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Preface 
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to Bangladesh for a research project, and whose advice during the course of our thesis 
work was essential. 
We would also like to thank Cees Timmers, and the others at CIC AT, for the 
coordination of the project and the continued interest and concern for our well-being 
during our stay in Dhaka. 
In Bangladesh we would like to thank Mr. van Mierlo, Prof. Hannan, Dr. Kabir and all 
the other members of the educational staff of the Water Resources Department at BUET. 
Without their help the model would never have been built. 
Also thanks to Mr. van der Wal, who spent some of his spare time in helping to start up 
the model during the absence of Mr. van Mierlo. The practical advice given was very 
useful. 
A special thanks goes to Bob van Kappel for the hospitality given in his flat in Dhaka. 
The moral support given during our stay was indispensable. 
And finally we would like to thank Michael van Lieshout for his critical observations in 
reading the report, and Jos van Kerckhoven and Ernst Rob, for the help given in making 
the drawings and scans presented in the report. 
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Johan van Voorthuizen 





Summary 

Introduction 
The morphological behaviour of bifurcations in rivers is a poorly understood problem 
with which many river engineers are confronted. Bifurcations are mostly found in deltas, 
but also in braided sections of a river. The course of a braided river is highly unstable 
and unpredictable; serious problems can therefore arise if an attempt is made to regulate 
the river. The stability of the islands in these braided rivers is strongly influenced by the 
morphological behaviour of the bifurcations. A better understanding of the processes 
occurring at a bifurcation would contribute to the understanding of the behaviour of the 
braided river system, which in turn could help in modelling the river system as a whole. 

Thesis work 
The research done for the thesis work is a continuation of the research done by 
Wang et al. (1993) for the modelling of estuaries. Wang analyzed the influence of the 
relations describing a bifurcation on the stability of one-dimensional network 
morphodynamic models. 
The thesis work is an expansion of his analysis to the research on the stability of 
bifurcated rivers; it comprises two parts: 
- a theoretical analysis in which an analytical model leads to a number of conclusions 

verified by numerical computations; 
- the design and construction of an experimental model of a bifurcation in a river; this 

model can and will be used to conduct experiments which should complement the 
results of the theoretical analysis. 

Theoretical analysis 
The important problem in the modelling of bifurcations is the choice to be made for the 
relation describing the distribution of the sediment at the bifurcation (the nodal-point 
relation). With the help of an analytical model, the influence of the chosen relation on the 
stability of the one-dimensional network morphodynamic model is examined. This leads 
to a number of theoretical predictions, which are verified by numerical computations with 
the computer model WENDY. These computations agree very well with the predictions, 
and lead to the conclusion that the stability of the system is completely determined by the 
choice of the nodal-point relation. The general nodal-point relation proposed by 
Wang et al. (1993) is used to determine conditions of stability; these are the same as for 
the case of an estuary. Another conclusion drawn from the analysis is that the 

3 



morphological time scale is also completely determined by the chosen nodal-point 
relation. The effect of the general nodal-point relation on the morphological time scale is 
quantified in the report. 

Experimental model 
The experimental model was designed and built in Dhaka, Bangladesh within the 
framework of a linkage project between DUT and BUET. 
The goal of the experimental part of the research is to relate the local three-dimensional 
configuration of a bifurcation to the relevant parameters of the different general 
nodal-point relations. 
The experiments did not fit within the time frame of this thesis work, so none were 
performed. However, a detailed description of the necessary measurements is given in the 
report, as well as recommendations for possible experiments. 

Link between theory and experiments 
In order to link experimental results to theoretical results, the configuration of the 
experimental model was used as input for computations with WENDY. The dimensions of 
the model are too small for WENDY to handle, so the experimental model was scaled-wp 
to a larger fictitious prototype. 
The computations performed lead to a value for the morphological time-scale, which can 
be compared to the time scale in the experimental model. Since the value of the 
morphological time-scale in the numerical computation is determined by the chosen nodal-
point relation, this nodal-point relation can be calibrated until the same time scale is 
obtained as in the experiments. In this way a link is made between theory and 
experiments. 
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Introduction 

In this report, the complex problem of bifurcations in rivers is addressed. The study, 
performed for this Msc-thesis, is partly theoretical and partly experimental, and should be 
seen as a first approach of what will hopefully become a series of thesis-work research 
projects. This report is therefore oriented towards the potential successor, who will be 
able to do the experimental work recommended at the end of the report. 
The report includes three parts, which each comprise several chapters. In the first part a 
general background is given on bifurcated rivers. This includes a description of the 
problem, as well as a brief review of what is known about the processes involved at a 
bifurcation. 
The second part is a theoretical analysis of the problem. An analytical model for the 
morphological behaviour of the branches at a bifurcation is presented; with this model it 
is possible to make a number of theoretical predictions. These predictions are then 
verified with numerical computations, using the computer program WENDY. 
In Part I I I the design of an experimental model of a bifurcated river is presented. 
Suggestions for possible experiments are made and the necessary measurements are 
described. The results of the experiments will hopefully relate the theoretical results 
presented in Part n to the physics in nature. 
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Part I 

General background on 
bifurcated rivers 





Description of the problem 

Chapter 1 - Description of the problem 

1.1 Introduction 

The morphological behaviour of bifurcations in rivers is a poorly understood problem. 
This is exemplified by the fact that very little literature can be found dealing with this 
subject. The scarcity in available literature must, however, not be seen as an indication of 
the unimportance of the subject, but rather as a token of the difficulty of the problem with 
which many river engineers are confronted. 
A general description of the problem, and its relevance to the task of the engineer are 
given in the next section. 

1.2 Description of the problem 

Bifurcations can be found in different places along the stretch of a river. This is 
illustrated in figure 1.1 where the course of an "idealized" river is depicted. 
• The braided river in the upstream end of the middle course has more than one channel, 
with a sequence of confluences and bifurcations forming a multitude of islands in the 
river. The course of a braided river is very unstable and unpredictable, leading to serious 
problems for an engineer trying to "tame" the river with hydraulic structures. The 
morphological behaviour of the islands in the braided river, and the effect of the 
bifurcations on the stability of the downstream branches strongly influence the stability of 
the braided river system as a whole. A better understanding of the morphological 
processes at a bifurcation would clearly contribute to the understanding of the behaviour 
of the islands in the braided river. This could help improve the prediction of the course of 
such a river, facilitating the task of the engineer trying to regulate the river. 
• In the lower course (figure 1.1) the river forms a delta, which is also dominated by 
bifurcations. Because of the unknown behaviour of bifurcations, it has proven to be 
difficult to implement the layout of a delta into a one-dimensional morphodynamic model. 
The research on the behaviour of bifurcations in rivers is therefore relevant for the 
development of these models. Wang et al. (1993) analyze the influence of so-called 
nodal-point relations (see Chapter 2) on the behaviour of the one-dimensional network 
morphodynamic models. 
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Part I - General background on bifurcated rivers 

upper course middle course lower course erosion base 
sea 

vertical 
incision 

\ braided 

sea 

figure 1.1 - course of an idealized river 

• An "artificial" bifurcation also occurs at an off-take (for example for irrigation 
purposes). These sometimes have a tendency to silt up if preventive measures such as 
dredging are not undertaken. The reason for this silting-up is not well understood, but is 
related to the problems of "natural" bifurcations. Boreli and Bruck (1956) attempted to 
analyze the conditions of stability of a river branch for the sake of off-take design; they 
considered a river branch a natural off-take, whose properties could be used in diversion 
design. Further research on bifurcations will no doubt benefit the design and construction 
of off-takes. 
Example: 
An example of a current river engineering problem involving the behaviour of a 
bifurcation is the construction of the bridge over the Jamuna River in Bangladesh. The 
main channel of this river is known to displace up to several kilometres a year, in a 
rather unpredictable way. Major flow guiding constructions are being built to try to 
stabilise the course of the river, to keep the river flowing under the bridge. In order to 
minimise costs and to align the flow guiding structures in an effective way, a prediction 
of the possible changes in the course of the river had to be made. This prediction was 
based on a probabilistic method using statistical data. A better physical understanding of 
the morphological behaviour of the bifurcations in the braided river could have 
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Description of the problem 

contributed to a more accurate prediction. Moreover, the design of the hydraulic 
structures could be improved as the effectiveness of the applied hydraulic structures 
would be better understood. The relevance of the present study is thus illustrated. 

1.3 Goal of the research 

After the general description of the problem given above, it is possible to define a general 
goal of the study presented in this report. 

General goal: Analyze the morphological behaviour of bifurcations in rivers, with respect 
to the stability of islands in rivers. 

Restrictions: 
In nature situations may occur where three or more downstream branches diverge from 
the main channel. In this report only the case of a bifurcation with two downstream 
branches is considered. Moreover it is assumed that the sediment transport is related to 
the local flow condition by a power-law relation. 

In the next chapter, a theoretical introduction of the processes describing a bifurcation is 
given. This brief description is a presentation of what is presently known to happen at a 
bifurcation, and forms the basis for the analytical model presented in Part I I . 
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Chapter 2 - Theoretical introduction 

2.1 Basic conditions 

2.1.1 Introduction 
When trying to analyze the stability of an island in a river, problems occur when trying to 
describe the processes occurring at the upstream-end of the island, at the bifurcation in 
the river. The problem arising at a bifurcation can best be displayed when comparing the 
basic conditions at a bifurcation with those at a confluence. The mass balances for both 
cases are the same, but the boundary conditions for the computations are different. Since 
confluences do not present any great problems during computations, they are described 
first. 

2.1.2 Confluences 
At a confluence two rivers (or river branches) meet and join into one single river. 
The conditions governing the confluence are simple, as seen in the following: 
* The mass balances of water and sediment have to be satisfied; these are given in the 

figure below, where Q, is the discharge and S{ is the sediment transport in branch i . 

Confluence: 

2<?, = 0; 

SS, = 0; 
^ s 1 + s 2 = s 0 

\ 

Island 

I 

I 

figure 2.1 - confluence in a river 

* In this case Qu Q2, Sl and S2 are known; the unknown values of Q0 and S0 simply 
follow from the two mass balance equations. 
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2.1.3 Bifurcations 
A bifurcation occurs when a river separates into two (or more) downstream branches. The 
conditions governing the bifurcation are a little different from those for a confluence, as 
can be seen below. 
* The mass balances of water and sediment are the same as for a confluence (see 

figure 2.2). 

Bifurcation: 

m = 0; 

^ Q = < 2 , + Q 2 

XS, = 0; 

figure 2.2 - bifurcation in a river 

* In this case Q0 and So are known, and Qu Q2, Si and S2 are unknown. As a result the 
two mass balance equations are not sufficient to determine the values of the unknown 
quantities. 

With this simple description of a bifurcation, the problem arising can clearly be seen: two 
extra equations have to be found in order to obtain the 4 equations necessary to determine 
the values of the 4 unknown quantities: Qu Q2, Sx and S2. 

As shown in the sections above, the difficulty in the computations for the morphological 
behaviour of an island in a river largely lie in the description of the processes occurring 
at the upstream bifurcation. For this reason the analysis in the following mainly focuses 
on the bifurcation problem. 
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Theoretical introduction 

2.2 Additional equations 

In order to find the values of Qu Q2, Si and S2, one has to know how water and sediment 
distribute over the downstream branches. In this way two extra equations are obtained. 
Water: 
The distribution of the discharge Q0 into Qx and Q2 is completely determined by the 
geometry and friction coefficients of the downstream branches. It is such that, given the 
geometry of the downstream branches, only one water level occurs at the bifurcation. 
This computation should not give any problems. The problem is the determination of the 
distribution of the sediment. 
Sediment: 
The distribution ratio of the sediment to the two downstream branches is determined by 
the local three-dimensional flow pattern (Bulle, 1926; De Vries 1992). The determination 
of the ratio SJS2 is a difficult task; this has resulted in a multitude of proposed 
nodal-point relations (this name comes from Wang et al., 1993). A list of the different 
nodal-point relations is given in the next section. 

2.3 Nodal-point relations 

Wang et al. (1993) made an inventory of the different nodal-point relations found in 
literature, and analyzed the influence of these relations on the stability of one-dimensional 
models. The results of this inventory are presented here. 
• The relation that is probably used most in operational models is the following one: 

£>. 2i (2.D 

This relation is one of the two default options in the DELFT HYDRAULICS' one-
dimensional model WENDY. 
• The second default option in WENDY is the following relation: 

^ = *L (2.2) 
S 2 B 2 

where B{ is the width of branch i . 
Wang concludes that a physically realistic stable situation is never reached with this 
option. Moreover, the combination of this relation with a ID model (such as WENDY), 
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Part I - General background on bifurcated rivers 

in which the widths of branches are constant, leads to a constant ratio SJS2, which is 
physically unrealistic. This relation is therefore not recommended. 
• Another relation involves unknown constants: 

a * P (2.3) 

This is also an option of WENDY, in which the constants a and jö have to be given by 
the user. This option was used in WENDY for the Bern Mazar model (Vermeer, 1990). 
The values of a and /3 were calibrated successfully on data from a run in the experimental 
model of the reach of the River Nile near Beni Mazar. 

The analysis performed by Wang leads to the proposal of a general nodal-point relation, 
which is a generalisation of Eq.(2.1) and Eq.(2.2). This relation is: 

<?i 
B~ 

l-m 
(2.4) 

The influence of this relation on the stability of the ID network morphodynamic model 
was analyzed and led to certain conditions of stability (see Part I I of this report). This 
general nodal-point relation forms the basis of the analysis presented in the next chapters 
of the report. 

2.4 Literature 

Very little literature is available on the subject of bifurcations and islands in rivers. A 
review of the already mentioned literature is given here first. 
- The analysis made by Wang et al. (1993) considers the influence of nodal-point 

relations on the stability of network morphodynamic models; 
- Bulle (1926) states that the sediment distribution is governed by the local 

three-dimensional phenomena; 
- Boreli and Bruk (1956) were mentioned in Chapter 1 for their analysis of the 

conditions of stability of a river branch for the sake of the design of off-takes; 
- Vermeer (1990) was mentioned for the handling of a bifurcation in WENDY for the 

Beni Mazar model. Moreover, the research project of the Beni Mazar problem as a 
whole is worth mentioning here, since an experimental model was built which includes 
the local bifurcation in the River Nile (see Gasser et al., 1990). 
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Theoretical introduction 

Another study done at DELFT HYDRAULICS is that of Flokstra (1985); in this analysis the 
influence of a nodal-point relation is also looked at, but in this case the nodal-point 
relation considered is not a general nodal-point relation and moreover only a symmetrical 
case is analyzed. 
Not yet mentioned is Klaassen et al. (1993) who approach the problem of the stability of 
braided rivers from a complete different angle. They are concerned with the prediction of 
changes in braided rivers from a statistical point of view, where the probability of 
occurrence of different potential developments play an important role. As already 
mentioned in Chapter 1, a better physical understanding of the morphological behaviour 
of the bifurcations in braided rivers could contribute to such a prediction. The present 
research is therefore relevant for the statistical models being developed. 

A more general report written by De Vries (1993) gives an overview of the processes 
involved in braided rivers. This report is a note written for a workshop on River 
Engineering in Dhaka, Bangladesh, and is a good supplement to any study on the stability 
of islands in rivers. 
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Introduction 

Chapter 3 - Introduction 

3.1 Relevance 

The previous part has made clear that relatively little is known on the subject 
'bifurcations in rivers'. One-dimensional network models are hardly investigated and 
successful applications in numerical models are not known. From Wang et al (1993) it 
can be concluded that a very important place is held by the nodal-point relation which 
determines the distribution of the sediment transport over the downstream branches. This 
relation seems essential for the behaviour of a ID-network morphodynamic model. 
In this Part I I it is aimed at a theoretical investigation of the general nodal-point relation 
as mentioned in Chapter 2 

*1 " < ? l | 
m l-m 

$2 <?2 *2 

(3.1) 

The results hopefully lead to a better understanding of the use of this relation in 
morphodynamic models. 

3.2 Contents of Part I I 

The theoretical study of the general nodal-point relation can be divided into two main 
aspects, viz. an analytical and a numerical aspect. First, in Chapter 4, an analytical study 
of a bifurcated river and the influence of the nodal-point relation is presented. The 
fundamental aspects are determined and hence the behaviour of a network model. 
Consequently, a numerical analysis is carried out in Chapter 5 via simulations with the 
computer model Wendy. Several geometrical situations are computed here to compare the 
numerical outcome with the mathematical results from Chapter 4. 
In Chapter 6 a little analytical extension is presented and linked with numerical 
computations. 
Chapter 7 illustrates the possibility to make the experimental model parameters the input 
parameters for several Wendy-computations. This is possible via the application of certain 
scale relations. 
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Part II - Theoretical analysis 

In the last chapter of this theoretical part LT, the conclusions from the analytical and 
numerical studies are outlined. 

