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ETH Zürich, Switzerland
RWTH Aachen, Germany

Dated: August 5, 2022

Supervisor(s):
Dr. Ir. G.G.Drijkoningen

Dr. Yimin Sun

Committee Members:
Dr. Ir. G.G.Drijkoningen

Dr. Yimin Sun

Prof. Dr. Florian Wellman

Dr. Ir. D.S. Draganov





Abstract

In 3D seismic data acquisition, sufficiently dense spatial sampling is most often not possible,
because of physical, financial, and temporal constraints. The resulting aliased data is a major
obstacle for accurate subsurface images. Therefore, methods are needed to reconstruct these
sparse data to an adequate sampling. We develop a novel kinematic wavefront-based seismic
data reconstruction method that uses the existing nonlinear beamforming (NLBF) framework,
which allows for building a more detailed sampling from a sparse input. We present the theory
and methodology of our NLBF reconstruction algorithm and test it on a synthetic Society
of Exploration Geophysicists Advanced Modeling (SEAM) Arid dataset and a field dataset.
We attempt to answer the following question: can the NLBF framework be used for seismic
data reconstruction, and how do these results compare to some conventional reconstruction
methods? Control parameter tests are performed to find the optimal NLBF reconstruction,
and results are compared to those from several control methods including the convergent
alternating projection onto convex sets (POCS) and bootstrap POCS methods, which were
also developed for this study. Our NLBF reconstruction method successfully reconstructs
high-quality data on both datasets. We find that the optimal NLBF control parameters
are ultimately dataset-dependent as the concrete data acquisition geometry plays a central
role. Specifically for our datasets, optimal parameters include a time window of 12∆ts, an
operator aperture of 600 m x 600 m, and a parameter trace interval of ∆x = ∆y = 60 m.
The synthetic SEAM Arid NLBF reconstruction results show high trace fidelity to the ground
truth. The field data NLBF results show better-reconstructed gaps, and wavefield variations
closer to those of physical propagating waves in comparison to our control methods. These
results show the potential of the NLBF reconstruction method to become a common data
reconstruction tool used in the seismic industry.

August 5, 2022



vi Abstract

August 5, 2022



Table of Contents

Abstract v

Acronyms ix

1 Introduction 1

1-1 Seismic data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1-2 Data sparsity challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1-3 Seismic data reconstruction methods . . . . . . . . . . . . . . . . . . . . . . . . 4

1-3-1 Prediction filtering methods . . . . . . . . . . . . . . . . . . . . . . . . . 4

1-3-2 Sparse transform methods . . . . . . . . . . . . . . . . . . . . . . . . . 6

1-3-3 Rank-Reduction methods . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1-3-4 Wave equation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1-3-5 Wavefront attribute methods . . . . . . . . . . . . . . . . . . . . . . . . 8

1-4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Alternating projection onto convex sets 11

2-1 Projections onto convex sets (POCS) theory . . . . . . . . . . . . . . . . . . . . 11

2-1-1 Convex set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2-1-2 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2-2 Alternating POCS (APOCS) in seismic data reconstruction . . . . . . . . . . . . 13

2-3 Convergent POCS (CP) Application . . . . . . . . . . . . . . . . . . . . . . . . 15

2-3-1 Synthetic seismic data . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2-3-2 2D image reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 17

August 5, 2022



viii Table of Contents

3 Nonlinear beamforming 19

3-1 Traveltime operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3-2 Cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3-3 Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3-4 Local summation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3-5 Signal enhancement examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3-6 The NLBF framework for data reconstruction . . . . . . . . . . . . . . . . . . . 25

4 Methods 27

4-1 NLBF seismic data reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 28

4-1-1 Traveltime operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4-1-2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4-2 Bootstrap POCS (BP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4-2-1 Regularly decimated data . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4-2-2 Bootstrap POCS (BP) methodology . . . . . . . . . . . . . . . . . . . . 35

5 Results 39

5-1 The data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5-1-1 SEAM Arid dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5-1-2 Field dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5-2 Parameter tests and control methods . . . . . . . . . . . . . . . . . . . . . . . . 42

5-3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5-3-1 SEAM Arid results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5-3-2 Field results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Discussion and conclusions 53

6-1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6-2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

A Additional NLBF results 57

A-1 SEAM Arid dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A-2 Field dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

B Control parameters for NLBF reconstruction 65

B-1 Parameter selection considerations . . . . . . . . . . . . . . . . . . . . . . . . . 65

B-2 Parameter tests results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Acknowledgements 75

Bibliography 77

August 5, 2022



Acronyms

Aest Estimation Aperture

Aop Operator Aperture

Asum Summation Aperture

APOCS Alternating Projections Onto Convex Sets

BP Bootstrap Alternating Projections Onto Convex Sets

CP Convergent Alternating Projections Onto Convex Sets

CRS Common Reflection Surface

DMO Dip-Moveout

eGA Efficiency-improved Genetic Algorithm

f − k Frequency-Wavenumber

GA Genetic Algorithm

LSQM Least-Squares Migration

NLBF Nonlinear Beamforming

NMO Normal Moveout

OO Operator Oriented

PEF Prediction Error Filter

POCS Projections Onto Convex Sets

SEAM SEG Advanced Modeling

SP Single-Pass Alternating Projections Onto Convex Sets

August 5, 2022



x Acronyms

SNR Signal-to-Noise Ratio

TO Target Oriented

x− t Space - Time

August 5, 2022



Chapter 1

Introduction

In this chapter, we first present the necessary background to understand the purpose, the
acquisition, and the challenges of seismic data for subsurface imaging. Then, we outline
several mathematical and geophysical frameworks in existing literature created to deal with
the data sparsity challenge. Finally, we reveal how we attempt to tackle it. Here, we introduce
our research question and present our outline.

1-1 Seismic data acquisition

Imaging the earth’s subsurface is necessary to understand underlying geological settings,
especially for the exploration of sedimentary basins with the potential to host natural resources
such as oil and gas. Seismic data acquisition is based on the physics of wave propagation in
the earth [Yilmaz, 2001].

Figure 1-1: A 2D seismic data acquisition illustration, with a source (black star) and receivers
(triangles). The black arrows are the direct (solid), the reflected (dotted), and the
refracted (dashed) wavefronts; the white arrows are the primary (solid) and the
multiple (dotted) reflections.
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2 Introduction

The acquisition of seismic data can be performed on land or in a marine setting with their
respective instruments and setups. A source, such as an airgun for the marine setting or a
seismic vibrator on land, is used to emit a downgoing wavefield into the subsurface. Figure
1-1 illustrates some of the energy’s possible propagation directions. The wavefield that prop-
agates directly from a source to a receiver, is the direct wavefield (the solid black line). The
wavefield that propagates into the subsurface may be reflected upwards (the dotted black
line), or refracted downwards (the dashed black line) at interfaces according to Snell’s law
[Wapenaar, 2014]. These subsurface interfaces are present between rocks with contrasts in
physical properties that affect the wavefront’s behavior. At the surface, the wavefields are
measured by receivers and are stored in a seismic data format for processing. To image sub-
surface reflectors, surface-recorded wavefields are backward-propagated into the subsurface
via the wave propagation theory, where they interact with forward-simulated wavefields to
reveal buried reflectors. Seismic imaging works in practice but also presents inherent issues
hindering the quality and accuracy of the target subsurface model [Kutscha, 2014]. These
can be divided into subsurface-based problems and acquisition-based problems:

• The subsurface is a complex environment and the wavefield may behave differently than
our simple model’s predictions. Near-surface environments are known to be weathered
which creates scattering noise and can distort the wavefield. Subsurface structures such
as high impedance salt domes are major obstacles that limit wave propagation [Xie and
Gajewski, 2017]. Furthermore, receivers capture many signals at the surface, including
primary reflections, multiples, surface waves, noise, etc. This results in information that
can not be dealt with by certain imaging methods. Pre-processing of seismic data is
necessary to overcome these limitations.

• The acquisition setup is also important as it controls the amount of collected data and
the survey’s coverage [Qin et al., 2018; Zhang et al., 2021]. Adequate subsurface cover-
age must be obtained to create accurate images, which implies fine wavefield sampling
in both time and space. Temporal sampling is rarely an issue with modern receivers.
However, spatial sampling is usually too coarse to create well-resolved images, result-
ing in aliasing. Coarse spatial sampling is primarily financially driven, as additional
equipment, manpower, and processing power are required for denser data acquisition.

To obtain accurate images, the missing traces in these coarse seismic gathers can be recon-
structed during data preprocessing [Kutscha, 2014; Xie and Gajewski, 2017]. This thesis
investigates the reconstruction of such sparse seismic data using the nonlinear beamforming
(NLBF) framework, to be discussed in Chapter 3. We define data sparsity as the relative
fraction of missing seismic data traces. In this chapter, we introduce the fundamental issue
of seismic data sparsity and existing methods that attempt to reconstruct such sparse data.

1-2 Data sparsity challenge

The challenge faced in seismic data acquisition is ensuring that the survey area is sufficiently
covered by data traces. The wavefield must be uniformly and densely sampled in space
and time to fully characterize the subsurface. Sparse signal sampling can lead to aliasing
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1-2 Data sparsity challenge 3

and erroneous signal representations [Kutscha, 2014]. Figure 1-2 illustrates the principle of
aliasing in both time and space. In seismic imaging, this causes strong artifacts and unwanted
noise [Yilmaz, 2001].

Figure 1-2: Illustration of temporal and spatial aliasing in seismic data acquisition. (A) Temporal
aliasing 1: coarse sampling (black dots) of the true signal (gray), reconstructs an
aliased erroneous signal (black). (B) Spatial aliasing 2: receiver spacing is too coarse
to adequately sample the wavefield in space.

According to the Nyquist criterion, the signal must be sampled at least twice per wavelength
to be fully characterized [Geldart and Sheriff, 2004]. Sampling the wavefield in time at the
Nyquist1 frequency is achievable with the use of modern sampling instruments. In fact, typical
sources for hydrocarbon exploration emit up to 150 Hz which receivers can uniformly sample
[Kutscha, 2014]. For spatial sampling, in 3D seismic surveys the wavefield is sampled along
four spatial dimensions: the respective x-y coordinates of source and receiver pairs (Figure 1-
3). Seismic data are rarely densely 2 sampled in all directions because of economic and time-
driven constraints [Kutscha, 2014; Zwartjes and Gisolf, 2007]. In addition, spatial sampling
issues can result from equipment failures, human errors, and geographic inaccessibility. Figure
1-4 illustrates coarse spatial sampling and missing traces on preprocessed seismic data, leading
to discontinuous and poor quality reflections. Such gaps in coarse or non-uniformly sampled
data cause erroneous subsurface images [Kutscha, 2014; Zwartjes and Gisolf, 2007].

Figure 1-3: Example seismic data acquisition geometries: black stars represent the sources and
white triangles receivers. (A) A typical land acquisition, where sources and receivers
are densely sampled along different directions. (B) A typical marine acquisition,
where sources and receivers are densely sampled in one direction.

1The sampling theorem: a continuous signal can be reconstructed if fs ≥ 1
2fmax

. [Geldart and Sheriff, 2004]
2Seismic spatial sampling criterion is ∆x = v

2 sinΘ
, in practice rarely achieved. [Geldart and Sheriff, 2004]
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4 Introduction

The acquisition geometry is a key factor in the quality of acquired seismic data. Dense and
regularly positioned sources and receivers on a uniform grid offer the best resolution but
are not economically viable. The common land setup places densely sampled sources in the
inline dimension and densely sampled receivers in the crossline direction (Figure 1-3A). Dense
and uniformly sampled data in a marine setting is inherently more difficult because of the
terrain, so dense sampling is only performed in one direction and therefore systematic spatial
aliasing occurs [Zwartjes and Gisolf, 2007] (Figure 1-3B). Methods are used to increase the
spatial sampling through different acquisition geometries, for example, wide-azimuth surveys
are common in the industry today [Xie and Gajewski, 2017; Zhang et al., 2021].

