
 
 

Delft University of Technology

On the conjugacy class of the Fibonacci dynamical system

Dekking, F. Michel; Keane, Michael S.

DOI
10.1016/j.tcs.2017.01.009
Publication date
2017
Document Version
Final published version
Published in
Theoretical Computer Science

Citation (APA)
Dekking, F. M., & Keane, M. S. (2017). On the conjugacy class of the Fibonacci dynamical system.
Theoretical Computer Science, 668, 59-69. https://doi.org/10.1016/j.tcs.2017.01.009

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.tcs.2017.01.009
https://doi.org/10.1016/j.tcs.2017.01.009


Theoretical Computer Science 668 (2017) 59–69
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

On the conjugacy class of the Fibonacci dynamical system

F. Michel Dekking a,∗, Michael S. Keane a,b

a DIAM, Delft University of Technology, Faculty EEMCS, P.O. Box 5031, 2600 GA Delft, The Netherlands
b New York University Shanghai, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 August 2016
Received in revised form 14 December 2016
Accepted 12 January 2017
Available online 17 January 2017
Communicated by J. Karhumäki

Keywords:
Fibonacci word
Automatic sequences
Topological conjugacy
Symbolic dynamical system

We characterize the symbolical dynamical systems which are topologically isomorphic to 
the Fibonacci dynamical system. We prove that there are infinitely many injective primitive 
substitutions generating a dynamical system in the Fibonacci conjugacy class. In this class 
there are infinitely many dynamical systems not generated by a substitution. An example 
is the system generated by doubling the 0’s in the infinite Fibonacci word.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We study the Fibonacci substitution ϕ given by

ϕ : 0 → 01, 1 → 0.

The infinite Fibonacci word wF is the unique one-sided sequence (to the right) which is a fixed point of ϕ:

wF = 0100101001 . . . .

We also consider one of the two two-sided fixed points xF of ϕ2:

xF = . . . 01001001·0100101001 . . . .

The dynamical system generated by taking the orbit closure of xF under the shift map σ is denoted by (Xϕ, σ).
The question we will be concerned with is: what are the substitutions η which generate a symbolic dynamical system 

topologically isomorphic to the Fibonacci dynamical system? Here topologically isomorphic means that there exists a homeo-
morphism ψ : Xϕ → Xη , such that ψσ = σψ , where we denote the shift on Xη also by σ . In this case (Xη, σ) is said to be 
conjugate to (Xϕ, σ).

This question has been completely answered for the case of constant length substitutions in the paper [2]. It is remark-
able that there are only finitely many injective primitive substitutions of length L which generate a system conjugate to a 
given substitution of length L. Here a substitution α is called injective if α(a) �= α(b) for all letters a and b from the al-
phabet with a �= b. When we extend to the class of all substitutions, replacing L by the Perron–Frobenius eigenvalue of the 
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incidence matrix of the substitution, then the conjugacy class can be infinite in general. See [5] for the case of the Thue–
Morse substitution. In the present paper we will prove that there are infinitely many injective primitive substitutions with 
Perron–Frobenius eigenvalue � = (1 + √

5)/2 which generate a system conjugate to the Fibonacci system—see Theorem 5.1.
In the non-constant length case some new phenomena appear. If one has an injective substitution α of constant length L, 

then all its powers αn will also be injective. This is no longer true in the general case. For example, consider the injective 
substitution ζ on the alphabet {1, 2, 3, 4, 5} given by

ζ : 1 → 12, 2 → 3, 3 → 45, 4 → 1, 5 → 23.

An application of Theorem 2.1 followed by a partition reshaping (see Section 4) shows that the system (Xζ , σ) is conjugate 
to the Fibonacci system. However, the square of ζ is given by

ζ 2 : 1 → 123, 2 → 45, 3 → 123, 4 → 12, 5 → 345,

which is not injective. To deal with this undesirable phenomenon we introduce the following notion. A substitution α
is called a full rank substitution if its incidence matrix has full rank (non-zero determinant). This is a strengthening of 
injectivity, because obviously a substitution which is not injective can not have full rank. Moreover, if the substitution α has 
full rank, then all its powers αn will also have full rank, and thus will be injective.

Another phenomenon, which does not exist in the constant length case, is that non-primitive substitutions ζ may gen-
erate uniquely defined minimal systems conjugate to a given system. For example, consider the injective substitution ζ on 
the alphabet {1, 2, 3, 4} given by

ζ : 1 → 12, 2 → 31, 3 → 4, 4 → 3.

With the partition reshaping technique from Section 4 one can show that the system (Xζ , σ) is conjugate to the Fibonacci 
system (ignoring the system on two points generated by ζ ). In the remainder of this paper we concentrate on primitive 
substitutions.

