

Delft University of Technology

Classifying code comments in Java software systems

Pascarella, Luca; Bruntink, Magiel; Bacchelli, Alberto

DOI
10.1007/s10664-019-09694-w
Publication date
2019
Document Version
Final published version
Published in
Empirical Software Engineering

Citation (APA)
Pascarella, L., Bruntink, M., & Bacchelli, A. (2019). Classifying code comments in Java software systems.
Empirical Software Engineering, 24(3), 1499-1537. https://doi.org/10.1007/s10664-019-09694-w

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10664-019-09694-w
https://doi.org/10.1007/s10664-019-09694-w

Empirical Software Engineering
https://doi.org/10.1007/s10664-019-09694-w

Classifying code comments in Java software systems

Luca Pascarella1 ·Magiel Bruntink2 ·Alberto Bacchelli3

© The Author(s) 2019

Abstract
Code comments are a key software component containing information about the underlying
implementation. Several studies have shown that code comments enhance the readability
of the code. Nevertheless, not all the comments have the same goal and target audience.
In this paper, we investigate how 14 diverse Java open and closed source software projects
use code comments, with the aim of understanding their purpose. Through our analysis,
we produce a taxonomy of source code comments; subsequently, we investigate how often
each category occur by manually classifying more than 40,000 lines of code comments
from the aforementioned projects. In addition, we investigate how to automatically classify
code comments at line level into our taxonomy using machine learning; initial results are
promising and suggest that an accurate classification is within reach, even when training the
machine learner on projects different than the target one. Data and Materials [https://doi.
org/10.5281/zenodo.2628361].

Keywords Code comments usage · Code comment classification · Dataset

1 Introduction

While writing and reading source code, software engineers routinely introduce code com-
ments (Fluri et al. 2007). Several researchers investigated the usefulness of these comments,
showing that thoroughly commented code is more readable and maintainable. For example,
Woodfield et al. conducted one of the first experiments demonstrating that code comments
improve program readability (Woodfield et al. 1981), then Tenny et al. confirmed these

Communicated by: Abram Hindle and Lin Tan

� Luca Pascarella
l.pascarella@tudelft.nl

Magiel Bruntink
m.bruntink@sig.eu

Alberto Bacchelli
bacchelli@ifi.uzh.ch

1 Delft University of Technology, Delft, The Netherlands
2 Software Improvement Group, Amsterdam, The Netherlands
3 University of Zurich, Zurich, Switzerland

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09694-w&domain=pdf
http://orcid.org/0000-0003-0193-6823
https://doi.org/10.5281/zenodo.2628361
https://doi.org/10.5281/zenodo.2628361
mailto: l.pascarella@tudelft.nl
mailto: m.bruntink@sig.eu
mailto: bacchelli@ifi.uzh.ch

Empirical Software Engineering

results with more experiments (Tenny 1985, 1988). Hartzman et al. investigated the eco-
nomical maintenance of large software products showing that comments are crucial for
maintenance (Hartzman and Austin 1993).

Jiang et al. found that comments that are not aligned with the annotated functions confuse
authors of future code changes (Jiang and Hassan 2006).

Overall, given these results, having abundant comments in the source code is a recog-
nized good practice (de Souza et al. 2005). Accordingly, researchers proposed to evaluate
code quality with a metric based on code/comment ratio (Oman and Hagemeister 1992;
Garcia and Granja-Alvarez 1996).

Nevertheless, not all the comments are the same. This is evident, for example, by
glancing through the comments in a source code file1

from the Java Apache Hadoop Framework 2017. In fact, we see that some comments
target end-user programmers (e.g., Javadoc), while others target internal developers (e.g.,
inline comments); moreover, each comment is used for a different purpose, such as provid-
ing the implementation rationale, separating logical blocks, and adding reminders; finally,
the interpretation of a comment also depends on its position with respect to the source code.
Defining a taxonomy of the source code comments is still an open research problem.

Haouari et al. (2011) and Steidl et al. (2013b) presented the earliest and most signifi-
cant results in comments’ classification. Haouari et al. investigated developers’ commenting
habits, focusing on the position of comments with respect to source code and proposing an
initial taxonomy that includes four high-level categories (Haouari et al. 2011); Steidl et al.
proposed a semi-automated approach for the quantitative and qualitative evaluation of com-
ment quality, based on classifying comments in seven high-level categories (Steidl et al.
2013b). In spite of the innovative techniques they proposed to understand developers’ com-
menting habits and to assess comments’ quality, the classification of comments was not in
their primary focus.

In the work presented in this article, we focus on increasing our empirical understanding
of the types of comments that developers write in source code files. This is a key step to
guide future research on the topic. Moreover, this increased understanding has the potential
to (1) improve current quality analysis approaches that are restricted to the comment ratio
metric only (Oman and Hagemeister 1992; Garcia and Granja-Alvarez 1996) and to (2)
strengthen the reliability of mining approaches that use comments as input (e.g., Tan et al.
2007; Padioleau et al. 2009).