1-3 Seismic data reconstruction methods

The inherent irregularities and spatial sparsity of seismic data can be accounted for during
data preprocessing. The goal of these methods is to reconstruct sparse data and dead traces
to dealias coarsely sampled data (Figure 1-4). Five main categories of interpolation methods
have been identified by Xie and Gajewski [2017]. These are sparse transform-based methods,
prediction filtering methods, Cadzow rank-reduction methods, wave equation-based methods,
and wavefront operator-based interpolation methods. They differ in their applications, as-
sumptions, and results, but all attempt to reconstruct sparse data. We will briefly discuss
each of these five methods next.

1-3-1 Prediction filtering methods

Prediction filtering is a powerful tool to reconstruct coarsely sampled and aliased seismic data.
These methods are based on the predictability of linear events and are applied by convolution
of interpolating filters on sparse data, equivalent to reshaping the data spectrum. The filtered
data is then reinserted on a dense regular grid with enhanced spatial resolution.

Prediction error filters can reconstruct uniformly sampled aliased data [Claerbout and Abma,
1992; Spitz, 1991]. Irregularly sampled data must first be regularized - e.g., convolution with
a Gaussian window - and subsequently placed on a regular grid [Knutsson and Westin, 1993].
Spitz [1991] presents a typical reconstruction workflow to insert unrecorded samples into
spatially under-sampled multi-channel data with random noise. The basis of this method
is the predictability of linear events in the frequency-space (f − x) domain [Spitz, 1991].
Prediction error filters (PEF) record the dips of non-aliased low-frequency energy, which
are used as interpolation operators to reconstruct aliased high-frequency energy. The result
greatly enhances the quality of the migrated stacked data [Spitz, 1991]. A similar method
described by Claerbout and Abma [1992] estimates the PEF in the time-space (t−x) domain,
and it registers the dips of the data. Stretching and inverting the PEF enhances the spatial
sampling rate thereby dealiasing the filter 3. These methods use prediction filters in different
ways: Spitz [1991] scales the frequencies in the f − x domain, whereas Claerbout and Abma
[1992] scale the physical axes of the PEF.

The main limitation of filter-based approaches is that they assume stationarity and linearity of
events, which are not the case for seismic data. Methods such as data windowing [Spitz, 1991],

3Using the scale-invariant property [Claerbout, 1985]
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6 Introduction

adaptive prediction filters [Naghizadeh and Sacchi, 2009], or using smoothly nonstationary
PEF coefficients [Liu and Fomel, 2011] have been developed to allow filter-based interpola-
tions. Additionally, prediction filter methods require regularly sampled data [Kutscha, 2014;
Spitz, 1991].

1-3-2 Sparse transform methods

Sparse transform methods interpolate and regularize sparse data using the signal’s transform
domain properties. Artifacts can also be attenuated through iterative thresholding in the
transform domain [Kutscha, 2014]. Common transforms used to reconstruct data are the
Fourier transform [Liu and Sacchi, 2004; Zwartjes and Sacchi, 2007], the Radon transform
[Kabir and Verschuur, 1995; Zhang and Lu, 2014], and the curvelet transform [Naghizadeh
and Sacchi, 2010]. Kabir and Verschuur [1995] demonstrate that the insertion of zero traces
and subsequent forward and inverse band-limited transform to the parabolic Radon domain
results in partial trace restoration, notably for missing near-offsets. Abma and Kabir [2006]
interpolate missing data in the Fourier domain using a projection onto convex sets (POCS)
algorithm. Iterative transformation and frequency-wavenumber (f − k) amplitude threshold-
ing show successful interpolation of irregularly spaced and aliased seismic data. An in-depth
discussion of the POCS algorithm will be presented in Chapter 2.

Transform-based reconstruction methods require optimal mapping into the transform domain
and derivation of correct transform coefficients from the data. However, the forward trans-
formation usually presents distorted aliased data indistinguishable from unaliased energy
[Kutscha, 2014]. Other transform-based methods use constrained inversion, which allows
optimal mapping to a transform space without aliasing through regularization 4 [Liu and
Sacchi, 2004; Zwartjes and Sacchi, 2007]. While regularization is method-specific, the overall
objective is the minimization of the following function:

J = ||p⃗m − Lx⃗||2 + λF (x⃗) , (1-1)

where J is the objective function to be minimized, x⃗ contains the vectorized model domain
parameters, p⃗m is the measured data (therefore is also a function of x⃗), L is the forward trans-
form operator, F (x⃗) is the regularization constraint, and λ is the damping factor [Kutscha,
2014].

Liu and Sacchi [2004] propose the reconstruction of spatially undersampled data in the Fourier
domain by solving an inverse problem including bandlimited wavenumber regularization. This
method allows control over the bandwidth and spectral shape of the reconstructed data [Liu
and Sacchi, 2004]. Zwartjes and Sacchi [2007] propose another Fourier-based method that can
handle both non-uniformly sampled and aliased data. Fourier coefficients are estimated for low
frequency, temporally unaliased, undersampled data, which are used as an a priori model to
distinguish aliased energy at high frequencies. Results show suppression of transform domain
artifacts from non-uniform sampling and aliasing, and successful sparse trace interpolation
[Zwartjes and Sacchi, 2007].

4The addition of a priori information and constraints to approximate inverse problems [Engl et al., 1996]
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1-3 Seismic data reconstruction methods 7

1-3-3 Rank-Reduction methods

Cadzow Rank-Reduction filtering, also called truncated singular value decomposition, is a
method that can be used to denoise seismic data and preserve primary components of inter-
est. Results have shown improvements over filter-based signal enhancement methods such as
deconvolution and projection filtering, particularly for very noisy datasets [Trickett, 2008].
Additionally, it can also be used for pre-stack trace interpolation to improve spatial sampling
[Trickett et al., 2010].

Cazdow filtering of constant frequency slices can both reduce noise and interpolate data. For
a given set of traces, frequencies are extracted and placed into a matrix. Research suggests
different viable matrix forms such as the Hankel structure, eigenimage strategy, or eigenimage-
Cadzow [Trickett, 2008; Trickett and Burroughs, 2009]. A singular value decomposition of this
matrix allows its reconstruction as a sum of matrices of rank one, called weighted eigenimages.
Reducing the rank of the matrices can reduce noise in traces for all frequencies, as coherent
energy is usually concentrated in the first few eigenimages, and noise is normally distributed
across all eigenimages [Trickett et al., 2010]. Therefore, the smaller the rank the greater the
noise reduction, but the weaker the details preservation. Similarly to its use for denoising, it
can perform multidimensional trace interpolation on constant frequency slices [Trickett et al.,
2010]. Rank reduction is performed in singular value decomposed matrices with unknown
values at missing trace positions. The use of matrix completion algorithms [Kurucz et al.,
2007; Olsson and Oskarsson, 2009] results in the addition of traces at new spatial locations.

1-3-4 Wave equation methods

Wave equation-based seismic reconstruction methods are used to reconstruct the wavefield
in the subsurface based on the physical properties of wave propagation. The basis of these
methods is the Kirchhoff integral that represents the convolution of the data with the wavefield
operator [Claerbout and Abma, 1992; Zwartjes and Gisolf, 2007]. Numerically, this equates to
the discrete constructive and destructive summation of the data in the propagation direction.
However, aliasing artifacts can occur when sampling is too coarse or non-uniform due to
incomplete destructive interference [Kutscha, 2014]. Wave equation methods generally are
computationally expensive and require a good understanding of subsurface velocity models.
The absence of this knowledge can interfere with the model’s accuracy [Zwartjes and Gisolf,
2007; Kutscha, 2014].

Several wave equation methods are used to reconstruct data and suppress aliasing artifacts.
Artifacts can be reduced through inversion, as is done in imaging with Kirchhoff operators
via least-squares migration (LSQM) [Nemeth et al., 1999; Kuehl and Sacchi, 2002]. Key
components of the LSQM are migration and de-migration steps, in which a migrated im-
age is calculated from data, and missing data are calculated from the previously computed
image [Malcolm et al., 2014]. Other examples of wave equation data reconstruction meth-
ods are offset continuation [Bagaini and Spagnolini, 1996], shot continuation [Spagnolini and
Opreni, 1996], and dip-moveout (DMO) that transforms prestack data into zero-offset data
[Deregowski, 1986]. The combination of DMO followed by inverse DMO is often applied to
reconstruct data to a uniform grid. Ronen [1987] uses the wave equation to interpolate traces
on spatially aliased multi-channel seismic data. He proposes an inverse problem where the
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8 Introduction

desired output is well-sampled zero-offset data, and the available input data is normal move-
out (NMO) corrected. These domains are linearly related by the wave equation and Fourier
analysis [Ronen, 1987]. He finds that interpolating traces by inserting zero-traces, performing
DMO, and stacking is equivalent to the application of the transpose operator in the absence
of spatial aliasing.

1-3-5 Wavefront attribute methods

Wavefront attribute interpolation methods reconstruct missing traces using the physical
attributes of the measured wavefield. These attributes are determined from prestack data and
have physical meanings such as the angle of emergence, traveltime, or wavefront curvature.
They are used in processing to predict and interpolate neighboring traces - e.g., through
partial stacking [Hoecht et al., 2009]. Several methods exist to determine these wavefront
attributes, such as non-hyperbolic common reflection surface (CRS) [Fomel and Kazinnik,
2013], i-CRS [Schwarz et al., 2014], multifocusing [Gelchinsky et al., 1999], and nonlinear
beamforming [Sun et al., 2022].

For example, the CRS interpolation method uses the kinematic attribute of the measured
wavefield for data reconstruction [Hoecht et al., 2009]. These kinematic traveltimes are esti-
mated using a second-order wavefront surface approximation:

∆t = t(∆x,∆y)− t̂ = b0∆x+ b1∆y + a00∆x2 + a01∆x∆y + a11∆y2 , (1-2)

where t(∆x,∆y) is a time sample of a trace located at (x, y), t̂ is a time sample of a trace
located at (0, 0), and (∆x,∆y) are the respective (x, y) distances between these two traces.
Available data are used to solve for the five unknown parameters b0, b1, a00, a01, a11 along
all available dimensions to build wavefront traveltime operators around parameter traces.
Target traces are reconstructed by weighted interpolation of surrounding parameter trace
operators [Hoecht et al., 2004]. Further advances to the CRS method by Hoecht et al.
[2009] suggest an alternative operator-oriented (OO) interpolation scheme. This method
constructs multiple wavefields using the operators at several parameter trace locations
(Equation 1-2), and their intersection with the target trace defines the value for that time
sample. Here, several operators contribute to a target sample’s position along the trace,
which stabilizes the interpolation. OO scheme results show better continuity and reduced
noise [Hoecht et al., 2009]. Further optimization of wavefront attributes CRS interpolation
methods such as global optimization search strategies for the extension to 5D data have
shown significant improvements in data resolution compared to the conventional 3D method
[Xie and Gajewski, 2017].
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1-4 Thesis outline 9

1-4 Thesis outline

In the following thesis, we will discuss two seismic data reconstruction methods we have
developed to reconstruct sparse seismic data. The main method of interest is a kinematic
wavefront method, which we call nonlinear beamforming (NLBF) seismic data reconstruction.
This method is based on the existing framework of NLBF for seismic signal enhancement [Sun
et al., 2022]. The second method, a byproduct of this thesis, is a bootstrap alternating pro-
jection onto convex sets (BP) method. This method is an adapted version of the alternating
projection onto convex sets (APOCS) algorithm and will be used as a control method for the
NLBF reconstruction.

Therefore, in this thesis we attempt to answer the following question: can the NLBF frame-
work be used for seismic data reconstruction, and how do these results compare to some
conventional reconstruction methods? To answer this question, we present our research in
the following manner:

• Chapter 2: Alternating projection onto convex sets
In this chapter, we introduce the APOCS algorithm, a transformed-based signal recon-
struction method. We present its potential to reconstruct sparse 2D images and propose
modifications to an existing method to further enhance results.

• Chapter 3: Nonlinear beamforming
In this chapter, we present the NLBF framework and its use for seismic signal enhance-
ment. We define the NLBF traveltime operators, introduce the solvers used to estimate
them from input data, and illustrate how these are used for seismic signal enhancement.

• Chapter 4: Methods
In this chapter, we present the methodology of the developed seismic data reconstruction
methods. First, we present the use of the NLBF framework for seismic data reconstruc-
tion. Then, we present the BP method, an adapted version of the APOCS scheme.

• Chapter 5: Results
In this chapter, we present the results of the NLBF data reconstruction method on a
sparse synthetic SEAM Arid dataset and a field dataset. We compare these results to
those of several control methods, including the introduced BP method.

