, the more
answers a question receives, the higher is the engagement of
community members with the question.

Extracting Edit Types.
Based on the categories identified in Section 3.1, we con-

ducted a follow-up annotation study on 1000 edited ques-
tions randomly selected from the 25K most edited questions
(i.e. those with the longest edits), with the purpose to derive
labelled data for our edit types classifiers.

We collected annotations8 for the questions according to
four categories derived from our initial findings presented
in Section 3.1: Code, SEC (merging the categories Prob-

8We describe the annotation process in greater detail in Sec-
tion 4.2.

lem Statement, Example and Context), Attempt (merging
the Solution and Attempt categories) and Detail. The deci-
sion to group the categories as presented was taken due to
the practical difficulties the annotators encountered deciding
between them. In later stages, we discarded the Detail cate-
gory due to the small number of annotated instances. Edits
which do not fall into one of our categories were labelled as
a “null edit”.

We note, that for every question to be annotated, all edits
of that question were labelled, i.e. Ri

tj for j = 1...n.
The annotations were then used to train three binary clas-

sifiers aimed at providing suggestions about the type of edit
to be performed, for those questions that were deemed as in
need for edits.

3.3 Hypotheses
This section presents the research hypotheses, based on

the research questions posed in Section 1, we investigate in
our work.

• Hypothesis 1: Communities attracting beginner’s
programmers (e.g. Android programming, Web de-
sign) receive a larger number of edited questions than
communities which require more in-depth knowledge

182

(e.g. Assembler programming, functional program-
ming).

• Hypothesis 2: Users new to Stack Overflow post
questions in need of refinement. Over time, users learn
how to post good quality questions.

• Hypothesis 3: Not only the time a user has spent on
the portal is important, but also the amount of knowl-
edge the user already has about a particular topic. We
posit that users with substantial knowledge on a par-
ticular topic are less likely to post questions which re-
quire a substantial edit.

• Hypothesis 4: As the Stack Overflow platform gained
popularity, less and less questions requiring a substan-
tial edit have been posted. Users read the guidelines
and “learn” from different forums/portals how to prop-
erly ask questions.

• Hypothesis 5: New users are most likely to “for-
get” to add source code and previous attempts to their
questions.

4. EXPERIMENTAL SETUP
We use the public Stack Overflow dump9. Manual anno-

tations, training and test data used in ours experiments are
available for download at https://github.com/WISDelft/

WIS_HT_2014. We consider, for training purposes, all ques-
tions posted up to and including December 31, 2012; the
test set includes all questions posted between January 1,
2013 and September 6, 2013. We use a logistic regression-
based classifier10. The feature set is composed of unigrams
(terms) extracted from the dataset, an approach that has
been shown to perform well for different prediction tasks
in the past. The chosen classifier, though likely to not yield
the best possible accuracy, allows us to gain valuable insights
into the importance of different features.

4.1 Edit Prediction
The training and evaluation of the edit prediction classifier

has been performed using the ranked list of edited and non-
edited questions described in Section 3.2.

Figure 1: Both the training and test data were par-
titioned in three ways. The edit prediction classifier
was trained on the Extreme set of the training data.
The evaluation was performed on all data partitions
of the test data.

Given these two rankings of the questions in the positive
(edited) and negative (non-edited) class, we create three dif-
ferent data partitions, presented in Figure 1.

9Available online at https://archive.org/details/
stackexchange

10Implemented in sklearn http://scikit-learn.org

• The Extreme set contains the top 1% of positive and
negative samples.

• The Confident set contains the 10% highest ranked
edited and non-edited questions respectively.

• The Ambiguous set contains all edited as well as all
non-edited questions.

We derive this partitioning of the data separately for our
training and test data. We train our edit prediction classi-
fier on the Extreme data partition of the training data (i.e.
questions posted until the end of the year 2012) and evaluate
the performance of the classifier on the Extreme, Confident
and Ambiguous data partitions of our test data (questions
posted in 2013).

For training purposes, due to the skewedness of the class
distribution (there are more non-edited than edited ques-
tions), we randomly sample from the negative class until we
have reached the same number of samples as exist in the pos-
itive class. A similar sampling process is also used for the
test data, with the exception of the Ambiguous set, which
includes all test questions.

