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Abstract

Optical flow models excel on synthetic benchmarks but
can struggle with real-world scenarios involving large dis-
placements, which are critical for applications like au-
tonomous navigation and augmented reality. To address
this, we introduce a novel real-world dataset and evaluation
framework, using a specialized annotation tool to capture
ground truth optical flow in scenarios with fast movements
and close-range objects. Our approach minimizes con-
founders, providing clear insights into model performance
with large displacements. Findings show recent models
outperform the previous state-of-the-art, RAFT, across all
tested scenarios. Both the annotation tool and dataset are
available to support further research.

1. Introduction

Optical flow estimation is a fundamental computer vision
task that quantifies the apparent motion of objects between
consecutive video frames, typically visualized as a vector
field where each arrow represents the direction and magni-
tude of pixel displacement (Fig 1). Another common visu-
alization uses colour-coding (Fig 2), where the direction of
movement is encoded as the hue of a pixel and the magni-
tude as its intensity.

Figure 1. Arrow visualization of flow between 2 overlaid frames.

This technique is critical for applications like au-
tonomous driving [4], robotics [19], object/scene
tracking[12], surveillance [2], and video compression

Frame 1

Optical Flow (Frame 1 - Frame 2)

Figure 2. Optical flow visualization with color direction wheel.
Predominant red indicates rightward movement or leftward cam-
era motion. The dark red suggests an object is moving faster.

[16]. It involves estimating the motion of pixels between
consecutive frames in a video, enabling the analysis
of dynamic scenes and the extraction of structural and
motion-related information.

Despite significant advancements in optical flow estima-
tion techniques, such as the RAFT (Recurrent All Pairs
Field Transform) [17] model, many optical flow models
are generally evaluated and benchmarked on synthetic data
sets [1], such as Flying Chairs [7] and MPI Sintel [5].
Their performance on real-world data remains underex-
plored. Although these data sets provide a controlled en-



vironment for benchmarking, they may not fully capture
the complexity and unpredictability of real-world scenarios.
This can lead to poor performance when these models are
deployed in practical applications that include occlusions,
lighting changes, low-textured surfaces, repeating patterns,
fast movements, and objects moving close to the camera.
The last two examples both lead to large displacements be-
tween frames and are the focus of this paper.

This research aims to address the following primary
question: How do existing optical flow models perform in
real-world scenarios with large displacements of 20 pixels
or more? To answer this question, we will first attempt to
answer the following sub-questions:

1. How do existing models compare in terms of accuracy
and robustness, measured by endpoint error (EPE) and
percentage of outliers (Fl-all), when evaluated on real-
world data with large displacements?

2. What are the challenges in annotating real-world videos,
especially in scenarios with large displacements?

To address these questions, we developed an annotation
tool for generating optical flow ground truth in real-world
videos. Unlike benchmarks like KITTI, which combine
multiple challenges without configurable confounders, we
are using this tool to create a focused dataset that iso-
lates large displacements while systematically minimizing
other variables (e.g., lighting changes, occlusions, non-rigid
transformations). This enables targeted evaluation of model
capabilities in specific scenarios.

2. Previous Work

Optical flow estimation has evolved significantly from its
early mathematical foundations to modern deep learning-
based approaches. Old models used to have the brightness
constancy assumption, that states that a pixel’s brightness
remains constant between frames. Modern learning-based
approaches do not do this anymore.

The datasets with which models are benchmarked have
also seen significant improvements over time to become
more complete and challenging.

2.1. Models

Early methods like those by Lucas and Kanade [13] and
Horn and Schunck [9] established the mathematical foun-
dations for flow estimation. These classical approaches,
while fundamental, were limited by their reliance on local
smoothness assumptions.

The introduction of deep learning revolutionized optical
flow estimation. FlowNet [8] was among the first to demon-
strate that neural networks could be incorporated to better
estimate optical flow. This was followed by improvements
in FlowNet 2.0 [11] which introduced improvements to the
architecture and better training procedures.

RAFT [17] represented a significant advancement by
introducing a recurrent architecture that iteratively refines
flow estimates, achieving state-of-the-art results on standard
benchmarks. Many new developments since then have built
on the foundation laid by RAFT.

To address the specific challenge of large displacements,
several approaches have been proposed. GMFlow [18] and
GMFlowNet [20] utilize global matching mechanisms that
better handle large motions between frames by considering
the entire feature space. FlowFormer [10] and its improved
version FlowFormer++ [15] use transformer architectures
to model dependencies, showing strength in scenarios with
significant object movement. Another model that seems
to be very promising in the area of large displacements is
MemFlow [6], which currently sits on top of the Sintel and
KITTI-15 leaderboards.