The structure of the paper is as follows. In Section 2 we show that all systems in the conjugacy class of the Fibonacci 
substitution can be obtained by letter-to-letter projections of the systems generated by so-called N-block substitutions. 
In Section 3 we give a very general characterization of symbolical dynamical systems in the Fibonacci conjugacy class, 
in the spirit of a similar result on the Toeplitz dynamical system in [4]. In Section 4 we introduce a tool which admits 
to turn non-injective substitutions into injective substitutions. This is used in Section 5 to show that the Fibonacci class 
has infinitely many primitive injective substitutions as members. In Section 6 we quickly analyze the case of a 2-symbol 
alphabet. Sections 7 and 8 give properties of equicontinuous factors and incidence matrices, which are used to analyze the 
3-symbol case in Section 9. In the final Section 10 we show that the system obtained by doubling the 0’s in the infinite 
Fibonacci word is conjugate to the Fibonacci dynamical system, but can not be generated by a substitution.

2. N-block systems and N-block substitutions

For any N the N-block substitution θ̂N of a substitution θ is defined on an alphabet of pθ (N) symbols, where pθ (·) is the 
complexity function of the language Lθ of θ (cf. [11, p. 95]). What is not in [11], is that this N-block substitution generates 
the N-block presentation of the system (Xθ , σ).

We denote the letters of the alphabet of the N-block presentation by [a1a2 . . .aN ], where a1a2 . . .aN is an element from 
LN

θ , the set of words of length N in the language of θ . The N-block presentation (X [N]
θ , σ) emerges by applying an sliding 

block code 
 to the sequences of Xθ , so 
 is the map


(a1a2 . . .aN) = [a1a2 . . .aN ].
We denote by ψ the induced map from Xθ to X [N]

θ :

ψ(x) = . . .
(x−N , . . . , x−1)
(x−N+1, . . . , x0) . . . .

It is easy to see that ψ is a conjugacy, where the inverse is π0 induced by the 1-block map (also denoted π0) given by 
π0([a1a2 . . .aN ]) = a1.

The N-block substitution θ̂N is defined by requiring that for each word a1a2 . . .aN the length of θ̂N ([a1a2 . . .aN ]) is equal 
to the length L1 of θ(a1), and the letters of θ̂N ([a1a2 . . .aN ]) are the 
-codings of the first L1 consecutive N-blocks in 
θ(a1a2 . . .aN).

Theorem 2.1. Let θ̂N be the N-block substitution of a primitive substitution θ . Let (X [N]
θ , σ) be the N-block presentation of the system 

(Xθ , σ). Then X [N]
θ = X

θ̂N
.

Proof. Let x be a fixed point of θ , and let y = ψ(x), where ψ is the N-block conjugacy, with inverse π0. The key equation 
is π0 θ̂N = θ π0. This implies



F.M. Dekking, M.S. Keane / Theoretical Computer Science 668 (2017) 59–69 61
π0 θ̂N(y) = θ π0(y) = θ π0(ψ(x)) = θ(x) = x.

Applying ψ on both sides gives θ̂N (y) = ψ(x) = y, i.e., y is a fixed point of θ̂N . But then X [N]
θ = X

θ̂N
, by minimality of 

X [N]
θ . �

It is well known (see, e.g., [11, p. 105]) that pϕ(N) = N + 1, so for the Fibonacci substitution ϕ the N-block substitution 
ϕ̂N is a substitution on an alphabet of N + 1 symbols.

We describe how one obtains ϕ̂2. We have L2
ϕ = {00, 01, 10}. Since 00 and 01 start with 0, and 10 with 1, we obtain

ϕ̂2 : [00] �→ [01][10], [01] �→ [01][10], [10] �→ [00],
reading off the consecutive 2-blocks from ϕ(00) = 0101, ϕ(01) = 010 and ϕ(10) = 001. It is useful to recode the alphabet 
{[00], [01], [10]} to the standard alphabet {1, 2, 3}. We do this in the order in which they appear for the first time in the 
infinite Fibonacci word wF—we call this the canonical coding, and will use the same principle for all N . For N = 2 this gives 
[01] → 1, [10] → 2, [00] → 3. Still using the notation ϕ̂2 for the substitution on this new alphabet, we obtain

ϕ̂2(1) = 12 ϕ̂2(2) = 3, ϕ̂2(3) = 12.

In this way the substitution is in standard form (cf. [2] and [6]).

3. The Fibonacci conjugacy class

Let Fn for n = 1, 2, . . . be the Fibonacci numbers

F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, . . . .

Theorem 3.1. Let (Y , σ) be any subshift with infinite cardinality. Then (Y , σ) is topologically conjugate to the Fibonacci system 
(Xϕ, σ) if and only if there exist n ≥ 3 and two words B0 and B1 of length Fn and Fn−1 , such that any y from Y is a concatenation of 
B0 and B1 , and moreover, if · · · Bx−1 Bx0 Bx1 · · · Bxk · · · is such a concatenation, then x = (xk) is a sequence from the Fibonacci system.