To this aim, we conducted an in-depth analysis of the comments in the Java source code
files of six major OSS systems and eight industrial projects. We set up our study as an
exploratory investigation. We started without hypotheses regarding the content of source
code comments, with the aim of discovering the comments’ purposes and roles, their format,
and their frequency. To this end, we (1) conducted three iterative content analysis sessions
(involving four researchers) over 50 source files including about 250 comment blocks to
define an initial taxonomy of code comments, (2) validated the taxonomy externally with 3
developers, (3) inspected 2,000 open source and 4,000 closed source code files and manu-
ally classified (using a new application we devised for this purpose) over 24,000 comment
blocks comprising more than 40,000 lines, (4) used the resulting dataset to evaluate how
effectively comments can be automatically classified, and (5) investigated how many com-
ments from an unseen project should be manually classified to improve the performance of
an automatic classification approach trained on other projects.

Our results show that developers write comments with a large variety of different mean-
ings and that this should be taken into account by analyses and techniques that rely on

1https://tinyurl.com/zqeqgpq

https://tinyurl.com/zqeqgpq

Empirical Software Engineering

code comments. The most prominent category of comments summarizes the purpose of the
code, confirming the importance of research related to automatically creating these type of
comments. Finally, our automated classification approach, based on supervised algorithms,
reaches promising initial results, even when training on software projects that are different
than the target project.

2 Motivating Example

Listing 1 shows an example Java source code file that contains both code and comments.
In a well-documented file, comments help the reader with a number of tasks, such as
understanding the code, knowing the choices and rationale of authors, and finding addi-
tional references. When developers perform software maintenance, the aforementioned
tasks become mandatory steps that practitioners should attend. The fluency in performing
maintenance tasks depends on the quality of both code and comments. When comments are
omitted, much depends on the ability of developers and the complexity of the code; when
well-written comments are present, the maintenance could be simplified.

2.1 Code/comment Ratio to Measure Software Maintainability

When developers want to estimate the maintainability of code, one of the simplest solutions
is to compute the code/comment ratio, as proposed by Garcia and Granja-Alvarez (1996).
By evaluating the aforementioned metric in the snippet in Listing 1, we find an overall
indicator of quality, which—however—is inaccurate. The inaccuracy arises from the fact

Listing 1 Example of Java file

Empirical Software Engineering

that this metric considers only one kind of comment. More precisely, Garcia et al. focus
only on the presence or absence of comments, omitting the possibility of use comments with
different benefits for different end-users. The previous sample of code represents a case
where the author used comments for different purposes. The comment on line 31 represents
a note that developers use to remember an activity, an improvement, or a fix. On line 20
the author marks his contribution on the file. Both these two comments represent real cases
where the presence of comments increases the code/comment ratio without any real effect
on code readability or maintanability. This situation hinders the validity of this kind of
metric and indicates the need for a more accurate approach to tackle the problem.

2.2 An Existing Taxonomy of Source Code Comments

A great source of inspiration for our work comes from Steidl et al. who presented a first
detailed approach for evaluating comment quality (Steidl et al. 2013b). One of the key
steps of their approach is to first automatically categorize the comments to differentiate
between different comment types. They define a preliminary taxonomy of comments that
comprises 7 high-level categories: COPYRIGHT, HEADER, MEMBER, INLINE, SECTION,
CODE, and TASK. They provide evidence that their quality model, based on this taxon-
omy, provides important insights on documentation quality and can reveal quality defects
in practice.

The study of Steidl et al. demonstrates the importance of treating comments in a way
that suits their different categories. However, the creation of the taxonomy was not the
focus of their work, as also witnessed by the few details given about the process that led
to its creation. In fact, we found a number of cases in which the categories did not provide
adequate information or did not differentiate the type of comments enough to obtain a clear
understanding. To detail this, we consider three examples from Listing 1:

Member category. Lines 5, 6, 7 and 8 correspond to the MEMBER category in the taxon-
omy by Steidl et al. In fact, MEMBER comments describe the features of a method or field
being located near to definition (Steidl et al. 2013b). Nevertheless, we see that the func-
tion of line 6 differs from that of line 7; the former summarizes the purpose of the method,
the latter gives notice about replacing the usage of the method with an alternative. By
classifying these two lines together, one would lose this important difference.

IDE directives. Lines 33 does not belong to any explicit category in the taxonomy by
Steidl et al. In this case, the target is not a developer, but the Integrated Development
Environment (IDE). Similarly, line 23 does not have a category in the taxonomy by Steidl
et al., but it is a possibly important external reference to read for more details.

Unknown. Line 36 represents a case of a comment that should be disregarded from any
further analysis. Since it does not separate parts, the SECTION would not apply and an
automated classification approach would try to wrongly assign it to one of the other
categories. The taxonomy by Steidl et al. does not consider unknown as a category.

With our work, we specifically focus on devising an empirically grounded, fine-grained
classification of comments that expands on the previous initial efforts by Steidl et al. Our
aim is to get a comprehensive view of the comments, by focusing on the purpose of the
comments written by developers. Besides improving our scientific understanding of this
type of artifacts, we expect this work to be also beneficial, for example, to the effectiveness
of the quality model proposed by Steidl et al. and other approaches relying on mining and
analyzing code comments (e.g., Oman and Hagemeister 1992; Tan et al. 2007; Padioleau
et al. 2009).