2.2. Benchmark Datasets

Early benchmarks like Middlebury [3] focused on small,
controlled movements, but the demands of the field quickly
outpaced their simplicity.

The release of Sintel [5] changed this, by providing syn-
thetic sequences with complex motion, large displacements,
occlusions and other challenging scenarios. It came in two
versions: clean (pristine images) and final (with motion blur
and shadows), the latter provided a much more realistic
dataset while still having a perfect ground truth.

Real-world datasets like KITTI-15 [14] contain a lot of
situations in its scenes that display large displacements,
however this dataset is not human-annotated as its ground
truth is a sparse annotation based on LiDAR readings.

Other benchmarks also exist that benchmark other dif-
ficult scenarios, as explored in the review by Alfarano et
al. [1]. Currently these are still used as the main bench-
marks for evaluating optical flow models and both Sintel
and KITTI have leaderboards where researchers can submit
the performance of their models.

3. Methods

To perform the benchmarking, we needed to create a dataset
that we could specifically test for various real-world phe-
nomena. To do so, we needed to gather footage, annotate it,
and export these annotations in a format that models such
as RAFT could work with.

3.1. Tool Development

To facilitate precise and practical optical flow annota-
tion, we developed a custom Python-based tool that uses
OpenCV for image processing and PyQt for the graphical
interface. Figure 3 shows a screenshot of the main interface
where a video is loaded. Its features are highlighted in table
L.



Figure 3. The annotation tool interface showing the dual-frame
view with zoom functionality. Corresponding points between
frames are marked with colored crosses.

Feature Description

Video Formats Supports .mp4, .avi and others for
broad compatibility

Synchronized side-by-side playback
Pixel selection with zoom and cross
markers

Non-consecutive frame processing
option by skipping frames
Commonly-supported sparse
annotation format

Dual-frame View
Precision Tools

Frame Selection

KITTI Output

Table 1. Annotation Tool Features

3.2. Data Collection

The dataset comprises five optical flow scenarios (Table 4),
each designed to cause large visual displacements while
minimizing confounders like lighting changes, non-rigid
motion, repetitive patterns and occlusions. Frame selection
prioritized visual speed (within the image’s space) over ab-
solute speeds, with displacements validated through anno-
tation statistics (Section 2).

We preprocessed all suitable footage using FFmpeg to
match KITTI-15’s 1242x375 resolution by cropping the
original captures and removing audio tracks. This standard-
ization prevented resolution-based artifacts when evaluating
models pre-trained on KITTI-15 data. We then organized
the processed footage into our five target categories for an-
notation.

3.3. Annotation

Using our custom tool, we annotated the captured footage
by selecting frame pairs with clear large displacements
across all five scenarios. For each pair, we manually identi-
fied up to 10 corresponding points while avoiding problem-
atic regions like motion-blurred areas, low-texture surfaces,
and occlusions. Through iterative verification, we ensured
point correspondence accuracy before exporting the final
annotations in KITTI-15 format. This process yielded 50
annotated frame pairs per scenario, collectively represent-
ing 250 validated samples that matched our displacement

targets, as later shown in Table 4.
3.4. Chosen Metrics

To evaluate optical flow models in large displacement
scenarios, we selected metrics that capture both accuracy
and robustness relevant within the evaluation of large
displacements.

Endpoint Error (EPE): The Euclidean distance (in pix-
els) between predicted and ground truth flow vectors. This
directly measures motion estimation accuracy, with large
displacements magnifying errors that are critical for stress-
testing models. Over a dataset we can define it as follows:

N
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where:
* N is the total number of pixels in the dataset.
* (u;,v;) is the estimated flow vector for pixel i.
* (Ugt,i, Vgi,i) is the ground truth flow vector for pixel 4.

Percentage of Outliers (Fl-all): The percentage of flow
vectors classified as outliers, where errors exceed either 3
pixels or 5% of the flow magnitude. It follows the standard
implementation set in the KITTI benchmark and is defined
as follows:
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where:
* N is the total number of pixels in the dataset.
EPE, is the endpoint error for pixel 7
|If; || is the magnitude for pixel i
* I() is the indicator function.

Accuracy Thresholds (Acc 1px/3px/5px): The percentage
of flow vectors with errors relative to ground truth below
these thresholds. These can reveal precision at tolerances
relevant to specific applications.

