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Summary

This thesis scales methods for Gaussian process-based magnetic field mapping and local-
ization in five distinct ways. Each way therefore answers one of the following questions
related to scalability:

Howcan simultaneousmagnetic fieldmapping and localisation be performed
faster? The first contribution seeks to perform simultaneous localisation and map-
ping faster than state of the art particle filters. The proposed solution is an extended
Kalman filter. While the particle filter processes many different hypothesizes about
what the position and map can be at any time instance, the extended Kalman filter
only makes one estimate based on a linearization assumption. The conclusion is
twofold and is based on theoretical arguments backed up with simulation results as
well as estimates from real-world scenarios. Firstly, the extended Kalman filter is a
faster and equally accurate option compared to state-of-the-art when the linearisa-
tion assumption holds. Secondly, the linearisation assumption holds when the initial
position estimate has an estimation error which is lower than the lengthscale of the
magnetic field, where the lengthscale encodes the minimum distance between any
two locations such that the magnetic field values in those locations are likely to be
considerably different from each other.

Howcan simultaneousmagnetic fieldmapping and localization be performed
by a multi-agent system? Although the algorithms in the previous contribution
can be run by several agents individually, the second contribution seeks to investigate
how sharing information between the agents can improve the position and map
estimates. This question is answered by two algorithms. The first algorithm performs
centralized magnetic field simultaneous localization and mapping with an extended
Kalman filter using the measurements from all agents by simply expanding the
state-space of the model to encompass all agents’ positions and orientations. The
second algorithm is a distributed version of the first algorithm. It applies the filter
across a multi-agent system by employing average consensus on the information
form of the filter. Our experiments show that the centralized algorithm improves
upon the individual estimates from each agent running simultaneous localization
and mapping on its own. The distributed version of the algorithm requires frequent
communication between agents to efficiently approximate the centralized algorithm,
and thus improve upon the individual estimates. In our experimental setup with real
magnetic field measurements from several agents and simulated communication,
we investigate how much communication is required to efficiently approximate the
centralized algorithm. We find that the distributed estimate accurately approximates
the centralized estimate if all agents communicate once with each other at each
timestep, and that the estimate from the distributed algorithm is more accurate than
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the individual estimates when the agents communicate on average once every fifth
timestep.

How can magnetic field maps be represented using less storage? The third
contribution of this thesis answers this question by pointing out latent Hankel-
Toeplitz structures of the maps used in previous contributions that can be used for
lossless compression. We show that a reduced-rank Gaussian process representation
with specific basis functions (including the ones used in the previous contributions)
is equivalent to a sum of components, where each individual component can easily
be compressed, because it has many repeated entries, due to its Hankel-Toeplitz
structure. The result also applies to the representation of the magnetic field map
shared between the agents in the previous contribution, allowing the algorithm to
be implemented using a lower communication bandwidth.

How can magnetic field mapping and localization be extended to larger
areas? State of the art Gaussian process mapping algorithms either require increasing
computational resources as the mapped area grows, or are forced to split the area
into smaller sub-maps with boundary effects and discontinuities degrading the field
approximations near the edges of each sub-map. The fourth contribution of this
thesis is an algorithm which keeps the computational complexity constant as the
area grows larger without splitting the map into discrete sub-maps. The algorithm
achieves this by combining a scalable method for including new measurements from
the literature with a novel scalable method for predicting the map value. The scalable
method for including new measurements from the literature uses finite-support basis
functions near the measurement location to include each new measurement. The
novel method for prediction uses finite-support basis functions near the prediction
location. We demonstrate on real and simulated data that the algorithm reduces
the required time to perform predictions compared to state of the art, and that it
reduces the computational resources required to perform simultaneous magnetic
field mapping and localization using measurements from a foot-mounted IMU in a
large indoor area.

How canmagnetic fieldmaps be scaled to encompass repeated global patterns
in addition to local variations? Where all the other contributions in this thesis for
magnetic field mapping have only estimated local variations in the magnetic field, the
final contribution is concerned with scaling the size of the area with confident and
accuratemagnetic fieldmaps beyond the areawhere there are availablemeasurements
of the field. The question is answered through an algorithm for joint online learning
of repeated global patterns and local variations in the magnetic field. This algorithm
is implemented with a novel pattern-discovery kernel which is inherently equivalent
to a parametric model. The fact that this kernel is inherently parametric means
that it allows for computationally efficient online learning of the repeated global
patterns without further approximation. The ability of the algorithm to create maps
of globally repeated patterns and local variations online is demonstrated on simulated
and real data.
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Samenvatting

Deze scriptie onderzoekt methoden voor Gaussian process mapping en lokalisatie van
magnetische velden op vijf verschillende manieren.

Hoe kan gelijktijdige magnetisch mapping en lokalisatie sneller worden
uitgevoerd? De eerste bijdrage probeert gelijktijdige lokalisatie en mapping sneller
uit te voeren dan de huidige state-of-the-art particle filter; een Extended Kalman
Filter. Terwijl het particle filter veel verschillende hypothesen verwerkt over wat
de positie en kaart op elk moment kunnen zijn, maakt de Extended Kalman Filter
slechts één schatting op basis van een linearisatie. De conclusie is onderbouwd
door middel van theoretische argumenten en experimentele data. Ten eerste is de
Extended Kalman Filter sneller en net zo nauwkeurig vergeleken met de state-of-
the-art, met de aanname dat de linearisatie aanname geldt. Ten tweede geldt de
linearisatie aanname wanneer de initiële positiemeting een schattingsfout heeft die
kleiner is dan de length-scale van het magnetisch veld, waarbij de length-scale de
minimale afstand tussen twee locaties is, zodat de magnetische veldwaarden op die
locaties waarschijnlijk aanzienlijk van elkaar verschillen.

Hoe kan gelijktijdige magnetisch mapping en lokalisatie worden uitgevoerd
door een multi-agent systeem? De vorige bijdrage onderzocht de bijdrage van
algoritmen op individuele agenten. Dit hoofdstuk onderzoekt hoe het delen van
informatie tussen meerdere agenten kan bijdragen, met focus of positie- en kaartme-
tingen. Deze vraag wordt beantwoord door twee algoritmen. Het eerste algoritme
voert gecentraliseerde magnetisch veld gelijktijdige lokalisatie en mapping uit met
een Extended Kalman Filter door alle metingen van alle agenten te gebruiken door
simpelweg de state space van het model uit te breiden om de posities en oriëntaties
van alle agenten mee te nemen. Het tweede algoritme is een gedistribueerde versie
van het eerste algoritme. Het past het filter toe in een multi-agent systeem door
gebruik te maken van gemiddelde consensus over de informatievorm van het filter.
Onze experimenten tonen aan dat het gecentraliseerde algoritme beter presteert dan
de individuele schattingen van elke agent die gelijktijdige lokalisatie en mapping op
zichzelf uitvoert. De gedistribueerde versie van het algoritme vereist frequente com-
municatie tussen agenten om efficiënt het gecentraliseerde algoritme te benaderen.
In onze experimentele opstelling met echte magnetische veldmetingen van meerdere
agenten en gesimuleerde communicatie onderzoeken we hoeveel communicatie
nodig is om efficiënt het gecentraliseerde algoritme te benaderen. We ontdekken dat
de gedistribueerde schatting nauwkeurig het gecentraliseerde algoritme benadert als
alle agenten met elkaar communiceren bij elke tijdstap, en dat de schatting van het
gedistribueerde algoritme nauwkeuriger is dan de individuele schattingen wanneer
de agenten gemiddeld eens in de vijf tijdstappen communiceren.



xvi

Hoe kunnen magnetische veldkaarten met minder opslag worden weerge-
geven? De derde bijdrage van dit proefschrift beantwoordt deze vraag door de
Hankel-Toeplitz structuren van de kaarten die in eerdere bijdragen werden gebruikt,
en die kunnen worden gebruikt voor compressie zonder verlies van informatie. We
tonen aan dat een reduced-rank Gaussian process representatie met specifieke basis
functions equivalent is aan een som van componenten, waarbij elke individuele
component gemakkelijk kan worden gecomprimeerd, omdat het veel herhalingen
heeft vanwege de Hankel-Toeplitz structuur. Het resultaat geldt ook voor de re-
presentatie van de magnetische veldkaart gedeeld tussen de agenten in de vorige
bijdrage, waardoor het algoritme kan worden geïmplementeerd met een lagere com-
municatiedoorvoer.

Hoe kan magnetisch mapping en lokalisatie worden uitgebreid naar grotere
gebieden? State-of-the-art Gaussian process mapping algoritmen vereisen meer
rekenkracht naarmate de kaart groeit, of de algoritmen worden gedwongen om het
gebied op te splitsen in kleinere sub-kaartenmet rand effecten en discontinuïteiten die
de veldbenaderingen in de buurt van de randen van elke sub-kaart negatief aantasten.
De vierde bijdrage van dit proefschrift is een algoritme dat de rekencomplexiteit
constant houdt naarmate het gebied groter wordt zonder de kaart op te splitsen in
afzonderlijke sub-kaarten. Het algoritme bereikt dit door een schaalbare methode uit
de literatuur te combineren voor het opnemen van nieuwe metingen met een nieuwe
schaalbare methode voor het voorspellen van de kaartwaarde. De eerder voorgestelde
methode voor het opnemen van nieuwe metingen maakt gebruik van basis functions
met finite support in de buurt van de meetlocatie om elke nieuwe meting op te nemen.
De nieuwe methode voor voorspelling maakt gebruik van basis functions met finite
support in de buurt van de voorspellingslocatie om elke voorspelling te maken. We
demonstreren op echte en gesimuleerde data dat het algoritme de benodigde tijd voor
het maken van voorspellingen vermindert in vergelijking met de state-of-the-art, en
dat het de benodigde rekenkracht vermindert om gelijktijdige magnetisch mapping
en lokalisatie uit te voeren met behulp van metingen van een voetgemonteerde IMU
in een grote ruimte.

Hoe kunnen magnetische veldkaarten worden opgeschaald om herhaalde
globale patronen naast lokale variaties te omvatten? Waar alle eerder besproken
algoritmen voor magnetisch mapping alleen lokale variaties in het magnetisch veld
hebben geschat, is de laatste bijdrage in dit proefschrift gericht op het opschalen
van de voorspellingen buiten het gebied waar er metingen van het veld zijn. De
vraag wordt beantwoord door een algoritme voor gezamenlijke online learning
van herhaalde globale patronen en lokale variaties in het magnetisch veld. Dit
algoritme is geïmplementeerd met een nieuw pattern-detection kernel die inherent
equivalent is aan een parametermodel. Het feit dat deze kernel inherent patameteric
is, betekent dat het een computationeel efficiënte online learning van de herhaalde
globale patronen zonder verdere benadering mogelijk maakt. Het vermogen van het
algoritme om kaarten van wereldwijd herhaalde patronen en lokale variaties online
te creëren, wordt gedemonstreerd op gesimuleerde en echte data.
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Introduction

Outdoors, the magnetic field can help navigation because it points towards the magnetic
north, with the strength of the earth magnetic field. In environments that have elements
that perturb the magnetic field, the field can point in various directions, and have various
strengths depending on the precise location within that environment. These invisible fields can
therefore be used to improve the localization of vehicles, people and robots in environments
and situations where typical means of navigation such as satellite signals or pre-employed
navigation infrastructure are unavailable. Gaussian process regression enables creation of
maps of the nonlinear magnetic field variations by combining measurements with prior
knowledge about the nature of the field. Existing literature provides solutions for creating
maps of the nonlinear magnetic field variations, and using these maps to improve position
estimates. This thesis works towards scaling magnetic field mapping and localization in five
distinct ways: Making it faster, distributed, require less storage, cover larger areas and enable
extrapolation based on repeated patterns.
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1.1 Why do we need magnetic field mapping and
localization?

Most pedestrians, robots and vehicles (generally refered to in this thesis as agents) obtain
position estimates outdoors through a combination of measurements from on-board sensors
and GNSS (Global Navigation Satellite Systems). In a range of scenarios, GNSS signals are
blocked or disturbed by various elements. Inside buildings, signals are blocked by walls
or ceilings [2]. In ports or densely built areas, signals are either blocked by buildings or
reflected in ways that cause interference with the measurements. Only a few centimeters
underwater, GNSS signals are blocked by the water itself [3].

When the GNSS signals are no longer usable, agents are left only with onboard mea-
surements to perform their localization. Most available sensors that do not rely upon
external infrastructure give estimates either of change of velocity (for example accelerome-
ters), change in orientation (gyroscope) or change of position (for example step-detection
systems for pedestrians or legged robots, doppler velocity logs in underwater vehicles,
wheel encoders, or cameras detecting optical flow). A common problem for any algorithms
using either each of these sensing modes individually or in combination is that there are
no absolute sources of position measurements [4]. All measurements are of the relative
change in position and orientation. This means that to obtain estimates of the absolute
position and orientation, these measurements have to be added up over time. Each of these
measurements are typically perturbed with a small measurement error. Even though each
of these errors individually are small, adding all of them up over time eventually leads to
an error in the absolute position estimate that can increase without an upper bound. This
phenomenon is called drift [5].

Outdoors, agents can use a compass as a simple magnetic field sensor to figure out
which way north is. That is because outdoors, the magnetic field is typically pointing more
or less in the same direction over a given area [6]. In indoor environments surrounded by
structural steel elements in floors or walls, or underwater close to magnetic disturbances
from buried ships, mooring chains, or close to metallic containers or near ports with
metallic elements, the magnetic field is typically heavily perturbed, making it impossible
to use the magnetic field sensor as a compass. In these environments, the magnetic field
changes with position, in a complex nonlinear pattern. Some examples of the way the
magnetic field varies with the position are displayed in Figure 1.1.

If this pattern would be known, it would be possible to correct the orientation estimate
of an agent using the knowledge of the "true" orientation of the magnetic field. What
makes these magnetic field maps truly interesting, however, is the fact that the spatial
variations also make it possible to improve the position estimates of these agents using the
magnetic field sensor [7].

The contributions of this thesis are concerned with creating scalable magnetic field
maps from one or more agents moving through the magnetic field carrying a magnetic
sensor. Some of the contributions also use the magnetic field map to improve the position
estimates of these agents.
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Figure 1.1: Magnetic field variations in various indoor environments.

1.2 Why do we want scalable magnetic field map-
ping and localization?

Current algorithms for magnetic field mapping and localization can generate magnetic
field maps on the fly and use them to improve the position estimates of an agent [8]. The
magnetic field map is created using measurements from a magnetometer carried by the
agent. In addition, physical information about the magnetic field can be included in the
map by using Gaussian process regression [9, 10]. Although Gaussian process regression
typically requires an increasing amount of computational resources given an increasing
amount of measurements, it is possible to perform the estimation online in a domain of
finite size without requiring an ever-increasing amount of computational resources using
basis-function approximations of Gaussian process regression [11].

Even with the use of basis functions, the current algorithms ([8, 12–14]) are limited
by distinct scalability challenges. They have high computational requirements at each
timestep, they currently only use measurements from and for a single agent, they use large
amounts of storage, they can not map larger areas without increasing the computational
complexity or splitting the areas into sub-maps, and they are limited to creating maps
within the areas that have already been explored.

This thesis contains five distinct contributions, where each contribution is a way of
improving the applicability of the currently available technology for magnetic field mapping
and/or localisation using Gaussian processes by improving the scalability. The contributions
respectively perform magnetic field mapping and localisation using less time at each online
iteration, use multiple agents to perform magnetic field mapping and localisation using less
time to collect data, create magnetic field maps using less storage, create maps covering
larger areas using less computational power, and learn repeated patterns in the magnetic
field using fewer measurements of the map in structured environments.

The five contributions of this thesis improve on each of these five aspects of scalability.
Each of the types of scalability enables achieving more with less. The contributions enable
efficient online magnetic field mapping and localisation, using a small amount of computa-
tional resources, in a collaborative manner. In all contributions, the magnetic field map is
created using Gaussian process regression with basis functions. Some of the contributions
apply known Gaussian processes algorithms in novel ways, while other contributions
take a deep-dive into the algorithm and change the way fundamental computations are
performed to improve scalability. The next part of this introductory chapter gives an
introduction to map building using Gaussian process regression with basis functions.
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Figure 1.2: Magnetic field map based on magnetic field measurements. The color corresponds to the intensity of
the magnetic field, while the opacity is proportional to the confidence of the prediction.

1.3 Building magnetic field maps with Gaussian pro-
cess regression

In open air, the magnetic field is curl free, and is therefore the gradient of a potential field
𝑓 ∶ ℝ

3
→ ℝ [15]. This means that magnetic field measurements 𝒚mag in a position 𝒑 are

given by
𝒚mag = ∇p𝑓 (𝒑)+𝒆mag, 𝒆 ∼ (𝟎,𝜎

2

y𝑰)) (1.1)

where 𝒑 ∈ ℝ
3 is the position of the sensor, ∇ is the gradient operator, and 𝒆mag is a measure-

ment noise with covariance 𝜎2

y𝑰 . An example of the norm of such measurements measured
by the model ship in Figure 1.1 is displayed to the left in Figure 1.2. Each colored dot
corresponds to one measurement of the magnetic field. The position of each dot in the
xy-plane of the figure corresponds to the position of the ship observed by an external
motion capture system when the measurement was made. The color of the dot changes
gradually from blue to yellow with increasing measured magnitude of the magnetic field
in that location. The ship was being steered in a repeated pattern, and therefore visited the
same area multiple times. As is visible in Figure 1.2 from the fact that two dots right next
to each other typically have a similar color, the magnetic field amplitude is often similar
to itself in nearby locations. This property of a nonlinear function is often referred to as
smoothness, and can be included as an assumption in Gaussian process regression to create
a map of an area which is larger than the exact locations where we have access to measure-
ments [16]. When there is a large amount of measurements, it improves the computational
efficiency to use basis function approximations to Gaussian process regression [11]. This
also enables online learning of magnetic field map by including values associated with the



Introduction

1

5

basis function model in the state space [10]. If we use the magnetic field measurements to
perform Gaussian process regression (with basis functions) to predict 𝑓 (𝒑), we obtain a
magnetic field map as the one displayed to the right in Figure 1.2.

The magnetic field map displayed in the image is a visualization of the norm of the
gradient of an estimate ̂

𝑓 (𝒑) of the nonlinear potential 𝑓 (𝒑). That means that the color hue
changes proportionally with ‖

̂
𝑓 (𝒑)‖2, and the opacity is proportional with the confidence

of this estimate in each location.
The following subsections in this chapter give an introduction to Gaussian process

regression with basis functions. The advanced reader experienced in statistical estimation
and Gaussian process regression is encouraged to skip forward to the last subsection of
this chapter. Understanding Gaussian process regression with basis functions requires
understanding least squares estimation and use of basis functions to model functions.
Subsection 1.3.1 therefore first introduce least-squares estimation, subsection 1.3.2 then
introduces basis function representations of nonlinear functions, and finally Gaussian
process regression with basis functions are introduced in subsection 1.3.3. This is the
method that has been used to create the magnetic field maps presented in Figure 1.1.

1.3.1 Linear estimation
We consider a normally distributed 𝑀-dimensional vector 𝒘 ∈ ℝ

𝑀 with mean 𝝁 and vari-
ance 𝚲

𝒘 ∼ (𝝁,𝚲). (1.2)

We use the operator Covar(𝒘) to indicate the variance of a vector, which in general is
defined as

𝚲 = Covar(𝒘) = 𝐸[(𝒘−𝐸[𝒘])(𝒘−𝐸[𝒘])
⊤
], (1.3)

where 𝐸 is the expected value operator. Each entry of the covariance matrix 𝚲 corresponds
to the variance between each individual entries in the vector 𝒘, according to

Λ𝑖,𝑗 = Covar(𝑤𝑖,𝑤𝑗 ) = 𝐸[(𝑤𝑖−𝐸[𝑤𝑖])(𝑤𝑗 −𝐸[𝑤𝑗 ])
⊤
], (1.4)

where 𝑤𝑖 is the 𝑖th entry of the vector 𝒘, and Λ𝑖,𝑗 is the entry at the 𝑖th row and the 𝑗th
column of the covariance-matrix 𝚲.

Note that if we consider some arbitrary matrix 𝑮 ∈ ℝ
𝑁×𝑀 , then the linear combinations

of the entries in vector 𝒘 given by the matrix-vector product 𝑮𝒘 is distributed according
to

𝑮𝒘 ∼ (𝑮𝒘,𝑮𝚲𝑮
⊤
), (1.5)

which will be used in a later part of this chapter to consider stochastic linear combinations
of basis functions.

Linear least sqares estimate of a vector
Assume we have an unknown vector 𝒘 ∈ ℝ

𝑀 , and have access to 𝑁 measurements of this
vector according to

𝒚 = 𝑯𝒘+𝒆, 𝒆 ∼ (0,𝜎
2

y𝑰), (1.6)
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where 𝒆 is a measurement noise vector with a variance 𝜎
2

y. Then, if 𝑯⊤
𝑯 is invertible,

𝒘 = (𝑯
𝑇
𝑯)

−1
𝑯

⊤
(𝒚−𝒆), meaning that by applying (1.5) the least squares estimate of 𝒘 is

given by
𝒘 ∼ (�̂�,𝑷), �̂� = (𝑯

𝑇
𝑯)

−1
𝑯

⊤
𝒚, 𝑷 = 𝜎

2

𝑦
(𝑯

⊤
𝑯)

−1
, (1.7)

where (𝑯⊤
𝑯)

−1 is often referred to as the Fischer information, or the information matrix
of the system.

Linear least sqares of a vector with prior information
If we have a vector𝒘 ∈ℝ

𝑀 , and have access both to themeasurements in (1.6) and some prior
estimate of the vector which has a distribution �̂�0 ∼ (𝒘,𝚲), then this prior information
can be used to construct an extended measurement model as

[

�̂�0

𝒚 ]
=
[

𝑰

𝑯]
𝒘+

[

𝒆0

𝒆 ]
,

[

𝒆0

𝒆 ]
∼

([

𝟎

𝟎]
,
[

𝚲 𝟎

𝟎 𝜎
2

𝑦
𝑰])

, (1.8)

and the least squares estimate in this case can therefore be derived to be given by

𝒘 ∼ (�̂�,𝑷), �̂�1 = (𝑯
𝑇
𝑯 +𝜎

2

𝑦
𝚲)

−1
𝑯𝒚, 𝑷 = 𝜎

2

𝑦
(𝑯

⊤
𝑯 +𝜎

2

𝑦
𝚲)

−1
, (1.9)

where the matrix (𝑯⊤
𝑯 +𝜎

2

𝑦
𝚲
−1
)
−1 is referred to as the information matrix, and the vector

𝑯
⊤
𝒚 is referred to as the information vector.

1.3.2 Representing nonlinear functions with basis functions
Various methods for Gaussian process regression use various types of basis functions. Four
examples of possible basis functions are displayed in Figure 1.3. From left to right, the
Gaussian process basis functions are Fourier features [17], Hilbert space basis functions [11],
hat basis functions [18, 19] and squared-exponential basis functions [20, 21]. Nonlinear
functions in one dimension can in general be modeled as a superposition of basis functions
{𝜙𝑖}

𝑚

𝑖=1
.

Fourier Hilbert Hat Gaussian
Figure 1.3: Four different examples of sets of basis functions that can be used to approximate an arbitrary nonlinear
function.
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Figure 1.4: Scaling and summing together basis functions creates nonlinear functions whose shape is defined by
the shape of the basis functions and the scaling factors (weights). Each row shows how scaling and summing
together a different set of basis functions can create a nonlinear function with a shape that is distinct from either
of the basis functions on it’s own. From top to bottom, the considered basis functions are Fourier basis functions,
Hilbert space basis functions, Gaussian basis functions and hat basis functions.

Consider a set of Fourier basis functions {𝜙𝑖}∞𝑖=1, where the first 7 basis functions are
visualized in Figure 1.3. Each 𝜙𝑖 ∶ Ω → ℝ, where Ω ⊂ ℝ

𝑑 . The formulas for the basis
functions (the Fourier features) are given by [17]

{𝜙𝑖}
∞

𝑖=1
= {1,cos(𝑥),sin(𝑥),cos(2𝑥),sin(2𝑥),cos(3𝑥),sin(3𝑥),…} (1.10)

A finite number of basis functions can be used to approximate any nonlinear function
mapping 𝑓 ∶ Ω→ ℝ, where Ω is a section of the real line between [𝑎,𝑏], by considering a
linear combination of the basis functions. The approximation defined as a weighted sum
of the basis functions is therefore in general given as

̃
𝑓 (𝑥) =

𝑚

∑

𝑖=1

𝑤𝑖𝜙𝑖(𝑥) = 𝝓(𝑥)𝒘 (1.11)

where 𝑤𝑖 are the weights associated with each basis function, 𝒘 = [𝑤1,⋯ ,𝑤𝑚]
⊤, and 𝝓 =

[𝜙1(𝑥),⋯ ,𝜙𝑚(𝑥)]. An illustration of the effect of weighting and summing together 7 basis
functions to create a nonlinear function is given in Figure 1.4. If the function 𝑓 is known,
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and the basis functions are orthonormal, the weights given by the projection

𝑤𝑖 = ∫
Ω

𝜙𝑖(𝑥)𝑓 (𝑥)𝑑𝑥 (1.12)

will minimize the cost function

∫
Ω

(𝑓 (𝑥)−
̃
𝑓 (𝑥))

2
𝑑𝑥. (1.13)

As𝑚→∞, the value of this cost function will go to zero. We therefore say that 𝑓 =∑
∞

𝑖=1
𝑤𝑖𝜙𝑖

is a basis-function expansion of 𝑓 . An example of how this property holds for all the four
different basis functions approximating a nonlinear function is displayed in Figure 1.5. For
the orthonormal functions, the weights in Figure 1.5 were computed using a numerical
approximation to functions that are not inherently orthonormal (Hat and Gaussian), the
weights were computed using (1.12). For the non-orthonormal basis functions, the weights
were computed using a numerical approximation to the equation

𝒘 =
(
∫
Ω

𝝓𝝓
⊤

)
𝑑𝑥

∫
𝝓𝑓 𝑑𝑥, (1.14)

which effectively orthogonalises the bases, and projects the nonlinear function onto the
orthogonalised basis, and then maps from the weights required to scale the orthogonalised
basis to the weights required to scale the original, non-orthogonal basis.

A simple way to extend basis functions to model nonlinear functions in a hypercube is
given by the Kronecker-product of these basis functions, according to

𝝓(𝑥) = ⊗
𝐷

𝑑=1
𝝓
(𝑑)
(𝑥

(𝑑)
), (1.15)

where 𝑑 is an index running through each of the 𝐷 dimensions of 𝒙 ∈ ℝ
𝐷. The resulting

basis functions 𝝓(𝑥) for the first 4 basis functions for Fourier, Hilbert space, Gaussian
and hat basis functions is displayed in Figure 1.6. Also in higher dimensions, scaling and
summing together basis functions can approximate nonlinear functions, as displayed in
Figure 1.7

1.3.3 Gaussian processes explained in terms of basis functions
In the previous subsection, we looked at how we can represent a deterministic nonlinear
function with basis functions, using a deterministic set of weights {𝑤𝑖}

𝑚

𝑖=1
. If we instead

consider a set of normally distributed weights with a mean and a covariance given by

𝒘 ∼ (𝝁,𝚲), (1.16)

the nonlinear function that we produce by taking the corresponding weighted average of
the basis functions becomes a normally distributed nonlinear function, with a mean and
covariance given by

̃
𝑓 ∼ (𝝓𝝁,𝝓𝑷𝝓

⊤
). (1.17)

This result arises from the fact that the function evaluation at any set of locations 𝑥1, 𝑥2,…𝑥𝑁

is a linear combination of the normally distributed weights. As we know from (1.5), the
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𝑚=30

Figure 1.5: No matter which of these four basis function types you consider, an increasing amount of basis
functions improves the capability of the function approximation to capture high frequency content in a nonlinear
function. The black line shows the function 𝑓 approximated by all methods. The blue line shows the approximate
function. The gray lines show the basis functions used to construct the approximate function.
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Figure 1.6: Basis functions for modeling functions in a higher dimensional hypercube can be constructed by
studying the Kronecker product of basis functions along a single dimensions.
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Figure 1.7: Scaling and summing together basis functions results in nonlinear functions with shapes that are
distinct from each individual basis function also in higher dimensions. This figure displays from top to bottom the
result of scaling and summing together 2-dimensional Fourier, Hilbert-Space, Gaussian and Hat basis functions.
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Figure 1.8: Scaling and summing together basis functions with normally distributed weights gives a normally
distributed nonlinear function.
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linear combination of a normal distribution is itself a normal distribution. The mean
and variance of this nonlinear function are displayed in Figure 1.8. This concept extends
naturally to functions in a hypercube in higher dimension, by using the Kronecker-basis
functions from (1.15), as illustrated in Figure 1.9.

In general, a nonlinear function with a normal distribution is called a Gaussian process.
Where a vector has a normal distribution we can define by a mean vector and a covariance
matrix, a Gaussian process has a mean defined by a mean function 𝑓𝜇, and a covariance
defined by a covariance function 𝜅(𝑥,𝑥

′
)

𝑓 ∼ (𝑓𝜇, 𝜅(𝑥,𝑥
′
)). (1.18)

Although linear combinations of basis functions are themselves Gaussian processes, it is
common practice in literature [17, 18, 20, 22] to first define a Gaussian process in terms of
the kernel function 𝜅(𝑥,𝑥

′
), and afterwards select basis functions 𝝓(𝑥) and a covariance

matrix 𝚲 such that this kernel matrix is approximately represented by the basis functions
model, i.e. 𝜅(𝑥,𝑥

′
) ≈ 𝝓(𝑥)𝚲𝝓(𝑥

′
)
⊤. The way this approximation is picked varies from

application to application. An example of how this approximation can be implemented
is to directly apply the projection used in (1.12). This results in the prior weights being
defined as

𝚲 = Covar(𝒘) = 𝐸[(𝒘−𝐸[𝒘])(𝒘−𝐸[𝒘])
⊤
], (1.19)

which when inserting the expression for 𝒘 in terms of 𝑓 in (1.12) and using the fact that
Covar(𝑓 ) = 𝜅 gives that

𝚲 =
∫
Ω

∫
Ω
′

𝝓(𝑥)
⊤
𝜅(𝑥,𝑥

′
)𝝓(𝑥

′
)𝑑𝑥𝑑𝑥

′
, (1.20)

which can be numerically approximated for any orthonormal basis functions.
Gaussian process regression assumes to not only have access to the measurements of

the nonlinear function, but also a prior distribution of the nonlinear function

𝑓 ∼ (0, 𝜅(𝑥,𝑥
′
)), (1.21)

which in terms of basis function weights is given by

𝒘 ∼ (0,𝚲), (1.22)

where 𝚲 encodes the prior assumptions about the function weights. If we have access to 𝑁
measurements 𝒚 of the nonlinear function ̃

𝑓 evaluated in 𝑁 locations 𝒙 according to

𝒚 = 𝝓(𝒙)𝒘+𝒆, 𝒆 ∼ (0,𝜎
2

y𝑰), (1.23)

we can use linear least squares estimation including prior information as defined in (1.9) to
obtain the estimates of the basis function weights and covariances

𝒘 ∼ (�̂�,𝑷), �̂� = (𝝓(𝑥)
⊤
𝝓(𝑥)+𝜎

2

y𝚲
−1

)

−1

𝝓(𝑥)
⊤
𝒚, 𝑷 = (𝝓(𝑥)

⊤
𝝓(𝑥)+𝜎

2

𝑦
𝚲
−1

)

−1

.

(1.24)
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Figure 1.9: Scaling and summing together basis functions with normally distributed weights give a normally
distributed nonlinear function. The colored surfaces display the basis functions, where the color has a frequency
on the light spectrum (according to the frequencies of the rainbow, so the frequency increase goes red-orange-
yellow-green-blue-purple) corresponding to the product of the frequencies along each dimension. The opacity of
each basis function corresponds to the variance of each basis function. The black surface indicates the value of
the sum of the basis functions, and the transparency is proportional with the marginal variance of the function.
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Figure 1.10: Gaussian process regression using Fourier basis functions. The black line shows an unknown
nonlinear function we wish to estimate. The red dots show measurements of the functions that we have access to.
The blue line shows an estimated function value using Gaussian process regression with Fourier basis functions.
The light blue area indicates one standard deviation of the predicted function value.

Using these normally distributed weights, we can find the least squares estimate and
marginal variance of the nonlinear function ̃

𝑓 according to

𝐸[
̃
𝑓 ] = 𝝓�̂�, Covar( ̃𝑓 ) = 𝝓𝑷𝝓

⊤
, (1.25)

which is indicated by the black line and the shaded area respectively in the right part
of Figure 1.8. This estimate passes through all the measurements, and is certain close to
the estimates. These equations can in other words be used to perform Gaussian process
regression using basis functions, and it can be done with several types of basis functions.
All of these types of basis functions can also be used to approximate the magnetic field with
one small adaptation: by considering the measurement of the gradient of the nonlinear
field instead of considering measurements of the field itself. Replacing the basis function
approximation ̃

𝑓 defined in (1.11) with the function 𝑓 in (1.1) means that eachmagnetometer
measurement is given by

𝒚mag = ∇p𝝓(𝒑)𝒘+𝒆, 𝒆 ∼ (𝟎,𝜎
2

y𝑰), (1.26)

which can be stacked into a single large measurement model for several measurements.
Using (1.1) instead of (1.23) simply means that 𝑯 in (1.9) becomes a 3𝑁 ×𝑀 matrix equal
to a stack of 𝑁 3×𝑀 matrices ∇p𝝓(𝒑) in (1.9). The resulting inference gives the estimated
magnetic field in Figure 1.2.

1.4 Contributions of this thesis
All contributions discussed in this thesis uses basis function approximations to Gaussian
process regression. The contributions consider the computational complexity of basis
function approximations as a baseline. In other words, all contributions that present an
improvement in computational requirements, discusses an improvement compared to the
computational requirements of Gaussian process regression with basis functions. The
contributions in this thesis each use different types of basis functions of the selection
displayed in Figure 1.3. Some of the contributions utilize particular properties of the
selected basis functions to enable scalability, while other contributions could just as well
have been implemented with other basis functions. The five contributions aim to answer
the following questions:



1

16

How can magnetic field mapping and localisation be done faster? The second
chapter uses Hilbert-space basis functions on a finite domain, and investigates how
a Kalman filter can be used to efficiently learn the weights 𝒘 online at the same time
as learning the position of the agent carrying the sensor. This contribution can be
adapted to other basis functions, and the algorithm is adapted in Chapter 2 to be
used with Gaussian basis functions.

How can magnetic field mapping and localisation be applied to multi-agent
systems? The third chapter also uses Hilbert-space basis functions, and investigates
how the information matrix for the learning of the weights 𝒘 can be distributed
across a multi-agent system using consensus algorithms [23].

How can the storage requirements of reduced-rank Gaussian process maps
be reduced? The fourth chapter reduces the storage requirements for certain classes
of basis functions, including Hilbert-space basis functions and Fourier basis functions.
It does this by reducing the required storage for the Fisher information of these
basis functions, thereby effectively reducing the computational requirements of the
multi-agent algorithm in the previous chapter without additional approximation.

How canmagnetic fieldmapping and localisation be extended to larger areas?
The fifth chapter investigates how the spatial area of the magnetic field map can be
scaled. It uses the Gaussian basis functions, but truncates the functions so they, like
the hat basis functions, cause the information matrix to be inherently sparse.