3.3 Description of Wendy 

The mathematical computer model Wendy was developed by DELFT HYDRAULICS (DHL). 
The present computer model Wendy is a package consisting of five application programs: 
- water flow (WAFLOW option); 
- water flow with density effects (SAFLOW option); 
- water flow and sediment transport (SEFLOW option); 
- water flow and suspended sediment transport (SUSFLOW option); 
- water flow and measured water level data (NETFIL option). 
Considering the subject of this report only the SEFLOW option has been used. An 
important restriction of the Wendy program is that it is a one-dimensional model. 
Problems strongly governed by two- or three-dimensional effects are not represented well. 
In the context of this study on bifurcations in rivers (network models), Wendy needs 
therefore additional information on the sediment distribution over the downstream 
branches, in order to represent this three-dimensional phenomenon in a one-dimensional 
model. The extra information (i.e. an internal boundary condition) is given by the nodal-
point relation (see Equation (3.1), (4.6)). 

The momentum equation and mass balance for water and sediment are solved numerically 
by finite difference methods. The difference equations are expressed on a non-uniform 
staggered grid. 
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Mathematical analysis 

Chapter 4 - Mathematical analysis 

4.1 Schematisation 

In this chapter, the set-up of a simple mathematical model is outlined in order to describe 
the influence of the nodal-point relation on the morphological changes around a 
bifurcation in a river. The bifurcation is part of a network system as schematised in the 
figure below. 

branch 2 

branch 0 f / \ \ branch 3 sea sea 
bifurcation —-X, 

branch 1 

figure 4.1 - schematisation of river system 

The figure represents in fact an island in a river. This schematisation is applied for the 
numerical computations in the following chapters as well. The mathematical analysis also 
holds for half an island (see Chapter 7). 

4.2 Mathematical model 

The main part of the mathematical analysis in this section was derived from Wang, 
Fokkink and Karssen (Wang et al, 1993). The basis of the analysis is formed by the 
following four equations: 
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- the momentum equation for the water movement 

du du da dzb u \ u \ 
— + u— + g— + g = -g—L-1 (4.1) 

dt dx dx dx C2a 

- the mass balance for the water movement 

da da du A (/\ o\ 
— + «— + a— = 0 (4.2) 
dt dx dx 

- the momentum equation for the sediment movement 
s = f(u, parameters) 

(4.3) 
which can be substituted by the power law s = f(u) = m/u" in case the transport formula 
is approximated (m/ is a transport coefficient). 
- the mass balance for the sediment movement 

* + * = 0 (4.4) 
dt dx 

Considering the problem of the sediment distribution at a bifurcation a few assumptions 
can be made. 
- the time needed for a wave caused by disturbances at the bed to travel through a 

downstream branch is much smaller than the morphological time scale of the system; 
- the height of the bedforms is much smaller than the water depth; 
- the two assumptions mentioned above implies that each of the branches can be 

represented by a single water depth if the processes on the morphological time scale 
are considered; 

- the water level at the downstream boundary does not change; 
- the morphological changes in the upstream river due to disturbances in the downstream 

branches can be neglected. 
Furthermore assuming steady uniform flow and applying the simple wave model, the 
changes of the water depth in the branches follow now from the mass balance of sediment 

B.L.— = -(S-S.) (4-5) 

with: Bj = width of the branch; 
L, = length of the branch; 
St = sediment transport inflow into the branch according to the nodal-point 

relation; 
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Mathematical analysis 

Sie = sediment transport outflow from the branch according to the transport 
capacity of the branch, determined by the transport formula of 
Engelund-Hansen (n=5). 

The sediment inflow Sx and S2 in the respective downstream branches is determined by 
the nodal-point relation 

Qt 
A, 

"11-m 
(4.6) 

Combining Equation (4.5) and (4.6), the next system of differential equations expressed 
in ax and a2 is obtained 

dat 

dt 
m'Ql 

B 0 L l 

1 Pi«i 
3/2 (BN\* i 

\ B i j a, 

3/2 \ 5 

(4.7) 

da2 m'Ql 
dt 

B l L 2 

< 

\ B 2 J 

Pi« 
3/2 

f - K f ± 
B 5 

P x a 
3/2 

n 3/2 0 3/2 
Pl^l + P 2

f l 2 

(4.8) 

in which: m = transport coefficient; 
m = power in the nodal-point relation; 
fij = B/L;\ 

This system of differential equations describes the morphological behaviour of a river at a 
bifurcation. Although the system is too complicated to solve analytically, it is possible to 
gain qualitative insight in the behaviour of these equations by means of studying the 
nature of the singular points. A point (au a2) is called a singular point i f both derivatives 
vanish. This means physically that the singular points (aua2) represent the equilibriums of 
the river system. They are the solutions of the equations: 
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m'Ql 
BlLi 

m'Ql 

B 0 L 2 

(Bo 1 

1 

3/2 

Mi (B*\ 

\BiJ 

1 

a, 

Pi«i 
3/2 \5 

Pi«: 
3/2 

\B2J 

1 Pi«. 
3/2 

0 

(4.9) 

(4.10) 

Three singular points can be derived from the system of differential equations. One 
singular point represents an equilibrium in which both branches downstream of the 
bifurcation in the river are open; the other two represent the equilibrium in which one of 
the branches is closed. The stabrhty of the three singular points depends on the value 
of m. This is shown by the following analysis of the singular points. 
A system of differential equations of the form 

dx 
dt \f(x,y) 
dy g(x,y) 

(4.11) 

dt 

with singular point (x0,y0) can be linearized locally by taking the Jacobian. 

fcw> f(wo) dx 
dt 
dy 
dt 

X Xq x x0 

= J(x0,y0) 
y-y0_ 

= J(x0,y0) 
y-y0. 

(4.12) 

A singular point is stable if both eigenvalues of the Jacobian matrix J(x0,yo) have a 
negative real part. 
First the equilibrium state with both branches open is looked at. This equilibrium is 
represented by the singular point {auaf) in the general case. For the simple case that B{ 

= B2 = B0/2 and L{ = L2 the singular point is determined at (a0,a0). The Jacobian at this 
point (a0,a0) is equal to 

3m+5 15-3m| 

m'Q 
3200^! 

4 
15-3m 

4 
3m +5 

(4.13) 

The matrix in Equation (4.13) has the following eigenvalues 
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-5 , - 3m-5 
2 

The second eigenvalue is dependent on the value of the power m. In the case m<5/3, one 
eigenvalue is positive. The singular point at (a0,a0) is then a saddle point resulting in an 
unstable equilibrium (see figure 4.2). In the case m>5/3, both eigenvalues are negative. 
The singular point at (a0,a0) is now a sink representing a stable equüibrium with both 
branches open (see figure 4.3). 

figure 4.2 - phase diagram in case m<5/3 

The two equihbriums in which one of the branches closes and all the water and sediment 
goes through the remaining channel are represented by the respective singular points 
(au0) and (0,a2). The water depths can be derived from equüibrium considerations. For 
the simple case that Bx = B2 = B0/2 and L : = L2 the respective singular points are 
(24/5ao,0) and (0,24/5ao). Linearising these points again by taking the Jacobian, it can be 
shown that both equilibria are stable in case m<5/3 and unstable when m>5/3, as 
illustrated in figure 4.2 and figure 4.3. 

unstable: 
=^ saddle point 
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Phase diagram m > 5 / 3 

stable: 
=̂  sink 

Cli 

figure 4.3 - phase diagram in case m > 5/3 

Both figures are set up under the special assumption Bx = B2 = B0/2 and L{ = L2 leading 
to the fact that the line ax = a2 represents a line of saddle points and sinks, respectively. 
For general values of Bu B2, Lx and L2 the analysis and figures are more comphcated, but 
they do not change qualitatively. 

4.3 Conclusion 

Describing a bifurcation in a river system with a mathematical model leads to three 
possible equilibriums: two situations in which one of the downstream branches is closed, 
and one equilibrium state with both branches open. The value of the power in the general 
nodal-point relation of Equation (3.1), (4.6) determines the stabrhty of these equilibriums. 
In case m < 5/3 the situation with two branches open is unstable; only a small disturbance 
is enough to close one of the branches, a stable situation. When m>5/3 the system 
always stabilises with two branches open, even when a very large disturbance is present 
(for example when one branch is almost closed). 
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Chapter 5 - Numerical computations 

5.1 Introduction 

As mentioned in Chapter 3, numerical computations are carried out with the computer 
program WENDY to verify the outcome of the theoretical analysis presented in Chapter 
4. The computations complement those made by Wang et al. (1993), who considered 
bifurcations and simple network models under tidal flow conditions. 
In this report the behaviour of an island in a non-tidal river is analyzed. The results of 
three series of simulations for three different configurations are presented in this chapter. 
The first set of simulations includes an island surrounded by branches with an equal 
width; this is referred to with the term symmetrical case. The second set of simulations is 
that of an asymmetrical case, where the island is surrounded by branches with different 
widths. The third set of simulations involves the disturbance of the system by the 
placement of a groyne in one of the branches. 

5.2 The symmetrical case 

5.2.1 Configuration 
The first set of simulations involves the simple case of an island surrounded by two 
branches with equal width. The schematisation of the island is given in figure 5.1. 
The channels are rectangular and of constant width. 

Geometrical and hydraulic parameters: 
L 0 = 100 km B0 = 
Lx = 10 km B{ 

L2 = 10 km B2 

L3 = 10 km B3 

where Lj is the length of branch j ; 
Bi is the width of branch j ; 
i is the slope of the bed; 
C is the Chézy value; 
D50 is the grain diameter. 

100 m i = 0.00004 
50 m c = 45 m*/s 
50 m D50 = 0.0002 m 
100 m 
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branch 2 

branch 0 

bifurcation 

branch 3 
sea 

branch 1 

figure 5.1 - schematisation of an island in a river 

The Engelund-Hansen transport formula is used, with: 
- relative density A = 1.65 
- porosity p = 0.4 

Boundary conditions: 
* water -» Q = 500 m3/s (upstream) 

One internal boundary condition is needed: the general nodal-point relation (Eq. (2.4)). 
The theoretical analysis presented in Chapter 4, predicts that this relation leads to a stable 
network with open channels if m is larger than 5/3. For smaller values the theory predicts 
that one of the branches closes. 
Disturbance of the system: 
Several runs are performed for this configuration to check whether the behaviour of the 
model for different values of m agrees with the theory. Two values of m are tested: m = l 
and m=3. For each run a disturbance in the bed level is applied, which causes 
overloading and/or underloading of the branches, resulting in the equüibrium situations 
mentioned above. 

morphology S = 
H = 

S = 

0 m (downstream) 
0.01 m3/s (upstream) 
S-equihbrium (downstream) 
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5.2.2 Simulations 1 & 2 
Two simulations were done for m = l . 
• In the first simulation no disturbance is applied to the branches of the network. The 
initial depths of branches 1 and 2 are the equilibrium depths. According to the theoretical 
analysis this results in an unstable equilibrium in which both branches remain open (see 
the phase diagram for m<5/3 in Chapter 4). 
The results of the simulation are shown in figure 5.2 and figure 5.3. 

I 
-10 

branch 1 branch 1 

\ V \ \ 
\ 

r / 
3 H H M I 

br ancli 2 

m = 1 

= beginning 
of branch 1 

= end of 
branch 1 

-=beginning 
of branch 2 

-= end of 
branch 2 

0 3600 7200 10800 14400 18000 21600 25200 28800 32400 36000 

time (days) 

figure 5.2 - bed levels for the symmetrical case, m= \ and no disturbance. 

In figure 5.2 the bed level in both branches stays the same so that both branches remain 
open. Each branch receives half of the sediment transport from the upstream branch, as 
shown in figure 5.3. 
Thus the results match with the theoretical prediction that for m = l an unstable 
equilibrium with both branches open is possible; it is obtained if no disturbance is 
applied. 
• In the second simulation the same configuration is used, but here a small disturbance is 
applied: branch 1 is made 1 cm deeper, and branch 2 made 1 cm shaUower. The theory 
predicts that this small disturbance is enough to result in the closure of one of the two 
branches, because it is a disturbance of an unstable equüibrium. 
The results of the simulation are shown in figure 5.4 and figure 5.5. 

35 



Part II - Theoretical analysis 

1 

3 

0.01 

0.009 

0.008 

0.007 

0.006 

0.005 

0.004 

0.003 

0.002 

0.001 

0 

br anch 1 

K / \ 
\ / 

t wane h 2 

3600 7200 10800 14400 18000 21600 25200 28800 32400 36000 

time (days) 

m = 1 

= beginning 
of branch 1 

= end of 
branch 1 

= beginning 
of branch 2 

-= end of 
branch 2 

figure 5.3 - sediment transport in the branches for the symmetrical case, m=l and no disturbance. 
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figure 5.4 - bed levels for the symmetrical case, m= 1 and a disturbance of 2 cm. 
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figure 5.5 - sediment transport in the branches for the symmetrical case, m=l and a disturbance of 2 cm. 

Both figures clearly show that the numerical results agree with the theoretical predictions. 
As seen in figure 5.4, the difference between the bed levels in branch 1 and 2 grows until 
branch 2 finally closes. At that point branch 2 no longer transports any sediment, as 
shown in figure 5.5; all of the sediment coming from upstream is transported through 
branch 1. 

5.2.3 Simulation 3 
The nodal-point relation is also tested for m=3. According to the theory this leads to a 
morphologically stable network with open channels, no matter what disturbance is 
applied. A rather large disturbance is therefore apphed to the same configuration given in 
figure 5.1. Branch 1 is made 1 m deeper, and branch 2 made 1 m shallower. 
The result shown in figure 5.6 is clearly in accordance with the predictions, because the 
network stabilises with both branches open. These branches are of exactly the same slope 
and depth. 
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figure 5.6 - bed level in branches 0, 1 and 3 for the symmetrical case, m=3 and a disturbance of 2 m. 

5.3 The asymmetrical case 

5.3.1 Configuration 
Just as for the symmetrical case, a set of simulations is carried out for the case of an 
island surrounded by two branches with different widths. The schematisation of the 
problem is the same as for the symmetrical case (see figure 5.1), but now the values of 
the widths of the branches are different. 

Geometrical and hydraulic parameters: 
L 0 = 100 km Bo = 100 m i = 4.10"5 

Lx — 10 km Bt = 75 m C = 45 m*/s 
L 2 = 10 km B2 

= 25 m Ao = 0.0002 m 
L 3 = 10 km B3 = 100 m 
Boundary conditions: 
* water - Q = 500 m3/s (upstream) 

H = 0 m (downstream) 
* morphology -> S = 0.01 m3/s (upstream) 

S = S-equilibrium (downstream) 
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The general nodal-point relation (Eq.(2.4)) is used as an internal boundary condition. 
Once again the theory predicts that one of the branches closes for m = l and that for m=3 
both branches remain open. 
In this case, however, the difference in width for branch 1 and 2 results in a difference in 
the hydraulic radius, so that the conveyance of the two branches is not the same. The 
consequence is that the equüibrium depths of the branches is not the same. 
Two simulations are performed for this asymmetrical configuration: for m—1 and m=3. 

5.3.2 Simulation 4 
This is the simulation for m = l . The initial depths for branches 1 and 2 are the same, just 
as in Simulation 1. But whereas for Simulation 1 this meant a simulation with no 
disturbance, the equal depths in this case do represent a "disturbance" of the system. This 
is because the initial values for the depths are not located in the saddle point of the phase 
diagram (see Section 4.2). As a result the theoretical analysis predicts that one of the two 
branches closes. 
The results of the simulation are given in figure 5.7 and figure 5.8. 
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figure 5.7 - bed level in branches 0, 1 and 3 for the asymmetrical case with m=\, B{ = 15 m and B2=25 m. 
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figure 5.8 - bed level in branches 0, 2 and 3 for the asymmetrical case with m=l, 5, =75 m and B2=25 m. 

The results shown in these figures confirm the theoretical predictions: for m = l the 
nodal-point relation leads to the closure of one of the two branches. Moreover, because of 
this instability, it is clearly shown that the initial equal waterdepths are not located in the 
saddle point of the phase diagram: i f so, both branches would have remained open. 

5.3.3 Simulation 5 
The nodal-point relation is also tested with m=3 for this asymmetrical case. The theory 
predicts that it leads to a stable network, with both branches open. The equihbrium depths 
are different for each branch as the widths are not equal (see also Section 5.3.1). 
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figure 5.9 - bed level in branches 0, 1 and 3 for the asymmetrical case, with m=3, 2?,=75 m and B2 = 25 m. 

The results shown in figure 5.9 and figure 5.10 confirm these predictions: both branches 
stay open and the bed level in branch 1 is lower than in branch 2. 

5.4 Groynes 

5.4.1 Introduction 
In the third set of simulations the system is disturbed by a groyne in one of the branches. 
This groyne is placed at different places of the branch, for both m = l and m=3, leading 
to the four simulations presented below. These computations are performed to stress the 
fact that the stabrhty of the nodal-point relation in a ID-network model of an island is 
solely determined by the value of m. Once the value of m is fixed, the configuration of 
the downstream branches no longer influences the stability of the system. 

5.4.2 Configuration 
The configuration for these simulations is the same as for Simulation 1 (see figure 5.1). 
The values of the parameters are presented here once again: 
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figure 5.10 - bed level in branches 0, 2 and 3 for the asymmetrical case, with m=3, 5, = 75 m and B2 = 25 m. 