Displacement Range Binned EPE: These are EPE metrics
segmented by displacement magnitude. These will be used
to see which models perform best within which displace-
ment ranges. The selected ranges are (s0-10px), (s10-40px)
and (s40+px) as these are commonly included in bench-
marks.

3.5. Evaluation

All models were evaluated using their official KITTI-15
pre-trained weights to ensure fair comparison and leverage



real-world feature learning from this established dataset.

We adapted the standard KITTI-15 evaluation scripts to
accommodate our dataset while adding relevant metrics for
displacement-range analysis. The modified scripts com-
puted endpoint error across specific ranges (s0-10px, s10-
40px, and s40+px), Fl-all outlier rates, and accuracy thresh-
olds at 1px, 3px, and S5px precision levels.

3.6. Ethical Considerations

The collection and annotation of real-world video data
raises some important ethical concerns.

Privacy: All videos were recorded in public spaces or
with the explicit consent of the participants (when relevant).
Faces and license plates, if recognizable, were anonymized
or removed during pre-processing to prevent identification.
Transparency: The dataset, validation scripts, and source
code of the annotation tool have been publicly released
to ensure reproducibility and to facilitate scrutiny of the
ground truth quality and generated statistics. They can be
found in section 6.

LLM Use: Since an LLM has been used during the devel-
opment of the annotation tool, we have listed the prompts
that were used. It was mainly used to generate boilerplate
code for the GUL. It has also been used to help adjust eval-
uation scripts to extract relevant statistics.

3.7. Model Selection

Given our focus on large displacement scenarios, we prior-
itize models that have demonstrated strong performance in
this specific challenge. Our evaluation includes:

¢ RAFT [17]: The foundational model that serves as our
baseline for comparison. It uses iterative refinement of
the flow field using recurrent neural networks to achieve
high performance. At the time of its release, it achieved
state-of-the-art performance.

¢ FlowFormer++ [15]: Transformer-based model with im-
proved long-range dependency modeling.

e GMFlow [18]: Incorporates global matching to better
handle large motions, showing particular strength in sce-
narios with significant object movement.

* GMFlowNet [20]: This model combines global matching
with iterative updates, similar to RAFT.

* MemFlow [6]: MemFlow introduces a memory module
to store historical motion states, which helps predict fu-
ture motion.

e MemFlow-T [6]: This is a variant of MemFlow that re-
places its feature encoder with a more robust vision trans-
former. Based on its placement in the leaderboards, it per-
forms even better than MemFlow itself on multiple met-
rics.

Our selection criteria primarily focus on performance im-
provements on large displacement scenarios compared to

RAFT, architectural features specifically designed for han-
dling large displacements, and strong performance on
benchmark sequences known for challenging motion pat-
terns. By comparing these models against the original
RAFT implementation’s performance on our dataset, we
aim to quantify the improvements these specific models
have made in handling large displacements.

4. Results and Discussion

Table 3 shows the results of the evaluation of the models on
the ”Combined” dataset. The underlined values show which
model performed best on a given metric. In tables 5 and 6
are results of the benchmarks on the smaller datasets. These
do not include the displacement-based EPE as these ranges
have too few annotations (as little as 0.4%) for reasonable
statistical analysis.

4.1. Interpretation

MemFlow-T emerged as the top performer in 8 out of 10
metrics in the "Combined” dataset. It has the lowest EPE of
2.451px and the lowest Fl-all outlier rate of 5.1%. The basic
version of MemFlow performed quite well on most metrics,
but it performed the second worst on EPE, with an error
of 5.953px, which is interesting, as on other metrics it al-
most always performed second best, right behind its vision
transformer-augmented variant.

On the other hand, RAFT, which used to be the
state-of-the-art during its initial release, did not manage
to outperform any of the other models in any scenario,
suggesting that major advancements have been made in the
handling of large displacements during the years since its
release.

Scenario-Specific Insights: On tables 5 and 6, the perfor-
mance on the individual datasets has also been recorded.
There it can be seen that there’s considerably more varia-
tion in performance.

In many of the scenarios, MemFlow-T still outperforms
the other models, but on the "Moving Camera” dataset,
MemFlow outperforms it on every metric. This is interest-
ing as it suggests that the vision transformer MemFlow-T is
augmented with,might cause a reduction in accuracy under
specific circumstances.

