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Scalar Quantization Error Analysis for Image
Subband Coding Using QMF’s
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Abstract—Filter design for signal splitting and reconstruction
in subband coding is based in practice on the assumption that
coding errors are negligible. In the absence of coding the alias-
ing errors are explicitly canceled when quadrature mirror fil-
ters (QMF’s) are used. The fact that aliasing errors occur in
the presence of coding errors is acknowledged in the literature.
However, no quantitative evaluation has been made so far. This
paper explicitly incorporates quantization errors into a QMF
system by means of a quantizer model. This enables us to dis-
criminate between different types of coding errors, such as the
aliasing error. Other distinguished errors are a QMF design
error, a signal error, and a random error, which is uncorre-
lated with the original image. Both a mean-squared error cal-
culation and a subjective judgement of the coding errors show
that the aliasing errors can be neglected for filter lengths of 12
taps or more. The signal error determines the sharpness of the
reconstructed image, while the random error is most visible in
the flat areas.

I. INTRODUCTION

HE basic idea of subband coding is to split up the

frequency band of the signal and to code each sub-
band separately using a coder and bit rate closely matched
to the statistics of that particular band. However, splitting
the signal into subbands basically involves digital FIR or
IIR bandpass filtering followed by downsampling. As a
result, aliasing will occur in the subbands and special care
has to be taken to reconstruct the signal in order not to let
the reconstruction suffer from aliasing error effects. By
applying special techniques, such as the quadrature mirror
filter (QMF) technique [4], the conjugate quadrature filter
(CQF) technique [8], or an IIR filtering technique [1], the
aliasing errors are explicitly canceled out in the recon-
struction stage. These methods, however, have been de-
veloped under the assumption that coding errors are neg-
ligible, while in practice, in subband coding, we always
have coding errors due to the encoding and decoding of
the subbands. In that case the aliasing errors will not-com-
pletely be canceled out in the reconstruction. The occur-
rence of these aliasing errors due to coding is acknowl-
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edged in the literature. For instance, in [7] a remark is
made on the occurrence of aliasing errors due to speech
coding, the severity depending on the coding accuracy. In
[2] a thorough comparison between different filters and
filter techniques for image coding is made with respect to
their coder performance. However, sofar neither has an
actual analysis yet been made of the aliasing errors, nor
has been investigated whether the assumption of neglect-
ing the coding errors for filter design is justified for im-
ages.

It is the purpose of this paper to analyze the coding
errors due to quantization by explicitly incorporating a
mathematical model for a Lloyd-Max quantizer into a
QMF splitting and reconstruction scheme [12]. Although
other filter techniques to split a signal into subbands exist,
in this paper we will confine ourselves to the QMF tech-
nique. Also, we will apply Lloyd-Max quantizers to en-
code the spatial domain subbands, this in contrast to [2],
where uniform threshold quantizers are being used. To
describe the Lloyd-Max quantizer we will use a model
that is known as the ‘‘gain-plus-additive-noise quantizer
model’’ [6] which will turn out to be very convenient for
our purpose. Not only does this model fit very well to the
actual data but, moreover, we are also able to classify the
coding errors due to quantization into different types of
errors, among which is the aliasing error, and gain more
insight into the specific nature of subband coding errors.
In this manner we can investigate the impact of the alias-
ing errors (among others) on the final subband coding re-
sult, and consider their severity.

II. THE GAIN-PLUS-ADDITIVE-NOISE QUANTIZER
MoDEL

The basic intention of introducing a quantizer model
into a QMF splitting and reconstruction scheme is to de-
rive an input/output relation for the total system, in which
the coding errors are incorporated. We would like to use
a (simple) model where the quantizer output is made up
of parts that are independent or uncorrelated with each
other. Using such a model, we then expect to be able to
split up the total reconstruction error into different classes
of errors.

The obvious model for this purpose would be the fairly
common additive input-independent noise quantizer model

y=x+gq 0]
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where the input signal x and the additive noise ¢ are un-
correlated [6]. The model is also shown in Fig. 1(a). Note
that this is the model that is being used in [2] to describe
a uniform threshold quantizer, where the quantization
noise ¢ is assumed to be independent of the signal x and
uniformly distributed. By squaring and taking the expec-
tations of (1) we get

E[y’] = E[(x + @]
= E[x*] + 2E[xq] + Elq] )

and because the noise ¢ is assumed to be uncorrelated with
the input signal x, that is, E[xq] = 0, we get

2

oy = ol + 03,. 3)

In this simple model therefore, the variance of the quan-
tizer output is larger than that of the input.