The reason for experimenting with different data parti-
tions is the nature of the task. Our overall goal is to predict
for each and every question in our test set whether or not
it requires an edit. Due to the nature of the questions, we
expect that questions in the Extreme test set can be classi-
fied with a higher accuracy than questions in the Ambiguous
test set.

Table 2 contains an overview of the total number of ques-
tions used for training and test purposes. We train on nearly
36,000 questions and test our pipeline on up to 1.8 million
questions.

4.2 Predicting the Edit Type
Given a question which has been flagged as“to edit” in the

first step, this processing step determines which aspect(s) of
the question require an edit.

The 1000 annotated questions feature an average of 3.05±
1.84 edits. Three trusted annotators evaluated disjoint sets
of 300 questions each. Additionally, a common set of 100
questions were labelled by all three annotators to test the
agreement. The inter-annotator agreements for the four edit
categories are shown in Table 3.

Edit Type Code SEC Detail Attempt

Kappa 0.67 0.59 0.19 0.65

Table 3: Inter-annotator agreement of edit category
annotation, measured by Fleiss’ Kappa.

The number of questions belonging to each category are
reported in Figure 2. We used a majority consensus ap-
proach to determine the category of the 100 overlapping
questions. Recall, that we annotate every edit of a ques-
tion, and thus the total number of items shown in Figure 2
exceeds 1000. Of all edits, 30.75% could not be assigned to
any of the four categories. We did not observe significant
differences between the edit type distribution at different
edit iterations (i.e. first edits are similarly distributed to
second or third order edits).

We observe that Code, SEC and Attempt are often oc-
curring categories, indeed more than half of the questions

183

#Questions #Edited #Non-edited
Overall Questions Questions

Test: Extreme 14,920 7,460 7,460
Test: Confident 85,072 42,536 42,536
Test: Ambiguous 1,772,649 522,874 1,249,775

Training: Extreme 35,892 17,946 17,946

Table 2: Basic statistics of our training and test data for the edit prediction task. Since more non-edited
than edited questions exist, for the Extreme and Confident partitions, the number of non-edited questions
was matched to the number of edited questions by sampling a subset of all questions in the respective dataset.

#q
ue
st
io
ns

0

200

400

600

Code SEC Detail Attempt

Figure 2: Annotation study results: number of
questions with an edit from a particular category.
The SEC category captures the problem Statement,
Examples and the Context.

have at least one Code edit (it is also not uncommon to
have several). For these three categories the inter-annotator
agreement is also moderate to high (0.59 or higher). In con-
trast, the category Detail suffers both from very low inter-
annotator agreement and few positive annotation results.

We train three binary classifiers, dropping the Detail cat-
egory from further experiments due to the annotator dis-
agreement and the small sample size. All questions with a
particular edit type belong to the positive class for that edit
type classifier, the remaining questions of our annotation set
form the negative class. The classifier training follows a sim-
ilar setup to step one. We derive features from the original
question and include it in the training set for a classifier if
at least one of the question’s edit was annotated as belong-
ing to the classifier’s category. Due to the small size of the
training data though we cannot rely on word unigrams as
features. To avoid overfitting, we employ Latent Semantic
Analysis [8] and rely on the 100 most significant dimensions
as features. To evaluate the edit type prediction task, we
use 5-fold cross validation.

5. EXPERIMENTS
We first present the results of our edit and edit type pre-

diction tasks. Subsequently we present an analysis of a num-
ber of user-dependent factors that we hypothesise to influ-
ence the likelihood of a posted question requiring an edit
(based on the hypotheses presented in Section 3.3).

5.1 Edit Prediction
The performance of our classifier on our test sets is pre-

sented in Table 4. As expected, the best results are achieved

for the Extreme test set with an F1 score of 0.7. The recall
of 0.78 implies that most questions which require an edit are
classified as such by our approach, thus clearly demonstrat-
ing its feasibility. The classifier is trained on a feature set
with a total of 7,206 features.