How canmagnetic fieldmaps be scaled to encompass repeated global patterns
in addition to local variations? The sixth chapter is concerned with scaling the
size of the area with confident and accurate magnetic field maps beyond the area
where there are available measurements of the field. It does this by learning and
extrapolating repeated patterns in the magnetic field, caused by repeated structural
elements in indoor environments. It uses Fourier basis functions, which can utilize
the algorithm in Chapter 3 to decrease storage requirements for the map.
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2
An extended Kalman filter

for magnetic field SLAM
using Gaussian process

regression

We present a computationally efficient algorithm for using variations in the ambient magnetic
field to compensate for position drift in integrated odometry measurements (dead-reckoning
estimates) through simultaneous localization and mapping (SLAM). When the magnetic field
map is represented with a reduced-rank Gaussian process (GP) using Laplace basis functions
defined in a cubical domain, analytic expressions of the gradient of the learned magnetic
field become available. An existing approach for magnetic field SLAM with reduced-rank GP
regression uses a Rao-Blackwellized particle filter (RBPF). For each incoming measurement,
training of the magnetic field map using an RBPF has a computational complexity per time step
of 𝑂(𝑁𝑝𝑁

2

𝑚
), where 𝑁𝑝 is the number of particles, and 𝑁𝑚 is the number of basis functions used

to approximate the Gaussian process. Contrary to the existing particle filter-based approach,
we propose applying an extended Kalman filter based on the gradients of our learned magnetic
field map for simultaneous localization and mapping. Our proposed algorithm only requires
training a single map. It, therefore, has a computational complexity at each time step of 𝑂(𝑁 2

𝑚
).

We demonstrate the workings of the extended Kalman filter for magnetic field SLAM on an
open-source data set from a foot-mounted sensor and magnetic field measurements collected
onboard a model ship in an indoor pool. We observe that the drift compensating abilities of
our algorithm are comparable to what has previously been demonstrated for magnetic field
SLAM with an RBPF.

This chapter is based on  Frida Viset, Rudy Helmons, Manon Kok: An extended Kalman filter for magnetic field
SLAM using Gaussian process regression. Sensors, 2022, (8), 2833.
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2.1 Introduction
Autonomous navigation using only onboard sensors is a desired technology for various
applications. Indoors, underground and underwater, there is no stable access to GNSS
signals, as they are blocked by building elements, earth and water, respectively [24–26].
Also in other environments, the use of GNSS signals for localization can be challenging.
Surface vehicles in harbours can be close to containers, bridges, or other industrial ele-
ments that can cause multi-path effects on the GNSS (Global navigation satellite system)
measurements [27]. Autonomous navigation using only onboard sensors is challenging
because of the drift in the position estimate obtained from sensor measurements that are
independent of pre-deployed infrastructure [28]. Drift occurs when noisy measurements
from, for example, gyroscopes, accelerometers, Doppler velocity logs or wheel encoders
are integrated to estimate position without any absolute position measurements [5]. We
will refer to the position estimates and orientation estimates obtained when integrating
such noisy measurements as odometry. A range of other possible sensor readings may be
available in these scenarios. The scope of our research is limited to the investigation of
autonomous navigation using onboard odometry and magnetic field measurements.

Magnetic field simultaneous localization and mapping (SLAM) has been proposed
to compensate for odometry drift when there is access to magnetic field measurements
in a magnetic field with stationary spatial variations [10]. It has been demonstrated for
indoor localization that magnetic field SLAM can be used to improve position estimates [8].
In environments with ferromagnetic structures, as for example in indoor environments,
the magnetic field has rich spatial variation due to the magnetization of the metal [29].
Navigation using nonlinear variations in the ambient magnetic field has been proposed
for a range of applications, such as indoor localization [7, 8, 12, 13, 24, 30–39], underwater
localization [40–48], and surface and aerial navigation [49, 50]. Although [49] uses an
extended Kalman filter (EKF) for localization in a learned magnetic field, the majority use a
particle filter [12, 13, 24, 30–32, 34–37, 42]. A comparative study has demonstrated that the
particle filter is more accurate for underwater geomagnetic navigation in the case where
the initial position is not known, while the EKF is more computationally efficient [51].

Computationally tractablemagnetic field SLAM in three dimensionswas proposed in [8],
using a Rao-Blackwellized particle filter (RBPF) to simultaneously estimate the position
and orientation of a pedestrian as well as the ambient magnetic field. A set of 𝑁𝑝 particles
are used to represent the position and orientation [8]. The RBPF for magnetic field SLAM
proposed by [8] uses Gaussian process (GP) regression to combine knowledge about the
nature of the magnetic field from Maxwell’s equations with measurements of the magnetic
field to create a magnetic field map. To this end, they build the magnetic field map for each
particle using reduced-rank Gaussian process regression, which represents the magnetic
field map as a linear combination of 𝑁𝑚 Laplace basis functions on hexagonal domains,
and which represents the magnetic field map uncertainty as a matrix with 𝑁

2

𝑚
entries. As

each magnetic field map is represented with the weights of 𝑁𝑚 basis functions and the
corresponding covariance of these weights, all of which require updating at each time step,
the computational cost of updating themagnetic fieldmap is𝑂(𝑁𝑝𝑁

2

𝑚
) [8]. In the casewhere

the particle filter is run on a parallelized architecture, such as FPGAs, the computation time
dependence on the number of particles can be reduced dramatically [52, 53]. The scope of
our research is limited to improving the speed of Magnetic field SLAM on non-parallelized
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architectures. Magnetic field SLAM has also been demonstrated feasible using an RBPF
with Laplace basis functions defined on a single, cubic domain [13].

The contribution of this paper is an approach to magnetic field SLAM that is faster
and requires less storage compared to the approach proposed in [8], inspired by the goal
to run magnetic field SLAM in real-time on cheap carry-on units with low processing
power. A property of using reduced-rank Gaussian process regression for magnetic field
SLAM in a cubic domain is that the magnetic field map is given as a linear combination of
analytically described basis functions [54]. We can therefore use the spatial derivatives
of the closed-form solutions of the Laplacian to find the Jacobian of the magnetic field
map with respect to the position estimate. To reduce computational expenses, we propose
utilising the availability of analytical Jacobians of the reduced-rank Gaussian process
magnetic field maps to perform magnetic field SLAM using an extended Kalman filter. This
only requires building and updating a single copy of the magnetic field map at each time
instance. Figure 2.1 shows the learned magnetic field map and estimated trajectory from our
EKF algorithm for magnetic field SLAM, tested on magnetic field measurements collected
onboard a model ship. The resulting computational cost is 𝑂(𝑁 2

𝑚
) at each time step, instead

of 𝑂(𝑁 2

𝑚
𝑁𝑝). The use of the EKF is possible if the dynamic model and measurement model

are close to linear [4]. In the case of simultaneous localization andmapping, the world frame
coordinate system is defined relative to the initial body frame coordinate system [8]. As
there is no uncertainty in the initial position estimate due to this definition [8], the position
estimate initially has zero covariance. In cases where the growth of the uncertainty of the
pose estimate that comes from odometry drift is limited by frequent enough visitations of
previous areas, magnetic field SLAM remedies drift in the position estimate, which means
that the position estimation error no longer grows without bounds, but stays limited [8].
When the estimated position is close to the actual position, the magnetic field linearized
about the estimated position provides a good local approximation to the magnetic field
itself, as the magnetic field even in environments with strong stationary disturbances can
be assumed to have limited spatial variability [7–9, 12]. A key assumption for several
implementations of estimating the magnetic field with GP regression is that the magnetic
field in locations close to each other have a higher correlation than the magnetic field
in locations that are further away [7–9, 12]. In these implementations, how rapidly the
correlation diminishes with increasing distance is encoded in a hyperparameter in the GP
prior describing the length scale of the spatial variations in the magnetic field [9].

We illustrate with simulations that we can expect the EKF for a localization task to give
accurate estimates when the max norm of the covariance from the predictive distribution
is small relative to the length scale of the magnetic field anomalies. A requirement for
using GP regression to represent the magnetic field map in magnetic field SLAM is the
prior knowledge of hyperparameters describing the expected distribution of the magnetic
field potential [8]. These hyperparameters contain information about the expected length
scale of the magnetic field spatial variations [9]. Without adding any further assumptions
to the magnetic field SLAM formulation presented in [8], we can therefore assume to have
information available about how rapidly we can expect our learned magnetic field to vary
spatially. In SLAM, the uncertainty of the position estimate will grow when the sensor
moves through unexplored areas, as there is no map information available to correct the
estimated pose [8]. When the sensor re-enters an area where it has already built a map of the
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Figure 2.1: Learned magnetic field variations in test pool. The color corresponds to the estimated norm of the
magnetic field map, while the opacity is inversely proportional with the variance of the estimate

local anomalies, our proposed algorithm can be expected to converge when the covariance
of the position estimate is small compared to the length scale of the learned magnetic field
map. We show with magnetic field data collected from a model ship in an indoor pool
(see Figure 2.1) and simulated odometry that our proposed algorithm converges when the
odometry noise is limited, for a trajectory when the time until the first revisitation of a
mapped area is constant. We also show with magnetic field measurements and odometry
obtained from an open-source implementation by [55] that our algorithm can compensate
for drift in position estimates based on accelerometer and gyroscope measurements in a
foot-mounted sensor.

The remainder of this paper is structured as follows. In Section 2.2, we define the
model for our magnetic field SLAM estimation problem. In Section 2.3, we derive an
EKF for magnetic field SLAM. In Section 2.4 we show the convergence properties of our
algorithms in a simulated navigation task, where we can control the ratio of our position
estimate uncertainty over the length scale of the magnetic field variations. In Section 2.5,
we demonstrate the drift-compensating abilities of the EKF-SLAM algorithm on a set of
data we collected with a model ship and on an open-source data-set from a foot-mounted
sensor. Finally, in Section 2.6 we summarise our findings and discuss possible directions
for future work. Our Matlab-implementation producing all results found in this paper can
be found on https://github.com/fridaviset/EKFMagSLAM.

2.2 Modeling
Our simultaneous localization and mapping algorithm estimates the filtering distribution

𝑝(𝑥𝑡 |𝑦
b
1∶𝑡

,Δ𝑝
w
1∶𝑡

,Δ𝑞
b
1∶𝑡

), (2.1)

where we denote the available magnetic field measurements by 𝑦
b
1∶𝑡

, the odometry describ-
ing the change in position and orientation Δ𝑝

w
1∶𝑡

,Δ𝑞
b
1∶𝑡

, and the state we wish to estimate
at each time step 𝑡 as 𝑥𝑡 . For a vector 𝑥𝑡 , the set {𝑥1,⋯ , 𝑥𝑡} is denoted 𝑥1∶𝑡 for brevity. We

https://github.com/fridaviset/EKFMagSLAM
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use the superscript b to denote the sensor’s body-frame, which is aligned with its sensor
axes. The superscript w refers to the world frame, which is defined as the inertial frame
that shares its origin with the body frame at time zero. The gravity field in this position is
aligned with the negative z-axis, and where the initial yaw-angle between the body and
world-frame at 𝑡 = 0 is zero. As we wish to estimate both position, orientation and the
magnetic field map, we model our state as

𝑥𝑡 = [(𝑝
w
𝑡
)
⊤

(𝑞
wb
𝑡

)
⊤

𝑚
⊤
]
⊤
, (2.2)

where 𝑝w
𝑡
denotes the position, 𝑞wb

𝑡
denotes the orientation transformation from the world

frame to the body frame, and𝑚 is a vector that describes our magnetic field map represented
with reduced-rank GP regression.

2.2.1 Measurement model
We consider the case where we have access to measurements of the magnetic field in a
sensor attached to the object we aim to localize. The measurement equation is given by

𝑦
b
𝑡
= 𝑅

bw
𝑡
∇p𝜑(𝑝

w
𝑡
)+ 𝑒

b
m,𝑡

, 𝑒
b
m,𝑡

∼ (0,𝜎
2

m3), (2.3)

where 𝑦b
𝑡
denotes the magnetic field measurement, 𝑒bm,𝑡

denotes the measurement noise
and 𝑅bw

𝑡
denotes the rotation from world to body frame, corresponding to the conjugate of

the quaternion 𝑞
wb
𝑡

, expressed as a rotation matrix. See [4] for definitions of the quaternion
conjugate, and definitions of transformation from a quaternion to a rotation matrix. The
function ∇p𝜑(𝑝

w
𝑡
) is our model of the magnetic field. We model the magnetic field as in [9]

as the gradient of the function 𝜑(𝑝
w
𝑡
) with respect to the position 𝑝

w
𝑡
, where 𝜑 ∶ ℝ

3
→ ℝ is

a scalar potential distributed as a GP with prior

𝜑 ∼ (0, 𝜅SE(⋅, ⋅)+𝜅lin(⋅, ⋅)), (2.4)

and where the kernel is defined by the functions

𝜅SE(𝑝,𝑝
′
) = 𝜎

2

SE exp
(
−

‖𝑝−𝑝
′
‖
2

2

2𝑙
2

SE )
, (2.5a)

𝜅lin(𝑝,𝑝
′
) = 𝜎

2

lin𝑝
⊤
𝑝
′
, (2.5b)

with 𝜎SE, 𝜎lin, 𝑙SE and 𝜎m being hyperparameters. The hyperparameter 𝑙SE refers to the
length scale of the spatial variations in the magnetic field potential that is represented by the
kernel [9]. The parameters 𝜎SE, 𝜎lin and 𝜎m define the presence of the nonlinear components,
linear components and measurement noise in the magnetic field respectively [9]. The linear
component modelled by the kernel component 𝜅lin represents of the constant underlying
earth magnetic field, while the nonlinear disturbances caused by the modelled by the nearby
ferromagnetic structures is modelled by the kernel component 𝜅SE. Modelling the magnetic
field as the gradient of a scalar potential ensures that Maxwell’s equations are satisfied,
under the assumption that no current passes through the domain where we construct our
magnetic field map [9]. We use a reduced-rank approximation to the GP similar to the one
used in [8] for mapping the indoor magnetic field for localization purposes with the same
kernel. Our approach is an application of the GP approximation presented in [11], which
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is based on conditioning the GP prediction on a set of basis functions corresponding to
a subset of the eigenbasis of the negative Laplace operator in a finite domain, subject to
Dirichlet boundary conditions [11]. The reduced-rank approximation models the magnetic
field potential as a sum of basis functions defined as the solutions to the Laplace equations
over a finite domain Ω ⊂ ℝ

3

{

−∇
2

p𝜙𝑖(𝑝) = 𝜆
2

𝑖
𝜙𝑖(𝑝), 𝑝 ∈ Ω,

𝜙𝑖(𝑝) = 0, 𝑝 ∈ 𝛿Ω,
(2.6)

where 𝜙𝑖 is the 𝑖’th eigenfunction, and 𝜆𝑖 is the 𝑖’th eigenvalue [11]. We approximate the
GP with the first 𝑁𝑚 basis functions solving the Laplace equations defined over a cubical
domain Ω= [𝐿𝑙,1,𝐿𝑢,1]× [𝐿𝑙,2,𝐿𝑢,2]× [𝐿𝑙,3,𝐿𝑢,3]. In this case, using the 𝑁𝑚 first eigenfunctions
to represent the potential gives the approximation

𝜑(𝑝) ≈ Φ(𝑝)𝑚, (2.7)

with Φ(𝑝) being the matrix

Φ(𝑝) = [𝑝
⊤

𝜙1(𝑝) … 𝜙𝑁𝑚
(𝑝)] , (2.8)

where 𝜙𝑖 is the 𝑖′𝑡ℎ eigenfunction of the Laplace basis, and𝑚 ∈ℝ
𝑁𝑚+3 is a vector determining

the contribution of each linear components as well as each basis function to the potential.
Each eigenfunction 𝜙𝑖(𝑝) has a closed form expression given by

𝜙𝑖(𝑝) =

3

∏

𝑑=1

√

2

√

𝐿u,𝑑 −𝐿l,𝑑
sin

(

𝜋𝑛𝑖,𝑑(𝑝𝑑 +𝐿l,𝑑)

𝐿u,𝑑 −𝐿l,𝑑 )
, (2.9)

where the set (𝑛𝑖,1, 𝑛𝑖,2, 𝑛𝑖,3) is the set of three natural numbers that is different from the
sets (𝑛𝑗 ,1, 𝑛𝑗 ,2, 𝑛𝑗 ,3) defined for all 𝑗 < 𝑖, that gives the corresponding eigenvalue

𝜆𝑖 =

𝐷

∑

𝑑=1

(

𝜋𝑛𝑖,𝑑

𝐿u,𝑑 −𝐿l,𝑑)

2

, (2.10)

as large as possible. The basis functions in (2.9) and eigenvalues in (2.10) are identical to
those used in [13]. The vector 𝑚 has a prior distribution given by

𝑚 ∼ (0,Λ), (2.11)

where Λ is defined as

Λ = diag
[
𝜎
2

lin3, 𝑆SE(
√

𝜆1), ⋯ , 𝑆SE(
√

𝜆𝑁𝑚
)
]
, (2.12)

with 𝑆SE(⋅) being the spectral density of the squared exponential kernel, as defined in [10].
This corresponds to the magnetic field potential 𝜑(𝑝) ≈ Φ(𝑝)𝑚 having a prior distribution
given by (2.4) as 𝑁𝑚 goes to infinity, and the size of the domain goes to infinity [11].
Inserting this approximation to the magnetic field model gives the measurement model

𝑦
b
𝑡
≈ 𝑅

bw
𝑡
∇pΦ(𝑝

w
𝑡
)𝑚+ 𝑒

b
m,𝑡

𝑒
b
m,𝑡

∼ (0,𝜎
2

m3), (2.13)

with the closed form expressions for ∇pΦ(𝑝w𝑡 ) given in Appendix 2.A. This measurement
model is identical to the measurement model used in [8], with the exception of the basis
functions Φ(𝑝w

𝑡
), which are different as they are defined with respect to different domains.
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2.2.2 Dynamic model
We assume access to noisy odometry measurements Δ𝑝w

𝑡
and Δ𝑞b

𝑡
of the change in position

and orientation at each time step. We model the change in position and orientation
according to the dynamic model

𝑝
w
𝑡+1

= 𝑝
w
𝑡
+Δ𝑝

w
𝑡
+ 𝑒

w
p,𝑡 , 𝑒

w
p,𝑡 ∼ (0,𝜎

2

p3), (2.14a)

𝑞
wb
𝑡+1

= 𝑞
wb
𝑡

⊙Δ𝑞
b
𝑡
⊙ expq(𝑒

b
q,𝑡), 𝑒

b
q,𝑡 ∼ (0,𝜎

2

q3), (2.14b)

where 𝑒wp,𝑡 and 𝑒
b
q,𝑡 denote the position and orientation odometry measurement noise re-

spectively, ⊙ is the quaternion product and expq is the operator that maps an axis-angle
orientation deviation to a quaternion (see [4] for details on quaternion algebra).

2.3 EKF for magnetic field SLAM
We estimate our state with an EKF applied to the dynamic model in (2.14a)-(2.14b) and the
measurement model defined in (2.13), with predictive and filtered estimates denoted �̂�

w
𝑡 |𝑡−1

,
�̂�
𝑡 |𝑡−1

, �̂�wb
𝑡 |𝑡−1

and �̂�w
𝑡 |𝑡
, �̂�

𝑡 |𝑡
, �̂�wb

𝑡 |𝑡
respectively. We initialise the magnetic field state estimate as

�̂�
0|0

= 0𝑁𝑚×1
according to the reduced-rank GP prior in (2.11). We initialise the orientation

estimate according to the initial rotation �̂�
wb
0|0

= 𝑞
wb
0

between the world and body frame as
defined in Section 2.2. We initialise the position estimate as �̂�w

0|0
= 03×1, also according to

our definition of the world frame relative to the initial body frame from Section 2.2.
We represent the deviation between the true and estimated predictive state by an error

state 𝜉𝑡 defined as

𝜉𝑡 = [(𝛿
w
𝑡
)
⊤

(𝜂
w
𝑡
)
⊤

𝜈
⊤

𝑡
]
⊤
, (2.15)

where 𝛿w
𝑡
= 𝑝

w
𝑡
− �̂�

w
𝑡 |𝑡−1

denotes the position estimation error, 𝜈𝑡 = 𝑚− �̂�
𝑡 |𝑡−1

denotes the
magnetic field state estimation error, and where 𝜂w

𝑡
denotes the orientation estimation

error parametrised as an axis-angle deviation according to

𝑞
wb
𝑡

=expq(𝜂
w
𝑡
)⊙�̂�

wb
𝑡 |𝑡−1

. (2.16)

Similarly, we represent the deviation between the true and estimated filtered state by an
error state ̃

𝜉𝑡 defined as

̃
𝜉𝑡 = [(

̃
𝛿
w
𝑡
)
⊤

(�̃�
w
𝑡
)
⊤

�̃�
⊤

𝑡
]
⊤
, (2.17)

where ̃
𝛿
w
𝑡
= 𝑝

w
𝑡
− �̂�

w
𝑡 |𝑡
, �̃�𝑡 =𝑚− �̂�

𝑡 |𝑡
, and where �̃�w

𝑡
denotes the filtered orientation estimation

error according to

𝑞
wb
𝑡

=expq(�̃�
w
𝑡
)⊙�̂�

wb
𝑡 |𝑡

. (2.18)

Since we build our map relative to our initial position and orientation, the covariance of
our initial position and orientation estimates is zero. The covariance of the initial magnetic
field estimate is defined in (2.11) as the magnetic field map prior Λ. Hence, our initial error
state 𝜉0 has a covariance

𝑃
0|0

=
[

06×6 0
6×(𝑁𝑚+3)

0
(𝑁𝑚+3)×6

Λ ]
. (2.19)
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To perform the dynamic update, we propagate our filtered state estimate through the non-
linear dynamic model (2.14a)-(2.14b), giving the predictive updates as described in (2.26a)-
(2.26b). As the magnetic field is assumed stationary, its estimate is unchanged by the
dynamic update defined in (2.26c). We derive the covariance update in the EKF by linearis-
ing about the filtered state estimate from the previous time step, with respect to the error
state ̃

𝜉𝑡 . Inserting (2.15), (2.17) and (2.26a)-(2.26b) into the dynamic model (2.14a)-(2.14b)
gives

�̂�
w
𝑡 |𝑡−1

+𝛿
w
𝑡
= �̂�

w
𝑡−1|𝑡−1

+Δ𝑝
w
𝑡
+
̃
𝛿
w
𝑡−1

+ 𝑒
w
p,𝑡 (2.20a)

exp
𝑞 (
𝜂
w
𝑡 ) = expq (�̃�

w
𝑡−1)⊙�̂�

wb
𝑡 |𝑡−1

⊙ expq(𝑒
b
q,𝑡)⊙ (�̂�

wb
𝑡 |𝑡−1

)
𝐶
, (2.20b)

where (�̂�
wb
𝑡 |𝑡−1

)
𝐶 denotes the conjugate of the quaternion �̂�

wb
𝑡 |𝑡−1

. The linearization of the
dynamic model with respect to the error states gives the following propagation of the error
states

𝛿
w
𝑡
=

̃
𝛿
w
𝑡−1

+ 𝑒
w
p,𝑡 , (2.21a)

𝜂
w
𝑡
≈ �̃�

w
𝑡−1

+ �̂�
wb
𝑡 |𝑡−1

𝑒
b
q,𝑡 , (2.21b)

𝜈𝑡 = �̃�𝑡−1, (2.21c)

where �̂�wb
𝑡 |𝑡−1

denotes the rotation matrix corresponding to the rotation represented by the
quaternion �̂�

wb
𝑡 |𝑡−1

. This linearization is exact for the position, and it is a good approxima-
tion for the orientation error state in the cases where the orientation error is small [4].
Equations (2.21a)-(2.21b) can equivalently be written as

𝜉𝑡 ≈
̃
𝜉𝑡−1+ 𝑒dyn,𝑡 , 𝑒dyn,𝑡 ∼ (0

(𝑁𝑚+9)×1
,𝑄), (2.22)

where

𝑄 =

⎡

⎢

⎢

⎣

𝜎
2

p3 03×3 0
3×(𝑁𝑚+3)

03×3 𝜎
2

q3 0
3×(𝑁𝑚+3)

0
(𝑁𝑚+3)×3

0
(𝑁𝑚+3)×3

0
(𝑁𝑚+3)×(𝑁𝑚+3)

⎤

⎥

⎥

⎦

. (2.23)

As the linearization of the error state propagation is given in (2.22), the covariance 𝑃
𝑡 |𝑡−1

of
the predictive state error 𝜉𝑡 is given by (2.26d).

For themeasurement update, we apply an EKFmeasurement update to themeasurement
model in (2.13). We linearise about the predictive state estimate, with respect to the error
state 𝜉𝑡 . The linearized measurement model is given by

𝑦
𝑏

𝑡
= �̂�

bw
𝑡 |𝑡−1

∇pΦ(�̂�
w
𝑡 |𝑡−1

)�̂�𝑡 +𝐻𝑡𝜉𝑡 + 𝑒
b
m,𝑡

, 𝑒
b
m,𝑡

∼ (03×1,𝜎
2

m3), (2.24)

where

𝐻𝑡 =

⎡

⎢

⎢

⎢

⎢

⎣

(
∇ppΦ(�̂�

w
𝑡 |𝑡−1

)�̂�𝑡
)

⊤

[(
∇pΦ(�̂�

w
𝑡 |𝑡−1

)�̂�𝑡
)
×
]

⊤

(
∇pΦ(�̂�

w
𝑡 |𝑡−1

)
⊤

)

⎤

⎥

⎥

⎥

⎥

⎦

⊤

(2.25)

with [𝑣×] being the scew-symmetric matrix representing the cross product 𝑣×𝑢 between two
vectors 𝑣,𝑢 ∈ℝ3 as a matrix multiplication [𝑣×]𝑢 (explicit expression for [𝑣×] is given in [4]),
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Algorithm 1 EKF for magnetic field SLAM

1: Input:
{

Δ𝑝
w
𝑡
,Δ𝑞

b
𝑡
, 𝑦

b
𝑡

}
𝑁

𝑡=1

2: Output:
{

�̂�
w
𝑡 |𝑡

}
𝑁

𝑡=1

,
{

�̂�
wb
𝑡 |𝑡

}
𝑁

𝑡=1

,
{

�̂�
𝑡 |𝑡

}
𝑁

𝑡=1

3:
4: Initialisation: �̂�w

0|0
= 03×1, �̂�wb0|0

= 𝑞
wb
0

, �̂�
0|0

= 0
(𝑁𝑚+3)×0

, (2.19)
5: for 𝑡 = 1 to 𝑁 do
6: Dynamic update

�̂�
w
𝑡 |𝑡−1

= �̂�
w
𝑡−1|𝑡−1

+Δ𝑝
w
𝑡

(2.26a)

�̂�
wb
𝑡 |𝑡−1

= �̂�
wb
𝑡−1|𝑡−1

⊙Δ𝑞
b
𝑡

(2.26b)
�̂�
𝑡 |𝑡−1

= �̂�
𝑡−1|𝑡−1

(2.26c)
𝑃
𝑡 |𝑡−1

= 𝑃
𝑡−1|𝑡−1

+𝑄 (2.26d)

7: Measurement update

𝑧𝑡 =�̂�
wb
𝑡 |𝑡−1

𝑦
b
𝑡
−∇Φp(�̂�

w
𝑡 |𝑡−1

)�̂�
𝑡 |𝑡−1

(2.27a)
𝑆𝑡 =𝐻𝑡𝑃𝑡 |𝑡−1𝐻

⊤

𝑡
+𝜎

2

m3 (2.27b)
𝐾𝑡 =𝑃𝑡 |𝑡−1𝐻

⊤

𝑡
𝑆
−1

𝑡
(2.27c)

̂
𝜉𝑡 =𝐾𝑡𝑧𝑡 (2.27d)

𝑃
𝑡 |𝑡
=𝑃

𝑡 |𝑡−1
−𝐾𝑡𝑆𝑡𝐾

⊤

𝑡
(2.27e)

8: Relinearization

�̂�
w
𝑡 |𝑡
=�̂�

w
𝑡 |𝑡−1

+
̂
𝛿
w
𝑡

(2.28a)

�̂�
wb
𝑡 |𝑡

=expq(�̂�
w
𝑡
)⊙�̂�

wb
𝑡 |𝑡−1

(2.28b)
�̂�
𝑡 |𝑡
=�̂�

𝑡 |𝑡−1
+ �̂�𝑡 (2.28c)

9: end for

and ∇ppΦ(⋅) being the Jacobian of the basis functions, given in Appendix 2.A. Note that
this Jacobian is a matrix with 3×3× (𝑁𝑚+3) entries, and multiplying it with the (𝑁𝑚+3)-
dimensional state vector 𝑚 therefore gives a 3 × 3 matrix. Applying the Kalman filter
measurement update to this linearized measurement function gives the EKF measurement
update in (2.27a)-(2.27e). This gives an estimate ̂

𝜉𝑡 of the predictive state error 𝜉𝑡 , with a
corresponding covariance. By concatenating the estimated predictive state error to the
predictive state, we obtain the filtered state estimates as defined in (2.28a)-(2.28c). The
covariance of the filtered error state ̃

𝜉𝑡 then becomes the same as the covariance of the
estimated predictive error state ̂

𝜉𝑡 . Recursively applying the dynamic update, measurement
update and re-linearization step results in Algorithm 1.
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2.4 Simulations
We study when Algorithm 1 for localization in a previously learned magnetic field gives a
converging pose estimate in a known nonlinear field depending on the position uncertainty
at time 𝑡. Since we assume the magnetic field map is know, we can replace �̂�

𝑡 |𝑡
with the

known 𝑚 everywhere in our algorithm. As a consequence of this, we can alo skip (2.26c)
and (2.28c), use 𝑃

0|0
= 06×6 and

𝐻𝑡 =

⎡

⎢

⎢

⎣

(
∇ppΦ(�̂�

w
𝑡 |𝑡−1

)𝑚
)

⊤

[(
∇pΦ(�̂�

w
𝑡 |𝑡−1

)𝑚
)
×
]

⊤

⎤

⎥

⎥

⎦

⊤

. (2.29)

We start the simulation at time 𝑡 with a varying predictive position estimation error, and set
the standard deviation of our position uncertainty equal to the distance between the actual
and estimated position at the beginning of the simulation. This artificially introduces a
predictive position estimation error representing the estimation error that can accumulate
over time in magnetic field SLAM. Position errors can, for example, accumulate when the
sensor is moved for a long time through areas with no information about the magnetic
field available from previous measurements [8].

We simulate positions 𝑝𝑡 along a square trajectory moving with constant velocity for
four laps, and simulate the odometry by adding sampled realisations of the white noises
𝑒
w
p,𝑡 and 𝑒

b
q,𝑡 to (2.14a) and (2.14b). We simulate a nonlinear field by drawing a sample

from the reduced-rank GP prior 𝑚sim ∼  (0,Λ), with 𝜎lin = 0, 𝜎SE = 0.1 and 𝑙SE = 0.2.
We used 50 basis functions to represent the magnetic field map. Using a domain that is
3m × 3m × 1m. This number of basis functions ensures that for a GP trained with 2000
sampled measurements the root mean squared error (RMSE) between the approximate
and the full GP predictions in 1000 randomly selected locations is below the measurement
noise. To prevent ill effects from the boundary conditions we ensured that both the training
and test data was at least 0.5 meters away from the border. We then simulate magnetic
field measurements by adding white noise to the gradient of the nonlinear field in the
ground truth position according to (2.13), replacing �̂�𝑡 with 𝑚sim, and using 𝜎m = 0.03. We
use the incoming magnetic field measurements and the odometry to estimate the position
and orientation using an EKF and a particle filter. The EKF is implemented according to
Algorithm 1, but reducing the state-space to only contain the position and orientation, and
inserting 𝑚sim in place of �̂�𝑡 in (2.27a). We implement a particle filter for navigation in a
magnetic field represented by a field learned with GP regression according to Algorithm 1
in [7], with the difference that we use the simulated reduced-rank map instead of a learnt
full GP map, and that we perform the prediction step using our odometry model in (2.14a)-
(2.14b).

In Figure 2.2, we can see two examples of PFs’ and an EKFs’ estimate of the position
filtered distribution, represented with a particle cloud and a mean and an uncertainty
interval, respectively. In Figure 2.2(a), the initial uncertainty of the position estimate is
so large that the particle cloud becomes multi-modal, making it impossible for the EKF to
correctly approximate the true nature of the filtered distribution. The estimated position is,
therefore, far away from the true position. In addition, the uncertainty estimate of the EKF
does not reflect this, as it relies upon a linearization of the nonlinear magnetic field about
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(a) Estimates of the filtered distribution based on predictive estimates
with error 0.40 m.

(b) Estimates of the filtered distribution based on predictive estimates with
error 0.05 m.

Figure 2.2: Comparison of approximations of the filtered position distribution given measurements from a
simulated nonlinear field. The color indicates the norm of the simulated magnetic field. The covariance ellipsoids
indicate the 68% confidence interval of the EKF estimate.
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(a) Estimation accuracies with varying predictive posi-
tion error.

(b) Estimation accuracies with varying length scales 𝑙SE.

Figure 2.3: Simulation, investigating drift-compensating abilities given varying predictive position estimation
errors. Comparison of position estimation error at the end of the trajectory between Algorithm 1 and a particle
filter for localization in a known map with varying predictive position errors at the initialisation of the simulation.
The lines connect the average results after 100 Monte Carlo repetitions with different realisations of the odometry
noise, and the error bars represent one standard deviation.

the predictive estimate. In Figure 2.2(b), the position estimate at time 𝑡 is still wrong, but
close enough that the particle cloud representation of the filtered distribution appears uni-
modal, and the EKF estimate of the filtered distribution is now closer to the estimate from
the particle filter. As we see in Figure 6.8(a) displaying the position estimation error at the
end of the trajectory estimates across the four laps, the position estimates from the EKF are
accurate across the entire trajectory if the predictive position error is lower than 0.3meters.
The particle filter on the other hand, is accurate even beyond these predictive position
accuracies when using 500 particles, while it is only slightly improving the prediction
accuracy over Algorithm 1 when using 100 or 200 particles. The accuracy is better for 200
particles than for 100 particles. For only 100 particles, the average prediction accuracy is
worse than for Algorithm 1 for a predictive position accuracy of 0.2meters, likely due to the
fact that the particle filter is a Monte-Carlo method, meaning that there is never a guarantee
for convergence [40]. In Figure 6.8(b), the average estimation accuracy for varying length
scales of the simulated magnetic field is displayed. As in Figure 6.8(a), the performance
of the particle filter improves with increasing amount of particles. Algorithm 1 is able to
compensate for odometry drift and achieve estimation error on average below 0.2 meters
for length scales between 0.1 and 0.4 meters, using a constant predictive position error of
0.1 meters. For length scales below 0.1 meters, the linearization error becomes too big for
the approximation accuracy of our linearized model to give a good result. For length scales
higher than 0.4 meters, the variations in the magnetic field are not rich enough to provide
valuable information about the position of the sensor. Therefore, as the length scale of the
field increases, even though the field becomes closer to linear and the linearization error
continues to decrease, the estimation accuracy does not improve - because the signal-to-
noise ratio from the magnetic field measurements also decreases. As we for the simulation
results in Figure 6.8(a) use a simulated magnetic field map with spatial variations of 0.3
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meters, this indicates that as long as the covariance of the predictive distribution does not
exceed the length scale of the magnetic field, we can expect Algorithm 1 to have the same
estimation accuracy as particle-based methods.