Geometrical and hydraulic parameters: 
L 

L2 

100 km 
= 10 km 
= 10 km 

L 3 = 10 km 
Boundary conditions: 
* water -* Q 

H 
* morphology -* S 

S 

B0 

B-
B2 

B3 

100 m 
50 m 
50 m 
100 m 

i 

C 

D5o 

0.00004 
45 mA/s 
0.0002 m 

500 m3/s (upstream) 
0 m (downstream) 
0.01 m3/s (upstream) 
S-equilibrium (downstream) 

One internal boundary condition is needed: the general nodal-point relation (Eq. (2.4)). 
Two sets of simulations are performed: one set with the groyne placed half-way the 
length of branch 1, and the other set with the groyne placed at the upstream end of the 
branch. 
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figure 5.11 - bed levels in time in branches 1 and 2 for the case of a groyne placed half-way, with m=l. 

5.4.3 Simulations 6 and 7 
The first two simulations with groynes have the groyne placed half-way between the 
beginning and end of branch 1. The groyne has a length of 25 m, so that the width of 
branch 1 is reduced by 50%. This "disturbance" is apphed both for m—1 and m=3. 
Simulation 6: 
Simulation 6 is the simulation with m=\. The results presented in figure 5.11 and 
figure 5.12 show that the theoretical prediction of an unstable nodal-point relation 
resulting in the closure of one of the two branches is correct. 
In figure 5.11 the bed level in branch 1 gradually rises until the branch is completely 
closed. This is also clearly illustrated in figure 5.12, where it can be seen that the local 
depression in the bed level near the groyne also gradually disappears as the bed level 
rises. 
Simulation 7: 
Simulation 7 is the simulation with m=3. Once again the results of the simulation are in 
complete accordance with the theoretical prediction. This is shown in figure 5.13, where 
it is seen that both branches remain open. The equihbrium depth for branch 1 is not 
exactly the same as for branch 2: the presence of the groyne reduces the conveyance of 
branch 1, so that its sediment transport and equilibrium depth are shghtly smaller. 
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figure 5.12 - bed level in branch 1 with the groyne placed half-way for m=l. 

From the results of Simulations 6 and 7 it can be concluded that a groyne half-way in one 
of the branches does not influence the behaviour of the network. It is simply another 
disturbance of the system, the stability of which is determined by the value of m. 

5.4.4 Simulations 8 and 9 
In practice the value of m will depend on the 3D geometry at and around the bifurcation. 
It might therefore be tempting to think that the placement of a groyne near the bifurcation 
at the entrance of a branch will influence the stability of the network in the ID model. 
However, the flaw in the train of thought is that the value of m is an input parameter for 
a simulation, and will stay constant during a run. So a groyne at the entrance of one of 
the branches has no effect on the stability of the network, just the groynes half-way (see 
previous section). 
This is demonstrated in Simulations 8 and 9, with a groyne at the entrance of branch 1. 
The groyne has a length of 25 m, reducing the entrance of the branch by 50%. The result 
of Simulation 8, in which m = l , is found in figure 5.14. Simulation 9 was done for m=3, 
and its result is found in figure 5.15. 
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figure 5.13 - sediment transport in branches 1 and 2 for the case of a groyne placed half-way and m=3. 

= beginning 
of branch 1 

= end of 
branch 1 

= beginning 
of branch 2 

= end of 
branch 2 

0 3600 7200 10800 14400 18000 21600 25200 28800 32400 36000 

time (days) 

figure 5.14 - bed level in branches 1 and 2 for the case of a groyne at the bifurcation, with m = l . 
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figure 5.15 - bed level in branches 1 and 2 for the case of groyne at the bifurcation, with m=3 . 

The figures clearly show that a groyne at the bifurcation by no means influences the 
stabrhty of the branches. The groyne only acts as a disturbance of the system, so that 
branch 1 closes for the case of m = l (see figure 5.14). Both branches remain open for 
m=3, as can be seen in figure 5.15. 
The results of the simulations strongly confirm the outcome of the theoretical analysis: the 
stability of the nodal-point relation in the ID-network morphodynamic model is 
completely determined by the value of m. A groyne, or any other type of disturbance in 
one of the branches, will not affect this stabrhty. The configuration of the branches will, 
however, affect the ultimate equihbrium depths of the branches. 
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Chapter 6 - Influence of the power m 

6.1 Influence on the morphological time-scale 

The mathematical model, as presented in Chapter 4, has shown that the nodal-point 
relation plays an important role in the stabrhty of the branches in a bifurcated river. In 
fact, the value of the power m in the nodal-point relation determines the behaviour of the 
possible equilibria of the branches downstream of a bifurcation. In other words, if m<5/3 
the equihbrium state with both branches open is an unstable situation and the two 
equilibria with one channel remaining open are both stable. In case m > 5/3 the stability of 
the equilibria is the opposite (see both phase diagrams in Chapter 4). 
From the mathematical model additional information can be derived concerning the 
behaviour of the equihbrium states. Linearization of the singular points results into two 
eigenvalues. These eigenvalues belong to two eigenvectors. This is shown in figure 6.1 
for the case with both branches open. 

-5 

(3 m - 5) 
2 

figure 6.1 - visualisation of the eigenvalues and eigenvectors 
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At first the figure illustrates that a deviation from the equihbrium situation either 
stabrhses to this equihbrium or moves away from this state, dependent on the value of m. 
Moreover the value of m determines the time necessary to reach the final equilibrium. As 
m influences directly one eigenvalue, m determines the rate between attraction and 
repulsion. In other words, the morphological time-scale depends on the power m. The 
process develops faster when a larger value of m is used. For example, the final 
equilibrium is obtained much earlier if m=3 is applied instead of m=2. 
An important aspect as well is the initial disturbance in the bed level. The influence of m 
increases when the deviation from the equihbrium is chosen more in the direction of the 
eigenvector which depends on the value of m. 

This result of the mathematical model is verified by numerical computations. Various 
simulations are carried out and they confirm the mathematical analysis, as illustrated in 
the following figure where the influence of a different value of m on the morphological 
time-scale is visualised. For the stable case of the equihbrium with both branches open, 
two different values of m are apphed. The difference in the bed level of the downstream 
branches is chosen in the direction of the eigenvector which is dependent on m. 
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figure 6.2 - the influence of m on the morphological time-scale 
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From figure 6.2 it is seen that in case m=3, the equihbrium is reached much earher 
compared to the simulation in which m=2 is used, just as expected from the mathematical 
results. 

6.2 The critical value of m 

The analytical study has shown that the transition point for either stable or unstable 
behaviour of the network is determined by a value of the power in the nodal-point relation 
of m=5/3. From Wang et al (1993) it can be learned that an analytical improvement is 
possible concerning this critical value of m. 
In the mathematical model the hydrauhc radius R has been approximated by the water 
depth a. This approximation is only vahd if B is much larger than a and if the channel 
has smooth side walls. In fact the hydrauhc radius is determined by 

B 

Taking the hydrauhc radius into account, steady flow is now given by 

Carrying out the analysis as in Chapter 4, the conclusion can be drawn that the critical 
value of m changes due to the influence of R. The network is stable if m is larger than 5. 
If m is in between 5/3 and 5, it can be stable or unstable. An unstable situation is reached 
when m is smaller than 5/3. 
This result can be verified via several numerical computations. The following two figures 
illustrate that the critical value of m hes within 1.4 and 1.5. A small initial disturbance 
results in an unstable network in case of m=1.4 (see figure 6.3). When m=1.5, the 
network stabrhses with two branches open (see figure 6.4). 
The results of the mathematical model and the numerical computations are not in 
agreement with each other. A solution for this discrepancy is not yet found. 

(6.2) 
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Chapter 7 - Scaling, from model to 
prototype 

7.1 Relevance 

The previous chapters show that countless variations can be made concerning a river 
bifurcation problem. Taking the experimental model of Part UJ into account, a few more 
calculations are relevant to carry out. An interesting problem is to make the parameters of 
the experimental model the input for a Wendy calculation. Moreover, in the future it may 
be essential to compare data from experiments with numerical computations. 
A problem, however, is that the experimental parameters are too small to implement in 
Wendy. Therefore it is necessary to enlarge the experimental model by means of scaling. 
Hence a fictitious prototype is determined from a physical model, an inverse and 
unconventional way. In this chapter the following terminology is followed: the 
experimental model is considered to be the model and after applying the scale relations, 
the writers use the term fictitious prototype as the parameters represent in fact not a real 
prototype, but only the input for a numerical computation. 

7.2 Derivation of the important scale relations 

By reproducing the physical processes concerning water and sediment movement, scale 
relations form the basis. Two types can be deduced: 
- scale laws are scale relations that must be fulfilled as they come from equations that 

imply a definition, like L = u.t or the Chézy-law; 
- scale conditions are scale relations that have to be fulfilled in order to avoid scale 

effects. 
The scale of a parameter (x) is defined by 

_ Xprototype _ *p (7.1) 
x X X 
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There exist different scaling methods (De Vries, 1993) from which the Delft method is 
applied. This method is outlined below. 

Analyzing the momentum equation for the water movement results in two scale conditions 

du du da + u— + g— + g 
dt dx dx dx 

u\u\ 
C2a 

(7.2) 

Combining the second and the third term the Froude condition is derived 

From the second and the fifth term the roughness condition is obtained 

n, distortion = r 

(7.3) 

(7.4) 

To reproduce a correct sediment movement as well, additional scale relations are present. 
Using the Engelund-Hansen transport formula leads to the following transport condition 

nAnDncn

s 

(7.5) 

Desiring an equal criterium for which only bed load occurs in the model as well as in the 
prototype, the bed load condition gives the following relation 

<u N 

\W) 
(u \ (7.6) 

These are the scale relations that have to be fulfilled in order to avoid scale effects. 

7.3 Determination of the scales 

While determining the scales of all parameters a few facts have to be considered. From 
Wendy experiences it is learned that the length of a river schematisation should not be to 
small. This restricts the choice of the length scale (nL). In case the depth scale (na) is 
chosen equal to the length scale an undistorted fictitious prototype is apphed. Otherwise 
the result is a distorted fictitious prototype. The rate of distortion is indicated by the 
distortion factor r. The scale of the roughness (nc) is now also determined by Equation 
(7.4) 
Further on preference is given to fulfilling Equation (7.5). The scale of A ( n j and D (nD) 
can be selected freely, within a certain range. The bed load condition results in a velocity 
scale («„). Hereby the Van Rijn formula for the fall velocity is used 
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W = 10— 
D 

1 , O.OlAgA \0.5 

W 

, 100 ixm < D 5 0 < 1000 ixm (7.7) 

as well as the following relation between the flow velocity and the shear velocity 

C 
U = M 

•Is 
(7.8) 

Now the scale of the sediment transport (ns) is determined via the transport condition. The 
derived velocity scale is called the ideal velocity scale. It means a deviation from the 
Froude condition, leading to errors in the reproduction of the water levels. These errors 
are usually corrected by tilting the scaled model according to a sloping reference level it. 

resulting in the next relation 

\ 
nu 1 

nrn ' 
c a 

The sign of it depends on the relation nu

2/na as can be seen from figure 7.1. 

(7.10) 

na- n l > n a : 

ref. level ' (_ 
ref. level 

> i t is negative > is positive 

figure 7.1 - the influence of the relation nu lna on the sloping reference level i , 

In this case of a fictitious numerical prototype, the definition of the reference level in 
Wendy, however, makes it impossible to implement the fictitious prototype according to 
the desired sloping reference level %. This means that afterwards the results of the 
computations have to be translated according to iv 
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Hereby the important scale relations are outlined. To summarize this section, the 
determination process of all scale parameters is given in figure 7.2. 

Choose n r 
> nc= (Vk 

Choose na ^ 
> nc= (Vk 

Choose n £ —^ • nu <^ 
Choose i i j j 

figure 7.2 - determination process of the scale parameters 

7.4 Two fictitious prototype variations 

7.4.1 General remarks 

In this section two different fictitious prototypes are worked out. The first one is an 
apphcation without distortion. The second variation shows a distorted fictitious prototype. 
Moreover, both examples present the two possibilities of a positive or a negative it. 
In order to give a total view on this scaling problem, both variations have been calculated 
with two different values of the power m in the nodal-point relation. As in the two 
previous chapters, values of m = l and m=3 are used. According to the theoretical 
analysis and the numerical results, these values of m lead to respectively an unstable 
network and a stable network. 
The geometry of the experimental model is visualised by figure 7.3. Also the most 
important physical parameters are given (the subscript m stands for model). 

= 3.14.10-6m3/s Bo,m = 1.00 m 

Qo,m = 0.03 m3/s Bl,m = 0.40 m 

Ao,m = 270 Lim B2,m = 0.60 m 
cm = 30 m*/s A),m = 4.55 m 
A m = 1.65 •^l,m = 8.60 m 

= 0.10 m = 8.40 m 

L = LH)"4 

In Section 7.5 the calculations are verified and compared with each other via certain scale 
relations and equilibrium considerations. 
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branch 0 

bifurcation 

figure 7.3 - geometry of the experimental model 

7.4.2 The undistorted fictitious prototype 
No distortion means an identical scale of length and water depth. The scale parameters 
which are chosen or calculated (see figure 7.2), are: 
- nL = 1000 
- na = 1000 
- nc = 1 
- nA =2 
- nD = 3 
- n„ = 3.86 
- ns =71.4 
and 
- it = -1.103 (to be used after a computation for translating the different levels) 

From these values and the experimental model parameters, the input parameters of the 
fictitious prototype for a Wendy calculation are derived (the subscript p stands for 
prototype): 
- Sp = 0.23 m3/s = 1000 m 

- Öp = 115800 m3/s = 400 m 

- DP = 810 Lim = 600 m 
- cp = 30 mA/s = 4550 m 

- \ = 3.3 = 8600 m 
= 100 m A.p = 8400 m 

- h = 0.01.10"3 
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These input parameters are implemented in a Wendy-simulation. Three boundary 
conditions for the water flow are required, viz. one at the beginning of branch 0 and one 
at the respective end of branch 1 and branch 2. This is represented by a constant 
upstream discharge (Qp) and a constant downstream water level in the sea (H = 0.00 m). 
The boundary condition for the sediment transport is a constant upstream supply (Sp). 

First, the undistorted fictitious prototype is calculated with m—l in the nodal-point 
relation. At the bifurcation, a relatively small difference in the imtial bed levels of the 
three branches is introduced. The bed level in branch 1 is raised with 5.00 m compared to 
the original bed level, whereas the bed level in branch 2 is lowered with 5.00 m. The 
results of the calculation can be seen in figure 7.4 concerning the bed level and in 
figure 7.5 for the sediment transport. 

a 

$ 
i - H 

CD 

-40 

-60 

-160 

branch 1 

--•— 

br< inch 2 

0 25000 50000 75000 100000 125000 150000 175000 200000 225000 250000 

time (days) 

m = 1 

« beginning 
of branch 1 

= end of 
branch 1 

••=beginning 
of branch 2 

-=end of 
branch 2 

figure 7.4 - development of the bed level for the undistorted fictive prototype in the unstable case 

The network of the undistorted fictitious prototype is also calculated for m=3. In this 
case the difference in the initial bed levels at the bifurcation is different. The bed level in 
branch 1 is now raised with 20.00 m and the bed level in branch 2 is lowered with 20.00 
m. The outcome of the calculation is presented in figure 7.6 for the bed level and in 
figure 7.7 for the sediment transport. 
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figure 7.5 - development of the sediment transport for the undistorted fictive prototype in the unstable case 
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figure 7.6 - development of the bed level for the undistorted fictive prototype in the stable case 
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figure 7.7 - development of the sediment transport for the undistorted fictive prototype in the unstable case 

Just as in Chapter 5, the results of both cases of the undistorted fictitious prototype agree 
with the predictions of the theoretical analysis. For m = l the difference between the 
downstream branches grows until finally branch 1 closes and all water and sediment flows 
through branch 2, as clearly indicated by figure 7.4 and figure 7.5. Also the calculations 
for m=3 show expected results. The network stabilizes, both branches stay open, as 
demonstrated by figure 7.6 and figure 7.7. 