• Chapter 6: Discussion and conclusions
In this chapter, we further discuss the results, applications, and potential research
opportunities of the NLBF and BP reconstruction methods. Finally, we conclude by
answering our research question.
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Chapter 2

Alternating projection onto convex
sets

Alternating projections onto convex sets (APOCS) is a powerful method for image and signal
reconstruction [Marks II, 1997]. Given certain sets of constraints represented by convex sets,
a signal can be reconstructed by iterative projections onto these convex constraints [Marks II,
1997]. In the following chapter, we discuss the method’s mathematical framework, present
its applications in seismic data restoration, and test our algorithm’s efficiency on synthetic
seismic reflections and 2D images. The theory presented here forms the basis of the BP
method in Chapter 4.

2-1 Projections onto convex sets (POCS) theory

2-1-1 Convex set

To illustrate the principle of convex sets, we use the vector space as it allows a simplified
geometric illustration. In this sense, convex sets contain all vectors that share a predefined
property. Geometrically, a set A is convex if for any two vectors x⃗ ∈ A and y⃗ ∈ A, Equation
(2-1) holds [Marks II, 1997]. Equation 2-1 can be visualized as the line segment between two
vectors contained in A (Figure 2-1). As λ goes from 0 to 1, we traverse the line segment. If a
piece of the line is not in the set (Figure 2-1B), then the set is not convex. Convex geometrical
sets include balls, boxes, lines, line segments, cones, and planes [Marks II, 1997].

λx⃗+ (1− λ) y⃗ ∈ A . (2-1)

In signal reconstruction, the same principle is applied to signals in the signal space, which
is defined as all signals with finite energy [Marks II, 1997]. It contains higher-order convex
sets and subspaces that can be visualized as hypervolumes. Signals that form convex sets are
usually geometrically related. For example, bounded signals, signals with identical middles,
signals with a constant area, band-limited signals, or signals with a constant phase.
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12 Alternating projection onto convex sets

Figure 2-1: Geometric illustration of (A) a convex set, and (B) a non-convex set. A set is convex
if every line segment with endpoints in the set is totally subsumed in the set.

2-1-2 Projections

The concept of signal projection is simplified using the vector analogy once more. Given a
vector u⃗ within the convex set A, its projection onto A is just itself. If u⃗ is not in the convex
set A, then its projection onto A must satisfy all the desired constraints of A [Marks II,
1997]. Geometrically, the projection is performed such that the distance between u⃗ and its
projection v⃗ is minimized (Figure 2-2) (Equation 2-2). The projection is usually obtained by
forcing the signal to conform to the constraint in the simplest way. This concept is easily
scalable to higher dimensions in the signal space [Marks II, 1997].

min||u⃗− v⃗|| v⃗ ∈ A . (2-2)

Figure 2-2: A is a convex set and the vector u⃗ is not included in A. The projection of u⃗ onto A
is v⃗, the unique element in A closest to u⃗.

For two or more convex sets, alternating the projections between these sets - namely APOCS
- aims to reconstruct a signal conforming to all the constraints of these convex sets. However,
the convergence outcome depends on how the convex sets intersect. If the convex sets intersect
in a single point, the alternating projections will converge to a unique solution (Figure 2-3A).
If the intersection area is more than a point - a line, a hyperplane, or a hypersphere volume in
general - the solution is non-unique (Figure 2-3B). It then depends on the starting point. If the
sets do not intersect, convergence can lead to a limit cycle or greedy limit cycle (Figure 2-3C),
only partially conforming to the desired convex set properties [Marks II, 1997].
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Figure 2-3: Alternating projections between convex sets with different intersections. (A) Two
sets intersect at a point, so alternating projections converge to a unique solution.
(B) Two sets intersect along a line, so the APOCS solution is non-unique. (C) Three
convex sets do not intersect, so the alternating projections end up in a limit cycle.

2-2 Alternating POCS (APOCS) in seismic data reconstruction

The APOCS method has shown effective sparse seismic data reconstruction [Gao et al., 2010].
Abma and Kabir [2006] demonstrate successful interpolations of irregular seismic data using a
single-pass APOCS (SP) method. The convex sets A and B used are represented by Equations
2-3 and 2-4. Set A contains the known ground-truth traces at the correct locations; in set B
all f − k components below the defined threshold β are set to 0s.

A = {u(x, y) | u(x, y) = v(x, y) for pre-defined (x, y) locations }, u, v ∈ R . (2-3)

B = {u(x, y) | u(x, y) = 0 for |(u(x, y)| < β}, u ∈ C . (2-4)

where for each (x, y) trace position, u(x, y) are the signals contained in sets A and B, v(x, y)
are the ground truth signals, R is the set of all real numbers, and C the set of all complex
numbers.

Projection of a signal S(x, y) onto A is performed by reinserting the original data u(x, y)
at known (x, y) locations, and preserving the remaining signals s(x, y) at unknown (x, y)
locations (Equation 2-5). Projection of a signal S(x, y) onto B is performed by a 2D Fourier
transformation, multiplication with the f − k thresholding mask T leaving only the strong
amplitude components (Equation 2-7), and a 2D inverse Fourier transformation [Gao et al.,
2010] (Equation 2-6). The f−k threshold used by Abma and Kabir [2006] and Gao et al. [2010]
is initially strong and decreases between each set of projections. Gao et al. [2010] suggest
that an exponential decrease of the threshold results in a faster interpolation of missing data.
Contrary to the cited literature, the APOCS algorithm used in this thesis adds a convergence
condition for the alternating projections (Equation 2-8), and the f−k threshold only updates
when convergence between sets A and B is reached for the current threshold. This new version
of the APOCS algorithm is called convergent POCS (CP), and it follows the workflow outlined
in Figure 2-4. Research by Hirsch [2022] presents the advantages of the CP method compared
to the conventional SP method in greater detail.
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14 Alternating projection onto convex sets

PA(S(x, y)) =

{
u(x, y) if (x,y) is a pre-defined location ,
s(x, y) otherwise

(2-5)

PB(S(x, y)) = F−1
y F−1

x TFxFyS , T is a pre-defined 0/1 mask matrix , (2-6)

Tk(x, y) =

{
1, |Sk−1(f, k)| ≥ pk
0, |Sk−1(f, k)| < pk

, pk ∈ p , (2-7)

∥Sk+1 − Sk∥ < α · ∥Sk∥ , (2-8)

where Sk−1 denotes the f − k spectrum of reconstructed data at the k-1 th iteration, p the
N-dimensional threshold set, p = p1, p1, ..., pN meets p1 > p2 > ... > pN , and N denotes the
maximum thresholding iteration [Gao et al., 2010]. The convergence constant α is predefined
and depends on the desired degree of accuracy (Equation 2-8). According to our study [Hirsch,
2022], we recommend to use α = 0.0001 and L2 norm in Equation 2-8.

Figure 2-4: Flowchart of the convergent POCS (CP) algorithm.
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2-3 Convergent POCS (CP) Application

2-3-1 Synthetic seismic data

Application of the CP algorithm shows successful interpolation of irregularly sparse synthetic
seismic reflections. The algorithm was tested on synthetic seismic reflections with linear and
curved events with 65% and 85% randomly generated sparsity, for 100 and 1000 thresholding
iterations (Figures 2-5 and 2-6). Parameter tests performed by Hirsch [2022] reveal that image
reconstruction quality plateaus around 1000 thresholding iterations and shows different trends
for curved and linear events.

Figure 2-5: CP reconstruction results of 65% (A,C,E) and 85% (B,D,F) sparse linear synthetic
seismic reflections. (C-D) Results for 100 CP thresholding iterations, and (E-F)
results for 1000 CP thresholding iterations. Red ellipses highlight some differences.

For linear events - horizontal and dipping - larger numbers of thresholding iterations yield
better reconstruction results [Hirsch, 2022]. Figure 2-5 illustrates better reflection continuity
and reduced background noise for 1000 thresholding iterations compared to 100 thresholding
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16 Alternating projection onto convex sets

iterations. These features are highlighted by the red ellipses. For curved events (Figure 2-6),
larger amounts of thresholding iterations appear to better reconstruct the reflections. How-
ever, we also observe enhanced background noise for 1000 thresholding iterations compared
to 100 iterations, which can obstruct the reflections of interest (Figure 2-6).

Figure 2-6: CP reconstruction results of 65% (A,C,E) and 85% (B,D,F) sparse curved synthetic
seismic reflections. (C-D) Results for 100 CP thresholding iterations, and (E-F)
results for 1000 CP thresholding iterations. Red ellipses highlight some differences.

Overall, the interpolation of linear events requires fewer thresholding iterations compared to
curved events and exhibits superior reconstruction quality (Figures 2-5 and 2-6). In fact,
linear reflections are interpolated fast and display little added noise (Figure 2-5). Curved
seismic events generally require more thresholding iterations to resolve the sparse traces and
are subject to increased noise. Additionally, both linear and curved reconstructed events show
increased levels of noise in the reconstruction at higher degrees of sparsity (Figure 2-5 and
2-6). These observations must be taken into account when attempting to reconstruct sparse,
geometrically complex, seismic wavefronts.
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2-3-2 2D image reconstruction

The CP algorithm was also tested on two grayscale images. Analogously to the previous
section, different percentages of randomly decimated pixels and thresholding iterations were
used. Hirsch [2022] shows the full extent of our parameter testing to achieve the best possible
reconstruction. Figures 2-7 and 2-8 illustrate results for 75% and 90% sparse images, and the
associated signal-to-noise ratio (SNR) to assess the quality of the CP reconstruction. The
SNR in question is presented in detail in Chapter 5. The CP algorithm shows impressive
image reconstruction abilities. For high levels of data sparsity (90%), we observe successful
image reconstruction around 1500 thresholding iterations. Similarly to the CP results in
synthetic seismic data, we find that higher levels of data sparsity require more thresholding
iterations to successfully reconstruct the image and can introduce increased background noise.

Figure 2-7: CP reconstruction on 75% (A-C) and 90% (D-F) sparse images. (A,D) The original
images, (B,E) the sparse images, and (C,F) results after 1000 (SNR = 25.6) and
1500 (SNR = 22.8) thresholding iterations.
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18 Alternating projection onto convex sets

Image reconstruction quality in Figure 2-7 appears superior to Figure 2-8, but the SNR values
are in fact lower. These differences can be explained by the superior complexity in the gray
scales and geometric shapes in Figure 2-8. Overall, CP results are promising as they show
successful image reconstruction and adequate SNR values. These results reveal the potential
of the CP method on real seismic data as we will see in the following chapters. However, it
is important to note that the CP algorithm was only tested on randomly decimated images.
Chapter 4 highlights a major limitation of the CP method, which fails to reconstruct regularly
sparse data. There we introduce an adaptation to the CP algorithm for images with regular
decimation. More on this in Chapter 4.

Figure 2-8: CP reconstruction on 75% (A,C,E) and 90% (B,D,F) sparse images. (A,B) The
original images, (C,D) the sparse images, and (E,F) results after 1500 thresholding
iterations (SNRE = 27.1 and SNRF = 23.2).
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Chapter 3

Nonlinear beamforming

Nonlinear beamforming (NLBF) is a modern 3D seismic signal-enhancement method that
uses multi-dimensional trace stacking to improve the signal-to-noise ratio (SNR) of prestack
data [Bakulin et al., 2020]. Modern land seismic acquisition is moving away from large source
and receiver arrays to dense high channel count and single sensor geometries [Pecholcs et al.,
2012; Regone et al., 2015]. These methods allow detailed sampling of wavefields but lead to
weaker signals and stronger noise compared to conventional acquisition geometries. Existing
preprocessing methods such as deconvolution and velocity analysis are unable to robustly
deal with such data [Sun et al., 2022], so a new suite of tools is needed. This chapter presents
the NLBF framework and its use for enhancing the sought-after seismic signal. In the larger
context of this thesis, we use the NLBF framework presented hereafter for a new purpose,
seismic data reconstruction. More on this in Chapter 4.