Empirical Software Engineering

3 Methodology

This section defines the overall goal of our study, motivates our research questions, and
outlines our research method.

3.1 Research Questions

The ultimate goal of this study is to understand and classify the primary purpose of code
comments written by software developers. In fact, past research showed evidence that
comments provide practitioners with a great assistance during maintenance and future
development, but not all the comments are the same or bring the same value.

We started by analyzing past literature searching for similar efforts on analysis of code
comments. We observed that a few studies completed a taxonomy of comments, in a
preliminary fashion. Indeed, most of past work focuses on the impact of comments on
software development processes such as code understanding, maintenance, or code review
and the classification of comments is only treated as a side outcome (e.g., Tenny 1985;
Tenny 1988).

Given the importance of comments in software development, the natural next step is to
apply the resulting taxonomy and investigate on the primary use of comments. Therefore,
we investigate whether some classes of comments are predominant and whether patterns
across different projects or domains (e.g., open source and industrial systems) exist. This
investigation is reflected in our second research question:

Subsequently, we investigate to what extent an automated approach can classify unseen
code comments according to the taxonomy defined in RQ1. An accurate automated classifi-
cation mechanism is the first essential step in using the taxonomy to mine information from
large-scale projects and to improve existing approaches that rely on code comments. This
leads to our third research question:

Finally, we expect that practitioners or researchers could benefit by applying our machine
learning algorithm to an unseen real project. For this reason, we investigate how much
the performance are improved by manually classifying an increasing number of comments
in a new project and providing this information to our machine learning algorithm. This
evaluation leads to our last research question:

Empirical Software Engineering

3.2 Selection of Subject Systems

To conduct our analysis, we focused on a single programming language (i.e., Java, one of
the most popular programming languages Diakopoulos and Cass 2016) and on projects that
are either developed in an open source setting or in an industrial one.

OSS context: Subject systems. We selected six heterogeneous software systems:
Apache Spark (Apache Spark 2016), Eclipse CDT, Google Guava, Apache Hadoop,
Google Guice, and Vaadin. They are all open source projects and the history of the
changes are controlled with GIT version control system. Table 1 details the selected sys-
tems. We select unrelated projects emerging from the context of different four software
ecosystems (i.e., Apache, Google, Eclipse, and Vaadin); the development environment,
the number of contributors, and the project size are different: Our aim is to increase the
diversity of comments that we find in our dataset.

Industrial context: Subject systems. We also include heterogeneous industrial software
projects, which are clients of the company in which the second author works. Table 2
reports the anonymized characteristics of such projects, respecting their non-disclosure
agreements.

3.3 RQ1. Categorizing Code Comments

To answer our first research question, we (1) defined the comment granularity we consider,
we (2) conducted three iterative content analysis sessions (Lidwell et al. 2010) involving
four software engineering researchers with at least three years of programming experience,
and we (3) validated our categories involving other three professional developers.

Comment granularity Java offers three alternative ways to comment source code: inline
comments, multi-line comments, and JavaDoc comments (which is a special case of multi-
line comments). A comment (especially multi-line ones) may contain difference pieces of
information with different purposes, hence belonging to different categories. Moreover,
a comment may be a natural language word or an arbitrary sequence of characters that,
for example, represent a delimiter or a directive for the preprocessor. For this reason, we
conducted our manual classification at character level. The user specifies the starting and
ending character of each comment block and its classification. For example, the user could
categorize two parts of a single inline comment into two different classes. By choosing a
fine-grained granularity at character level users are responsible for identifying comment’s
delimiters (i.e., the text is not automatically split into tokens). Even if this choice may com-
plicate the user’s work, this flexibility, chosen during the manual classification, allowed us
both to define the taxonomy precisely and to have a basis to decide the appropriate com-
ment granularity for the automatic classification, i.e., line granularity (see Section 3.5 –
‘Classification granularity’).

Definition phase This phase involved four researchers in software engineering (three Ph.D.
candidates and one faculty member). Two of these researchers are authors of this paper. In
the first iteration, we started choosing six appropriate OSS projects (reported in Table 1)
and sampling 35 files with a large variety of code comments. Subsequently, together we
analyzed all source code and comments. During this analysis we could define some obvi-
ous categories and left undecided some comments; this resulted in the first draft taxonomy
defining temporary category names. In the course of the second phase, we first conducted