However, in [6] it is shown that for the Lloyd-Max
quantizers we are using to encode the subbands it holds
that

of. = o_% — 0'[21 4
and the assumption of additive uncorrelated noise turns
out to be incorrect. In order to satisfy (4) and have un-
correlated additive noise, a better model for Lloyd-Max
quantization is therefore not a purely additive uncorre-
lated noise model, but one with a less-than-unity gain
component and an additive component, according to

y=oax t+r. 5)

This model is shown in Fig. 1(b), where « is the multi-
plication (gain) factor such that ax represents the signal
part of the quantized signal y and r is the uncorrelated
additive noise term. Using this model, we can now show
that by making a proper choice for the gain « the as-
sumption of an additive uncorrelated noise signal r can be
justified.

For Lloyd-Max quantizers it can be shown that the
quantization noise g is orthogonal to the output y of the
quantizer [6], or, equivalently, E[gy] = 0. Using this or-
thogonality property we then first calculate

Elxq]l = EI(y — ¢9)q]
= Elyq] — Elq’]
= —o, Q)
and next
Elxq] = E[x(y — x)]
= Flx(ax + r — x)]
= (a — 1)o; + Efxr]. (7

Finally, by deliberately setting the correlation between the
input signal x and the additive noise r equal to zero, that
is, E[xr] = 0, and equating (6) and (7), we obtain
2
g
a=1-—. ®)

Oy

x__—_.i_y X—-|>—»<I)——vy

(a) (b)

Fig. 1. Quantizer models: (a) additive input-independent noise model, and
(b) model with nonunity gain and additive noise.

Note that the value 03 =E[(y - x)?] is the mean-squared
error of the Lloyd-Max quantizer. Therefore, o is equal
to one minus the normalized quantizer distortion; in gen-
eral this value is known after quantizer design. Thus, if
we choose o according to (8), the additive noise will be
uncorrelated to the input signal. In fact, this is the main
attractive feature of this model and the reason we want to
incorporate this model into the QMF system.

The variance of the uncorrelated noise signal is finally
calculated by

E[(ax + P

= o’ol + o’ 9

E[y?]

and by using (4) and (8) we finally obtain

oF

I

a - az)oi - 0(2]

Il

a(l — a)ol. (10)

As was to be expected, the random noise variance o will
be zero in two cases: 1) there are no coding errors, of, =
0.0 = a = 1.0, and 2) the signal is ‘‘encoded’” with just
its mean value, 05 and 03 = a = 0.0.

III. INCORPORATION OF THE QUANTIZER MODEL INTO A
1D QMF ScHEME

In the elementary 1D QMF filter scheme the 1D signal
is split into two subbands by first bandpass filtering the
signal and then decimating the result by a factor 2. In the
frequency domain this operation can be described by

!
1 %) w
(W) =z 2 H{=+kn|X (= 11
Xi(w) 5.2 3 T 2 + km (11)
where X(w) is the input signal and X; (w) fori = 0, 1, are
the two separate subbands. Here the QMF filters Hy(w)
and H,(w) are each other’s shifted equivalents, according
to

Hy(w) = H(w) (12)

H|(w) = Hw + ). (13)

The reconstruction of the 1D signal is performed, respec-
tively, by upsampling with a factor 2, suitably bandpass
filtering and adding the subbands. In the QMF approach
the reconstruction can be written as
1

K@) =2 Z (= 1H,(@)X,20) (14)
where X, (w) are the subband signals after encoding/de-
coding. Although present filter design is based on neglect-
ing the coding errors, that is, assuming that X; (w) = X;(w)
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fori = 0, 1, in practice X;(w) will not be equal to X; (w).
Therefore, in order define an appropriate relation between
coder input and coder output, from now on we will as-
sume that we quantize the subbands X,(w) and X,(w) in
the spatial domain (that is, we quantize xy(n) and x,(n))
using a Lloyd-Max quantizer. In that case we can use the
quantizer model as derived in the previous section and
describe the two subband coders/decoders using the Fou-
rier equivalent of the model of (5):

X(@) = aX(w) + Ri(w) (15)

fori = 0, 1. Combining (11), (14), and (15) we can now
write the input/output relation of the 1D QMF system with
Lloyd-Max quantization as
1
X@) = X(@) 24 (= D'eyH, (@) (@)

1
+ X(w + 7 .20 (= Hi(w)Hi(w + )

]
+ 2 (-1 H(@)R,20). (16)
In this equation we can distinguish three different additive
parts:

1) a signal part (the first summation), which is a fil-
tered version of X(w),

2) an aliasing part (the second summation), which is a
filtered version of X(w + 7), and

3) a random part (the third summation), uncorrelated
with the signal X(w).