7.4.3 The distorted fictitious prototype 
In this case no identical scale for the length and water depth is chosen. The rate of 
distortion which is apphed, is r=10. The scale parameters which are chosen or calculated 
(see figure 7.2), are: 
- nL = 1000 
- na = 100 
- nc = 3.16 

- » A = 2 
- nD 

= 3 
- nu = 12.2 
- ns = 713.8 
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and 
- it = 0.05.10"3 (to be used after a computation for translating the different levels) 

The input parameters of the fictitious prototype for a Wendy calculation are now (the 
subscript p stands for prototype): 

- Sp = 2.24 m3/s B0,v 
= 1000 m 

- e P 
= 36600 m3/s = 400 m 

- Dv = 810 urn = 600 m 

- Cv = 94.8 m*/s A),p = 4550 m 

- \ = 3.3 = 8600 m 

- flP 
= 10 m = 8400 m 

" *'P = 0.15.10"3 

Again these parameters are used as input values in a Wendy-simulation. For the four 
necessary boundary conditions, the same parameters are used as in case of the undistorted 
fictitious prototype. 
First, the distorted fictitious prototype is calculated with m = l in the nodal-point relation. 
At the bifurcation, a relatively small difference in the initial bed levels of the three 
branches is introduced. The bed level in branch 1 is raised with 0.50 m compared to the 
original bed level, whereas the bed level in branch 2 is lowered with 0.50 m. The results 
of the calculation can be seen in figure 7.8 concerning the bed level and in figure 7.9 for 
the sediment transport. 
In the nodal-point relation, m=3 is also used. In this case the difference in the initial bed 
levels at the bifurcation is different from the previous calculation. The bed level in branch 
1 is now raised with 2.00 m and the bed level in branch 2 is lowered with 2.00 m. The 
outcome of the calculation is presented in figure 7.10 for the bed level and in figure 7.11 
for the sediment transport. 
Again, the theoretical analysis is confirmed by the results of both calculations of the 
distorted fictitious prototype. For m—\ the difference between the downstream branches 
grows until finally branch 1 closes and all water and sediment flows through branch 2, as 
shown in figure 7.8 and figure 7.9. The calculations for m=3 show that the network 
stabilizes as expected, both branches stay open, as demonstrated by figure 7.10 and 
figure 7.11. 
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figure 7.8 - development of the bed level for the distorted fictive prototype in the unstable case 
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figure 7.9 - development of the sediment transport for the distorted fictive prototype in the unstable case 

60 



Scaling, from model to prototype 

<D 

> 
T3 

CD J2 

-10 

-12 

branch 1 branch 1 

X X 

K 
/ 

/ 
/ 

/ 
/ 

/ 

— i jranc h 2 

m = 3 

i beginning 
of branch 1 
end of 
branch 1 

: beginning 
of branch 2 

• end of 
branch 2 

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 

time (days) 

figure 7.10 - development of the bed level for the distorted fictive prototype in the stable case 
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figure 7.11 - development of the sediment transport for the distorted fictive prototype in the stable case 
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7.5 Verification of the results 

7.5.1 General 
The results of the computations of both fictitious prototypes for different values of m 
demonstrate a good quahtative resemblance to the outcome of the theoretical analysis. In 
order to verify whether the scaling method and the scale relations are applied in a right 
way, a few specific, quantitative results have to be looked at. The check of the 
calculations can be divided in three elements: 
- a comparison of the morphological time-scale («„„) for the two computed fictitious 

prototypes; 
- a verification of the equihbrium depths. 
These elements are described in the following sections. 

7.5.2 Comparison of the morphological time-scales 
The undistorted and distorted fictitious prototype can be compared with each other via the 
requirement for the morphological time-scale. From the continuity equation for the 
sediment 

-§£ + * = 0 (7.11) 
dt dx 

the morphological time-scale is deduced 

n =W (7.12) 

Relating the morphological time-scale of both fictitious prototypes and substituting in the 
scales of the different parameters, the following expression is found 

ntm, distorted 1 

ntm,undistorted 

0.01 (7.13) 

The figures in the previous section show indeed a difference of a factor 100 when the 
time to reach an equilibrium state is considered for the undistorted and distorted fictitious 
prototype. 

7.5.3 Verification of the equüibrium depth 
Applying the value of m = 1 in the power of the nodal-point relation leads to an unstable 
network. One of the downstream branches closes and the other receives aU the water and 
sediment. The equihbrium depth of the remaining downstream branch is calculated with 
the formula for a long river-constriction 
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II = 1° » (7.14) 

with n=5, when the Engelund-Hansen transport formula is used. The subscripts 0 and 2 
are referring to the upstream branch and the open downstream branch. The equilibrium 
depths in case of the experimental model, the undistorted fictitious prototype and the 
distorted fictitious prototype are now computed. Comparing these values, the scales of the 
water depths for both fictitious prototypes have to be the result. This is confirmed by 
figure 7.4 and figure 7.8. The final equilibrium depths in the fictitious prototypes are 
indeed a factor 1000 and a factor 100 greater, respectively, than the values of the 
experimental model. 
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Chapter 8 - Conclusions 

Since many different computations are made in this part of the report, the major results of 
the theoretical analysis are summarised here. This gives a clear overview of the 
conclusions of the theoretical study. 

Stability of the network: 
In continuation of the analysis made by Wang, the influence of the general nodal-point 
relation (Eq. (2.4)) on the stability of a ID-network morphodynamic model is tested for 
the schematisation of an island in a river. Just as Wang found for the case of an estuary, 
the results of the computations agree very well with the predictions of the theoretical 
model. 
The computations confirming these predictions are computations for a symmetrical case, 
an asymmetrical case, and a case with a groyne placed in one of the branches. The 
conclusion is that the stability of the network is determined by the value of m in the 
nodal-point relation, and not by the configuration of the downstream branches. For large 
values of m the bifurcation is stable (with both branches open), and for small values of m 
it is unstable (with one of the branches closing). 
The configuration of the downstream branches (i.e. the respective widths of the branches, 
or the presence of a groyne etc.) does influence the equihbrium depths attained in each 
branch; this is due to a difference in conveyance of the respective branches. 

Critical value of m: 
A certain critical value for m can be assumed to exist, under or above which the system is 
either stable or unstable. I f the hydrauhc radius of a branch is taken to be equal to its 
depth, then the theoretical analysis leads to a critical value of m=5/3. If, however, the 
influence of the walls of the branches is large enough, then the hydrauhc radius must be 
adjusted accordingly; the theory then leads to a critical value which is larger then 5/3. 
The computations performed with WENDY to check this prediction lead, however, to a 
critical value of m which is shghtly smaller then 5/3. No direct conclusion can therefore 
be drawn; the problem remains unexplained, and it is thus recommended to look into this 
problem again. 
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Morphological time-scale: 
The influence of the value of m on the morphological time-scale is also analyzed in the 
theoretical model, and the resulting predictions are once again confirmed by the numerical 
computations. It can therefore be concluded that, although the value of m does not 
influence the value of the equilibrium depths in the respective branches, it does determine 
the resulting morphological time-scale. The larger the m, the faster equihbrium is 
reached. 

Scaling of the experimental model: 
The configuration of the experimental model described in Part HI of this report is used as 
an input for numerical computations with WENDY. This is done in order to compare data 
generated by the experiments with the computations made in WENDY, so that a link can 
be made between the analytical model and the experiments. 
For the input of the configuration of the model the dimensions are scaled according to 
scale laws, resulting in two options (a distorted and an undistorted option) which, when 
put into WENDY, both agree with the theoretical predictions mentioned above. 
To verify whether the scaling is done correctly, the results are checked: the 
morphological time-scales from the computations should be compared with the 
morphological time-scale observed during experimentation, and the same is done for the 
attained equilibrium depths. This forms the necessary link between the configurations of 
different experiments and the value of m (of the nodal-point relation) in the theory. 
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Chapter 9 - Introduction 

9.1 Background 

This part of the report encompasses a detailed description of the experimental test rig 
built in the hydrauhcs laboratory of the Water Resources Engineering department of the 
Bangladesh University of Engineering and Technology in Dhaka, Bangladesh. This test 
rig was built in the period of July through October 1993 within the framework of the 
BUET-DUT linkage project. The construction was based on a design made in the 
Netherlands (Den Dekker and Van Voorthuizen, 1993), which was adapted according to 
the local requirements with the assistance of the resident-engineer M . C . L . M . van Mierlo. 
A detailed drawing of the test rig is given in figure 9.1. 

9.2 The experimental research 

An experimental model of a bifurcated river is built in the test rig; this is described in the 

following section. This model wi l l be used to conduct experiments on bifurcations. 

Goal of the experiments: 

Within the framework of the research project as a whole (as described in the general goal 

in Part I) the experiments aim to analyze the stability of the different branches at a 

bifurcation. Specifically the experiments wi l l aim to relate the local three-dimensional 

configuration of the bifurcation to the relevant parameters of the different general 

nodal-point relation(s) presented in Part I . 

Relevance of the experiments: 

In the analytical and numerical studies (as mentioned in Part JJ) one-dimensional 
morphodynamic models are considered. Physically the distribution of the sediment 

transport rates to the different branches is determined by the local three-dimensional 
phenomena. Because of their three-dimensional nature, the experiments may present a 

valuable complement to the existing analytical studies. 
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9.3 General description of the test rig 

The test rig consists of two separate parts: a temporary part and a permanent part. The 
permanent part is the experimental facility necessary for the storage and regulation of the 
water circulating throug the test rig, and the guidance of this water to and from the 
temporary part. 

The temporary part contains the actual experimental mobile-bed model of a bifurcation in 
a river. I t is possible to change the configuration of this part for other research projects in 
the future, using the permanent part of the test rig without any drastic constructive 
changes. The layout of the two parts is shown in figure 9.2. 

V7ZZZZZZZZX 

permanent part • 

figure 9.2 - layout of the test rig containing two parts 

The configuration of the temporary part, containing the experimental model, is described 

in detail in Chapter 10. The permanent part of the model is described in Chapter 11. 

The measurements necessary for the experiments on bifurcations are discussed in 

Chapter 12. Furthermore, practical suggestions for operating the model are given in 

Chapter 13, and recommendations for possible experiments are discussed in Chapter 14. 

Before detailing the layout of the model, a review of the main assumptions made during 

the design phase is given in the next section, as well as a hst of the most important 

equations governing the design. 
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9.4 General considerations 

9.4.1 Introduction 

During the design of the model, a number of assumptions and restrictions were made. 

Considering the complexity and scope of the problem, a steady flow is taken into account. 

Only bed-material transport is considered, since this is the transport that is involved in 

the morphological changes. 

The basic equations governing the model are given in the following sections. 

9.4.2 Flow velocity 
The maximum flow velocity in the model is determined by the criterium for which only 
bed-load transport occurs: 

^ < 1 (9.1) 
W 

with 

u=u^ (9.2) 

in which u : flow velocity; 

u* : shear velocity; 

C : Chézy-coefficient; 

W : fall velocity. 

This results in an expression for the maximum flow velocity: 

* W = » 4 (9-3) 
fg 

The fall velocity is determined using the expression found by Van Rijn (1993), which is 

vahd for 100 jam < D < 1000 urn: 

W • lOv 
D N 

^ O . O l A g P 3

 1 (9.4) 
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in which D : grain diameter; 

A : relative density = (ps-p)/p; 
v : kinematic viscosity. 

9.4.3 Sediment transport 
Sediment with a grain size D50= 270 jum is used in the model, as can be seen in 

Section 10.8. The Engelund & Hansen (1967) sediment transport formula can be used i f 

D50> 190 jixm, so it is apphed here: 

S . B 0 0 8 4 «• (9.5) 

In the model the time-dependent process of erosion and sedimentation is governed by the 

celerity c of a small disturbance of the bed (De Vries, 1959). The adaptation time T for a 

disturbance in the model can easily be determined: 

c _ ds/du 1 ( 9 6 ) 
u a \-Fr2 

in which s is the sediment transport per unit width; 

Fr=u/Vga is the Froude number. 

It takes a time T=3L/c before an equilibrium is reached (De Vries, 1993). 

With s=mu" and thus dsldu=mnu"~1=nslu , the adaptation time becomes: 

T = 3 I 1 " F r 2 = ! ^ ( i - F r 2 ) (9.7) 
nu s\q 5 s 

in which T is the adaptation time; 

L is the length of the branches; 

q is the discharge per unit width. 

9.4.4 Maximum bed level fluctuations 
The maximum bed level fluctuations must be determined in order to estimate the 

necessary depth of the mobile sand bed. Furthermore it is used to compute the storage 

capacity of the sand traps. 

The maximum decrease in the bed level occurs when one of the two branches closes due 

to sedimentation. The new equilibrium depth in the remaining open branch can be 

calculated with the formula of a long river constriction: 
n - l 

(9.8) a, 

An 
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Chapter 10 - The experimental model 

10.1 Introduction 

The model of the bifurcated river is built in the temporary part of the test rig. It is a 

mobile-bed model with fixed banks. The layout of the river comprises three branches: a 

main branch, branch 0, which bifurcates into two separate branches, branches 1 and 2 

(see figure 10.1). To avoid accidental equilibriums during experimentation, branches 1 

and 2 have different widths. A sand trap is situated at the end of each of these two 

branches, followed by a tail gate for the control of the water levels. In the following 

sections all elements of the model are described in detail. 

flow direction 

14.89 m 
2.00 m 6.19 m 2.15 m 4.55 m 

- / / / / / / / / / / / / / / / . 

wooden nose 1 8 1 m 

/7.'.V/.-y/////////////^ 

figure 10.1 - lay-out of the experimental model of a bifurcated river 

Definition: The level of the laboratory floor wil l be used as a reference datum for 
measurements given in the following chapters. This level wi l l be referred to 

with the abbreviation L.B.F. (LaBoratory Floor). 
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10.2 Inflow section and branch 0 

The experiments are mainly focused on the bed level fluctuations around the bifurcation 

and in branches 1 and 2. An inflow section and inflow branch of considerable length are 

needed to insure an equal distribution of sediment transport, and stable flow conditions 

before the water reaches the bifurcation. 

Inflow of water: 

Water flows from the upstream reservoir to branch 0 via the inflow section. PVC tubes 

(0=2.7 cm; L = 3 0 cm) placed over the width of the entrance get rid of the larger eddies 

present in the upstream reservoir and thus stabilise the flow (see figure 10.2 and 

figure 11.7). 

Sandfeeder: 

Directly behind the tubes a sandfeeder distributes sand over the width of the channel into 

the flow (see figure 11.7). For specifications of the sandfeeder capacity, see Section 11.3. 

Branch 0: 

This is the main branch of the river which sphts up at the bifurcation. The characteristics 

of this branch, are given in the following (see also figure 10.2). 

- Length L 0 : Before the water reaches the bifurcation, the sediment from the sandfeeders 

should be well-distributed over the width of the branch in stable flowing 

conditions. For this, experimental experience learns that a minimum 

adaptation length L 0 >40*a (a is the water depth) is needed. Practical 

limitations result in a minimum average water depth in which it is possible 

to make measurements: Oo= 10 cm; therefore L 0 > 4 . 0 m. To make room 

for the tubes and the supports of the sandfeeder the branch is made a httle 

longer: L 0 = 4.55 m. 

- Width Bq. TO disregard the influence of the walls, experimental experience learns that 

B>5*a is required. Since branch 0 bifurcates into two smaller branches, 

this criterium governs the widths of branches 1 and 2; so branch 0 is a little 

wider: B0= 10*a = 1.0 m. 
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figure 10.2 - detail of the inflow section and branch 0 

10.3 Dimensions of branches 1 and 2 

At the bifurcation, the flow is spht into branches 1 and 2. The radius, length and width of 

these curved branches are given in the following (see also figure 10.3). 

Width B: The sum of the widths of branches 1 and 2 is equal to the width of branch 0. 

Thus BX +B2=B0-=1.0 m. As mentioned in Section 10.1, the branches have 

different widths to avoid accidental equilibriums. So BX=0A m and 

B2=0.6 m. 

Radius R: To minimise secondary flow in the bends of these branches, the radius R of 

the branches must not be too small: i?>5*B. With the available space in the 

laboratory this is not a problem i f Rl=23.5 m and R2=25.5 m. 

Length L: The resulting lengths of the two branches are: Lx = 8.6 m and L 2 = 8.4 m. 
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figure 10.3 - detail of branches 1 and 2 

10.4 Configuration of the bifurcation 

As seen in Part I of this report, the distribution of the sedhnent transport rates to the 

downstream branches is governed by the local flow pattern at the bifurcation. 

Consequently, the shape of the bifurcation plays an important role in this distribution. 

Therefore the "tip" or "nose" of the bifurcation is implemented as a flexible component of 

the model: whereas the entire model is made of brickwork, the nose is made of wood, so 

that different shapes can be apphed for different experiments as proposed in Chapter 14. 

10.5 Sand traps 

10.5.1 Introduction 

The sand traps located at the end of branches 1 and 2 have a double function: 
1) they intercept the sediment transported through the branches, so that the average 

sediment transport rate can be determined for each branch, as detailed in Section 12.3; 
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2) by intercepting all the sedhnent, the sand traps prevent the sand from coming into the 

permanent part of the model, which includes the reservoir and pump system. 

10.5.2 Length of the sand traps 
The length L s of the sand traps is governed by the following equation: 

hl=± (10.1) 
a W 

Combining Eq. (10.1) with Eq. (9.3) yields: 

C a 
L = 55* (10.2) 

The maximum water depth occurs in the case that branch 2 is closed due to siltation. In 

that case branch 1 conveys all the water, and from Eq. (9.8) it follows that: 

a 
max 

The resulting length o 

D l4 
B0 

*1 

5 an = 0.21 m (10-3) 
o 

f the sand traps is (with C= 30 m'^/s): L s = 2.0 m. 

10.5.3 Width of the sand traps 
The sand traps do not have a constant width. The widths of the sand traps increase 

graduaUy (to avoid the formation of eddies): at the upstream end they have the width of 

the corresponding branch (0.4 or 0.6 m); at the downstream end they have the width of 

the tail gate, BS= 1.0 m (see Section 10.6). This results in the shapes as seen in 

figure 10.4. 

10.5.4 Capacity of the sand traps 
The storage capacity of the sand traps is determined by their length, width and depth. The 

available depth for storage in the sand trap depends on the bed level immediately 

upstream of the sand trap. The minimum available depth occurs when the bed level is at 

its lowest: as can be seen in Section 10.7 the lowest possible bed level is located at 

+0.80 m above the laboratory floor (L.B.F) . The floor of the sand trap is located at 

L . B . F . +0.35 m, so the resulting minimum depth of the sand trap is <i s=0.80-

0.35=0.45 m (see figure 10.5). 