Proof. First let us suppose that (Y , σ) is topologically isomorphic to the Fibonacci system. By the Curtis–Hedlund–Lyndon 
theorem, there exists an integer N such that Y is obtained by a letter-to-letter projection π from the N-block presentation 
(X [N]

ϕ , σ) of the Fibonacci system. Now if B0 and B1 are two decomposition blocks of sequences from X [N]
ϕ of length Fn and 

Fn−1, then π(B0) and π(B1) are decomposition blocks of sequences from Y with lengths Fn and Fn−1, again satisfying the 
concatenation property. Here we use that since Y is infinite, the decomposition of a sequence y from Y in the two blocks 
π(B0) and π(B1) is unique, cf. [10]. So it suffices to prove the result for X [N]

ϕ . Note that we may suppose that the integers 
N pass through an infinite subsequence; we will use N = Fn , where n = 3, 4, . . . . Useful to us are the singular words wn

introduced in [13]. The wn are the unique words of length Fn+1 having a different Parikh vector from all the other words 
of length Fn+1 from the language of ϕ . Here w1 = 1, w2 = 00, w3 = 101, and for n ≥ 4

wn = wn−2 wn−3 wn−2.

The set of return words of wn has only two elements which are un = wn wn+1 and vn = wn wn−1 (see page 108 in [7]). The 
lengths of these words are |un| = Fn+3 and |vn| = Fn+2. Let w−

n be wn with the last letter deleted. Define for n ≥ 5

B0 = 
(un−3 w−
n−3), B1 = 
(vn−3 w−

n−3),

where 
 is the N-block code from LN
ϕ to Lϕ[N] , with N = Fn−2. Then these blocks have the right lengths, and by Theorem 

2.11 in [7], the two return words partition the infinite Fibonacci word wF according to the infinite Fibonacci word—except 
for a prefix rn,0:

wF = rn,0un vnunun vnun . . . .

By minimality this property carries over to all two-sided sequences in the Fibonacci dynamical system.
For the converse, let Y be a Fibonacci concatenation system as above. Let C0 = ϕn−2(0) and C1 = ϕn−2(1). We define a 

map g from (Y , σ) to a subshift of {0, 1}Z by

g : · · · Bx−1 Bx0 Bx1 · · · Bxk · · · �→ · · · Cx−1 Cx0 Cx1 · · · Cxk · · · ,

respecting the position of the 0th coordinate. By the uniqueness of the decomposition (cf. [10]), g is well defined. Since 
|C0| = |B0| and |C1| = |B1|, g commutes with the shift. Also, g is obviously continuous. Moreover, since for any sequence 
x in the Fibonacci system ϕn−2(x) is again a sequence in the Fibonacci system, g(Y ) ⊆ Xϕ . So, by minimality, (Xϕ, σ) is a 
factor of (Y , σ). Since g is invertible, with continuous inverse, (Y , σ) is in the conjugacy class of the Fibonacci system. �
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Example. The case (Fn, Fn−1) = (13, 8). Then n = 7, so we have to consider the singular word w4 = 00100 of length 5.
The set of 5-blocks is {01001, 10010, 00101, 01010, 10100, 00100}.

These will be coded by the canonical coding 
 to the standard alphabet {1, 2, 3, 4, 5, 6}. Note that 
(w4) = 6. Further, 
w3 = 101 and w5 = 10100101. So un = 0010010100101 and vn = 00100101. Applying 
 gives the two decomposition 
blocks B0 = 6123451234512 and B1 = 61234512.

4. Reshaping substitutions

We call a language preserving transformation of a substitution a reshaping. An example is the prefix-suffix change used 
in [5]. Here we consider a variation which we call a partition reshaping.

We give an example of this technique. Take the N-block representation of the Fibonacci system for N = 4. All five 
4-blocks occur consecutively at the beginning of the Fibonacci word wF as {0100, 1001, 0010, 0101, 1010}. The canonical 
coding to {1, 2, 3, 4, 5} gives the 4-block substitution ϕ̂4:

ϕ̂4 : 1 → 12, 2 → 3, 3 → 45, 4 → 12, 5 → 3.

Its square is equal to

ϕ̂2
4 : 1 → 123, 2 → 45, 3 → 123, 4 → 123, 5 → 45.

Since the letters 1, 2, and 3, respectively 4 and 5, in the two blocks B0 = 123 and B1 = 45 only occur in the language in 
these two blocks, this permits to do a partition reshaping. Symbolically this can be represented by

1 2 3 4 5
↓ ↓ ↓ ↓ ↓
1 2 3 4 5 1 2 3
1 2 ‖ 3 4 ‖ 5 1 ‖ 2 3 ‖

Here the third line gives the images ϕ̂4(B0) = ϕ̂4(123) = 12345 and ϕ̂4(B1) = ϕ̂4(45) = 123; the fourth line gives a another
partition of these two words in three, respectively two subwords from which the new substitution η can be read of:

η : 1 → 12, 2 → 34, 3 → 5, 4 → 1, 5 → 23.

What we gain is that the partition reshaped substitution η generates the same language as ϕ̂4, but that η is injective—in 
this example it is even of full rank.

In general, one looks for one or more isolated words in the language of a substitution η, i.e., words w = w1 . . . wm such 
that the letter a = wi can only occur in the language as w1 . . . wi−1a . . . wm for i = 1, . . . , m. This implies in particular 
that all letters in an isolated word are different, as in the two isolated words 123 and 45 in the example above. Partition 
reshapings ζ of η are obtained by partitioning the image word η(w) of an isolated word w = w1 . . . wm into m words, and 
assigning these words to the letters w1 to wm .