Starting from this observation we first define the recon-
struction error E(w) as the difference between the recon-
structed signal X(w) and the original input signal X(w):

Ew) = X(w) - X(w). a7

Next, we subdivide the reconstruction error into four typ-
ical error signals:

E(w) = Eg(w) + Es(w) + Ej(w) + Ep(w)  (18)
where
Eo(w) QMF design error, which always occurs,
Eg(w) signal error,
E, (w) aliasing error, and
Er(w) random error, uncorrelated with the signal

X(w).

The equations for each of the errors are easily derived

from (16) and are given by
Eg(w) = [Hw) — Hw + 7" — 11X(w) (19)

Es(w) = [(ag — DHw)* = () = DH(w + )] X(w)

(20)
Eqw) = [(ap — ap) Hw)H(w + M) X(w + ) 2n
Er(w) = 2H(0)Ry(2w) — 2H(w + 7)R|Quw). (22)
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It can be clearly seen that we now have separated the
aliasing error signal within the total reconstruction error,
thus allowing a quantitative evaluation of the aliasing er-
rors. Note, that except for Egx(w) the three other error sig-
nals need not necessarily be uncorrelated, although ex-
perimental results as presented later in the paper indicate
highly uncorrelated signals. By choosing this particular
subdivision into different errors we can examine different
coding error artifacts, among which is the aliasing error.
By definition, in the absence of coding errors only Ep(w)
remains, since in that case oy = a; = 1 and afﬂ, = o,’?h =
0. In the presence of quantization errors, however, in gen-
eral the errors Es(w), E (w), and Ex(w) are not zero and
are dependent on the type of filter H(w) used, the input
signal X(w) and the bit allocation, which determines the
values of o; and thus o%. Note that in the case where both
subbands are encoded using the same quantizer, we will
have identical values for «g and «; and the aliasing errors
will be eliminated.

IV. THE EXTENSION TO 2D

In this section we will make the extension of 1D to 2D.
Again we assume that we have Lloyd-Max quantizers that
can be modeled by the gain-plus-additive-noise model.
Combining the 2D equations for splitting, quantization
and reconstruction is straightforward, and results in the
2D input/output relation

| 1

X(wo, w) = Ago E:O X(wy + k7, wy + Im)

Lo
X Z) Zﬂ (—l)Hjafij,'(woy wy)
i=0j= e

CHj(wy + k7, ) + I1)

1 1
+4 ZO ZO (= 1) M Hy(wg, w))R;(2wg, 20).
i=0y=
(23)

By analogy with the one-dimensional case we can again
distinguish the four types of coding errors as defined in
(18). The QMF error and the signal error are both filtered
versions of the original 2D signal X(w,, w) and come from
the first summation in (23), for (k, [) = (0, 0). By defi-
nition, the QMF error consists of the difference between
the original 2D signal X(wg, w,) and the 2D reconstruction
without coding errors, that is, when o; = 1 and R;;(wo,
w;) = 0, fori,j = 0, 1. Since we use only separable 2D
QMF’s for splitting and reconstruction we employ this
separability, yielding the 2D QMF error signal

EQ(wOs ) = X(wy, w))
X {[H(wy) — H(w, + m)°]
C[H(w)) = Hw, + 71 — 1}, 24

For the 2D signal error we take into account the «;; val-
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ues. Again using the separability of the 2D QMF H(wy,
w;) we get

Eg(wo, @)
= [(ao — 1) H(wo)’H(w))’
— (ag — 1)H(wy)*H(w, + m)*
~ (o — D H(wo + 7 H(w,)
+ (o) — DH(wy + 7’ H(w, + 7)1 X(wg, @)).
25

Note that the transfer function by which the signal X(w,
w)) in (25) is multiplied, is not separable due to the values
of a;, which in general are different. The aliasing error
signal can be easily derived from (23) by taking the first
summation for (k, /) # (0, 0). We then obtain

E (wg, wy)
= [H(w) H(w, + m][(ago — aop) Hlwo)’
+ (o — o) Hlwy + 17
X X(ewg, @ + T)
+ [H(wo) Hwy + ] (oo — 0t10) H(w))’

+ (o), — ag) H(w, + )]