The minimum storage capacities of the sand traps are therefore: 

- Sand trap 1 (belonging to branch 1): F s j = 0.63 m 3 ; 

- Sand trap 2 (belonging to branch 2): Vs2 = 0.72 m 3 . 
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figure 10.4 - configuration of the sand traps 

HI sand 

El concrete 

2.00 m 

figure 10.5 - side view of a sand-trap 
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10.6 Outflow section 

At the downstream end of the model, the water in each branch flows over a tail gate into 
the permanent part of the model (see figure 9.2), where the discharge is measured before 
spilling into the downstream reservoir. The tail gates have two functions: 

a) they regulate the water level in each branch; 
b) they prevent the sand bed from ranning dry. 

ad.a) During experimentation, several types of tests can be imagined (see Chapter 14), 
which each dictate an own set of downstream water levels. The dimensions of the 
tail gates are such that they can be adjusted to induce a large range of 
downstream boundary conditions (see also Section 11.4). 

ad.b) The adaptation time for the experiments wi l l be about 25 hours (see Section 
10.8). One experiment wi l l therefore be divided over several days, the model 
being put to a standstill at the end of each day. When stopping the model it is 
imperative that the river bed does not come dry, because this would lead to 
unacceptable disturbances of the bathymetry. Water must therefore be stored in 
the river branches when the model is idle, resulting in the requirement for a 
watertight construction of the tail gates (see figure 10.6). 

For a visual impression of a tail gate see also figure 11.9. 

Width of the tail gates: 

I f a power failure occurs during experimentation, the water level in the branches wi l l 

drop quickly. Thanks to the watertight construction shown in figure 10.6 the water level 

wi l l stop dropping when it reaches the crest level of the tail gate. To avoid disturbances 

of the bed this crest level must be situated far above the bed level. For this reason the tail 

gates have a larger width than the branches: this decreases the head over the tail gate, 

thus increases the crest level of the tail gate. Since the widths of the branches are 0.4 m 

and 0.6 m, the tail gates have a width of 1.0 m. For further details of the tail gates see 

Section 11.4. 
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tail gate 

front view 

figure 10.6 - detail of the watertight construction of the tail gate 

10.7 Height of the model 

10.7.1 introduction 

The simulated river flows at approximately L.B.F. +1.20 m, and the brickwork is laid 

up to a height of L.B.F. +1.30 m. The reason for this rather large elevation is the fact 

that the downstream reservoir is built on the laboratory floor: this forms the base to 

which all depths and head-losses must be added. The factors detemining the height of the 

model are summed up in the following sections. 

10.7.2 Water levels in the test rig 
The downstream reservoir contains the gross of the water present in the test rig. The 
pump which circulates the water through the model taps its water from this reservoir. A 
minimum suction head of 0.50 m is needed in the reservoir. 

The permanent part of the test rig is designed to cope with a maximum discharge of 
60 1/s. The corresponding water depths in the approach channels of the Rehbock weirs, 

82 



The experimental model 

the consequent head-losses in these channels and the necessary nappes behind the Rehbock 
weirs and tail gates result in a minimum tail gate crest elevation of L.B.F. +1.06 m (see 
figure 10.7). 

L.B .F . + 1.30 m 
\ / 

Rehbock weir 1 

minimum water level in downstream reservoir > 

I sz laboratory floor 

figure 10.7 - water levels in the test rig 

This is the lowest position of the tail gate and it is apphed when the maximum discharge 

of 60 1/s runs through the connecting branch. The head over the tail gate with this 

discharge is approximately 0.12 m. The resulting water level Hs in the sand trap is 

therefore: # s = l.06+0.12 = L.B.F. +1.18 m. 

The water level at the inflow section is a httle higher due to head-loss: taking into 

account a slope i-10 3 (see Section 10.8) the head-loss over the length of the model is 

Ai?=0.02 m, so the resulting water level at the inflow section is ^ = 1.18+0.02 = 

L.B.F. +1.20 m. An extra freeboard of 0.10 m is taken into account, so the brick walls 

have an elevation of L.B.F. +1.30 m. 

10.7.3 Bed levels in the model 
Since the model has a mobile bed there is no fixed bed level to be given. However, an 

indication of the initial bed levels and extreme bed level variations give sufficient insight 

into the possible bed level fluctuations. This is impo*83%( for determining the thickness 

of the sand bed apphed in the model. 
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- = 2 
a 

As seen in Section 10.2 the average water depth is a=0.10 m. The initial bed level at the 

outflow section is therefore located at zh= Hs-a = L.B.F. +1.08 m. 

As for the extreme case: according to Eq. (10.3) the maximum water depth is 

a m a x =0.21 m. Bed forms wil l develop in the branches; according to Van Rijn (1993) the 

maximum bed-form is given by: 

d r - 3 

150 (10.4) 
a 

in which 5 is the height of the bed form (difference between highest and lowest point). 

With 0=0.21 m and £> 5 0=270 ^m (see Section 10.8) this results in: 8 = 0.06 m. 

As a result, for the experiments with a constant downstream water level, the bed level 

drops to zh= 1.18-0.21-0.06 = L.B.F. +0.91 m. 

I f experiments are done with variable downstream water levels, the bed level can go 

down even further. An extra margin of 11 cm is therefore taken into account, so that the 

bottom of the sand bed is located at L.B.F. +0.80 m. At this level a thin concrete floor 

is cast (see figure 10.5), on top of which the sand with appropriate grain diameter is 

placed. 

10.8 Initial values for experimentation 

10.8.1 Introduction 

Even though all of the parameters involved in the model are variable, the model was 

designed with a certain "basic" experiment in mind. The details of this experiment are 

given in the following section. This is followed by the possible alterations of the apphed 

parameters. 

10.8.2 The basic experiment 

As can been seen in the Detailed Design (Den Dekker and Van Voorthuizen, 1993) the 

model, and the basic experiment, were designed to "fi t" into the local circumstances of 

the laboratory. The detemining factor of this design was the capacity of the sandfeeders, 

which was then assumed to be a given constant. A review of this design process is given 

here. 

The Chézy roughness coefficient is assumed to be C = 30 mA/s. Moreover, a bed slope 

ï = 10"3 is taken into account. The available sandfeeding capacity (18 kg/hour) is thus 

assumed to be constant. The resulting necessary flow velocity is found with the 

Engelund-Hansen formula: 
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i 
s = B 

0.084 w5 u = (10.5) 
0.0845 

With this flow velocity the resulting adaptation time T is found with Eq. (9.7). This is 
done for several grain sizes, until a grain diameter is found for which there is no 
suspended load (-» uJW < 1) and for which the adaptation time is acceptable within the 
time schedule of experimentation. A necessary grain diameter D50= 300 /xm results from 
these computations. 

Sand was bought at the market, which eventually led to £>50 = 270 -xm. Considering the 
minor influence of the grain size on the adaptation time this sand type is considered 
acceptable (see Eq. (9.7)). The resulting experimental parameters for the input of 
branch 0 are: 

So = 18 kg/hour = 3.14 10 6 m3/s; 
D50 = 270 jum; 
u0 = 0.30 m/s; 
Qo = 30 1/s; 
T = 25 hours. 

10.8.3 Domain of alterations 

Obviously the values found for the basic experiment wi l l vary according to the demands 

of each experiment. The time T is only an estimate of the actual adaptation time that wi l l 

occur during experimentation. I f it turns out that the experiments take longer than 

anticipated, the processes can be speeded up by increasing S, or increasing Q. 
The increase of S is governed by the maximum capacity of the sandfeeder, which is 

indicated in Section 11.3. 

As can be found in Section 11.2, the discharge Q can be increased to a maximum of 

60 1/s. The resulting increase in the flow velocity u (see Eq. (9.3)) must, however, be 

limited i f suspended load occurs. 
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Chapter 11 - Specifications of the test rig 

11.1 Introduction 

As mentioned before the model consists of a temporary and a permanent part. The latter 
is the subject of this chapter and can be seen as the hardware of the test rig. It provides 
the running of all experiments. This permanent part can be divided into three elements: 

- the water supply system; 

- the sediment supply system; 
- the regulating and measuring system of the test rig. 

During the design proces a lot of problems were encountered considering the three 
elements with their functions and requirements. To fu l f i l l these demands specific 
constructions were necessary. The foUowing sections deal with the three elements in more 
detaiï, especiaUy by reproducing part of the technical drawings and photographs made by 
the writers during their stay at BUET in Dhaka. 

11.2 The water supply system 

11.2.1 General description 

The circulation of the water within the test rig is a closed system. From the downstream 

reservoir the water is transported by means of the pipeline to the upstream reservoir. 

Consequently it flows through the experimental model (the temporary part of the test rig). 

Via the regulating and measuring facihties, the water returns into the downstream 

reservoir (see figure 11.1). 

To ensure smooth experiments and valuable results, a controUed inflow into the 

experimental model is absolutely necessary. Due to bothersome irregularities in the water 

supply at BUET it is essential to have a closed seff-sufficient water circulation system. 

This especiaUy has consequences for the size of the downstream reservoir. 
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figure 11.1 - overview test rig 

11.2.2 Downstream reservoir 

The configuration of the downstream reservoir is defined by the following factors: 

- The required suction head needed for the pump. Hence, as mentioned in Section 10.7, 

the minimum water level maintained in the reservoir during experimentation has to be 

L.B.F. + 0.50 m. 

- The demand of an independent water supply. Taking into account that the 

experimentation wi l l not be continued during night time the necessary storage of the 

downstream reservoir is determined by the water amount in the pipeline and the water 

layer in the guiding flumes and the approach channels above the Rehbock weir. I f a 

safety margin of 20 percent is taken into account, the volume to be stored in the 

reservoir is about 3.10 m 3 . 

- The position of the approach channels. The water flow over the Rehbock weirs must 

end in the downstream reservoir to close the water circulation. The Rehbock weirs and 

their approach channels have to be constructed according to ISO 1975 (see 

Section 11.4). 

- The available space in the laboratory. Together with existing drains and pillars in the 

laboratory, the necessary thickness of the brick walls (resulting from the horizontal 
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hydraulic forces) determines the required area for the downstream reservoir. The 
thickness leads to a maximum water level of L.B.F. + 0.77 m and consequently to a 
maximum allowable storage height. 

These factors result in the configuration of the downstream reservoir as can be seen in 
figure 11.2. 

stilling basins 

figure 11.2 - overview downstream reservoir 

As mentioned before, besides a minimum water level there is also a maximum allowed 

water level of L.B.F. + 0.77 m foUowing from the strength of the surrounding waUs. To 

make sure this water level is not exceeded (in case of a power faüure of the pump, a 

large amount of water wül flow into the downstream reservoir) a spiUway is buüt (see 

figure 11.3). 

Due to the necessary volume of the spillway to withstand the horizontal forces, it turned 

out to be impossible to buüd such a spiUway entirely according to the prescriptions on 

this kind of structures. For maintenance purposes the test rig can be emptied using a 

smaU valve in the spillway. 

11.2.3 The pipehne system 
The transport of water is taken care of by the pipeline system. The pump sucks the water 
from the downstream reservoir into the pipeline. The T-joint on top of the pump divides 
the water over the excess pipe and the delivery or supply pipe, depending on the 
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installation of the valves in the respective pipes (see figure 11.4). As the pump dehvers a 
constant discharge, the required discharge through the model must be supplied operating 
these valves. 

figure 11.4 - view on the pipeline system 
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The excess pipe dumps the water back into the downstream reservoir. The delivery pipe 
transports the water to the upstream reservoir. In this part of the pipe the flow rate is 
measured. At first this wi l l only be done by means of measuring the pressure difference 
over an orifice. For a rating table on the orifice, see Appendix A. In the future also an 
electromagnetic Foxboro-meter can be implemented. The dimensions of the adjacent pipe 
parts are determined taking into account this possibility. To apply these measuring devices 
certain installation requirements have to be fulfilled, for example considering straight 
lenghts up- and downstream of the device. Both the orifice and the Foxboro are 
constructed and positioned acccording to ISO 1980. Moreover the availibihty of pipe parts 
in the laboratory of the desired pipe diameter resulted in a rather strange mixture of the 
different pipe lenghts. 

The possibility of air occuring behind the orifice and thus an incorrect reading has been 
prevented by an upward bend in the pipehne just behind the orifice. When the pipeline is 
filled slowly at the very beginning of an experiment, the air gets the chance to escape and 
by means of the upward bend the pipe stays filled during non-running periods. 
At the end of the delivery pipe the water falls vertically into the stilling reservoir of the 
upstream reservoir. For an overview of the whole pipeline system, see figure 11.5. For 
further details of the pipeline system see Appendix B. 

11.2.4 The upstream reservoir 

The upstream reservoir consists of two basins. As mentioned before the water from the 
pipehne enters the upstream reservoir in the stilling reservoir. The function of this small 
rectangular basin is to dampen the turbulence in the water caused by all the bends in the 
pipeline. The stilling reservoir is seperated by a wall from the larger basin of the 
upstream reservoir (see figure 11.6). 

To create a smooth inflow into this basin and hence to the experimental model, two holes 
are incorporated in the wall. The area of these openings is designed in accordance with 
the maximum possible discharge in the test rig of 60 1/s. To reduce the turbulence once 
more, the water inflow into the model passes by a cross-section filled with small PVC-
pipes (see also Section 10.2). 

For maintenance purposes the upstream reservoir can be emptied through a small pipe 
with a valve, incorporated in one of the walls. By opening the valve the water flows away 
into an existing drain in the laboratory (see figure 11.6). 
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/stilling reservoir 

upstream reservoir 
figure 11.6 - configuration of the upstream reservoir 

11.3 The sediment supply system 

In a research on morphological changes it is clear that sediment plays an important role in 

the experiments. Just as the water, also the sediment circulates during an experiment. At 

the beginning of an experiment, an initial bed level is placed in the model. This means 

that a certain layer of sand is put in the branches, according to calculations on possible 

bed level fluctuations (see Section 10.7). 

Starting the model introduces a sediment transport as a result of the flow velocity. Sand is 

transported downstream and has to be refilled from upstream. Therefore two sandfeeders 

(see figure 11.7), placed at the beginning of branch 0, provide for the supply of sand. 

The amount of sediment supply depends on the equilibrium state in branch 0. During the 

first hours of an experiment, the bed level in this branch has to be watched closely, in 

order to supply an adequate amount of sediment. 

The sandfeeder on the right, which is fabricated at BUET, has a wide capacity-range with 

a maximum of about 85 kg/h, wherein the sand can be provided. This is concluded from 

a calibration, resulting in a rating curve for this particular sandfeeder. The other 

93 



Part 111 - Experimental modelling 

figure 11.7 - the sandfeeders 

sandfeeder has a restricted range with a maximum of 18 kg/h. Attention has to be paid to 

an equal distribution over the width of branch 0, otherwise unwanted bed forms are 

created. 

The transported sediment finally falls into the sand traps, both situated at the end of the 

downstream branches 1 and 2. The amount of sand captured in the sand traps can be 

measured in various ways, as mentioned in Section 12.3. It has to be removed from the 

sand traps every now and then to maintain a rehable efficiency of the sand traps, which in 

fact means maintaining enough water depth. Consequently the wet sand has to be dried in 

order to prepare it for recycling in the model. Only the use of dry sand as input for the 

sandfeeder makes the rating curve accurate. 

11.4 The regulating and measuring system 

11.4.1 Background 

In the report concerning the detailed design of the test rig (Den Dekker & 

Van Voorthuizen, 1993) the conclusion was drawn that the regulating and measuring 

functions of the test rig could not be combined in one structure (see Appendix D). Hence 
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they are separated, resulting in quite a few structures, which are placed in a rather 
extended downstream end (see figure 11.8). 

guiding vane 

4 tail gate 

e x p e r i m e n t a l m o d e l 

OVERVIEW DOWNSTREAM END 
figure 11.8 - configuration of the downstream end 

11.4.2 The tail gates 

The regulating function of the downstream end is provided by two tail gates. In fact they 
belong to the temporary part of the test rig; the configuration of the experimental model 
determines the necessity and the position of the tail gates. The tail gates, however, are 
important structures and are therefore dealt with in this chapter (see figure 11.9). 
The tail gates rotate around a horizontal axis. They represent the downstream boundary 
condition which follows from the situation to be reproduced. The flow over the tail gate 
is expressed by the next relation 

Q = mB-H., 
3 \J 3 

The enlargement of the downstream width of the sand traps (1.00 m for both sand traps, 

although the effective width of a tail gate is approximately 0.90 m due to the rubber 

flaps) also has positive consequences for the water height over the tail gates, as can be 

deduced from the above relation. A smaller water height over the tail gates, also reduces 

the total height of the test rig. 

To ensure a smooth and representative flow over the tail gates, there must exist an 

atmospheric pressure behind the tail gates. A small air pipe underneath the tail gates 
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figure 11.9 - impression of a tailgate 

provides this atmospheric pressure (see for details figure 11.10). The presence of 
atmospheric pressure is, however, not as important as it is in case of the Rehbock weirs 
(see Section 11.4.6). 

An important function of the tail gates is to close the model during non-running periods. 
The tail gates prevent the water from flowing away, which would cause an unacceptable 
dry bed. The watertightness is reached using large rubber flaps, connecting the vertical 
side of the tail gate with the nearest wall (see Section 10.6). 