Lemma 4.1. Let η be a primitive substitution that permits a partition reshaping ζ , and let ζ be primitive. Then λPF(η) = λPF(ζ ), where 
λPF(η) and λPF(ζ ) are the Perron–Frobenius eigenvalues of η and ζ .

Proof. By the Perron–Frobenius theorem there exist words v in Lη such that |η(v)| is arbitrarily close to λPF(η)|v|. As we 
may assume that in v only complete isolated words w occur, we have ζ(v) = η(v), and in particular |ζ(v)| = |η(v)|. So 
another application of the PF-theorem gives that λPF(ζ ) = λPF(η). �
5. The Fibonacci class has infinite cardinality

Theorem 5.1. There are infinitely many primitive injective substitutions with Perron–Frobenius eigenvalue the golden mean that gen-
erate dynamical systems topologically isomorphic to the Fibonacci system.

We will explicitly construct infinitely many primitive injective substitutions whose systems are topologically conjugate 
to the Fibonacci system. The topological conjugacy will follow from the fact that the systems are N-block codings of the 
Fibonacci system, where N will run through the numbers Fn − 1. As an introduction we look at n = 5, i.e., we consider 
the blocks of length N = F5 − 1 = 4. With the canonical coding of the N-blocks we obtain the 4-block substitution ϕ̂4—see 
Section 4:

ϕ̂4 : 1 → 12, 2 → 3, 3 → 45, 4 → 12, 5 → 3.

An interval I starting with a ∈ A is a word of length L of the form
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I = a,a + 1, ...,a + L − 1.

Note that ϕ̂4(123) = 12345, and ϕ̂4(45) = 123, and these four words are intervals.
This is a property that holds in general. First we need the fact that the first Fn words of length Fn − 1 in the fixed point 

of ϕ are all different. This result is given by Theorem 2.8 in [3]. We code these N + 1 words by the canonical coding to the 
letters 1, 2, . . . , Fn . We then have

ϕ̂N(12...Fn−1) = 12 . . . Fn, ϕ̂N(Fn−1+ 1, . . . Fn) = 12 . . . Fn−1. (1)

This can be seen by noting that π0ϕ̂
n
N = ϕnπ0, for all n, and that the fixed point of ϕ starts with ϕn−2(0)ϕn−3(0).

We continue for n ≥ 5 with the construction of a substitution η = ηn which is a partition reshaping of ϕ̂N . The Fn letters 
in the alphabet A[N] are divided in three species, S, M and L (for Small, Medium and Large).

S := 1, ..., Fn−3, M := Fn−3 + 1, ..., Fn−1, L := Fn−1+ 1, ..., Fn.

Note that Card M = Fn−1 − Fn−3 = Fn−2 = Fn − Fn−1 = Card L.
An important role is played by aM := Fn−3 + 1, the smallest letter in M, and aL := Fn−1 + 1, the smallest letter in L.

For the letters in M (except for aM) the rules are very simple:

η(a) = a + Fn−2

(i.e., a single letter obtained by addition of the two integers). The first letter in M has the rule

η(aM) = η(Fn−3+ 1) = Fn−1, Fn−1+ 1 = Fn−1,aL.

The images of the letters in L are intervals of length 1 or 2, obtained from a partition of the word 12 . . . Fn−1. Their lengths 
are coming from ϕn−4(0), rotated once (put the 0 in front at the back). This word is denoted ρ(ϕn−4(0)). The choice of this 
word is somewhat arbitrary, other choices would work. The properties of v := ρ(ϕn−4(0)) which matter to us are

(V1) � := |v| = Fn−2.
(V2) v1 = 1, v� = 0.
(V3) v does not contain any 11.

Now the images of the letters in L are determined by v according to the following rule: |η(aL + k − 1)| = 2 − vk , for all 
k = 1, . . . , Fn−2. Note that this implies in particular that for all n ≥ 5 one has by property (V2)

η(aL) = η(Fn−1+ 1) = 1, η(Fn) = Fn−1 − 1, Fn−1.

The images of the letters in S are then obtained by choosing the lengths of the η(a) in such a way that the coarsest 
common refinement of the induced partitions of the images of S and L is the singleton partition (this is always possible in 
a unique way).

Example. The case n = 7, so Fn = 13, Fn−1 = 8, and Fn−2 = 5.
Then S = {1, 2, 3}, M = {4, 5, 6, 7, 8}, L = {9, 10, 11, 12, 13}.
Rules for M: 4 → 89, 5 → 10, 6 → 11, 7 → 12, 8 → 13. Now

ϕ3(0) = 01001 ⇒ v = 10010 ⇒ the partition is 1|23|45|6|78.

This partition gives the following rules for L:

9 → 1, 10 → 23, 11 → 45, 12 → 6, 13 → 78.

The induced partition for the images of the letters in S is |12|34|567|8, yielding rules

1 → 12, 2 → 34, 3 → 567.