Empirical Software Engineering

Ta
bl
e
1

D
et
ai
ls
of

th
e
se
le
ct
ed

op
en

so
ur
ce

sy
st
em

s

Pr
oj
ec
t

Ja
va

so
ur
ce

lin
es

C
om

m
its

C
on
tr
ib
ut
or
s

Sa
m
pl
e
se
ts

C
od
e

C
om

m
en
t

R
at
io

Fi
le
s

B
lo
ck
s
of

co
m
m
en
ts

R
at
io

A
pa
ch
e
Sp

ar
k

75
3k

28
7k

38
%

38
k

1,
35
1

61
46
5

7.
7%

E
cl
ip
se

C
D
T

1,
23
9k

46
6k

38
%

26
k

21
1

79
9

6,
00
9

7.
5%

G
oo
gl
e
G
ua
va

25
2k

88
k

35
%

4k
18
5

15
8

1,
10
0

6.
9%

A
pa
ch
e
H
ad
oo
p

1,
25
8k

39
6k

31
%

15
k

17
1

67
2

4,
22
8

6.
3%

G
oo
gl
e
G
ui
ce

9k
5k

56
%

2k
32

59
71
8

12
.1
%

V
aa
di
n

2,
64
3k

1,
10
1k

42
%

91
k

72
6

40
1

3,
34
0

8.
3%

O
ve
ra
ll

6M
2.
3M

38
%

17
6k

2.
7k

2k
16
k

8%

Empirical Software Engineering

Table 2 Details of the anonymize industrial systems

Project Java source lines Sample sets

Code Comments Ratio Files Blocks of comments Ratio

P1 478k 12k 2.5% 159 1,386 8.7%

P2 69k 0.1k 0.1% 236 102 0.4%

P3 2,044k 19k 1.0% 503 1,673 3.3%

P4 1,065k 5k 0.5% 761 1,223 1.6%

P5 1,026k 7k 0.6% 506 1,073 2.1%

P6 3,088k 5k 0.2% 503 273 0.5%

P7 1,173k 13k 1.1% 290 1,058 3.6%

P8 1,208k 4k 0.3% 1,042 1,179 1.1%

Overall 10M 65k 0.7% 4k 8k 2%

an individual work analyzing 10 new files, in order to check or suggest improvements to
the previous taxonomy, then we gathered together to discuss the findings. The second phase
resulted in a validation of some clusters in our draft and the redefinitions of others. The third
phase was conducted in team and we analyzed five files that were previously unseen. Dur-
ing this session, we completed the final draft of our taxonomy verifying that each kind of
comments we encountered was covered by our definitions and those overlapping categories
were absent.

Through this iterative process, we defined a hierarchical taxonomy with two layers. The
top layer consists of six categories and the inner layer consists of 16 subcategories.

Validation phase We validated the resulting taxonomy externally with three professional
developers who had three to five years of Java programming experience and were not
involved in the writing of this work. We conducted one session with each developer. At the
beginning of the session, the developer received a printed copy of the description of the
comment categories in our taxonomy (similar to the explanation we provide in Section 4.1)
and was allowed to read through it and ask questions to the researcher guiding the ses-
sion. Afterwards, each developer was required to login into COMMEAN (a web application,
described in Section 3.4) and classify—according to the provided taxonomy—each piece
of comment (i.e., by arbitrary specifying the sequence of adjacent characters that identify
words, lines, or blocks belonging to the same category) in three Java source code files (the
same files have been used for all the developers) that contained a total of 138 different lines
of comments. During the classification, the researcher was not in the experiment room, but
the printed taxonomy could be consulted. At the end of the session, the guiding researcher
came back to the experiment room and asked the participant to comment on the taxonomy
and the classification task. At the end of all the three sessions, we compared the differences
(if any) among the classifications that the developers produced.

All the participants found the categories to be clear and the task to be feasible; however,
they also reported the need for consulting the printed taxonomy several times during the ses-
sion to make sure that their choice was in line with the description of the category. Although
they observed that the categories were clear, the analysis of the three sets of answers showed
differences. We computed the inter-rater reliability by using Fleiss’ kappa value (Fleiss
1971) and found a corresponding k value above 0.9 (i.e., very good) for the three raters and
the 138 lines they classified. We individually analyzed each case of disagreement by asking

Empirical Software Engineering

the participants to re-evaluate their choices after better extrapolating the context. Following
this approach, the annotators converged on a common decision.

Exhaustiveness by cross-license validation As a side effect of investigating the second
industrial dataset (which covers different commercial licenses and market strategies) for
RQ2, we cross-validated the exhaustiveness of the categories and subcategories present in
our taxonomy in a different context.

In fact, we directly applied our definitions to the comments of 8 industrial projects pro-
ducing a manually classified set of 8,000 block of comments. During the labeling phase, we
adopted all definitions present in the proposed codebook and even though we found a signif-
icant different distribution of each category, we found that such definitions are sufficiently
exhaustive to cover all types of comment present also in the new set of projects.

This second validation provided additional corroborating evidence that the proposed tax-
onomy (initially generated involving 4 software engineering researchers, which iteratively
observed the content of a sample of 50 Java open source files) fits all the comments that we
encountered in both open and closed source projects, adequately.

3.4 A Dataset of Categorized Code Comments

To answer the second research question about the frequencies of each category, we needed
a statistically significant set of code comments classified accordingly to the taxonomy pro-
duced as an answer to RQ1. Since the classification had to be done manually, we relied on
random sampling to produce a statistically significant set of code comments. Combining the
sets of OSS and industrial project, we classified comments in a total of 6,000 Java files from
six open source projects and eight industrial projects. Our aim is to give a representative
overview of how developers use comments and how these comments are distributed.

To reach this number of files for which we manually annotate the comments, we adopted
two slightly different sampling strategies for OSS and industrial projects; we detail these
strategies in the following.