Figure 3-1: Example trace geometry in the spatial domain. Black dots show the data traces,
red x’s the parameter traces, and the blue dot the enhanced target trace. The
summation, estimation, and operator apertures are indicated in the legend.
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20 Nonlinear beamforming

The NLBF framework can be used to enhance the SNR of existing traces by a local weighted
summation of traces along local operators. The term “operator” here defines a wavefront, de-
termined at parameter trace locations from the data itself (Figure 3-1) [Bakulin et al., 2020].
Figure 3-1 illustrates the parameter trace locations and the multiple user-specified apertures
involved in the NLBF signal-enhancement process. The estimation aperture (Aest) defines
the traces used to determine the operator’s parameters, which are used to calculate the oper-
ators (kinematic wavefronts). These NLBF operators can be used in the signal-enhancement
process, and are also the basis of our reconstruction method presented in Chapter 4. For the
signal-enhancement process, there are two more operators engaged: the operator aperture
(Aop) determines the number of surrounding operators used to enhance a specified target
trace; the summation aperture (Asum) defines the number of neighboring data traces used in
the local summation along the operators to produce the SNR-enhanced output trace [Bakulin
et al., 2020]. NLBF can be applied in any user-specified domain such as common-shot,
common-receiver, or common-midpoint [Bakulin et al., 2020; Hoecht et al., 2009]. The cross-
spread domain (CSD) is commonly used for its regular and dense trace distribution [Bakulin
et al., 2020]. In the following sections, we present the NLBF operator estimation and the use
of NLBF operators for seismic data SNR enhancement. We introduce the traveltime opera-
tor, the cost function, some existing solvers, the local weighted summation, and present some
enhancement results.

3-1 Traveltime operators

The traveltime operator ∆t(x, y;x0, y0) describes the traveltime moveout of a kinematic wave-
front with respect to a specified parameter trace time sample (Figure 3-1). It is approximated
using a second-order surface:

∆t (x, y;x0, y0) = t(x, y)− t (x0, y0)

= A∆x+B∆y + C∆x∆y +D∆x2 + E∆y2 ,
(3-1)

where t(x, y;x0, y0) is the traveltime for a trace located at (x, y), given an NLBF parameter
trace at (x0, y0); ∆y and ∆x are the distances from the position of the current trace to the
parameter trace: (y − y0) and (x − x0) respectively. The unknown coefficients A,B,C,D
and E describe the operator at (x, y, t(x, y)) [Sun et al., 2022]. Figure 3-2 illustrates a single
operator around the parameter trace time sample at t = 6 ms; it extends in both the spatial
and temporal directions. The ∆y and ∆x values from Equation 3-1 are shown in Figure
3-2A. The operator’s ∆t value at data trace locations is illustrated in Figure 3-2B, and it is
calculated using Equation (3-1).

To enhance seismic signals using NLBF, we must first estimate the local kinematic wavefront
parameters A,B,C,D and E from the data inside Aest for each parameter trace. These
parameters define the traveltime operators and must be estimated for each time sample of
each parameter trace (Figures 3-1 and 3-2). In the second step, a target trace is enhanced by
a weighted summation of traces in Asum along operators in Aop. The summation is further
discussed in Section 3-4.
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Figure 3-2: Schematic illustration of the operator construction Equation (3-1) in 3D (x, y, t).
The overview inset shows the 3D operator around the red parameter trace, cross-
cutting the data traces (black dots). (A) Top view of an operator section, highlight-
ing ∆y and ∆x values for two data trace positions. (B) Cross-section highlighting
traveltime operator values for two data trace positions.

3-2 Cost function

The traveltime operator parameters A,B,C,D and E estimated at parameter trace locations
are dependent on the surrounding data traces, and therefore on the specified aperture size
Aest [Bakulin et al., 2020; Sun et al., 2022]. A semblance-type cost function is optimized for
these parameters, and it aims to maximize the semblance inside a chosen aperture such as:

S (x0, y0) =

∑N
j=1

{∑M
i=1 u [xi, yi; tj (x0, y0) + ∆t (xi, yi;x0, y0)]

}2

M
∑N

j=1

∑M
i=1 {u [xi, yi; tj (x0, y0) + ∆t (xi, yi;x0, y0)]}2

, (3-2)

where u(xi, yi, t) represents a time sample of the trace located at (xi, yi) in seismic data, M is
the total amount of traces inside the spatial aperture Aest, and N the total amount of samples
inside the temporal aperture of a local traveltime operator [Sun et al., 2022].
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The cost function, Equation (3-2), is highly nonlinear, therefore solving for coefficients
A,B,C,D and E at t(x0, y0) by maximizing Equation (3-2) is non-trivial. The search ranges
for these coefficients are usually determined by local geology and must be specified by the
user [Bakulin et al., 2020]. Several solvers, such as the 2+2+1 local search method, the 5D
brute force method [Sun et al., 2022], sequential dips and curvatures estimation, and the
efficiency-improved Genetic Algorithm (eGA) method, have proven their efficacy [Bakulin
et al., 2020; Sun et al., 2022]. In the following section, we present possible solvers, notably
the NLBF+eGA method used in this thesis.

3-3 Solvers

Estimation of local kinematic parameters A,B,C,D and E is performed by scanning different
wavefronts and finding the best coherency based on the maximum semblance value [Bakulin
et al., 2020]. The 5D brute force method is stable and accurate in finding the maximum
semblance value but it is computationally very expensive [Sun et al., 2022]. The 2+2+1
method is less expensive but presents risks of convergence to local maxima [Bakulin et al.,
2020]. In the 2+2+1 approach, a local solver breaks down the 5D optimization problem into
three separate problems with smaller dimensions. Parameters A and D are estimated in the
x direction using a subset of the ensemble data, B and E in the y direction using another
subset of the ensemble data, and C in both directions using the complete data [Buzlukov and
Landa, 2013]. Overall, efficiency is improved but results are sub-optimal.

Genetic algorithms (GAs) have found successful applications in the field of geophysics as non-
linearity is a reoccurring challenge [Sambridge and Drijkoningen, 1992; Sun and Verschuur,
2014]. Acuna and Sun [2020] propose the efficiency-improved GA (eGA), which offers higher
convergence speeds over other GAs. It demonstrates systematic efficiency and robustness
in the global optimization of nonlinear CRS stacking problems and has shown its potential
to estimate nonlinear NLBF kinematic wavefront parameters [Sun et al., 2022]. The eGA
uses a modified island model to secure a robust global search, a self-adaptive differential
evolution fine-tuning scheme to guarantee a good local search, and a local exhaustive search
method to handle the premature convergence [Acuna and Sun, 2020]. Seismic events of
interest often lie in the far field, where wavefronts smoothly vary with distance. Therefore,
traveltime operator parameters between nearby parameter traces must also change gradually
(Figure 3-1). The NLBF+eGA method exploits this “spatial consistency” property to both
enhance computational efficiency and improve final data quality [Sun et al., 2022]. It uses
estimated coefficients at parameter traces as initial values for neighboring parameter traces.
The NLBF+eGA method has proven to be very efficient in yielding high-quality estimations of
NLBF parameters A,B,C,D and E in noisy datasets with less computational effort compared
to other methods.

Figure 3-3 illustrates an example of operator parameters A,B,C,D and E and the result-
ing semblance for several parameter traces, calculated using the NLBF+eGA method [Sun
et al., 2022]. These operators were calculated for signal enhancement purposes using a finite
difference simulation on a velocity and a density model from a synthetic SEAM Arid dataset
(Figure 5-1). The acquisition geometry is shown in Sun et al. [2022]. Resulting data trace
spacing is ∆x = ∆y = 0.625 m, time sampling rate is 4 ms, and parameter trace spacing is
∆x = ∆y = 140 m with an Aop of 400 m x 400 m. Sun et al. [2022] highlights the superiority
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Figure 3-3: Estimated semblance and parameters A-E for NLBF parameter traces obtained by
the NLBF+eGA method on the SEAM Arid dataset, adapted from Sun et al. [2022]

of the NLBF+eGA solver by the higher semblance values compared to the other solvers pre-
viously discussed. In this thesis, the traveltime operator parameters have been estimated for
the datasets of interest using the NLBF+eGA method, and are directly ready to use.

3-4 Local summation

NLBF is a wavefront operator-based signal enhancement method that exploits multi-
dimensional trace stacking, where weak signals are enhanced by summation along coherent
wavefronts [Bakulin et al., 2020; Sun et al., 2022]. The last step to seismic signal enhancement
using NLBF is the weighted summation of data traces in Asum along the operators defined by
Aop

1 (Figure 3-1). The NLBF local summation method can be written in the general form:

u (x0, t0) =
∑

x∈Asum

w (x,x0)u (x, t0 +∆t (x,x0)) , (3-3)

where u represents the data traces in the original gather with location x = (x, y), whose
values (black dots in Figures 3-1 and 3-2) are summed along the wavefronts in the defined
window Asum; the beamforming weights w(x,x0) are used to better preserve signals and to
suppress noise; x0 = (x0, y0) represents the position of the resulting enhanced trace [Bakulin
et al., 2020].

1The inclusion of several operators in Aop is only for the operator oriented scheme; in the target-oriented
scheme a single operator is used therefore Aop does not need to be defined [Bakulin et al., 2020].
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Different summation methods such as the operator oriented (OO) and trace oriented (TO)
approaches can be used [Bakulin et al., 2020; Hoecht et al., 2009]. The TO method estimates
kinetic wavefront parameters at all target trace locations, and these are used to construct
operators for the target time samples [Bakulin et al., 2020]. The TO scheme results in one
unique operator per output sample. The OO method, represented in Figures 3-1 and 3-2,
estimates, and builds traveltime operators on a regular grid of parameter traces (Figure 3-
2). During the summation, enhanced target traces can receive contributions from several
surrounding operators defined in Aop. The OO scheme offers significant computational ad-
vantages compared to the TO method. Notably, computational performance is improved by
using a sparser grid of parameter traces [Bakulin et al., 2020].

3-5 Signal enhancement examples

The NLBF signal enhancement results illustrated in Figure 3-4 were obtained by Sun et al.
[2022] using the synthetic SEAM Arid dataset and operator parameters from Figure 3-3.
These results illustrate the potential of the NLBF method for seismic SNR enhancement.
Figure 3-4 shows several NMO corrected shot gathers before and after the NLBF+eGA en-
hancement. The original gather (Figure 3-4A) exhibits strong scattering noise from the com-
plex near-surface highlighted by the red oval [Sun et al., 2022]. Figure 3-4B illustrates the
results after the enhancement with NLBF+eGA. There is a clear improvement in the quality
of the prestack data, and events show better continuity and less background noise as high-
lighted by the red oval. Further details regarding the signal enhancement results are available
in Sun et al. [2022], as seismic signal enhancement is not the main focus of this thesis.

Figure 3-4: (A) NMO-corrected raw gathers from synthetic data. (B) NLBF+eGA corrected
signal enhancement of (A). Adapted from Sun et al. [2022]
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3-6 The NLBF framework for data reconstruction

In the context of this thesis, the NLBF framework presented in Chapter 3 will be used for
seismic data reconstruction instead of signal enhancement. In this sense, traveltime operators
will be constructed using the introduced NLBF+eGA method. These wavefronts will then
be used to reconstruct sparse data according to the method outlined in Chapter 4. Instead
of a weighted summation of data traces along wavefront operators to enhance target traces,
sparse target traces will be reconstructed by interpolation of data trace values along these
traveltime operators. The use of NLBF for seismic data reconstruction is extensively covered
in Chapter 4.
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Chapter 4

Methods

In this chapter, we present two methods we developed to reconstruct sparse seismic data.
The first, the main method of interest, is the use of the NLBF framework for seismic data
reconstruction. Figure 4-1 highlights the important difference between the use of NLBF for
signal enhancement (Chapter 3) versus reconstruction (Chapter 4). The second method is the
BP method, which overcomes the issue encountered by many reconstruction methods with
a regular pattern of data sparsity. In this thesis, we will use the BP data reconstruction
method presented hereafter as a control method for the main method of interest, NLBF
reconstruction. More on this in Chapters 5 and 6.