In summary we obtain the substitution η = η7 given by:

S :

⎧⎪⎨
⎪⎩

1 → 1,2

2 → 3,4

3 → 5,6,7

M :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4 → 8,9

5 → 10

6 → 11

7 → 12

8 → 13

L :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

9 → 1

10 → 2,3

11 → 4,5

12 → 6

13 → 7,8.

The substitution η is primitive because you ‘can go’ from the letter 1 to any letter and from any letter to the letter 1. This 
gives irreducibility; there is primitivity because periodicity is impossible by the first rule 1 → 1, 2.

The substitution η has full rank because any unit vector
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ea = (0, . . . ,0,1,0, . . . ,0)

is a linear combination of rows of the incidence matrix Mη of η. For a ∈ L \ {9} this combination is trivial, and for the other 
letters this is exactly forced by the choice of lengths in such a way that the coarsest common refinement of the induced 
partitions of the images of S and L is the singleton partition. In more detail: denote the ath row of Mη by Ra . Then e1 = R9, 
and thus e2 = R1 − R9, e3 = R10 − e2 = R10 − R1 + R9, etc.

The argument yielding the property of full rank will hold in general for all n ≥ 5. To prove primitivity for all n we need 
some more details.

Proposition 5.1. The substitution η = ηn is primitive for all n ≥ 5.

Proof. The proposition will be proved if we show that for all a ∈ A the letter a will occur in some iteration ηk(1), and 
conversely, that for all a ∈ A the letter 1 will occur in some iteration ηk(a). The first part is easy to see from the fact that 
η(1) = 1, 2 and that η2(1, . . . , Fn−2) = 1, . . . , Fn − 1, plus η2(aM) = Fn, 1. For the second part, we show that A) for any 
a ∈ M ∪ L a letter from S will occur in ηk(a) in k ≤ Card M ∪ L steps (see Lemma 5.1) and B), that for any a ∈ S the letter 1 
will occur in ηk(a) in k ≤ 2Card A steps (see Lemma 5.2). �
Lemma 5.1. Let f : A → A be the map that assigns the first letter of η2(a) to a. Then f is strictly decreasing on L ∪ M\{aM}.

Proof. First we consider f on L. We have

η2(aL . . . Fn) = η(1, . . . , Fn−1 − 1, Fn−1) = 1 . . . Fn.

Since

η2(Fn) = η(Fn−1 − 1, Fn−1) = Fn−1 − 1 + Fn−2, Fn−1 + Fn−2 = Fn − 1, Fn,

we obtain f (Fn) = Fn − 1 < Fn . This implies that also the previous letters in L are mapped by f to a smaller letter.
Next we consider f on M\{aM}. Here

η2(aM + 1, . . . , Fn−1) = η(aL + 1, . . . , Fn) = 2,3, . . . , Fn−1.

Now

η2(Fn−1) = η(Fn) = Fn−1 − 1, Fn−1.

So we obtain f (Fn−1) = Fn−1 − 1 < Fn−1. This implies that also the previous letters in M are mapped by f to a smaller 
letter. �
Lemma 5.2. For all a ∈ S there exists k ≤ 2 Card A such that the letter 1 occurs in ηk(a).

Proof. The substitution η2 maps intervals I to intervals η2(I), provided I does not contain aM or aL. By construction, since 
the η(b) for b ∈ L have length 1 or 2, the length of η(a) for a ∈ S is 2 or 3, and so η(a) contains a word c, c + 1 for some 
c ∈ A. Since ρϕ(n−4)(0) does not contain two consecutive 1’s (property (V3)), the image η2(c, c + 1) has at least length 3. 
Since1 any word of length at least 3 in the language of η contains an interval of length 2, the length increases by at least 1 
if you apply η2. It follows that for all n ≥ 5 and all a ∈ S one has |η2n+1(a)| ≥ n + 2. But then after less than Card A steps 
a letter aM or a letter aL must occur in η2n+1(a). This implies that the letter 1 occurs in η2n+3(a), since both η2(aM) and 
η2(aL) contain a 1. �
Proof of Theorem 5.1. The theorem follows from the construction and the full rank argument given above combined with 
Proposition 5.1 and Lemma 4.1. �
6. The 2-symbol case

On an alphabet of two symbols, modulo a permutation of the symbols, the only possible incidence matrix with Perron–

Frobenius eigenvalue the golden mean is 
(

1 1
1 0

)
. There are two substitutions with this incidence matrix: Fibonacci ϕ , and 

reverse Fibonacci ϕr , defined by

1 This follows from the fact that any word in the language of η occurs in some concatenation of the two words 12 . . . Fn and 12 . . . Fn−1.
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ϕr : 0 → 10, 1 → 0.

These two substitutions are essentially different, as they have different standard forms (see [6] for the definition of standard 
form).

However, it follows directly from Tan Bo’s criterion in his paper [12] that ϕr and ϕ have the same language,2 but then 
they also generate the same system. Conclusion: the conjugacy class of Fibonacci with Perron–Frobenius eigenvalue the 
golden mean restricted to two symbols consists of Fibonacci and reverse Fibonacci (up to a permutation of symbols).

