
 
 

Delft University of Technology

Developing a pan-European high-resolution groundwater recharge map – Combining
satellite data and national survey data using machine learning

Martinsen, Grith; Bessiere, Helene; Caballero, Yvan; Koch, Julian; Collados-Lara, Antonio Juan; Mansour,
Majdi; Sallasmaa, Olli; Pulido-Velazquez, David; Williams, Natalya Hunter; Zaadnoordijk, Willem Jan
DOI
10.1016/j.scitotenv.2022.153464
Publication date
2022
Document Version
Final published version
Published in
Science of the Total Environment

Citation (APA)
Martinsen, G., Bessiere, H., Caballero, Y., Koch, J., Collados-Lara, A. J., Mansour, M., Sallasmaa, O.,
Pulido-Velazquez, D., Williams, N. H., Zaadnoordijk, W. J., & Stisen, S. (2022). Developing a pan-European
high-resolution groundwater recharge map – Combining satellite data and national survey data using
machine learning. Science of the Total Environment, 822, 1-15. Article 153464.
https://doi.org/10.1016/j.scitotenv.2022.153464
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.scitotenv.2022.153464
https://doi.org/10.1016/j.scitotenv.2022.153464


Science of the Total Environment 822 (2022) 153464

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
Developing a pan-European high-resolution groundwater recharge map –
Combining satellite data and national survey data using machine learning
GrithMartinsen a, Helene Bessiere b, Yvan Caballero c,d, Julian Koch a, Antonio Juan Collados-Lara e,MajdiMansour f,
Olli Sallasmaa g, David Pulido-Velazquez e, Natalya Hunter Williams h, Willem Jan Zaadnoordijk i,j, Simon Stisen a,⁎

a Geological Survey of Denmark and Greenland, GEUS, Øster Voldgade 10, 1350 Copenhagen K, Denmark
b French Geological Survey, BRGM, 3 avenue Claude-Guillemin, BP 36009 45060 Orléans Cedex 02, France
c French Geological Survey, BRGM, Univ Montpellier, Montpellier, France
d G-eau, UMR 183, INRAE, CIRAD, IRD, AgroParisTech, Supagro, BRGM, Montpellier, France
e Spanish Geological Survey, IGME-CSIC, Urb. Alcázar del Genil, 4-Edif. Zulema, Bajo, 18006 Granada, Spain
f British Geological Survey, BGS–Keyworth, Nottingham NG12 5GG, United Kingdom
g Geological Survey of Finland - GTK, Vuorimiehentie 5, 96, FI-02151 Espoo, Finland
h Geological Survey Ireland, GSI, Booterstown Hall, Blackrock, Co. Dublin A94 N2R6, Ireland
i Geological Survey of the Netherlands, TNO, Princetonlaan 6, 3584 CB Utrecht, Netherlands
j Delft University of Technology, Faculty of Civil Engineering and Geosciences, Water Resources Section, Stevinweg 1, 2628 CN Delft, Netherlands
H I G H L I G H T S G R A P H I C A L A B S T R A C T
• Combining national datasets, satellite
data and machine learning

• Amultilayer Pan-European dataset of Eact,
PEff and groundwater recharge coeffi-
cients

• Long-term average groundwater recharge
map for Europe in 1 km resolution

• A locally relevant, seam-less and
harmonised Pan-European dataset
⁎ Corresponding author.
E-mail address: sst@geus.dk (S. Stisen).

http://dx.doi.org/10.1016/j.scitotenv.2022.153464
0048-9697/© 2022 The Author(s). Published by Else
A B S T R A C T
A R T I C L E I N F O
Article history:
Received 18 October 2021
Received in revised form 18 January 2022
Accepted 23 January 2022
Available online 29 January 2022

Editor: Christian Herrera
Groundwater recharge quantification is essential for sustainable groundwater resources management, but typically
limited to local and regional scale estimates. A high-resolution (1 km× 1 km) dataset consisting of long-term average
actual evapotranspiration, effective precipitation, a groundwater recharge coefficient, and the resulting groundwater
recharge map has been created for all of Europe using a variety of pan-European and seven national gridded datasets.
As an initial step, the approach developed for continental scale mapping consists of a merged estimate of actual evapo-
transpiration originating from satellite data and the vegetation controlled Budyko approach to subsequently estimate
effective precipitation. Secondly, a machine learning model based on the Random Forest regressor was developed for
mapping groundwater recharge coefficients, using a range of covariates related to geology, soil, topography and cli-
mate. A common feature of the approach is the validation and training against effective precipitation, recharge coef-
ficients and groundwater recharge from seven national gridded datasets covering the UK, Ireland, Finland,
Denmark, the Netherlands, France and Spain, representing a wide range of climatic and hydrogeological conditions
across Europe. The groundwater recharge map provides harmonised high-resolution estimates across Europe and lo-
cally relevant estimates for areas where this information is otherwise not available, while being consistent with the
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existing national gridded datasets. The Pan-European groundwater recharge pattern compares well with results from
the global hydrological model PCR-GLOBWB2. At country scale, the results were compared to a German rechargemap
showing great similarity. The full dataset of long-term average actual evapotranspiration, effective precipitation, re-
charge coefficients and groundwater recharge is available through the EuroGeoSurveys' open access European Geolog-
ical Data Infrastructure (EGDI).
1. Introduction

Groundwater plays a vital role for humans and for ecosystems world-
wide. It is employed to supply irrigation, drinking water and industrial de-
mands, and sustains wetlands, rivers and other groundwater-dependent
ecosystems. However, groundwater resources are under pressure from
both overexploitation and climate change (Cuthbert et al., 2019; Pulido-
Velazquez et al., 2018b). The rate of groundwater recharge, expressing
the annual renewal potential, is a key hydrological variable for quantifying
available water resources, safe yields and vulnerability to climate variabil-
ity and change (Riedel andWeber, 2020). It is largely controlled by: precip-
itation, evapotranspiration, surface infiltration, land cover and soil
hydraulic characteristics (Mohan et al., 2018). Consequently, it is highly
variable in time and space, mainly across climate gradients, but also as a re-
sult of patterns in topography, soil, land cover and geology (MacDonald
et al., 2021; Moeck et al., 2020; Xu and Beekman, 2019).

Groundwater recharge can be measured locally using lysimeters
(Voortman et al., 2015; Xu and Chen, 2005). However, thesemeasurements
are difficult to scale up, due to the impact of local soil and land use charac-
teristics and the fact that natural conditions are disturbed when construct-
ing the lysimeter (Vásquez et al., 2015). Alternative methods based on
water table fluctuations use data that is naturally integrated over a larger
scale (Jie et al., 2011), but require additional information such as storage
coefficient and special conditions such as distinguishable precipitation
events (Crosbie et al., 2005).

Several of the key factors controlling groundwater recharge are difficult
to estimate and display significant spatial variability evenwithin river basin
scale. Consequently, accurate large-scale quantification of groundwater re-
charge is challenging, since local measurements are difficult to scale-up and
coarse-scale modelling lacks spatial heterogeneity. Due to the timescales of
groundwater movement, global to continental scale mapping of groundwa-
ter recharge typically focusses on long-term average rates, to quantify sus-
tainable resources at decadal scales. Such large-scale assessments are
typically based on either upscaling of local estimates (MacDonald et al.,
2021;Moeck et al., 2020) or large-scalemodelling (Döll and Fiedler, 2008).

A recent study for the Continental US approached the challenges of es-
timating large-scale groundwater recharge using a residual approach
utilising stream gauge data from a large set of watersheds and estimating
quick-flow and evapotranspiration to train regression equations based on
continentally available data (Reitz et al., 2017).