2.5 Experimental results
2.5.1 Model ship experiments
We performed experiments to test Algorithm 1 on a model ship in a pool. The magnetic field
on the model ship was measured using an Xsens MTi-100 Inertial Measurement Unit (IMU).
We recorded the ground truth position and orientation using a motion capture system
with cameras and optical markers mounted on the model ship, as shown in Figure 2.1.
The motion capture markers and the IMU were rigidly attached to the ship. The IMU
measurements were collected on a computer onboard the ship. The magnetic field was
disturbed by metal railings and building structures near the pool. We steered the model
ship around in long loops in the pool, with a ground truth trajectory that is displayed in red
in Figure 2.4. The magnetic field measurements were collected in the IMU at 200 Hz, and
down-sampled to 5 Hz. The odometry was simulated based on the ground truth position
and orientation, according to the odometry model in (2.14a)-(2.14b), also at a frequency
of 5 Hz (but with some motion capture measurement dropouts due to pool reflections).
We simulate drifting odometry by computing the change in position and orientation at
each time step from the ground truth and adding a simulated white noise with standard
deviation 𝜎p = 0.01, 𝜎q = 0.001. For these experiments, we use real magnetic field data
and simulated odometry to investigate the effects of changing odometry noise on our
algorithm. In addition, we simulate a constant position odometry bias of [0.003 0.003 0]

meters/time step. Our algorithm was not originally designed to compensate for constant
position odometry biases. However, as this often occurs in practice (for example, when
the odometry sensors are not perfectly calibrated), we chose to include it in our simulated
odometry to test our algorithms’ ability to compensate for a drift that consists both of
integrated white noise and a constant disturbance.

In magnetic field SLAM, there is usually no possibility of optimising the hyperparame-
ters for GPs prior to estimating the map, as there is no magnetic field data available. This
motivates us to choose hyperparameters prior to running Algorithm 1 [8]. The hyperpa-
rameters were set to 𝑙SE = 0.8, 𝜎2

SE = 1, 𝜎2

m = 0.01, 𝜎2

lin = 1 and 50 basis functions. The basis
functions were defined with respect to a cubical domain Ω which is as small as possible,
and whose border is at least 1 meters away from the closest ground truth position. We
confirmed empirically that 50 basis functions is sufficient to ensure that the RMSE between
the approximation and the full GP predictions in 1000 randomly selected locations in
the domain is below the measurement noise. We based the predictions on 2000 samples
from the full GP prior, sampled from randomly selected locations in the domain at least
1 meters away from the domain border. For the first set of experiments, we investigate
and compare the position estimation error of Algorithm 1 with the particle filter-based
approach to magnetic field SLAM [8] for odometry noise levels of 𝜎p = 0.01, 𝜎q = 0.001. In
Figure 2.6(a), the norm of the magnetic field measurements in locations where there were
no motion-capture dropouts are displayed. The norm of the measured magnetic field ranges
between 0.46 and 0.83 (the Xsens MTi-100 provides unit-less measurements proportionatal
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(a) Comparing Algorithm 1 and the odometry to the ground truth.

(b) Comparison of the position estimates from the RBPF with 100, 200 and
500 particles respectively to the ground truth.

Figure 2.4: Comparison of the model ship position trajectory estimates for a single realisation of simulated
odometry noise from a birds-eye view.
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Figure 2.5: Comparison of model ship position estimation errors from Algorithm 1, drifting odometry and the PF
with 100, 200 and 500 particles respectively for a single realisation of simulated odometry noise.

to the magnetic field strength). The spatial variations in the measured magnetic field
norm are visible in Figure 2.6(a), and the magnetic field stays close to constant for position
changes of less than 0.1 meters, while it can change as much as from 0.46 to 0.83 when
the position change is more than 1 meter. As the spatial variations in the magnetic field
potential are the sources of the spatial variations in the magnetic field norm [56], we expect
that our assumed length scale of 0.8 meters is close enough to the actual length scale of the
magnetic field variations to allow for Algorithm 1 to compensate for position estimation
drift in the odometry. Figure 2.6(b) shows the norm of the magnetic field map learned
by Algorithm 1, and comparing to the measured magnetic field norms in Figure 2.6(a),
we can see that the norm of the magnetic field estimates and the estimated trajectory are
similar, with the learned magnetic field map prediction being more certain in and near the
areas where there are more magnetic field measurements available. In Figure 2.4(a), the
estimated trajectory from Algorithm 1 is compared with the ground truth trajectory, as
well as the dead reckoning position estimate from the simulated odometry. The position
estimate from Algorithm 1 compensates visibly for the drift in the odometry.

In Figure 2.5 the position estimation error of the odometry and Algorithm 1 can be
seen to increase at the beginning of the trajectory. After around 31 seconds, Algorithm 1
can use the learned magnetic field map in combination with the incoming magnetic field
measurements to compensate for drift in the estimated position and orientation. In Table 2.1,
the position estimation RMSE values for 4 collected data sets of a similar shape as the one
displayed in Figure 2.4(a) is shown after repeated experiments with the same odometry
noise and the same constant drift in the xy-plane, showing that the reduction of RMSE
is comparable also for repeated experiments. The position estimation error of the dead
reckoning can increase potentially unbounded, while the position estimation error of
Algorithm 1 remains bounded when the ship revisits previously mapped areas. However, it
will only remain bounded if the quality of the map is good enough to provide information
to the position estimate. In Table 2.2, the runtime for each of the algorithms is displayed.
The runtime of the PF methods grows proportionally with the number of particles used.
As can be seen in Table 2.1, the PF performs on average worse than the EKF. The trajectory
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(a) Measured magnetic field norm in ground truth positions.

(b) Estimated magnetic field norm and estimated trajectory.

Figure 2.6: Measured and estimated magnetic field and position trajectories for the model ship. The upper plot
marks with circles the locations where magnetic field measurements were successfully collected and matched
with a ground truth position in the model ship, and the colors of the circles correspond to the norm of the
measured magnetic field. The lower plot displays the trajectory estimate from applying Algorithm 1 in black. It
also shows the learned magnetic field map, where the color corresponds to the norm of the estimated magnetic
field ‖∇𝑝Φ(𝑝)�̂�𝑁 |𝑁

‖2, and the opacity is inversely proportional with the trace of the covariance matrix of the
magnetic field map estimate in each location, Tr(∇𝑝Φ(𝑝)𝑃𝑁 |𝑁

(∇𝑝Φ(𝑝))
⊤
).
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of the highest-weight particle from a single run of each of the PFs is shown in Figure 2.4(b).
From our simulation results, given enough particles, the particle filter compensates for drift
at least as well as Algorithm 1. However, in contrast to our simulation results where we
investigate howwell the particle filter performs localization given a previously learned map,
in practice, the particle filter has to rely upon magnetic field maps created conditionally on
each particle. From these results a standard implementation of the PF in [8] with cubic
domain basis functions and resampling at every timestep, with the same hyperparameter
settings as the EKF performs worse on our collected model ship data, even given 500

particles. In general, the performance of the particle filter can depend on the resampling
strategy, the measurement noise and the process noise [57]. Another possible explanation
why the particle filter performsworse for the full SLAM scenario compared to the simulation
case, is the fact that for long trajectories, the resampling step can cause loss of diversity
amount the particles [58].

The linearization of the measurement function in (2.13) is performed around the predic-
tive position estimate. The covariance of the estimate can grow when the sensor is moved
through an area where the map is previously unknown. The growth rate will depend on
the odometry noise. This is demonstrated in Figure 2.7(b), where for 100 Monte Carlo
simulations with different odometry noise realisations, the max norm of the predictive
estimate from Algorithm 1 can be seen to increase with increasing odometry noise for the
same trajectory. In Figure 2.7(a), it can be seen that if we increase the simulated odometry
noise above 𝜎2

𝑝
= 0.002, the position estimation error of Algorithm 1 is no longer able to

compensate for drift in the dead reckoning. A higher odometry noise means more drift is
likely to accumulate to the predictive estimation error before revisiting a previously mapped
area. The inability of Algorithm 1 to compensate for drift caused by odometry noises above
𝜎
2

𝑝
= 0.002, therefore, reflects how the assumptions of the measurement function being

locally linear no longer hold when the covariance of the predictive distribution becomes
large compared to the length scale of the magnetic field disturbances. For the experimental
results, for odometry noises above 𝜎2

𝑝
= 0.002, we observe a predictive covariance max

norm of 0.15 meters in the results in Figure 2.7(b) and an accumulated drift of 0.5 meters,
which is combination is comparable in magnitude to our length scale 𝑙SE of 0.8 meters.
These results are comparable to our simulation results in Section 2.4, where Algorithm 1
for localization only converges when the position error is 0.3 meters using a length scale
of 0.2 meters. In both cases, when the order of the prediction error goes beyond the length
scale of the magnetic field variations, Algorithm 1 is no longer able to compensate for drift
in the position estimate.

2.5.2 Magnetic field SLAMfor pedestrianswith foot-mounted
sensor

Using accelerometer and gyroscope measurements from an IMU mounted on the foot of
a pedestrian, it is possible to estimate the position of the pedestrian with high accuracy
on a short timescale using a zero-velocity-update (ZUPT) aided EKF [59]. The estimate is
obtained by integrating the change in orientation and velocity. In addition, the assumption
that when the foot is in the stationary part of the step, it has zero velocity is used to
reduce the drift of the position and orientation estimates [59]. The position and orientation
estimates are typically accurate at the beginning of a trajectory but can drift over time if
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(a) Model ship position estimation error at the end of the trajectory for
varying amounts of odometry noise.

(b) The max norm of the predictive covariance of the estimate from Algo-
rithm 1 depending on varying odometry noise.

Figure 2.7: Investigation of the effect of varying odometry noise on the model ship position estimate. The lines
connect the average results of the ship position estimation after 100 Monte Carlo repetitions with different
realisations of the simulated odometry for varying amounts of odometry noise.
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Data set 1 Data set 2 Data set 3 Data set 4
Algorithm 1 0.53±0.15 (m) 0.58±0.18 (m) 0.53±0.24 (m) 0.98±0.62 (m)
RBPF with 100 particles 0.85±0.27 (m) 0.92±0.26 (m) 0.95±0.42 (m) 1.53±0.53 (m)
RBPF with 200 particles 0.85±0.22 (m) 0.89±0.27 (m) 0.98±0.47 (m) 1.48±0.46 (m)
RBPF with 500 particles 0.87±0.19 (m) 0.86±0.24 (m) 1.00±0.40 (m) 1.53±0.50 (m)
Odometry 1.98±0.54 (m) 1.52±0.48 (m) 1.76±0.52 (m) 1.65±0.47 (m)

Table 2.1: Trajectory RMSE values in meters for the 4 collected data sets from the model ship. Values are given as
averages ± one standard deviation, after 100 Monte Carlo repetitions with different realisations of the simulated
odometry noise.

Data set 1 Data set 2 Data set 3 Data set 4
Algorithm 1 0.06±0.01 (s) 0.05±0.00 (s) 0.14±0.01 (s) 0.05±0.00 (s)
RBPF with 100 particles 12.85±0.26 (s) 9.24±0.10 (s) 21.55±0.32 (s) 9.91±0.14 (s)
RBPF with 200 particles 25.70±0.49 (s) 18.44±0.166 (s) 42.64±0.27 (s) 19.72±0.20 (s)
RBPF with 500 particles 64.24±0.82 (s) 46.02±0.20 (s) 106.93±0.34 (s) 49.43±1.29 (s)

Table 2.2: Runtime comparison. Measured time to run the estimation algorithm (in seconds) for the 4 collected
data sets from the model ship. Values are given as averages ± one standard deviation, after 100 Monte Carlo
repetitions with different realisations of the simulated odometry noise.

biases and/or white noise affect the measurements [60]. This filter was implemented in an
open-source implementation by [60].

To test the capabilities of Algorithm 1 on measurements from a foot-mounted sensor,
we used magnetic field measurements present in the open-source data set used in [55], to
remedy the drift present in the position estimates obtained form their ZUPT-aided EKF.
The data set from [55] contains multiple measurement series from an IMU collected in
the same hallway, walking the same trajectory. Although the implementation in [55]
only used the accelerometer and gyroscope measurements from the IMU, magnetic field
measurements were also collected, and are included in the published data. We first ran
the open-source implementation from [55] of the ZUPT-aided EKF on the 12 available
measurement sequences that were made by collected while walking in a similar trajectory.
We ran the ZUPT-aided EKF independently on the 12 experiments and obtained 12 sets of
position and orientation estimates. We then concatenated the 12 estimated trajectories by
initialising each trajectory at the position and orientation where the previous trajectory
ended. This gave a drifting odometry estimate of the position of the pedestrian. The drifting
odometry is displayed in Figure 2.8(b). This odometry has an increasing error in position
and orientation over time partly because the ZUPT-aided EKF will have some position and
orientation drift inherently and partly because of the assumption that the foot-mounted
sensor ends in the same orientation at the end of each collected data set as the beginning of
the next data set may not be exactly true. However, we can see that most drift accumulates
in a constant direction, and drift caused by wrong orientation initialisation should cause
twisting of the trajectory. It is, therefore, likely that most of the drift visible in Figure 2.8(b)
is present due to inherent drift in the ZUPT-aided EKF. To use the odometry in Algorithm 1,
we down-sampled the position and orientation estimates to 10Hz and computed the change
in position and orientation between each time step. We then used the changes in position
and orientation as input odometry. As SLAM is performed in real-time, we cannot know
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(a) Learned magnetic field and estimated trajectory with
odometry from foot-mounted sensor from a birds eye view.

(b) Trajectory estimate fromAlgorithm 1 compared
to odometry from a birds eye view.

Figure 2.8: Trajectory and magnetic field map estimate for the foot-mounted sensor data. The estimated trajectory
obtained with Algorithm 1 is compared to odometry from the foot-mounted sensor data obtained via [55]
implementation of the ZUPT-aided EKF using a foot-mounted accelerometer and gyroscope. The color of
the magnetic field map corresponds to the norm of the estimated magnetic field, and the opacity is inversely
proportional with the sum of the marginal variance for each of the three estimated magnetic field components.

the hyperparameters a priori to running the algorithm. The magnetic field measurements
available in the open-source data set from [55] were without reported units but had a
norm that ranged between 0.2429 and 0.8584. We therefore selected the expected nonlinear
variations 𝜎2

SE = 1. We assumed that the contribution from the constant earth magnetic
field had approximately the same order of magnitude and so selected 𝜎

2

lin = 1. We set the
length scale to 𝑙SE = 2 meters, and we set the measurement noise to be 𝜎2

m = 0.01. We used
1850 basis functions to approximate the magnetic field map. We selected a domain which
was the smallest possible cube that was still at least 10 meters away from the first lap of
the odometry. We found empirically that 1850 were a sufficient amount of basis functions
using the same approach as in sections 2.4 and 2.5. The resulting position estimate from
Algorithm 1 compensates for drift in the odometry, as shown in Figure 2.8(a).

2.6 Conclusion and Future Work
Weproposed using an EKF formagnetic field SLAM,which is computationallymore efficient
and requires less memory than previously proposed methods for magnetic field SLAM.
Promisingly, we demonstrated that our proposed algorithm compensates for odometry



An extended Kalman filter for magnetic field SLAM using Gaussian process regression

2

37

drift in a way that is comparable to previously proposed, more computationally expensive
methods. Using an experiment with magnetic field measurements collected onboard a
model ship and using simulated odometry, we ran Monte-Carlo simulations investigating
the capabilities of our algorithm to compensate for odometry drift for varying amounts of
odometry noise, illustrating that when the uncertainty of the estimate is small compared to
the length scale of the magnetic field variations, our proposed algorithm will give a position
estimate that compensates for drift in odometry. We also demonstrated the abilities of our
proposed algorithm to compensate for drift on an open-source data-set collected with a
foot-mounted sensor.

To employ our proposed algorithm in real-life applications such as indoor, surface,
underground or underwater navigation, it would be necessary to incorporate sources of
odometry information that are available in real-life scenarios, such as inertial sensors or
visual odometry from cameras. Another possible direction of future work could be to
implement an iterated EKF or another extended Kalman-filter based estimation method
that can handle larger non-linearities compared to the EKF [61], and investigate if this
improves the convergence of the method. Future research could also look into further
reducing the computational requirements associated with reduced-rank GP regression.

2.A Analytical Jacobians
The gradient of the basis functions ∇pΦ(𝑝) used in (2.13) (the basis functions Φ(𝑝) are
defined in (2.8)) is a 3× (𝑁𝑚+3) matrix. The first three columns are given by an identity
matrix

{∇pΦ(𝑝)}1∶3 = 3×3, (2.30)

and the 𝑗 +3rd column is given by the gradient of the 𝑗 ’th basis function

{∇pΦ(𝑝)}𝑗+3 = ∇p𝜙𝑗 (𝑝) =

⎡

⎢

⎢

⎢

⎢

⎣

𝜋𝑛𝑗 (1)
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𝜋𝑛𝑗 (2)

𝐿𝑢,2−𝐿𝑙,2

𝑠1𝑐2𝑠3

𝜋𝑛𝑗 (3)

𝐿𝑢,3−𝐿𝑙,3

𝑠1𝑠2𝑐3

⎤

⎥

⎥

⎥

⎥

⎦

, (2.31)

with 𝑠𝑑 and 𝑐𝑑 defined for the three spatial dimensions 𝑑 = 1,2,3 as

𝑠𝑑 = sin
(
𝜋𝑛𝑗 (𝑑)

(𝑝𝑑 −𝐿𝑙,𝑑)

(𝐿𝑢,𝑑 −𝐿𝑙,𝑑))

1

√

1

2
(𝐿𝑢,𝑑 −𝐿𝑙,𝑑)

, (2.32a)

𝑐𝑑 = cos
(
𝜋𝑛𝑗 (𝑑)

(𝑝𝑑 −𝐿𝑙,𝑑)

(𝐿𝑢,𝑑 −𝐿𝑙,𝑑))

1

√

1

2
(𝐿𝑢,𝑑 −𝐿𝑙,𝑑)

. (2.32b)

The Jacobians of the basis functions used in (2.25) is a 3×3× (𝑁𝑚+3) matrix. The first 3
entries along the third dimensions are all zero-matrices

{∇ppΦ(𝑝)}1 = {∇ppΦ(𝑝)}2 = {∇ppΦ(𝑝)}3 = 03×3, (2.33)
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and the (𝑗 +3)rd entry along the third dimension is given by

{∇ppΦ(𝑝)}𝑗 = ∇pp𝜙𝑗 (𝑝) =
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3
Distributed multi-agent

magnetic field norm SLAM
with Gaussian processes

Accurately estimating the positions of multi-agent systems in indoor environments is challeng-
ing due to the lack of Global Navigation Satelite System (GNSS) signals. Noisy measurements
of position and orientation can cause the integrated position estimate to drift without bound.
Previous research has proposed using magnetic field simultaneous localization and mapping
(SLAM) to compensate for position drift in a single agent. Here, we propose two novel algo-
rithms that allow multiple agents to apply magnetic field SLAM using their own and other
agents’ measurements.

Our first algorithm is a centralized approach that uses all measurements collected by all
agents in a single extended Kalman filter. This algorithm simultaneously estimates the agents’
position and orientation and the magnetic field norm in a central unit that can communicate
with all agents at all times. In cases where a central unit is not available, and there are
communication drop-outs between agents, our second algorithm is a distributed approach that
can be employed.

We tested both algorithms by estimating the position of magnetometers carried by three people
in an optical motion capture lab with simulated odometry and simulated communication
dropouts between agents. We show that both algorithms are able to compensate for drift in
a case where single-agent SLAM is not. We also discuss the conditions for the estimate from
our distributed algorithm to converge to the estimate from the centralized algorithm, both
theoretically and experimentally.

Our experiments show that, for a communication drop-out rate of 80%, our proposed distributed
algorithm, on average, provides a more accurate position estimate than single-agent SLAM.
Finally, we demonstrate the drift-compensating abilities of our centralized algorithm on a
real-life pedestrian localization problem with multiple agents moving inside a building.

This chapter is based on 3  Frida Viset, Rudy Helmons, Manon Kok: Distributed multi-agent magnetic field
norm SLAM with Gaussian processes. In Proceedings of the 26th International Conference on Information Fusion
(FUSION), 2023, 1-8. Best student paper award.
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3.1 Introduction
A wide range of research is being performed on multi-agent motion control and path
planning algorithms [62]. For most motion control algorithms, it is crucial for each agent
to know its own position [63, 64]. Collaborative pedestrian navigation can be useful
for example for rescue missions or law enforcement applications [65]. Indoors, Global
Navigation Satellite System (GNSS) signal availability is limited and prone to errors [66].
Current indoor navigation systems therefore often rely on integrating measurements
of the change in position and orientation. For autonomous navigation in GNSS-denied
environmentswhere there are no previously deployed beacons or other structure supporting
navigation, measurements of the change in position and orientation are often available from
for example inertial sensors, wheel encoders or visual-inertial odometry [67]. Integrating
measurements of change in position and orientation (odometry) gives accumulated position
estimation errors (drift) that can increase without an upper bound [5].

To compensate for odometry drift, multi-agent simultaneous localization and mapping
(SLAM) algorithms for navigation in GNSS-denied environments based on visual informa-
tion have been widely studied [68]. Visual SLAM can in some applications be infeasible or
prone to error due to privacy concerns, varying light conditions, or lack of distinguishable
features or landmarks [69].

For several single-agent navigation tasks, magnetic field SLAM has been proposed and
demonstrated to compensate for drift in the position estimate [8, 12, 14, 31, 38, 70–72].
The magnetic field indoors is affected by structural metallic elements [24]. In Figure 3.1, an
example of the magnetic field norm variations that can be found indoors is displayed. The
indoor magnetic field typically has significant spatial variations and stays constant over
time [36, 73]. To simultaneously create and use amap of themagnetic field, most approaches
use a nonlinear stochastic interpolation scheme to learn the magnetic field online based on
measurements. A stochastic interpolation scheme that also gives an uncertainty measure
on the predictions in every location of the map is Gaussian process regression. Several of
the previous works into magnetic field SLAM use reduced-rank Gaussian process regression
approximated with Hilbert space basis functions so the computational complexity does not
scale with the number of measurements [8, 12, 14, 74].

The contribution of this paper is twofold. The first contribution is an algorithm that
uses all information measured by multiple agents to perform magnetic field norm SLAM
online with an extended Kalman filter (EKF). This EKF is obtained by augmenting the state-
space of the EKF for magnetic field SLAM in [74] to contain the poses of multiple agents
as opposed to just a single agent. We denote this as the centralized algorithm, as it is an
algorithm that can be executed in a centralized station that receives all measurements made
by all agents. Multi-agent systems do not always have access to a centralized control unit.
Our second contribution is therefore a distributed version of the algorithm, where each
agent uses information shared in communication between the agents to collaboratively
approximate the output of the centralized algorithm. To implement the centralized EKF as
a decentralized EKF, we use an approach closely related to the decentralized Kalman filter
described in [23]. To the best of the author’s knowledge, this is the first proposed algorithm
for distributed multi-agent magnetic field SLAM with Gaussian process regression.
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Figure 3.1: Estimated magnetic field map and trajectories of multiple agents based on measurements from
magnetometers carried by three people. The position of the magnetometer was recorded in an optical motion
capture lab. The color of the map reflects the magnitude of the magnetic field norm, while the opacity of the
overlaid map is inversely proportional to the marginal variance of the estimate.

3.2 Connections to previous work
Previous work has applied average consensus to achieve distributed reduced-rank Gaussian
process regression using measurements from multiple agents [75, 76]. Recursive stochastic
least squares correspond to applying repeated Kalman filter measurement updates [77].
Magnetic field SLAM with an extended Kalman filter uses both a dynamic update and a
measurement update at each timestep to jointly estimate the magnetic field map and the
pose of a single agent [74]. Previous work has also demonstrated that Kalman filters with
both measurement updates and dynamic updates can be implemented for multiple agents
distributively with embedded consensus filters [23]. The distributed implementation in [23]
is implemented by solving two consensus problems at each time step, one in the dynamic
update and one in the measurement update. We also implement the distributed EKF by
solving these two consensus problems at each time step. For both our distributed EKF and
for the distributed Kalman filter in [23], even if each average consensus problem has not
converged, the intermittent result is an approximation of the centralized solution [78].

Unlike previous work into extended Kalman filtering for magnetic field SLAM, we
execute the measurement update on the information form. This allows for the measurement
update to be implemented distributively by executing the average consensus algorithm at
each timestep. Performing themeasurement update formagnetic field SLAMon information
form is closely related to the execution of the measurement updates on information form
for magnetic field mapping proposed by [76]. The main difference between our work and
the estimation algorithm presented in [76] is that we jointly and distributively estimate the
pose of the agents and the map, while [76] only estimates the map. The main difference
between our work and [74] and [13] is that we perform magnetic field SLAM for several
agents instead of just one and that we propose a distributed algorithm for doing so. An
additional difference between our work and the work presented in [74] is that we for
simplicity consider only the magnetic field norm instead of the three-component magnetic
field.
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3.3 Model
We assume that each individual agent has access to noisy odometry measurements, ac-
cording to a model we describe in Section 3.3.1. We also assume that each agent carries a
magnetometer capable of measuring the magnetic field norm. In Section 3.3.2 we give the
measurement model for the magnetometer and the model of the magnetic field norm that
we use to apply Gaussian process regression to learn the magnetic field map.

3.3.1 Dynamic model
We estimate the position of a set of 𝑚 agents indexed as 𝑖 = 1,… ,𝑚. The position and
orientation of each agent at each timestep 𝑡 are denoted by the vector 𝑝𝑖,𝑡 and the unit
quaternion 𝑞𝑖,𝑡 respectively. The quaternion is defined as the orientation from the world
frame to the body frame. The body frame has its origin in the IMU’s center of mass, and
its axes are aligned with the accelerometer sensor axes. The world frame is defined as the
stationary inertial frame that shares its origin with the body frame at time 𝑡 = 0, where
the gravity field is aligned with the negative z-axis, and the initial yaw-angle between the
body and world-frame at 𝑡 = 0 is zero. The position is given in the world frame.

We assume that each agent has access to noisy measurements Δ𝑝𝑖,𝑡 of the change in
their position and Δ𝑞𝑖,𝑡 of the change in their orientation from sensors mounted in the body
frame. The noisy measurements are defined such that

𝑝𝑖,𝑡+1 =𝑝𝑖,𝑡 +𝑅(𝑞𝑖,𝑡)(Δ𝑝𝑖,𝑡 + 𝑒𝑖,p,𝑡), (3.1a)
𝑞𝑖,𝑡+1 = 𝑞𝑖,𝑡 ⊙ expq(Δ𝑞𝑖,𝑡)⊙ expq(𝑒𝑖,q,𝑡), (3.1b)

[𝑒
⊤

𝑖,p,𝑡 , 𝑒
⊤

𝑖,q,𝑡]
⊤
∼  (0,Σ), (3.1c)

where 𝑒𝑖,p,𝑡 is a measurement noise of the change in position, 𝑒𝑖,q,𝑡 is a measurement
noise of the change in orientation, and where Σ is a known noise covariance, ⊙ is the
quaternion product, and expq is the operator that maps an axis-angle orientation deviation
to a quaternion, defined as in the odometry model in [8], and where 𝑅(⋅) is an operator
transforming a unit quaternion to a rotation, defined as in the odometry model in [13].
Note that we assume the odometry covariance is the same for all agents.

3.3.2 Measurement model
We assume that each agent 𝑖 has access to a continuous stream of measurements from the
magnetic field norm in their current position 𝑝𝑖,𝑡 , according to

𝑦𝑖,𝑡 = 𝑓 (𝑝𝑖,𝑡)+ 𝑒𝑖,𝑡 , 𝑒𝑖,𝑡 ∼ (0,𝜎
2

y), (3.2)

where 𝑦𝑖,𝑡 is the measurement from agent 𝑖 at time 𝑡, 𝑓 ∶ ℝ
3
→ ℝ is a function that maps the

position to the magnetic field norm, and 𝑒𝑖,𝑡 is the measurement noise with a covariance 𝜎2

y.
We model the function 𝑓 as a stationary Gaussian process according to

𝑓 ∼ (0, 𝜅SE(⋅, ⋅)), (3.3)

with a squared exponential kernel

𝜅SE(𝑥,𝑥
′
) = 𝜎

2

SE exp
(
−

‖𝑥 −𝑥
′
‖2

2𝑙
2

SE )
, (3.4)
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where 𝜎
2

SE and 𝑙SE are hyperparameters denoting the variance and lengthscale of the
magnetic field norm nonlinearities, respectively [13]. We use the same basis functions
as [74] and [13] to approximate the Gaussian process regression. The basis functions are
defined in Appendix 6.A.1.

3.3.3 Communication graph
We assume that the agents have the possibility to send and receive 𝑁𝑐 messages to all
other agents two times at each timestep 𝑡, once for the dynamic update and once for the
measurement update.

We model the communication graph at time 𝑡 and communication step 𝑡𝑐 as an undi-
rected graph (𝑡, 𝑡𝑐) = ((𝑡, 𝑡𝑐),) where (𝑡, 𝑡𝑐) ⊂ {{𝑖, 𝑗}|𝑖, 𝑗 ∈ } denote the set of active
communication edges at time 𝑡 between the set  = {1,⋯ ,𝑚} of all agents. We assume the
probability for two agents to be able to communicate at any timestep 𝑡 at communication
step 𝑡𝑐 to be 1−𝛼, where 𝛼 is the probability of communication failure. We will refer to 𝛼

as the communication failure rate or the dropout rate in the remainder of this paper. We
denote the communication step at each timestep by the index 𝑡𝑐 , where 𝑡𝑐 = 1,… ,2𝑁𝑐 .

3.4 CentralizedEKFformulti-agentmagnetic field
SLAM

Following the approach of [74], we parameterize our system in terms of an error state 𝜉𝑡
linearised about the prior beliefs of the position of agents 𝑖 = 1,… ,𝑚 denoted �̃�

𝑖,𝑡 |𝑡−1
, the

prior beliefs of the orientation of agent 𝑖 = 1,… ,𝑚 denoted �̃�
𝑖,𝑡 |𝑡−1

and the prior belief of the
map denoted �̃�

𝑖,𝑡 |𝑡−1
. The error state 𝜉𝑡 is defined as

𝜉𝑡 = [𝛿
⊤

1,𝑡
𝜂
⊤

1,𝑡
⋯ 𝛿

⊤

𝑚,𝑡
𝜂
⊤

𝑚,𝑡
𝜈
⊤

𝑡
]
⊤
, (3.5)

where 𝛿𝑖,𝑡 = 𝑝𝑖,𝑡 − �̃�
𝑖,𝑡 |𝑡−1

denotes the position estimation error, 𝜈𝑡,𝑖 = 𝑤− �̃�
𝑖,𝑡 |𝑡−1

denotes
the magnetic field state estimation error, and 𝜂𝑖,𝑡 denotes the orientation estimation error
parameterized as an axis-angle deviation according to

𝑞𝑖,𝑡 =expq(𝜂𝑖,𝑡)⊙�̃�
𝑖,𝑡 |𝑡−1

. (3.6)

For simplicity, we assume that the initial position and orientation of all agents are known.
The initial error state is then distributed as 𝜉0 ∼ (0, 𝑃

0|0
), where 𝑃

0|0
is given by

𝑃
0|0

=

⎡

⎢

⎢

⎢

⎢

⎣

0 ⋯ 0 0

.

.

.

.
.
.

.

.

.

.

.

.

0 ⋯ 0 0

0 ⋯ 0 Λ,

⎤

⎥

⎥

⎥

⎥

⎦

. (3.7)

with Λ defined in (6.29).
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3.4.1 Dynamic update
The posterior linearisation point is propagated to a prior linearisation point by applying
the dynamic model in (3.1a)-(3.1c) through the update

�̃�
𝑖,𝑡+1|𝑡

=�̃�
𝑖,𝑡 |𝑡

⊙ expq(Δ𝑞𝑖,𝑡), 𝑖 = 1,… ,𝑚 (3.8a)
�̃�
𝑖,𝑡+1|𝑡

=�̃�
𝑖,𝑡 |𝑡

+𝑅(�̃�
𝑖,𝑡 |𝑡

)Δ𝑝𝑖,𝑡 , 𝑖 = 1,… ,𝑚 (3.8b)
�̃�
𝑡+1|𝑡

=�̃�
𝑡 |𝑡
. (3.8c)

The centralized dynamic update is defined as

𝑃
𝑡+1|𝑡

= 𝐹𝑡𝑃𝑡 |𝑡𝐹
⊤

𝑡
+𝑄, (3.9)

where 𝑄 is given by

𝑄 =

⎡

⎢

⎢

⎢

⎢

⎣

Σ … 0 0

.

.

.

.
.
.

.

.

.

.

.

.

0 … Σ 0

0 … 0 0

⎤

⎥

⎥

⎥

⎥

⎦

(3.10)

and 𝐹𝑡 is defined as

𝐹𝑡 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐹1,𝑡 … 0 0

.

.

.

.
.
.

.

.

.

.

.

.

0 … 𝐹𝑚,𝑡 0

0 … 0 𝐼

⎤

⎥

⎥

⎥

⎥

⎦

, (3.11)

where the matrix 𝐹𝑗 ,𝑡 is given by

𝐹𝑗 ,𝑡 =
[

𝐼 𝑅(�̃�
𝑗 ,𝑡 |𝑡

)[Δ𝑝𝑗 ,𝑡×]

0 𝐼 ]
, (3.12)

and where [Δ𝑝𝑖,𝑡×] is defined as the skew-symmetric matrix such that [Δ𝑝𝑖,𝑡×]𝑢 = Δ𝑝𝑖,𝑡 ×𝑢

gives the cross-product between Δ𝑝𝑖,𝑡 and a vector 𝑢 ∈ ℝ3.

3.4.2 Measurement update
The measurement update is performed by linearising the measurement model in (3.2) about
the prior linearisation point with respect to the error state 𝜉𝑡 . We let the information vector
𝜄
𝑡 |𝑡−1

and information matrix 
𝑡 |𝑡−1

denote the information form of the state estimate ̂
𝜉
𝑡 |𝑡−1

and the corresponding covariance 𝑃−1

𝑡 |𝑡−1
, according to

𝜄
𝑡 |𝑡−1

=𝑃
−1

𝑡 |𝑡−1

̂
𝜉
𝑡 |𝑡−1

= 0, (3.13)

𝑡 |𝑡−1

=𝑃
−1

𝑡 |𝑡−1
. (3.14)

The Kalman filter measurement update can then be expressed as an update of the informa-
tion matrix and information vector as


𝑡 |𝑡
=

𝑡 |𝑡−1
+

𝑚

∑

𝑖=1

1

𝜎
2

y
𝐻𝑖,𝑡𝐻

⊤

𝑖,𝑡
, (3.15a)

𝜄
𝑡 |𝑡
=𝜄

𝑡 |𝑡−1
+

𝑚

∑

𝑖=1

1

𝜎
2

y
𝐻𝑖,𝑡(𝑦𝑖,𝑡 −Φ(�̃�𝑖,𝑡−1)

⊤
�̃�
𝑡 |𝑡−1

), (3.15b)
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Algorithm 2 Centralized EKF for multi-agent magnetic field SLAM

1: Input:
{

{Δ𝑝𝑖,𝑡 ,Δ𝑞𝑖,𝑡 , 𝑦𝑖,𝑡}
𝑁

𝑡=1

}
𝑚

𝑖=1

2:
3: Output:

{
{

�̃�
𝑖,𝑡 |𝑡

, �̃�
𝑖,𝑡 |𝑡

, �̃�
𝑡 |𝑡

}
𝑁

𝑡=1

}
𝑚

𝑖=1

4: Initialization: �̃�
𝑖,0|0

= 03×1, �̃�𝑖,0|0 = 𝑞0,𝑖, �̃�0|0
= 0𝑀×1, (3.7)

5: for 𝑡 = 1 to 𝑁 do
6: Dynamic update according to (3.8a), (3.8b), (3.8c) and (3.9).
7: Measurement update according to (3.14), (3.15a), (3.15b) and (3.17). Relinearization

according to (3.18a), (3.18b) and (3.18c).
8: end for

with

𝐻𝑖,𝑡 =[01×6(𝑖−1), (∇Φ(�̃�𝑖,𝑡 |𝑡−1)�̃�𝑡 |𝑡−1
)
⊤
,

0
1×(3+6(𝑚−𝑖))

, (Φ(�̃�
𝑖,𝑡 |𝑡−1

))
⊤
]
⊤
.