7. The Fibonacci system and the golden mean rotation

A topological dynamical system (X, τ ) is called equicontinuous if the family of maps {τn : n ∈ Z} is uniformly equicontin-
uous.

Let T be the mapping from the unit circle T1 to itself defined by T t = t + γ mod 1, where γ = (
√

5 − 1)/2 is the small 
golden mean. This, being an irrational rotation, is indeed an equicontinuous dynamical system – the usual distance metric 
is an invariant metric under the mapping. The factor map from the Fibonacci dynamical system (Xϕ , σ) to (T1, T ) is given 
by requiring that the cylinder sets {x : x0 = 0} and {x : x0 = 1} are mapped to the intervals [0, γ ] and [γ , 1] respectively, 
and requiring equivariance. If we take any point of T1 not of the form nγ mod 1 (n any integer), then the corresponding 
sequence is unique. If, however, we use an element in the orbit of γ , then for this point there will be two codes, a “left” 
one and a “right” one.

We want to understand more generally why two or more points map to a single point. Suppose x and y are two points 
of a system (X, τ ) that map to two points x′ and y′ in an equicontinuous factor. Then for any power of T (the map of the 
factor system) the distance between T n(x′) and T n(y′) is just equal to the distance between x′ and y′ . So x and y map to 
the same point x′ if either all xn and yn are equal for sufficiently large n, or all xn and yn are equal for sufficiently large 
−n. We say that x and y are respectively right asymptotic or left asymptotic

A pair of letters (b, a) is called a cyclic pair of a substitution α if ba is an element of the language of α, and for some 
integer m

αm(b) = . . .b and αm(a) = a . . . .

Such a pair gives an infinite sequence of words αmk(ba) in the language of α, which—if properly centered—converge to an 
infinite word which is a fixed point of αm . With a slight abuse of notation we denote this word by α∞(b) · α∞(a).

For the Fibonacci substitution ϕ , (0, 0) and (1, 0) are cyclic pairs, and the two synchronized points ϕ∞(0) · ϕ∞(0) and 
ϕ∞(1) · ϕ∞(0), are right asymptotic so they map to the same point in the equicontinuous factor (T1, T ).

Because of these considerations we now define Z -triples. Let η be a primitive substitution. Call three points x, y, and z
in Xη a Z -triple if they are generated by three cyclic pairs of the form (b, a), (b, d) and (c, d), where a, b, c, d ∈ A. Then x, 
y, and z are mapped to the same point in an equicontinuous factor.

Theorem 7.1. Let (Xη, σ) be any substitution dynamical system topologically isomorphic to the Fibonacci dynamical system. Then 
there do not exist Z -triples in Xη .

Proof. Since (Xη, σ) is topologically isomorphic to (Xϕ, σ), it has (T1, T ) as equicontinuous factor, and the factor map is at 
most 2-to-1. Suppose (b, a), (b, d) and (c, d) gives a Z -triple x, y, z in Xη . Noting that

x = η∞(b) · η∞(a), y = η∞(b) · η∞(d)

are left asymptotic, and y = η∞(b) · η∞(d) and z = η∞(c) · η∞(d) are right asymptotic, this would give a contradiction. �
Example. Let η be the substitution given by

η : 1 → 12, 2 → 34, 3 → 5, 4 → 1, 5 → 23.

Then η generates a system that is topologically isomorphic to the Fibonacci system (η is the substitution at the end of 
Section 4). Quite remarkably, η6 admits 5 fixed points generated by the cyclic pairs (1, 2), (2, 3), (3, 1), (4, 5) and (5, 1). 
Note however, that no three of these form a Z -triple.

8. Fibonacci matrices

Let Fr be the set of all non-negative primitive r × r integer matrices, with Perron–Frobenius eigenvalue the golden mean 
� = (1 + √

5)/2.

We have seen already that F2 consists of the single matrix 
(

1 1
1 0

)
.

2 This follows also directly from the well-known formula ϕr

2n(0) 10 = 01 ϕ2n(0) for all n ≥ 1 (see [1, p.17]).
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Theorem 8.1. The class F3 essentially consists of the three matrices

M1 =
(

0 1 0
1 0 1
1 1 0

)
, M2 =

(
0 1 0
0 0 1
1 2 0

)
, and M3 =

(
0 1 0
1 0 1
1 0 1

)
.

Here essentially means that in each class of 6 matrices corresponding to the permutations of the r = 3 symbols, one 
representing member has been chosen (actually corresponding to the smallest standard form of the substitutions having 
that matrix).

Proof. Let M be a non-negative primitive 3 × 3 integer matrix, with Perron–Frobenius eigenvalue the golden mean � =
(1 + √

5)/2. We write

M =
⎛
⎝ a b c

d e f
g h i

⎞
⎠ .