For the African continent, (MacDonald et al., 2021) upscaled 134 long-
term average groundwater recharge estimates using linear mixed models
based on climate, vegetation, soil and geological covariates. However, the
final prediction model was reduced to a simple linear function of long-
term average rainfall, since no other covariates contributed to the perfor-
mance, highlighting the potential for improvement particularly in more
data rich regions. Hence, upscaling by interpolation remains sensitive to in-
accuracy and misrepresentation by often few local estimates and lack of
known continentally valid upscaling relations.

Mohan et al. (2018) compiled 715 recharge estimates from various
parts of the world and identified potential explanatory factors that could in-
fluence those estimations to build multiple linear regression models be-
tween recharge estimates and explanatory factors and use the best one to
build a global recharge map at a spatial resolution of 0.5°x0.5°.

A range of continental and global hydrological and land surface models
enable simulation of groundwater recharge, however they commonly lack a
systematic calibration and validation against independent groundwater re-
charge estimates at a relevant scale (Li et al., 2021; Reinecke et al., 2020;
2

Samaniego et al., 2019). Continental and global models are typically evalu-
ated against surface fluxes and river discharge, while the flow path separa-
tion between groundwater and surface water is highly conceptual, difficult
to validate and consequently uncertain. Still, these models offer a unique
spatial coverage and are useful for impact assessments, particularly in en-
semble approaches (Reinecke et al., 2020; Wanders et al., 2019).

At the global scale (Döll and Fiedler, 2008), estimated long-term aver-
age groundwater recharge at 0.5° scale based on a heuristic recharge factor
approach implemented in the global hydrological modelWaterGAP (Müller
Schmied et al., 2021) and dependent on globally available datasets on soil
texture, relief, hydrogeology etc. The model was mainly validated against
basin scale river discharge, while a validation against independent ground-
water recharge estimates in semiarid regions revealed significant
shortcoming.

For the Continental USA, large modelling efforts using coupled and in-
tegrated groundwater surface water models, have been conducted
(Alattar et al., 2020; Maxwell et al., 2015). These enable calibration and
validation against both stream flow records and groundwater level time se-
ries, in an attempt to reduce the uncertainty on groundwater recharge sim-
ulation (Alattar et al., 2020). Similarly, the PCR-GLOBWB model has been
run both globally and at a European scale, producing groundwater recharge
estimates (Sutanudjaja et al., 2018). Continental- to global-scale coupled
groundwater surface water models remain coarse in scale and include
largely simplified representations of hydrogeology and vertical
discretisation, resulting in lack of local representation. This makes them in-
herently difficult to validate with independent estimates, and they have
been shown inconsistent with groundwater storage trends when validated
at large scale against observations by satellite gravimetry (Scanlon et al.,
2018). However, the continuous progress on model development and
data availability is closing the gap between continental and regional scale
groundwater models also at the Pan-European scale (Jing et al., 2018;
Trichakis et al., 2017).

Remote sensing methods have also been employed for large-scale
groundwater recharge estimation, typically by combining groundwater
storage fluctuations observed by the Gravity Recovery and Climate Experi-
ment (GRACE) satellite (Richey et al., 2015; Wu et al., 2019) with land sur-
facemodels. GRACE-based estimates are, however, limited to coarse spatial
resolutions in the order of 300 km. Alternatively, satellite data at higher
spatial resolution has been used for groundwater recharge estimation
through a water budget approach (Healy and Scanlon, 2010). One
such example is from a national mapping of groundwater recharge in
New Zealand, including actual evapotranspiration and leaf area index
estimates from the Moderate Resolution Imaging Spectroradiometer
(MODIS) sensor in combination with climate and other land surface
data (Westerhoff et al., 2018).

Satellite data can also provide valuable information for groundwater re-
charge through estimation of water balance components such as actual
evapotranspiration. Satellite remote sensingmethods for actual evapotrans-
piration estimation have enabled global mapping by exploiting the unique
data availability and coverage provided by a suite of sensors and platforms.
Satellite sensors do not measure actual evapotranspiration directly, but can
provide detailed and accurate information on key variables linked to and
controlling the evaporative processes on the land surface (Kalma et al.,
2008). These include radiation, albedo, vegetation, land surface tempera-
ture etc. Based on these remotely-sensed variables, models have been devel-
oped for estimating actual evapotranspiration with a few other auxiliary
data, without water balance accounting, and without the need for precipi-
tation data. Instead, these models are typically based on an energy balance
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approach, where the net incoming radiation is partitioned into sensible or
latent heat. The advantage of the satellite-based methods is that they di-
rectly reflect observed patterns of key controlling states and fluxes at the
Earth's surface without the need to formulate explicit relation to, e.g., soil
and climate conditions.

Groundwater recharge maps at pan-European scale are needed for
assessing groundwater resources and monitoring their quantitative and
qualitative status (European Environmental Agency, 2018). Regional- to
national-scale groundwater recharge estimates are available from several
European countries, based on local data, validated methods and detailed
coupled groundwater-surface water models. These gridded datasets have
so far not been utilised in Pan-European groundwater recharge estimates
and challenges remain on harmonizing between independent estimates
and methods, and transferring knowledge to countries without national
gridded estimates.

The current study exploits detailed national-scale groundwater re-
charge estimates from seven European countries, in combination with
satellite remote sensing data and a machine learning approach to pro-
duce a harmonised Pan-European long-term average potential ground-
water recharge map. The approach builds on existing databases and a
recent study of long-term average evapotranspiration patterns across
Europe (Stisen et al., 2021a) combined in a water budget approach,
based on precipitation, actual evapotranspiration and a groundwater re-
charge coefficient. The goal of the study is to produce a harmonised Pan-
European dataset on long-term average effective precipitation and
groundwater recharge that is spatially consistent, locally relevant and
honours the national datasets while providing new information outside
their coverage.

2. Methods and data

2.1. Water budget approach

Several definitions of groundwater recharge exist, depending on the
application, estimation method and reference scale (Healy and Scanlon,
2010). The current study aims at a large-scale (continental) and high-
resolution (1 km) recharge quantification for which the water budget
approach as described by Healy and Scanlon (2010) is appropriate.
This approach is advantageous because it can utilise existing datasets
and satellite remote sensing data. In addition, for long-term average es-
timates, storage changes (ΔS) in the upper soil layer can be ignored.

Consequently, groundwater recharge is defined in the context of large-
scale application and a simple soil column water budget framework,
where the four components of the water budget are: Precipitation (P), ac-
tual evapotranspiration (Eact), groundwater recharge RGW and shallow run-
off (Q). As such, the method does not directly account for the large scale
river runoff, which is included indirectly through the national training
data described in Section 2.2.

We refer to the term potential groundwater recharge (RGW,pot) as the
water percolating from the upper soil layer to the groundwater table, de-
fined as the excess of P-Eact-Q. The difference between precipitation and ac-
tual evapotranspiration (P-Eact) is referred to as effective precipitation
(PEff), which is partitioned into either groundwater recharge or shallow
runoff. The fraction of the groundwater recharge is defined as the ground-
water recharge coefficient (CGWR=RGW / PEff) and shallow runoff is there-
fore equal to Q = PEff ∗ (1 − CGWR). At 1 km resolution, the actual
evapotranspiration refers to the total evaporative loss to the atmosphere
from surface evaporation, transpiration, and groundwater and surface
water evaporation. Likewise, the runoff at this scale refers to all shallow lat-
eral flow above the groundwater table and therefore includesmore than the
Hortonian surface runoff. Note that our definition of groundwater recharge
refers to the top of the saturated groundwater system. It does not include
surface water interaction (apart from shallow runoff). Moreover, the
groundwater recharge of underlying aquifers will be different, depending
on the groundwater system and properties of the subsurface. In a final
postprocessing step, we will evaluate the RGW,pot estimate in relation to
3

aquifer properties. The equation for RGW,pot in our implementation of the
water budget approach is:

RGW,pot ¼ P− Eactð Þ ∗ CGWR (1)

with the CGWR [−] expressing the fraction of effective precipitation that
reaches the groundwater table.