(3.16)

The posterior error state estimate and covariance are given by

̂
𝜉
𝑡 |𝑡
= −1

𝑡 |𝑡
𝜄
𝑡 |𝑡
, 𝑃

𝑡 |𝑡
= −1

𝑡 |𝑡
. (3.17)

The posterior linearisation point can then be calculated by propagating the estimated error
state to the prior linearisation point according to

�̃�
𝑖,𝑡 |𝑡

=�̃�
𝑖,𝑡 |𝑡−1

+
̂
𝛿
𝑖,𝑡 |𝑡

, 𝑖 = 1,… ,𝑚, (3.18a)
�̃�
𝑖,𝑡 |𝑡

=expq(�̂�𝑖,𝑡 |𝑡)⊙�̃�
𝑖,𝑡 |𝑡−1

, 𝑖 = 1,… ,𝑚, (3.18b)
�̃�
𝑡 |𝑡
=�̃�

𝑡 |𝑡−1
+ �̂�

𝑡 |𝑡
. (3.18c)

Recursively applying the dynamic update andmeasurement update results in the centralized
EKF for multi-agent magnetic field SLAM, as described in Algorithm 1.

3.5 Distributed multi-agent EKF for magnetic field
SLAM

We denote agent 𝑖’s approximation of a centralized term by including a superscript (𝑖) on
the approximated term. The initial posterior linearisation points are known and given as
�̃�
(𝑖)

𝑖,0|0
= 𝑝𝑖,0, �̃�(𝑖)

𝑖,0|0
= 𝑞𝑖,0 and �̃�

(𝑖)

0|0
= 0. As in the centralized filter, we assume that the initial

error centralized error state ̂
𝜉
(𝑖)

𝑡 |𝑡
= 0 and the initial centralized covariance 𝑃 (𝑖)

0|0
= 𝑃

0|0
are

both known.

3.5.1 Dynamic update
In the case where each agent only has access to their own measurements, the posterior
linearisation point of each agent can be propagated to a prior linearisation point through the
dynamic model in the same way as for the centralized EKF, using (3.9). The matrix 𝐹𝑡 cannot
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be computed directly by any agent as each term 𝐹𝑗 ,𝑡 contains the odometry measurement
Δ𝑝𝑗 ,𝑡 which is only available to agent 𝑗 . The matrix 𝐹𝑡 can however be approximated by
the network as a whole through average consensus, if each agent initializes their belief
about the matrix 𝐹 (𝑖)

𝑡
according to

𝐹
(𝑖)

𝑡
=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐹
(𝑖)

1,𝑡
… 0 0

.

.

.

.
.
.

.

.

.

.

.

.

0 … 𝐹
(𝑖)

𝑚,𝑡
0

0 … 0 𝐼

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (3.19)

where the term 𝐹
(𝑖)

𝑗 ,𝑡
is defined according to

𝐹
(𝑖)

𝑗 ,𝑡
=

{

𝑚𝐹𝑗 ,𝑡 −(𝑚−1)𝐼 , 𝑗 = 𝑖

𝐼 , 𝑗 ≠ 𝑖
(3.20)

The average of all the terms {𝐹 (𝑖)
𝑡
}
𝑚

𝑖=1
is 𝐹𝑡 , so applying average consensus according to

𝐹
(𝑖)

𝑡
←

𝑚

∑

𝑗=1

𝑊𝑖,𝑗 (𝑡, 𝑡𝑐)𝐹
(𝑗)

𝑡
, (3.21)

where the weights 𝑊𝑖,𝑗 (𝑡, 𝑡𝑐) are defined as in [78] as

𝑊𝑖,𝑗 (𝑡, 𝑡𝑐) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

1

𝑚
, 𝑖, 𝑗 ∈ (𝑡, 𝑡𝑐)

1−
𝑑𝑖(𝑡,𝑡𝑐)

𝑚
, 𝑖 = 𝑗

0, otherwise
, (3.22)

and where 𝑑𝑖(𝑡, 𝑡𝑐) are the number of edges to node 𝑖 in the communication graph (𝑡, 𝑡𝑐) at
timestep 𝑡, for 𝑡𝑐 = 1,… ,𝑁𝑐 causes 𝐹 (𝑖)𝑡

to converge to 𝐹𝑡 as 𝑁𝑐 →∞ [78]. As we only apply a
finite amount of average consensus steps 𝑁𝑐 , we use 𝐹 (𝑖)𝑡

at time 𝑁𝑐 as an approximation in
the dynamic update of the covariance.

3.5.2 Measurement update
The measurement update can be carried out in a distributed manner by first letting each
agent update its belief about the information vector according to

(𝑖)

𝑡 |𝑡
=(𝑖)

𝑡 |𝑡−1
+𝑚

1

𝜎
2

y
𝐻𝑖,𝑡𝐻

⊤

𝑖,𝑡
, (3.23a)

𝜄
(𝑖)

𝑡 |𝑡
=𝜄

(𝑖)

𝑡 |𝑡−1
+𝑚

1

𝜎
2

y
𝐻𝑖,𝑡(𝑦𝑖,𝑡 −Φ(�̃�

(𝑖)

𝑖,𝑡−1
)
⊤
�̃�
(𝑖)

𝑡 |𝑡−1
), (3.23b)

and then carry out average consensus across the network on the resulting information
matrix and information vector, according to

𝜄
(𝑖)

𝑡 |𝑡
←

𝑚

∑

𝑗=1

𝑊𝑖,𝑗 (𝑡, 𝑡𝑐)𝜄
(𝑗)

𝑡 |𝑡
(3.24a)

(𝑖)

𝑡 |𝑡
←

𝑚

∑

𝑗=1

𝑊𝑖,𝑗 (𝑡, 𝑡𝑐)(𝑗)

𝑡 |𝑡
(3.24b)
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Algorithm 3 Distributed EKF for multi-agent magnetic field SLAM for agent 𝑖
1: Input: {{Δ𝑝𝑖,𝑡 ,Δ𝑞𝑖,𝑡 , 𝑦𝑖,𝑡}𝑁𝑡=1}

𝑚

𝑖=1

2:

3: Output:
{
{

�̃�
(𝑖)

𝑖,𝑡 |𝑡
, �̃�

(𝑖)

𝑖,𝑡 |𝑡
, �̃�

(𝑖)

𝑡 |𝑡

}
𝑁

𝑡=1

}
𝑚

𝑖=1

4: Initialization: �̃�(𝑖)
𝑖,0|0

= 03×1, �̃�(𝑖)
𝑖,0|0

= 𝑞0, �̃�(𝑖)

0|0
= 0𝑀×1, (3.7)

5: for 𝑡 = 1 to 𝑁 do
6: Dynamic update: Perform average consensus according to (3.19), (3.20) and (3.21).

Then, propagate own belief of own state according to (3.8a), (3.8b), (3.8c) and (3.9),
using output terms from average consensus.

7: Measurement update: according to (3.23a), (3.23b). Average consensus according
to (3.24a) and (3.24b). Relinearization according to (3.18a), (3.18b) and (3.18c).

8: end for

The result will then converge to the information matrix and information vector obtained
by (3.15a)- (3.15b) as the number of communication steps goes to infinity. We use the output
from the average consensus procedure as an approximation to the centralized information
matrix in each agent. Each agent can therefore update their own linearization point locally
by using the same update as the centralized EKF in (3.18a)-(3.18c). When there is no com-
munication failure, the approximation will be exactly equal to the centralized solution even
with 𝑁𝑐 = 1. Recursively applying the dynamic update and the measurement update gives
the Distributed EKF for multi-agent magnetic field SLAM described in Algorithm 2. If all 𝑚
agents are running Algorithm 2, the multi-agent system will collaboratively approximate
the centralized estimate of Algorithm 1.

3.6 Results
3.6.1 Comparison of Algorithm 1 to Single-Agent SLAM
We test the ability of our algorithm to simultaneously estimate the locations of three
handheld devices containing magnetometers, by testing on data collected by three test
subjects in amotion capture lab. The experimental setup is illustrated in Figure 3.1. Each test
subject held an Xsens MTi-100 IMU, which was used to collect magnetic field measurements.
The ground truth position and orientation of the IMU were recorded with an optical motion
capture system. The test subjects moved sequentially in the test area to ensure marker
visibility for the optical motion capture system, but we test our algorithm on the three
measured trajectories as if collected simultaneously.

The position measurements Δ𝑝𝑖,𝑡 were simulated by first computing the difference of
the recorded ground truth positions from each timestep to the next, and then adding noises
of 𝑒1,p,𝑡 = [0.000, 0.001 0], 𝑒2,p,𝑡 = [−0.001, −0.0005, 0] and 𝑒3,p,𝑡 = [0.001, −0.0005, 0]. These
noise values were selected such that the position estimates of the agents would drift in
different directions over a short timescale, making the dead-reckoning position estimates
to other agents particularly poor.

The differential orientation measurements Δ𝑞𝑖,𝑡 were simulated by computing the
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(a) 𝑡 = 2 seconds (b) 𝑡 = 7 seconds

(c) 𝑡 = 20 seconds (d) 𝑡 = 80 seconds

Figure 3.2: Learned magnetic field map using Algorithm 2. The intensity of the learned magnetic field norm is
indicated by the color, while the marginal variance of the magnetic field map is inversely proportional to the
opacity. The estimated trajectories of the agents are indicated with black lines, and the current positions at each
time are indicated with black crosses.
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Figure 3.3: Position estimation errors for three agents, relative to known ground truth position measured with
optical motion capture system. The error is given as the euclidian distance between the true position 𝑝𝑡 and the
estimated position �̂�𝑡 from Algorithm 3 with 𝑁𝑐 = 10 and 𝛼 = 0.2, from Single agent SLAM and from integrating
the pure odometry, respectively.
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difference in orientation from one timestep to the next, and then adding a simulated
noise sampled from a normal distribution with standard deviation 𝜎𝑞 = 1.0𝑒−5. We then
applied Algorithm 1 to the magnetic field measurements and the simulated odometry.
The Gaussian process hyperparameters were set to 𝜎SE = 0.074, 𝜎𝑦 = 0.0042, 𝑙SE = 0.86m.
The hyperparameters were selected based on an optimization of the Gaussian process
likelihood, using the recorded position for all the agents as the input locations and the
magnetic field norm as the output. The parameter 𝜎𝑝 used in the estimation was set to
0.022, which is two times as high as the maximum norm of the simulated noise, to make
sure that the Kalman filter did not put too much trust in the odometry. To approximate
the Gaussian process, 100 basis functions were used in a domain Ω defined as the smallest
cube that was no closer than 3 meters to the closest recorded position. This is a sufficient
amount of basis functions, as the approximation error between the reduced rank and the
full GP in ten test points selected in random locations sampled from a uniform distribution
inside the domain given all the collected measurements is lower than one measurement
noise standard deviation 𝜎𝑦 .

The estimated trajectories using Algorithm 1 are displayed together with the learned
magnetic field in Fig. 3.2. The results in Figure 3.3 show that the EKF for a single agent
improves on the position estimate for all three agents. The end-point estimation error for
Single agent SLAM is 87%, 65%, and 81% of the odometry error, respectively. Over time, the
position estimates for Single agent SLAM are typically bounded [74], but for this example
on this timescale, each agent does not have time to collect sufficient information about the
magnetic field to compensate fully for the odometry drift. Even in this challenging case for
magnetic field SLAM, multi-agent SLAM is able to compensate for the odometry drift. The
end-point estimation errors of the position estimates from Algorithm 1 in Figure 3.3 are
37%, 8.2% and 7.9% compared to odometry error, for the three agents respectively.

3.6.2 Testing Algorithm 2 on real magnetic field measure-
ments with simulated odometry noise

We investigate the effects of varying communication failure rates 𝛼 on the difference
between the distributed estimate from Algorithm 2 and the centralized estimate from
Algorithm 1. To study the most challenging case, we assume the agents have the possibility
to communicate only once for each average consensus problem. By using the approximation
obtained through one step of average consensus, we see in Figure 3.4 that the distributed
algorithm is able to give an improved position estimate compared to single-agent magnetic
field SLAM for failure rates up until 80%.

Each average consensus problem will give a solution that is exactly corresponding
to the centralized solution when the communication failure rate is zero [23]. Otherwise,
average consensus gives an approximation that converges to the true estimate as 𝑁𝑐 →∞.
The results in Fig. 3.4 confirm that the estimation error of Algorithm 2 is equivalent to
the estimation error of Algorithm 3 when the dropout rate is zero. Furthermore, the
results in Fig. 3.4 show that increasing the dropout rate 𝛼, increases the estimation error of
Algorithm 2. For all dropout rates of 80% or lower, the resulting position estimate from
Algorithm 2 is closer to the centralized solution compared to the Single-agent SLAM. The
results in Fig. 3.5 show that for higher 𝑁𝑐 , the distributed estimate converges more rapidly
to the centralized estimate as 𝛼 increases. When the communication failure rate is zero,
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Figure 3.4: RMSE of the full trajectory estimate using measurements from the motion capture lab, for a range of
communication failure rates 𝛼. The error bars indicate one standard deviation after 100 Monte-Carlo repetitions.
The green line marks the average deviation in the position estimate between the single-agent SLAM solution
and the centralized solution after 100 Monte-Carlo repetitions, and the light green area marks the range of one
standard deviation. Algorithm 3 was run with 𝑁𝑐 = 1.

Figure 3.5: Deviation between the estimate from Algorithm 2 and Algorithm 3 using measurements from the
motion capture lab, for a range of communication rates 𝛼, and a range of communication steps at each iteration
𝑁𝑐 . The lines connect the average results after 100 MC repetitions, and the error bars indicate one standard
deviation.
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Figure 3.6: Learned magnetic field map and estimated trajectories for three agents in a large building. The black
circles indicate the estimated end positions of the agents using Algorithm 2, while the red circles indicate the
estimated end positions of the agents using visual-inertial odometry. The color of the map is proportional to
the learned intensity of the magnetic field norm, while the opacity is inversely proportional with the marginal
variance.

so for 1− 𝛼 = 1, we can observe that the position estimate from the distributed EKF is
equivalent to the position estimate from the centralized algorithm.

3.6.3 Indoorexperimentwiththree smartphonemeasurements
To test our algorithm on a larger scale experiment with real odometry and magnetic field
normmeasurements, we collected three sequences of visual-inertial odometry andmagnetic
field normmeasurements inside a building using Google Pixel smartphone. Google provides
a platform primarily targeted at building augmented reality Apps called ARCore. Among
other features, ARCore uses the phone’s camera, accelerometer and gyroscope to compute
a position and orientation estimate. Using a customized app, we simultaneously recorded
this position and orientation estimate and the magnetometer measurements from the
phone’s built-in magnetometer at 200Hz. We subsequently computed the magnetic field
norm using the three-component magnetic field measurements, and down-sampled all
measurements to 10 Hz. Algorithm 1 was applied to these three sequences as if they were
collected by three separate agents simultaneously. The algorithm was applied with the
following hyperparameters: 𝜎SE = 7.2, 𝑙SE = 1.2m, 𝜎y = 1.2, 𝜎p = 0.15, 𝜎q = 0.0001 and with
500 basis functions in cubic tiles of size 38m×38m×38m. The tiles were placed with 8meters
of overlap at the borders. The resulting visual-inertial odometry estimate of the three
trajectories is displayed in Fig. 3.6. The trajectories are illustrated with respect to the floor
plan of the buildingwhere theywere collected. The visual-inertial odometry is initially close
to the real position, but over time, it drifts away from the hallways where the measurements
were collected. In the same figure, the resulting position estimate of Algorithm 1 is displayed.
These estimates are closer to the hallways where the measurements were collected, and
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therefore likely to have higher accuracy. The magnetic field map learned collaboratively
by the three agents is displayed in Fig. 3.6.

3.7 Conclusion
For multiple agents navigating in a new environment, we proposed two algorithms that
allow them to collaborate about solving the simultaneous mapping and localization task.
The first algorithm can be employedwhen a central unit has access to all measurements from
all agents. The second algorithm allows for multiple agents to collaboratively approximate
the estimate of the first algorithm when there is no central station that can communicate
with all agents at all times. Our proposed algorithms are capable of compensating for drift
also in cases where single-agent SLAM fails to do so. We presented experimental results
that confirm that the centralized multi-agent SLAM algorithm obtains a higher position
accuracy compared to single-agent magnetic field SLAM. For our experimental results,
the second algorithm was shown to give more accurate position estimates compared to
single-agent SLAM for communication drop-out rates up until 80%.

3.A Basis function definitions
The basis functions are defined over a finite-support cubical domain Ω ⊂ ℝ

𝑑 , defined as
Ω = [𝐿𝑙,1,𝐿𝑢,1] × [𝐿𝑙,2,𝐿𝑢,2] × [𝐿𝑙,3,𝐿𝑢,3]. The basis functions are given as

𝜙𝑖(𝑝) =

3

∏

𝑑=1

√

2

√

𝐿u,𝑑 −𝐿l,𝑑
sin

(

𝜋𝑛𝑖,𝑑(𝑝𝑑 +𝐿l,𝑑)

𝐿u,𝑑 −𝐿l,𝑑 )
, (3.25)

where the set (𝑛𝑖,1, 𝑛𝑖,2, 𝑛𝑖,3) is the set of three natural numbers that is different from the
sets (𝑛𝑗 ,1, 𝑛𝑗 ,2, 𝑛𝑗 ,3) defined for all 𝑗 < 𝑖, that gives the corresponding value of a parameter 𝜆𝑖
defined as

𝜆𝑖 =

𝐷

∑

𝑑=1

(

𝜋𝑛𝑖,𝑑

𝐿u,𝑑 −𝐿l,𝑑)

2

, (3.26)

as large as possible. These basis functions are then used to approximate the Gaussian
process prior with a parametric prior

𝑓 ≈ Φ
⊤
𝑤, 𝑤 ∼ (0,Λ), (3.27)

where Φ is a vector of 𝑀 basis functions 𝜙𝑖 ∶ ℝ𝑑
→ ℝ, 𝑤 ∈ ℝ

𝑀 is a vector of weights, and Λ
is defined as

Λ = diag
[
𝑆SE(

√

𝜆1), ⋯ , 𝑆SE(
√

𝜆𝑁𝑚
)
]
, (3.28)

with 𝑆SE(⋅) being the spectral density of the squared exponential kernel, as defined in
[9]. This means that the approximation of the magnetic field norm in (6.28) has a prior
distribution that tends to (6.1) as 𝑀 goes to infinity, and the size of the domain goes to
infinity [22].
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4
Exploiting Hankel-Toeplitz

structures for fast
computation of kernel

precision matrices

The Hilbert-Space Gaussian Process (HGP) approach offers a hyperparameter-independent
basis function approximation for speeding up Gaussian Process (GP) inference by projecting
the GP onto𝑀 basis functions. These properties result in a favorable data-independent (𝑀3

)

computational complexity during hyperparameter optimization but require a dominating
one-time precomputation of the precision matrix costing(𝑁𝑀

2
) operations. In this paper, we

lower this dominating computational complexity to(𝑁𝑀)with no additional approximations.
We can do this because we realize that the precision matrix can be split into a sum of Hankel–
Toeplitz matrices, each having (𝑀) unique entries. Based on this realization we propose
computing only these unique entries at (𝑁𝑀) costs. Further, we develop two theorems that
prescribe sufficient conditions for the complexity reduction to hold generally for a wide range
of other approximate GP models, such as the Variational Fourier Feature approach. The two
theorems do this with no assumptions on the data and no additional approximations of the GP
models themselves. Thus, our contribution provides a pure speed-up of several existing, widely
used, GP approximations, without further approximations.

This chapter is based on Frida Viset, Anton Kullberg, Frederiek Wesel and Arno Solin: Exploiting Hankel-Toeplitz
Structures for Fast Computation of Kernel Precision Matrices. Accepted to TMLR (Transactions on Machine
Learning Research)
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Figure 4.1: An order of magnitude speed-up without any additional approximations: Wall-clock time to
compute the precision matrix for an increasing number 𝑀 of basis functions.

4.1 Introduction
Gaussian Processes (GP) [16] provide a flexible formalism for modeling functions which
naturally allows for the incorporation of prior knowledge and the production of uncer-
tainty estimates in the form of a predictive distribution. Typically a GP is instantiated by
specifying a prior mean and covariance (kernel) function, which allows for incorporation
of prior knowledge. When data becomes available, the GP can then be conditioned on
the observations, yielding a new GP which can be used for predictions and uncertainty
quantification.

While all these operations have closed-form expressions for regression, the computa-
tions of the mean and covariance of the predictive GP require instantiating and inverting
the kernel (Gram) matrix, which encodes pair-wise similarities between all data. These
operations require respectively (𝑁 2

) and (𝑁 3
) computations, where 𝑁 is the number

of data points. Furthermore, if one wishes to optimize the hyperparameters of the kernel
function, which in GPs is typically accomplished by optimizing the log-marginal likelihood,
the kernel matrix needs to be instantiated and inverted multiple times, further hindering
the applicability of GPs to large-scale datasets.

The ubiquitous strategy to reduce this computational complexity consists in approxi-
mating the kernel matrix in terms of BFs, yielding what is essentially a low-rank or “sparse”
approximation of the kernel function [16, 21, 79]. Computational savings can then be
achieved by means of the matrix inversion lemma, which requires instantiating and invert-
ing the precision matrix (sum of the outer products of the BFs) instead of the kernel matrix
at prediction, thereby lowering the computational complexity of inference to(𝑁𝑀

2
+𝑀

3
),

where 𝑀 is the number of BFs. If the number of BFs is chosen smaller than the number of
data points in the training set (𝑀 <𝑁 ), computational benefits arise and the computational
costs for hyperparameter optimization and inference are dominated by (𝑁𝑀

2
).

It is less widely known that this cost can be improved further. A notable BF framework
is the Hilbert-space Gaussian process (HGP) [11] which projects the GP onto a dense
set of orthogonal, hyperparameter-independent basis functions (BFs). This deterministic
approximation is particularly attractive as it exhibits fast convergence guarantees to the
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Figure 4.2: The precision matrix for polynomial basis functions has a nested Hankel structure. The visualization
of the matrix is proportionally darker as the logarithm of each entry increases. The matrices are computed as the
sum of all entries 𝑯𝑛 for 𝑛 = {1,… ,𝑁 }, where the expression for 𝑯𝑛 is given below each matrix.

full GP in terms of the number of BFs for smooth shift-invariant kernels compared to other
approximations. Furthermore, the fact that the BFs are hyperparameter-independent speeds
up GP hyperparameter optimization considerably, which in the HGP requires only (𝑀3

)

operations after a one-time precomputation of the precisionmatrix, costing(𝑁𝑀
2
). These

favorable properties have ensured a relatively wide usage of the HGP [see e.g. 80–82], and
it is available in, e.g., PyMC [83] and Stan [84]. However, as argued by [85], a high number
of BFs may be required for a faithful approximation of the full model. Thus, the HGP is
typically employed in applications where forming the initial (𝑁𝑀

2
) projection does not

become too heavy.
In this paper, we reduce this complexity to (𝑁𝑀) with no additional approximations

(see figure 4.1), through exploiting structural properties of the precision matrix. Our
contributions are as follows.

• We show that each increment of the HGP precision matrix can be split in a multilevel
block-Hankel and a multilevel block-Toeplitz matrix (figure 4.2), each having only
(𝑀) unique entries instead of (𝑀2

). This allows us to determine the elements of
the full precision matrix at (𝑁𝑀) instead of (𝑁𝑀

2
).

• We provide sufficient conditions regarding the choice of BF for this reduction in
computational complexity to hold in general. This is the case for many BFs such as
polynomial, (complex) exponential and (co)sinusoidal basis functions. By doing so,
we enable the speed-up of other BF-based GP approximations such as variational
Fourier features [17].

In the experiments, we demonstrate in practice that our approach lowers the computational
complexity of the HGP by an order of magnitude on simulated and real data.

4.2 Background
A GP is a collection of random variables, any finite number of which have a joint Gaussian
distribution [16]. We denote a zero–meanGP by 𝑓 ∼ (0, 𝜅(⋅, ⋅)), where 𝜅(𝒙,𝒙′

) ∶ ℝ
𝐷
×ℝ

𝐷
→ ℝ

is the kernel, representing the covariance between inputs 𝒙 and 𝒙
′. Given a dataset of

input–output pairs {(𝒙𝑛, 𝑦𝑛)}
𝑁

𝑛=1
, GPs are used for non-parametric regression and classifi-



4

58

cation by coupling the latent functions 𝑓 with observations through a likelihood model
𝑝(𝒚 ∣ 𝑓 ) =∏

𝑁

𝑖=1
𝑝(𝑦𝑖 ∣ 𝑓 (𝒙𝑖)).

For notational simplicity, we will in the following focus on GP models with a Gaussian
(conjugate) likelihood, 𝑦𝑖 ∼ (𝑓 (𝒙𝑖),𝜎

2
). The posterior GP, (𝜇⋆(⋅),Σ⋆(⋅, ⋅)) can be written

down in closed form by

𝜇⋆(𝒙⋆) = 𝒌
⊤

⋆
(𝑲 +𝜎

2
𝑰)

−1
𝒚, (4.1a)

Σ⋆(𝒙⋆,𝒙
′

⋆
) = 𝒌(𝒙⋆,𝒙

′

⋆
)−𝒌

⊤

⋆
(𝑲 +𝜎

2
𝑰)

−1
𝒌
⋆
′ , (4.1b)

where 𝑲 ∈ ℝ
𝑁×𝑁 and 𝒌⋆ ∈ ℝ

𝑁 are defined element-wise as 𝑲 𝑖,𝑗 B 𝜅(𝒙𝑖,𝒙𝑗 ) and [𝒌⋆]𝑖 B
𝜅(𝒙𝑖,𝒙

⋆
) for 𝑖, 𝑗 ∈ 1,2,… ,𝑁 , and 𝒌

⋆
′ is defined similarly. Observations are collected into 𝒚 ∈

ℝ
𝑁 . Due to the inverse of (𝑲+𝜎

2
𝑰) in the posterior mean and covariance, the computational

cost of a standard GP scales as (𝑁 3
), which hinders applicability to large datasets.

4.2.1 Basis Function Approximations
The prevailing approach in literature to circumvent the (𝑁 3

) computational bottleneck
is to approximate the GP with a sparse approximation, using a finite number of either
inducing points or basis functions [e.g., 16, 17, 21].

The basis function (BF) representation is commonly motivated by the approximation

𝜅(𝒙,𝒙
′
) ≈ 𝝓(𝒙)

⊤
𝚲 𝝓(𝒙

′
). (4.2)

We use the notation from [11] to align with the next section. Here, 𝝓(⋅) ∶ ℝ𝔻
→ ℝ

𝑀 are the
BFs, 𝝓(⋅)B [𝜙1(⋅),𝜙2(⋅),… ,𝜙𝑀 (⋅)]

⊤. Further, 𝚲 ∈ ℝ
𝑀×𝑀 are the corresponding BF weights.

Combining this approximation with the posterior GP, equation (4.1), and applying the
Woodbury matrix inversion lemma yields

𝜇⋆(𝒙⋆) = 𝝓(𝒙⋆)
⊤

(𝚽
⊤
𝚽+𝜎

2
𝚲
−1

)

−1

𝚽
⊤
𝒚, (4.3a)

Σ⋆(𝒙⋆,𝒙
′

⋆
) = 𝜎

2
𝝓(𝒙⋆)

⊤

(𝚽
⊤
𝚽+𝜎

2
𝚲
−1

)

−1

𝝓(𝒙
′

⋆
). (4.3b)

Here, 𝚽 ∈ ℝ
𝑁×𝑀 is commonly referred to as the regressor matrix and is defined as 𝚽𝑖,∶ B

𝝓(𝒙𝑖)
⊤. Further, 𝚽⊤

𝚽 ∈ ℝ
𝑀×𝑀 is the precision matrix which is a central component of the

following section. With this approximation, computing the posterior mean and covari-
ance in equation (4.3) requires instantiating and inverting (𝚽⊤

𝚽+𝜎
2
𝚲
−1

)

−1 which can be
performed with (𝑁𝑀

2
+𝑀

3
) operations.

4.3 Method
Our main findings are in the form of two theorems (theorems 4.3.1 and 4.3.4). These
theorems prescribe the necessary conditions that BF expansions need to fulfill to be able
to reduce the computational complexity of computing the precision matrix 𝚽

⊤
𝚽 from

(𝑁𝑀
2
) to (𝑁𝑀), applicable to multiple previous works that rely on parametric basis

functions [incl. 11, 17, 86–88]. Further, both of the theorems reduce the memory scaling
from (𝑀2

) to (𝑀). Note that these reductions are without approximations, only relying
on the structural properties of the considered models.
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In the following, we assume that the kernel is a tensor product kernel [16], i.e., 𝜅(𝑥,𝑥′) =
∏

𝐷

𝑑=1
𝜅
(𝑑)
(𝑥

(𝑑)
, 𝑥

(𝑑)
′

), where 𝜅(𝑑)(⋅, ⋅) is the kernel along the 𝑑th dimension. Then, if each
component of the kernel is approximated or can be represented exactly with 𝑚𝑑 BFs such
that

𝜅
(𝑑)
(𝑥

(𝑑)
, 𝑥

(𝑑)
′

) ≈ 𝝓
(𝑑)
(𝑥

(𝑑)
)

⊤

𝚲
(𝑑)

𝝓
(𝑑)
(𝑥

(𝑑)
′

), (4.4)

where 𝝓(𝑑)
(⋅) ∶ ℝ→ ℝ

𝑚
𝑑 are the BFs [𝜙(𝑑)

1
,𝜙

(𝑑)

2
,… ,𝜙

(𝑑)

𝑚
𝑑

]
⊤ along the 𝑑th dimension and 𝚲(𝑑)

∈

ℝ
𝑚
𝑑
×𝑚

𝑑 contains the associated weights. The full kernel can then be approximated as

𝜅(𝒙,𝒙
′
) ≈∏

𝐷

𝑑=1
𝝓
(𝑑)
(𝑥

(𝑑)
)
⊤

𝚲
(𝑑)

𝝓
(𝑑)
(𝑥

(𝑑)
′

), (4.5)

where in this case 𝝓(⋅) ∶ ℝ𝐷
→ ℝ

𝑀 and 𝚲 ∈ ℝ
𝑀×𝑀 are

𝝓(𝑥) = ⊗
𝐷

𝑑=1
𝝓
(𝑑)
(𝑥

(𝑑)
), (4.6a)

𝚲 = ⊗
𝐷

𝑑=1
𝚲
(𝑑)
. (4.6b)

Here, 𝑀 B∏
𝐷

𝑑=1
𝑚𝑑 is the total number of BFs. Given this decomposition, the precision

matrix can be expressed as

𝚽
⊤
𝚽 =∑

𝑁

𝑛=1
𝝓(𝒙𝑛)𝝓(𝒙𝑛)

⊤
=∑

𝑁

𝑛=1
⊗
𝐷

𝑑=1
𝝓
(𝑑)
(𝑥

(𝑑)

𝑛
)[𝝓

(𝑑)
(𝑥

(𝑑)

𝑛
)]

⊤

. (4.7)

This decomposition of the precision matrix is key in the following and we will primarily
study the individual products 𝝓(𝑑)

(𝑥
(𝑑)

𝑛
)[𝝓

(𝑑)
(𝑥

(𝑑)

𝑛
)]
⊤ where certain structure may appear

that is exploitable to our benefit. To provide some intuition, we consider the precision
matrix for polynomial BFs in 1D, 2D, and 3D (see figure 4.2). The 1D case (left) has a
Hankel structure and the 2D (middle) and 3D (right) cases have 2-level and 3-level block
Hankel structure, respectively. It is these types of structures that allow a reduction in
complexity without approximations. Next, we provide clear technical definitions of the
matrix structures and then proceed to state our main findings. All of the discussed matrix
structures are also visually explained in table 4.1 in section 4.F.

4.3.1 Hankel and Toeplitz Matrices
An 𝑚×𝑚 matrix 𝑯 has Hankel structure iff it can be expressed using a vector 𝜸 ∈ ℝ

(2𝑚−1)

containing all the unique entries, according to

𝑯 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜸
1

𝜸
2

… 𝜸
𝑚

𝜸
2

𝜸
3

… 𝜸
𝑚+1

.

.

.

.

.

.

.
.
.

.

.

.

𝜸
𝑚

𝜸
𝑚+1

… 𝜸
2𝑚−1

⎤

⎥

⎥

⎥

⎥

⎦

. (4.8)

In other words, each element of the Hankel matrix on the 𝑖th row and the 𝑗 th column is
given by 𝜸

𝑖+𝑗−1
. Similarly, an 𝑚×𝑚 matrix has Toeplitz structure iff it can be expressed

using a vector 𝜸 ∈ ℝ
(2𝑚−1) such that each element on the 𝑖th row and the 𝑗 th column is given

by 𝜸
𝑖−𝑗+𝑚

. See figure 4.3 for an example of what a Hankel and a Toeplitz matrix visually
looks like.



4

60
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𝝓
(𝑑)

𝝓
(𝑑)

⊤

=

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∑

𝑛

𝑯
𝑑

+

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∑

𝑛

𝑻
𝑑

.

Figure 4.3: The precision matrix for sinusoidal basis functions in one dimension has neither Hankel nor Toeplitz
structure. However, it can be decomposed into a sum of two matrices, where one has a Hankel structure, and one
has Toeplitz structure. Here, 49 BFs are placed along one dimension.

We define a matrix 𝑯 (𝐷) as a 𝐷-level block Hankel matrix if it can be expressed as

𝑯
(𝐷)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑯
(𝐷−1)

1
𝑯

(𝐷−1)

2
… 𝑯

(𝐷−1)

𝑚𝐷

𝑯
(𝐷−1)

2
𝑯

(𝐷−1)

3
… 𝑯

(𝐷−1)

𝑚𝐷+1

.

.

.

.

.

.

.
.
.

.

.

.

𝑯
(𝐷−1)

𝑚𝐷

𝑯
(𝐷−1)

𝑚𝐷+1
… 𝑯

(𝐷−1)

2𝑚𝐷−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (4.9)

where 𝑯𝐷−1

𝑘
is a block Hankel matrix, and 𝑯

1

𝑘
is a simple Hankel matrix. Each submatrix

𝑯
(𝑑)

𝑘
for 𝑑 ∈ {1,… ,𝐷} can be indexed by row and column 𝑖𝑑 , 𝑗𝑑 ∈ {1,… ,𝑚𝑑} which again

yields a submatrix 𝑯
(𝑑−1)

𝑖
𝑑
+𝑗

𝑑
−1

which can be indexed in the same manner. Therefore, an
equivalent definition of a block Hankel matrix is that each individual entry of 𝑯 (𝐷), given
by a set of indices 𝑖1, 𝑗1,… , 𝑖𝐷, 𝑗𝐷, is given by the entry 𝜸

𝑘1 ,…,𝑘𝐷
of a tensor 𝜸 ∈ ℝ

𝐾1×𝐾2×…×𝐾𝐷 ,
where 𝑘𝑑 = 𝑖𝑑 + 𝑗𝑑 − 1, and 𝐾𝑑 = 2𝑚𝑑 − 1. Similarly, 𝑻 (𝐷−1) is a block Toeplitz matrix if
each entry 𝑖1, 𝑗1,… , 𝑖𝐷, 𝑗𝐷 is given by the entry 𝜸

𝑘1 ,…,𝑘𝐷
of a tensor 𝜸 ∈ ℝ

𝐾1×𝐾2×…×𝐾𝐷 , where
𝑘𝑑 = 𝑚𝑑 + 𝑖𝑑 − 𝑗𝑑 , and 𝐾𝑑 = 2𝑚𝑑 −1.