The characteristic polynomial of M is χM(u) = u3 − T u2 + F u − D , where T = a + e + i is the trace of M , and

F = ae + ai + ei − bd − cg − f h, D = aei + bf g + cdh − af h − bdi − ceg. (2)

Of course D is the determinant of M . Since � is an eigenvalue of M , and we consider matrices over the integers, u2 − u − 1
has to be a factor of χM . Performing the division we obtain

χM(u) = (
u − (T − 1)

)(
u2 − u − 1

) + (2 + F − T )u + 1 − T − D,

and requiring that the remainder vanishes, yields

F = T − 2, D = 1 − T . (3)

Note that the third eigenvalue equals λ3 = T − 1. From the Perron–Frobenius theorem follows that this has to be smaller 
than � in absolute value, and since it is an integer, only λ3 = −1, 0, 1 are possible. Thus there are only 3 possible values 
for the trace of M: T = 0, T = 1 and T = 2.

The smallest row sum of M has to be smaller than the PF-eigenvalue � (well known property of primitive non-negative 
matrices). Therefore M has to have one of the rows (0, 0, 1), (0, 1, 0) or (0, 0, 1). Also, because of primitivity of M , the 1 in 
this row can not be on the diagonal. By performing permutation conjugacies of the matrix we may then assume that M has 
the form

M =
⎛
⎝0 1 0

d e f
g h i

⎞
⎠ .

The equation (2) combined with (3) then simplifies to

T − 2 = F = ei − d − f h, 1 − T = D = f g − di. (4)

Case T = 0
In this case e = i = 0, so (4) simplifies to

−2 = F = −d − f h, 1 = D = f g. (5)

Then f = g = 1, and so d + h = 2. This gives three possibilities leading to the matrices M1, M2 and a third matrix, which is 
permutation conjugate to M2.

Case T = 1
In this case e = 1, i = 0, or e = 0, i = 1.
First case: e = 1, i = 0. Now (4) simplifies to

−1 = F = −d − f h, 0 = D = f g. (6)

Then g = 0, since f = 0 is not possible because of primitivity. But g = 0 also contradicts primitivity, as d + f h = 1, gives 
either d = 0 or h = 0.
Second case: e = 0, i = 1. Now (4) simplifies to

−1 = F = −d − f h, 0 = D = f g − d. (7)

Then d = 0 would imply that f = h = 1. But, as g > 0 because of primitivity, we get a contradiction with f g = d = 0.
On the other hand, if d > 0, then d = 1 and f = 0 or h = 0. But f g = d = 1 gives f = g = 1, so h = 0, and we obtain the 

matrix M3.
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Case T = 2
In this case (4) becomes

0 = F = ei − d − f h, −1 = D = f g − di. (8)

Since ei = 0 would lead to f = 0, which is not allowed by primitivity, what remains is e = 1, i = 1. Then, substituting 
d = f g + 1 in the first equation gives 0 = f (g + h). But both f = 0 and g = h = 0 contradict primitivity.

Final conclusion: there are three matrices in F3, modulo permutation conjugacies. �
Remark. It is well-known that the PF-eigenvalue lies between the smallest and the largest row sum of the matrix. One 
might wonder whether this largest row sum is bounded for the class F = ∪rFr . Actually the class Fr contains matrices 
with some row sum equal to r − 1 for all r ≥ 3: take the matrix M with M1, j = 1 for j = 2, . . . , r, M2,2 = 1 and Mi,i+1 = 1, 
for i = 2, . . . , r − 1, Mr,1 = 1 and all other entries 0.

Now note that (1, �, ..., �) is a left eigenvector of M with eigenvalue � (since �2 = 1 + �). Since the eigenvector has 
all entries positive, it must be a PF-eigenvector (well known property of primitive, non-negative matrices), and hence M is 
in Fr .

9. The 3-symbol case

Theorem 9.1. On a three letter alphabet {a, b, c} there are two primitive injective substitutions η and ζ with Perron–Frobenius eigen-
value the golden mean that generate dynamical systems topologically isomorphic to the Fibonacci system. These are given3 by

η(a) = b, η(b) = ca, η(c) = ba, ζ(a) = b, ζ(b) = ac, ζ(c) = ab.

Proof. The possible matrices for candidate substitutions with PF-eigenvalue the golden mean are given in Theorem 8.1. Let 
us first consider the matrix M1. There are four substitutions with this matrix as incidence matrix:

η1 : a → b, b → ca, c → ba, η2 : a → b, b → ca, c → ab,

η3 : a → b, b → ac, c → ba, η4 : a → b, b → ac, c → ab.

Here η1 = η. To prove that the system of η is conjugate to the Fibonacci system consider the letter-to-letter map π given 
by

π(a) = 1, π(b) = π(c) = 0.

Then π maps Xη onto Xϕ , because π ◦η = ϕ ◦π . Moreover, π is a conjugacy, since if x �= y and π(x) = π(y), then there is 
a k such that xk = b and yk = c. But the words of length 2 in the language of η are ab, ba, bc and ca, implying that xk−1 = a
and yk−1 = b, contradicting π(x) = π(y).

Since ζ is the time reversal of η, and we know already that the system of ϕr is conjugate to the Fibonacci system, the 
system generated by η4 = ζ = ηr is conjugate to the Fibonacci system.

It remains to prove that η2 and η3 generate systems that are not conjugate to the Fibonacci system. Again, since η3 is 
the time reversal of η2, it suffices to do this for η2. The language of η2 contains the words ab, bb and bc. These words 
generate fixed points of η6

2 in the usual way. But these three fixed points form a Z -triple, implying that the system of η2
can not be topologically isomorphic to the Fibonacci system (see Theorem 7.1).