Long-term average estimates of potential groundwater recharge for the
period 1981–2010 are produced at 1 km scale across Europe, requiring
equivalent inputs of precipitation [mm/year], actual evapotranspiration
[mm/year], and groundwater recharge coefficients [−].

2.2. Existing gridded national estimates

Gridded national groundwater recharge estimates are available from
seven European countries (UK, Ireland, Finland, France, Spain
Netherlands and Denmark), originating fromdifferent approaches and rely-
ing on different input data. They are all regarded as long-term average esti-
mates, and include separate estimates of effective precipitation and
groundwater recharge including or enabling a grid-based estimate of
groundwater recharge coefficient in line with Eq. 1. This is an important
feature, since not only the national groundwater recharge estimates but
also their associated effective precipitation and groundwater recharge coef-
ficients will be used to evaluate and develop the Pan-European mapping.

The methods used for national scale groundwater recharge assessments
can broadly be categorised into three groups. 1) Recharge/runoff
coefficient-based methods combining climatologically-driven effective pre-
cipitation estimates with topography-, soil- and geology-driven mapping of
recharge/runoff coefficients (UK Ireland, Finland and France), 2) Empirical
models linking effective precipitation to independent point-scale estimates
of groundwater recharge (Spain) and 3) Coupled 3D groundwater-surface
water models calibrated against stream flow and groundwater levels, esti-
mating groundwater recharge as an internal flux (Netherlands and
Denmark). Each national gridded recharge estimate has been calibrated
and or validated independently against river runoff, groundwater levels
or groundwater formation datasets. An overview of the national datasets
and their validation status is given in Table 1. Each of the national estimates
are developed prior to the current study and constitute the official national
groundwater recharge estimates by the respective national geological sur-
veys. In selecting national recharge datasets, preference have been given
to covering as much hydrogeological diversity across Europe as possible,
over similarity in method or validation approach.

2.2.1. Recharge coefficient methods
For the UK, the annual average potential recharge values calculated for

the period 1981–2010 are used to determine the long-term average re-
charge (Mansour et al., 2018). These values are calculated at a national
scale using the modified EA-FAO method proposed by (Griffiths et al.,
2006), which accounts for actual evaporation and soil moisture deficit,
and calculates potential recharge as a fraction of the excess water. The
model is driven by daily rainfall data (Tanguy et al., 2021) andmonthly po-
tential evaporation data obtained from the Met Office Rainfall and Evapo-
ration Calculation System (MORECS) (Hough and Jones, 1997).
Hydrogeological data used in the model include the soil map (Boorman
et al., 1995), hydrogeological map, solid geology map and the superficial
deposit map (BGS, 2021). The model also uses a land cover map
LCM2000 (NERC, 2000), a digital topographical model and the UK river
networks (NERC, 2003). The groundwater recharge estimates are used to
drive national scale simulation of groundwater levels and riverflowswithin
the HYDRO-JULES modelling framework (Dadson et al., 2019; Pachocka
et al., 2015).

For Ireland, the annual recharge to the deep groundwater system calcu-
lated over the period 1981–2010 is used. These values are estimated using
guidelines outlined by the IrishWorking Group on Groundwater I(IWGGW,
2005) and revised by Hunter Williams et al. (2013) and further in Hunter
Williams et al. (2021). A number of hydrogeological maps including soil



Table 1
Overview of national recharge models and their evaluation. Method abbreviations are: recharge coefficient method (RCM), empirical method (EM) and coupled groundwa-
ter-surface water model (CGSM).

Country Method Period Reso-
lution

Evaluation

United
Kingdom

RCM 1981–2010 2 km Calibrated on long term average runoff values recorded at 56 gauging stations located at major rivers (Mansour et al., 2018) and
monthly values from 41 stations.
In addition, the map is compared to recharge values calculated at borehole scale using multiple recharge estimation tools (Seidenfaden
et al., 2022).

Ireland RCM 1981–2010 1.5 km Recharge coefficients across the range of hydrogeological scenarios were established based on previous studies within Ireland (see
Hunter Williams et al, (2013) for details). Recharge estimates validated at catchment scales by comparison with surface water flow
hydrographs by Hunter Williams et al. (2011) and against hydrograph separation estimates and literature values within Geological
Survey Ireland’s GW3D project (unpublished).

Finland RCM 1981–2010 1 km Calibrated and validated against a database consisting of estimated values of groundwater formation and area provided by the Finnish
Environment Institution (SYKE). Validation was made against roughly 4,850 groundwater areas from SYKE database. The average size
was 2.5 km2, ranging from 0.018 km2 to 97.3 km2.

France RCM 1981–2010 8 km The resulting potential groundwater recharge values were assessed at the river basin scales for the Rhone-Mediterranean and Corsica
regions for with is was initially developed (Caballero et al., 2016) and compared to local recharge observations where available
(Caballero et al., 2021).
The computed effective precipitation was compared to that simulated by SURFEX (Le Moigne et al., 2020) at the Rhone Mediterranean
river basin scale (Caballero et al., 2016; Le Cointe et al., 2019).

Spain EM 1980–2010 10 km Groundwater recharge estimates validated against 47 local recharge datasets (Alcalá and Custodio, 2014). Meteorological estimates are
validated against 988 stations (Quintana-Seguí et al., 2017).

Netherlands CGSM 2011–2018 250 m Each version of the national model is validated against surface water fluxes at 25 sites in the main surface water system and 45 sites in
regional surface waters as well as measurements of the phreatic water table and groundwater heads at thousands of locations (De Lange
et al., 2014).

Denmark CGSM 1990–2010 500 m The national water resources model (DK-Model) was calibrated and validated against stream flow (305 stations), groundwater head
levels (28,277 wells) and spatial patterns of ETact from remote sensing (Soltani et al., 2021a).
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drainage, generalised soil class, subsoil type, subsoil permeability, bedrock
aquifer, and sand and gravelmaps are combined in aGIS to give a particular
hydrogeological scenario that is then related to a recharge coefficient. A
map of recharge coefficients is combined (in amultiplication)with an effec-
tive rainfall map produced using daily rainfall, potential and actual evapo-
transpiration fromMetÉireann'sMÉRAmodel and Irish Centre for High End
Computing calculations using the Schulte et al. (2005) method. This pro-
duces the groundwater recharge map. For the current study, recharge coef-
ficients have been re-calculated as the ratio of deep groundwater recharge
to effective rainfall.

For Finland, the annual recharge to the shallow groundwater system
calculated over the period 1981–2010 is used. These values are estimated
using a similar methodology as the Irish groundwater recharge map.
Daily rainfall and temperature data obtained from the Finnish meteorolog-
ical institute are used together with hydrogeological data mainly for the su-
perficial deposits from the Finnish Geological Survey (GTK).