4.3.2 Block Hankel–Toeplitz Matrices
In addition to block Hankel and block Toeplitz structures, we require a slightly more general
but highly related structure. We call this structure block Hankel–Toeplitz structure and
define it as follows. A matrix 𝑮

(𝐷) has a 𝐷-level block Hankel–Toeplitz structure, if the
matrix is defined either as

𝑮
(𝐷)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑮
(𝐷−1)

1
𝑮
(𝐷−1)

2
… 𝑮

(𝐷−1)

𝑚𝐷

𝑮
(𝐷−1)

2
𝑮
(𝐷−1)

3
… 𝑮

(𝐷−1)

𝑚𝐷+1

.

.

.

.

.

.

.
.
.

.

.

.

𝑮
(𝐷−1)

𝑚𝐷

𝑮
(𝐷−1)

𝑚𝐷+1
… 𝑮

(𝐷−1)

2𝑚𝐷−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (4.10)
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if level 𝐷 is Hankel, or as

𝑮
(𝐷)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑮
(𝐷−1)

𝑚𝐷

… 𝑮
(𝐷−1)

2
𝑮
(𝐷−1)

1

𝑮
(𝐷−1)

𝑚𝐷+1
… 𝑮

(𝐷−1)

3
𝑮
(𝐷−1)

2

.

.

. .
.
. .

.

.

.

.

.

𝑮
(𝐷−1)

2𝑚𝐷−1
… 𝑮

(𝐷−1)

𝑚𝐷+1
𝑮
(𝐷−1)

𝑚𝐷

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (4.11)

if level 𝐷 is Toeplitz. Further, 𝑮(𝐷−1)

𝑗
are 𝐷−1 level block Hankel–Toeplitz matrices if

𝐷−1 > 2, and a simple Hankel or Toeplitz matrix if 𝐷−1 = 1. Each submatrix 𝑮
(𝑑)

𝑘
for

𝑑 ∈ {1,… ,𝐷} can be indexed by row and column 𝑖𝑑 , 𝑗𝑑 ∈ {1,… ,𝑚𝑑} which again yields a
submatrix defined either as 𝑮(𝑑−1)

𝑖
𝑑
+𝑗

𝑑
−1

or 𝑮(𝑑−1)

𝑚
𝑑
+𝑖

𝑑
−𝑗

𝑑

(depending on whether the 𝑑th-level has
Hankel structure as in equation (4.10) or Toeplitz structure as in equation (4.11)). Each
entry in a block Hankel–Toeplitz matrix can also be expressed by the entry 𝜸

𝑘1 ,𝑘2 ,…,𝑘𝐷
of a

tensor 𝜸 ∈ ℝ
𝐾1×𝐾2×…×𝐾𝐷 , where 𝐾𝑑 = 2𝑚𝑑 −1, and

𝑘𝑑 =

{

𝑖𝑑 + 𝑗𝑑 −1, if level 𝑑 is Hankel
𝑚𝑑 + 𝑖𝑑 − 𝑗𝑑 , if level 𝑑 is Toeplitz.

(4.12)

A crucial property of the block Hankel–Toeplitz structure is the preservation of structure
under addition. Assume that 𝑨 and 𝑩 are two block Hankel–Toeplitz matrices and that
they are structurally identical, in the sense that they have the same number of levels, the
same number of entries in each block, and each level shares either Toeplitz or Hankel
properties. Then, let each entry of 𝑨 and 𝑩 be given by 𝛼𝑘1 ,𝑘2 ,…,𝑘𝐷

for a tensor 𝛼 ∈ ℝ
𝑚1 ,…,𝑚𝐷

and 𝛽𝑘1 ,𝑘2 ,…,𝑘𝐷
for 𝛽 ∈ ℝ

𝑚1 ,…,𝑚𝐷 , respectively, with 𝑘𝑑 defined in equation (4.15). Each entry
in 𝑨+𝑩 is then given by the sum of the entries 𝛼𝑘1 ,…,𝑘𝐷 +𝛽𝑘1 ,…,𝑘𝐷

. Thus, the sum of two
block Hankel–Toeplitz matrices with identical structure is also a block Hankel–Toeplitz
matrix. By associativity of matrix addition, a sum ∑

𝑁

𝑛=1
𝑮𝑛 of 𝑁 Hankel–Toeplitz matrices

{𝑮1,… ,𝑮𝑁 } with identical structure is therefore itself a Hankel–Toeplitz matrix.

4.3.3 Kronecker Products of Hankel–Toeplitz Matrices and
Block Hankel–Toeplitz Matrices

A special case of a class of matrices 𝑮 which has block Hankel–Toeplitz structure are
Kronecker products of 𝐷 Hankel or Toeplitz matrices {𝑮(1)

,… ,𝑮
(𝐷)

}, i.e.,

𝑮 =

𝐷

⨂

𝑑=1

𝑮
(𝑑) B 𝑮

(1)
⊗𝑮

(2)
⊗⋯⊗𝑮

(𝐷)
. (4.13)

An equivalent definition of the Kronecker product gives each entry on the 𝑖th row and 𝑗
th

column in the block Hankel–Toeplitz matrix 𝑮 as an expression of the entries on the 𝑖𝑑 th
row and 𝑗𝑑

th column of each matrix 𝑮(𝑑) according to

𝑮𝑖,𝑗 =∏
𝐷

𝑑=1
𝑮
(𝑑)

𝑖
𝑑
,𝑗
𝑑

. (4.14)

Note that for both Hankel and Toeplitz matrices there is a one-to-one map between each
index 𝑖, 𝑗 and the index sets {𝑖1,… , 𝑖𝐷} and {𝑗1,… , 𝑗𝐷}. As each matrix 𝑮

(𝑑) has Hankel or
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Toeplitz structure, the entries can equivalently be defined by a vector 𝜸(𝑑) with 2𝑚𝑑 −1

entries. Each entry 𝑮𝑖,𝑗 is therefore given by

𝑮𝑖,𝑗 =∏
𝐷

𝑑=1
𝜸
(𝑑)

𝑘
𝑑

= 𝜸
𝑘1 ,…,𝑘𝐷

, (4.15)

with 𝑘𝑑 defined in equation (4.12), and where 𝜸 ∶= ⨂
𝐷

𝑑=1
𝜸
(𝑑) is a rank-1 tensor with

∏
𝐷

𝑑=1
(2𝑚𝑑 −1) elements.

4.3.4 Main Results
We are now ready to state our main findings. The following two theorems rely on the
product decomposition equation (4.5) and study each dimension 𝑑 separately, as is evidently
possible from equation (4.7). Our first theorem generalizes a result by [89] regarding
complex exponential basis functions. Our first theorem establishes that if the product
𝝓
(𝑑)
(𝑥

(𝑑)

𝑛
)[𝝓

(𝑑)
(𝑥

(𝑑)

𝑛
)]
⊤ has Hankel or Toeplitz structure, the resulting precision matrix only

has ∏𝐷

𝑑=1
(2𝑚𝑑 −1) unique entries, reducing the computational complexity of instantiating

it from (𝑁𝑀
2
) to (𝑁𝑀). We formalize this in the following theorem.

Theorem 4.3.1. If the matrix

𝑮
(𝑑)
(𝑥

(𝑑)

𝑛
)B 𝝓

(𝑑)
(𝑥

(𝑑)
)[𝝓

(𝑑)
(𝑥

(𝑑)
)]

⊤

, (4.16)

is a Hankel or Toeplitz matrix for all 𝑥(𝑑) ∈ ℝ along each dimension 𝑑, the information matrix
𝚽
⊤
𝚽 will be a multi-level block Hankel or Toeplitz matrix, and therefore have∏𝐷

𝑑=1
(2𝑚𝑑 −1)

unique entries.

Proof. Assume that the matrix 𝑮
(𝑑)
(𝑥

(𝑑)

𝑛
) B 𝝓

(𝑑)
(𝑥

(𝑑)

𝑛
)[𝝓

(𝑑)
(𝑥

(𝑑)

𝑛
)]
⊤ is Hankel or Toeplitz.

The precision matrix can then be expressed as

𝚽
⊤
𝚽 =∑

𝑁

𝑛=1
⊗
𝐷

𝑑=1
𝝓
(𝑑)
(𝑥

(𝑑)

𝑛
)[𝝓

(𝑑)
(𝑥

(𝑑)

𝑛
)]

⊤

=∑
𝑁

𝑛=1
⊗
𝐷

𝑑=1
𝑮
(𝑑)
(𝑥

(𝑑)

𝑛
), (4.17)

where the matrix ⊗
𝐷

𝑑=1
𝑮
(𝑑)
(𝑥

(𝑑)

𝑛
) is multi-level Hankel or Toeplitz by definition, see sec-

tion 4.3.3. Further, the sum of several D-level block Hankel–Toeplitz matrices is itself a
𝐷-level block Hankel–Toeplitz matrix, see section 4.3.2. Since each matrix 𝑮(𝑑)

(𝑥
(𝑑)

𝑛
) has

at most (2𝑚𝑑 −1) unique entries, the matrix 𝚽
⊤
𝚽 =∑

𝑁

𝑛=1
⊗
𝐷

𝑑=1
𝑮
(𝑑)
(𝑥

(𝑑)

𝑛
) therefore has at

most 𝑀 =∏
𝐷

𝑑=1
(2𝑚𝑑 −1) unique entries.

The preceding theorem holds true for, for instance, polynomial and complex exponential
BFs, which we establish in theorems 4.3.2 and 4.3.3.

Corollary 4.3.2. The precision matrix for polynomial BFs defined by

𝜙
(𝑑)

𝑖
𝑑

(𝑥
(𝑑)
) = (𝑥

(𝑑)
)
𝑖
𝑑
−1
, (4.18)

can be represented by a tensor with ∏
𝐷

𝑑=1
2𝑚𝑑 −1 entries.

Proof. See section 4.A for a proof.
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⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Φ
⊤
Φ

=

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∑

𝑛

𝑯
(1)
⊗𝑯

(2)

+

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∑

𝑛

𝑻
(1)
⊗𝑯

(2)

+

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∑

𝑛

𝑯
(1)
⊗𝑻

(2)

+

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∑

𝑛

𝑻
(1)
⊗𝑻

(2)

Figure 4.4: The precision matrix for sinusoidal BFs in two dimensions has neither Hankel nor Toeplitz structure.
However, it can be decomposed into 2

𝐷
= 4 matrices, which each have block Hankel–Toeplitz structure. Here, 7

BFs are placed along each of the two dimensions, giving a total of 49 BFs.

Corollary 4.3.3. The precision matrix for complex exponential BFs defined by

𝜙
𝐶

𝑗
(𝑥) = exp(𝑖𝜋𝑗

⊤
𝑥) =∏

𝐷

𝑑=1
exp(𝑖𝜋𝑗𝑑𝑥𝑑), (4.19)

can be represented by a tensor with∏
𝐷

𝑑=1
2𝑚𝑑 −1 entries.

Proof. See section 4.B for a proof.

For some BFs, the structure of the product 𝝓(𝑑)
(𝑥

(𝑑)

𝑛
)[𝝓

(𝑑)
(𝑥

(𝑑)

𝑛
)]
⊤ is more intricate, but

is still of a favorable, exploitable nature. This is clearly evident from figure 4.4, where the
precision matrix for sinusoidal BFs in two dimensions is visualized. In particular, for some
BFs, the product is the sum of a Hankel and a Toeplitz matrix, such that the precision matrix
only has ∏𝐷

𝑑=1
3𝑚𝑑 unique entries, again reducing the computational cost of computing it

to (𝑁𝑀). We formalize this in the following theorem.

Theorem 4.3.4. If the product 𝝓(𝑑)
(𝑥

(𝑑)

𝑛
)[𝝓

(𝑑)
(𝑥

(𝑑)

𝑛
)]
⊤ is the sum of a Hankel matrix denoted

𝑮
(𝑑),(1) and a Toeplitz matrix 𝑮(𝑑),(−1), and there exists a function 𝑔

(𝑑)
(𝑘𝑑) such that 𝑮(𝑑),(1)

𝑖
𝑑
,𝑗
𝑑

=

𝑔(𝑖𝑑 + 𝑗𝑑) and 𝑮
(𝑑),(−1)

𝑖
𝑑
,𝑗
𝑑

= −𝑔(𝑖𝑑 − 𝑗𝑑), all entries in the precision matrix can be represented by
a tensor 𝜸(𝑘1, 𝑘2,… , 𝑘𝐷) with ∏

𝐷

𝑑=1
3𝑚𝑑 entries.

Proof. The precision matrix can in this case be expressed as

B𝑪
⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝚽
⊤
𝚽 =∑

𝑁

𝑛=1
⊗
𝐷

𝑑=1
𝝓
(𝑑)
(𝑥

(𝑑)

𝑛
)[𝝓

(𝑑)
(𝑥

(𝑑)

𝑛
)]

⊤

=∑
𝑁

𝑛=1
⊗
𝐷

𝑑=1 (
𝑮
(𝑑),(1)

+𝑮
(𝑑),(−1)

)

=∑
2
𝐷

𝑝=1(
∏

𝐷

𝑑=1
𝑒
(𝑑)

𝑝 )
∑

𝑁

𝑛=1
⊗
𝐷

𝑑=1
𝑮
(𝑑),(𝑒

(𝑑)

𝑝
)
, (4.20)

where 𝑒𝑝 = {𝑒
(1)

𝑝
,… , 𝑒

(𝐷)

𝑝
} ∈ 𝑆

𝐷 and 𝑆
𝐷
= {1,−1}

𝐷 is a set containing 2
𝐷 elements. Each of

the 2𝐷 matrices
(
∏

𝐷

𝑑=1
𝑒
(𝑑)

𝑝 )
∑

𝑁

𝑛=1
⊗
𝐷

𝑑=1
𝑮
(𝑑),(𝑒

(𝑑)

𝑝
) is now the Kronecker product between 𝐷

Hankel or Toeplitz matrices. The entries of 𝑪 can be expressed element-wise as

𝑪𝑖,𝑗 =∑
2
𝐷

𝑝=1(
∏

𝐷

𝑑=1
𝑒
(𝑑)

𝑝 )
∑

𝑁

𝑛=1
∏

𝐷

𝑑=1
𝑔(𝑖𝑑 + 𝑒

(𝑑)

𝑝
𝑗𝑑). (4.21)
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Algorithm 4 Sketch of an algorithm for Hilbert GP learning and inference. The original
approach by [11] in red, our proposed approach in blue.
Input: Data as input–output pairs {(𝒙𝑖, 𝑦𝑖)}

𝑁

𝑖=1
,

test inputs 𝒙⋆, number of basis functions 𝑀
Compute 𝚽⊤

𝚽 at cost (𝑁𝑀
2
) ⊳ equation (4.7)

Compute 𝜸 at cost (𝑁𝑀) ⊳ equation (4.22)
Construct 𝚽⊤

𝚽 using 𝜸 at cost (𝑀2
)

repeat
Optimize maximum likelihood w.r.t. hyperparameters at cost (𝑀3

)

until Convergence
Perform GP inference using the pre-calculated matrices

If we define a tensor 𝜸 as
𝜸
𝑘1 ,…,𝑘𝐷

=∑
𝑁

𝑛=1
∏

𝐷

𝑑=1
𝑔(𝑘𝑑). (4.22)

for indices 𝑘𝑑 = 1−𝑚𝑑 ,2−𝑚𝑑 ,… ,2𝑚𝑑 −1,2𝑚𝑑 , each entry of the precision matrix 𝑪𝑖,𝑗 can
be expressed as

𝑪𝑖,𝑗 =∑
2
𝐷

𝑝=1(
∏

𝐷

𝑑=1
𝑒
(𝑑)

𝑝 )
𝜸
𝑖1+𝑒

(1)

𝑝
𝑗1 ,…,𝑖𝐷+𝑒

(𝐷)

𝑝
𝑗𝐷

. (4.23)

As each sum 𝑘𝑑 = 𝑖𝑑 + 𝑒
(𝑑)

𝑝
𝑗𝑑 is an integer between 1−𝑚𝑑 and 2𝑚𝑑 , the tensor 𝜸 will have

∏
𝐷

𝑑=1
3𝑚𝑑 entries.

The preceding theorem applies to, for instance, the BFs in an HGP [11] defined on a
rectangular domain, formalized in theorem 4.3.5. It further holds for multiple other works
using similar BFs, formalized in theorem 4.3.6. We remark that for 𝐷 = 1, we require 𝑚𝑑 > 3

for any savings to take effect, whereas for 𝐷 > 1, 𝑚𝑑 ≥ 2 suffices.

Corollary 4.3.5. The precision matrix in an HGP defined on a rectangular domain [−𝐿1,𝐿1]×
⋯× [−𝐿𝐷,𝐿𝐷] can be represented by a tensor with ∏

𝐷

𝑑=1
3𝑚𝑑 entries.

Proof. See section 4.C for a proof.

Corollary 4.3.6. The precision matrix in a GP approximated by sinusoidal and cosine BFs
with frequencies on a grid (such as the regular Fourier features described in [17] and [90], the
Fourier approximations to periodic kernels described in [87], the quadrature Fourier features
described in [91], the equispaced-version of sparse spectrum BFs described in [86], or the
one-dimensional special case of [88]) can be represented by a tensor with ∏

𝐷

𝑑=1
3𝑚𝑑 entries.

Proof. See section 4.D for a proof.

4.3.5 Outlook and Practical Use
Both theorems 4.3.1 and 4.3.4 reduce the computational complexity of calculating the entries
of the precision matrix equation (4.7) from (𝑁𝑀

2
) to (𝑁𝑀). This enables us to scale

the number of BFs significantly more than previously, before running into computational,
or storage related, problems. For clarity, the standard HGP is given in algorithm 4 with the
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original approach in red and our proposed approach in blue. As compared to the standard
(offline) HGP, the only change we make is the computation of the precision matrix.

While we focus primarily on the dominating (𝑁𝑀
2
) cost of obtaining the precision

matrix, it is worthwhile to mention the cost of hyperparameter optimization, which is
in (𝑀3

) as we choose to optimize the maximum likelihood as in [11]. This cost could
potentially be reduced through the use of efficient approximate matrix inverses and trace
estimators [see, e.g., 92]. Another consequence of these theorems is that multi-agent
systems that collaborate to learn the precision matrix such as [76] or [75] can do this by
communicating (𝑀) bits instead of (𝑀2

) bits.

4.4 Experiments
We demonstrate the storage and computational savings of our structure exploiting scheme
by means of three numerical experiments. The experiments demonstrate the practical
efficiency of our scheme using the HGP. We reiterate that the savings are without additional
approximations and the posterior is therefore exactly equal to that of the standard HGP.
Further, as HGPs adhere to theorem 4.3.4, this demonstration is a representative example
of the speedups that can be expected using, e.g., regular Fourier features [17], or BF
expansions of periodic kernels [88]. Since theorem 4.3.1 requires computing and storing
only 2𝑀 components whereas theorem 4.3.4 requires 3𝑀 , our experiments demonstrate a
practical upper bound on the storage and computational savings, a “worst case”.

Our first experiment demonstrates the computational scaling of our scheme on a
simulated 3D dataset. Secondly, we consider a magnetic field mapping example with data
collected by an underwater vessel, as an application where the high-frequency content of
the data requires a large amount of BFs to reconstruct the field. Thirdly, a precipitation
dataset is used, mirroring an example in [11], improving the computational scaling in
that particular application even further than the standard HGP. Our freely available HGP
reference implementation along with hyperparameter optimization is written for GPJax
[93]. All timing experiments are run on an HP Elitebook 840 G5 laptop (Intel i7-8550U CPU,
16GB RAM). For fair comparison, we naively loop over data points, to avoid any possible
low-level optimization skewing the results.

Computational Scaling We compare the wall time necessary for computing the pre-
cision matrix for 𝑁 = 500 data points for the standard HGP as well as for our structure
exploiting scheme, which only requires the unique entries. The results are presented in
figure 4.1 for an increasing number of BFs. After 𝑀 = 14000, the HGP is no longer feasible
due to memory constraints, whereas our formulation scales well above that, but stop at
𝑀 = 64000 for clarity in the illustration. Clearly, the structure exploitation gives a signifi-
cantly lower computational cost than the standard HGP, even for small quantities of BFs.
Further, it drastically reduces the memory requirements, where for 𝑀 = 14000, the HGP
requires roughly 1.5 GB for storing the precision matrix, while our formulation requires
roughly 2.8 MB using 64-bit floats. This makes it possible for us to scale the number of
BFs significantly more before running into computational or storage restrictions. It is
noteworthy that even though the implementation is in a high-level language, we still see
significant computational savings.
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(b) Our proposed computational scheme reduces the compu-
tation time for datasets with high-frequency variations, as
these require many BFs to achieve accurate reconstruction.
This underwater magnetic field has lower NLPD with a large
amount (6400) compared to a smaller amount (400) of BFs.
For 6400 BFs, our computational scheme reduced the required
time to compute the precision matrix from 2.7 hours to 1.7
minutes.

Figure 4.5: Our proposed computational scheme reduces the computation time for datasets with high-frequency
variations, as these require many BFs to achieve accurate reconstruction. This underwater magnetic field has lower
NLPD with a large amount (6400) compared to a smaller amount (400) of BFs. For 6400 BFs, our computational
scheme reduced the required time to compute the precision matrix from 2.7 hours to 1.7 minutes.
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Figure 4.6: These experiments recover the results from [11] exactly for predicting yearly precipitation levels across
the US, and measure the wall-clock time needed by our proposed computational scheme. The HGP efficiently
approximates the full GP solution using 𝑚1 = 𝑚2 = 45, totaling 𝑀 = 2025 BFs.
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Magnetic Field Mapping As HGPs are commonly used to model and estimate the
magnetic field for, e.g., mapping purposes [8, 94], we consider a magnetic field mapping
example and demonstrate the ability of our computational scheme to scale HGPs to spatially
vast datasets. The data was gathered sequentially in a lawn-mower path in a region
approximately 7×7 kilometers large by an underwater vessel outside the coast of Norway
(𝑑 = 2 and 𝑁 = 1.39million). The data was split into a training set and test set with roughly
a 50/50 split, deterministically split by a grid pattern, to ensure reasonable predictions in
the entire data domain, see section 4.E for more details. We vary the amount of BFs and
compare the time required to sequentially include each new data point in the precision
matrix as well as the NLPD. As the underwater magnetic field covers a large area, a large
number of BFs are required to accurately represent the field, see figure 4.5a where the
details of the predicted magnetic field is captured more accurately for an increasing number
of BFs. This is also apparent from the decreasing negative log predictive density (NLPD) as
the number of BFs increases, see figure 4.5b. At 6400 BFs, the necessary computation time
is several orders of magnitude lower for our approach compared to the standard HGP.

U.S. Precipitation Data We consider a standard precipitation data set containing US
annual precipitation summaries for year 1995 (𝑑 = 2 and 𝑁 = 5776) [95]. We exactly mimic
the setup in [11] and primarily focus our evaluation on the calculation of the precision
matrix. The time for computing the precision matrix is visualized in figure 4.6c, where our
approach clearly outperforms the standard HGP. The predictions on a dense grid over the
continental US can be found in figures 4.6a and 4.6b, where the HGP manages to capture
both the large-scale as well as the small-scale variations well.

4.5 Conclusion
Our contribution details a computational approach for exploiting Hankel and Toeplitz
structures that appear in multiple BF approximation schemes to kernels for GPs. These
structures allow us to reduce the computational complexity of computing the corresponding
precision matrix from (𝑁𝑀

2
) to (𝑁𝑀) without further approximations. Further, our

approach reduces the storage requirement for containing all necessary information about
the posterior to make predictions from (𝑀2

) to (𝑀).
The reduced computational and storage requirements are particularly beneficial in

the HGP where more BFs allow us to capture higher frequencies of the kernel spectrum,
otherwise unattainable without significant computational resources. We foresee that our
contribution will allow HGPs to tackle larger problems without the need for extensive
specialized hardware, opening up approximate GP learning and inference for a wider
audience.

The majoriy of the appendix covers proofs of the corollaries following from theo-
rems 4.3.1 and 4.3.4. The rest is dedicated to further details on our empirical experiments
as well as visual explanations of the structures that are exploited in the main body of the
paper. The appendix is organized as follows.

section 4.A proves theorem 4.3.1 for polynomial BF. section 4.B proves theorem 4.3.1
for complex exponential BF. section 4.C proves theorem 4.3.4 for Hilbert space BF defined
on a rectangular domain. section 4.D proves theorem 4.3.4 for ordinary Fourier features.
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section 4.F contains visual representations of the structures explained in the main body of
the paper. Lastly, section 4.E provides a full description of all the included experiments and
the data used in them, with additional plots and results.

4.A Proof of use of theorem 4.3.1 for Polynomial
Basis Functions

Polynomial BFs (as used in for example [96]) are defined along each dimension as

𝜙
(𝑑)

𝑖
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(𝑑)
) = (𝑥

(𝑑)
)
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−1 (4.24)
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, (4.25)

which shows that the conditions for theorem 4.3.1 is satisfied.

4.B Proof of use of theorem 4.3.1 for Complex Expo-
nential Basis Functions

Complex exponential BF (as used in for example [97]) are defined along each dimension as

𝜙
(𝑑)

𝑖
𝑑

(𝑥
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which shows that the conditions for theorem 4.3.1 is satisfied.

4.C Proof of use of theorem 4.3.4 for Hilbert Space
Basis Functions on a Rectangular Domain

Hilbert space BF on a rectangular domain are defined according to [11]

𝜙𝑖(𝒙) =

𝐷

∏

𝑑=1

1

√

𝐿𝑑

sin
(

𝜋𝑖𝑑(𝑥
(𝑑)

+𝐿𝑑)

2𝐿𝑑 )
=

𝐷

∏

𝑑=1

1

√

𝐿𝑑

cos
(

𝜋𝑖𝑑(𝑥
(𝑑)

+𝐿𝑑)

2𝐿𝑑

−

𝜋

2)
, (4.28)

where the indices 𝑖 = 1,… ,𝑀
𝐷 has a one-to-one mapping with all possible combinations of

the indices 𝑖1, 𝑖2,… , 𝑖𝐷, given that each index 𝑖𝑑 = {1,… ,𝐷}.
This corresponds to defining the BF according to equation (4.6a), with each entry of
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where 𝑖𝑑 ∈ {1,… ,𝑚}. Define a linear function 𝜃𝑖
𝑑
∶ ℝ→ ℝ as
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Hence, the BF can be written as
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When we apply this to each entry in the matrix, we get that
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where 𝑮
𝑑,(1) and 𝑮

𝑑,(−1) are a Hankel and a Toeplitz matrix, respectively. Then, since
cos(𝜃𝑖

𝑑
± 𝜃𝑗

𝑑
) = ±sin(𝜃𝑖

𝑑
±𝑗

𝑑
) ≜ 𝑔(𝑖𝑑 ± 𝑗𝑑) = 𝑔(𝑘𝑑), there exists a function 𝑔(𝑘𝑑) that fulfills

conditions for theorem 4.3.4.

4.D Proofofuseof theorem4.3.4 forOrdinary Fourier
Features

Ordinary Fourier features for separable kernels are defined slightly differently from Hilbert
Space BF [17], in that they consider both a sine and a cosine function for each considered
frequency. The set of BF are given by

𝝓
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(4.30)
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where Δ determines the spacing of the Fourier features in the frequency domain. The
precision matrix can therefore be expressed as
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and we can apply theorem 4.3.4 directly to entries 𝚽⊤

sin
𝚽sin and 𝚽⊤
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𝚽cos to prove that each

of these have a block Hankel–Toeplitz structure.
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The entry at row 𝑖 and column 𝑗 of 𝑮(𝑑),(1) can therefore be defined by the function
𝑔(𝑖+ 𝑗) = −cos(𝑖+ 𝑗)Δ𝑥

(𝑑), and the entry at row 𝑖 and column 𝑗 of 𝑮(𝑑),(−1) is given by
−𝑔(𝑖− 𝑗), satisfying the requirements for theorem 4.3.4.

For the matrix 𝚽⊤
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The entry at row 𝑖 and column 𝑗 of 𝑮(𝑑),(1) can therefore be defined by the function
𝑔(𝑖+ 𝑗) = −cos((𝑖+ 𝑗)Δ𝑥

(𝑑)
), and the entry at row 𝑖 and column 𝑗 of 𝑮(𝑑),(−1) is given by

−𝑔(𝑖− 𝑗), satisfying the requirements for theorem 4.3.4.
For the matrix 𝚽⊤
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The entry at row 𝑖 and column 𝑗 of 𝑮(𝑑),(1) can therefore be defined by the function
𝑔(𝑖+ 𝑗) = cos((𝑖+ 𝑗)Δ𝑥

(𝑑)
), and the entry at row 𝑖 and column 𝑗 of 𝑮(𝑑),(−1) is given by

𝑔(𝑖− 𝑗). An important notion for this matrix which makes it different from 𝚽sin𝚽
⊤

sin
and

𝚽cos𝚽
⊤

sin
is that this does not exactly satisfy the criteria for theorem 4.3.4. The difference

is that for the criteria to be exactly satisfied, entry {𝑮
(𝑑),(−1)

}𝑖,𝑗 would have to be equal to
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−𝑔(𝑖− 𝑗) rather than 𝑔(𝑖− 𝑗). However, by applying the proof of theorem 4.3.4, but now
noticing that the entries of 𝑪 = 𝚽

⊤

cos
𝚽cos can be expressed element-wise as

𝑪𝑖,𝑗 =

2
𝐷
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𝑝
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which allows us to use the tensor 𝛾 as defined in equation (4.22) to express each entry of 𝑪
according to

𝑪𝑖,𝑗 =

2
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∑
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𝛾
𝑖1+𝑒

(1)

𝑝

,… , 𝑖𝐷 + 𝑒
(𝐷)

𝑝
. (4.42)

4.E Experiment Details
More specific details of the numerical experiments are provided here with additional
visualizations and explanations.

U.S. Precipitation Data
The precipitation data is two-dimensional with 𝑁 = 5776 data points first considered in
[95]. We perform regression in the lat/lon domain and first center the data (but do not
perform scaling) and use a simple squared-exponential kernel. We optimized the maximum
likelihood using GPJax [93] for both the HGP as well as the standard GP for 100 iterations
using Adam [98]. The hyperparameters of the kernel and likelihood were initialized as
𝑙 = 1,𝜎

2

𝑆𝐸
= 10 and 𝜎𝑒 = 1, where 𝑙 is the lengthscale, 𝜎2

𝑆𝐸
is the kernel variance and 𝜎𝑒 the

noise standard deviation. Purely for visualization purposes, the inputs were projected to a
local coordinate system given by CRS 5070 which are used for all of the plots. The original
data is plotted in figure 4.7. The timing experiments were run using 𝑚𝑑 = 5,10,… ,65 BF
along each dimension, totaling between 𝑀 = 25 and 𝑀 = 4225 BF.

Magnetic Field Mapping
The magnetic field data has 𝑁 ≈ 1.4million data points and is collected with an underwater
vehicle outside the Norwegian coast. The data used were collected by MARMINE/NTNU
research cruise funded by the Research Council of Norway (Norges Forskningsråd, NFR)
Project No. 247626/O30 and associated industrial partners. Ocean Floor Geophysics
provided magnetometer that was used for magnetic data acquisition and pre-processed the
magnetic data. The data was later split into a training set and test set, at a roughly 50% split.
The nature of the data split is visualized in figure 4.9. However, in practice, we selected
the width of the test squares and the training squares smaller than the one displayed in
the illustration and they are merely that big for visualization purposes. The illustration
displays squares that are 0.01 latitudinal degrees wide and 0.03 longitudinal degrees tall,
corresponding to approximately 1 kilometer in Cartesian coordinates in this area. The
split we actually used was squares which were 0.001 latitudinal degrees wide and 0.003

longitudinal degrees tall, corresponding to approximately 100 meters in both directions
in Cartesian coordinates in that area. GP regression with a squared exponential kernel
is able to extrapolate for approximately one lengthscale, but will not necessarily give a
very informative prediction one or two lengthscales away from the nearest measurement.
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Figure 4.7: Raw data from precipitation data set. Each data point is visualized as a cross with color indicating the
precipitation. The data set contains mostly low frequency content with some high frequency content apparent in
the west coast as well as the south eastern parts.
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Figure 4.8: Raw magnetic field measurements for the underwater magnetic field data. The plotted data is
subsampled to 100th of the data for visualization purposes.
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Figure 4.9: Data divided into training and test set. Deterministically split to ensure ensure that the lengthscale is
captured properly in the training data. The data is roughly 50/50 split between training and test set. Both training
and test data are normalized only by the mean and standard deviation of the training data.

Although we do not know the lengthscale that would optimize the likelihood of the
data before using training data to find it, we see from a zoomed-in version of figure 4.8
approximately how fast the magnetic field is changing across the spatial dimension and
use this to make a reasonable guess at the distance we expect a well-tuned GP to be able to
extrapolate the learned magnetic field. We then project the data into a local coordinate
system using WGS84 and perform regression in Cartesian coordinates. We center and
standardize the data with the mean and standard deviation of the training data. A squared-
exponential kernel was used and we optimize the maximum likelihood in GPJax [93]
using Adam [98] for 100 iterations to find hyperparameters. The hyperparameters were
initialized as 𝑙 = 200meter,𝜎2

SE = 1 and 𝜎2

y = 1. The resulting hyperparameters were 𝑙𝑆𝐸 = 190,
𝜎
2

y = 0.0675, 𝜎2

SE = 7.15.

4.F OverviewofBlockHankel–ToeplitzMatrix Struc-
tures
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Table 4.1: An overview of the matrix structure and tensor representation for Hankel, Toeplitz, block Hankel, block
Toeplitz and block Hankel matrices. The illustrations are examples of matrices with the property described in
each row. The illustrations contain one square for each matrix entry, where the color of the square corresponds
to the value.
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5
Spatially scalable recursive

estimation of Gaussian
process terrain maps using

local basis functions

When an agent, person, vehicle or robot is moving through an unknown environment without
GNSS signals, online mapping of nonlinear terrains can be used to improve position esti-
mates when the agent returns to a previously mapped area. Mapping algorithms using online
Gaussian process (GP) regression are commonly integrated in algorithms for simultaneous
localisation and mapping (SLAM). However, GP mapping algorithms have increasing com-
putational demands as the mapped area expands relative to spatial field variations. This
is due to the need for estimating an increasing amount of map parameters as the area of
the map grows. Contrary to this, we propose a recursive GP mapping estimation algorithm
which uses local basis functions in an information filter to achieve spatial scalability. Our
proposed approximation employs a global grid of finite support basis functions but restricts
computations to a localized subset around each prediction point. As our proposed algorithm is
recursive, it can naturally be incorporated into existing algorithms that uses Gaussian process
maps for SLAM. Incorporating our proposed algorithm into an extended Kalman filter (EKF)
for magnetic field SLAM reduces the overall computational complexity of the algorithm. We
show experimentally that our algorithm is faster than existing methods when the mapped
area is large and the map is based on many measurements, both for recursive mapping tasks
and for magnetic field SLAM.

This chapter is based on  Frida Viset, Rudy Helmons, Manon Kok: Spatially scalable recursive estimation of
Gaussian process terrain maps using local basis functions. Under review.
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Figure 5.1: A locally reconstructed approximation (indicated by the color of the heatmap) of a simulated large,
nonlinear geospatial field (indicated with gray level curves) based on a local subset (marked with the black circles)
of a global grid of basis functions (marked with the gray circles).