Test type Precision Recall F1

Extreme 0.63 0.78 0.70
Confident 0.58 0.69 0.63
Ambiguous 0.51 0.65 0.57

Table 4: Classifier performance on the edit predic-
tion task across our three test sets.

When comparing the performance of Extreme and Am-
biguous, the impact of the test set generation process be-
comes evident. For the Ambiguous test set the performance
of all three measures drops significantly. This is not surpris-
ing, as the middle ground questions (containing small edits
or being poorly phrased but remaining unedited) are the
most difficult for a classifier to identify correctly. We con-
clude that our proposed classifier, if employed on the stream
of new Stack Overflow questions, would be able to spot the
most severe cases of questions requiring an edit with high ac-
curacy. We leave the exploitation of more advanced machine
learning models and additional features for future work.

Important Features.
One of the benefits of a regression-based classifier is the

ability to gain insights about the importance of different fea-
tures based on the feature coefficients. In Table 5 we list the
features (unigrams) with the highest and lowest coefficients
respectively (after feature normalization). For instance, the
term microsoft is an important feature for to-be-edited ques-
tions, while lexer is negatively associated with question ed-
its, presumably because users discussing lexers have specific
problems and a relatively deep understanding of their topic.

5.2 Edit Type Prediction
We now consider step 2 of our pipeline - the prediction of

the type of edit(s) required to create a well-formed question.
The results are shown in Table 6, rows one to three.

While the edits of Code and SEC can be predicted with
moderate to high accuracy, the prediction of the Attempt
category is essentially random.

Automatically Augmenting the Training Data.
Having so far relied on our manually annotated data only,

we now turn to an automatic approach to augment the train-
ing data (the test data is fixed to our manually annotated

184

Strategy Edit category Nr. positive Nr. negative Precision Recall F1

No
augmentation

Code 612 388 0.63 0.83 0.71
SEC 542 458 0.57 0.62 0.59
Attempt 336 664 0.39 0.45 0.40

Positive
augmentation

Code 8157 338 0.63 0.92 0.75
SEC 542 458 0.57 0.62 0.59
Attempt 2387 664 0.40 0.49 0.44

Positive+
negative
augmentation

Code 8157 8157 0.63 0.95 0.76
SEC 542 542 0.55 0.49 0.52
Attempt 2387 2369 0.38 0.56 0.45

Table 6: Classifier performance on the edit type prediction task. Numbers underlined are the ones higher
than previous classification version. The best F1 scores in all edit type prediction tasks are highlighted in
bold. Note that Nr. positive and Nr. negative only indicates the number of questions that affect training of
the classifier. Precison, Recall and F1 are calculated based on the 1000 annotated questions.

Unigram Coef. Unigram Coef.

dbcontext 0.88 mental -0.29
microsoft 0.57 nicer -0.31

xx 0.57 understood -0.31
com 0.55 pre-compil -0.34
tick 0.47 lexer -0.41

neater 0.46 c/c++ -0.42
byte 0.45 firstnam -0.47

inbuilt 0.44 testabl -0.53
socket 0.42 string -18.48

reproduc 0.39 archiv -19.94

Table 5: Regression coefficients of the most posi-
tively and negatively weighted features (unigrams)
for the edit predictiont ask.

questions). The goal is to provide sounder evidence on the
performance of our predictors. We test two augmentation
strategies:

1. Positive augmentation: we assume that questions
with the term code appearing in the edited version
while not in the original version have a big chance to
be a positive question of edit type Code; this is verified
in our annotated dataset where this is true for more
than 38% of the questions in the edit type Code cate-
gory. We use this strategy to collect additional training
data from the Extreme training set; for the edit type
Code we identified nearly 7000 additional questions.
We followed the same approach for the Attempt cate-
gory, relying on the term tried (this assumption holds
true for 21% of our annotated data set). No augmenta-
tion was performed for category SEC, as no indicative
terms could be determined.

2. Negative augmentation: We consider non-edited
question in the Extreme training set as well-formed
questions, and include similar number as edited ques-
tions to be the instances of the negative class.

To ensure that the classification results are not influenced
by our selection criteria, the features code and tried are
removed in the training phase.

The classifier performance with both types of enlarged
training data are reported in Table 6, rows four to nine.