For France, the yearly potential groundwater recharge values calculated
over the period 1981–2010 are used. The effective precipitation has been
calculated using three simple water balance models (Dingman, 1994;
Edijatno andMichel, 1989; Thornthwaite, 1948) driven by rainfall, temper-
ature, and potential evapotranspiration from the SAFRAN database (Vidal
et al., 2010) together with information about the maximum soil water con-
tent obtained from the French national soil map (DoneSol INRA, 2014). Ef-
fective precipitation recharge coefficients, are estimated by comparing base
flow index values (Gustard et al., 1992) calculated for a set of French river
basins to values built of the Network Development and Persistence Index
(IDPR) map (Mardhel et al., 2021), averaged over the river basins area.
The IDPR gridded map (50 m × 50 m) provides a qualification of the dis-
parity between the theoretical drainage network produced by automatic
analysis of a digital elevation model (DEM) and the actual presence of
stream and river branches. Thereby, the index expresses the land surface in-
filtration potential spatial variation building on the assumption that, where
there are no rivers (or, in contrast, where there are rivers), infiltration is
dominant (or runoff is dominant). Using the resulting relationship between
baseflow index values and mean IDPR values over the selected river basins,
and considering the baseflow index equal to the effective precipitation infil-
tration ratio at the annual scale, values of the latter are calculated at the
scale of the superficial and homogeneous groundwater bodies, as defined
in the BDLISA_V2 database (Brugeron et al., 2018), from the mean IDPR
value averaged over their surface. Finally, potential groundwater recharge
4

is calculated by multiplying the effective precipitation infiltration ratio by
the effective precipitation.

2.2.2. Empirical methods
For Spain, the annual recharge values calculated across continental

Spain for the period 1980–2010 are used to determine the long-term aver-
age recharge. Recharge values are estimated by applying an empirical rain-
fall recharge model (Pulido-Velazquez et al., 2018a) at a resolution of
10 km. Themodel is defined by forcing such that a perturbation of the effec-
tive precipitation data produces a time series whosemean and standard de-
viation are equal to net recharge estimates derived from a chloride mass
balancemethod (Alcalá and Custodio, 2014). Themodel was driven by pre-
cipitation and maximum and minimum temperature data obtained from
Spain02 dataset (Herrera et al., 2016) with actual evapotranspiration calcu-
lated using Turc's model (Turc, 1954).

2.2.3. Coupled groundwater-surface water models
For the Netherlands, recharge values estimated for the period

2011–2018 obtained from the Dutch National Hydrological Instrument
(NHI-LHM; http://www.nhi.nu) are used. The NHI contains a coupling of
four sub-models at a resolution of 250 m, which together can simulate the
groundwater (Vermeulen et al., 2021), surface water (De Lange et al.,
2014), and the vadose zone (van Walsum and Groenendijk, 2008). The
coupled models are driven by meteorological data including daily rainfall
and potential evapotranspiration data (Royal Dutch Meteorological Insti-
tute, KNMI), and use hydrogeological data including subsurface
schematisation based on geohydrological models of the Geological Survey
of the Netherlands: REGIS II V2.2 (TNO-GSN, 2021a) and GeoTOP (TNO-
GSN, 2021b), surface water information from Waterboards and
Rijkswaterstaat land use maps, soil maps and a database of soil physical
properties (Heinen et al., 2020; Schröder et al., 2021). Moreover, model
input and schematization is continuously improved by the national and re-
gional authorities and stakeholders united in the consortium of the
Netherlands Hydrological Instrument.

For Denmark, recharge estimates are simulated using the National
Water Resources Model (DK-Model) for the period 1990–2010 (Stisen
et al., 2012). The model is based on the MIKE SHE code (Graham et al.,
2005) and incorporates all major components of the hydrological cycle in-
cluding 3D groundwater flow, unsaturated zone and stream routing. The
model is run at 500 m resolution and calibrated against satellite-based

http://www.nhi.nu
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evapotranspiration and a large database of groundwater levels and stream
gauges (Soltani et al., 2021a). For the current study, groundwater recharge
is extracted as the downward flux between first and second geological/
computational layers, and recharge coefficients are calculated as the ratio
between groundwater recharge and effective precipitation. The DK-Model
acts as the national Danish model for groundwater recharge and for
reporting groundwater resources to the EU.

The gridded datasets from the seven countries, from here on referred to
as the national pilots, will be utilised as evaluation and training data for the
development of Pan-European datasets for effective precipitation, recharge
coefficient and potential groundwater recharge.

2.3. Precipitation

Precipitation is the main driver of hydrological processes and reliable
precipitation data are critical for any assessment of groundwater recharge
(Mohan et al., 2018). The current study uses the latest version of the E-
Obs precipitation dataset at 0.1° resolution with Pan-European coverage
(Cornes et al., 2018). The open access E-Obs precipitation dataset is based
on a European initiative to collect and harmonize precipitation records
from national meteorological agencies in an ensemble of interpolations at
a daily timescale. Here, the daily time series are aggregated to long-term av-
erages for the period 1981–2010, and daily ensemble interpolation uncer-
tainty is assumed to be negligible. Although E-Obs is a major step forward
in collecting and harmonizing Pan-European precipitation data, the
density of precipitation stations varies considerably across Europe.
This is illustrated in Fig. 1a, where the stations included in E-Obs for
the period 1981–2010 are mapped. Of the seven countries with avail-
able groundwater recharge estimates in this study, Denmark, UK,
France and Spain have few rain gauges in E-Obs. Consequently, the
long-term average precipitation data used for the National groundwater
recharge estimates were merged into the E-Obs long-term average
dataset by substitution. This will not only improve our precipitation
dataset, but also secure that differences between national groundwater
Fig. 1. Raingauges behind the E-Obs dataset 1981–2010 and E-Obs mean annual precip
France, Spain and Denmark.
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recharge estimates and Pan-European recharge estimates are not caused
simply by differences in precipitation input. The resulting Pan-
European long-term average precipitation map in 0.1°resolution is illus-
trated in Fig. 1b for the period 1981–2010 (an additional long-term
average precipitation map from 2002 to 2014 is also produced for align-
ment with the AET estimates, see below).

2.4. Actual evapotranspiration

Actual evapotranspiration is a hydrological flux that is challenging to
measure and upscale (Franssen et al., 2010). For long-term average actual
evapotranspiration assessment, several methods exist including water bal-
ance approaches, the Budyko approach and satellite-based methods. The
water balance approach and the Budyko approach provide estimates over
longer periods and use long records of streamflow, precipitation and poten-
tial evapotranspiration to assess the actual evapotranspiration in a river
basin or at coarse grid scales. While the water balance approach, which
equates the actual evapotranspiration in a river basin to the difference be-
tween the precipitation in the basin and the river discharge is simple and
entirely observation-based, it is challenged by lack of spatial coverage in
river discharge observations, well-defined groundwater boundaries and
spatial resolution (Soltani et al., 2021b). Stisen et al. (2021a) showed that
applying gridded discharge data in the water balance approach at the
European scale produced unrealistic actual evapotranspiration estimates
that were not consistent with other methods. On the other hand, the same
study showed strong agreement between actual evapotranspiration levels
and spatial patterns across Europe derived by both the Budyko and
satellite-based methods, suggesting a combination of these approaches as
a robust method for Pan-European long-term average actual evapotranspi-
ration mapping (Stisen et al., 2021a). In the current study, such a combina-
tion of Budyko and satellite-based estimates has been performed through a
merging procedure described below. In addition, the Budyko based esti-
mate has been rerun with updated climate input data consistent with the
study.
itation from E-Obs substituted with national gridded data for the British mainland,
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2.4.1. Budyko method
The Budyko approach (Budyko, 1974) describes how the ratio of long-

term average precipitation and climatic water demand (potential evapo-
transpiration (Epot)) drives the partitioning of precipitation into actual
evapotranspiration, and streamflow at catchment scale (Berghuijs et al.,
2014), where actual evapotranspiration is limited by water in dry condi-
tions, and by energy in wet conditions (Zhang et al., 2004). Although the
framework was developed for river basin scales, it has also been applied
to gridded data in numerous studies (e.g. Rouholahnejad Freund et al.,
2020; Teuling et al., 2019). We use the following equation (Yang et al.,
2008) to estimate long-term average actual evapotranspiration within the
Budyko framework at a grid resolution of 0.1°.