Figure 4-1: A flowchart illustrating the difference and similarities in the use of the NLBF frame-
work for data reconstruction versus signal enhancement.
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4-1 NLBF seismic data reconstruction

In the following section, we illustrate the NLBF data reconstruction methodology on a seismic
dataset with the acquisition geometry shown in Figure 4-2. Data traces are the ones obtained
during the acquisition, and target traces are the ones to be reconstructed. The gather we
consider contains a total of 104720 data traces; the inline direction has dense data trace
spacing with ∆x = 12.5 m, and the crossline direction has coarser data trace spacing with
∆y = 37.5 m. To achieve equal data trace distribution in both the inline and crossline
directions in Figure 4-2, two target traces must be reconstructed between data traces in the
crossline direction (gray circles). The data is therefore 2/3 sparse in the crossline direction.
Traces have a time sampling rate of ∆ts

1 = 6 ms for a total of 690 time samples. Figure 4-3
illustrates a sparse crossline section (A - B from Figure 4-2), where gaps between data traces
are apparent. The objective of the NLBF data reconstruction method is to reconstruct all
target traces in order to obtain the desired spatial resolution, and for this dataset the goal is
to have ∆x = ∆y = 12.5 m. The NLBF reconstruction steps carried out in this chapter are
easily scalable to seismic gathers with different geometries and levels of data sparsity.

Figure 4-2: Schematic section of the synthetic SEAM Arid data geometry, with relative positions
of data traces, target traces, parameter traces, and the shot. Inline and crossline
trace spacing are highlighted in the red box, and the operator aperture is indicated
in yellow. Note that target traces are only drawn in the operator aperture for figure
clarity, but are in reality all throughout the gather.

1Note: we distinguish ∆ts as the time sampling rate; and ∆t from Equation (3-1) as the traveltime of points
on a wavefront.
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Figure 4-3: A 2/3 sparse synthetic SEAM Arid data section at x = 750 m (A-B in Figure 4-2).
The red box in the inset highlights the close-up section of the figure. Data trace
spacing is ∆y = 37.5 m, separated by two null traces.

4-1-1 Traveltime operators

The first step of the NLBF process is to define traveltime operators we wish to use to describe
wavefronts, and then estimate these operators from the dataset of interest (Figure 4-1). The
method is identical to the one presented in Chapter 3. We choose to define our traveltime
operator as the second-order surface described by Equation (3-1). These operators are defined
at parameter traces, which are regularly distributed across the gather (Figure 4-2). The
spatial density and distribution of parameter traces define the number of operators involved
in the reconstruction. The geometry in Figure 4-2 shows a parameter trace distribution of
∆x = ∆y = 60 m. Similar to the data traces, parameter traces have a time sampling rate of
∆ts = 6 ms for a total of 690 time samples. Each time sample has its own operator defined
by the parameters A,B,C,D and E obtained through the NLBF+eGA method (Chapter 3)
[Sun et al., 2022]. Figure 4-4 illustrates parameters A-E and the resulting semblance values
for five parameter trace lines.

The operator aperture defines how far we extend the wavefront around their respective pa-
rameter trace. Figure 4-2 illustrates an aperture of 180 m x 180 m. Using the coefficients A-E,
the traveltime operators are calculated inside the aperture according to Equation (3-1). ∆t
describes the traveltime moveout of the wavefront with respect to the current parameter trace
time sample (Figure 3-2B). It is calculated at both data and target trace locations, resulting
in 3D wavefront surfaces spatially and temporally discretized to the target grid dimensions.
The operator aperture in Figure 4-2 highlights these positions. Figure 4-5 illustrates a close-
up 3D section of the sparse gather with four wavefronts around their respective parameter
traces. Chapter 5 further explores the effects of varying spacing between parameter traces
and aperture sizes on the data reconstruction quality.
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Figure 4-4: NLBF+eGA estimated semblance values and parameters A-E for selected parameter
traces (A-B in Figure 5-2) in the synthetic SEAM Arid dataset.

Figure 4-5: Close-up 3D illustration of four wavefronts around two parameter traces (red lines);
white dots indicate the operator-parameter trace intersection, and black lines indicate
the data traces. The bird’s-eye view displays a top-down view of the aperture extent.
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4-1-2 Methodology

We use the sparse data shown in Figure 4-2 to demonstrate our reconstruction method step
by step. For seismic data reconstruction, the local coherency between traces along kinematic
wavefronts allows for the reconstruction of missing target traces in between data traces. The
first step to reconstruct sparse seismic data is to reorganize the original sparse data on a
denser target grid to the appropriate reconstruction dimensions. The original 2/3 sparse data
has grid dimensions of 187 x 560 and is sparse in the crossline direction. A denser target grid
is established with the appropriate dimensions. It contains the known data traces, and sparse
target traces initially defined as 0-traces. The new target grid dimensions for the synthetic
dataset are 559 x 560 with ∆x = ∆y = 12.5 m in both inline and crossline directions (inside
the aperture of Figure 4-2). Parameter traces are kept on a separate parameter grid as
discretized trace positions may differ. Traveltime operators are calculated for each parameter
trace time sample inside the operator aperture to target grid dimensions.

The reconstruction of target traces within the aperture is performed by repeating the following
steps for each operator along all parameter traces. Figures 4-6, 4-7 and 4-9 illustrate these
steps in 2D on a single operator for simplicity, but these in reality are applied in the 3D space.

• First, the operator traveltime surface is extended by a multiple of the time sampling
rate ∆ts in the temporal dimension in both the positive and negative direction by
increments of ±∆ts, as illustrated in Figure 4-6. The time window size is set by the
user and ultimately influences the amount of reconstructed target time samples per
operator. In our case, these are regular time samples of a ∆ts = 6 ms time sampling
rate along target traces. Only target time samples within this window are reconstructed.
Figure 4-6 illustrates a time window of 4∆ts, and the original operator at 12 ms on the
parameter trace (red) is extended by 2∆ts in the positive and negative time directions.
Chapter 5 further explores the effects of the time window size on reconstruction quality.

Figure 4-6: Extension of the operator at 12 ms to the desired time window of 4∆ts.
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• Subsequently, the corresponding wavefield amplitude values of the extended traveltime
window are linearly interpolated along data traces in the temporal direction (Figure
4-7). This is possible as we know the data trace amplitude at discretized time samples,
and the traveltime operator values ∆t at data trace locations via Equation (3-1). Figure
4-7 illustrates the interpolated amplitude points as the black dots and the interpolation
direction as the black arrow. The inset of Figure 4-7 only shows one wavefront for clarity,
but in reality, the amplitudes of all wavefronts separated by ∆ts in the traveltime window
(dotted lines) at data trace locations are also calculated. This results in multiple 2/3
sparse wavefront surfaces with regular decimation.

Figure 4-7: Illustration of the linear interpolation along the data traces to obtain the operator
amplitudes (black dots). The inset only contains the full (non-dotted) line operator
in the 2D section for clarity; the yellow dots indicate the interpolated operator values
in the inset cross-section. See trace legend in Figure 4-6.

• The interpolation of wavefronts amplitude values at target trace locations is performed
via both linear and bilinear interpolation along the wavefronts, using the previously
calculated amplitude at data trace locations (Figure 4-8). Each target trace time sample
receives equal (50/50) contributions from both linear and bilinear interpolation results,
and this allows the removal of the interpolation direction bias. Figure 4-8 illustrates
both linear and bilinear interpolation separately. Linear interpolation is performed for
all lines in the crossline direction to obtain target trace amplitudes, as illustrated by
the black arrows and orange dots in Figure 4-8A. Bilinear interpolation uses results
from the linear interpolation to interpolate in the inline direction, as illustrated by the
black arrow and blue dots in Figure 4-8B. This linear-bilinear interpolation is performed
along all wavefronts in the time window (Figure 4-6), resulting in multiple reconstructed
wavefronts to the target dimensions. This wavefront interpolation method allows us to
obtain fast results. However, the BP method explained hereafter shows potential for a
higher quality interpolation at the expense of computational efficiency. More on this in
Chapter 5.
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Figure 4-8: Linear and bilinear interpolation of operators at target trace positions. (A) Linear
interpolation in the crossline direction. (B) Bilinear interpolation in the inline direc-
tion.

• Finally, using the interpolated wavefront amplitudes at target trace locations (blue
dots in Figure 4-9), amplitudes at the desired target time samples are interpolated
(yellow dots in Figure 4-9). A cubic-spline interpolation is used to better conserve trace
continuity, as the interpolated value is based on a piecewise cubic interpolation of the
values at neighboring grid points. Figure 4-9 illustrates the cubic-spline interpolation
at desired target time intervals of the original input data.

These steps are repeated for all operators along the parameter traces. For each operator, the
operator time window covers multiple target time samples (Figure 4-6), and these may overlap
between neighboring operators. Interpolated amplitudes at target time samples are summed
and weighed by the number of contributions. In this sense, target time samples may receive
contributions from several operators. This process is repeated for all parameter traces. These
target time samples from individual parameter trace sections may also coincide where two
operator apertures overlap. The amplitude values are again summed and weighted to create
the total reconstructed wavefield, which allows for a seamless assembly of the reconstructed
parameter trace sections. The amount of overlap is influenced by the size of the operator
aperture and the distance between neighboring parameter traces. For the parameters used in
this chapter (60 m parameter trace spacing; 180 m x 180 m operator aperture), we expect a
crossover of 120 m. A sufficient crossover is required to fully reconstruct the entire gather.
Chapter 5 covers results of varying cross-over distances on the reconstructed gathers.
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Figure 4-9: Cubic spline interpolation for one operator at the desired discretized target trace
time samples, and the yellow dots indicate the interpolation locations. See trace
legend in Figure 4-6.

4-2 Bootstrap POCS (BP)

In this section, we present the bootstrap POCS (BP) method. We propose this method to
overcome the limitations of the conventional CP scheme on regularly sparse data (Chapter
2). We define regular sparsity as a repeating pattern of missing traces or data points. Our
research shows a high-quality image reconstruction potential with applications beyond the
scope of this thesis. More on this in Chapter 6.

4-2-1 Regularly decimated data

The CP method, an improved version of Abma and Kabir’s POCS method [Abma and Kabir,
2006] (Chapter 2), showed impressive image reconstruction results [Hirsch, 2022]. However,
the application of f − k transform-based reconstruction methods on regularly sparse images
poses a challenge. A regular pattern of dead traces is very predictable and is retained in the
output unless the pattern is forcibly removed [Abma and Kabir, 2006]. Figure 4-10 shows
the results of the CP algorithm on the 2/3 regularly decimated drop image. It is apparent
that the CP reconstruction does not converge to the desired reconstructed output. It has a
signal-to-noise ratio (SNR) of 1.61 which will be further discussed in Chapter 5.

In fact, the regularity of the decimation in the space-time (x − t) domain leads to aliasing
in the f − k domain. Figure 4-11B shows the f − k spectrum of the original image (Figure
4-11A), and Figure 4-11D shows the f − k spectrum of the 2/3 sparse image (Figure 4-11C).
The repeated spectra in Figure 4-11D illustrates the aliasing effect of the regular decimation.
This aliasing affects the f −k thresholding of the CP method (Chapter 2) and therefore leads
to the poor reconstruction result we see in Figure 4-10B.
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Figure 4-10: (A) A 2/3 regularly decimated image of drop image from Chapter 2. (B) Results
of the CP reconstruction after 100 thresholding iterations using parameters from
Hirsch [2022] (SNR = 1.61).

4-2-2 Bootstrap POCS (BP) methodology

The BP method is able to but is not limited to reconstruct regularly sparse images. The
first step of BP is to reconstruct the regular sparse image using an interpolation method
compatible with a regular decimation pattern. Here, we use a combination of linear and
bilinear interpolation, identical to the method presented in Figure 4-8, to obtain contributions
from data points in all directions. This is the starting point of the BP method, i.e., the
bootstrapping step. The bootstrapping step provides support to the CP method’s limitations
with regular decimation. Once the image has been coarsely reconstructed by the bootstrap
step, we randomly decimate some reconstructed data points and then use the CP method
to reconstruct this newly created sparse image. In a nutshell, the BP method uses the CP
method as the major reconstruction scheme, and it uses the bootstrapping step to compensate
for the CP method’s limitation with regular data decimations.
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Figure 4-12 demonstrates the BP method on a small schematic grid with 2/3 sparsity in the
crossline direction, similar to our drop image. After reorganizing our sparse image to a target
grid with the appropriate reconstruction dimensions, we create the linear-bilinear bootstrap
image. Figure 4-12A shows the original pixels in gray, and the linear-bilinearly interpolated
pixels in blue. We then randomly decimate a user set percentage of these coarse linear-
bilinearly reconstructed pixels as illustrated by the white pixels in Figure 4-12B. Subsequently,
we reconstruct these white pixels using the CP method, resulting in the red pixels in Figure
4-12C. We say these red pixels are BP reconstructed as they use the bootstrap - linear-bilinear
- image as support for the CP method. This process is repeated until all the linear-bilinear
interpolated pixels have been replaced by the BP reconstructed ones (Figure 4-12F). The gray
ground truth pixels are preserved throughout the process.