In the case of positive augmentation it can be observed
that both the Code and Attempt prediction performances
increase. The improvements in F1 stem from an increase
in recall. This is natural since the augmented training data
contains only positive questions.

After negative questions were added as well, the edit type
predictions Code and Attempt are very slightly enhanced.
This indicates that the negative questions does not contain
much information of each other. For type SEC the classifier
performs as poorly as a random baseline.

To summarise, we have found that the edit prediction task
can be solved with high accuracy, while the edit type pre-
diction task is more difficult to solve. We have presented
strategies to semi-automatically enlarge the training data
which have been shown to be beneficial for the Code and
Attempt categories.

5.3 Hypotheses Testing
We now turn to an analysis of our hypotheses presented

in Section 3.3.
Up to now we have only considered the question content

in edit and edit type prediction. We now explore the impact
that different factors can have on the quality of a question.
Such factors include the topic of a question, the user’s prior
experience on Stack Overflow, user knowledge on the ques-
tion’s topic, and the temporal influence of Stack Overflow.
We first test our hypotheses H1-H5, then add related fea-
tures for the prediction tasks to our classifier to investigate
whether they can make a difference.

5.3.1 Topical Influence
We investigate hypothesis H1, i.e. if questions about

particular frameworks or languages (e.g. JavaScript, Java),
in particular those often used by programming beginners,
are more prone to requiring an edit than questions related
to more advanced topics such as software engineering (e.g.
design-patterns or compilers).

For simplicity, we consider the tags assigned to each ques-
tion as indicator of a question’s topic. To avoid the influence
of insignificant edits, we consider all questions of the Con-
fident datasets (both training and test). Since a question
may be assigned multiple tags, a question may appear in
multiple tag sets. We rank the tags according to:

185

#questions with substantial edits

#questions without an edit
(2)

filtering out all those tags that appear too infrequently in
the data set. We consider this ranking to provide us with
an indication of a community’s amount of beginners.

Rank Tag Ratio #Questions
in Confident

1 asp.net-mvc-4 6.16 505
2 jsf 6.02 615
3 symfony2 5.57 338
4 r 4.34 2,067
5 opencv 4.10 402
6 matlab 4.02 981
7 core-data 3.91 446
8 angularjs 3.67 288
9 mod-rewrite 3.52 297
10 asp.net-mvc-3 3.50 1,443

....

192 vim 0.52 746
193 visual-studio-2008 0.50 921
194 web-applications 0.49 774
195 oop 0.45 2,711
196 database-design 0.45 1,220
197 unit-testing 0.44 1,526
198 logging 0.44 624
199 testing 0.41 849
200 design 0.34 1,386
201 svn 0.27 1,186

Table 7: Overview of the topics (tags) which contain
the most and least edited questions. All available
data was used to generate the rank and ratios. The
last column shows the number of questions in the
Confident data set.

Table 7 provides an overview of the ten most and least
edited topics (identified by their tags) in our data set. As
hypothesised, the top-ranking topics are those more frame-
work or language related, while low-ranking topics are more
generic or advanced. For instance, asp.net questions usu-
ally require a lot of edits. In contrast, topics like design or
testing require edits with a considerably lower likelihood.

We also report the number of questions a tag is assigned to
in the Confident data set. It can be observed that the tags of
most edited questions usually occur less than the non-edited
ones (except the r tag). This indicates that not the large
number of beginners leads to poorly phrased questions. It is
more likely that these questions need to be edited because
they are more complex and require more clarifications.

5.3.2 User Influence
Hypothesis H2 is concerned with the user effect - how

does a user’s familiarity with the portal Stack Overflow af-
fect the probability of an edit? If hypothesis H2 holds, we
expect that the probability of a substantial edit decreases
with increasing user experience with the platform. Such
experience can be implied based on different types of user
actions such as posting questions, answering, commenting
or voting on postings.

#a
ct
iv
iti
es

0

50

100

150

Edited Non-edited

Figure 3: Influence of user experience on posting a
question which requires an edit.