OSS Projects: Sampling files. To establish the size of statistically significant sample
sets for our manual classification, we used as a unit the number of files, rather than the
number of comments: This results in the creation of a sample set that gives an additional
overview of how comments are distributed in a system. We established the size (n) of
such set with the following formula (Triola 2006, pp. 328-331):

n = N · p̂q̂
(
zα/2

)2

(N − 1) E2 + p̂q̂
(
zα/2

)2

The size has been chosen to allow the simple random sampling without replacement. In
the formula, p̂ is a value between 0 and 1 that represents the proportion of files containing
a given category of code comment, while q̂ is the proportion of files not containing such
kind of comment (i.e., q̂ = 1 − p̂). Since the a-priori proportion of p̂ is not known, we
consider the worst case scenario where p̂ · q̂ = 0.25. In addition, considering we are
dealing with a small population (i.e., 557 Java files for Google Guice project) we use the
finite population correction factor to take into account their size (N). We sample to reach
a confidence level of 95% and error (E) of 5% (i.e., if a specific comment is present in
f% of the files in the sample set, we are 95% confident it will be in f% ± 5% files of
our population). The suggested value for the sample set is 1,925 files. In addition, since
we split the sample sets in two parts with an overlapped chunk for validation, we finally

Empirical Software Engineering

sampled 2,000 files. This value does not change significantly the error level that remains
close to 5%. This choice only validates the quality of our dataset as a representation of
the overall population: It is not related to the precision and recall values presented later,
which are actual values based on manually analyzed elements.

Industrial projects: Sampling files. As done in the OSS case we selected a statistically
significant sample of files belonging to industrial projects. We relied on simple random
sampling without replacement to select a sufficient amount of files representative of the
eight industrial projects that we considered in this study. According to the formula (Triola
2006) used for the sampling in the OSS context, we defined a sample of 2,000 Java files
with a confidence level of 95% and error of 5% (i.e., if a specific comment is present in
f% of the files in the sample set, we are 95% confident it will be in f% ± 5% files of
our population). Since we expected a similar workload for both domains we started with
the same number of files. However, during the inspection, we found out that we still had
resources to conduct a deep investigation, because we found a less number of comments
per file. Therefore, we decided to double the number of files to inspect manually. This
condition led to the creation of a sample set of 4,000 Java files for the industrial study.

Manual classification Once the sample of files with comments was selected, each of them
had to be manually classified according to our taxonomy. For the manual classification, we
rely on the human ability to understand and categorize written text expressed in natural lan-
guage, specifically, code comments. To support the users during this tedious works that may
be error-prone due to the repetitiveness of the task (especially for large datasets), we devel-
oped a web application named COMMEAN to conduct the classification. COMMEAN (i)
shows one file at a time, (ii) allows the user to save the current progress for further inspec-
tions, and (iii) highlights the classified instances with different colors and opacity. During
the inspection, the user can arbitrarily choose the selection granularity (e.g., s/he can select
a part of a line, an entire line, or a block composed of multiple lines) by selecting the start-
ing and ending characters. For the given selection, the user can assign a label corresponding
to one of the categories in our taxonomy.

The first and last authors of this paper manually inspected the sample set composed of
2,000 open source files and 4,000 industrial files. One author analyzed 100% of these files,
while another analyzed a random, overlapping subset comprising 10% of the files. These
overlapped files were used to verify their agreement, which, similarly to the external valida-
tion of the taxonomy with professional developers (Section 3.3), highlighted only negligible
differences. More precisely, every participant independently read and labeled his own set of
comments. If labels matched we accepted those cases as resolved, otherwise, we discussed
each unmatched case. During the discussion, we evaluated the reasons behind a certain deci-
sion. Then, we came to a conclusion of choosing a single label. In most cases, the opinions
differed due to the ambiguous nature of the comments. In these cases, we analyzed the con-
text and tried a second run. Finally, we resolved these comments by carefully analyzing
comments and the code context.

This large-scale categorization helped giving an indication of the exhaustiveness of the
taxonomy created in RQ1 with respect to the comments present in our sample: None of the
annotators felt that comments, or parts of the comments, should have been classified by cre-
ating a new category. Although promising, this finding is applicable only to our dataset and
its generalizability to other contexts should be assessed in future studies. The annotations
referring to open source projects as well as COMMEAN are publicly available (Pascarella
and Bacchelli 2017); the dataset constructed with industrial data cannot be made public due
to non-disclosure agreements.

Empirical Software Engineering

3.5 Automated Classification of Source Code Comments

In the third research question, we set to investigate to what extent and with which accu-
racy source code comments can be automatically categorized according to the taxonomy
resulting from the answer to RQ1 (Section 4.1).

Employing sophisticated classification techniques (e.g., based on deep learning
approaches Goodfellow et al. 2016) to accomplish this task goes beyond the scope of the
current work. Our aim is twofold: (1) Verifying whether it is feasible to create an automatic
classification approach that provides fair accuracy and (2) defining a reasonable baseline
against which future methods can be tested.