Conversely, in the "Fake Low FPS” dataset, where mo-
tion blur was minimized but displacements were artifi-
cially large, MemFlow-T’s robust performance (EPE: 3.123
px) contrasted sharply with MemFlow’s high error (EPE:
20.870 px), implying that there are certain situations where
MemFlow’s default feature encoder fails to produce correct
results, while MemFlow-T’s vision transformer does han-
dle them correctly. While the exact cause (e.g., architectural
sensitivity to frame-skipping) remains unclear and falls out-
side this study’s scope, the results show a major divergence



in model behavior under these circumstances.

4.2. Discussion

The evaluation of optical flow models on our real-world
dataset reveals critical insights into their performance in
large displacement scenarios. MemFlow(-T) and Flow-
Former++ consistently outperformed other models, includ-
ing the established baseline RAFT. This shows that in the
years following the creation of RAFT, considerable im-
provements have been made to optical flow estimation of
large displacements.

A notable finding is the discrepancy between model per-
formance and annotation reliability. Motion blur and occlu-
sions introduced significant ambiguity in ground truth la-
beling, as seen in Figure 4, where blurred regions made pre-
cise correspondence difficult. This raises the possibility that
models like MemFlow-T may, in some cases, surpass hu-
man annotation accuracy where motion blur or occlusions
obscure ground truth.

4.2.1 Challenges

Annotating the ground truth for scenarios that contained
large displacements presented significant recording and an-
notation challenges for humans.

Motion Blur: One of the primary challenges is motion
blur, which occurs when objects move rapidly relative to the
camera’s exposure time. This phenomenon creates smeared
edges and causes textures to lose sharpness, making pre-
cise pixel correspondence difficult to establish. Motion blur
particularly affects fast-moving objects or scenes with rapid
camera motion, potentially rendering them nearly impos-
sible to annotate accurately. The visual ambiguity caused
by motion blur forces annotators to use their personal judg-
ment about the true position of moving objects, potentially
introducing inconsistencies in the ground truth data. This
can be clearly observed in Figure 4, where the blurred re-
gions demonstrate how motion blur obscures boundaries of
objects and reduces the distinctiveness of visual features
needed to accurately annotate them.

Figure 4. An example of motion blur on a vehicle in the dataset.
There are few if any points that can be annotated with high confi-
dence.

In a few frame sets, a technique was used to mitigate this
by selecting non-consecutive frames from videos of mod-

erately moving objects. This approach artificially ampli-
fies displacements while preserving image clarity, enabling
more accurate annotation. This method can be justified for
several reasons. Low framerate cameras/video streams or
short shutter speeds naturally produce similar frame inter-
vals, making it an approximation of such real-world scenar-
ios. Additionally, by removing image blur, we can evaluate
model performance on large motions without the confound-
ing effects of visual artifacts.

Occlusion and Disappearance: Another major difficulty
came from occlusions, especially self-occlusion caused by
perspective shifts. Objects that move quickly often move
out of the frame or features become (temporarily) hidden,
creating several challenges for optical flow estimation. This
includes the disappearance of correspondence points be-
tween frames and the appearance of new objects without
clear origin points. Additionally, fast-moving objects fre-
quently experience self-occlusion where parts of the object
obscure other parts due to their rapid motion relative to the
camera.

Another problem with occlusions in this dataset is that
they are a challenging topic on their own that also poses a
significant challenge for optical flow models. Because of
this, care needs to be taken that occlusions don’t become a
bigger challenge than large displacements in this dataset.

4.3. Limitations

The current dataset, comprising 250 frames across five dif-
ferent scenarios, was limited by constraints in time and re-
sources, as well as data loss. Expanding the dataset to in-
clude over 100 frames per scenario would significantly en-
hance statistical confidence. This expansion is particularly
crucial for both the lower end of the spectrum, where sub-
10px displacements currently represent less than 2.5% of all
annotations, and the higher end, where only 3.9% of annota-
tions exceed 100px in the "Moving Camera” dataset, these
sparsities can be seen in Table 2. The limited proportion
of sub-10px annotations, skews the s0-10 EPE for example,
effectively turning this range into an error bin and leading
to unexpected results within this displacement range. To ad-
dress this issue, it would be beneficial to intentionally incor-
porate more low displacement annotations into the dataset.
This adjustment would make the s0-10 EPE statistic more
reflective of the models’ actual performance.

4.4. Future Research
Although our data set reveals critical insights about large-

displacement optical flow, several avenues remain unex-
plored.