11.4.3 The stilling basins and transition flumes 
Behind the tail gates the water falls into a stilling basin. In case of the water from branch 

1 this a larger basin than in case of branch 2. This difference is caused due to the 

available space. The water from branch 2 has to follow a more narrow turn. This also 

holds for the transition flumes. The flume behind branch 1 is much longer. The width of 

these transition flumes is already equal to the width of the approach channels (see 

Section 11.4.4), which is 0.50 m in both cases. Besides transporting the water to the 

measuring part of the permanent facility, already a lot of turbulence is destroyed in the 

stilhng basins as well as in the transition flumes (see figure 11.8). 
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DETAIL : S I DEVIEW TAILGATE 

figure 11.10 - configuration of a tail gate 

11.4.4 The guiding vanes and tubes 

To ensure a more smooth flow towards the approach channels, between the transition 

flumes and the approach channels (making a perpendicular angle as can be seen from 

figure 11.8) guiding vanes are placed. These vanes guide the water around the corner. In 

order to prevent creation of extra unwanted turbulence in the approach channels, on both 

the upstream and downstream side of the guiding vanes PVC-tubes are fixed (see 

figure 11.11 and figure 11.12). 

figure 11.11 - impression of the guiding vanes figure 11.12 - impression of the tubes 

97 



Part 111 - Experimental modelling 

11.4.5 The approach channels 

The only task of both approach channels is to reduce the turbulence in the water. 

According to ISO 1975 the channels are of sufficient length to develop the normal 

(uniform flow) velocity distribution for all discharges. The length and width are 

prescribed dependent on the width of the Rehbock weir used. The width of the channel 

must be equal to the width of the weir (BC=BW) over at least a length of ten times the 

width of the weir (L C=10*BJ. A lot of attention is paid to make the walls as smooth as 

possible. This dimensional demand is satisfied, as is indicated by figure 11.8. For an 

impression of the approach channels see figure 11.13. 

figure 11.13 - view on the approach channels and Rehbock weirs 

11.4.6 The Rehbock weirs 
The Rehbock weirs form the measuring facility of the test rig. Here the discharge 
distribution over branch 1 and 2 is measured. The weirs are placed at the downstream end 
of the approach channels. The construction of the weirs is rather comphcated. They are 
fixed on a steel frame, which is incorporated in the reinforced concrete walls of the 
approach channels. Via this construction method the water is able to fall freely into the 
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downstream reservoir. That is very essential considering the absolute requirement of 
having an atmospheric pressure distribution under the weir. Otherwise the head-discharge 
equation of the Rehbock weir is not rehable, leading to inaccurate readings. The accuracy 
of the Rehbock weirs is the subject of Section 12.2; for specifications see Appendix E. To 
guide the flow over the weirs, so-called guiding plates are installed just behind and aside 
the weirs. These plates are also necessary in view of rehable measurements of the 
discharge. Attention has to be paid to the water level in the downstream reservoir. This 
level may not reach the guiding plates, because then atmospheric pressure is not assured 
anymore. 

In figure 11.14 a view on the Rehbock weirs is given in running condition. 

figure 11.14 - impression of the Rehbock weirs 

11.4.7 The stilling basins connected with Rehbock weirs 
For the measurement of the water height above the Rehbock weirs two stilling basins are 

built along the downstream reservoir. Due to lack of space it was not possible to 

construct them next to the weirs. According to ISO 1975, the water level has to be 

measured at a position 3 to 4 times the maximum level above the crest of the weir 

upstream of the place of the weir. Hence, at this spot, a hole is implemented in the floor 

of the approach channel, through which a pipeline was fixed. The pipehne (diameter 

0 = 1.5 cm) connects the approach channel with the stilling basin (see figure 11.15). The 
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water level in the stilling basin is representative for the water level at the Rehbock weir. 
In the stilling basin the water level is measured with a point gauge. 

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

approach 
channels 

stilling basins 

Rehbock 
weirs 

pipelines 

figure 11.15 - layout of connection pipes between weirs and stilling basins 
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Chapter 12 - Measurements 

12.1 Parameters describing the system 

In this chapter the measurements to be made during experimentation are discussed. 
Measurements wi l l have to be made of the parameters describing a bifurcation. A hst of 
these parameters is given here; the measurement methods apphed are given in the 
foUowing sections. 

One of the aims of the experiments is to study the distribution of the sediment transport 
rates at a bifurcation, which can be theoreticaUy described by a number of nodal-point 
relations. As seen in Part I , Wang et al.(1993) worked with the foUowing general nodal 
point relation: 

Si [<?r m 

s2 \ 
(12.1) 

BX and B2 are known constants in the case of the model. 

The unknown parameters SU S2, <2i and Q2 have to be measured; the methods apphed are 

described in Sections 12.2 and 12.3. 

The measurements of the water level (Section 12.4) and of the bed level (Section 12.5) 

are also necessary for several reasons: 

* The factor m is dependent on the geometry of the bifurcation, and wil l most probably 

vary with the local width and depth of the branches. The depth is obtained by 

subtracting the water level from the bed level. 

* The morphological behaviour of the branches, as a function of the shape of the 

bifurcation, is of great interest. For this reason the bed level in the branches must be 

measured at regular intervals. The final equilibrium slopes in the branches can also be 

determined by measuring the water level at the upstream and downstream ends of the 

branches. 

* The measurements of the water levels at the ends of branches 1 and 2 are necessary for 

the setting of the downstream boundary conditions. 
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12.2 Discharge measurements 

12.2.1 Introduction 
The discharge is measured at two places: in the delivery pipe, where the inflow of the 

model is measured, and at the Rehbock weirs where the outflow is measured. The 

difference between these two discharges should be: QM - QOUL=0. I f this is not the case 

then: - there is a leak in the model which should be fixed; 

- or, one of the two measuring devices (or both) is defective and should be fixed. 

12.2.2 Measurement of the inflow 
The discharge at the inflow is measured with an orifice installed according to the 
installation requirements found in ISO (1980). The discharge measured here represents the 
discharge Q0 in branch 0. Specifications of the orifice dimensions are given in 
Appendix A. 

12.2.3 Measurement of the outflow 

As seen in Section 11.4 the individual discharges of branches 1 and 2 are measured with 

the respective Rehbock weirs. These weirs were made locally according to the 

specifications mentioned in ISO (1975). Details of the Rehbock dimensions are given in 

Appendix A. The water level at the crest of the weirs is measured in stilling basins (see 

Section 11.4) with point gauges, with an accuracy of 0.05 mm. The zeros of the point 

gauges were set by filling the two approach channels with water, up to the crest level of 

the weirs; the point gauges were then adjusted, and the zeros fixed. 

12.2.4 Accuracies 

The orifice was not yet fully operational, so no specific evaluation can be made of the 

accuracy of the measurements. However, the method to be used for the determination of 

the accuracy is given in Appendix F, including the sensitivity of the accuracy for the 

sources of possible errors. 

The Rehbock weirs can measure the discharge properly up to a discharge of 60 1/s, with 

an accuracy (in the worst case) of 1.8 %. This is detailed in Appendix E. 
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12.3 Sediment transport measurements 

12.3.1 Introduction 
The sediment transport rates in branches 1 and 2 are determined with the help of the sand 
traps located at the end of each branch. These sand traps intercept all sediment 
transported through the branches. Once a sand trap is emptied and its content measured, 
the average sediment transport rate for the preceding branch is computed for the time-
interval observed. This is done by dividing the amount of sediment by the time elapsed. 

12.3.2 Volume of the sand traps 
As can be found in Section 10.5 the storage capacities of the sand traps are: 

- V s l = 0.63 m 3 ; 

- V s 2 = 0.72 m 3 . 

Since the sediment transport is S = 3.14 10"6 m3/s (see Section 10.8), the maximum time 

interval for which the sediment transport rate can be determined is 

TM = 0.63/3.14 10"6 = 200636 s = 55 hours. 

Obviously, the sand traps do not have to be filled completely. It is actually strongly 

recommended not to do so, since the value for the rate obtained would be insignificant: 

the shorter the time interval, the more information is obtained on the sediment transport 

(see below in Section 12.3.5). The only important thing is to keep track of the time 

elapsed for the sand trap to f i l l to the point that it wi l l be emptied. 

12.3.3 Emptying methods 
The sand traps can be emptied once the model is put to a standstill. Water is always 

present in the model (see Section 10.6), so sediment can be siphoned out of the sand traps 

with a hose. The sediment concentration in the water being siphoned out is about 10 %. 

An alternative way of removing sediment from the sand traps is to place stop logs in the 

slots directly upstream of the sand traps, siphon out the water, and then scoop out the 

sediment by hand. This method is more time-consuming, but may be necessary i f 

visibihty in the water is too restricted: in that case, when siphoning out the sediment, it 

would not be possible to judge whether the sand trap has been completely emptied. 
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12.3.4 Measurement of collected sand 
Once removed from the sand trap, the sediment is spread in a thin layer across the floor 

of the laboratory to let it dry; drying takes about four days (see also figure 13.2). The 

sediment is then weighed on a scale. This weight is translated into a volume (density of 

sand p s = 2650 kg/m 3, porosity p= 40 %) . 

12.3.5 Accuracies 

It is useless to define an accuracy for the sediment transport because the transport rate is 

an average for the time interval chosen. The transport rate wi l l vary continuously, but it 

is not possible to measure these variations. The only way to get more detailed information 

on the changes in transport rates is to shorten the time intervals for which the sediment 

transport rates are determined. 

12.4 Water level measurements 

12.4.1 Introduction 
The water level is measured at four places in the model, in stilling basins placed at the 

beginning and end of each branch (see figure 12.1). A description of the stilling basins 

and of the measurement methods apphed is given in the foUowing. 

12.4.2 Stilling basins 

The stilling basins I , i n and IV are "fixed" stilling basins: they render the water level 

present in a fixed place of the adjacent branch, namely the water level immediately in 

front of it. As can be seen in figure 12.2 the water seeps through a hole in a wooden 

plate fixed in the waU of the branch. This wooden plate can be moved up and down to 

ensure that the seepage hole is always located between the water level and bed level. 

Stilling basin n , which is located near the bifurcation, is a "flexible" stilling basin : water 

levels at different places in the vicinity of the stilling basin can be measured. As can be 

seen in figure 12.3 the stilling basin is completely closed (i.e there is no connecting hole 

from basin to branch). The water is siphoned into the stilling basin via a Pitot tube 

mounted on a frame laid across the width of the channel. The Pitot tube can be moved to 

different spots in the channel so that it is possible to measure the water level at different 

places near the bifurcation. This may be necessary since different shapes of "noses" (see 

Section 14.2) wiU be appUed which each induce different local flow patterns. It must be 
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figure 12.1 - location of the stilling basins in the model 

noted that the Pitot tube is merely used as a siphon, and not as a measuring device: the 
readings are done with a point gauge in the stilling basin (see Section 12.4.4), which 
gives more accurate readings. 

12.4.3 Adjustment of desired water level 
Stilling basins m and IV are placed directly upstream of the sand traps. They are used 

together with the tail gates to regulate the downstream water level. This water level must 

be checked at regular intervals during experimentation to ensure that the correct 

downstream boundary condition is being induced. 

12.4.4 Measurement of the water level 

The water level in a stilling basin is measured with a point gauge. The zeros of the four 

point gauges were set by filling the branches of the model with water, which made a 

horizontal reference-level to which ah four gauges were related. 
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figure 12.2 - "fixed" stilling basin with a wooden plate through which 

the water seeps 

12.4.5 Accuracies 

The accuracy of the water level measurements is determined by the accuracy of the 

readings and the accuracy with which the zero was set. The error in h is defined as: 

% = V / G r 2 + e z + 4 ° m ( 1 2 ' : 

where er is the error made in the reading; 

ez is the error made in the setting of the zero; 

2am is the error in the mean of the readings. 

The point gauges have a Vernier (i.e. Nonius) scale, so e r= 0.05 mm and e z= 0.05 mm. 

The standard deviation in the mean of ten readings was am= 0.03 mm. 

As a result the water level can be measured with an accuracy eh— 0.09 mm. 
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figure 12.3 - at right: "flexible" stilling basin with Pitot tube connection; at left: support structure of the 

bed level measuring gauge. 

12.5 Bed level measurements 

12.5.1 Introduction 

The bed level is measured with a point gauge in which a special pin is used. A square 

plate of 2 x 2 cm 2 is fixed to the point of the pin to prevent it from sinking too deep into 

the sand bed. The gauge is mounted on a frame which is laid across the channel on the 

branch walls. A more detailed description of the measuring device and location of the 

measurements is given in the foUowing. 

12.5.2 Location of the measurements 

The bed level is measured at intervals of 0.5 m ,in 39 marked cross-sections of the three 

branches (see figure 12.4). In branch 0 the bed level is measured in 5 points of each 

cross-section. In branches 1 and 2 the bed level is measured in 3 points of each cross-

section. 
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figure 12.4 - cross-sections where the bed level measurements are made 

The measurements in the eight cross-sections of branch 0 are done more often than in the 

other cross-sections. The reason for this is that from the results of these measurements it 

can be checked whether an acceptable ratio between the upstream discharge and sediment 

supply from the sandfeeders is being put in at the upstream end. I f this is not the case 

(e.g. branch 0 is silting-up quickly) then the necessary changes can be made (e.g. Q 
should be increased or S decreased). 

12.5.3 Frequency of the measurements 

At the outset of the experiments the interest of the writers is primarily focused on the 

course of the bed level once equilibrium is reached, and a general impression of the 

changes in time. It is therefore not necessary to measure the bed level at all cross-sections 

during the span of an experiment. It should be enough to make readings in only half of 

the cross-sections of branches 1 and 2 (the readings in branch 0 should all be done; see 

Section 12.5.2). The total time necessitated for the measurements is greatly reduced in 

this way. However, care must be taken to make readings at all the measurement points 

once equilibrium is reached. 

Equilibrium is reached once: 

° in Oout) 
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* the bed level throughout the model is unchanging in time. 

I f the time-dependent morphological changes in the model become the main interest in 

later experiments, it wi l l obviously be possible to make readings of the bed level in all 
cross-sections at all times. 

12.5.4 Support structure 
The measuring gauge is placed on a wooden frame which is laid across the width of the 
channel at one of the cross-sections previously mentioned (see figure 12.3). The gauge 
can slide on the frame across the width of the channel in order to make a measurement at 
the desired point of the cross-section. The frame is made of wood, which deflects shghtly 
when placed across the channel. This deflection is in the order of 0.5 mm, which is 
considered negligible compared with the ultimate accuracy with which the bed level is 
measured (see Section 12.5.7). 

12.5.5 Reference level 

The supporting frame is placed on the walls of the branches. These, however, are not 

perfectly horizontal. Therefore the height of the walls at every cross-section was 

measured with a level with an accuracy of 0.1 mm, so that a virtual reference level could 

be made. The deviation Ah of the height of a particular cross-section from the reference 

level is simply added to the reading to get a correct measurement. 

12.5.6 Range of the point gauges with pins 

As seen in Section 10.7 the lowest possible bed level is L.B.F. +0.80 m. The highest 

possible bed level is L.B.F. +1.20 m; this is the bed level of a branch that is completely 

silted up to the surface of the water. Thus the range of bed levels to be measured is about 

0.40 m. Since the available point gauges have a maximum range of 0.32 m, two different 

pins (see Section 12.5.1) with different lengths were made: one with a length of 0.05 m, 

and another with a length of 0.20 m (see figure 12.5). 

This way an extra height of 0.20-0.05=0.15 m is available for the bed level 

measurements. As a result, the range for the bed level measurements is: 

0.32+0.15=0.47 m. 

The zero of the point gauge for the bed level measurements was set with the short pin. 

Care must therefore be taken to note which pin is being used when a measurement is 

made. I f the long pin is used, then the "extra" length of 0.15 m must be discounted from 

the reading. 
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figure 12.5 - the long and the short pin used in the bed 

level measuring gauge 

12.5.7 Sinking-in of pins 

As already mentioned the pins have a 2 x 2 cm 2 plate fixed to the point. This plate was 

meant to prevent the gauge from sinking very deep into the bed of the river. Despite this 

plate, the pin still sunk into the sand quite a bit. 

With the advice of a supervisor an attempt was made to measure the bed level in a 

consistent way, in order to obtain a "constant" sinking-in which could be discounted from 

the readings. The method apphed turned out not to be very successful, as can be seen in 

the following. 

The pin of the gauge was dropped onto the bed from a fixed height so that it might land 

on the bed with a constant impact. Ten readings for each pin were made in this way at 

places where the actual bed level was also carefully measured. The reading subtracted 

from the actual bed level gave the unknown sinking-in of the pin Az. From these ten 

readings an average Az and a standard deviation a for each pin was determined: 

* for the short pin A zs = 16.7 mm 

as = 4,5 mm 

* for the long pin A ~g\ = 24.2 mm 

a, = 6.9 mm 
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These standard deviations are obviously very large, leading to unacceptably large errors 

in the readings. The measurement method for the bed level must therefore be improved; 

suggestions are given in the foUowing. 