The next matrix we have to consider is M2. There are three substitutions with this matrix as incidence matrix:

η1 : a → b, b → c, c → abb, η2 : a → b, b → c, c → bab,

η3 : a → b, b → c, c → bba.

Again, the system of η1 contains a Z -triple generated by ab, bb and bc. So this system is not conjugate to the Fibonacci 
system, and neither is the one generated by η3 (time reversal of η1). The system generated by η2 behaves similarly to the 
Fibonacci system, but is has an eigenvalue −1 (it has a two-point factor via the projection a, c → 0, b → 1).

Finally, we have to consider the matrix M3. There are four substitutions with this matrix as incidence matrix:

η1 : a → b, b → ac, c → ac, η2 : a → b, b → ac, c → ca,

η3 : a → b, b → ca, c → ac, η4 : a → b, b → ca, c → ca.

Here η1 and η4 generate systems conjugate to the Fibonacci system, but the substitutions are not injective. The substitution 
η2 has all 9 words of length 2 in its language, and all of these generate fixed points of η6

2 . So the system of η2 is certainly 
not topologically isomorphic to the Fibonacci system. The proof is finished, since η3 is the time reversal of η2. �

3 Standard forms: replace a, b, c by 1, 2, 3.
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Remark. An interesting question is: what is the set Cϕ,3 of all primitive injective substitutions on 3 symbols that generate 
systems conjugate to the Fibonacci system? Of course all the powers of η and ζ are in Cϕ,3, where η and ζ are the 
two substitutions in Theorem 9.1. Another element of Cϕ,3 is a → c, b → abab, c → cab, which is a reshaping of η2. An 
application of Theorem 3.1 with the words B0 = abc, B1 = ab gives that the substitution a → ab, b → cab, c → abc is also 
in Cϕ,3.

An obvious candidate for Cϕ,3 is the substitution θ := ζ ◦ η given by

θ(a) = ac, θ(b) = abb, θ(c) = acb.

The projection π given by π(a) = 0, π(b) = π(c) = 1 yields the Fibonacci system as a factor (it gives an amalgamation
as considered in [2]: π ◦ θ = β ◦ π , where β is the substitution given by β(0) = 01, β(1) = 011, which after mirroring 
is conjugate to the square of the Fibonacci substitution ϕ). However, the projection π is not injective, as can be seen by 
considering the two sequences of words θn(b) and θn(c): for all n these are equal except at one position where they are 
b respectively c. So π(θn(b)) = π(θn(c)), and taking an appropriate limit leads to two different sequences with the same 
projection. Thus the system generated by this θ is not in the conjugacy class of the Fibonacci system. Interestingly, if we 
make the same choice in the 2-symbol case, i.e., consider the substitution θ := ϕ ◦ ϕr given by

ϕ ◦ ϕr(0) = 001, ϕ ◦ ϕr(1) = 01,

then θ is conjugate (as a morphism!) to ϕ2, and so (Xθ , σ) is conjugate to (Xϕ, σ).

10. Letter-to-letter maps

By the Curtis–Hedlund–Lyndon theorem all members in the conjugacy class of the Fibonacci system can be obtained by 
applying letter-to-letter maps π to N-block presentations (X [N], σ). Here we analyze the case N = 2. The 2-block presenta-
tion of the Fibonacci system is generated by (see Section 2) the 2-block substitution

ϕ̂2(1) = 12 ϕ̂2(2) = 3, ϕ̂2(3) = 12.

There are (modulo permutations of the symbols) three letter-to-letter maps from {1, 2, 3} to {0, 1}. Two of these project 
onto the Fibonacci system, as they are projections on the first respectively the second letter of the 2-blocks. The third is π
given by

π(1) = 0, π(2) = 0, π(3) = 1.

What is the system (Y , σ) with Y = π
(

X [2])?
First note that (Y , σ) is conjugate to the Fibonacci system since π is clearly invertible. Secondly, we note that the points 

in Y can be obtained by doubling the 0’s in the points of the Fibonacci system. This holds because π(12) = 00, π(3) = 1, 
but also

π(ϕ̂2(12)) = π(123) = 001, π(ϕ̂2(3)) = π(12) = 00.

Thirdly, we claim that the system (Y , σ) cannot be generated by a substitution. This follows from the fact that the sequences 
in Y contain the word 0000, but no other fourth powers. This is implied by the 4th power-freeness of the Fibonacci word, 
proved in [9].

A fourth property is that the sequence y+ obtained by doubling the 0’s in wF (where wF is the infinite Fibonacci word) 
is given by

y+
n = [(n + 2)�] − [n�] − [2�], for n ≥ 1,

according to [8] (here [·] denotes the floor function). For a proof, write

y+
n = [(n + 2)�] − [(n + 1)�] + [(n + 1)�] − [n�] − 3,

and use that ([(n + 1)�] − [n�]) is the well known way to obtain the Fibonacci word on the letters 2 and 1.
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