5.1 Introduction
Navigation in large, unknown, nonlinear geospatial fields can be done through simultane-
ous localisation and mapping (SLAM). This requires a spatially scalable online mapping
technique. SLAM using nonlinear geospatial field maps has been used to compensate for
odometry drift in robots, marine vehicles, aerial vehicles, and pedestrians [8, 38, 99, 100].
Some nonlinear fields that have been used in SLAM are magnetic fields [8, 38, 72], un-
derwater bathymetry [99, 101], and terrain fields [102, 103]. A range of this research
uses Gaussian process (GP) regression [16] to create nonlinear field maps [8, 99, 101–103].
These methods suffer from the computational complexity scaling either with the number
of measurements used to build the map or with the area of the map. To remedy this, we
propose a temporally and spatially scalable online GP mapping algorithm that removes
this bottleneck from SLAM algorithms that use GPs for terrain navigation. Our proposed
approximation uses a global grid of finite-support basis functions to approximate the GP.
At each timestep, our approach restricts computations to a local grid of basis functions
surrounding each prediction point, as illustrated in Fig. 5.1, which results in a reduction
in computational cost. Our algorithm does not only reduce the computational cost for
constructing maps, its recursive nature also opens up for using it in SLAM. We extend
the magnetic field SLAM algorithm from [74] to include our recursive mapping algorithm,
and show that it causes a reduction in the overall computational complexity of the SLAM
algorithm. The magnetic field SLAM approach in [74] consists of a measurement update
and a dynamic update. Our approach directly reduces the computational complexity of
the measurement update. As our approximation gives rise to sparsity patterns in the
map representation, our approximation also gives rise to a reduction in complexity in the
dynamic update.

The remainder of the paper is organized as follows: Section 5.2 gives an overview of
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some background information. Specifically, it introduces GP regression and basis function
approximations to GPs. Section 5.3 gives a description of our method for approximating
a large GP scale map, and shows how the map can be incorporated in an EKF for SLAM.
Section 5.4 gives an overview of the relation between our proposed mapping algorithm
and other online GP mapping algorithms that can be used in SLAM. Section 5.5 describes
experimental results comparing our proposed approach to other mapping and SLAM
algorithms. Section 5.6 gives some concluding remarks and recommendations for future
work.

5.2 Background
5.2.1 GP Regression
We are interested in estimating the terrain map using a GP. GP regression allows for
estimating a nonlinear function 𝑓 ∶ ℝ

𝑑
→ ℝ, distributed according to

𝑓 ∼ (0, 𝜅(⋅, ⋅)), (5.1)

where 𝜅(𝑥,𝑥′) ∶ ℝ𝑑
×ℝ

𝑑
→ ℝ is some known kernel function, and (0, 𝜅(⋅, ⋅)) denotes the

GP prior (see [16] for definition) with a mean of 0 and covariance defined by the kernel
function. The kernel that is used for all of the mentioned online GP maps in section 5.4 is
called the squared exponential kernel, and is defined as

𝜅SE(𝑥,𝑥
′
) = 𝜎

2

SE exp
(

‖𝑥 −𝑥
′
‖
2

2

2𝑙
2

SE )
, (5.2)

where ‖⋅‖
2
is the Euclidean norm, 𝜎SE is a hyperparameter indicating the magnitude of the

spatial variations and 𝑙SE is a hyperparameter indicating the expected lengthscale of the
spatial variations [16]. GP regression also uses 𝑁 noisy measurements of the function
𝑦1∶𝑁 = {𝑦𝑡}

𝑁

𝑡=1
modelled as

𝑦𝑡 = 𝑓 (𝑥𝑡)+ 𝑒𝑡 , 𝑒𝑡 ∼ (0,𝜎
2

y), (5.3)

where 𝑥1∶𝑁 = {𝑥𝑡}
𝑁

𝑡=1
are known input locations where 𝑥𝑡 ∈ ℝ𝑑 , 𝑒𝑡 is a measurement noise,

𝜎
2

y is the noise variance, and  (0,𝜎
2

y) denotes the normal distribution with mean 0 and
covariance 𝜎2

y. The expected value and variance of the function value in any arbitrary
location 𝑥

⋆
∈ ℝ

𝑑 is then given by

𝔼[𝑓 (𝑥
⋆
)]

= 𝐾(𝑥
⋆
, 𝑥1∶𝑁 )(𝐾(𝑥1∶𝑁 , 𝑥1∶𝑁 )+𝜎

2

y𝐼𝑁 )
−1

𝑦1∶𝑁 ,

(5.4a)

Var [𝑓 (𝑥⋆)] =

−𝐾(𝑥
⋆
, 𝑥1∶𝑁 )(𝐾(𝑥1∶𝑁 , 𝑥1∶𝑁 )+𝜎

2

y𝐼𝑁 )
−1

𝐾(𝑥1∶𝑁 , 𝑥
⋆
)+𝐾(𝑥

⋆
, 𝑥

⋆
),

(5.4b)

respectively. Here, the matrix 𝐾(𝑥1∶𝑁 , 𝑥1∶𝑁 ) is constructed by the kernel evaluated
along each possible cross-combination of the entries in the vector 𝑥1∶𝑁 , such that the
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entry on the 𝑖th row and the 𝑗th column of 𝐾(𝑥1∶𝑁 , 𝑥1∶𝑁 ) is 𝜅(𝑥𝑖, 𝑥𝑗 ). Similarly, the row
vector 𝐾(𝑥⋆, 𝑥1∶𝑁 ) is defined such that the 𝑗th column is defined by 𝜅(𝑥

⋆
, 𝑥𝑗 ). By the same

notation, 𝐾(𝑥⋆, 𝑥⋆) is a single-entry matrix with value 𝜅(𝑥⋆, 𝑥⋆). We are concerned with
approximating the GP posterior. To distinguish the posterior in (5.4a) and (5.4b) from any
approximation of it, we will refer to this as the full GP posterior. Computing the full GP
posterior has a complexity of (𝑁 3

), as it requires the inversion of a 𝑁 ×𝑁 matrix.

5.2.2 Sparse approximations to GP Regression with Basis Func-
tions

Sparse approximations to GP regression approximate the function 𝑓 with a linear combi-
nation of 𝑚 basis functions according to

𝑓 ≈ Φ
⊤
𝑤, 𝑤 ∼ (0, 𝑃), (5.5)

where 𝑤 = {𝑤𝑖}
𝑚

𝑖=1
is a set of 𝑚 scalar weights, and Φ is a vector of 𝑚 basis functions

𝜙𝑖 ∶ ℝ
𝑑
→ ℝ [21]. The prior covariance on the weights 𝑃 ∈ ℝ

𝑚×𝑚 is chosen so that (5.5)
approximates (5.1) [21].

There are different methods to approximate predictions using the assumption in (5.5).
A commonly used one is the Deterministic Training Conditional (DTC) approximation [21].
The sparse predictions with DTC are given by

𝔼 [𝑓 (𝑥
⋆
)] ≈Φ(𝑥

⋆
)
⊤

(Φ(𝑥1∶𝑁 )Φ(𝑥1∶𝑁 )
⊤
+

𝜎
2

y𝑃
−1

)

−1

Φ(𝑥1∶𝑁 )𝑦1∶𝑁 ,

(5.6a)

Var [𝑓 (𝑥⋆)] ≈𝜎
2

yΦ(𝑥
⋆
)
⊤

(Φ(𝑥1∶𝑁 )Φ(𝑥1∶𝑁 )
⊤
+

𝜎
2

y𝑃
−1

)

−1

Φ(𝑥
⋆
)

+𝐾(𝑥
⋆
, 𝑥

⋆
)−Φ(𝑥

⋆
)
⊤
𝑃Φ(𝑥

⋆
),

(5.6b)

where the entry on the 𝑖th row and the 𝑗th column of the matrix Φ(𝑥1∶𝑁 ) is defined as
𝜙𝑖(𝑥𝑗 ), and the 𝑖th row of the column vector Φ(𝑥⋆) is defined as 𝜙𝑖(𝑥⋆). The expressions
in (5.6a) and (5.6b) require (𝑁𝑚

2
+𝑚

3
) operations to compute, and (𝑁𝑚

2
) storage. This

greatly improves the computational complexity in the case where the number of basis
functions 𝑚≪𝑁 compared to the full GP approach in Section 5.2.1. The required number
of basis functions 𝑚 required to accurately approximate the GP scales with the size of the
input domain relative to the lengthscale (𝑙SE in (5.2)) of the kernel [11].

5.3 Method
In terrain mapping we typically have large areas and small lengthscales. The approach
from Section 5.2.2 needs many basis functions in this case. To remedy this scaling, we
propose training on a large grid of finite-support basis functions which we will introduce
in Section 5.3.1. We incorporate each new measurement with an information filter. Sec-
tion 5.3.2 describes how we include a new measurement. Including a new measurement in
the way described in section 5.3.2 has a computational complexity of (𝑚′2

), where 𝑚′ is
the number of basis functions with overlapping support in any input location. Section 5.3.3
describes how we use this trained map to make a prediction. Making a prediction in the
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way described in Section 5.3.3 requires (𝑚′′3
) computations. Section 5.3.4 suggests how

our proposed GP map approximation can be integrated into EKF SLAM with GP maps. The
algorithm given in Section 5.3.4 requires (𝑚) computations at each timestep.

5.3.1 Choice of Basis Functions
We choose a set of basis functions {𝜙𝑗 }𝑚𝑗=1 as truncated cross-sections with centers dis-
tributed on a uniform grid according to

𝜙𝑗 (𝑥) =

{

𝜅(𝑢𝑗 , 𝑥), ‖𝑥 −𝑢𝑗 ‖∞ ≤ 𝑟

0, ‖𝑥 −𝑢𝑗 ‖∞ > 𝑟
, (5.7)

where ‖ ⋅ ‖∞ denotes the sup-norm, and where each basis function 𝑗 is centered in a fixed
location 𝑢𝑗 ∈ ℝ

𝑑 on a 𝑑-dimensional grid. For stationary geospatial fields, 𝑑 is maximally 3.
The basis functions converge to the basis functions induced by a grid of inducing inputs as
the truncation limit tends to infinity. A grid of inducing inputs is known to converge to
the true GP as the grid density goes to infinity [104].

5.3.2 Recursive map estimation
Since the basis function approximation in (5.5) to the full GP regression is a parametric
model, the posterior can be found using stochastic least squares estimation. A stochastic
least squares estimate can recursively be obtained using a information filter without any dy-
namics. Specifically, obtaining the posterior on information form corresponds to computing
the terms Φ(𝑥1∶𝑁 )𝑦1∶𝑁 and Φ(𝑥1∶𝑁 )Φ(𝑥1∶𝑁 )⊤ in (5.6a) and (5.6b) recursively [105]. In the re-
mainder of this paper, we let the information vector at time 𝑡 be defined as 𝜄1∶𝑡 = Φ(𝑥1∶𝑡)𝑦1∶𝑡 ,
and the information matrix at time 𝑡 be defined as 1∶𝑡 = Φ(𝑥1∶𝑡)Φ(𝑥1∶𝑡)

⊤. Updating the
information vector 𝜄1∶𝑡 and the information matrix 1∶𝑡 as [105]

𝜄1∶𝑡 =𝜄1∶𝑡−1+Φ(𝑥𝑡)𝑦𝑡 , (5.8a)
1∶𝑡 =1∶𝑡−1+Φ(𝑥𝑡)Φ(𝑥𝑡)

⊤
, (5.8b)

only requires updating a finite amount of elements 𝑚′
≪𝑚 in each update step when using

the basis functions from Section 5.3.1. This is because the terms Φ(𝑥𝑡)𝑦𝑡 and Φ(𝑥𝑡)Φ(𝑥𝑡)
⊤

only contain 𝑚
′ non-zero elements because only 𝑚

′ basis functions have overlapping
support in any given location. The set  of basis functions (identified by their index 𝑗) that
are non-zero in 𝑥𝑡 follows from the definition of the basis functions in (5.7) as

 = {𝑗 | ‖𝑥𝑡 −𝑢𝑗 ‖∞ ≤ 𝑟}. (5.9)

It follows that for any single measurement 𝑦𝑡 , the only entries of the information vector 𝜄𝑗
that change are the ones where 𝑗 ∈  . Let 𝑙𝑢 denote the distance between two neighboring
inducing inputs along each dimension. The size of the set  will always be smaller than
or equal to 𝑚

′
= (

2𝑟

𝑙𝑢
+1)

𝑑 , where 𝑑 is the dimension of the input vector. The recursive
updates in (5.8a) and (5.8b) only need to be applied to entries 𝑗 ∈ (𝑥𝑡 , 𝑟) for the information
vector, and 𝑗 , 𝑗

′
∈ (𝑥𝑡 , 𝑟) × 𝑆(𝑥𝑡 , 𝑟) for the information matrix, as the contribution from the

term 𝜙𝑗 (𝑥𝑡)𝑦𝑡 and 𝜙𝑗 (𝑥𝑡)𝜙𝑗′(𝑥𝑡) will be zero for all other entries. Hence this update has
computational complexity(𝑚′

) for the information vector, and(𝑚′2
) for the information

matrix.
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5.3.3 Prediction
Making a prediction of the terrain value in a new location requires evaluating the GP
posterior mean and covariance in that location.

We could simply plug the information vector 𝜄1∶𝑁 = Φ(𝑥1∶𝑁 )𝑦1∶𝑁 and the information
matrix 1∶𝑁 = Φ(𝑥1∶𝑁 )Φ(𝑥1∶𝑁 )

⊤ into the approximate GP posterior in (5.6a) and (5.6b).
However, solving these equations would require solving a linear system with 𝑚 variables,
which in general requires (𝑚3

) operations. Instead, we use only a local subset of 𝑚′′ basis
functions to perform each prediction. We select the local subset of basis functions in a local
domain surrounding the prediction point.

The entries of the information vector of any subset of the basis functions are a subset
of the entries of the information vector 𝜄1∶𝑁 . Equivalently, the entries of the information
matrix of any subset of the basis functions are a subset of the entries of the information
matrix 1∶𝑁 . As an illustrating example, consider a set of four basis functions {1,2,3,4}.
Then, consider the subset of basis functions indicated in black {2,3}. The entry at row 𝑖

and column 𝑗 of the information matrix 1∶𝑁 is given by  𝑖,𝑗

1∶𝑁
= ∑

𝑁

𝑡=1
𝜙𝑖(𝑥𝑡)𝜙𝑗 (𝑥𝑡). The

entry in row 𝑖 of the information vector 𝜄1∶𝑁 is given by the sum 𝜄
𝑖

1∶𝑁
= ∑

𝑁

𝑡=1
𝜙𝑖(𝑥𝑡)𝑦𝑡 .

The information matrix and information vector for the full set can therefore be written
element-wise as

1∶𝑁=

⎡

⎢

⎢

⎢

⎢

⎣

1,1

1∶𝑁
1,2

1∶𝑁
1,3

1∶𝑁
1,4

1∶𝑁

2,1

1∶𝑁
2,2

1∶𝑁
2,3

1∶𝑁
2,4

1∶𝑁

3,1

1∶𝑁
3,2

1∶𝑁
3,3

1∶𝑁
3,4

1∶𝑁

4,1

1∶𝑁
4,2

1∶𝑁
4,3

1∶𝑁
4,4

1∶𝑁

⎤

⎥

⎥

⎥

⎥

⎦

, (5.10a)

𝜄1∶𝑁=[𝜄
1

1∶𝑁
𝜄
2

1∶𝑁
𝜄
3

1∶𝑁
𝜄
4

1∶𝑁 ]
. (5.10b)

The information matrix and information vector of basis functions 2 and 3 is a subset of the
information matrix and information vector indicated by the black sub-entries in (5.10a)-
(5.10b).

We leverage this property to define an approximation to the GP based on a local
subset 𝑆⋆ of basis functions close to the prediction point. In Fig. 5.1 we illustrate how a
local subset of basis functions can be selected from a global grid. The local subset of the
corresponding information vector and information matrix defined as 𝜄⋆

1∶𝑁
= Φ𝑆

⋆(𝑥1∶𝑁 )𝑦1∶𝑁

and ⋆

1∶𝑁
= Φ𝑆

⋆(𝑥1∶𝑁 )Φ𝑆
⋆(𝑥1∶𝑁 )

⊤, respectively, can be constructed from subsets of the
information vector 𝜄1∶𝑁 and the information matrix 1∶𝑁 for the full grid. From acquiring
the informationmatrix and information vector on the global grid of basis functions indicated
with gray circles in Fig. 5.1, we have access to the trained system the local subsets of basis
functions illustrated with black circles in Fig. 5.1.

Formally, we choose 𝑆
⋆
= 𝑆(𝑥

⋆
, 𝑟
⋆
) consisting of all basis functions whose center is

closer than 𝑟
⋆ along each dimension to be in this set. The size of the set 𝑆(𝑥⋆, 𝑟⋆) will

always be smaller than or equal to 𝑚
′′
= (

2𝑟
⋆

𝑙𝑢
+1)

𝑑 , where 𝑑 is the dimension of the input
vector. Evaluating the predicted mean and predicted variance using the basis functions
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indexed by the set 𝑆⋆ in place of the basis functions {1,… ,𝑁 } in (5.6a)-(5.6b) gives

𝔼 [𝑓 (𝑥
⋆
)] ≈Φ⋆(𝑥

⋆
)
⊤
(⋆

1∶𝑁
+𝜎

2

y𝑃
−1

⋆
)
−1
𝜄⋆ , (5.11a)

Var [𝑓 (𝑥⋆)] ≈𝜎
2

yΦ⋆(𝑥
⋆
)
⊤
(⋆

1∶𝑁
+𝜎

2

y𝑃
−1

⋆
)
−1

Φ⋆(𝑥
⋆
)+𝐾(𝑥

⋆
, 𝑥

⋆
)

−Φ⋆(𝑥
⋆
)
⊤
𝑃⋆Φ⋆(𝑥

⋆
),

(5.11b)

where the 𝑖th row and the 𝑗th column of Φ⋆(𝑥
⋆
) is defined by the evaluation of ba-

sis functions number 𝑖 in the subset ⋆ on the prediction point 𝑥⋆, and where 𝑃⋆ is
the prior covariance on the basis function weights. We select 𝑃⋆ such that the prior
is recovered exactly in the center locations 𝑢𝑆⋆ of the basis functions, which gives 𝑃⋆ =
(Φ𝑆

⋆(𝑢𝑆⋆))
−T
𝐾(𝑢𝑆⋆ , 𝑢𝑆⋆)(Φ𝑆

⋆(𝑢𝑆⋆))
−1. A detailed derivation for the expression for 𝑃⋆ is given

in Appendix 5.A. As the size𝑚′′ of the set⋆ is always smaller than or equal to ( 2𝑟⋆
𝑙𝑢
+1)

𝑑 , the
matrix inversion required in (5.11a) and (5.11b) is bounded. The prediction of our proposed
GP prediction in (5.11a)-(5.11b) can therefore be computed with (𝑚′′3

) = (( 2𝑟⋆
𝑙𝑢

+1)
3𝑑
)

operations.

5.3.4 Integration of mapping algorithm into an EKF for mag-
netic field SLAM

In this section, we give the algorithmic details of the implementation of a SLAM algorithm
with an EKF as it is described in [74], but using our proposed map approximation instead
of Hilbert space basis functions. From here on we will refer to the magnetic field SLAM
algorithm with and EKF in [74] as EKF Mag-SLAM.

EKF Mag-SLAM gives estimates of the sensor’s position �̂�𝑡 , its orientation �̂�
𝑡 |𝑡
and the

magnetic field map �̂�
𝑡 |𝑡
. The magnetic field map is parameterized as the estimate of the

weights 𝑤𝑡 of a sparse GP approximated with Hilbert space basis functions, using online
measurements of the magnetic field denoted 𝑦𝑡 at each timestep 𝑡 and measurements of the
change in position and orientation denoted Δ𝑞𝑡 and Δ𝑝𝑡 at each timestep 𝑡 respectively.

We use the same measurement and dynamic model as [74] (see Eqns (14a), (14b) and
(13)), but we replace the basis functions denoted Φ with the finite-support basis functions
described in section 5.3.1. As the computational benefits of the finite-support basis functions
arise on the information form, we implement the EKF on the information form.

In the measurement update, the system is approximated using only the information
of the basis functions that are closer than 𝑟

∗ to the prediction point. This means that the
information between two prediction points that are further apart than 2𝑟

∗ will never be
needed to carry out the measurement update. This means that the only entries of the
information matrix we need to compute to carry out the dynamic update are given a sparse
subset of the information matrix. We name this subset of all index pairs such that the
distance between the corresponding basis functions is less than 2𝑟∗ as ∀⋆ = {𝑖, 𝑗 |‖𝑥𝑖−𝑥𝑗 |∞ ≤

2𝑟
∗
}. The location of the indices corresponding to this subset for the information matrix for

Mag-SLAM in three dimensions is illustrated in Fig. 5.2. The pattern arises from the ordering
of the indices in the information matrix according to the location of the finite-support basis
functions along each of the three spatial dimensions.

As the information matrix for online Kalman filters with dynamic updates [106] is
generally defined as the inverse of the covariance matrix 𝑃 , we initialize the information
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(a) 1D grid (b) 2D grid (c) 3D grid

Figure 5.2: Sparsity patterns illustrating which entries 𝑖, 𝑗 in the information matrix correspond to pairs of basis
function locations 𝑥𝑖, 𝑥𝑗 that are closer than 2𝑟

⋆ according to the infinity norm (dark blue) and which are not
(light blue). The patterns arise from the ordering of the indexes of the basis functions, relative to their locations
along each of the three dimensions.

⋂ = .

Figure 5.3: Sparsity pattern illustration of the information matrix for the full state consisting of the position,
orientation and magnetic field. The first sparsity pattern has a dark blue color in the entries corresponding to the
first six columns and the first six rows of the information matrix (corresponding to position and orientation),
and a light blue color in the other entries. The second sparsity pattern has a dark blue color in the entries in the
set 𝑆∀⋆ of all entries that can possibly be necessary to make a map prediction in any location. The last sparsity
pattern is the union of these two sets.
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matrix as 𝐼EKF
0

= 𝑃
−1

0
. The initial error state of EKF Mag-SLAM is zero and thus the initial

information vector 𝜄0 = EKF
0

𝜉0 = 0.
The dynamic update on information form in general is given by

(EKF
𝑡+1

)
−1

= ((EKF
𝑡

)
−1

+𝑄)
−1
, (5.12)

where 𝑄 is the process noise on the state-space vector, defined in equation (23) in [74].
Since we assume the map to be static, the matrix 𝑄 can be factorized according to

[

�̃� 0

0 0]
= 𝑉

⊤
𝑄𝑉 , 𝑉 = [𝐼 0] , (5.13)

and where �̃� is a 6×6 matrix expressing the process noise on the position and orientation.
After applying the matrix inversion lemma to this dynamic update, it reduces to

EKF
𝑡+1

= EKF
𝑡

−EKF
𝑡

𝑉
⊤
(𝑉EKF

𝑡
𝑉
⊤
+ �̃�)

−1
𝑉 𝐼

EKF𝑡
. (5.14)

The Kalman filter measurement update of the information matrix when applied to
Mag-SLAM becomes [106]

EKF
𝑡+1

= EKF
𝑡

+
1

𝜎
2

𝑦

𝐻𝑡𝐻
⊤

𝑡
, (5.15)

where the Jacobian of the measurement model 𝐻𝑡 is as derived in a similar way as equation
(25) in [74], but with finite-support basis functions from 5.7 replacing the Hilbert space basis
functions. This update, as the one in (5.8b) is inherently sparse, and has complexity 𝑂(𝑚′′

).
Similarly, the information vector of EKF-Mag SLAM at each timestep becomes [106]

𝜄
EKF
𝑡

=
1

𝜎
2

𝑦

𝐻𝑡𝑦𝑡 , (5.16)

with 𝑦𝑡 being a three-component magnetic field measurement. (see [107] for a detailed
derivation of the extended information filter). The re-linearisation of the estimated position,
orientation and magnetic field would then in general require an inversion of the full
informationmatrix. However, by employing the approximation that only the basis functions
that are closer to the prediction point (which in this case is the estimated location) are the
ones necessary to approximate the magnetic field, we can execute the re-linearisation at a
computational cost of (𝑚′′3

). We do this explicitly according to

[𝛿
⊤

𝑡
𝜂
⊤

𝑡
𝜈
⊤

⋆,𝑡]

⊤

= (𝐼
EKF
𝑡,⋆

)
−1
𝜄
EKF
𝑡,⋆

, (5.17a)
�̂�
𝑡 |𝑡
= �̂�

𝑡 |𝑡−1
+𝛿𝑡 , (5.17b)

�̂�
𝑡 |𝑡
= �̂�

𝑡 |𝑡−1
⊙ expq(𝜂𝑡), (5.17c)

�̂�
⋆,𝑡 |𝑡

= �̂�
⋆,𝑡 |𝑡−1

+ 𝜈⋆,𝑡 , (5.17d)

where we only add the correction on the linearisation point corresponding to the magnetic
field map 𝑚𝑡 in the entries in the subset 𝑆⋆. The orientation estimate �̂�

𝑡 |𝑡
is represented as a

unit quaternion. The operator expq(⋅) is defined in [4].
What is worth noting about the relinearisation in equation (5.17) is that it only requires

knowledge of a subset 𝑆⋆ of the entries in the information matrix. Furthermore, for all
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possible position estimates �̂�
𝑡 |𝑡−1

∈ ℝ
3, the union of all possible subsets 𝑆⋆ is given as the

set of index pairs 𝑖, 𝑗 where the corresponding basis functions are closer to each other
according to the infinity norm than 2𝑟

⋆. We can formally define this union of all possible
usable subsets as 𝑆⋆,∀ = {𝑖, 𝑗 |‖𝑝𝑖,𝑡 −𝑝𝑗 ,𝑡 ‖∞ ≤ 2𝑟

⋆
}. For an information matrix 𝐼 , this subset is a

sparse subset of the full set of entries, with (𝑚𝑚′′2
) elements. Assuming 𝑚 >> 𝑚

′′, this
sparse subset contains 𝑂(𝑚) elements. Fig. 5.2 illustrates examples of sparsity patterns
for an information matrix corresponding to a one-dimensional, a two-dimensional, and a
three-dimensional grid of equispaced basis functions. In the one-dimensional grid, four
basis functions are located along the x-axis at [−1.5,−0.5,0.5,1.5], and the indexes are
ordered correspondingly in Fig. 5.2. In the two-dimensional grid, 16 basis functions are
located along the x and y-axis at

[

−1.5 −1.5 −1.5 … 1.5 1.5

−1.5 −0.5 0.5 … 0.5 1.5]
, (5.18)

and also indexed chronologically.
The only entries of the information matrix that are used to compute the term

EKF
𝑉
⊤
(𝑉EKF

𝑉
⊤
+ �̃�)

−1
𝑉EKF

, (5.19)

are the entries in the first 6 rows and the first 6 columns of the information matrix. These
are the only entries that can possibly affect the values contained in ∀⋆ during the dynamic
update. The only entries of the information matrix we need to keep track of are therefore
the union of the first 6 columns and the first 6 rows and the values in ∀ ⋆. Fig. 5.3 shows
an example of the union of these two sparsity sets, for our estimation problem with an
equispaced 3D grid of finite-support basis functions. The sparsity pattern shows a fractal-
like structure that is explained by the fact that we are displaying the pattern for a 3D grid
of basis functions, and the nature of the ordering of the indexes of these basis functions. It
is therefore sufficient during application of the entire algorithm to only keep track of the
entries in ∀ ⋆, and in the first six rows and the first six columns.

5.4 Relation to existing work
Many approximations to GP maps have been proposed to remedy the poor scalability of GP
terrain maps. The particular use-case our proposed approximation does well compared to
previous work is the ability to perform online GPmapping with a computational complexity
that does not change over time as more measurements are gathered (temporal scalability),
and that simultaneously does get slower as the size of the map increases relative to the
spatial variations (spatial scalability).

5.4.1 Temporally scalable approacheswhicharenot spatially
scalable

GP regression approximatedwith basis functions is a temporally scalable andwell-established
strategy for online GP mapping [8, 13, 74, 76, 99, 108]. This is commonly used for online
learning with GP regression [109]. A prediction can also be made at any time in any
location with a computational complexity of (𝑚2

).
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Practical examples of realistic terrains used for aiding navigation have small spatial
variations relative to the size of the map [110–113]. Existing sparse approximations to
GPs with basis functions require a number of computations which scale with the size of
the mapped area relative to the lengthscale of the kernel [114]. This is due to the fact
that GP approximations that efficiently recover the higher eigenvalues of the kernel but
not the smaller eigenvalues will, in general, have poor performance when the lengthscale
of the kernel is small relative to the domain [11, 114]. In practice, this manifests as a
need for a larger number 𝑚 of basis functions as the domain size increases [11], which
in turn increases the computational requirements (𝑚2

). Another online GP mapping
approximation using finite-support basis functions was proposed by [115], which uses a
sparse-weight Kalman filter for this approach as described in [116], and therefore has a
computational complexity of including each new measurement of (𝑚).

In both our work and a range of other work, the magnetic field map is estimated online
in a Bayesian filter for SLAM by including the basis function weights in the state space [8,
74, 99]. Basis-function approximation to GPs are employed for online creation of magnetic
field maps [8], underwater bathymetry maps [99] and ground elevation maps [108]. Due
to the computational cost of (𝑚2

), SLAM algorithms using basis function approximations
to create the map are limited to a small map area [74, 76, 99], or to breaking up the map
into separate maps without sharing information between the maps [8, 117].

5.4.2 Spatially scalable approacheswhicharenot temporally
scalable

There is also some work for large-scale terrain mapping that suggests using only the 𝑘
nearest measurements for applying GP regression [12, 111]. This approach uses KD-trees
for efficient querying of the data. It requires storage which scales linearly in the amount
of measurements. The storage requirements of this approach will therefore increase over
time. Although they are spatially scalable, these approximations are therefore not spatially
scalable.

5.4.3 Spatially and temporally scalable approximations that
suffer from boundary effects

Local GPs avoid the issues of increased computational complexity with increasing domain
size by splitting the input domain into discrete sub-domains [118, 119]. This approach
suffers from discontinuities and inaccurate predictions at the domain boundaries [118].
Patched local GPs [120] and domain decompositionmethods [121] both remedy this problem
by introducing constraints connecting the local domains. However, this remedy to the
boundary effect problem requires a number of computations that scale with the number of
considered domains and thus do not truly achieve a prediction time complexity independent
of the spatial size of nonlinear field [120]. Although all of the previously mentioned local GP
regression approximations are formulated offline, an online approach to local GP regression
was proposed by [122].

The technique of splitting the field into sub-domains have also been integrated into
SLAM [8, 14, 72]. These approaches often require additional modifications in the SLAM
algorithm to handle the cases where position estimates are close to borders of the domains,
where the boundary effects are strong [8]. This is in contrast to our proposed approach,
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Table 5.1: Comparison of computational complexities for online mapping.

Step (SKI, [18]) Our method HS functions
Meas update (𝑚′2

) (𝑚′2
) (𝑚2

)

Prediction (𝑚 log(𝑚)) (𝑚′′3
) (𝑚)

where the local domain always surrounds the prediction point, and therefore does not
suffer from boundary effects.

5.4.4 Structured Kernel Interpolation
Another approximation that performs GP regression efficiently in large maps was pro-
posed by [18]. It applies the Woodbury matrix inversion lemma to reduce the required
computational complexity of a GP approximation called Structured Kernel Interpolation
(SKI) [104]. SKI uses grid-structured finite-support basis functions to perform approximate
GP regression.

The novelty in our contribution in contrast to SKI is that we perform these updates
online and that we perform predictions using only a local subset of 𝑚′′ of the finite support
basis functions. The prediction cost of [18] is dependent on the size of the input domain.
Each prediction with SKI, therefore, requires(𝑚 log(𝑚)) operations, while each prediction
with our method requires only (𝑚′′3

) operations. SKI therefore is able to include new
measurements in the map in a way which is both spatially and temporally scalable. In
contrast to our work, SKI requires more computations to make predictions as the size of
the map area grows. A detailed comparison of the computational complexity of SKI and
our approach is given in table 5.1.

5.4.5 Integration into SLAM
The use of our approximation reduces the overall computational complexity of an existing
extended Kalman filter Mag-SLAM (EKF-Mag-SLAM) algorithm with Hilbert space basis
functions [74]. Mag-SLAM with an EKF or requires a measurement update and dynamic
update at each timestep. Additionally, a prediction of the magnetic field is required at each
timestep (this is officially part of the measurement update, but we consider it a separate step
to evaluate the computational complexity required to make this prediction). Incorporating
our approach in Mag-SLAM gives direct improvements to the computational requirements
for the measurement update, and for making a prediction. Furthermore, our approximation
of using only a local subset of the basis functions in the prediction step induces a sparsity
structure which reduces the computational requirements of the dynamic update. This
causes an overall improved computational complexity of the EKF Mag-SLAM algorithm
in [74] to reduce from 𝑂(𝑚

2
) to 𝑂(𝑚). An overview of the computational complexities of

EKF Mag-SLAM with our mapping technique compared to EKF Mag-SLAM with Hilbert
space methods is given in table 5.2.
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Table 5.2: Comparison of computational complexities after integrating the approach into SLAM.

EKF EKF
Mag-SLAM with Mag-SLAM with

Step our method HS functions
Meas update (𝑚′2

) (𝑚2
)

Prediction (𝑚′′3
) (𝑚)

Dyn update (𝑚) (𝑚2
)

Table 5.3: SMAE accuracies, combined time to include a new measurement and make a new prediction, MSLL
scores on audio dataset. The results that obtain the lowest run-time while also obtaining the lowest SMAE is
highlighted. SMAEs and MSLL scores are evaluated on all standardized test points inside the considered domain,
and the average time plus minus one standard deviation is calculated based on 100 repetitions.

10% of domain, 𝑚 = 800 100% of domain, 𝑚 = 8000

SMAE Time[s] MSLL SMAE Time[s] MSLL
𝑟 = 6𝑙SE 0.42 6.2 ⋅10

−5
±2.1 ⋅10

−5
37.5 0.34 7.3 ⋅10

−5
±2.2 ⋅10

−5
48.0

𝑟 = 12𝑙SE 𝟎.𝟐𝟐 𝟗.𝟒 ⋅𝟏𝟎
−𝟓

±𝟐.𝟏 ⋅𝟏𝟎
−𝟓

4.18 𝟎.𝟐𝟎 𝟏.𝟏 ⋅𝟏𝟎
−𝟒

±𝟏.𝟔 ⋅𝟏𝟎
−𝟓

12.2

𝑟 = 18𝑙SE 0.22 1.3 ⋅10
−4

±2.7 ⋅10
−5

3.94 0.20 1.6 ⋅10
−4

±2.1 ⋅10
−5

12.2

SKI 0.22 8.0 ⋅10
−4

±1.2 ⋅10
−4

5.74 0.20 1.6 ⋅10
−3

±1.7 ⋅10
−4

18.2

Inducing inputs 0.22 1.0 ⋅10
−2

±7.4 ⋅10
−4

3.81 0.20 2.1 ⋅10
−1

±1.6 ⋅10
−3

12.2

Hilbert space 0.22 9.5 ⋅10
−3

±5.1 ⋅10
−4

3.80 0.20 2.2 ⋅10
−1

±4.6 ⋅10
−3

12.2

5.5 Results
In this section, we first compare the performance of our method with existing approaches
on two low-dimensional, spatially large benchmark data sets. As the choice of kernel hyper-
parameters affects the trade-off between computational complexity and the approximation
accuracy, to ensure a fair comparison, we consider the same hyperparameters that are used
by previous work for these data sets. See [18, 104] for the audio dataset, and [18, 123] for
the precipitation dataset. Then, we measure how long it takes for our method to make
online predictions using a short length scale and millions of basis functions on a bathymetry
dataset that is too large for existing approaches given our hardware constraints. For the
experiments we perform on the audio benchmark, like other approaches that use this
dataset as a benchmark to investigate spatial scalability [18, 104], we treat the temporal
axis as a spatial axis.