Classification granularity We set the automated classification to work at line level. In fact,
from our manual classification, we found several blocks of comments that had to be split
and classified into different categories (similarly to the block defined in the lines 5–8 in
Listing 1) and in the vast majority of the cases (96%), the split was at line level. In only
less than 4% of the cases, one line had to be classified into more than one category. In these
cases, we replicated the line in our dataset for each of the assigned categories, to get a lower
bound on the effectiveness in these cases.

Classification technique Having created a reasonably large dataset to answer RQ2 (it com-
prises more than 15,000 comment blocks totaling over 30,000 lines in OSS and up to
8,000 comment blocks that correspond to 10,000 lines in industrial systems), we employ
supervised machine learning (Friedman et al. 2001) to build the automated classification
approach. This kind of machine learning uses a pre-classified set of samples to infer the
classification function. In particular, we tested two different classes of supervised classi-
fiers: (1) probabilistic classifiers, such as naive Bayes or naive Bayes Multinominal, and
(2) decision tree algorithms, such as J48 and Random Forest.

These classes make different assumptions on the underlying data, as well as have
different advantages and drawbacks in terms of execution speed and overfitting.

Data balancing Chawla et al. study the effect of an approach to limit the problem of data
imbalance named Synthetic Minority Over-sampling Technique (SMOTE) (Chawla et al.
2002). Specifically, their method tries to over-sample the minority occurrences and under-
sample the majority classes to achieve better performance in a classification task. Data
imbalance, in fact, is a frequent issue in classification problems occurring when the num-
ber of instances that refer to frequent classes is higher than uncommon instances (in our
case DISCARDED, UNDER DEVELOPMENT, and STYLE & IDE classes). To ensure that our
results would not have been biased by confounding factors, such as data imbalance (Chawla
et al. 2002), we adopt the SMOTE package available in WEKA toolkit2 with the aim of bal-
ancing our training sets. In addition, we relied on the work of O’brien (2007) to mitigate the
issues that can derive from the multi-collinearity of independent variables. To this purpose,
we compared the results of different classification techniques. Specifically, in our study, we
address this problem by applying the RANDOM OVER-SAMPLING algorithm (Chawla 2009)
implemented as a supervised filter in the WEKA toolkit. The filter re-weights the instances
in the dataset to give them the same total weight for each class maintaining unchanged the
total sum of weights across all instances.

2https://www.cs.waikato.ac.nz/ml/weka/

https://www.cs.waikato.ac.nz/ml/weka/

Empirical Software Engineering

Classification evaluation To evaluate the effectiveness of our automated technique to clas-
sification code comments into our taxonomy, we use two well known Information Retrieval
(IR) metrics for the quality of results (Manning et al. 2008), namely precision and recall:

Precision = |T P |
|T P + FP |

Recall = |T P |
|T P + FN |

T P , FP , and FN are based on the following definitions:

– TRUE POSITIVES (T P): elements that are correctly retrieved by the approach under
analysis (i.e., comments categorized in accord to annotators)

– FALSE POSITIVES (FP): elements that are wrongly classified by the approach under
analysis (i.e., comments categorized in a different way by the oracle)

– FALSE NEGATIVES (FN): elements that are not retrieved by the approach under
analysis (i.e., comments present only in the oracle)

The union of T P and FN constitutes the set of correct classifications for a given category
(or overall) present in the benchmark, while the union of T P and FP constitutes the set
of comments as classified by the used approach. In other words, precision represents the
fraction of the comments that are correctly classified into a given category, while recall
represents the fraction of relevant comments in that category, where the relevant comments
definition includes both true positive and false negative.

Effort/performance estimation With the fourth research question, we aim at estimating
how many new code comments a researcher or developers should manually classify from
an unseen project, in order to obtain higher performance when using our classification algo-
rithm on such a project. Since the presence of classified comments from a project in the
training set positively influences the performance of the classification algorithm on other
comments from the same project, we want to measure how many instances are required in
the training set to reach the knee of a hypothetical effort/performance curve.

To this aim, we quantify the exact extent to which each new manually classified block
of comments contributes to produce better results, if any. We consider the project for
which we obtained the worst results in cross-project validation when answering RQ3; then,
we progressively add to the training set a fixed number of randomly selected comments
belonging to the subject project and for each iteration we measure the performance of the
model.

This evaluation starts from a cross-project setting (i.e., we train only on different projects
and test on an unseen one) and slowly gets to a within-project validation setting (i.e., we train
not only from different projects, but also from comments in the project that we are going to
test with on unseen comments). We investigate what is among the lowest reasonable amount
of comments that one should classify to get as close as possible to a full within-project
setting.

3.6 Threats to Validity

Taxonomy validity To ensure that the comments categories emerged from our content
analysis sessions were clear and accurate, and to evaluate whether our taxonomy pro-
vides an exhaustive and effective way to organize source code comments, we conducted

Empirical Software Engineering

a validation session that involved three experienced developers (see Section 3.3) exter-
nal to content analysis sessions. These software engineers held an individual session on
three unrelated Java source files. They found the categories to be clear and the task fea-
sible, and the analysis of the three sets of answers showed a few minor differences. We
counted the number of lines of comments classified with the same label by all partic-
ipants and the number of lines of comments that at least two experts were in conflict.
Finally, considering these two values we could calculate the percentage of comments
that were classified with the same label by all participants. We measured that only 8%
of the considered comments in the first run led to mismatches. Moreover, we individu-
ally analyzed each case by asking the participants to re-evaluate their choices after better
extrapolate the context. Following that approach, the annotators converged on a common
decision.