X X(wy + 7, wy)
+ [(ago — agr — g + ) H(wy)
* H(wy + m)H(w) H(w, + )]

X X(wg + m, @ + 7). (26)
Clearly, we can see that the aliasing error has three terms.
This was to be expected, since each subband will have
aliasing errors coming from the other three subbands,
which are not completely compensated due to the coding
errors. In this 2D case, the aliasing errors consist of the
sum of two parts that have a 1D aliasing error in one di-
rection and a 1D signal error in the other direction (the
first two parts of (26)) and one part that has 1D aliasing
errors in both directions (the last part of (26)). Finally,
the random error consists entirely of the second summa-
tion in (23):

Er(eo, w1)

= 4 Hy(wp) Hy(w)) Ryo(2wyg, 20y)
— 4 Hy(wo) Hy(w) Ry (2w, 2w)) +
— 4 H\(wp) Hy(w)) Ryo(2wy, 20y)

+ 4 H\(wo) H\(w)) Ry (2wp. 20)). 27

According to (27) each subband coder/decoder produces
its own uncorrelated quantizer noise, which is put into its
corresponding frequency band due to the reconstruction
filtering (ignoring the relatively small overlap between the
frequency bands).
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V. EXPERIMENTAL RESULTS

The experimental analysis of quantization errors was
performed for the subband coding schemes as previously
described. The splitting scheme of Fig. 2 was used with
the 16 tap filter denoted as 16B in [7]. To employ the
same coding methods as in [5] and [13], we would have
liked to use DPCM to encode the low frequencies sub-
band. However, no useful input/output model is available
for DPCM that is comparable to the gain-pulse-additive-
noise model for Lloyd-Max quantization, (that is, with
an uncorrelated additive noise term). Insertion of the
model into a DPCM scheme would give us a noise signal
which due to the feedback is not uncorrelated with the
input signal. Therefore, we will use a Lloyd-Max quan-
tizer for the subband containing the lowest frequencies as
well, although the DPCM encoder would yield better cod-
ing results. For example, the drop in performance when
the monochrome 512 x 512 image “*‘Clown’” is coded at
0.6 b/pixel is approximately 0.6 dB. The probability
density function (pdf) on which the Lloyd-Max quantizer
is based is Gaussian, which yielded a good match to the
histogram of the subband, especially when compared to
the occasionally used Laplacian or uniform pdf’s. For the
other subbands we employ the already designed and used
quantizers that are based on the generalized Gaussian pdf
with shape parameter ¢ = 0.5.

To experimentally obtain the different error signals, first
the image is split into subbands and the bit allocation al-
gorithm [11] is applied. At that point the Lloyd-Max
quantizers to be used are known and the value of « is
computed using (8) for each subband. Applying the sub-
band filters and the values of « the three error signals
Ep(w), Es(w), and E, (w) can next be computed using (24),
(25), and (26). The additive noise term per subband is
calculated according to (5), by multiplying the original
subband signal x by « and subtracting this from the ac-
tually encoded subband signal y. Finally, the random er-
ror signal Eg(w) is obtained using (27). Although (24)
through (27) are for only four subbands they can easily be
extended to the case where the image is split into more
subbands.

We have performed experiments on several different
images, which all lead to the same conclusions. As an
example, we have taken the 512 X 512 image ““Clown,”’
of which the original is shown in Fig. 3. Fig. 4 shows the
four different errors in the spatial domain when this image
is encoded at 0.60 b /pixel. Because the variances of the
resulting error images are very small when compared to
the variance of the original image, each error image is
stretched to maximum visibility. The signal error in Fig.
4(b) only occurs in high spatial frequency areas, such as
edges. This was to be expected, since the lower frequency
subbands are quantized more accurately than the higher
frequency subbands, thus affecting the sharpness of edges.

The random error image in Fig. 4(d) still shows some
features of the original image. This could imply that the
quantization model of (5) does not produce a fully uncor-
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Fig. 2. Image frequency band division for subband coding of 512 x 512
images (zero frequency is at the upper left)