We use the Confident data set (training & test), which
contains a total of 151,762 users – (16.4%) of all Stack Over-
flow askers. For each question, we determine the number of
questions and answers in the entire data set (not limited to
Confident) the asker has posted previously, then bin them
into two groups: edited vs. non-edited questions. The com-
parison of these two groups is shown in Figure 3 in the form
of a box plot. The number of past activities of a user is - as
hypothesised - a significant indicator for the likelihood of a
question edit. Users with fewer activities are more likely to
edit their questions than more experienced users (to a statis-
tical significant degree, p-value<0.001 by a Mann-Whitney
test).

5.3.3 Knowledge Influence
Hypothesis H3 considers not only the activity of a user

in the past (regardless of the topic), but also the knowledge
of a user on a topic. In particular, we hypothesise that the
number of questions requiring an edit decreases as a user
gathers more experience on the topic (as she becomes more
familiar with the terminology, etc.).

To evaluate this hypothesis, for each asker in the Confi-
dent data set (training+test) we plot the number of days
since registering on Stack Overflow vs. the number of spe-
cific topic-related questions that require a substantial edit
asked on this topic. As before, we use tags as topic indica-
tor.

Fitted linear function
#days vs #questions

#q
ue

st
io

ns
 re

qu
rin

g
ed

its

10

20

30

#days since registration
0 500 1000 1500

Figure 4: Influence of user knowledge on question
edits. Results shown for topic (tag) C#.

186

Our analysis shows that these two variables are highly
negatively correlated, with a Spearman correlation of -0.72
(p-value<0.001). We remove all users with a registration
date older than 1500 days, and denote the activity of a user
by a vector (a1, . . . , a1500) where ai denotes the number of
questions and answers posted by this user at day i since his
registration. Figure 4 shows the cumulative vector for all
users involved in the topic C#. It can be observed that as
time passes, a user asks less questions that require substan-
tial edits. Though we only present the results for C#, we note
that we observe the same trends for the top 20 topics (tags)
on Stack Overflow, which include Java, iOS and Python.

5.3.4 Temporal Influence
Similarly to hypotheses H2 and H3, we can also eval-

uate H4 by considering all questions posted in a particular
year. If H4 holds, we expect to see a decreasing trend in
questions requiring an edit. There is an influential factor,
though, which will lead to more questions that require edits:
new users registering and asking questions. Figure 5 plots:

E = #edited questions−#non-edited questions

in the Confident data partition over time, while Figure 6
depicts the evolution of user registrations in the same time
period.

#e
di

te
d

- #
no

n-
ed

ite
d

−200

−100

0

100

200

Time

2009 2010 2011 2012 2013

Figure 5: Overview of the gradual increase in edited
questions on Stack Overflow over time.

#r
eg
is
tra
tio
n

0

2000

4000

Time

2009 2010 2011 2012 2013

Figure 6: User registration over time.

The Spearman correlation between E and the number of
user registrations is 0.79 with a p-value<0.001. This result
provides additional support to the motivations of our work,
as it shows that, despite the fact that an individual user asks
fewer questions when he stays longer on Stack Overflow, the
increasing popularity of the platform leads to the creation of
several more questions that could benefit from a systematic
assessment of their quality.

5.3.5 Influence of User “Age” on Edit Type
Hypothesis 5 is concerned with the role that user se-

niority plays in influencing the types of information (Code,
Attempt, or SEC) that are (not) initially included in the
questions.

For each of the 1000 annotated questions, we calculate the
age of the question as the difference between its posting date
and the registration date, in Stack Overflow, of its asker.

Figure 7 depicts the difference, in terms of age, of edited
and non-edited questions in the context of the Code edit
type: we observe that this type of edits is significantly (p-
value<0.001 by a Mann-Whitney test) more likely to occur
in the early days of a user’s activity on the platform; SEC
and Attempt edits do not show significant differences.

Ag
e

0

500

1000

1500

Edited Non-edited

Figure 7: Influence of user age on posting a question
which requires a Code type edit.

5.3.6 Influence on Prediction
In a final experiment, we created additional features for

edit and edit type prediction based on the results of the in-
vestigated hypotheses. The following features were added
to the existing feature set: 1) tags of a question, 2) #activ-
ities of the asker, 3) #days between the registration of the
asker and the time she posted the question, and, 4) #days
between a question was posted and the time Stack Over-
flow was launched.