Figure 4-12: Demonstration of the BP method. (A) The linear-bilinear interpolated image, (B)
25% random pixel decimation, (C) reconstruction using the CP method, (D-E) the
process is repeated, and (F) all linear-bilinear pixels are BP reconstructed.

To illustrate the potential of the BP method, we apply the presented methodology to the
2/3 sparse drop image in Figure 4-10. We use a 5% pixel decimation value for each BP
iteration, 1000 thresholding iterations, and the POCS parameters presented in Hirsch [2022].
Figure 4-13 illustrates the resulting BP reconstruction. We use an SNR to quantitatively
assess the quality of the reconstruction (Equation 5-1). Visual comparison of the BP and
CP (Figure 4-10B) reconstruction results to the original image (Figure 4-11A), highlights the
closer resemblance of the BP reconstruction. The superior reconstruction quality is confirmed
by the SNR values, as the BP reconstruction has an SNR of 9.24, and the CP reconstruction
has an SNR of 1.61. From this result, it is clear that the BP method presents impressive
image reconstruction abilities. In the following chapter, we use the BP method as a control
method for the NLBF reconstruction on seismic data.
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Figure 4-13: A BP reconstructed drop image (SNR = 9.24), showing a high fidelity to the
original image Figure 4-11A.
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Chapter 5

Results

In the following chapter, we present the results of the NLBF seismic data reconstruction
method on the synthetic SEAM Arid and field datasets. First, we will introduce the two
sparse seismic datasets used to test our data reconstruction methods, and the control methods.
Then, we present the parameter tests and results of the NLBF reconstruction.

5-1 The data

5-1-1 SEAM Arid dataset

The first dataset is a synthetic seismic gather generated from a SEAM Arid model [Oristaglio,
2015]. Figure 5-1 shows a 2D slice from the 3D SEAM Arid velocity model.

Figure 5-1: A velocity-model section through the center of the 3D SEAM Arid model [Oristaglio,
2015]. The corresponding density model is not shown.
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A 3D finite-difference simulation engine was used to generate the synthetic data from the
SEAM Arid model, and f − k based pre-processing was performed to remove strong ground-
roll noise. Figure 5-2 illustrates the data acquisition geometry in the shot domain. The
gather contains a total of 104720 traces organized on a 187 x 560 grid, with inline spacing
∆x = 12.5 m and cross-line spacing ∆y = 37.5 m, resulting in 2/3 spatial sparsity in the
crossline direction. We aim to reconstruct the data to target grid dimensions 559 x 560, such
that ∆x = ∆y = 12.5 m. NLBF parameters A-E were estimated by the NLBF+eGA method
(Chapter 4) using a time window size of 7∆ts and an operator aperture Aop of 600 m x 600 m
[Sun et al., 2022]. The parameter traces are regularly distributed in the inline and crossline
directions such that ∆x = ∆y = 60 m. Figure 4-4 (Chapter 4) illustrates five parameter trace
lines from the SEAM Arid dataset highlighted by the blue A-B lines in Figure 5-2. Both data
and parameter traces have a time sampling rate of ∆ts = 6 ms for a total of 690 time samples.

Figure 5-2: Synthetic data from a SEAM Arid velocity model. Trace geometry is highlighted in
the inset. Target traces are only drawn in the operator aperture for figure clarity.
The dark blue A-B lines indicate the parameter trace positions in Figure 4-4.

5-1-2 Field dataset

The second dataset is a land field dataset, of which the acquisition is characterized by a high
channel count and small receiver arrays. Preprocessing followed the standard onshore data
denoising workflow, including f − k based ground-roll removal. Figure 5-3A illustrates the
acquisition geometry, composed of two orthogonal lines of 111 sources and 194 receivers. The
resulting cross-spread domain gather in Figure 5-3B contains a total of 29770 traces, and
gaps up to 240 m in the crossline direction. We regularize the data to a 124 x 180 grid using
∆x = ∆y = 60 m, and we average binned traces to a total of 22320 traces with an increased
fold. The dataset is 3/4 sparse, i.e., 1/2 sparse in both the inline and crossline directions
ignoring data gaps. We aim to reconstruct the data to a 247 x 359 grid using ∆x = ∆y = 30
m. Target traces are shown in the operator aperture of Figure 5-4.
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Figure 5-3: Field data acquisition geometry. (A) Orthogonal source and receiver lines, and (B)
the resulting cross-spread domain trace geometry.

Figure 5-4: The regularized cross-spread geometry for the field data. Trace geometry and fold
are indicated. Target traces are only in the operator aperture for clarity. The dark
blue A-B lines indicate the parameter trace line positions in Figure 5-5.

The NLBF parameters A-E were estimated by the NLBF+eGA method (Chapter 4), using
a time window size of 11∆ts and an operator aperture of 600 m x 600 m [Sun et al., 2022].
Parameter traces are regularly distributed in the inline and crossline directions at the same
positions as data traces such that ∆x = ∆y = 60 m, as illustrated in the inset of Figure 5-4.
Figure 5-5 illustrates five example parameter trace lines from the field dataset highlighted by
the A-B lines in Figure 5-4. Both data and parameter traces have a time sampling rate of
∆ts = 4 ms for a total of 1250 time samples.
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Figure 5-5: NLBF+eGA estimated semblance and parameters A-E for selected parameter trace
lines (A-B in Figure 5-4) in the field dataset.

5-2 Parameter tests and control methods

The NLBF data reconstruction method was carried out on the sparse synthetic SEAM Arid
and field datasets with varying control parameters. We performed parameter tests on the
time window size, the operator aperture size, and the parameter trace interval distance to
observe the effects on the data reconstruction quality. Table 5-1 presents the control param-
eters tested for both datasets. The control parameter test ranges were chosen based on the
NLBF parameters, grid size, and data trace density. Additional information regarding control
parameters is available in Appendix B.

SEAM Arid synthetic dataset Field dataset

Time window [∆ts] 7, 9, 12, 15, 18 7, 9, 12, 15
Operator aperture [m] 200, 300, 400, 600 300, 400, 500, 600
Parameter trace interval [m] 60, 120, 180 60, 120, 180

Table 5-1: NLBF reconstruction control parameters tested for the SEAM Arid and field datasets.

In order to demonstrate the efficacy and efficiency of the NLBF data reconstruction, we
introduce several control methods. These are used to better measure the performance of
the NLBF reconstruction. The first control method is the CP method presented in Chapter
2, which will be used for both the SEAM Arid and the field datasets. For the synthetic
SEAM Arid model, the availability of the ground truth allows us to directly compare our
reconstruction results with the target seismic gather, so the ground truth will serve as the
second control method for the SEAM Arid dataset and be used to quantify the quality of
the reconstruction. For the field dataset, no ground truth data is available to assess the
reconstruction quality, therefore the BP method (Chapter 4) is used as the second control.
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In addition to these control methods, we also use a numerical signal-to-noise ratio (SNR) as
a quantitative measure when the ground truth is available. The following SNR formula from
Wang [2016] is used:

SNR = 20 log10
∥d0∥2

∥drec − d0∥2
, (5-1)

where d0 is the complete ground-truth data and drec is the reconstructed data. Natural
wavefield scattering noise in the original data gather d0 is characterized by strong amplitudes
that cannot be suitably reconstructed because of the smooth nature of the NLBF operators
[Sun et al., 2022]. Therefore, in our SNR calculations, we do not consider the contributions
of this strong scattering noise. It is also important to note that SNR can be defined in many
ways, and the SNR collapses the reconstructed gather quality into a single value. Thus it
is only a relative average indicator of reconstruction quality, used to differentiate between
parameter test results, and does not indicate the quality of the reconstruction in all locations.

Using these control methods, we hope to convey the excellent quality of the NLBF reconstruc-
tion and find the best possible set of reconstruction parameters for the datasets of interest.
First, we will find the best set of parameters for the SEAM Arid dataset using the SNR. Based
on these results and knowledge of parameter interplay (Appendix B), we will choose a set of
parameters for the field data, and compare the results to those from the control methods.

5-3 Results

In this section, we present our NLBF reconstruction results for the synthetic SEAM Arid and
field datasets and compare them to the control methods. We briefly discuss the rationale
behind our parameter decision and their influence on the reconstruction quality. Detailed
presentation of the tests and the interplay among parameters are available in the Appendices.

5-3-1 SEAM Arid results

For the synthetic SEAM Arid dataset, the best SNR value was obtained using the following
parameters: a time window of 12∆ts (∆ts = 6 ms), an operator aperture of 600 m x 600
m and a parameter trace interval of 60 m. The resulting gather has an SNR value of 5.716.
Again, it is important to emphasize that the SNR is calculated for the entire gather regardless
of local reconstruction quality, and therefore is only an average indicator. A full presentation
of SNR values for all control parameter tests is available in Appendix B. Figures 5-6 and
5-7 illustrate these results for a time section at t = 3.006 s and an inline section at y =
3587.5 m respectively, and compare them to their sparse and ground truth equivalents. They
demonstrate the successful reconstruction of the 2/3 sparse target traces in the crossline
direction. The reconstructed time section shows clear wavefront reconstruction between the
available data traces with an SNR of 12.94 (Figure 5-6C); and the inline section shows a fully
reconstructed line of target traces with an SNR of 12.41 (Figure 5-7C). Figures 5-6D and 5-7D
illustrate the differences between the NLBF reconstruction and the ground truth. They show
the influence of high amounts of scattering noise, emphasizing the good reconstruction quality
of the NLBF method. These results and the associated SNR values display the impressive
reconstruction ability and the denoising properties of the NLBF method. Additional result
sections, including example crossline sections, are available in Appendix A-1.

August 5, 2022



44 Results

Figure 5-6: NLBF reconstruction for a time section at t = 3.006 s on the SEAM Arid dataset.
(A) The ground truth, (B) the 2/3 sparse input data (SNR = 1.32), (C) the NLBF
reconstructed section (SNR = 12.94), and (D) the difference between (A) and (C).

Figures 5-8 and 5-9 compare our NLBF reconstruction results to the CP control method,
for a time section at t = 3.0 s and a crossline section at x = 1500 m, in the t − x and
f − k domains. Visually, the improvement in reconstruction quality of the NLBF method is
striking. For both sections, the t− x domain of the CP reconstruction is barely recognizable,
whereas the NLBF reconstruction resembles the ground truth. This is confirmed by our SNR
values. The SNR of the reconstructed time sections is 1.32 for the CP method and 12.94 for
the NLBF method (Figure 5-8). The SNR of the reconstructed crossline sections is 0.96 for
the CP method and 11.71 for the NLBF method (Figure 5-8). In the f−k domain, the NLBF
reconstruction shows good fidelity to the ground truth, whereas the CP spectrum shows high
amounts of additional aliased energy. In fact, the f − k domain of the NLBF reconstruction
shows good reconstruction of dominant central frequencies (Figures 5-8E and 5-9E). The
white-noise-like spatial frequencies, corresponding to the mentioned scattering noise, are less
well reconstructed, which is understandable. In the time section, the faint repeating circular
pattern hints at slight aliasing in the crossline direction (Figure 5-8E), which is caused by the
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small periodic amplitude mismatch between the reinserted and reconstructed traces. Overall,
the f−k spectrum of the NLBF reconstruction shows good quality preservation of the signal’s
energy. The CP reconstruction, however, shows strong added energy and aliasing for the time
section (Figure 5-8F), and poor energy preservation and strong aliasing for the crossline
section (Figure 5-9F). It is clear from Figures 5-8 and 5-9 and the associated SNR values,
that the NLBF method achieves a successful, more accurate reconstruction of the synthetic
SEAM Arid dataset compared to our CP control method.

Figure 5-7: NLBF reconstruction for an inline section at y = 3587.5 m on the SEAM Arid
dataset. (A) The ground truth, (B) the missing section (SNR = 0.0), (C) the NLBF
reconstructed section (SNR = 12.41), and (D) the difference between (A) and (C).