In addition, we reduce the impact of human errors during the creation of the dataset by
developing COMMEAN, a web application to assist the annotation process.

External validity One potential criticism of a scientific study conducted on a small sam-
ple of projects is that it could deliver little knowledge. In addition, the study highlights
the characteristics and distributions of 6 open source frameworks and 8 industrial projects
mainly focusing on developers practices rather than end-users patterns. Historical evidence
shows otherwise: Flyvbjerg gave many examples of individual cases contributing to dis-
coveries in physics, economics, and social science (Flyvbjerg 2006). To answer to our
research questions, we read and inspected more than 28,000 lines of comments belonging
to 2,000 open source Java files and 12,000 lines of comments belonging to 4,000 closed
source Java files (see Section 3.4) written by more than 3,000 contributors in a total of 14
different projects (in accord to Tables 1 and 2). We also chose projects belonging to differ-
ent ecosystems and with different ment environments, number of contributors, and size of
the project. To have an initial assessment of the generalizability of the approach we tested
our results simulating this circumstance using the cross-project validation and cross-license
validation (i.e., training on OSS systems and testing on industrial systems, and viceversa)
involving both open and closed source projects. Similarly, another threat concerning the
generalizability is that our taxonomy refers only to a single object-oriented programming
language i.e., Java. However, since many object-oriented languages descend to common
ancestor languages, many functionalities across object-oriented programming are similar
and it is reasonable to expect the same to happen for their corresponding comments. Fur-
ther research can be designed to investigate whether our results hold in other programming
paradigms.

After having conducted the entire manual classification and the experiment, we realized
that the exact location and the surrounding context of a code comment may be a valuable
source of information to extract the semantic of the comment. Unfortunately, our tool COM-
MEAN did not record this information, thus we could not investigate how the performance
of a machine learner would benefit from it. Future work should take this feature into account
when designing similar experiments.

Moreover, RandomForest can be prone to overfitting, thus provide results that are too
optimistic. To mitigate this threat, we use different training and testing mechanisms that
create conditions that should decrease this problem (e.g., within-project and cross-project).

Finally, a line of comment may have more than one meaning. We empirically found
that this was the case for 4% of the inspected lines. We discarded these lines, as we con-
sidered this effect marginal, but this is a limitation of both our taxonomy and automatic
classification mechanism.

Empirical Software Engineering

4 Results and Analysis

In this section, we present and analyze the results of our research questions aimed at
understanding what developers write in comments and with which frequency, as well as at
evaluating the results of an automated classification approach and how manually classified
comments from a project help improving the performance of a classifier trained on different
projects.

4.1 RQ1. How Can Code Comments be Categorized?

Our manual analysis led to the creation of a taxonomy of comments having a hierarchy with
two layers (Section 3.3). The top level categories gather comments with similar overall pur-
pose, the internal levels provide a fine-grained definition using explanatory names. Figure 1
outlines all categories. The top level categories are composed of 6 distinct groups and the
second level categories are composed of 16 definitions. We now describe each category with
the corresponding subcategories.

A. PURPOSE

The PURPOSE category contains the code comments used to describe the functionality of
linked source code either in a shorter way than the code itself or in a more exhaustive
manner. Moreover, these comments are often written in a natural language and are used to
describe the purpose or the behavior of the referenced source code. The keywords ’what’,
’how’ and ’why’ describe the actions that take place in the source code in SUMMARY,
EXPAND, and RATIONALE groups, respectively, which are the subcategories of PURPOSE:

A.1 SUMMARY: This type of comment contains a brief description of the behavior of the
referenced source code. More generically, this class of comments represents answers to
the question word ’what’. Intuitively, this category incorporates comments that represent
a sharp description of what the code does. Often, this kind of comments is used by devel-
opers to provide a summary that helps to understand the behavior of the code without
reading it.

A.2 EXPAND: As with the previous category, the main purpose of reading this type of
comment is to obtain a description of the associated code. In this case, the goal is to
provide more details on the code itself. The question word ’how’ can be used to easily
recognize the comments belonging to this category. Usually, these comments explain in
detail the purpose of short parts of the code, such as details about a variable declaration.

Fig. 1 Taxonomy of code comments

Empirical Software Engineering

A.3 RATIONALE: This type of comment is used to explain the rationale behind some
choices, patterns, or options. The comments that answer the question ’why’ belong to that
category (e.g., “Why does the code use that implementation?” or “Why did the developer
use this specific option?”).

B. NOTICE

The NOTICE category contains the comments related to the description of warning, alerts,
messages, or in general, functionalities that should be used with care. It covers the
description of deprecated artifacts, as well as, the adopted strategies to move to new imple-
mentations. Further, it includes the use case examples giving to developer additional advice
over parameters or options. Finally, it covers examples of use cases or warnings about
exceptions.