Eact,Budyko ¼ ƒ P,Epot
� � ¼ P

P
Epot

� �ω
þ 1

� �1
ω

(2)

where the parameter ω [−] controls the partitioning of P into Eact and run-
off, representing the integrated effects of catchment attributes such as veg-
etation, soil, climate and topography. (Donohue et al., 2007) highlighted
the importance of vegetation cover, leading to the development of remote
sensing-based algorithms to characterize ω, based on the normalised differ-
ence vegetation index (NDVI) (Li et al., 2013). (Li et al., 2013) suggested
the following linear relation between ω and the normalised NDVI, which
has been adopted in this study.

ω ¼ 2:36� NDVInorm þ 1:16 (3)

Potential evapotranspiration data are freely accessible at https://
wci.earth2observe.eu/ in 0.05° resolution based on different equations.
For our implementation of the Budyko equation, for robustness, averages
of the three products using the Penman–Monteith, Priestley–Taylor and
Hargreaves approaches (Sperna Weiland et al., 2015) were calculated.
For the NDVI, the MOD13A2 global 16-day values at a 1 km spatial resolu-
tionwere used to produce an annual vegetation climatology for Europe. Po-
tential evapotranspiration and normalised difference vegetation index data
are processed for the period 2002–2014 and resampled to 0.1° resolution
equivalent to the E-Obs dataset. For potential evapotranspiration, the pe-
riod 1981–2010 is also processed in order to produce Budyko estimates
for both periods 1981–2010 and 2002–2014.

2.4.2. Satellite-based methods
Several actual evapotranspiration products based on vegetation- driven

algorithms are available globally due to their simplicity and timesteps of
typically 8–16 days. On the contrary, land surface temperature-driven algo-
rithms are more complicated due to higher sensitivity to cloud cover, im-
pact of observation time and the resulting instantaneous nature of the
estimates. Therefore, no global satellite based actual evapotranspiration es-
timates are available based on the thermal signal from satellites, even
though the temperature of the surface is the most direct indication of evap-
orative cooling and energy partitioning. In a recent study, (Stisen et al.,
2021a) developed two long-term averages of the actual evapotranspiration
for Europe based on the two-source energy balance algorithm (Norman
et al., 1995) and the Priestley-Taylor Jet Propulsion Laboratory algorithm
(PT-JPLthermal)(Moyano et al., 2018), and compared them to globally avail-
able vegetation driven remote sensing methods from MODIS16 (Mu et al.,
2007) and PML_V2 (Zhang et al., 2019) plus the water balance and Budyko
approaches. The conclusion of their evaluation was that while TSEB, PT-
JPLThermal, MODIS16 and the Budyko approaches generated very similar
spatial patterns across Europe, their implementation of the PT-JPLThermal

was biased. The PML_V2 and water balance approach resulted in distinctly
different spatial patterns, that were not plausible or consistent with hydro-
logical and climatological understanding.

2.4.3. Merged Budyko and satellite-based Eact estimate
Based on this knowledge, the TSEB, MODIS16 and Budyko are all con-

sidered appropriate methods for estimating long-term average actual
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evapotranspiration across Europe. The satellite-based methods produce es-
timates in a resolution of 1 km consistent with the resolution of the driving
remotely sensed data, whereas the Budyko is developed for river basin scale
and here applied at a 0.1°resolution (approx. 10 km). The upper limit of Eact
in the Budyko approach is, in contrast to satellite based estimates,
constrained by the precipitation data, which is advantageous for the
water budget approach to groundwater recharge estimation, since actual
evapotranspiration cannot exceed precipitation and result in a negative ef-
fective precipitation. Given the general similarity and advantages of the
three methods, the current study deployed a simple data fusion approach
in line with the ideas behind more advanced fusion methods (Shang
et al., 2020). First the long-term average actual evapotranspiration from
the two satellite-based methods TSEB and MODIS16 are averaged at 1 km
resolution. In a second step, the coarse 0.1 deg. Budyko estimate is sharp-
ened, by merging it with the satellite-based estimate. This is done very sim-
ply by aggregating the satellite-based estimate to 0.1°, subtracting it from
the Budyko 0.1° estimate, resampling the difference to 1 km and adding
the satellite-based estimate at 1 km resolution.

Eact,Budyko=Satellite ¼ Eact,Budyko − Eact,Satellite
� �

0:1deg

� �
1km

þ Eact,Satelliteð Þ1km (4)

Other, much more sophisticated, approaches have been developed for im-
proved resolution of actual evapotranspiration estimates, by sharpening
the input data to remote sensing-based actual evapotranspiration algo-
rithms individually in a daily timestep based on high resolution satellite
data (Guzinski and Nieto, 2019). However, the approach suggested here
is applied to one long-term average actual evapotranspiration estimate
and will ensure that the overall actual evapotranspiration magnitude at a
0.1°resolution from the Budyko is maintained, while exploiting the spatial
detail of the 1 km resolution satellite-based estimates.

The merged Budyko/Satellite actual evapotranspiration estimate refers
to long-term average for the period 2002–2014, for which the satellite data
are available. Although these patterns are not assumed to vary considerably
over time for long-term averages, an adjustment to the preferred reference
period 1981–2010 is made. This adjustment is based on the ratio between
Eact,Budyko1981–2010/Eact,Budyko2002–2014 which is applied as a gridded
scaling factor to the Eact,Budyko/Satellite. The ratio remains close to one for
all grids indicating no significant shifts in actual evapotranspiration
levels.

For details on the MODIS16 product and the calculation of the thermal
based TSEB dataset, the reader is referred to (Stisen et al., 2021a), and in
addition all data are freely available at the GEUS data repository (Stisen
et al., 2021b).

Effective precipitation (PEff), defined as the difference between long-term
average P and AET, is calculated at a 1 km resolution, where the E-Obs long-
term average P dataset is grid-refined to the scale of the AET. Prior to the cal-
culation of PEff, the Eact,Budyko/Satellite data are adjusted to the period
1981–2010 by the ratio of Eact,Budyko1981–2010/Eact,Budyko2002–2014.

2.5. Groundwater recharge coefficient

No generally-applicable equations exist for independent quantification
of the recharge coefficient, which typically depends on meteorological fac-
tors, such as the precipitation intensity, and land surface characteristics
such as land use, topography, soil, geology, all of which can vary greatly
spatially, especially at the continental scale. The current study uses a
data-drivenmachine learning approach, where the gridded CGWR estimates
from the national pilots are used as training data to develop a Random For-
est (RF) regressor based on a range of covariates to predict CGWR at the 1 km
scale across Europe.

2.5.1. Covariates
The covariates for determining the recharge coefficient have been se-

lected based on expert knowledge with the condition that they have
European coverage in 1 km resolution (or similar). Covariates have been

https://wci.earth2observe.eu/
https://wci.earth2observe.eu/
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selected based on their perceived explanatory power regarding spatial var-
iations in recharge coefficients, meaning that they contain possible infor-
mation on the runoff or recharge generating processes on the surface or
in the shallow soil or geology. The covariates can be grouped into four clas-
ses related to: topography, soil, hydrogeology, and climate. The effective
precipitation has been selected as the only covariate in the climate class,
since it combines precipitation and actual evapotranspiration. It can be
argued that it also includes vegetation information through the satellite-
based actual evapotranspiration estimates. Three topography related
covariates were selected: elevation, slope and IDPR, the Network Develop-
ment and Persistence Index (Mardhel et al., 2021) as described in
Section 2.2.1. The IDPR data is provided by the French Geological Survey
at 50 × 50 m resolution and aggregated to 1 km resolution. Latitude and
longitude has not been included since it was not considered likely to
contain information on recharge processes or be closely correlated to such
processes as compared to elevation derived co-variates.