In our experiments we did not observe substantial dif-
ferences in F1 when adding those features to our original
(unigram-based) feature set. This indicates that the con-
tent, i.e., the terms in a question, are more important that
contextual factors for predicting the question (type) edit.

6. CONCLUSIONS
As cQA systems grow in popularity and adoption, the

ability to provide automated quality enhancement tools is a
key factor to guarantee usability, reliability, and high knowl-
edge creation quality. In this paper we explored a spe-

187

cific aspect of user contributions: the formulation of well-
formulated questions. In order to receive useful answers, a
question should feature positive characteristics such as speci-
ficity (i.e. provide enough details to understand the nature
of the problem), and clarity (i.e. provide examples, or per-
sonal experiences).

We analysed the editing behaviour of Stack Overflow users,
and identified three main classes of useful editing actions.
We then applied machine learning techniques to define an
approach for the automatic suggestion of edit types for newly
created questions. With respect to the research questions
listed in Section 1 we can draw the following conclusions:

• RQ1: Question edits are a very good indicator of the
quality of a given question, as their presence is also
a reflection of several distinct traits of the asker (e.g.
being new to a given technology, knowledge in the tar-
geted topic, etc.).

• RQ2: Using a simple unigram model, we observe clas-
sification accuracies (F1) between 63% and 70%. This
is a very promising result which indicates the possibil-
ity for significant improvements when adopting more
sophisticated techniques.

• RQ3: Out of three identified classes of edits, only one
(namely code refinement) features good prediction per-
formance. The results are encouraging, but suggest
that a more in-depth analysis of the different type of
editing actions is required, to gain a better understand-
ing of their features.

In addition to improvements to the components of our
current question editing suggestion method, future work in-
cludes the extension of our analysis to other domains covered
by the Stack Exchange platform (e.g. math, literature, etc.),
to collect more insights about the editing behaviour of users
across different knowledge domains.

Acknowledgements
This publication was supported by the Dutch national pro-
gram COMMIT. This work was carried out on the Dutch
national e-infrastructure with the support of SURF Foun-
dation.

7. REFERENCES
[1] J. Ahn, B. S. Butler, C. Weng, and S. Webster.

Learning to be a Better Q’er in Social Q&A Sites:
Social Norms and Information Artifacts. ASIST,
50(1):1–10, 2013.

[2] A. Anderson, D. Huttenlocher, J. Kleinberg, and
J. Leskovec. Discovering Value from Community
Activity on Focused Question Answering Sites: A
Case Study of Stack Overflow. In Proceedings of the
18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’12,
pages 850–858, 2012.

[3] A. Anderson, D. Huttenlocher, J. Kleinberg, and
J. Leskovec. Steering User Behavior with Badges. In
Proceedings of the 22Nd International Conference on
World Wide Web, WWW ’13, pages 95–106, 2013.

[4] M. Asaduzzaman, A. S. Mashiyat, C. K. Roy, and
K. A. Schneider. Answering Questions About

Unanswered Questions of Stack Overflow. In
Proceedings of the 10th Working Conference on Mining
Software Repositories, MSR ’13, pages 97–100, 2013.

[5] M. Bouguessa, B. Dumoulin, and S. Wang. Identifying
Authoritative Actors in Question-answering Forums:
The Case of Yahoo! Answers. In Proceedings of the
14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’08,
pages 866–874, 2008.

[6] M. Burns and X. Kotval. Questions About Questions:
Investigating How Knowledge Workers Ask and
Answer Questions. Bell Labs Technical Journal,
17(4):43–61, 2013.

[7] D. Dearman and K. N. Truong. Why Users of Yahoo!:
Answers Do Not Answer Questions. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’10, pages 329–332, 2010.

[8] S. C. Deerwester, S. T. Dumais, T. K. Landauer,
G. W. Furnas, and R. A. Harshman. Indexing by
Latent Semantic Analysis. JASIS, 41(6):391–407,
1990.

[9] B. V. Hanrahan, G. Convertino, and L. Nelson.
Modeling Problem Difficulty and Expertise in
Stackoverflow. In Proceedings of the ACM 2012
Conference on Computer Supported Cooperative Work
Companion, CSCW ’12, pages 91–94, 2012.