Fig. 3. Original 512 X 512 image “"Clown.™

related noise term. which can only be caused by a quan-
tizer mismatch. To investigate the goodness of the quan-
tizer fit. Table I shows the cross-correlation values
between the original subband signals and the correspond-
ing random signals for those subbands that are encoded.
As can be seen. the correlation values are close to zero.
pointing towards a good fit of the data to the Lloyd-Max
quantizers. However, it can also be argued that even in
the case of a perfect fit of the quantizers to the data. the
random error will have a visual correspondence with the
original image. While flat areas will be quantized using
many similar quantization values, yielding a low local
(random) error variance. on the other hand. edges and
other high spatial frequency areas will result in a higher
local error variance. thus yielding a visual resemblance to
the original image. This effect can nevertheless also be
attributed to quantizer mismatch, namely. to a spatially
local quantizer mismatch. Observation of the random er-
ror image does indeed show a higher local variance in
areas where the spatial frequency is relatively high. An-
other explanation for the visual correspondence to the
original image would be the existence of nonlinear depen-
dencies. being all but the linear (second moment) depen-
dency. or correlation. In fact. in practice we never expect
the random error image to look totally incoherent with the
original image. Because we have a local quantizer mis-
match. we expect the random error, and also the signal
and the aliasing error to decrease when locally adaptive
quantizers are used. thus enhancing the performance of a
subband coder.

()

Fig. 4. Quantization errors (individually stretched): (a) QMF error, (b)
signal error. (¢) aliasing error. and (d) random error.
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TABLE 1
CROSS CORRELATIONS E {xr] BETWEEN THE SUBBAND SIGNALS X AND THE
SUBBAND ADDITIVE NOISE TERMS 7

2

Subband oy a a; Elxr]
l 3927.49 0.9993 2.72 0.0396
2 77.18 0.9951 0.36 0.0628
3 67.20 0.9904 0.60 0.0803
4 19.19 0.9701 0.49 0.0324
5 7.04 0.8907 0.59 0.1171
6 50.76 0.9904 0.47 0.0070
7 2.94 0.8171 0.42 —0.1739
8 7.30 0.8907 0.61 0.0619
9 3.29 0.8171 0.49 0.1713
10 1.73 0.8171 0.26 0.0912
11 13.86 0.9701 0.36 0.1119
12 6.16 0.8907 0.55 0.0501
15 1.59 0.6371 0.33 —0.1805
16 3.57 0.8171 0.51 0.0864

18 6.45 0.6371 1.44 —-0.303

The aliasing error in Fig. 4(c) and the QMF error in
Fig. 4(a) both appear to have a very annoying character,
when visible. However, if we look at Fig. 5, where the
variances of the four error images are shown for a number
of different bit rates, we can see that the signal error has
a variance which is much larger than the aliasing error.
In Fig. 5 the QMF error is even left out, because when
compared to the other errors the variance is very small
(oé ~ 0.13) and, moreover, bit rate independent. The
signal error variance follows the curve of the total recon-
struction error variance and is the largest in the low bit
rate region (less than 0.8 b/pixel). For bit rates larger
than 0.8 b/pixel the signal error becomes smaller than
the random error. In that region, however, both the vari-
ances are so small that the errors in the reconstruction are
hardly visible any more. Also from Fig. 5 it can be ob-
served, that the sum of the separate error variances is close
to the reconstruction error variance, suggesting uncorre-
lated error images. In fact, we expect the cross correlation
between the random error image and the other three error
images to be very low, because the Lloyd-Max quantizers
produced output signals with (nearly) uncorrelated signal-
and random parts, see Table I. In Table II the cross-cor-
relation matrix is shown for the four error images, from
which it can be deduced that the error images are, indeed,
very much uncorrelated.

To investigate the subjective judgement of each of the
coding errors, we have subtracted each error image from
the actual reconstruction. In this case we have used the
well-known 256 X 256 ‘‘Lady-with-hat’’ image, because
the effects are more pronounced than with the Clown im-
age and can therefore be observed more clearly. The same
splitting scheme is used as in [13], [14], that is, the image
is split into 16 equally sized subbands. Again, the QMF
““16B>’ from [7] is used. The reconstruction at 0.60
b/pixel is shown in Fig. 6(a). Comparing this image with
Fig. 6(b), the reconstruction minus the signal error, we
see that the signal error mainly determines the sharpness.
Examination of the reconstruction minus the random error
in Fig. 6(d) shows a smoothed, somewhat unsharp ver-

ol
50.0
error ot
variances
25.0 4
ok
%
0'0 \‘l\‘* - ;
0.0 0.5 1.0 1.5

bit rate (bits/pixel)

Fig. 5. Error variances as a function of the bit rate.