12.5.8 Accuracies 
The standard deviations of the sinking-in are too large. The local water depth is about 

0.10 m; as a result the relative error for the water depth is at least 

Xa=0.0045/0.10= 4.5 %, when considering only the error made with the sinking-in. This 

error is unacceptable and must therefore be reduced. 

In order to improve the measurements, the standard deviations of the sinking-in must be 

minimized. In the next section the causes of the inconsistencies in the sinking-in are 

given, as well as alternative solutions for the measurement methods. 

12.5.9 Improvement of the accuracy 
There are two problems with the chosen bed level measurement method. 
• The first problem hes in the design of the pin apphed to the point gauge. The square 

plate at the point of the pins is fixed to the pins, at a 90° angle with the pin. Due to the 

presence of the bed forms in the sand bed, the bed and the plate wiU not always be 

parallel (see figure 12.6). Thus the weight of the pin wiU not always be distributed over 

the same plate area. Consequently different sinking-in depths occur, as can be seen from 

the standard deviations of the two pins. A remedy for this problem is to make a flexible 

joint between the plate and the pin, so that the plate can foUow the slope of the bedform. 

A fixed plate was originaUy chosen because it was relatively simple to make. Whether a 

flexible joint can be made in Dhaka wil l have to figured out locaUy. A drawback of this 

design, however, is that, as a result of the flexibihty of the joint, the fixation of the plate 

with the pin is loose; this goes to the expense of accuracy. 

• The second problem with the measurement method apphed is the fact that the pin is 

dropped onto the bed. The method was consistently apphed (see above); however, the 

packing of the sand is not constant throughout the branches. I f the sand is loosely packed 

at one point (e.g. on a steep bed form slope), then the pin wiU sink in deeper than at 

another place where the sand may be more densely packed (e.g. the trough between two 

bed forms), even though the pin is dropped from the same height. To improve the 

accuracy of the measurement with respect to this problem the pin can be lowered to the 

bed level slowly by hand, until bottom resistance is felt, at which point the reading is 

made. This method is more time-consuming, and within the scope of the experiments may 
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figure 12.6 - measurement of the bed level: bed and plate are not parallel 

result in the necessity to reduce the amount of bed level measurement points. This, of 

course, depends on how much more time-consuming the new method is. 

For the record it can be noted here that the best bed level measurements are generally 

made when using a electronic Profile Indicator, which was developed by DELFT 

HYDRAULICS. This is a fully automatic measuring device which can give a continuous 

reading of the bed level along the length of the branches, with an accuracy in the order of 

magnitude of the sediment-grain diameter. However, because of high costs and significant 

maintenance requirements, it is not feasible to place a Profile Indicator in the Laboratory 

at BUET for the time being. 
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Chapter 13 - The running of the model 

13.1 Introduction 

Smooth experimentation asks for an adequate handling of both the temporary (the 

experimental model) and the permanent part of the test rig. To provide a satisfactory 

running of an experiment a lot of information about the test rig is required. After two 

weeks experience the writers gained some knowledge themselves on running the particular 

test rig. Together with the advice and remarks of people experienced in experimental 

research present in Dhaka, this knowledge has resulted in a sort of manual. The 

information is roughly divided into two items viz. information on starting the test rig and 

information on running experiments. These items are described in the foUowing sections. 

Some remarks have akeady been mentioned in previous chapters. 

13.2 Starting the test rig 

13.2.1 The reason for a starting procedure 

As mentioned earher it is not possible to continue an experiment at night, due to reasons 

of safety as weU as lack of occupation of the model. Moreover, taking measurements 

would have to be continued during the night, which is not recommendable because that 

results in different working shifts. This makes it necessary to get started every day again. 

Starting the test rig includes fuffilling a hst of successive operations. This procedure 

concerns the handling of some elements of the experimental test rig. 

13.2.2 The pump 
Before starting, the pump first needs to be primed. Priming of the pump means filling the 

suction head and the volume of the pump itseff with water to prevent a refusal whüe 

starting the pump due to suction of air. Attention must be paid to a smaU valve on the 

pump, which should be closed. Otherwise suction of air via this valve results in a 

reduction of the capacity of the pump, thus delivering a lower discharge. 

Despite maintaining a water level in the downstream reservoir above the minimum 

aUowed water level, suction of air through the suction pipe connected at the pump is stiU 

possible. This can be concluded from a visible vortex. The resulting problem of a 
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decrease in maximum discharge is easily overcome by placing wooden boards on the 
water surface around the suction pipe to prevent the vortex from reaching the water 
surface. 

13.2.3 The valves 

Both the excess and the supply pipe have a valve for the regulation of the discharge. A 
valve influences the flow rate by changing the flow area locally. This happens via the 
vertical movement of a round steel plate inside the valve. A wheel on top of the valve is 
turned to determine the vertical position of the steel plate and thus to determine the 
discharge. The T-joint above the pump divides the water over the two pipe lines 
proportionally to the installation of the two valves. In combination with the orifice in the 
supply pipe the desired discharge for the experiment is delivered by adjusting the valves 
in the correct position. 

After starting the pump first ah the water goes through the excess pipe (see figure 11.5). 
By turning the valves smoothly the discharge through the supply pipe and hence in the 
model wi l l increase until the desired inflow is reached. 

13.2.4 The tail gates 

At the end of an experimental session the pump is stopped and the tail gates are raised to 

prevent the water within the model from flowing away and hence causing a dry bed. This 

has unacceptable consequences for the bed level (see also section 10.6). While starting the 

test rig, the tail gates are lowered in combination with the increasing inflow of water. 

This adjustment must happen smoothly, as no disturbances in the bed level may be 

initialised. Otherwise the bed level measurements wi l l be influenced. 

The tail gates can be seen as the representation of a downstream boundary condition. The 

tail gates are adjusted according to the desired downstream water level. When the 

discharge is increasing during the start of an experimental session, a first idea of the 

desired water level is derived from a small wooden block which (lowest point) is 

positioned at this level. These wooden blocks are hung in front of the sand trap. Further 

on, each of the tail gates is adjusted according to a reading of the water level in the 

stilling basin of the particular branch (see figure 13.1). 

13.2.5 The sandfeeders 

Depending on the calculated sediment transport a choice as to which sandfeeder is apphed 
has to be made. The sandfeeder, manufactured by BUET, has a wide range of possible 
capacities. When starting the experiment and consequently the sandfeeder, it is necessary 
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figure 13.1 - a reading of the water level in a stilling basin 

to check i f there is enough sand available in the stock cylinder of the sandfeeder. 

13.2.6 Sequence of operations 

Starting the test rig means fulfilling a hst of successive operations. First of all the tail 

gates are placed in the lowest position possible without losing water from the model. At 

the same time the pump is primed. After ensuring that the valve in the supply pipe is 

closed, the pump is started. Consequently this valve is opened shghtly to f i l l the supply 

pipe slowly so that the air behind the orifice can escape. When water is flowing in the 

upstream reservoir the water wi l l also enter the model and thus the tail gates are lowered. 

The proces of almost simultaneously opening the valve in the supply pipe and closing the 

valve in the excess pipe, together with lowering the tail gates, must happen very 

gradually. The valves are turned until the desired discharge is reached. The position of 

the tail gates is correct i f the imposed downstream waterlevel is present. When the water 

flow is satisfactorily installed, the sandfeeders can be switched on. This completes the 

starting procedure. 
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13.3 Running experiments 

13.3.1 Twofold division 
After starting the test rig, attention has to be paid to keep it going without creating any 

discontinuities in the experimentation. Also some advice and suggestions for the 

measurements of the different physical parameters are given. 

13.3.2 Keep the model running 
To secure a smooth and steady running of the model the foUowing things need to be 
checked every now and then: 

- The stock cylinder of the sandfeeder has to be filled at time intervals dependent on the 
desired sediment transport rate, to assure a constant input of sand into the model. The 
sand which wiU be used for the experiments has to be dried. In case new sand wil l be 
put in the sandfeeder it is very important to first wash this sand. This prevents the 
presence of much wash load in the whole test rig and consequently having a very dirty 
model and test rig as well (see figure 13.2). 

figure 13.2 - drying of the sand 

ControUing an equal distribution of sand over the width of the upstream branch is very 

essential for creating an acceptable bed form at the beginning of the experimental 

model. 
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- The occurrence of a vortex near the suction pipe in the downstream reservoir has to be 
checked. As already mentioned, wooden boards on the water surface prevents this 
vortex. 

- Despite the idea of having all the bed load captured in the sand traps some sand might 
get in the guiding and approach channels. This sand can cause a few problems. The 
guiding vanes and the tubes in between these flumes may silt up after some time. Also 
the connection pipes between the approach channels and the stilling basins to measure 
the water height above the Rehbock weirs must be free of sand. These two points have 
to be checked (see figure 13.3). 

figure 13.3 - the stilling basins connected with the approach channels 

- Important for having an acceptable flow over both tail gates and the Rehbock weirs is 

the presence of atmospheric pressure under these structures. This especiaUy holds for 

the Rehbock weirs because the absence of atmospheric pressure wiU affect the water 

flow over the weirs, thus giving a wrong impression of the discharge in the respective 

branches. Any deviation of this atmospheric pressure must be prevented. 

- The Rehbock weirs are placed in a steel U-frame. For a correct water level 

measurement, there should not be any leakage. Therefore so-caUed pudding, a soft 

kind of clay, is used to close the openings between the weir and the frame. The 

adhesion of this pudding has to be checked once in a whüe. 
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- The previous point also holds for the tail gates. Here pudding is apphed to prevent 

leakage resulting in an empty model the next day. 

13.3.3 Doing experiments 
Keeping the model running is a different matter then carrying out experiments. 
Considering these experiments one has to think of some aspects next to the things 
mentioned in the previous section: 

- The use of standard forms for the physical parameters to be measured makes the 
monitoring of the morphological processes in the model much easier. These parameters 
are the bed level, the water level and the discharge. The different standard forms made 
by the writers are presented in Appendix G. 

- Depending on the goals of the experiment the tail gates have to be adjusted every now 
and then. I f the downstream boundary condition (e.g. the tail gates) must represent a 
sea level, then the water level at the stilling basins in front of the sand traps have to be 
kept constant in time. 

- The character of the experiments on bifurcations makes it essential to maintain an 
equihbrium situation in the upstream branch 0. This implies a constant bed level. 
Hence, especially during the first hours of an experiment, the bed level in branch 0 has 
to be measured more frequently. Dependent on a situation with erosion or 
sedimentation, the supply by the sandfeeder is increased or decreased respectively. 

- Attention has to be paid to the type of sand used during the experiments. As the sand 
is bought on the local sand market, one is dependent on the available sand types. The 
average grain size of these sand types has no constant value. In case it is necessary to 
buy more sand, it wi l l be impossible to buy sand with the same Z>50. This demands a 
thorough estimate of the total amount of sand necessary for the ranning of the 
experiments. 

- Also important is to check whether the discharge dehvered by the pump is constant or 
not. Perhaps the discharge can be irregular due to variations in the electricity supply to 
the WRE-building. 

- The water levels as well as the bed levels are measured by means of a point gauge. As 
mentioned in Chapter 12 a point gauge has a reference level which is installed by 
setting the zero at the beginning of an experiment. In case this zero level is disturbed, 
the next measurements are useless. To know whether the reference level is changed 
these levels have to be sealed. This can be done by putting paint over the reference 
zero marker. When the seal is broken, one must be suspicious about the 
measurements. 

118 



The running of the model 

- For the sake of running smooth experiments the test rig should also be kept as clean as 
possible. Therefore several wooden boards are made making it easy to walk over the 
branches in the test rig. No step should be taken on the walls of the experimental 
model. Persuading everyone to walk on the prescribed paths is in the interest of 
succesful experiments. Prof, de Vries suggested to paint the concrete walls of the test 
rig in white. This makes maintenance much easier. 

13.4 Stopping the model 

At the end of an experimental session the test rig is stopped. The discharge through the 
model is therefore graduaUy decreased to zero. At the same time the tad gates are raised 
to keep the sand bed filled with water. The next procedure has to be foUowed: 
- First the sandfeeder is stopped; 

- The valve in the supply pipe is closed and the valve in the excess pipe opened; 

- Simultaneously with the previous point the taiï gates are raised; 
- FinaUy the pump is stopped. 
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Chapter 14 - Recommendations for 
possible experiments 

14.1 General 

As the term temporary part of the model already indicates, the experimental model 
apphed in the test rig can be adapted to the desires of the user. Consequently countless 
possible experiments can be carried out. During this thesis work the writers only focus on 
bifurcations and in particular on experiments with the bifurcation model as built in the 
WRE-laboratory in Dhaka. Although the writers have not been in the position to 
experiment themselves, they have considered a number of possible experiments. 
As already mentioned in Part I the local three-dimensional flow pattern around the 
bifurcation determines the sedhnent distribution (Bulle, 1926). The distribution of water 
over the two branches is determined by the bathymetry of the downstream branches. The 
writers' main interest concerns the research of the sediment distribution dependent on the 
shape of the bifurcation. 

14.2 Experiments with different bifurcation tips 

To investigate the influence of the shape of the bifurcation on the sediment distribution 

three different tips or noses have been designed: 

- one symmetrical nose (see figure 14.1); 

- two asymmetrical noses from which one tip is directed towards branch 1 reducing the 

inflow area of this branch with 50 percent with respect to the symmetrical tip (see 

figure 14.2); the second tip is directed opposite and reduces the entrance of branch 2 

by 50 percent (see figure 14.3).During the experiments with these three different 

noses, the sediment transport and the discharge in both the downstream branches are 

measured. Eventually the experimental results may lead to a better insight in the 

relation of the shape of the bifurcation to the sediment distribution over the 

downstream branches as a function of time. And finally may lead to a better 

understanding of islands in rivers. Also the experiments treated in the next section can 

add to the knowledge on this matter. 
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figure 14.1 - the symmetrical nose 

figure 14.2 - the asymmetrical nose directed towards branch 1 
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figure 14.3 - the asymmetrical nose directed towards branch 2 

14.3 Other possible experiments 

Besides the experiments with the different noses, more possibilities exist to vary the 

experiments. Altering for example the bathymetry of the downstream branches influences 

the morphological process and thus the bed level development. Each of these changes can 

be apphed independent of the bifurcation tip used in the particular experiment. In order to 

acquire a complete view on the behaviour of bifurcations a number of essential variations 

have to be apphed. These variations are discussed below: 

- First of ah the tail gates give the possibility to introduce different lengths of the two 

branches. This is represented by a different (constant) water level over each of the tail 

gates. Hence the equilibrium slope in the branches is not the same. In this way an 

infinite number of situations can be introduced. 

- Instead of maintaining a constant downstream water level during an experiment, 

implying an outflow of the branches in a sea, the water levels also can be changed 

constantly during an experiment. This apphcation introduces an experiment in which 

the model, although resembhng half an island, actually represents the case of a whole 

island. Hence the tail gates are placed at a position somewhere along the island. That 

implies the presence of continuously varying water levels dependent on the 
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morphological developments. The adjustment of the water levels is obtained by 
adapting the position of the tail gates. This option is a very comphcated one, because 
the necessary water levels have to be computed with the use of a numerical model. In 
that case the foUowing sequence of actions must be foUowed: 

experimental model 

measurement of the bed levels 
4n 

At 

adjustment of the tail gates <-

numerical model 

calculation of the water levels 

figure 14.4 - scheme of combination of experimental and numerical model 

- Changing the bathymetry is possible in many ways. Easy to construct is a change of 
width. In that way a groyne can be represented. Also the initial bed level can be 
varied. Hence the morphological development wiU be different. 

14.4 Conclusion 

In order to have a total view on the morphological processes around islands in rivers, the 

writers recommend an experimental program in which the prescribed variations wiU be 

implemented. Such a thorough research on the bifurcation problem hopefuUy leads to 

valuable results making the use of numerical programs more convenient and reliable. In 

other words, these experiments hopefuUy give a more rehable general nodal-point 

relation, which for example can be adapted to local circumstances with the use of specific 

parameters. 

This can be clarified with the next two examples of nodal-point relations, apphed in the 

numerical program Wendy. 

The first formula is 
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(14.1) 

One has to think of a prescribed value of a and /3 dependent on the shape of a 

bifurcation. Perhaps, as the geometrical features around the bifurcation and the 

downstream branches vary in time, also the values of a and 0 are a function of time. 

Also used is 

*1 [Qi] m \Bl] 1-m 
(14.2) 

s2 Q2 B2 
In this case the value of m can be related to a specific shape and situation. The value of m 
will probably be a function of time as well. As seen in Part I I , the link between the value 

of m in Eq. (14.2) and the physical configuration of the bifurcation can be done via 

computations in the computer program WENDY. The scaled dimensions of the 

experimental model are used as an input in WENDY; the program is then run for 

different values of m, keeping track of the resulting morphological time-scale. When the 

same morphological time-scale is found in WENDY as in the experiments, the calibration 

is complete, and a link is made between theory and experiments. For a flow chart of this 

process see figure 14.5. 

Link between experiments and theory 

geometry bifurcation 
I 

experimental results 
I 

insight in morphological time-scale 

calibration of m via numerical computations 
I 

link between geometry and power m 

figure 14.5 - flow chart of the research process 
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One has to realize that a complete view on this subject can only be obtained after a great 
number of different experiments. Even then one must realize that these experiments are 
done with a physical model in a laboratory, which is still a schematization of a real-life 
situation. Nevertheless, with the results of these experiments it could be possible to 
develop a rehable nodal-point relation which can be used for numerical ID-modelling. 
I f this leads to good results, the more extensive development of a 3D-model (the ultimate 
solution) would not be necessary. 