[10] F. M. Harper, D. Raban, S. Rafaeli, and J. A.
Konstan. Predictors of Answer Quality in Online
Q&A Sites. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’08,
pages 865–874, 2008.

[11] T. Iba, K. Nemoto, B. Peters, and P. A. Gloor.
Analyzing the Creative Editing Behavior of Wikipedia
Editors: Through Dynamic Social Network Analysis.
Procedia - Social and Behavioral Sciences, 2(4):6441 –
6456, 2010.

[12] P. Jurczyk and E. Agichtein. Discovering authorities
in question answer communities by using link analysis.
In Proceedings of the sixteenth ACM Conference on
Information and Knowledge Management, CIKM ’07,
pages 919–922, 2007.

[13] J. Liu, Q. Wang, C.-Y. Lin, and H.-W. Hon. Question
Difficulty Estimation in Community Question
Answering Services. In EMNLP, pages 85–90, 2013.

[14] X. Liu, W. B. Croft, and M. Koll. Finding experts in
community-based question-answering services. In
Proceedings of the 14th ACM International Conference
on Information and Knowledge Management, CIKM
’05, pages 315–316, 2005.

[15] D. Ma, D. Schuler, T. Zimmermann, and J. Sillito.
Expert recommendation with usage expertise. In
IEEE International Conference on Software
Maintenance, ICSM ’09, pages 535–538, 2009.

[16] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak,
and B. Hartmann. Design Lessons from the Fastest
Q&a Site in the West. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’11, pages 2857–2866, 2011.

[17] S. Nasehi, J. Sillito, F. Maurer, and C. Burns. What
makes a good code example?: A study of
programming Q&A in Stack Overflow. In IEEE

188

International Conference on Software Maintenance,
ICSM ’12, pages 25–34, 2012.

[18] A. Pal, S. Chang, and J. A. Konstan. Evolution of
Experts in Question Answering Communities. In
Proceedings of the International AAAI Conference on
Weblogs and Social Media, ICWSM ’12, pages
274–281, 2012.

[19] A. Pal, F. M. Harper, and J. A. Konstan. Exploring
Question Selection Bias to Identify Experts and
Potential Experts in Community Question Answering.
ACM Trans. Inf. Syst., 30(2):10:1–10:28, 2012.

[20] Y. R. Tausczik, A. Kittur, and R. E. Kraut.
Collaborative Problem Solving: A Study of
MathOverflow. In Proceedings of the 17th ACM
Conference on Computer Supported Cooperative Work
& Social Computing, CSCW ’14, pages 355–367, 2014.

[21] C. Treude, O. Barzilay, and M. Storey. How do
programmers ask and answer questions on the web?:
NIER track. In Proceedings of the ACM/IEEE
International Conference on Software Engineering,
ICSE ’11, pages 804–807, 2011.

[22] B. Vasilescu, A. Serebrenik, P. Devanbu, and
V. Filkov. How Social Q&A Sites Are Changing
Knowledge Sharing in Open Source Software
Communities. In Proceedings of the 17th ACM
Conference on Computer Supported Cooperative Work
& Social Computing, CSCW ’14, pages 342–354, 2014.

[23] L. Yang, M. Qiu, S. Gottipati, F. Zhu, J. Jiang,
H. Sun, and Z. Chen. CQArank: Jointly Model Topics
and Expertise in Community Question Answering. In
Proceedings of the 22nd ACM International
Conference on Conference on Information and
Knowledge Management, CIKM ’13, pages 99–108,
2013.

[24] J. Zhang, M. S. Ackerman, and L. Adamic. Expertise
Networks in Online Communities: Structure and
Algorithms. In Proceedings of the 16th International
Conference on World Wide Web, WWW ’07, pages
221–230, 2007.

[25] Y. Zhou, G. Cong, B. Cui, C. S. Jensen, and J. Yao.
Routing Questions to the Right Users in Online
Communities. In IEEE 25th International Conference
on Data Engineering, ICDE ’09, pages 700–711, 2009.

189