Two individual NLBF reconstructed traces in the time domain are shown in Figures 5-10
and 5-11, and compared to the ground-truth traces. The NLBF method shows a high-quality
phase reconstruction and good amplitude reconstruction. Completely correct reconstruction
of target amplitudes is challenging for all reconstruction methods, therefore results here are
satisfying. The trace located at [x, y = 404, 257] has an SNR of 9.68, and the trace located at
[x, y = 83, 420] has an SNR of 7.22. These SNR values and the small difference between the
NLBF reconstructed and the ground truth traces in Figures 5-10C and 5-11C, confirm that
the individual trace quality of the NLBF method is excellent.
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Figure 5-8: Comparison of the NLBF reconstruction with the CP control method in the x − y
and kx − ky domains for a time section at t = 3.0 s on the synthetic SEAM Arid
dataset. (A, D) The ground truth, (B, E) the NLBF reconstruction (SNR = 12.94),
and (C, F) the CP reconstruction (SNR = 1.32).

Figure 5-9: Comparison of the NLBF reconstruction with the CP control method in the t − x
and f − k domains for a crossline section at x = 1500 m on the synthetic SEAM
Arid dataset. (A, D) The ground truth, (B, E) the NLBF reconstruction (SNR =
11.71), and (C, F) the CP reconstruction (SNR = 0.96).
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5-3-2 Field results

For the field dataset, we use the experience gained on the synthetically controlled SEAM Arid
dataset to guide our parameter selections. Optimal parameters are data-dependent as gather
geometry plays an important role. For example, critical considerations include a sufficient
overlap between neighboring parameter trace operators and sufficient aperture size to cover
gaps in the data. Appendix B presents the effects of parameters on reconstruction quality in
greater detail. Therefore, for the field dataset we selected the following parameters: a time
window of 12∆ts (∆ts = 4 ms), an operator aperture of 600 m x 600 m, and a parameter
trace interval of 60 m. The NLBF reconstruction results are compared to those from the
CP and BP control methods as there exists no ground truth for this field dataset. Figures
5-12, 5-13, and 5-14 respectively illustrate a time section at t = 1.92 s, an inline section at
y = 3000 m, and a crossline section at x = 2190 m. Additional result sections are available
in the Appendix A-2.

Figure 5-12: Field data reconstruction results of a time section at t = 1.92 s. (A) The sparse
section, (B) the NLBF reconstruction, (C) the BP reconstruction, and (D) the CP
reconstruction. Red circles indicate wavefield differences; red boxes highlight some
differences in reconstruction in the gaps.
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The NLBF and the BP reconstructed results of the three separate sections (Figures 5-12, 5-13
and 5-14) resemble the expected geometry. The CP method shows very poor reconstruction
results for all three sections as there are no distinguishable seismic data features. Figure 5-12
illustrates the field data reconstruction results for a time section at t = 1.92 s. Comparing the
NLBF and BP results in detail, we first observe that the NLBF wavefields have a smoother
change than those from the BP method. By this, we mean that the transition of the wavefield
from positive to negative amplitude is more progressive for the NLBF reconstruction compared
to the BP reconstruction. Some of these areas are highlighted by red circles in Figure 5-12.
These observations are also confirmed in the x− t sections (Figures 5-13 and 5-14), where the
NLBF reconstructed curved seismic reflections are more continuous than the BP reconstructed
ones, without compromising our ability to distinguish them.

Figure 5-13: Field data reconstruction results of a missing inline section at y = 3000 m. (A)
The missing section, (B) the NLBF reconstruction, (C) the BP reconstruction, and
(D) the CP reconstruction. Red circles indicate some reconstruction differences.

August 5, 2022



50 Results

Additionally, a closer look at the reconstructed wavefield in the data gaps shows very different
results for NLBF and BP, which are highlighted by the red boxes in Figures 5-12 and 5-
14. For example, in the gaps of the BP time section around y = 6750 m (Figure 5-12C),
we notice that data appears blocky and elongated in the crossline direction. In the NLBF
reconstruction (Figure 5-12B) the wavefield is more continuous with its bordering data. We
can also observe finer details in the wavefield variations, which are highlighted by the red
circles in Figure 5-12. In the crossline section gaps, the BP reconstructed reflections are
horizontal and appear strongly artificial, which further deteriorates the reflection quality.
Since such gaps are common in all field data acquisitions, we believe that the NLBF method
presents advantages to reconstruct field seismic data.

Figure 5-14: Field data reconstruction results of a crossline section at x = 2190 m. (A) The
sparse section, (B) the NLBF reconstruction, (C) the BP reconstruction, and (D)
the CP reconstruction. Red circles indicate some wavefield differences; red boxes
highlight some differences in reconstruction in the gaps.
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Finally, based on our experience from the synthetic SEAM Arid data to the field data, we
expect the NLBF reconstruction to suppress the scattering noise. The reduced amount of
overall scattering noise of the NLBF reconstruction compared to the BP reconstruction is
indeed visible in Figures 5-12, 5-13 and 5-14. In comparison, the BP results present a grainier
texture, which deteriorates reflection quality. Nevertheless, the BP reconstruction results are
still impressive considering its algorithmic simplicity compared to the NLBF reconstruction
method. Overall, for the cited reasons, on the datasets used, and with the selected parameters,
our efforts to apply the NLBF framework for seismic data reconstruction are seen as a success.
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Chapter 6

Discussion and conclusions

6-1 Discussion

Throughout this thesis, we have presented a novel seismic data reconstruction method us-
ing the NLBF framework. Results have shown high-quality reconstructions for both a 2/3
crossline sparse synthetic SEAM Arid dataset, and for a 3/4 sparse field dataset. However,
in the limited scope of this thesis, only a small number of tests and conclusions could be
accomplished, leaving many open questions and future research opportunities.

Technical and economic constraints of seismic data acquisition lead to sparse data acquisition
geometries as discussed in Chapter 1. This sparsity is the driving force behind the development
of seismic signal enhancement and reconstruction. In this thesis, we have successfully used
the NLBF method to reconstruct single gathers up to 3/4 sparsity. Field data are typically
composed of many gathers with levels of sparsity reaching up to 5/6 sparsity. Our NLBF
algorithm is easily scalable to higher levels of data sparsity. We expect that higher levels of
data sparsity would also yield impressive reconstruction results using our NLBF reconstruction
method, at the expense of computational time. Using the NLBF reconstruction method on
datasets with higher degrees of sparsity has yet to be tested and demonstrated.

In addition, the importance of the parameter selection for NLBF reconstruction has been
reiterated several times. The bottom-line conclusion from our tests indicates that these pa-
rameters are data dependent, as the NLBF method depends on the input data geometry,
the gaps in data coverage, the sparsity, and the factors highlighted in Appendix B. In this
thesis, we manually selected these parameters for each dataset. Future developments on the
NLBF reconstruction method could propose a self-adaptive algorithm that would automati-
cally select a good set of parameters for each dataset. In addition, a better understanding of
the local wavefield conditions in input datasets could lead to self-adaptive parameters within
the same NLBF reconstruction. Parameters would be chosen to optimally reconstruct the
wavefield at the localized level. Another interesting observation regarding the influence of
parameters on the reconstruction quality is the potential NLBF operator parameter bias. In
the scope of this thesis, the NLBF operators used for the reconstruction were pre-calculated

August 5, 2022



54 Discussion and conclusions

using an Aop of 600 m x 600 m and a time window size of 7∆ts. Results from our parameter
tests indicated good SNR values for reconstructed gathers using these parameters as well.
To test this hypothesis, further NLBF reconstruction experiments should be performed us-
ing different parameters to build the NLBF operators. In particular, we conjecture that a
smaller aperture size (200− 300 m) and denser parameter traces should yield higher quality
reconstruction results if such parameters can fully cover gaps in the input dataset, but this
has yet to be verified.

As a side product of this thesis, the BP methodology has also shown its potential to reconstruct
regularly sparse seismic data. Preliminary tests, outside the scope of this thesis, have also
revealed that some regularly sparse BP reconstructed images present higher SNR values than
linear-bilinear reconstructed images. Such results were typically obtained using 20% or less
randomly decimated pixels for each BP iteration (Chapter 4). We suggest that applying the
BP methodology to the NLBF reconstructed time sections might improve the reconstruction
quality, and could potentially provide a solution to the amplitude mismatch between the
ground truth and NLBF reconstructed traces. Furthermore, BP reconstruction could also be
applied to sparse wavefronts during the NLBF reconstruction, instead of the current linear-
bilinear interpolation. This modification has the potential to yield even higher quality results,
at the expense of computational efficiency. In the limited time scope of this thesis, we did
not have the time to test this proposition, which offers another direction for further research.

To conclude this discussion, the NLBF method has shown promising results for sparse seismic
data reconstruction and has left us with some interesting open questions for further research.
We believe that it also has the potential to be applied to other types of data, even in different
industries beyond the scope of geophysics.

6-2 Conclusions

Throughout this thesis, we presented the theory and methodology of NLBF reconstruction.
Our research objective consisted of using the existing NLBF framework to reconstruct sparse
seismic data along wavefronts. Additionally, we aimed to find the best NLBF control pa-
rameters to optimize reconstruction and assess the overall reconstruction quality compared
to other control methods. We tested our method on a synthetic SEAM Arid dataset and
a field dataset, and attempted to answer the following research question: can the NLBF
framework be used for seismic data reconstruction, and how do these results compare to some
conventional reconstruction methods? Our conclusions are the following:

• Results from the NLBF reconstruction show a successful reconstruction of the sparse
synthetic and the field datasets. For the synthetic SEAM Arid data, the availability
of the ground truth allowed us to confirm the NLBF reconstruction quality by direct
comparisons with the target gather. The SNR and spectral analysis showed excellent
preservation of the seismic signals, good continuity of reflections, and suppression of
scattering noise. The field data also showed impressive reconstruction results, despite
the superior complexity of the data. Similarly, the reconstructed gather exhibited an
excellent wavefield continuity. Therefore, we successfully reconstructed sparse seismic
data using the NLBF framework.
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• Parameter tests performed on both datasets examined the effects of varying time window
sizes, operator aperture sizes, and parameter trace interval distances on the reconstruc-
tion quality. Using the SNR from the SEAM Arid dataset and studying parameter
interdependence, we found that control parameters are “dataset specific” because they
ultimately depend on the gather’s acquisition geometry. For our two datasets, the pa-
rameters that yielded the best NLBF reconstruction results are: a time window of 12∆ts,
an operator aperture of 600 m x 600 m, and a parameter trace interval of ∆x = ∆y = 60
m.

• Comparison of the NLBF reconstructed gathers to the ground truth, and the recon-
structed results from the CP and BP methods confirmed the effectiveness and quality
of the NLBF reconstruction method. Both the synthetic SEAM Arid and field datasets
showed excellent reconstruction results. For the SEAM Arid data, the NLBF recon-
struction method showed high trace fidelity to the ground truth. Subsequent tests on
the field data confirmed the high-quality reconstruction of the NLBF reconstruction
method. Furthermore, the control tests also demonstrated the superiority of the NLBF
reconstruction which showed enhanced wavefield continuity, better-reconstructed gaps,
and wavefield amplitude variations closer to those of physical propagating waves.