The soil related covariates are four 1 km resolution soil texture maps:
sand, silt, and clay fractions and the bulk density data representing soil
depths from 5 to 200 cm, aggregated from the SoilsGrid250m dataset
(Batjes et al., 2020; Hengl et al., 2017). Three hydrogeological covariates
have been derived from the International Hydrological Map of Europe
(IHME1500) in 1:1,500,000 (BGR, 2021) available through the EGDI data-
base (http://www.europe-geology.eu/). The IHME1500 dataset consists of
a hydrogeological classification of aquifer productivity (aquifer type), li-
thology, and fractures. These vector-based data are projected to the 1 km
resolution, and some classifications are simplified (six aquifer types and
10 lithology classes). Fig. 2 shows the covariates and the outlines of the na-
tional pilots used for training and validation.

2.5.2. Random forest model
Proposed by (Breiman, 2001), a Random Forest (RF) model builds an

ensemble of weak decision tree models, where each decision tree recur-
sively splits the training data into more homogenous groups. RF has
emerged as one of the most prevalent modelling tools covering a wide
range of geophysical and environmental contexts, where it has been
found especially useful for tasks relating to spatial modelling. These in-
clude, among others, mapping of soil properties (Hengl et al., 2017),
water quality indicators (Erickson et al., 2021) or groundwater depth
(Koch et al., 2021). A trained RF model can be interpreted with the help
of the concept of feature importance with attest an importance to each co-
variate of the model. In this study, we have applied the mean decrease im-
purity (MDI) method, which analyses the contribution of each covariate in
a trained model by quantifying the gain in loss-function through splitting
the data using information from a specific covariate. We applied the
Scikit-learn Python package (Pedregosa et al., 2011) to conduct the RF
modelling for this study.

The training data based on the national gridded datasets constitutes a
total of 1,560,000 datapoints, which is split into training and validation
Fig. 2. Illustration of the range of covariates used for the machine learning predictions
coefficients are outlined with black boundaries.
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datasets. It should be noted that these points are not observations, but na-
tional scale model results. Prior to training, categorical variables need to
be converted to numerical variables, which was done using the concept of
one-hot encoding. Here, each category is assigned an individual binary fea-
ture. Applying this encoding to the six aquifer types and 10 lithology classes
of the IHME1500 dataset, a total of 44 features were obtained. We expect a
high degree of redundancy among the selected features, sincemany of them
are correlated with each other, for example the soil properties for six depth
layers. We wished to select only a subset of features to minimise resources
needed for training and applying the RFmodel. For this, a hierarchical den-
drogram based on the correlation matrix of the 44 features was processed.
Features are clustered based on their cross-correlation, and a threshold was
selected to group features, resulting in 23 features. Only one feature per
cluster was used for the subsequent modelling and, for example, all six
layers of sand content were found redundant and thus only a single layer
was used for the modelling. The same was the case for clay and silt content,
however, bulk density was split into a top (two layers) and bottom (four
layers) feature. Further, in the IHME1500 dataset, two cases of identical
aquifer type and lithology were identified.

3. Results

3.1. Actual evapotranspiration

The Pan-European actual evapotranspiration map derived from the av-
eraged TSEB and MODIS16 estimates for the period 2002–2014 is
displayed in Fig. 3a. It shows a pattern of annual actual evapotranspiration
ranging from around 200 mm/year to 900mm/year. The lowest values are
found in the far north of Scandinavia, where the actual evapotranspiration
is low due to low incoming radiation and temperatures and in central Ibe-
ria, where low precipitation limits the actual evapotranspiration. Highest
actual evapotranspiration values are found along the mountain ranges on
the Atlantic coast of Iberia and in the central parts of France, Slovenia,
Croatia and central Italy, where the combination of high precipitation
and available energy is present. Considering West-East transects, there is
a trend from higher actual evapotranspiration values in the West (Ireland,
the British Isles, and the Atlantic coast) to lower values in Eastern Europe
(except the Carpathians). This tendency largely follows precipitation
gradients.

The corresponding Budyko actual evapotranspiration estimate
(Fig. 3b) is very similar in both magnitude and spatial pattern, as de-
scribed in (Stisen et al., 2021a). As a consequence of the general similar-
ity between the independent satellite-based and Budyko estimates, the
merged actual evapotranspiration map (Fig. 3c) also displays the same
patterns. From Fig. 3, it is can be seen that the overall actual
evapotranspiration levels of the merged estimate follow the coarse
Budyko estimate, while the fine-scale variability is inherited from the
satellite-based estimate at 1 km resolution.
of recharge coefficients. The seven countries providing training data on recharge

http://www.europe-geology.eu/


Fig. 3. Long-term average annual actual evapotranspiration (Eact) from a) satellite remote sensing, b) Budyko estimate and c) Merged remote sensing and Budyko estimate.
White no-data areas in a) and c) represents grids classified as urban or open water.
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3.2. Effective precipitation

The PEff map at 1 km resolution is compared to the corresponding PEff
datasets from the seven national pilots (1,560,000 grid points). National pi-
lots are also available at 1 km resolution, except for Spain (10 km). The
evaluation of the Pan-European effective precipitation, PEff, estimate for
1981–2010 against national pilots reveals a consistent underestimation
(Fig. 4a.) This underestimation is seen across all national pilots and suggests
a systematic difference between the approaches (see supplementary mate-
rial). Because of the systematic bias, a correction factor is applied to the en-
tire Pan-European PEff dataset, corresponding to 1/0.79 = 1.26 (Fig. 4a).
The resulting PEff map for 1981–2010 (Fig. 4b) displays similar spatial pat-
terns as the actual evapotranspiration map, however it is more strongly
Fig. 4. a) Comparison of the effective precipitation from the gridded national pilots and
0.79), where the colours indicate the number of data points per pixel with blue colours fo
line, while the fit to data is given by the equation. b) Long-term average annual effectiv
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influenced by the high precipitation rates along the north Atlantic Coast
and in the Alps.

3.3. Groundwater recharge coefficient

Groundwater recharge coefficients, CGWR, from the seven national pilots
were available either as explicit estimates at a national scale, or as the ratio
of the potential groundwater recharge RGW,Pot and PEff from the national
model. The national gridded CGWR data are mapped in Fig. 5a, which illus-
trates the wide range in estimated values across Europe, from high coeffi-
cients close to 1 in most of Spain, low values in most of Finland and
distinct patterns related to geology and topography in the UK and France.
Ireland has areas of very low effective recharge coefficient values, in part
from the initial pan-European estimate leading to the correction factor of 1.26 (=1/
r a higher density of the total of 1,560,000 data points, the grey dashed line is the 1:1
e precipitation (1981–2010) after application of correction factor.



Fig. 5.Groundwater recharge coefficients. a) for seven national pilots, used for machine learning training and b) machine learning predicted pan-European groundwater re-
charge coefficients. (Contains British Geological Survey material © UKRI 2022. All rights reserved)
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due to a threshold approach where aquifers have low storage and transmis-
sivity, and therefore low recharge acceptance capacity. The Netherlands
and Denmark, which are dominated by sedimentary deposits, tend to
have relatively high recharge coefficients. The national pilots cover the en-
tire range in possible CGWR [0–1] and cover a large spread in aridity, soil
types, geology and topography. This is an important feature since it
strengthens the robustness of the algorithmwhen training the Random For-
est regressor to provide predictions outside the national pilots.