As the data sets considered in Sections 5.5.2 and 5.5.3 are geospatial data with a non-
zero mean value, the average of the output is subtracted before training. This average
is subsequently added to each prediction. All computation times reported are measured
while running on a Dell XPS 15 9560 laptop, with 16 GB RAM and an Intel Core i7-7700HQ
CPU running at 2.80 GHz. In all experiments we set 𝑟 = 2𝑟

⋆, as picking 𝑟 >= 2𝑟
⋆ gives

that the expression for 𝑃−1

⋆
reduces to 𝑃

−1

⋆
= 𝐾(𝑢𝑆⋆ , 𝑢𝑆⋆), as derived in Appendix 5.A. This

means that we have a closed-form expression for the inverse of the prior covariance which
does not rely upon computing any numerical inverses, further reducing the necessary
computational efforts to make each prediction. All predictions are made using the squared
exponential kernel. All code and files required to reproduce the results can be found
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Figure 5.4: KL divergence (KLD) between the full GP posterior, and approximations with various local domain
sizes 𝑟 , trained on the audio dataset. The error bars indicate the average deviation above and below the mean,
respectively, after 100 repeated experiments with 100 randomly sampled measurements from the training set.

on https://github.com/fridaviset/FastGPMapping.

5.5.1 One-dimensional sound map
A dataset describing natural sound was published by [124], and subsequently used by [104]
and [18] to demonstrate the ability of their approximations to learn a large dataset with a
large input domain relative to the size of the spatial variations in the field. This section
describes various experiments that all make a one-dimensional GP map from the time axis
to the amplitude of the sound wave.

We illustrate multiple properties of our approximation using this dataset. Firstly,
we show on the audio dataset that our approximation converges to the inducing point
approximation as the radius of the local domain increases. Secondly, we show that our
approach converges to the GP posterior as both the radius of the local domain and the
basis function density increase. Thirdly, we show that our approach has a lower online
computation time compared to both SKI, inducing points, and Hilbert space methods on
the full dataset while matching the prediction accuracy measured by SMAE.

To evaluate the accuracy and required computation time on the same dataset with
the same GP prior as [18], we use the squared exponential kernel in equation 5.2 with
hyperparameters set to 𝜎SE = 0.009, 𝑙SE = 10.895, 𝜎y = 0.002. The dataset is one-dimensional
and contains a training set of 59309measurements of sound amplitude collected at a known
input time and a fixed test set of 691 points.

In Fig. 5.4 we investigate how high the grid density has to be for the basis function
approximation described in section 5.2.2 using the basis functions described in section 5.3.1
with 𝑟 =∞ and for our proposedmethod in sections 5.3.2 and 5.3.3 with various local domain
sizes 𝑟 . We assess our results in terms of the KL divergence between the approximate
inference and the full GP posterior. This is a measure that can attain values between 0 and∞

https://github.com/fridaviset/FastGPMapping
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Figure 5.5: Online inference time on audio dataset for a growing domain size for our proposed method with
various local domain sizes 𝑟 , compared to the inducing input approximation using inducing inputs on a grid,
the Hilbert space basis function approximation, and SKI. All methods were run using the same amount of basis
functions. The error bars indicate the average deviation above and below the mean after 100 repeated experiments,
respectively.

that compares how similar distributions are and a lower value means that the distributions
are more similar. For all the investigated approximations, a higher basis functions density
(measured in the number of basis functions per lengthscale) gives a lower KL divergence
between the approximate inference and the full GP posterior. The results demonstrate
that the KL divergence between the full GP posterior and our approximation reduces with
increasing parameter choice 𝑟 .

To measure how long it takes for our approach to perform online mapping, we measure
the time it takes to include one additional measurement and perform one prediction step.
In Fig. 5.5, we compare our proposed method to the inducing input solution implemented
with an online Kalman filter [109], an online Kalman filter implementation with Hilbert
space basis functions [11], and an online implementation of SKI [18], for increasing domain
sizes. As the domain size increases, we keep the basis function density constant to retain
the same approximation accuracy. The amount of basis functions 𝑚 is therefore increasing
linearly. As the online inference time of SKI is affected by how many iterations are used
in the conjugate gradient solver to improve the approximation accuracy, we measure the
run-time using just one iteration in the solver. To compare the prediction accuracy of
SKI to our approach in Table 5.3, however, we use the exact solution that the solver is
approximating. We can therefore conclude that an online evaluation of our algorithm is
faster than competing approaches while being able to recover the same or better SMAE
(standardized mean average error) and MSLL (mean squared log loss) scores (see Table 5.3).
The online computational complexity of both Hilbert space basis functions and inducing
inputs increases quadratically as the domain size increases. The computational complexity
of our approach is bounded by𝑂(𝑚′3

) independent of the increase in the domain size, which
is why our online computational complexity remains lower than 10

−3 seconds independent
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Table 5.4: SMSE accuracies of daily precipitation level predictions. The predictions are obtained with a local
domain with size 𝑟⋆ = 3𝑙SE, which corresponds to using at most 144 basis functions in each local prediction for
the highest 𝑚 = 800𝐾 .

𝑁 full GP Inducing inputs Local information filter
10 000 0.823 0.957 0.905 0.957 0.906 0.824 0.823

20 000 0.766 0.946 0.861 0.947 0.862 0.770 0.766

100 000 N/A 0.907 0.782 0.907 0.786 0.561 0.545

528 474 N/A 0.894 0.746 0.895 0.751 0.468 0.435

(a) 𝑚 = 2.33M, 𝑁 = 373K. (b) 𝑚 = 286K, 𝑁 = 37.3M.

(c) 𝑚 = 2.33M, 𝑁 = 37.3M.

Figure 5.6: Bathymetry dataset reconstruction with GP regression. The color corresponds to the posterior
predicted elevation of the earth surface both above and below the sea, and the opacity is inversely proportional
to the variance of the approximate GP prediction in each location.

of the growth of the domain size.

5.5.2 Mapping daily precipitation levels
In this section, we compare the prediction accuracy and computation time of our mapping
approach to alternative methods on a large geo-spatial dataset which is used as a benchmark
dataset for evaluation accuracy and computation time by [18], and [104].

The precipitation dataset contains 528474 measurements of daily precipitations from
the US in the training set, and 100 000 measurements in the test set [18]. The input
dimensions are latitude, longitude, and time. We use the squared exponential kernel using
the same hyperparameters as [18]. These hyperparameters are 𝜎SE = 3.99, 𝜎y = 2.789

and 𝑙SE = [3.094,2.030,0.189], where the three lengthscales 𝑙SE apply to each of the three
dimensions, respectively. The results are displayed in Table 5.4.

In Table 5.4, the standardized mean squared error (SMSE) of our approach with 𝑟
⋆
=

3.5𝑙SE is compared to the full GP prediction, and to the inducing input approximation with
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basis functions placed on the same grid. The SMSE of our approach almost matches the
inducing input approximation with the same number of basis functions. Using 800 000 basis
functions, it matches the GP prediction accuracy with the same number of measurements.
Using all the measurements and 800 000 basis functions gives the highest prediction
accuracy, which is a combination that is computationally infeasible given our hardware
constraints for both the full GP regression and the inducing input approximation to give a
prediction. However, our proposed method has an online training time of 0.017 seconds
per measurement and 0.016 seconds per prediction.

5.5.3 Global Bathymetry Field Mapping
To investigate the time required for our method to include a new measurement and make
a prediction in a large geospatial field with fine-scale variations, we run it on a dataset
containing values of the height difference with respect to sea level across the globe [125].
The input domain of this data is huge compared to the scale of the spatial variations, and
the data is therefore challenging to train on using state-of-the-art methods. We retrieve
37.5 million depth values from the database, and we consider the latitude and longitude as
input locations.

We test our approach with the hyperparameters 𝜎2

SE equal to the variance of the 37.5
million measurements, 𝜎y = 0.1𝜎SE, and a lengthscale 𝑙SE = 0.16 degrees (which corresponds
to 18.3 km on the equator). We use a local subset contained within 𝑟

⋆
= 3𝑙SE for our

prediction-point dependent local approximations to the GP posterior mean. We perform
predictions using our proposed algorithm for three cases: one where we use 2.33 million
basis functions and 373 thousand measurements, one where we use 268 thousand basis
functions and 37.3 million measurements, and one where we use both 2.33 million basis
functions and 37.3 million measurements.

The result in Fig. 5.6 shows the learned bathymetry map using 10% of the measure-
ments, and 2.33 million basis functions (Fig. 5.6a), and the learned map using 100% of the
measurements and 268 thousand measurements (Fig. 5.6b) with a map learned with 100%

of the measurements and a dense grid of 2.33 million basis functions (Fig. 5.6c). For the
results in Fig. 5.6c, including each new measurement takes 3.7×10−4±0.12×10

−4 seconds.
Each prediction takes 0.0097±0.017 seconds. These results demonstrate that our proposed
approach can remain computationally feasible in cases where the measurement density is
high, and the map area is large relative to the length scale of the spatial variations. For that
particular usecase, our proposed approach does not have the disadvantage of discarding
measurements which is visible in Fig. 5.6a, which is that some areas can be far from any
measurements relative to the lengthscale of the inference, meaning that the prediction in
some areas is less certain than in others. Similarly, our proposed approach does not have
the disadvantage of using less tight grids of inducing points, which is visible in Fig. 5.6b,
where the prediction points far from inducing point locations are less certain than the ones
close to the inducing point locations.

5.5.4 Using local information filter for faster Mag-SLAM
To experimentally compare the local information filter with Hilbert space basis functions
in EKF Mag-SLAM, we apply both algorithms to a dataset from a foot-mounted sensor that
was collected by [55] and subsequently used in [74] to demonstrate the drift-compensating
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(a) Odometry (b) Our approach,
𝑟 = 1.5𝑙𝑆𝐸 ,

2.8±0.85 ms

(c) Our approach,
𝑟 = 2𝑙𝑆𝐸

4.2±1.1 ms

(d) Our approach,
𝑟 = 2.5𝑙𝑆𝐸

5.6±1.3 ms

(e) Baseline,
26±4.6 ms

Figure 5.7: Trajectory estimates for indoor pedestrian walking laps in a hallway using only foot-mounted odometry,
EKF-SLAMwith the local information filter with various sizes of the local domain determined by 𝑟 and EKF-SLAM
with Hilbert space basis function (baseline). The average computation time in milliseconds for one iteration of
each filter (dynamic update + measurement update) is written below each sub-Fig..

abilities of EKFMag-SLAM.We replace the Hilbert space basis function approximation with
the local basis function approximation in EKF Mag-SLAM as described in section 5.3.4, and
measure the average computation time required to make each iteration of the algorithm on
the same laptop computer. We compare this with the average computation time required
to make each iteration of the original EKF Mag-SLAM using Hilbert space basis functions.

In Fig. 5.7a, the odometry obtained by using only accelerometer and gyroscope measure-
ments from a foot-mounted sensor using the algorithm in [126] is displayed. In Fig. 5.7e, the
estimated trajectory using the EKF with Hilbert space basis functions as in [74] is displayed.
All estimates are overlayed the floorplan of the building where the measurements were
collected. This gives a rudimentary means of evaluating the position estimation accuracy,
since the subject was repeatedly walking through the same hallways in a repeated pattern
8-motion. The drift in the odometry in Fig. 5.7a therefore shows up as a slow displacement
of the position estimate away from the hallway the pedestrian was walking in. In contrast,
the estimates obtained from our approximate mapping in Fig. 5.7d and from the baseline
EKF Mag-SLAM with Hilbert space basis functions in Fig. 5.7e compensate for the drift of
the estimates from the gyroscope and accelerometer. The notable difference between our
approach and the approximation using Hilbert space basis functions, is that the Hilbert
space basis functions require 26±4.6ms to run at each iteration, while our equally accurate
algorithm require 5.6±1.3 ms to run at each iteration.
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5.6 Conclusion
To improve indoor position estimates online with few computational resources, we have
presented an efficient online mapping technique that gives an approximation to the GP
posterior requiring a number of computations that neither scales with the temporal dura-
tion of the mapping, nor with the spatial extend of the map. The storage requirements of
our presented mapping algorithm scales linearly with the spatial extent of the map, and
does not scale with the temporal duration of the mapping. We have also demonstrated the
ability of our mapping algorithm to match the accuracy of previously proposed approxi-
mations on benchmark datasets using a lower computation time. It is possible to replace
a previously proposed GP approximation in an EKF for Mag-SLAM. Our experiments on
data from a foot-mounted sensor using our proposed method achieve the same prediction
accuracy as Mag-SLAMwith a previously proposed mapping approximation using a shorter
computation time on the same computer. Future work could investigate the existence of
theoretical bounds on the approximation errors, or investigate ways to incorporate the
mapping technique for SLAM in different geospatial fields, and for other applications such
as navigation of robots or vehicles.

5.A Derivationof prior covariance fortheprediction-
point dependent basis function approximation

The prior for the parametric approximation to the GP regression using the local subset of
basis functions is given by

̃
𝑓
⋆
= Φ

⊤

⋆𝑤⋆ , 𝑤⋆ ∼ (0, 𝑃⋆), (5.20)

where 𝑃⋆ is the prior covariance on the local weights. The condition that the prior should
be recovered in the center locations of the basis functions is given as

𝑝(
̃
𝑓
⋆
(𝑢𝑆⋆)) = 𝑝(𝑓 (𝑢𝑆⋆))). (5.21)

As both these are normal distributions with mean 0, and difference covariances, this
conditions hold if and only if the two covariances are equal according to

Φ𝑆
⋆(𝑢𝑆⋆)

T
𝑃⋆Φ𝑆

⋆(𝑢𝑆⋆) = 𝐾(𝑢𝑆⋆ , 𝑢𝑆⋆). (5.22)

This gives the closed-form expression for 𝑃⋆ given by

𝑃⋆ = (Φ𝑆
⋆(𝑢𝑆⋆)

T
)
−1
𝐾(𝑢𝑆⋆ , 𝑢𝑆⋆)Φ𝑆

⋆(𝑢𝑆⋆)
−1
, (5.23)

in the case where (Φ𝑆
⋆(𝑢𝑆⋆)

T
) and Φ𝑆

⋆(𝑢𝑆⋆) are invertible. The entry in row 𝑖 and column 𝑗

of the matrix Φ𝑆
⋆(𝑢𝑆⋆) is defined as 𝜙𝑖(𝑢𝑗 ). Plugged into the definition in (6), this gives

𝜙𝑖(𝑢𝑗 ) =

{

𝜅(𝑢𝑖, 𝑢𝑗 ), ‖𝑢𝑖−𝑢𝑗 ‖∞ ≤ 𝑟

0, ‖𝑢𝑖−𝑢𝑗 ‖∞ > 𝑟
(5.24)

For all inducing input pairs 𝑖, 𝑗 in the set (𝑥⋆, 𝑟⋆), from the definition of the set, it holds
that ‖𝑢𝑖 − 𝑢𝑗 ‖∞ ≤ 2𝑟

⋆. If 𝑟 ≥ 2𝑟
⋆, the condition ‖𝑢𝑖 − 𝑢𝑗 ‖∞ ≤ 𝑟 holds for all 𝑖, 𝑗 ∈ ⋆. This

again means that 𝜙𝑖(𝑢𝑗 ) = 𝜅(𝑢𝑖, 𝑢𝑗 ) for all 𝑖, 𝑗 ∈ ⋆, which means that Φ𝑆
⋆(𝑢𝑆⋆) = 𝐾(𝑢𝑆⋆ , 𝑢𝑆⋆).

Inserting this result into (5.22) gives 𝑃⋆ = 𝐾(𝑢𝑆⋆ , 𝑢𝑆⋆)
−1.
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6
Online discovery of global

patterns and local
variations in magnetic fields

using Gaussian process
regression

Variations in the magnetic field can, if accurately mapped, be used as a reliable information
source for indoor localization. However, the creation of high-fidelity magnetic field maps is
a time-consuming and costly process making it challenging to map large areas. In many
indoor environments, the variations in the magnetic field have partially repeated patterns
induced by repeated structural components in the buildings. These patterns can be utilized
to create map models with better extrapolation accuracy, thus requiring smaller areas to
be mapped and reducing the time and cost associated with the map creation. Therefore,
an algorithm for online learning of both local variations and globally repeated patterns in
magnetic fields is proposed. The algorithm is based on a Gaussian process model that uses
a novel curl-free pattern-discovery kernel; the graphical abstract to the right illustrates the
kind of globally repeating patterns that can be learned online using the proposed model. The
proposed pattern-discovery kernel is exactly equivalent to a parametric model. Observing
this fact enables online learning of the global patterns without further approximation, unlike
existing local methods that require parametric approximation to enable online learning. The
functionality and properties of the proposed algorithm are showcased via three experiments.
They show that the proposed kernel has equal interpolation accuracy compared to existing
kernels, and improved extrapolation properties in the case of globally existing patterns. They
also show that if there are no significant globally repeated patterns, the proposed kernel has
equal performance with existing methods.

This chapter is based on Frida Viset, Anton Kullberg, Gustaf Hendeby, Rudy Helmons, Isaac Skog and Manon Kok:
Online discovery of global patterns and local variations in magnetic fields using Gaussian process regression.
Under review.
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Figure 6.1: Collecting measurements of magnetic field along hallway in university building with a smartphone.
The learned magnetic field measurements using the pattern-discovery kernel are displayed. The color corresponds
to the learned magnetic field strength, and the opacity corresponds to the confidence of the estimate. As the
metallic columns create a repetitive magnetic field pattern, our online pattern-detection algorithm is able to
predict the magnetic field variations not only in the walked trajectory but also further down the hall.

6.1 Introduction
In indoor environments, magnetometer readings are typically given not only by the earth’s
constantmagnetic field but also by spatial variations [12]. The variations arise from repeated
structural components in the buildings, as well as randomly placed metallic furniture and
objects [29]. An example of the magnetic field in the path of a pedestrian holding a cellular
device with a magnetometer is displayed in figure 6.1. We propose an online algorithm
for constructing a magnetic field map based on magnetometer measurements that not
only interpolates the map in a visited area, but is also able to extrapolate to unseen areas
based on expected repetitions in the magnetic field pattern, as demonstrated in figure 6.2.
In recent years, a wide range of research has investigated the online creation and use of
magnetic anomaly field maps to enable meaningful online interpretation of magnetometer
readings in indoor robots, pedestrians, and vehicles, and for GNSS-denied navigation
and mapping [7, 8, 14, 50, 72, 74, 94, 127–129]. High-accuracy magnetic field maps can
also be used to improve magnetometer calibration, as demonstrated by [130]. In order
to accomplish these tasks, GP regression with curl-free kernels has been widely used,
because it gives a smooth interpolation between measurement points and an inherent
quantification of the uncertainty of the learned magnetic field map [8, 12, 14, 74]. To enable
online magnetic field mapping, all of these works use parametric approximations of the
local variations that can be incorporated into any state-space model.

On floor level, the magnetic field variations are typically caused by reinforcing steel
structures, which generally have an intricate structure, creating complex and chaotic
distortions in the magnetic field [131]. Larger structural steel elements such as beams
or reinforced columns however reoccur at predictable locations, which can give rise to
variations with a repetitive pattern across larger areas. Despite this, previous work has not
yet considered exploiting these patterns, which may improve the model’s inherent ability
to extrapolate the magnetic field map to unvisited regions. To fill this gap, we propose an
algorithm for online curl-free magnetic field mapping to capture both globally repeated
patterns while retaining the ability to capture local variations. This is achieved by encoding
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(a) An existing algorithm using the SE kernel can not extrapolate outside,
but interpolates well within, the visited region.

(b) Our proposed PD+SE kernel can extrapolate to unseen data regions
while retaining interpolation properties.

Figure 6.2: Predicted magnetic field in a hallway of a university building. The gray line shows the measured
trajectory of the pedestrian in figure 6.1 at time 𝑡, and the black line shows the measured trajectory of the phone
at the same timestep. The predicted magnetic field norm at time 𝑡 is illustrated by the colored surface. The opacity
is proportional to the confidence of the magnetic field estimate.

this information in a GP kernel, which allows us to use magnetic field measurements from
a finite region to extrapolate to unseen areas without ever visiting them, see figure 6.2b.
We encode this information by adapting the kernel to be more expressive. To be precise,
to encode the global patterns, we propose a curl-free and pattern-discovering kernel by
considering a Fourier decomposition of any kernel in a finite, but repeated domain. We
combine this kernel with a standard SE kernel to capture both local variations through the
SE component as well as globally repeated patterns through the PD kernel.

To enable online magnetic field mapping with this combined kernel, we represent
it using a parametric model, similar to previous works. Since the proposed kernel is a
sum kernel, we approximate the SE kernel using the same parametric model for curl-
free fields with local variations as proposed by [8]. See figure 6.2a for an example of
how the SE kernel can be used to interpolate based on previous measurements. We then
demonstrate that the PD kernel can be exactly rewritten to a parametric model, without
approximation. By combining these two parametric representations in a single model,
we enable online magnetic field mapping with excellent extrapolation properties while
retaining the interpolation properties of previous works.

Our contributions are thus two-fold: (i) an exact parametric formulation of a PD kernel
on finite, connected and repeated domains (ii) an online algorithm for learning globally
repeated patterns of the magnetic field while still allowing for local variations. The paper
is organized as follows: section 6.2 discusses preliminaries on GPs and the incorporation
of the curl-free constraint. In section 6.3, we first present our approach to including both
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local variations as well as globally repeated patterns. Then, we show how the resulting
GP can be approximated as a basis function expansion and detail how this results in an
online algorithm for magnetic field mapping. section 6.4 presents our three experiments
and showcases the capabilities of our proposed model. Lastly, section 6.5 discusses related
work, section 6.6 discusses the implications of the proposed method, and in section 6.7 the
conclusions are stated.

6.2 Preliminaries
6.2.1 Gaussian Processes
A Gaussian process (GP) is a collection of random variables, any finite number of which
have a joint Gaussian distribution [16]. Formally, we denote a zero-mean GP by

𝑓 ∼ (0, 𝜅(⋅, ⋅)), (6.1)

where 𝜅 ∶ ℝ
𝐷
×ℝ

𝐷
→ ℝ is the kernel, where, e.g., 𝜅(𝒙,𝒙′

) represents the covariance be-
tween any two pair of inputs 𝒙 and 𝒙

′. The standard conjugate GP assumes independent
observations of the latent process values, i.e.,

𝒚 ∼ (𝒇 ,𝜎
2

𝑦
𝑰),

where 𝒇 = [𝑓 (𝒙1) ⋯ 𝑓 (𝒙𝑁 )]

⊤ is a vector of function values at the input locations {𝒙𝑖}
𝑁

𝑖=1
.

The posterior distribution of the GP is then given by 𝑝(𝒇
∗
|𝒚) = (𝝁

∗
,𝑽

∗
) with [16]

𝝁
∗
= 𝑲∗𝑓 (𝑲 𝑓 𝑓 +𝜎

2

𝑦
𝑰)

−1
𝒚 (6.2a)

𝑽
∗
= 𝑲∗∗−𝑲∗𝑓 (𝑲 𝑓 𝑓 +𝜎

2

𝑦
𝑰)

−1
𝑲 𝑓 ∗, (6.2b)

where [𝑲𝑎𝑏]𝑖𝑗 = 𝜅([𝑿
𝑎
]𝑖, [𝑿

𝑏
]𝑗 ) is the kernel matrix for the inputs in 𝑿

𝑎 and 𝑿𝑏. Thus, e.g.,
[𝑲∗𝑓 ]𝑖𝑗 = 𝜅([𝑿

∗
]𝑖, [𝑿

𝑓
]𝑗 ) where 𝑿∗ and 𝑿

𝑓 are the collection of test and training inputs,
respectively. The kernel 𝜅(⋅, ⋅) can generally be chosen freely, as long as the resulting
covariance matrix 𝑲 𝑓 𝑓 is positive semi-definite and thus constitutes a valid covariance
matrix. The de facto standard choice is the squared exponential (SE) kernel given by

𝜅SE(𝝉) ≜ 𝜅SE(𝒙,𝒙
′
) = 𝜎

2

𝑓
exp

(
−

‖𝝉‖
2

2

2𝑙
2 )

, (6.3)

where 𝝉 = 𝒙 − 𝒙
′ and ‖⋅‖

2

2
is the squared 2-norm. Further, 𝑙 is commonly referred to as

the characteristic lengthscale and 𝜎
2

𝑓
describes the signal variance. Generally, the SE

kernel promotes very smooth functions that have excellent interpolation properties, but
extrapolate poorly.

6.2.2 Incorporating Curl-free Constraints
When there is no free current in the space, the magnetic field is curl-free [15], i.e., the
nonlinear field 𝒇 ∶ ℝ

3
→ ℝ

3 describing the magnetic field fulfills

∇×𝒇 = 𝟎. (6.4)
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Figure 6.3: A one dimensional illustration of our stationary kernel, expressed as the sum of a pattern detection
kernel with fixed interval frequencies and an SE kernel.

Note that any curl-free field can be expressed as the gradient of a potential field. It is thus
possible to give an equivalent expression for the curl-free field by introducing a potential
field 𝜑 ∶ ℝ

3
→ ℝ. If the potential field is distributed according to the prior 𝜑 ∼ (0, 𝜅(⋅, ⋅))

and 𝑓 is defined as
𝒇(𝒙) = ∇𝒙𝜑(𝒙), (6.5)

the resulting GP 𝒇(𝒙) is curl-free by construction [15]. Since ∇ is a linear operator, the
distribution of 𝒇 is a linear transformation of a zero-mean GP with covariance [15]

𝐸[𝒇(𝒙)𝒇(𝒙
′
)] = ∇𝒙∇𝒙′𝜅(𝒙,𝒙

′
). (6.6)

6.3 Method
We consider the problem of identifying a model of the magnetic field in a structured envi-
ronment using a GP. The environment is assumed to contain no free current, implying that
the magnetic field is curl-free [15], and we will thus use the construction in equation (6.5)
to define our GP. The environment is further assumed to contain both global repetitive
structural elements as well as non-repetitive elements inducing local variations in the
magnetic field. To learn the globally repeating patterns and the local disturbances, we
combine a version of the pattern detection (PD) kernel proposed by [1], with an SE kernel.
To enable online learning of the magnetic field, we rewrite the GP as a parametric model.
The SE kernel is represented as a parametric model using a basis function approximation
as in [11]. We then show that the PD kernel is exactly equivalent to a parametric model
without further approximation. Finally, we combine the two parametric models into one
joint state-space, resulting in an online algorithm for learning both local variations and
globally repeating patterns.

6.3.1 Modeling Curl-free Local and Repeating Patterns
To preserve the curl-free property of the magnetic field, it is modeled by a potential field
equation (6.5) and thus measures the gradient of the potential field along the 𝑥 , 𝑦, and 𝑧

directions, respectively. The observation model is given by

𝒚
𝑡
= ∇𝑥𝜑(𝒙𝑡)+𝒆𝑡 , 𝒆𝑡 ∼ (𝟎,𝜎

2

y𝑰3). (6.7)

The vector 𝒚
𝑡
thus contains the magnetic field strength in the 𝑥 , 𝑦, and 𝑧 direction re-

spectively, from here on denoted by 𝒚
𝑡
= [𝑦x,𝑡 , 𝑦z,𝑡 , 𝑦z,𝑡]

⊤. In order to capture both local
variations and globally repeating patterns, the potential field is in turn modeled as

𝜑 ∼ (0, 𝜅PD(⋅, ⋅)+𝜅SE(⋅, ⋅)). (6.8)
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𝜑PD

+
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𝜑SE

Figure 6.4: A simulated realization of a potential field from our proposed kernel, expressed as the sum of a PD
kernel with fixed interval frequencies and an SE kernel. There are both distinct repeated patterns as well as local
variations in the resulting potential field.

Here, the kernel 𝜅SE is given by equation (6.3), and the kernel 𝜅PD is a flexible pattern
discovering kernel that will be introduced in more detail later. The shape of the SE kernel
is illustrated in green to the right in figure 6.3. The shape of the PD kernel can change
depending on the discovered pattern. An example of a PD kernel is illustrated in purple
in figure 6.3. We consider the sum of these two kernels for modeling our magnetic field,
and the resulting kernel is illustrated in blue in figure 6.3.

This construction enables extrapolation to unseen input regions through the PD kernel,
but still retains the abilities of the SE kernel to capture local, non-repetitive variations. A
potential function sampled from such a kernel is visualized in figure 6.4. Note that additive
GP kernels correspond to an additive GP model and we can thus rewrite equation (6.8) as

𝜑 = 𝜑PD+𝜑SE (6.9a)
𝜑PD ∼ (0, 𝜅PD(⋅, ⋅)) (6.9b)
𝜑SE ∼ (0, 𝜅SE(⋅, ⋅)). (6.9c)

To enable online learning, the two GPs in equation (6.9) are represented as basis
function expansions with two different sets of basis functions, one representing the PD
GP equation (6.9b) and another for the SE GP equation (6.9c), i.e.,

𝜑(𝒙) = [ΦPD(𝒙) ΦSE(𝒙)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≜Φ(𝒙)

[

𝒘PD
𝒘SE]

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

≜𝒘

, 𝒘 ∼ (0,𝚲), (6.10)

where 𝚲 = diag[𝚲PD 𝚲SE]. The SE GP is approximated using the Hilber-space Gaussian
process (HGP) from [11], and the PD GP uses an exact parametric reformulation. These
two parametric formulations are described in the following two sections.
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Figure 6.5: A basis function approximation to SE kernel constitutes a parametric approximation to a kernel
encoding high short-range correlations and low long-range correlations. More basis functions give a more
accurate approximation.

0
𝜏

𝑎
𝑞
= [0.05,0.03,0.01,0.01], 𝜔𝑞

= [0.5,1,2,4]

0
𝜏

𝑎
𝑞
= [0.25,0.25,0.25,0.25], 𝜔𝑞

= [1,2.5,4,6]

Figure 6.6: Examples of PD kernels in 1D with 𝑄 = 4 components and different hyperparameters. It is clearly
capable of representing very distinctive patterns. The PD kernel does not require approximation with basis
functions, as it can be exactly rewritten to a parametric model.

6.3.2 Parametric Approximation to the SE Kernel
To approximate the SE kernel with a parametric model, we use the HGP [11], where the
GP prior is approximated with a reduced-rank basis function expansion

𝜑SE(𝒙) = ΦSE(𝒙)𝒘SE, 𝒘SE ∼ (0,𝚲SE), (6.11)

where ΦSE(𝒙) and 𝚲SE are found by solving a particular eigenvalue problem, see [11] for
more details. The basis functions ΦSE(𝒙) are defined in section 6.A.1. The prior covariance
𝚲SE is diagonal and is in principle given by the spectral density of the SE kernel, see [11] for
details. The approximation becomes more efficient the higher the number of parameters
𝑀 are included to approximate the 𝑆𝐸 kernel, as illustrated in figure 6.5.

6.3.3 Exactly Parametric Pattern Discovery Kernel
We propose a kernel that can discover repetitive patterns in a global domain. Like previous
work into PD kernels [1], we propose a stationary product PD kernel. The kernel can be
expressed through its spectral density according to theWiener-Khintchine theorem [16, 17]

𝜅(𝝉) =

1

2𝜋
∫

∞

−∞

𝑆(𝝎)𝑒
𝑖𝝎𝝉

𝑑𝜔, (6.12)

where 𝑆(𝝎) is the spectral density of the kernel. In general, it is possible to represent any
kernel by considering the spectral density as an infinite sum of Dirac functions at fixed
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frequencies sampled from the spectral density [17]. To obtain a flexible kernel that can span
any stationary kernel, we consider the case where the spectral density can be represented
exactly by 𝑄 weighted Dirac-delta functions as

𝑆(𝝎) =

𝑄

∑

𝑞=1

𝑎
𝑞
𝛿(𝝎−𝝎

𝑞
). (6.13)

Computing the closed-form solution to the integral in (6.12) with the spectral density
in (6.13) results in

𝜅PD(𝝉) =
𝑄

∑

𝑞=1

𝑎
𝑞

𝐷

∏

𝑑=1

cos(2𝜋𝜏𝑑𝜔
𝑞

𝑑
), (6.14)

consisting of 𝑄 components, where each component consists of a Fourier feature along
each dimension. This gives a kernel capable of encoding repeated patterns in space, as each
kernel component itself repeats with regular intervals across each dimension, see figure 6.6
for examples of the kernel with different hyperparameters. The parameters 𝑎𝑞 and 𝜔

𝑞

𝑑
are

hyperparameters, allowing for the discovery of any Fourier components encoding spatially
repeating patterns in the global domain. We provide some further intuition and discussion
about the kernel equation (6.14) in sections 6.A.3 and 6.A.4.

The PD kernel equation (6.14) leads to a GP model that is exactly representable as a
parametric model, which we formalize in the following proposition.

Proposition 6.3.1. A GP prior with the kernel equation (6.14) can equivalently be represented
by a parametric model with 2𝑄 parameters, given by

𝜑PD(𝒙) = ΦPD(𝒙)𝒘PD, 𝒘PD ∼ (0,𝚲PD) , (6.15)

where ΦPD is defined as

ΦPD(𝒙) =

⎡

⎢

⎢

⎢

⎣

∏
𝐷

𝑑=1
𝜙
1

𝑑
(𝒙)

.

.

.

∏
𝐷

𝑑=1
𝜙
𝑄

𝑑
(𝒙)

⎤

⎥

⎥

⎥

⎦

, 𝜙
𝑞

𝑑
(𝒙) =

[

cos(2𝜋𝑥𝑑𝜔
𝑞

𝑑
)

sin(2𝜋𝑥𝑑𝜔
𝑞

𝑑
),]

(6.16)

Further, the block-diagonal matrix 𝚲PD is defined as

𝚲PD = diag[𝚲
1

PD ⋯ 𝚲
𝑄

PD] , (6.17)

with 𝚲
𝑞

PD = diag[𝑎
𝑞

𝑎
𝑞

].

Proof. See section 6.A.2.

Similarly to the HGP, see section 6.3.2, the parametric model equation (6.15) allows us
to perform online inference with a computational complexity that scales with the number
of basis functions 𝑀 and not with the number of measurements 𝑁 .