The continuation of this research project is therefore strongly recommended; hopefully the 
results obtained by the next set of students going to Dhaka wi l l lead to some interesting 
conclusions. 
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List of symbols 

List of main symbols 

Symbol description dimension 

a water depth [L] 
B width [L] 
c celerity of a disturbance [ L T 1 ] 
C Chézy-value [L'^T 1 ] 

ds depth of the sandtrap [L] 

D50 
grain diameter [L] 

Fr Froude-number = uA/ga [-] 

S acceleration of gravity [ L T 2 ] 
H water level [L] 
i slope of the bed [-] 

u length of branch i [L] 
n exponent of transport (power) law s = mif [-] 

P porosity [-] 

q discharge per unit width [ L 2 ! " 1 ] 

Q discharge [VTl] 
R hydrauhc radius [L] 
Re Reynolds number H 
s sediment transport per unit width (bulk volume) [ L 2 T ' ] 

S sediment transport over the entire width (bulk volume) [VTl] 

T adaptation time [Tj 
u flow velocity [ L T 1 ] 

u* shear stress velocity [ L T 1 ] 

VS,i volume of sand trap i [L 3 ] 
W fall velocity [ L T 1 ] 

A relative density = (ps-p)/p H 
V kinematic viscosity [L^T 1 ] 

8 height of a bed form [L] 
density of sediment [ M L 3 ] 
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Specifications of the orifice and of the Rehbock weir 

Appendix A - Specifications of the 
orifice and of the Rehbock 
weir 

A.l The orifice 

The function of the orifice in the test rig is to measure the discharge through the dehvery 

pipe which is the inflow in the experimental model. The pressure difference (Ap) at the 

orifice follows from a reading of the pressure difference meter, connected to the orifice, 

and now the discharge equation of the orifice can be apphed (ISO, 1980): 

Qo = "Y* 

where Q0 is the discharge measured with the orifice; 

a is the flow coefficient; 

C is the discharge coefficient; 

d is the diameter of the orifice; 

D is the upstream internal pipe-diameter; 

Ap is the pressure difference measured at the orifice; 

p is the density of water. 

The specifications of the orifice are: 

d = 0.1309 m; 

D = 0.2027 m; 

Qo = 250 m7h; 

Ap = 30 kN/m 2 . 

With these specifications, the discharge equation turns into: QQ = 4.01.10"*(Ap)'A m3/s. 

The pressure difference meter is filled with mercury (p = 13,6 kg/m 3). 

2 Ap 

(A 1\ 

2 Ap 

P 
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The foUowing rating table is now obtained: 

reading Ah (mm) Ap (N/m 2) Qo (l/s) 

... ... 

A.2 The Rehbock weir 

The discharge distribution over the two branches downstream of the bifurcation is 
measured by the use of two Rehbock weirs. The discharge equation of a Rehbock weir is 
(ISO, 1975): 

<?R = C^JTgbh} (A-2 

with h6 = h+kh = /z+0.0012 

Ce = 0.602+0.083/*//? 

where 

<2R is the discharge measured over the Rehbock weir; 

Ce is the coefficient of discharge; 

b is the measured width of the weir; 

he is the effective piezometric head with respect to the level of the crest; 

h is the measured head; 

kh is an experimentaUy determined quantity which compensates for the influence of 

surface tension and viscosity; 

p is the apex height in meters. 

The width and the apex height of both Rehbock weirs are measured: 

- Rehbock weir right: - p = 0.1719 m; 

- b = 0.4969 m. 

- Rehbock weir left: - p = 0.1753 m; 

- b = 0.4978 m. 

Now a rating table for the Rehbock weir can be made, from which directly the discharge 

is derived dependent on the measured head h. 
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Specifications of the pipeline 

Appendix B - Specifications of the 
pipeline 

In order to give a more complete view on the pipeline system, as mentioned in Chapter 

11, this appendix specifies the exact dimensions of the pipeline via several cross-sections 

of the overview of the pipeline system (see figure 11.5). The drawings are not to scale. 
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\ 
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£ 
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£ in 
ö 
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© 
pump 

0.45m 
N :—^ 
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max. water level 

TlOm 

0.77m 
min. water level 

0.60m 

k-
1.30m 4 

0.15m 

CROSS-SECTION A-A 
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0,40m i 0.52m i 1.65m 

CROSS-SECTION B-B 

CROSS-SECTION C-C 
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Regulating and measuring functions of the test rig 

Appendix C - Regulating and measuring 
functions of the test rig 

This appendix is taken directly from a preliminary study performed by the writers (see 
Den Dekker and Van Voorthuizen, 1993); it deals with the process of determining the 
configuration of the regulating and measuring functions of the test rig. 
The purposes of the downstream end are to measure the discharge and to regulate the 
water level in the respective branches. Because of the httle space available behind the 
sand traps the first idea was to combine both purposes in one weir. The first purpose 
requires that the weir stays in a fixed position during the experimentation in order to 
avoid leakage, which results in unacceptable inaccuracies in the measured discharge. 
Considering the second purpose it is essential to use a weir with a shape which follows 
the water level fluctuations of the river, so that the weir can stay in a fixed position. 
Taking into account that the 'river' has a discharge equation foUowing Q ~ h312, a 
Cipoletti-weir (Bos, 1989) with an essential characteristic of Q ~ h312 seems a good 
possibility. The head-discharge equation of this weir type is: 

3 

Q=cDcvyigby ( C I ) 

in which CDCv2/3(2g)1 / 4 « 1 . 8 6 m'̂ /s is a good approximation. 

In order to know whether the Qlh-cxxrse of a fixed Cipoletti-weir is able to give a 

satisfactory representation of the real Q/ft-curve it is necessary to determine the behaviour 

of the water level in the situation of a constant water level downstream (De Vries, 1992). 

At the bifurcation there is continuity with respect to water and sediment. Hence the 

foUowing equations can be apphed: 

Q0=Ql+Q2 (C.2) 

and 

S0=SL+S2 (C.3) 
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Knowing that for the two branches the same water level is present at the bifurcation: 
3 , 3 3 , 3 

Q^^iBq NL0=Q2

LS2B2

 NL2 

and considering the definitions £ = Q2/Qo, a = S2/S0, /3 = B2/B0 and X = L 2 / L 0 , it is 

possible to combine the last three equations into 
3 

(C.4) 

3 l 3 

(i-o-1a-o)"=r1o',(p nx) 
For 

(C.5) 

(C.6) 

this becomes 

l -o (C7) 

The change of the water level is 

AH, Q^S? ( i_ a ) » 
n =-

^ 0 

l - £ 
(C.8) 

Combination of the last two equations gives 
3 3 

r\=(l-o)n+yon 
(C9) 

Instead of ^ = f(o) it is necessary to have nj 
with the Cipoletti-weir. With 

1 
v i - r +i 

f(£) in order to compare the real situation 

(CIO) 

r} is expressed as a function of £ ( = the water movement): 

Y 1 
n n ) 

[1-51 3 + l 
I 

( C l l ) 
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Taking into account that the relation 77 can also be seen as a relation between two different 

equilibrium stages in one branch: 

AH, AH. 

AHn AH '0 old 

(C.12) 

Hence 

AH 

AH 
Qo 

~Y 
old Q,( n 

Qo - 1 + 1 
M 

n 
(C.13) 

Now that the water level fluctuations in a real situation has been described, a comparison 

with the behaviour of a Cipoletti-weir can be made. 

Figure 1 shows that: 

(dh\ JdAH' 

U<?L>1 dQ ) 
with 

reality 

(dh) 2 f 1 1 
(dQj weir 3 [ l . 8 6 * J 

1 1 

(C.14) 

(C.15) 

and 

8AH] 

dQ j 
Qo 1 *+iQo 

reality <?-' 
+ 1 

\1 
n Q?l 

+ 1 
-+1 

(C.16) 
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real situation 

Cipoletti-weir 

figure C.l - water level fluctuations in both situations 

The relation of Eq. (D14) has been tried to f i t with different crest widths ba but this 
proved to be impossible. 

The conclusion is that the water level fluctuations in reahty cannot be represented by a 
fixed (Cipoletti) weir. This results in the decision to separate the regulating and 
measuring function. 

This led to the construction of a tail gate followed by a Rehbock weir as can be seen in 
Chapter 11. 
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Appendix D - Accuracy of the Rehbock 
weirs 

The accuracy of the Rehbock weirs was determined according to weh-known statistical 

methods for the propagation of errors. 

D.l Discharge equation 

The discharge equation of a Rehbock weir is (ISO, 1975): 
3 

<?R = c^sJTgbh} C 

with hz = h+kh = ft+0.0012 

C E = 0.602+0.083/V/? 

where 

Ö r is the discharge measured over the Rehbock weir; 

C E is the coefficient of discharge; 

b is the measured width of the weir; 

\ is the effective piezometric head with respect to the level of the crest; 

h is the measured head; 

kh is an experimentally determined quantity which compensates for the influence of 

surface tension and viscosity; 

p is the apex height in meters. 

D.2 Sources of possible error 

The sources of possible error can be identified by examining Eq. (Dl ) ; these sources are: 

- the discharge coefficient C E; 

- the dimensional measurement of b; 
- the measured head h; 
- the corrective term kh. 
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The total error results from a contribution of all these errors. According to the quadratic 

error propagation method the relative error on the rate of flow is calculated with: 

D.3 Estimate of the total error 

As can be seen in Eq. (D2) the total relative error can be calculated once the individual 

relative errors are found. 

Error in C,\ 

In ISO (1975) it can be found that the relative error in the coefficient of discharge can be 

expected to be Xc = +1.0 %. 

Error in b: 

In Eq. (D2) Xb is defined as: 

where eb is the error in the measurement of width b. 

The width b was measured with a ruler divided into 1 mm intervals; therefore 

eb = +0.5 mm. 

From Eq. (D3) it can now be found that Xb = +(0.5/500) = +0.1 %. 

Given this small value, the contribution of Xb to the total error (see Eq. (D2) is 

considered to be neghgeable. 

Error in h,.\ 

In Eq. (D2) the relative error in he is used: 

(D.2) 

where Xn is the relative error in QR; 

Xc is the relative error in Ce; 

Xb is the relative error in b; 

X, is the relative error in hc. 

(E.3) 

K 

(E.4) 
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where - eh , eh, ... are the errors in the measurement of head h; 

- 6 & is the error in the kh term; 

- 2am is the error in the mean of the readings of the head measurement. 

• According to ISO (1975): e. = 0.3 mm. 
Kh 

• The head-measuring device was divided into 0.1 mm intervals. The head h was 

therefore read to = +0.05 mm; the zero was set to within e ^ = +0.05 mm. 

• The standard deviation in the mean of ten head measurements proved to be 

a,,, = 0.03 mm. 

It should be realized that X, , and therefore also Xn , is not single-valued for a weir: it 

wi l l vary with the discharge. A worst-case value can however be given: ISO (1975) sets a 

minimum value for h: h> 0.03 m. As a result: 

h0 > 0.03+0.0012 = 0.0312 m (see Eq. (Dl)) 

=> Xh < +1.0 %. 

Total error: 

With the results of the various contributions, the total relative error made for the rate of 

flow (in the worst-case) can now be calculated using Eq. (D2). I'X \2 (E.5) + -1 .0 = ±1.8 % 
2 
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Appendix E - Accuracy of the orifice 

The accuracy of the orifice was determined according to weh-known statistical methods 

for the propagation of errors. 

E . l Discharge equation 

The discharge equation of the orifice is (ISO, 1980): 

Qo = «-7d 
2 Ap 

4 N P (E.1) 
Dl

 It 2 Ap 

where Qo is the discharge measured with the orifice; 

a is the flow coefficient; 

C is the discharge coefficient; 

d is the diameter of the orifice; 

D is the upstream internal pipe-diameter; 

Ap is the pressure difference measured at the orifice; 

p is the density of water. 

E.2 Sources of possible error 

The sources of possible error are found by examining Eq. (El) ; these sources are: 

- the discharge coefficient C; 

- the dimensional measurement of d\ 
- the dimensional measurement of D; 
- the measured pressure difference Ap; 

- the variation in density p. 
The total error results from a contribution from ah these errors. According to the 

quadratic error propagation method this gives by approximation: 

where e(. are the errors made for the different variables. 
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dC dd 3D pdAp p dp 
(E.2) 

After some algebraic manipulation an expression for the relative errors can be found: 

XQ = 
N 

X c + \ X l + \ X > 4 

\2 f «4 V 

1-P4 

(E.3) 

where X, = e,/i is the relative error in the variable i; 
(3 = d/D =0.1309/0.2027=0.6458. 

Numerically this gives: 

XQ = ^c +0-25X^+0.25J^+5.86Xj+0.18X^ (E.4) 

E.3 Estimate of total error 

As can be seen in Eq. (E4) the total relative error can be determined once the individual 

relative errors are found. 

Error in C: 

An expression for C is given in ISO (1980): 

«Üf (E.5 
ReD 

with ReD = uD/v 
where 

u is the mean axial velocity of the water in the pipe; 

v is the kinematic viscosity of the fluid. 

According to ISO: Xc = (3% + 0.3 % 1 

As a result it can now be found that Xc = 0.9458 %. 

Error in p: 

With the help of tables (Hütte, 1955) an estimate can be made for the variation of p with 

the temperature. In extreme circumstances it can be estimated that Xp = 0.2 %. 

When substituted in Eq. (E4) it can be seen that the contribution of p to the total error is 

negligible. 

C = O.5959+O.O312j02i-O.184j38+O.OO29£2i 

It is assumed here that the relative roughness k/D and the circularity of the pipe are in conformity with 
the limits imposed by ISO (1980). This should be checked to make sure that no additional uncertainty 
factors have to be added to Xc. 
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Error in d: 
The measuring device used to measure d was divided in 0.1 mm intervals. The diameter 

of the orifice was therefore measured with an accuracy ed = ±0.05 mm. 

As a result Xd = +0.05/130.9 = +0.04 %. 

This can also be considered negligible when substituted in Eq. (E4). 

Error in D: 
The measuring device used to measure D was divided in 1 mm intervals. The diameter 

of the pipe was therefore measured with an accuracy eD = +0.5 mm. 

As a result X D = +0.5/202.7 = +0.25 %. 

Combined with the very small factor (see Eq. (E4)) this can also be considered neghgible. 

Error in Ap: 

The orifice was not operational, so a reading of Ap could not be made. Consequently a 

definite expression for X^ cannot be given; only the sensitivity of Eq. (E4) for variations 

in X^p can be indicated (see next paragraph). 

Total error: 
Most of the terms in Eq. (E4) are negligible, so that it can be simplified to the foUowing 

expression: 

XQ = p2

c+0.25X2

Ap ( R 6 : 

An indication of the influence of X^ on XQ can now be given by substituting in different 

values for X^: 

- Z A p = 1.0 % => XQ= 1.1 %; 

- Z A p = 5.0 % => XQ= 2.7 %. 

I f the maximum acceptable error for Q is taken to be XQ= 2.0 %, it foUows that the 

maximum acceptable error in Ap is: X A p = 3.5 %. 
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Appendix F - Standard forms 

While conducting experiments it is practical to use standard forms for the physical 
parameters to be measured. This makes the monitoring of the morphological processes in 
the model an easier task. 

The forms made by the writers are presented below; there are forms for the bed level, the 
water level and the discharge. Moreover, it is important to keep a good track of the 
starting and finishing time of the different runs; this is necessary for example for the 
computation of the average sediment transport - the duration of the run is then needed 
(see also Chapter 12). 

Form 1: 

Experiment I : Experimentation time 

date : 
starting of the pump : 
closing of the pump : 
experimentation time : 

total experimentation time : 

date : 
starting of the pump : 
closing of the pump : 
experimentation time : 

total experimentation time : 
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Form 2: 

Experiment I : bed level measurements 

date : 

cross, sec. level(mm) time exp. time cross, sec. 

1=1 2 3=m 4 5 = r 

time exp. time 

01 

02 

03 

04 

05 

06 

07 

08 

cross-sec. level(mm) time exp. time cross-sec. 

l(left) 3 (middle) 5(right) 

time exp. time 

09(0.6m) 

09(0.4m) 

10(0.6m) 

10(0.4m) 

11 (0.6m) 
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l l (0.4m) 

12(0.6m) 

12(0.4m) 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 
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35 

36 

37 

38 

39 

Form 3: 

Experiment I : water level measurements 

date : 

stilling basin level(cm) time experimentation time 

I 

n 

m 

IV 

The position of the pitot-tube connected with stilling basin 2 is m up/downstream 
of the stilling basin. 

This table is reproduced many times and is used several times a day, every time a water 
level measurement is made. 
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Form 4: 

Experiment I; discharge measurements 

date : 

orifice: 

A h (mm Hg) discharge (1/s) time exp. time 

Rehbock weirs: 

stilling basin level(cm) discharge(l/s) time exp. time 

V 

V I 

These tables can ah be reproduced so that one is available every time a measurement is 
made. 
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