Dataset >10px (%) 10-20px (%) 20-50px (%) 50-100px (%) >100px (%)
Fast Objects 99.6 0.0 34.2 26.3 39.1
Moving Camera 99.8 5.0 47.7 43.3 3.9
Panning 94.8 8.2 34.8 47.0 4.8
Small Objects 95.2 3.4 24.8 42.1 25.0
Fake Low Fps 98.2 3.8 24.2 29.7 40.4
Combined 97.5 4.1 33.1 37.7 22.6
Table 2. Dataset Annotation Statistics
Model EPE Fl-all Acc 1px Acc3px  Acc 5px >10px
(px) (%) (%) (%) (%) EPE (px)
RAFT [17] 6.669 11.325 47.536 83.630 88.921 6.650
FlowFormer++ [15] 2.708 6.581 49.080 87.937 93.363 2.562
GMFlow [18] 2.791 8.077 41.558 84.637 92.152 2.674
GMFlowNet [20] 4.944 9.487 49.420 85.704 90.508 4.956
MemPFlow [6] 5.953 5.953 53.868 90.297 94.650 5.864
MemFlow-T[6] 2451 5.118 53.090 90.430 95.023 2.300
>10px >20px >20px s0-10 s10-40 s40+
Fl-all (%) EPE (px) Fl-all(%) EPE (px) EPE (px) EPE (px)
RAFT [17] 12.264 6.822 12.547 7.858 3.347 7.983
FlowFormer++ [15] 7.030 2.550 7.126 13.108 4.211 2.768
GMFlow [18] 8.511 2.675 8.633 14.092 4.302 2.716
GMFlowNet [20] 10.368 5.017 10.853 5.695 3.823 5.691
MemFlow [6] 5.822 5.954 5.851 14.816 3.539 6.875
MemFlow-T [6] 4.838 2.311 5.233 15.029 3.171 2.489

Table 3. Core Performance on ”Combined” Dataset

4.4.1 Cross-Dataset Generalization

The datasets “Fast Objects,” "Moving Camera”, and “’Pan-
ning” exhibit characteristics similar to those found in the
KITTI dataset. Therefore, it would be insightful to evalu-
ate their performance when models are pre-trained on other
datasets. This approach could provide valuable insights into
different models’ adaptability and robustness across differ-
ent data sources.

4.4.2 More Dynamic Scenes

Due to resource limitations and also in part to reduce con-
founders, it was not feasible to generate exceptionally dy-
namic scenes. As a result, a lot of the test data contains
similar linear motion, where either almost all features in an
image are moving the same direction, with possibly a static
background. For similar reasons, it has also resulted in a lot
of videos being re-used to generate multiple frame annota-
tions.

5. Conclusion

This study addressed the critical gap in evaluating optical
flow models for real-world scenarios with large displace-
ments by introducing a novel dataset and annotation frame-
work. Our approach was designed to isolate and analyze
large displacements while systematically minimizing con-
founders such as lighting variations, occlusions, non-rigid
motion and giving a clearer insight into model performance
on specific conditions.

The results demonstrate that recent models, particu-
larly MemFlow(-T) and FlowFormer++, significantly out-
perform the previously established state-of-the-art RAFT
across all tested scenarios. Their success highlights the ef-
fectiveness of memory modules and transformers in predict-
ing large displacements flows, providing guidance for future
model development.

6. Code and Data

Our annotation tool was implemented in Python using
OpenCV and PyQt. The complete source code is available



on GitHub'. Part of the code was written with the help of an
LLM. The prompts used are included as well. The FFmpeg
script used for resizing is also included in the repository.

The dataset that was created is also available on Github >
This repository also contains the FFmpeg script, as well as
the validation scripts used to extract performance metrics
from the models discussed in the paper so that others can
replicate the benchmarking.
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Dataset Description Key Characteristics

Fast Objects Recordings of moving vehicles captured from + Dominant displacements: 20-100px (65.3%)
close range, emphasizing large pixel * Most >100px cases (39.1%)
displacements. * Fast foreground objects with static background

* Challenges: Motion blur, reflections

Moving Camera Footage from a moving tram showing relative * 99.8% displacements >10px
motion. ¢ 47.7% mid-range (20-50px)
* Few >100px (3.9%)
 Consistent, linear motion patterns

Panning Controlled camera panning across outdoor scenes. « 94.89% displacements >10px

* 47.0% 50-100px motions
* Few >100px (4.8%)
 Consistent, linear motion patterns

Small Objects  Close-range footage of primarily pieces of teaware « 9529 displacements >10px
being moved around or being panned over. * 25.0% >100px cases

* Challenges: Low texture due to light

Fake Low FPS  Artificial displacements via frame skipping. * 98.2% displacements >10px
* 40.4% >100px motions
* Minimal motion blur
* Skips between 5 and 10 frames.