Online discovery of global patterns and local variations in magnetic fields

6

105

6.3.4 Estimation
For both online and offline estimation, we assume access to 𝑁 measurements, which can
be stacked in a vector 𝒚

1∶𝑁
∈ ℝ

3𝑁 , defined as

𝒚
1∶𝑁

= [𝒚
⊤

1
⋯ 𝒚

⊤

𝑁 ]

⊤

, (6.18)

measured in 𝑁 locations 𝒙1,… ,𝒙𝑁 . This means that the observation model for all time
steps can be expressed as

𝒚
1∶𝑁

= ∇𝑥𝚽1∶𝑁𝒘+𝒆1∶𝑁 , 𝒆1∶𝑁 ∼ (𝟎,𝜎
2

y𝑰3𝑁 ) (6.19)

where ∇𝑥𝚽1∶𝑁 ∈ ℝ
3𝑁×(𝑀+𝑄) is shorthand for the gradient of the basis functions evaluated

in all measurement locations.
The learned magnetic field map based on the measurements 𝒚

1∶𝑁
can then be expressed

at locations 𝒙∗ as

𝝁
∗
≜ 𝔼[𝑓

∗
] = ∇𝑥𝚽(𝒙

∗
)�̂�𝑁 (6.20a)

𝚺
∗
≜ cov[𝑓

∗
] = ∇𝑥𝚽(𝒙

∗
)𝑷𝑁 [∇𝑥𝚽(𝒙

∗
)]
⊤
. (6.20b)

Here, �̂�𝑁 are the posterior estimates of the model weights and 𝑷𝑁 is the corresponding
covariance given by

�̂�𝑁 = (∇𝑥𝚽
⊤

1∶𝑁
∇𝑥𝚽1∶𝑁 +𝜎

2

y𝚲
−1
)
−1
∇𝑥𝚽

⊤

1∶𝑁
𝒚
1∶𝑁

, (6.21a)
𝑷𝑁 = 𝜎

2

y(∇𝑥𝚽(𝒙)
⊤
∇𝑥𝚽1∶𝑁 +𝜎

2

y𝚲
−1
)
−1
. (6.21b)

Estimation of the magnetic field map can also be performed online. This is done by
initializing the estimate �̂�𝑡 and covariance 𝑷𝑡 of the magnetic field map according to the
prior, �̂�0 = 0,𝑷0 = 𝚲, and then performing the recursion [8]

𝑯 𝑡 = ∇𝑥𝚽(𝒙𝑡) (6.22a)
𝑺𝑡 = (𝜎

2

y𝑰 +𝑯
⊤

𝑡
𝑷𝑡𝑯 𝑡) (6.22b)

𝑲 𝑡 = 𝑷𝑡𝑯 𝑡𝑺
−1

𝑡
(6.22c)

�̂�𝑡+1 = �̂�𝑡 +𝑲 𝑡(𝒚𝑡
−∇𝑥𝚽(𝒙𝑡)�̂�𝑡) (6.22d)

𝑷𝑡+1 = 𝑷𝑡 −𝑲 𝑡𝑺𝑡𝑲
⊤

𝑡
(6.22e)

Since our basis ∇𝑥𝚽 contains both SE and PD components, this enables not only interpola-
tion but also extrapolation to unseen parts of the magnetic field online. Note, however, that
this assumes that the hyperparameters of the two kernels 𝜅SE(⋅, ⋅) and 𝜅PD(⋅, ⋅), are known a
priori. In our experiments, we perform offline hyperparameter optimization on a subset of
the data and then proceed with online estimation.

6.3.5 Hyperparameter Optimization
The posterior given by equation (6.20) depends on the hyperparameters of the kernel 𝜅(⋅, ⋅)
through the posterior over the weights equation (6.21). In GPs, these hyperparameters are
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typically found through optimizing the maximum log likelihood (MLL) [16], which in our
case is given by

(𝜃) = −

1

2(
𝑁 log2𝜋 + log

|
|
𝑺
|
|
+𝒚

⊤

1∶𝑁
𝑺
−1
𝒚
1∶𝑁

)
(6.23a)

𝑺 ≜ 𝜎
2

y𝑰3𝑁 +∇𝚽1∶𝑁𝚲∇𝚽
⊤

1∶𝑁
(6.23b)

log
|
|
𝑺
|
|
= (𝑁 −𝑀) log𝜎

2

y+ log|𝒁 |+ log|𝚲| (6.23c)
𝒁 ≜ ∇𝚽

⊤
∇𝚽+𝜎

2

y𝚲
−1
. (6.23d)

Here, 𝜃 = {{{𝜔
𝑞

𝑑
}
𝑄

𝑞=1
}
3

𝑑=1
, {𝑎

𝑞
}
𝑄

𝑞=1
, 𝑙,𝜎SE,𝜎y} are the hyperparameters, and 𝑁 and 𝑀 are

the number of data points and basis functions, respectively.
For the SE component, the hyperparameters enter in the prior on the weights, i.e.,

only in ΛSE. This is exploited in the standard HGP to enable optimizing the MLL at cost
(𝑀3

). However, for the periodic PD components we propose here, the hyperparameters
enter both ΛPD as well as the basis functions ΦPD themselves. In particular, the mixture
frequencies 𝜔𝑞

𝑑
enter the basis functions whereas the mixture weights 𝑎𝑞 are contained

in ΛPD, see theorem 6.3.1. Thus, if the mixture frequencies 𝜔𝑞

𝑑
are to be optimized, the

basis functions need to be recomputed each iteration of the MLL optimization, which costs
(𝑁𝑀

2
) per iteration in general.

However, given prior knowledge about the environment, e.g., through maps or plans
of the indoor environment, the frequencies 𝜔𝑞

𝑑
can be determined a priori and need not

be optimized. This can for instance be the locations of steel beams, or as we show in our
experiments, the placement of columns in a parking basement.

Hence, we can opt to specify the frequencies manually and then solely optimize over
the lengthscale 𝑙, variance 𝜎2

𝑓
, observation standard deviation 𝜎y, and mixture weights 𝑎𝑞 .

With this restriction, the optimization costs (𝑀3
) per iteration, a cost identical to the

HGP.

6.4 Experiments
To demonstrate the proposed model, we consider three numerical experiments. The first
experiment considers a real dataset of magnetic field disturbances collected in a corridor
at Linköping University, Sweden. It demonstrates the online estimation of the magnetic
field and the extrapolation properties one can expect. Secondly, we consider a simu-
lated warehouse, with storage racks constituting the structurally repeated patterns, to
show the extrapolation properties of the model in a structured environment. Thirdly,
we consider a real dataset of a non-structured environment where the PD prior should
not be applicable, to confirm that the model reverts to its SE kernel component with-
out losing fidelity. The code to recover the results presented in this section is available
at https://github.com/fridaviset/PatternMagMaps.

6.4.1 Hallway
We tested the online capabilities of our model on a dataset collected in a hallway using a
smartphone.

https://github.com/fridaviset/PatternMagMaps
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Figure 6.7: Measured and estimated magnetic field norm as a function of the distance moved by the pedestrian from
the starting location. The confidence interval illustrates ±3𝜎. Clearly, the PD+SE kernel (bottom) extrapolates
better than the pure SE (top).

Using a customized app, we simultaneously recorded the phone’s internal position
and orientation estimate and the magnetometer measurements from the phone’s built-in
magnetometer at 200Hz. The norm of the resulting measured magnetic field norm is
visualized in figure 6.7. The visualization represents the online estimate at a time 𝑡 when
the pedestrian has walked the distance between two red columns in the hallway. The
results in figure 6.7 indicate the ability of our sum kernel to represent the magnetic field
patterns discovered in the past in a comparable way to the SE kernel, while additionally
being able to make extrapolated predictions of the magnetic field down the hall. The
predicted magnetic field norm at the same timestep is illustrated in a three-dimensional
reconstructed environment in figure 6.2.

6.4.2 Dipolemodel-based simulation virtual parking basement
We consider a virtual parking basement, see figure 6.9, with 5×16 steel-reinforced columns
indexed by 𝑗 in a regular grid and simulate the magnetic influence of each column as a
dipole. The magnetic field from dipole 𝑗 is given by [132]

𝒃𝑗 (𝒙) =

𝜇0

4𝜋 (

3(𝒎𝑗 ⋅ 𝒓)𝒓

|𝑟 |
5

−

𝒎𝑗

|𝑟 |
3)

, 𝒓 = 𝒙−𝒙𝑗 (6.24)

where 𝜇0 is the permeability of open air,𝒎𝑗 is the magnetic field moment of the dipole, 𝒓
is the distance from the dipole to the location where the magnetic field 𝒃 is evaluated, 𝒙 is
the location the magnetic field is evaluated and 𝒙𝑗 is the location of dipole 𝑗 . The red top
half of the displayed columns in figure 6.9 correspond to the magnetic north and the gray
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Figure 6.8: Comparison of learned magnetic field maps using a standard recursive basis function approximation
to the SE kernel and the learned magnetic field map using our proposed pattern discovering mapping algorithm.
The color corresponds to the strength of the magnetic field measured in 𝜇T, and the opacity is proportional to the
confidence of the prediction.

bottom half to the magnetic south. To additionally include some random perturbations, we
also included the magnetic field of 1000 smaller, randomly scattered dipoles. The resulting
magnetic field in 3D is therefore given by the following curl-free vector field

𝒇(𝒙) =

5×16+1000

∑

𝑗=1

𝒃𝑗 (𝒙) (6.25)

We display a local 2D projection of this magnetic field and its norm in figure 6.9, and we
display a 2D projection of the magnetic norm for the full basement in figure 6.8b.

To compare the extrapolation and interpolation accuracy of the PD+SE kernel with
that of the SE kernel, we simulate measurements from the right half of the basement, and
sample both a set of interpolation test locations in the right half, and a set of extrapolation
test locations in the left half, see figure 6.8. The predicted magnetic field based on the
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Figure 6.9: Simulation setup for virtual parking basement. The magnetic field is simulated as the resulting
magnetic field summing the contribution of each column, modeled as a dipole with a magnetic moment magnitude
of 100Am2. In addition, 1000 smaller dipole disturbances with moment magnitudes of 25Am2 are randomly
scattered in the simulation space.

measurements with the SE kernel is displayed in figure 6.8c, where the opacity indicates
predictive uncertainty. The predicted magnetic field reflects the ground truth in figure 6.8b
close to the measurement locations in the right half of the basement, while in the right half
of the basement, the predictions are not confident enough to be visible. In contrast, the
PD+SE kernel, see figure 6.8d, extrapolates the observed periodic repetitions in the field
beyond the region with the observed measurements.

In figure 6.11b, we display the prediction error in the extrapolated area for both the SE
and the PD+SE kernel. When the number of measurements increases, the prediction error
of the SE kernel in this area remains fairly constant, while the PD+SE kernel can learn
and generalize a pattern, reducing the average root-mean squared error (RMSE) after 10
experiments from 1.5 to 0.5. Interestingly, for the interpolation experiments in figure 6.11a,
we see the same drop from 1.5 meters to 0.5 meters RMSE from 10 to 200 measurements.
This drop is caused by the fact that when there are few measurements spaced in the right
half of the basement, there is an increased distance between the measurements, meaning
that the extrapolation properties of the PD+SE improves estimation accuracy compared
to the SE kernel also in this case. As the number of measurements increases for the
interpolation experiments, the performance of the SE kernel matches the PD+SE kernel, as
expected.

6.4.3 Non-structured Environment
Lastly, we consider a dataset that is not representative of the scenarios we expect the
proposed model to work well, to illustrate that the model falls back to the SE performance
in the absence of global patterns. The dataset was gathered in a non-structured environment
without repeating structures that induce a periodic behavior of the observed magnetic
field. We train three GPs, respectively with a kernel given by equation (6.14), a standard
SE kernel, and a sum of the two, the last of which constitutes the proposed kernel. We plot
the predictive mean over a regular grid of test points, where the opacity of the predictions
is proportional to the predictive variance. The results are plotted in figure 6.10. It is
immediately clear that the PD kernel does not discover any repetitive pattern in this data,
as expected. Thus, as expected, the PD+SE kernel more or less mirrors the performance
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Figure 6.10: Magnetic field maps in a non-structured environment with different kernel choices. The PD+SE
kernel matches the performance of the sole SE kernel as the PD component does not discover any repeated
patterns in the data. The color indicates the magnetic field strength.

of the SE kernel. The average negative log predictive density (NLPD) was also calculated
for a set of test inputs disjoint from the training data. The NLPD was 320.8 for the PD+SE
kernel, 348.5 for the SE kernel and 243515 for the PD kernel. This clearly demonstrates
that the PD+SE construction does not suffer from having the PD component, even when it
is not contributing to the predictive capabilities.

6.5 Related work
Reduced-rank GP regression is widely used for online estimation of nonlinear magnetic
field variations [8, 9, 74, 94]. Previous works have primarily used the standard SE kernel
as a prior on the potential field. We also model the potential field, but propose a different
kernel. By modeling the potential field, we preserve the curl-free property, meaning that
we implicitly capture a different type of curl-free kernel than what has been considered
previously by [9].

Our proposed kernel for discovering global patterns have strong links to many previ-



Online discovery of global patterns and local variations in magnetic fields

6

111

10
1

10
2

10
3

10
4

0.5

1

1.5

2

Number of measurements, N

RM
SE

(a) Interpolation RMSE

10
1

10
2

10
3

10
4

1

1.5

2

Number of measurements, N

RM
SE

se pd+se

(b) Extrapolation RMSE

Figure 6.11: Comparison of RMSE of magnetic field predictions. Training data was located in the right half of the
basement, see figure 6.8a. For interpolation, test data was also located in the right half, while for extrapolation
the test data was located in the left half, see figure 6.8a.

ously proposed kernels in literature. Specifically, our PD kernel, like the PD kernel proposed
by [1] aims to span the space of all stationary kernels, and the exact link to their kernel is
explained in section 6.A.3. In the special case where 𝐷 = 1, the frequencies 𝜔𝑞

𝑑
are integer

multiples of each other, and the weights 𝑎𝑞 are the Fourier weights of a periodic kernel, this
PD kernel can also express the de facto periodic kernel [16], as explained in section 6.A.3. In
the special case where the number of coefficents 𝑄 →∞, and the frequencies are sampled
randomly from the spectral density of the SE kernel, this kernel corresponds exactly to the
random Fourier feature approximation of a SE kernel [17].

A wide range of work in the GP community has noted the convenience of expressing
periodic kernels in terms of integer multiples of a base frequency, as this corresponds to the
Fourier series expansion of any periodic kernel [87, 133? ]. We generalize this to arbitrary
frequencies, which can be identified through regular hyperparameter optimization. Unlike
these works, we do not consider variational inference on the Fourier features resulting
from this expansion, but rather use the Fourier representation of the kernel directly in
the conjugate posterior, similarly to [11]. The result is that our estimation algorithm
corresponds to a parametric estimation problem, that can be easily implemented online
using recursive stochastic least squares. Further, by using the parametric expansion of
the PD kernel to approximate the periodic part of the potential field, we get a magnetic
field model that combines the benefits of using a potential field model [9] as opposed to
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modeling each of the three components independently (as in for example [12, 34, 38, 134]),
with the benefits of taking advantage of periodic repetitions for improved accuracy in
extrapolation.

A range of other approaches have also been considered for mapping magnetic fields
indoors. Notably, averaging values over discrete, hexagonal tiles [72] has been used for
creating maps of indoor magnetic fields. Indoor magnetic fields can also be mapped by
dipole-models [135], which are inherently curl-free. The work of [136] interestingly also
uses orthogonal basis functions tomap themagnetic field, but in contrast to our work, places
basis functions 𝜙 ∶ ℝ→ ℝ along a one-dimensional trajectory passing by a single dipole
source and uses this to identify the location of the dipole. In contrast, our basis functions
∇𝜙 ∶ ℝ

3
→ ℝ

3 encode a map for the entire magnetic field in all three dimensions. Some
algorithms have also been developed for computationally efficient creation and storage of
large-scale magnetic field maps [137]. All of these approaches focus on interpolation of
the magnetic field close to visited areas. Our work differs qualitatively from this research
in that it considers extrapolation to previously unseen areas.

Similarly to a range of previous work on magnetic field mapping, our work provides
uncertainty quantification in unseen areas. This can be beneficial for integration into
algorithms for simultaneous localisation and mapping [8], or for implementing uncertainty-
decreasing exploration strategies [32]. Since it is a parametric approximation, it also
integrates effortlessly into frameworks for distributed mapping across several platforms [76,
117]. Several other works have noted that a parametric reformulation of a GP allows for
online learning without the computational complexity inflating over time [138].

Creating new kernels by combining existing ones to give a more flexible fit to the
underlying data has been considered before [1, 86, 139–141]. Our work can be viewed as
a generalization of the work in [86] that allows for detecting a fixed number of Fourier
frequency components approximating the kernel, but that unlike [86] does not constrain
the variance of these components to be the same. This gives our kernel the flexibility to
approximate any kernel on a finite domain, just like Fourier basis functions can approximate
any continuous function on a finite domain. Our final proposed kernel is a sum of this
periodic PD kernel and an SE kernel, which is comparable to how [140] adds a periodic
kernel to a non-periodic component to capture a function that has a clear additive linear
component on top of a periodic component.

6.6 Discussion
The difference in assumptions between previously proposed curl-free reduced-rank GPs and
our proposed kernel is that we assume the underlying potential field might possess globally
repeating patterns in addition to non-repeated variations. Since the magnetic potential
field obtains periodic repetitions when dipoles are placed in a periodically repeated pattern,
this condition can arise naturally in structured indoor environments. In the cases when
there are repeated patterns, our algorithm can improve upon existing methods. In the case
where there are no repeated periodic patterns, our algorithm matches the performance of
previous work.

An interesting property of our proposed kernel is that depending on the chosen length-
scales and the number of basis functions, it can end up capturing a combination of high-
frequency and low-frequency content in the learned magnetic field. Similarly to [? ], it can



Online discovery of global patterns and local variations in magnetic fields

6

113

learn correlations at discretely different resolutions. In cases where the majority of the
signal strength has a large-scale and a low-scale frequency component, this can have the
result that our kernel gives better predictions not because there is an underlying periodic
signal, but simply because it has the flexibility to place some basis functions at arbitrary
frequencies.

Although our work uses Fourier basis functions to express the repeated patterns of
the magnetic field, this would not be the only way to estimate repeated patterns using
a parametric formulation. Both inducing point approximations, as well as Hilbert-space
approximations, could be used to approximate the PD kernel itself, just like they can be
used to approximate the SE curl-free kernel. As is explained in Section 5.1 in [11], the
SoR approximation of the inducing point approximation can be interpreted as a complete
Nyström approximation to the full GP problem in the same way as the Hilbert space basis
functions, which effectively enables online parametric estimation in the same way as is
done for the magnetic field in [8]. The advantage of using the analytical equivalence
between each component of the PD kernel and the parametric reformulation in section 6.3,
is that the recursive least-squares online learning of the magnetic field gives exactly the
prediction from the PD kernel, rather than an approximation of it.

Although our kernel allows for online learning of the posterior mean and variance, it
does not allow for online learning of all hyperparameters without using simplifying tricks
such as for example batch-training [81]. We have therefore carried out all hyperparameter
optimization offline. The computational cost of carrying out the hyperparameter optimiza-
tion depends on which hyperparameters are known from previous knowledge about the
building structures, and which parameters need to be learned from magnetic field measure-
ments. For reduced-rank GPs that do not require the knowledge of the hyperparameters
to compute the precision matrix Φ

⊤
Φ, hyperparameter optimization can be carried out

using only (𝑀3
) operations at each iteration, rather than the (𝑁𝑀

2
) operations that

are normally required [11].
Our parametric reformulation results in basis functions that are dependent on only one

hyperparameter, namely the frequency of the expected patterns. Our proposed method
will therefore require re-instantiating the precision matrix Φ

⊤
Φ at each iteration of the

hyperparameter optimization if there is no prior knowledge available about the expected
periodic repetitions in the environment. Thus, hyperparameter optimization generally will
cost (𝑁𝑀

2
), but if knowledge of the environment is available a priori, hyperparameter

optimization only costs (𝑀3
).

6.7 Conclusion
We have proposed a GP-based model for magnetic field modeling. In contrast to previous
work, we explicitly modeled possible repeated patterns in the underlying magnetic field,
enabling excellent extrapolation to unseen data regions in structured environments. The
parametric representation of the periodic patterns that we developed may also prove useful
in other domains where such patterns exist. The results showed that only a small amount
of data was needed to capture the general characteristics of the magnetic field over a
larger region. This enables the creation of large magnetic field maps of structured indoor
environments without needing to collect data in the entire structure.
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6.A Appendix
6.A.1 Basis function definitions
The basis functions are defined over a finite-support cubical domain Ω ⊂ ℝ

𝑑 , defined as
Ω = [𝐿𝑙,1,𝐿𝑢,1] × [𝐿𝑙,2,𝐿𝑢,2] × [𝐿𝑙,3,𝐿𝑢,3]. The basis functions are given as

𝜙SE,𝑖(𝑝) =
3

∏

𝑑=1

√

2

√

𝐿u,𝑑 −𝐿l,𝑑
sin

(

𝜋𝑛𝑖,𝑑(𝑝𝑑 +𝐿l,𝑑)

𝐿u,𝑑 −𝐿l,𝑑 )
, (6.26)

where the set (𝑛𝑖,1, 𝑛𝑖,2, 𝑛𝑖,3) is the set of three natural numbers that are different from the
sets (𝑛𝑗 ,1, 𝑛𝑗 ,2, 𝑛𝑗 ,3) defined for all 𝑗 < 𝑖, that gives the corresponding value of a parameter 𝜆𝑖
defined as

𝜆𝑖 =

𝐷

∑

𝑑=1

(

𝜋𝑛𝑖,𝑑

𝐿u,𝑑 −𝐿l,𝑑)

2

, (6.27)

as large as possible. In our case, these basis functions are used to approximate the SE–GP
prior as a parametric model

𝑓 ≈ Φ
⊤

SE𝒘SE, 𝒘SE ∼ (0,ΛSE), (6.28)

where Φ is a vector of 𝑀 basis functions 𝜙𝑖 ∶ ℝ𝑑
→ ℝ, 𝒘 ∈ ℝ

𝑀 is a vector of weights, and
ΛSE is defined as

ΛSE = diag[𝑆SE(
√

𝜆1) ⋯ 𝑆SE(
√

𝜆𝑁𝑚
)] , (6.29)

where 𝑆SE(⋅) is the spectral density of the SE kernel, as defined in [9]. This means that the
approximation of the magnetic field norm in equation (6.28) has a prior distribution that
tends to equation (6.1) as𝑀 goes to infinity, and the size of the domain goes to infinity [22].

6.A.2 Proof of proposition 1
Let 𝜑 be given by

𝜑(𝒙) = [∏
𝐷

𝑑=1
cos(2𝜋𝜇𝑑𝑥𝑑) ∏

𝐷

𝑑=1
sin(2𝜋𝜇𝑑𝑥𝑑)]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Φ(𝒙)

𝒘 (6.30a)

𝒘 ∼ (𝟎, 𝜆𝑰) . (6.30b)

Clearly, 𝔼[𝜑] = 0 and thus

cov[𝜑(𝒙),𝜑(𝒙
′
)] = 𝔼[𝜑(𝒙)[𝜑(𝒙

′
)]
⊤

] = 𝜆Φ(𝒙)[Φ(𝒙
′
)]
⊤

= 𝜆
(

𝐷

∏

𝑑=1

cos(2𝜋𝜇𝑑𝑥𝑑)cos(2𝜋𝜇𝑑𝑥
′

𝑑
)

+ sin(2𝜋𝜇𝑑𝑥𝑑)sin(2𝜋𝜇𝑑𝑥
′

𝑑
)
)
. (6.31)
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Now, note that cos(𝜃)cos(𝜙) = 1

2
(cos(𝜃−𝜙)+cos(𝜃+𝜙) and that sin(𝜃)sin(𝜙) = 1

2
(cos(𝜃−

𝜙)−cos(𝜃+𝜙)). Hence,

𝜅(𝒙,𝒙
′
) ≜ cov[𝜑(𝒙),𝜑(𝒙

′
)] = 𝜆

𝐷

∏

𝑑=1

cos(2𝜋𝜇𝑑𝜏𝑑), (6.32)

where 𝜏𝑑 = 𝑥𝑑 −𝑥
′

𝑑
. The proof for multiple components 𝑄 follows by assuming a diagonal

covariance matrix for the weights 𝒘.

6.A.3 The PD kernel as a Fourier series of a periodic kernel
To obtain a periodic kernel from any (one-dimensional) kernel, a “warping” of [sin(𝑥),cos(𝑥)]
is applied to the input 𝑥 . The kernel is then applied to [sin(𝑥),cos(𝑥)]. As is clearly ex-
plained in [133], this warping applied to the SE kernel

𝜅SE(𝑥,𝑥
′
) = 𝜎

2

SE exp
(

‖𝑥 −𝑥
′
‖
2

2

𝑙
2 )

(6.33)

gives

𝜅SE,per(𝑥,𝑥
′
) = 𝜅SE([sin(𝑥),cos(𝑥)], [sin(𝑥

′
),cos(𝑥

′
)])

= 𝜎
2

SE exp
(

−2sin
2
(
1

2
𝑤𝜏)

𝑙
2 )

.

(6.34)

For the Matern-kernel with degrees of freedom 𝜈 =
1

2

𝜅Matern = 𝜎
2

Matern exp
(

−‖𝑥 −𝑥
′
‖2

𝑙 )
, (6.35)

the corresponding periodic Matern-kernel is given by

𝜅Matern,per(𝑥,𝑥
′
)

= 𝜅Matern([sin(𝑥),cos(𝑥)], [sin(𝑥
′
),cos(𝑥

′
)])

= 𝜎
2

Matern exp
(

−2|sin(
1

2
𝑤𝜏)|

𝑙
2 )

(6.36)

Our proposed kernel equation (6.14) can in general span any stationary kernel on a
finite domain. If the mixture frequencies 𝜔𝑞

𝑑
are constrained to be integer multiples of each

other, the kernel can span any periodic kernel. In fact, it is then interpretable as a Fourier
series of a periodic kernel. This Fourier series interpretation is visualized in figure 6.12,
where it is used to approximate two different periodic kernels. However, notice that the
mixture weights 𝑎𝑞 , and frequencies 𝜔𝑞

𝑑
, are included in the hyperparameters of our kernel.

Thus, this kernel is more general than a standard periodic kernel.

6.A.4 A special case of [1]
The PD kernel proposed by [1] is given by

𝜅PD(𝜏) =
𝑄

∑

𝑞=1

𝑎
𝑞

𝐷

∏

𝑑=1

exp(−2𝜋
2
𝜏𝑑𝑣

𝑞

𝑑
)cos(2𝜋𝜏𝑑𝑤

𝑞

𝑑
), (6.37)
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(a) Periodic SE kernel

(b) Periodic Matern kernel, 𝜈 = 1

2
.

Figure 6.12: The adaptability of our proposed pattern-detection kernel allows for arbitrarily precise approximation
of any periodic kernel on a finite domain. This figure has two examples of how our pattern detection kernel with
an increasing amount of parameters can approximate equations (6.34) and (6.36), respectively.

where 𝑣𝑞
𝑑
are hyperparameters indicating the inverse of the lengthscale of the decay of the

cosine-shaped pattern detected by component 𝑞 along dimension 𝑑 of this kernel. In the
case where this hyperparameter 𝑣𝑞

𝑑
goes to zero, this corresponds to the decay lengthscale

going to infinity, which corresponds to encoding the expectation that all detected patterns
will prevail over the entire considered domain.

Our PD kernel is therefore a special case of the PD kernel proposed by [1], letting
𝑣
𝑞

𝑑
→ 0. In contrast to the PD kernel proposed by [1], our PD kernel can be exactly rewritten

as a parametric model, enabling online learning without further approximation.
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7
Conclusion and

Recommendations

This thesis addresses scalability challenges in current algorithms for magnetic field mapping
and localization. It improved the scalability of five distinct aspects of these algorithms.
Some of the contributions are explicitly used by each other during the thesis, while other
contributions can easily be combined in future work for applications where multiple types
of scalability are required at the same time.

7.1 Conclusion
This thesis has focused onmagnetic field mapping and localization. Themagnetic field maps
can be used to give non-drifting position estimates independent of external infrastructure in
environments where there are no GNSS signals, and where the magnetic field has significant
spatial variations. Examples of such environments are most indoor environments, some
underwater environments, GNSS-denied airspace, and mines. The maps were created using
reduced-rank approximations to Gaussian process regression. The thesis has answered
five research questions in five chapters, each one involving a particular type of scalability
of magnetic field mapping, or magnetic field mapping and localization. The questions with
their corresponding conclusions are:

How can magnetic field mapping and localization be done faster?

Magnetic field mapping and localization can be done faster by applying an extended
Kalman filter in place of a particle filter. The reason the extended Kalman filter
requires less computational resources is that it only requires storing and updating one
copy of the Gaussian process magnetic field map. The map update is computationally
expensive, and it is therefore faster to update just a single map compared to updating
several maps. This is in contrast to the particle filter, that requires storing and
updating as many copies of the magnetic field map as the filter has particles, which
is typically a number in order of magnitude 102. The extended Kalman filter is a
viable option in cases where the error magnitude of the position estimate does not
exceed the lengthscale of the magnetic field variations.
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How can magnetic field mapping and localization be applied to multi-agent
systems?

Magnetic field mapping and localization can be applied to multi-agent systems
through using the information matrix for the learning of the weights 𝒘 of the
Gaussian process approximation, and distributing the information matrix across a
multi-agent system using consensus algorithms [23]. We find that the distributed
estimate accurately approximates the centralized estimate if all agents communicate
once with each other at each timestep, and that the estimate from the distributed algo-
rithm is more accurate than the individual estimates when the agents communicate
on average once every fifth timestep.

How can the storage requirements of reduced-rank Gaussian process maps
be reduced?

The storage requirements of reduced-rank Gaussian process maps can be reduced for
certain classes of basis functions, including Hilbert-space basis functions and Fourier
basis functions, using latent Hankel and Toeplitz structures in the information matrix.
This reduction in storage comes with no approximations on the discussed methods.
The observed structure also means that one needs a reduced amount of computation
time to create an offline map, in the case where all measurements are available
at once. Without taking advantage of this structure, this class of basis-function
approximations to Gaussian process regression requires (𝑁𝑀

2
) computations to

find the posterior mean and covariance, where 𝑁 is the number of measurements,
and𝑀2 is the number of basis functions. Taking advantage of this structure, this class
of basis-function approximations to Gaussian process regression requires (𝑁𝑀)

computations to find the posterior mean and covariance. Furthermore, it can be
directly employed to reduce the communication requirements in the multi-agent
algorithm presented in Chapter 3.

How canmagnetic fieldmapping and localization be extended to larger areas,
while keeping the computational complexity low?

In state of the art large-scale Gaussian processs mapping with basis functions, when
the map is extended to larger areas, the amount of basis functions required increases
with the area, and the computational complexity increases with the amount of
basis functions. Therefore, the computational complexity increases with increasing
area. Magnetic field mapping and localization can be extended to larger areas while
keeping the computational complexity low, by use of a subset of a larger grid of
finite-support basis functions close to the current location of the agent. Using a finite
amount of finite-support basis functions induces a sparsity in the largest matrices
that are required to be computed, meaning that only a finite amount of computational
resources are required to update the magnetic field map independent of the size of
the mapped domain.
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How canmagnetic fieldmaps be scaled to encompass repeated global patterns
in addition to local variations?

Magnetic field maps can be scaled to encompass repeated global patterns in addition
to local variations through the use of a combination of a kernel encoding local spatial
variations with a kernel encoding globally repeated patterns. By directly learning the
presence of higher-dimensional repeated Fourier features, we implement a pattern-
detecting Gaussian process built from basis functions that effectively learns periodic
patterns at the same time as being inherently parametric and therefore suitable
for online recursive learning. The benefit of this approach is that we can make
predictions in map locations where there are no measurements of the magnetic field,
by extrapolating the repetitive patterns.

7.2 Recommendations
This thesis has presented contributions to improving various aspects of scalability in
magnetic field localization and mapping. This subsection outlines possible directions for
future research, building on the work of the thesis.

The spatially scalable mapping technique from Chapter 5 integrated into the extended
Kalman filter (EKF) for localization and mapping from Chapter 2 causes a change in the
computational complexity at each timestep from (𝑀2

) to (𝑀) operations, where 𝑀 is
the number of basis functions, as was shown in Chapter 5). The spatially scalable mapping
technique from Chapter 5 could also be used in a particle filter. This would reduce in even
more computational gain, with a reduction from (𝑁p𝑀

2
) down to (𝑁p). The particle

filter would see a much more drastic reduction in computational complexity compared
to the EKF. Future work could therefore explore when using this mapping technique in a
particle filter yields a beneficial accuracy/computational expense trade-off.

One of the remaining challenges of using the EKF fromChapter 2 is that it is an unimodal
representation of the posterior, and will therefore struggle to represent the posterior in
cases where it is multimodal. As was discussed in Chapter 2, this case specifically arises
when the position uncertainty is larger than the lenghtscale of the magnetic field variations.
Another potential advancement of the contribution presented in Chapter 2 is the use of
the Gaussian sum filter in place of the Extended Kalman filter [142]. A Gaussian sum filter
can potentially provide more accurate position estimates than the EKF in scenarios where
the posterior is multi-modal, while being more computationally efficient than the particle
filter.

The algorithms in Chapters 2, 3 and 5 assume a priori knowledge of Gaussian process
hyperparameters. The exploration of online hyperparameter optimization in the case
where the hyperparameters cannot be reasonably estimated a priori could be beneficial.
In this case, hyperparameters could be treated as additional parameters, expanding the
state space of the estimation algorithm. Future work could also explore the feasibility of
simultaneous magnetometer calibration, mapping, and localization for multiple agents. A
multi-agent setup generally increases the amount of information one has access to about
the magnetic field map, making it a suitable setup for online hyperparameter optimization
and magnetometer calibration, which benefits from knowledge about the strength and
direction of the magnetic field.
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Another promising direction is to continue research on utilizing the Hankel-Toeplitz
structure present in the reduced-rank Gaussian process equations in more applications. The
Hankel-Toeplitz structure presented in Chapter 4 is present in the informationmatrix shared
between multiple agents in Chapter 3, meaning that the application of the results from
Chapter 4 to the communication setup in Chapter 3 reduces the required communication
bandwidth between agents from (𝑀2

) to (𝑀) where𝑀 is the number of basis functions
required to represent the map. The Hankel-Toeplitz structure is also present in the pattern-
detection kernel presented in Chapter 6, and can therefore be used to reduce storage
requirements and speed up offline learning of magnetic field maps also with globally
repeated patterns. Implementing the pattern-detection mapping algorithm from Chapter 6
in an EKF for SLAM fromChapter 6 could potentially increase accuracy of position estimates
in trajectories without loop closures. This algorithm could also be applied in multi-agent
systems, allowing collaborative mapping and localization where agents can benefit from
globally repeating patterns in the environment. In other words, the pattern-detection
kernel presented in Chapter 6 can be used as an alternative map-representation learned by
a multi-agent system as presented in Chapter 3. The Hankel-Toeplitz structure discussed in
Chapter 4 would also be present in this case, and could therefore also reduce the required
communication bandwidth in this case. This could potentially allow one agent mapping
one corner of a room to improve the position estimate of an agent in the opposite corner, as
long as the room has globally repeating patterns. Furthermore, there are many solvers for
linear equations that can speed up the solution to the linear system using Hankel-Toeplitz
structures, this could be a natural extension of the work in Chapter 4, which could possibly
also yield computational benefits for Chapters 2, 3, and 6, as all of these chapters work with
reduced-rank Gaussian process maps that possess the Hankel-Toeplitz structure described
in Chapter 4.

The mapping and localization techniques in all chapters can also be adapted to di-
verse environments including underground settings, the moon, GNSS-denied airspace,
underwater, ports, and harbors. Finally, future work can extend the applicability of all
chapters to other nonlinear fields apart from the magnetic field such as air quality and
pollution, temperature and climate data, soil topography and elevation, seismic activity,
gravity and geomagnetic anomalies, ocean currents, atmospheric quantities, ecological
population distributions, neural activity, financial time series, spatial economics, disease
spread and epidemiology, biomedical signals, acoustic and electromagnetic fields, and sound
propagation. Potential societal applications include search and rescue operations, gam-
ing, warehouse operations, greenhouse management, shopping, environmental modeling,
healthcare equipment tracking, and assisted living for the visually impaired.
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