• Overall, the use of the NLBF framework for seismic data reconstruction is a novel
method. The scope of our research was adapted to the limited time available for the
IDEA League Applied Geophysics Master’s thesis. Although promising, more research is
necessary to better understand the NLBF reconstruction method. We have already iden-
tified some interesting questions with the potential to further enhance reconstruction
quality. Our research has shown the potential for the NLBF seismic data reconstruction
method to be applied in industry settings, and beyond.
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Appendix A

Additional NLBF results

In this Appendix, we present some additional NLBF reconstruction results from the synthetic
SEAM Arid and field datasets to complement the ones presented in the main body of the
thesis. For both datasets, we present a different inline, crossline and time section from those
in Chapter 5. Appendix A-1 shows additional synthetic SEAM Arid results. We compare
the NLBF reconstruction to the sparse section and the ground truth. Visual examination
and SNR values highlight the quality of the NLBF reconstruction. Appendix A-2 shows
additional field result sections. We compare the NLBF reconstruction to the BP and CP
control methods. The respective conclusions reached for both datasets in Chapter 5 are also
valid for the results presented in Appendix A.
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A-1 SEAM Arid dataset

Figure A-1: NLBF reconstruction results for a time section at t = 1.41 s of the synthetic SEAM
Arid gather. (A) The ground truth, (B) the 2/3 sparse section (SNR = 1.76), (C)
the NLBF reconstructed section (SNR = 16.12), and (D) the difference between
(A) and (C).
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Figure A-2: NLBF reconstruction results for an inline section at y = 6250 m of the synthetic
SEAM Arid gather. (A) The ground truth, (B) the missing sparse section (SNR
= 0.0), (C) the NLBF reconstructed section (SNR = 4.95), and (D) the difference
between (A) and (C).
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Figure A-3: NLBF reconstruction results for a crossline section at x = 3750 m of the synthetic
SEAM Arid gather. (A) The ground truth, (B) the 2/3 sparse crossline section
(SNR = 1.75), (C) the NLBF reconstructed section (SNR = 9.02), and (D) the
difference between (A) and (C).
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A-2 Field dataset

Figure A-4: Field data reconstruction results of a time section at t = 3.8640 s. (A) The sparse
section, (B) the NLBF reconstructed section, (C) the BP reconstructed section, and
(D) the CP reconstructed section.
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Figure A-5: Field data reconstruction results of an inline section at y = 1200 m. (A) The missing
section, (B) the NLBF reconstructed section, (C) the BP reconstructed section, and
(D) the CP reconstructed section.
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Figure A-6: Field data reconstruction results of a crossline section at x = 9300 m. (A) The
missing section, (B) the NLBF reconstructed section, (C) the BP reconstructed
section, and (D) the CP reconstructed section.
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Appendix B

Control parameters for NLBF
reconstruction

In this Appendix, we present and discuss in detail the effects and interplay among the NLBF
control parameters, and we take a closer look at the results of the parameter tests presented
in Table 5-1. The variable parameters of interest are the parameter trace spatial interval,
the time window size, and the operator aperture. The detailed NLBF reconstruction theory
is available in Chapter 4. Overall, our main and most important finding is that parameter
selection is data-dependent, and it should be carefully tailored to each dataset in order to
maximize reconstruction quality. In fact, spatial trace distribution (∆x and ∆y), trace time
discretization (∆ts), degree of sparsity, gaps in the data, and parameters used to estimate the
NLBF operators should all be taken into account. In the next section, we present how these
parameters affect each other, and then we will discuss the results of our parameter tests.

B-1 Parameter selection considerations

The choice of the suitable parameters and combination of parameters are crucial, as some
might negatively affect the reconstruction. First, the operator aperture must be carefully
selected to fit the reconstructed dataset. In particular, our tests have shown that the operator
aperture size must account for gaps in the dataset, and be large enough to cover the gaps
from both sides. If this fails to happen, the interpolation along the sparse wavefronts during
the NLBF reconstruction (Figure 4-7) will not be able to reconstruct target traces within the
gap. The resulting reconstruction will show sharp boundaries at these locations and therefore
will not achieve the maximum interpolation potential. Figure B-1 illustrates the operator
setup for these two scenarios with parameter trace interval ∆x = ∆y = 120 m and time
window size 9∆ts. Figure B-1A shows the setup for an operator aperture of 300 m x 300 m
and the resulting reconstruction; Figure B-1B shows the setup for an operator aperture of
600 m x 600 m and the resulting reconstruction. It is clear that the reconstruction quality of
the smaller aperture shows sharp discontinuities; these are highlighted by the red boxes.
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Figure B-1: Schematic illustration of the effects of the operator aperture size on gathers con-
taining gaps, and associated NLBF reconstruction on the field dataset. The inset
indicates the position of the close-up geometry. (A) An operator aperture of size
300 m x 300 m doesn’t cover the gap. (B) An operator aperture size of 600 m x
600 m that covers the gap. A single aperture is shown for clarity and reconstruction
differences are highlighted by the red boxes.

Another important criterion to consider is the interplay between the parameter trace inter-
val and the operator aperture size. Specifically, the resulting “aperture crossover” between
neighboring parameter traces is necessary for a complete reconstruction. Figure B-2 illustrates
two scenarios, with and without crossover. Figure B-2A shows a parameter trace interval of
∆x = ∆y = 180 m and an operator aperture of 200 m x 200 m, resulting in no crossover.
The associated data example shows the use of these parameters on the SEAM Arid dataset
and the resulting gaps highlighted in the red boxes. Figure B-2B schematically shows the
parameter trace interval of ∆x = ∆y = 120 m and an operator aperture of 400 m x 400 m,
resulting in an overlap between each adjacent operator. The associated data example shows
the absence of gaps in the reconstruction. Crossover is necessary in order to obtain a seamless
transition between the reconstructed parameter trace sections. In the next section, we discuss
the recommended amount of crossover based on our results.

The next observation found to affect the NLBF reconstruction results is the interplay between
the time window size and the operator aperture. The curved nature of the NLBF operators
causes them to temporally drift from their originating parameter trace time samples as il-
lustrated in Figure B-3. This deviation is more pronounced at larger offsets, therefore it is
common for large operator apertures. The issue encountered when operators deviate signifi-
cantly is that certain target trace time samples might no longer be covered by these operators
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Figure B-2: Schematic illustration of the interplay between operator aperture size and parameter
trace interval on the synthetic SEAM Arid dataset. The inset indicates the position
of the close-up geometry. (A) A 200 m x 200 m aperture with 180 m parameter
trace spacing results in no “crossover” and gaps in the reconstruction. (B) A 400
m x 400 m aperture with 120 m parameter trace spacing results in overlaps, and
therefore no gaps exist in the reconstruction. Only a few apertures are drawn for
clarity. Some reconstruction differences are highlighted by the red boxes.

in the far field, as illustrated in Figure B-3. Therefore, for larger operator aperture sizes, we
need larger time windows in order to reconstruct all target trace time samples. However, a
time window that is too large can also affect the reconstruction quantity. In the next section,
we discuss the recommended time window and operator aperture dimensions for the SEAM
Arid dataset and discuss the results of our parameter tests.

B-2 Parameter tests results

Based on our tests and the limited time scope of this thesis we cannot draw any definite
conclusive rules of thumb regarding dataset-dependent parameter selection. But based on the
reconstruction results obtained from the tested SEAM Arid gather and the associated SNR
results, we are able to give some recommendations.

Figure B-4 displays the SNR results from the grid search style parameter tests on the synthetic
SEAM Arid dataset. The parameters tested were: time window ∈ [7∆ts, 12∆ts, 15∆ts,
18∆ts], Aop ∈ [200 m x 200 m, 300 m x 300 m, 400 m x 400 m, 600 m x 600 m], and
parameter trace interval ∆x = ∆y ∈ [60m, 120m, 180m]. The SNR information is divided in
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Figure B-3: Schematic illustration of the interplay between operator aperture size and the time
window size on a synthetic SEAM Arid crossline slice. At larger offsets from the
originating parameter trace, the curved operators are more likely to miss target time
samples. These missed samples are highlighted in yellow.

the following way: red dashed lines delimit separate time window sizes in increasing order;
within each time section, four colored subdivisions indicate different aperture sizes according
to the legend; and within these aperture sizes, different shaped markers indicate the parameter
trace intervals. Studying this plot reveals some interesting repeating patterns.

First, we note that for all time window sizes, the SNR of the 200 m x 200 m operator
aperture and 180 m parameter trace interval is missing. This is caused by an insufficient
aperture crossover distance, leading to gaps in the reconstruction (Figure B-2). We now turn
our attention to individual parameters.

• Operator aperture

Figure B-4 shows that within the different time window sizes, the 600 m x 600 m Aop results
often show higher SNR values. In fact, the SNR seems to consistently increase with increasing
operator aperture size. This is true for a time window size of 12∆ts, 15∆ts, and 18∆ts; but
not for 7∆ts. In this last case, we suspect the time window size to be too small for the
large 600 m x 600 m aperture, as explained and illustrated in Figure B-3. Therefore, for
the synthetic SEAM Arid dataset, an Aop of 600 m x 600 m seems to yield the best NLBF
reconstruction results.

While we cannot draw any definite conclusions regarding the reasons behind this, we suspect
that the parameters used to create the NLBF operators [Sun et al., 2022] influence the optimal
aperture size for the NLBF reconstruction. In fact, an aperture of 600 m x 600 m was originally
used to estimate the NLBF operators from the data, and we believe the NLBF reconstruction
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Figure B-4: SNR values from the synthetic SEAM Arid gather NLBF reconstruction parameter
tests according to table 5-1.

could be intrinsically influenced by this operator estimation bias. Therefore, we recommend
matching the Aop for the NLBF reconstruction to the aperture used to estimate the NLBF
operators. Additional research regarding the influence of the NLBF operator aperture should
be done to draw any further conclusions.

Figure B-5 compares the results from different Aop sizes for a time section at t = 0.9 s and an
inline section at y = 6250 m, using a time window of 15∆ts and a parameter trace interval of
120 m. Some differences in the reconstructed seismic gathers are highlighted in red.

• Time window

Figure B-4 highlights some interesting patterns regarding the influence of the time window
size on the SNR value. The SNR values of gathers reconstructed using 7∆ts are consistently
smaller than the SNR values of larger time windows using the same Aop and parameter trace
intervals. Again, as explained in Figure B-3, we theorize that the time window is too small
compared to the 600 m x 600 m Aop used for the NLBF operator estimation. Larger time
windows are able to cover more target trace time samples and therefore present higher SNR
values.

Interestingly, the SNR values for the other time window sizes are fairly equivalent across all
Aop and all parameter trace intervals. Overall, a time window size of 12∆ts showed very
slight improvements in SNR compared to 15∆ts and 18∆ts. Figure B-6 compares the results
from different time window sizes for a time section at t = 1.41 s and an inline sections
at y = 3587.5 m, using an Aop = 200 m x 200 m, and a parameter trace interval of 120 m.
Differences in the reconstructed seismic gathers are highlighted in the red ovals. These results
show improvements for larger time window sizes. However, visible improvements between
the 12∆ts, 15∆ts, and 18∆ts windows are hard to see, although there are slight variations.
Overall, for the SEAM Arid dataset, we recommend a time window size of 12∆ts.
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• Parameter trace interval

Figure B-4 shows that across all time window sizes and Aop sizes, the parameter trace interval
related SNR results follow the same pattern. In fact, we see that the SNR decreases for
increasing parameter trace interval, and the best SNR is always reached at ∆x = ∆y = 60 m.
Figure B-7 compares the results from different parameter trace interval distances for a time
section at t = 1.5 s and an inline section at y = 3587.5 m, using a time window size of 7∆ts,
and an Aop = 300 m x 300 m. Some differences in reconstruction quality between the gathers
are highlighted by the red ovals. Interestingly, Figure B-4 shows that for Aop = 600 m x 600
m, the variation in SNR values for different parameter trace intervals is even smaller.

For the SEAM Arid dataset reconstruction results, we have chosen ∆x = ∆y = 60 m, as the
results presented the highest SNR value. However, the resulting slight improvement in SNR
also leads to increased computational time because of the increased amount of parameter
traces. Therefore there is a tradeoff between reconstruction quality and computational time.
In the context of this thesis, we use 60 m as it yields the highest SNR, but in other industry
settings, a faster computational time might be more valuable than a slight increase in SNR.
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Figure B-5: Results from the operator aperture parameter tests for Aop = 200 m x 200 m, 300 m x 300 m, 400 m x 400 m, 600 m x 600
m, using a time window of 15∆ts and a parameter trace interval of 120 m. (A-D) A time section at t = 0.9 s. (E-H) An inline
section at y = 6250 m
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Figure B-6: Results from the time window parameter tests for 7∆ts, 12∆ts, 15∆ts, 18∆ts, using an Aop = 200 m x 200 m and a parameter
trace interval of 120 m. (A-D) A time section at t = 1.41 s. (E-H) An inline section at y = 3587.5 m
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Figure B-7: Results from the parameter trace interval parameter tests for ∆x = ∆y = 60, 120, 180 m, using an Aop = 300 m x 300 m and a
7∆ts window. (A-D) A time section at t = 1.5 s. (E-H) An inline section at y = 3587.5 m
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