TABLE 11
CROSS-CORRELATION MATRIX OF THE FOUR ERROR IMAGES
E, Es E, Ex
E, 1.0000 0.0136 0.0004 —0.0182
Eg 0.0136 1.0000 0.0213 —0.0002
E, 0.0004 0.0213 1.0000 0.0022
Eg —-0.0182 -0.0002 0.0022 1.0000

sion of the original image, with no visual artefacts in the
flat areas or around the edges. Because the random error
is particularly visible in the flat areas and the signal error
is mainly around the edges and in the ‘‘busy’’ areas, both
errors appear to have an equal subjective severity. How-
ever, the corresponding error variances in this case (0.60
b/pixel) have a similar behavior as in Fig. 5, where the
signal error variance is larger than the random error vari-
ance. The reconstruction minus the aliasing error in Fig.
6(c) does not show any, or hardly any, visual difference
from the reconstruction. The ‘‘muddy’’ appearance
around the edges is still there and is therefore not an
aliasing effect as one might expect but is due to the ran-
dom error image. Once more it must be noted here, that
the same effects can be observed in the Clown image, but
the Lady-with-hat image merely serves as a better visual
example.

Finally, to investigate the coder sensitivity to the type
of filter used, in Table III the variances of the four error
signals are shown for the different filters as designed in
[7]. Also shown is the total mean-squared error, which is
defined as the variance of the difference between the orig-
inal image x and the reconstruction £. For each filter the
image Clown is encoded at 0.60 b /pixel. First, it can be
observed that the signal error and the random error are
nearly filter independent. The filter choice merely has its
influence on the QMF design error and on the aliasing
error. The total reconstruction error, which is close to the
sum of the separate errors, is therefore also dependent on
the type of filter used. For the filter 08A, which has 8
taps, both the QMF design error and the aliasing error are
relatively large, and the reconstruction is clearly inferior
to results with other (longer) filters. By visual inspection
of difference images such as in Fig. 6(c), it is also appar-
ent that the aliasing and QMF errors can not be neglected
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(c)

TABLE 111
ERROR VARIANCES FOR DIFFERENT FILTERS

QMF Uf . oi) a‘; cr'; a,‘€

08A 34.15 5.50 13.95 4.73 10.21
12A 26.59 0.39 13.75 244 9.84
12B 27.35 1.41 13.71 2.25 9.75
16A 2543 0.05 13.72 1.91 9.72
16B 25.30 0.13 12.88 1.51 10.19
16C 26.69 1.75 12.72 1.76 10.03
24B 24.67 0.01 12.90 1.15 10.14
24C 23.34 0.01 12.54 1.04 9.34
24D 23.73 0.22 12.60 1.14 9.40
32C 23.19 0.00 12.61 0.86 9.37
32D 23.17 0.00 12.67 0.76 9.45
2E 24 .48 0.88 12.72 111 9.54

for this filter. It is therefore recommended to use a filter
with at least 12 taps. Here, we have used the best 16 tap
filter 16B, because the performance is still substantially
higher (and visible) than with the 12 tap filters, while
using a 24 or 32 tap filter would increase coder complex-
ity (number of multiplications) considerably, while the
extra gain in performance is not visible in reconstructions.

VI. CONCLUSIONS

In the case of encoding each subband using a Lloyd-
Max quantizer it is possible to use an input/output model
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(d)
Fig. 6. Visual impact of quantization errors for the 256 X 256 **Lady-with-hat'~ image: (a) reconstructed image £. (b) £ — ¢q.
(©) £ — ey and (d) £ — e

for the quantizer, where the output consists of a signal
part with a less than unity gain and a random part that is
uncorrelated with the input signal. The measurement of
the actual cross correlations between the random and the
signal part of the model and also checking the noise vari-
ances per subband shows that the underlying probability
density functions for which the quantizers were designed
are based on a very good fit to the data.

Further. the introduction of the gain-plus-additive-noise
quantizer model into QMF schemes yields the distinction
between four different types of errors: QMF design error,
signal error, aliasing error and random error. The QMF
error. which is independent of the bit rate and thus of the
coding errors. is insignificant and can be disregarded.
Aliasing errors do occur in the case of quantization but
can be neglected for filter lengths of 12 taps or more. The
signal error determines the sharpness of the reconstructed
image. The random error appears in flat regions but also
around edges. though it is more pronounced and is there-
fore not entirely independent of the original image. Al-
though for bit rates less than 0.8 b /pixel this error is less
severe than the signal error with respect to the error vari-
ance, subjective evaluations have shown a more or less
equal judgement of the two errors. though different in
character. Finally. from the degree of visibility of the er-
rors in different areas of the picture we can conclude that
the performance of a subband coder is expected to im-
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prove by reducing both the signal and the random error
effects by means of applying spatially adaptive quantiz-
ers.
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