The Random Forest regressor was trained using the set of covariates
listed in Section 2.5. Initially, four different sampling fractions of the train-
ing dataset were applied. In principle all data could be utilised for training,
but this will likely result in a direct replication of the national models. In-
stead, we aimed to use as little training data as possible in order to estimate
a seamless and consistent CGWR at pan-European scale, utilising the knowl-
edge from the national models in an optimal way. The four sample sizes
were 10, 30, 50 and 90%, with 10% and 90% regarded mostly as bench-
marks for model performance. The validation results (based on data not in-
cluded in the training) are given in Table 2. The overall performance when
evaluated within the national pilots is around RMSE of 0.13 and the sam-
pling sizes above 10% have limited impact on the performance statistics.
A sampling size of 30% was selected, since it leaves a large validation
dataset, and visual inspection of predictions showed that some artifacts of
the 10 km grid size in training data over Spain created artifacts in the
1 km prediction when trained with large sample sizes above 30%. Further,
30% of the training data still reached a very comparable performance with
respect to the 90% benchmark, where the national models are expected to
Table 2
Random Forest machine learning validation performance with varying training
sample sizes.

Performance Sampling size of training data

10% 30% 50% 90%

R2 0.74 0.76 0.78 0.79
MAE 0.096 0.088 0.085 0.080
RMSE 0.14 0.13 0.13 0.12
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be replicated. On the other hand, sampling 30% of the training data yielded
a clearly improved performance with respect to the 10% baseline, which
seems to be lacking relevant information on the CGWR variability.

The Random Forest prediction of CGWR at the Pan-European scale is
shown in Fig. 5b. As indicated by the validation performance in Table 2,
the prediction can reproduce the gridded national pilot estimates to a
high degree. For the regions outside the national pilots, no similar evalua-
tion data are available. Visual inspection shows CGWR values in Central
and Eastern Europe tend to be in the medium to high range, while
Norway and Sweden look similar to Finland.

3.3.1. Feature importance
The feature importance analysis allows insights into the trained Ran-

dom Forest model. The most important covariate for the prediction of
groundwater recharge coefficients is the effective precipitation. A clearly
visible link is, for example, low effective precipitation grids that are con-
nected to high recharge coefficients across the Iberian Peninsula and East-
ern Europe. Bulk density is also identified as an important covariate in
the model. Low recharge coefficients are generally co-located with low
bulk density values found in Scandinavia, northern Spain and parts of the
UK. The DEM is the third most important covariate where, for example,
high elevation is often linked to low recharge coefficients. The aquifer
types, lithologies and fractures from the IHME1500 dataset are found to
be the least important covariates (Fig. 6).

3.4. Potential groundwater recharge

The potential groundwater recharge (RGW,pot) is calculated as long-term
average for the period 1981–2010 by multiplying the PEff (Fig. 3b) and the
CGWR maps (Fig. 4b). The resulting map (Fig. 7a) shows an overall pattern
similar to the PEffmap,where themost notable differences are the relatively
lower recharge values in Scandinavia due to the low CGWR values. The RGW,

pot values plotted against the national pilots for all 1,560,000 data points in
Fig. 7b show a generally good agreement. The mean absolute difference
(MAD) is 70.5 mm/y, while the MAD in percent of the mean recharge
from national pilots (MAD%) is 35%. Fig. 7b reveals twomarked anomalies



Fig. 6. Feature importance of covariates used for predicting groundwater recharge
coefficients. AT stands for aquifer types and L for lithologies from the IHME1500
dataset. BD refers to bulk density.
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at national pilot RGW,pot values around 100 and 200 mm/y. These are
caused by a cap on the groundwater recharge amounts to certain aquifer
categories in the Irish national pilot dataset, which are not consistent
with the Pan-European potential groundwater recharge approach. Fig. 7c
shows the equivalent scatterplot, but excluding the Irish domain, which
removes the anomaly and reduces the mean absolute difference to
64.6 mm/y, with a MAD% of 31% and an R of 0.88. The Pan-European
and national pilot RGW,pot estimates are generally well-correlated, also in
the range from 0 to 500 mm/y with the most data points.

4. Discussion

Validation of the Pan-European effective precipitation, an intermediate
step in the estimation of groundwater recharge, shows a systematic overes-
timation compared to similar estimates for the seven national pilots (see
also supplementary material). The bias is not dominated by differences in
precipitation input, since it also occurs for the national pilots, where precip-
itation data are shared between the Pan-Europeanmaps and the national pi-
lots. Instead, the validation indicates that the actual evapotranspiration
from the combination of Budyko and satellite data (Eact,Budyko/Satellite) is
higher than the Eact estimates used for calculating the effective precipita-
tion for the national pilots. The main difference between the methods is
that Eact,Budyko/Satellite is solely based on long-term average data, while the
national pilots utilise daily to monthly data that are subsequently aggre-
gated to long-term average estimates. This could introduce a bias, since
the Eact,Budyko/Satellite estimate does not account explicitly for effects of sea-
sonality. Such seasonality effects are expected to be small in climates where
the actual evapotranspiration is always limited by either water (P) or en-
ergy (EPot), i.e. when P and EPot are seasonally out of phase (Donohue
et al., 2007). They could, however, be important when conditions change
between being water-limited and energy-limited. Seasonality could
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potentially be built into the ω parameter of the Budyko framework, as sug-
gested by Ning et al. (2020).

The systematic bias of the effective precipitation in the current study
could also be attributed to other effects such as non-linear behaviour during
intense rainfall or extreme drought. Because the cause of the bias was un-
clear, a simple bias correction factor was applied across all of Europe.

The presented approach to large-scale high-resolution mapping of long-
term average groundwater recharge utilises a set of national scale gridded
estimates developed by the respective national geological surveys. The ap-
proach builds on the assumption that these national estimates, based on re-
gional knowledge and best available data, are superior to existing global
estimates. Thus, the challenges associated with upscaling point estimates
can be circumvented by learning fromnational mapping experiences cover-
ing a range of climatologically and geologically different regions.

One challenge associated with the proposed approach is the multitude
of methods used in the various national calculations, which will impact
not only the recharge estimates themselves but also what they represent.
Most of the national recharge estimates represent potential groundwater re-
charge, which focus on the shallow hydrology without explicitly consider-
ing the storage capacity and properties of the underlying aquifer.
However, some estimates like the Spanish model, are empirically adjusted
to give estimates of actual groundwater recharge to the deeper aquifers.
The Irish estimate includes a cap on recharge coefficients over poorly pro-
ductive bedrock aquifers, which are limited to a specified upper limit on re-
charge rates. Recharge estimates based on integrated groundwater surface
water models (Netherlands and Denmark) have accuracy due to the calibra-
tion against groundwater level fluctuations and surface water flows implic-
itly containing information on recharge rates. French estimates of recharge
coefficients rely on the baseflow component of streamflow that results
from, but is not limited to, drainage of groundwater (Stoelzle et al.,
2020). These differences would mainly impact the recharge coefficients
that determine the partitioning of the effective precipitation between re-
charge and runoff. However, validation of the machine learning-based re-
charge coefficient estimates for the national pilots showed very good
agreement, except for the Irish locations with low transmissivity and stor-
age bedrock water table aquifers with limited recharge acceptance capac-
ity. This local mismatch in Ireland originates from differences in
definitions and upper limits to the recharge coefficient. Similarly, the re-
charge coefficient estimates in southern Finland shows some deviation
with both over and underestimation compared to the national Finish esti-
mate. Elsewhere, the Random Forest algorithmwas able to predict local co-
efficients, even though the training data might reflect different recharge
definitions. How the recharge estimation method influences predictions
outside the national pilots remains unknown. Some patterns in the pre-
dicted recharge coefficient map (Fig. 5) show similarity to valuables such
as elevation and bulk density that are not necessarily physically intuitive.
However, such correlations might not be true dependencies but correlation
to other controlling variables, e.g. elevation and bulk density could be re-
lated to soil depth and hard rock geology, or compensate for possible biases
in climate or training data.