Combined Aggregate of all datasets. * 97.5% displacements >10px
¢ Most Balanced distribution
¢ 250 annotated frames

Table 4. Current Dataset Composition and Displacement Characteristics



Dataset Model EPE (px) Fl-all (%) Acclpx(%) Acc3px(%) Acc5px (%)
Fast Objects RAFT 11.788 23.600 29.071 62.369 73.488
FF++ 4.259 9.600 34.967 74.720 85.099
GMF 5.506 14.800 26.991 69.011 81.243
GMFN 8.227 19.600 32.395 68.034 77.411
MF 4.865 9.601 36.141 77.960 88.399
MF-T 4.770 9.221 37.029 78.061 87.134
Moving Camera RAFT 1.484 7.022 55.516 91.292 95.295
FF++ 1.449 8.475 55.165 89.813 95.870
GMF 1.472 5.811 51.845 92.443 97.252
GMFN 1.409 4.358 61.979 93.901 97.351
MF 1.058 2.719 67.203 95.385 98.408
MFE-T 1.289 3.804 66.378 94.975 97.523
Panning RAFT 6.672 7.739 66.937 91.556 91.956
FF++ 1.165 2.037 70.181 96.556 98.022
GMF 1.769 3.870 59.034 93.489 95.644
GMFN 8.628 8.961 64.345 90.022 91.044
MF 0.890 1.044 70.937 98.756 99.378
MF-T 0.891 0.622 72.880 99.178 99.778
Small Objects RAFT 2.236 6.221 39.956 87.567 94.467
FF++ 2.081 5.530 40.394 91.152 95.733
GMF 2.144 6.912 35.569 87.621 95.333
GMFN 2.039 6.912 40.870 88.617 93.867
MF 2.083 7.333 46.182 91.285 95.533
ME-T 2.181 7.652 40.176 89.566 94.767
Fake Low Fps RAFT 11.164 10.558 46.198 85.367 89.400
FF++ 4.585 7.371 44.691 87.444 92.089
GMF 3.063 8.367 34.354 80.622 91.289
GMFN 4.417 6.375 47.513 87.944 92.867
MF 20.870 9.067 48.876 88.100 91.533
MF-T 3.123 4.289 48.987 90.370 95911

Table 5. General Performance Metrics for Separate Datasets



Dataset Model >10px EPE (px) >10px Fl-all (%) >20px EPE (px) >20px Fl-all (%)
Fast Objects RAFT 11.634 25.668 11.634 25.668
FF++ 4.136 10.367 4.136 10.367
GMF 5.377 15.745 5.377 15.745
GMFN 8.085 20.884 8.085 20.884
MF 4.712 9.490 4.712 9.490
ME-T 4.618 9.132 4.618 9.132
Moving Camera RAFT 1.483 7.955 1.482 7.955
FF++ 1.448 8.649 1.440 8.394
GMF 1.470 6.150 1.452 6.165
GMFN 1.408 4.322 1.415 4.036
MF 1.057 2.719 1.051 2719
MEF-T 1.288 3.804 1.283 3.566
Panning RAFT 6.927 8.796 7.622 9.710
FF++ 1.192 2.130 1.256 2.664
GMF 1.816 4.630 1.918 5.051
GMEN 8.966 10.162 9.737 11.427
MF 0.904 1.088 0.920 1.187
MEF-T 0.909 0.648 0.937 1.048
Small Objects RAFT 2.065 8.261 1.927 8.226
FF++ 1.871 7.394 1.746 7.341
GMF 2.155 8.794 2.013 8.770
GMFN 2.088 9.806 1.974 11.434
MF 1.894 6.856 1.744 6.791
MF-T 2.007 7.472 1.887 9.053
Fake Low Fps RAFT 11.152 10.500 11.536 10.714
FF++ 4.108 6.411 4.030 6.315
GMF 2.516 7.078 2.508 6.973
GMFEN 4.391 6.661 4.366 6.480
MF 20.553 8.767 20.953 8.583
MF-T 2.625 2.967 2.665 2.891

Table 6. Large Displacement Performance Metrics for Separate Datasets
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