To evaluate the Pan-European potential groundwater recharge estimate
against other estimates and outside the seven national pilots, groundwater
recharge from the global hydrological model PCR-GLOBWB 2 in 5 arc
minute resolution has been used (Sutanudjaja et al., 2018). In contrast to
most global models, PCR-GLOBWB 2 includes a two-layer groundwater
flow module in combination with a river routing scheme and land surface
and water use modules. PCR-GLOBWB is a water resources model and has
been evaluated extensively against global river runoff databases. The re-
charge from PCR-GLOBWB (Fig. 8) is considered a good benchmark for
comparison to the Pan-European potential groundwater recharge estimate,
with its complete coverage and similar resolution (approx. 5 km). There is
good agreement on the overall spatial pattern across Europe between the
Pan-European recharge map (Fig. 7a) and PCR-GLOBWB (Fig. 8). Most no-
table differences are on regional patterns such as in Italy, Portugal, the
Carpathians, Sweden and Finland. Spatial pattern similarity, expressed
through the bias insensitive spatial pattern metric SPAEF (Koch et al.,



Fig. 7. a) Long-term average Pan-European potential groundwater recharge map (1981–2010). Right, comparison to gridded national pilots, b) including all national pilot
data (with a mean absolute difference (MAD) of 70.5 mm/yr and c) the national pilots excluding Ireland with a mean absolute difference of 64.6 mm/yr. Blue colours (in b
and c) indicate more data points per pixel.
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2018) with an optimal value of 1, give a value of 0.62 for the European
scale comparison of PCR-GLOBWB and the current study. An explanation
of SPAEF and a table of its subcomponents is given the supplementary ma-
terial (Table S1).

For Germany, a national average groundwater recharge map is avail-
able for the period 1961–1990 in 1 km resolution as produced by the Ger-
man Geological Survey (BGR, 2019). The German groundwater recharge
estimate by BGR is based on a multi-stage regression, where the baseflow
index (BFI= baseflow / total runoff) was determined as a regression target
depending on slope, water network density, soil cover,field capacity, depth
of the groundwater below the surface and the share of direct runoff in total
runoff (Neumann, 2005).

Although for a different reference period, the Pan-European poten-
tial groundwater recharge estimate for Germany (Fig. 9a) is very similar
to the German national groundwater recharge map (Fig. 9b), with pat-
terns of lower recharge rates in Eastern Germany, and higher in the
southern alpine region and intermediate values in the North-West re-
sulting in a SPAEF value of 0.72 (Table S1). In comparison, the PCR-
GLOBWB recharge estimate for Germany (Fig. 9c) displays a similar
overall pattern, but with more notable differences, with a zone of high
recharge rates in Eastern Germany and generally higher values in the
North-West resulting in a SPAEF of 0.32 compared to the BGR map
(Fig. 9b) and 0.43 compared to the German subset of the pan-
European map (Fig. 9a).

A comparison of the pan-European recharge map to point scale esti-
mates has not been included in the current study, since it is part of parallel
work within the same project. That work compared both point scale esti-
mates derived across a range of methods and a comparison to the Pan-
European recharge map. Their point scale estimates varied greatly
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depending on estimation method challenging a robust validation of the
Pan-European map (Seidenfaden et al., 2022).

Another challenge for the applied methodology is the lack of training
data from large regions in Europe, where no data are available for evalua-
tion of the effective precipitation and the potential groundwater recharge.
The lack of data representing specific regions is probably most challenging
for the machine learning prediction of recharge coefficients, which in con-
trast to precipitation and evapotranspiration data sets, has no information
in some regions. This could make the training data for the Random Forest
algorithm less representative, although the recharge coefficients from the
seven national pilots do cover the full range of possible values. Lack of rep-
resentativeness is a well-known problem in machine learning methods and
a subject of increased attention, giving rise to new methods assessing the
likely areas of applicability and related uncertainties (Meyer and
Pebesma, 2021). Such an analysis is however outside the scope of the cur-
rent study.

The goal of the Pan-European groundwater recharge mapping has been
to utilise and honour the national pilots, in a method that can provide
harmonised high-resolution estimates across Europe and provide locally
relevant estimates for areas where this information is not available. The ad-
vantage of this approach is that local knowledge and experience from the
seven national pilots can be utilised both for selecting appropriate covari-
ates and for guiding the machine learning. The geographical coverage
and range ofmethods behind the seven pilotswill strengthen the robustness
of the estimate compared to selecting a single national approach and apply-
ing it to the Pan-European scale. In addition, the data generated provide
gridded estimates of each of the components (EAct, PEff and CGWR) to calcu-
late the groundwater recharge as separate datasets so users can substitute
one component if better local or regions data are available.



Fig. 8. PCR-GLOBWB (Utrecht University) groundwater recharge estimate for
1981–2010 for the Pan-European domain.
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Like any large-scale dataset, the dataset should be used with caution at
local scale, and it is encouraged to validate, especially the PEff values, to en-
sure that it is consistent with local information such as precipitation and
river runoff at catchment scale. The dataset aims mainly at regional to con-
tinental analysis and as a robust groundwater recharge estimate for re-
gional to national scale in cases where this data does not already exist.
Fig. 9. a) Subset of Germany from the Pan-European potential groundwater recharge pr
(BGR - 1961–1990) and c) subset of Germany from PCR-GLOBWB groundwater recharg

12
The comparison to the PCR-GLOBWB 2 simulations provided a pan-
European assessment of the RGW,pot results, which validates the general pat-
tern. The difference between the PCR-GLOBWB 2 estimate and the national
pilots is too large to also evaluate regional patterns. For this, an indepen-
dent National estimate for Germany provides a more useful means. This
comparison is very encouraging, since no German data were used for
bias-correction or training and, as such, Germany could be representative
of any other region outside the seven national pilots. It could be argued
that Germany shares hydrogeological features with France, Netherlands
and Denmark, which might improve the performance. In this regard, the
Eastern European region is not as well represented from a hydrogeological
perspective and the Pan-European recharge estimate will likely be associ-
ated with the highest uncertainty in this region, which is also poorly cov-
ered by rain gauges in the E-Obs dataset.

5. Conclusion

A Pan-European groundwater recharge map has been created using a
variety of information sources. The map represents a long-term average re-
charge defined in the context of large-scale application and a soil column
water budget framework. It is equal to the precipitation minus the actual
evapotranspiration and minus the shallow runoff. The precipitation has
been obtained from the E-Obs Pan-European dataset. The actual evapo-
transpiration has been determined using a mixture of satellite data and
Budyko approach. The portion of the precipitation minus actual evapo-
transpiration that recharges the groundwater has been modeled using a re-
charge coefficient. This coefficient has been determined using a Random
Forest regressor trained using data from seven national pilots and eleven
Pan-European covariatemaps. The general pattern of the resulting recharge
map compares well with results from the PCR-GLOBWB 2 global hydrolog-
ical model. The comparison with an independent German recharge map
shows that the regional pattern in Germany is reproduced well. This pro-
vides confidence that the applied method has provided a harmonised
high-resolution Pan-European recharge map.
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