B.1 DEPRECATION: This type of comment contains explicit warnings used to inform the
users about deprecated interface artifacts. This subcategory contains comments related
to alternative methods or classes that should be used (e.g., ”do not use [this]”, ”is it safe
to use?” or ”refer to: [ref]”). It also includes the description of the future or scheduled
deprecation to inform the users of candidate changes. Sometimes, a tag comment such as
@version,@deprecated, or @since is used.

B.2 USAGE: This type of comment regards explicit suggestions to users that are planning
to use a functionality. It combines pure natural language text with examples, use cases,
snippets of code, etc. Often, the advice is preceded by a metadata mark e.g., @usage,
@param or@return

B.3 EXCEPTION: This category describes the reasons for the occurred exception. Some-
times it contains potential suggestions to prevent the unwanted behavior or actions to
do when that event arise. Some tags are used also in this case, such as @throws and
@exception.

C. UNDER DEVELOPMENT

The UNDER DEVELOPMENT category covers the topics related to ongoing and future devel-
opment. In addition, it envelopes temporary tips, notes, or suggestions that developers use
during development. Sometimes informal requests of improvement or bug correction may
also appear.

C.1 TODO: This type of comment regards explicit actions to be done or remarks both for
the owners of the file and for other developers. It contains explicit fix notes about bugs to
analyze and resolve, or already treated and fixed. Furthermore, it references to implicit
TODO actions that may be potential enhancements or fixes.

C.2 INCOMPLETE: This type comprises partial, pending or empty comment bodies. It
may be introduced intentionally or accidentally by developers and left in the incomplete
state for some reason. This type may be added automatically by the IDE and not filled in
by the developer e.g., empty ”@param” or ”@return” directives.

C.3 COMMENTED CODE: This category is composed of comments that contain source
code commented out by developers. It envelopes functional code in a comment to try
hidden features or some work in progress. Usually, this type of comment represents fea-
tures under test or temporarily removed. The effect of this kind of comments is directly
transposed to the program flow.

Empirical Software Engineering

D. STYLE & IDE

The STYLE & IDE category contains comments that are used to logically separate the code
or provide special services. These comments may be added automatically by the IDE or
used to communicate with it.

D.1 DIRECTIVE: This is an additional text used to communicate with the IDE. It is in
form of comments to be easily skipped by the compiler and it contains text of limited
meaning to human readers. These comments are often added automatically by the IDE
or used by developers to change the default behavior of the IDE or compiler.

D.2 FORMATTER: This type of comment represents a simple solution adopted by the
developers to separate the source code in logical sections. The occurrence of patterns or
the repetition of symbols is a good hint at the presence of a comment in the formatter
category.

E.METADATA

The METADATA category aims to classify comments that define meta information about the
code, such as authors, license, and external references. Usually, some specific tags (e.g.,
”@author”) are used to mark the developer name and its ownership. The license section
provides the legal information about the source code rights or the intellectual property.

E.1 LICENSE: Generally placed on top of the file, this types of comments describes the
end-user license agreement, the terms of use, the possibility to study, share and modify
the related resource. Commonly, it contains only a preliminary description and some
external references to the complete policy agreement.

E.2 OWNERSHIP: These comments describe the authors and the ownership with different
granularity. They may address methods, classes or files. In addition, this type of comment
includes credentials or external references about the developers. A special tag is often
used e.g., ”@author”.

E.3 POINTER: This types of comments contains references to linked resources. The
common tags are: ”@see”, ”@link” and ”@url”. Other times developers use custom
references such as ”FIX #2611” or ”BUG #82100” that are examples of traditional
external resources.

F. DISCARDED

This category groups the comments that do not fit into the categories previously defined;
they have two flavors:

F.1 AUTOMATICALLY GENERATED: This category defines auto-generated notes (e.g.,
”Auto-generated method stub”). In most case, the comment represents the skeleton with
a comment’s placeholder provided by the IDE and left untouched by the developers.

F.2 UNKNOWN: This category contains all remaining comments that are not covered by
the previous categories. In addition, it contains the comments whose meaning is hard to
understand due to their poor content (e.g., meaningless because out of context).

Empirical Software Engineering

4.2 RQ2. HowOften Does Each Category Occur in OSS and Industrial Projects?

The second research question investigates the occurrence of each category of comments in
the 6,000 source files that we manually classified from our six OSS systems and eight indus-
trial projects. We first describe the results separately, then we contrast how the comments
are distributed in the two settings.

OSS projects: Distribution of comments Figure 2 shows the distribution of the comments
across the categories in the considered OSS systems. The figure reports the cumulative value
for the top level categories (e.g., NOTICE) and the absolute value for the inner categories
(e.g., EXCEPTION). For each category, the top red bar indicates the number of blocks of
comments in the category, while the bottom blue bar indicates the number of non-blank lines
of comments in the category.

Comparing blocks and lines, we see that the longest type of comments is LICENSE, with
more than 11 lines on average per block. The EXPAND category follows with a similar
average length. The SUMMARY category has only an average length of 1.4 lines, which is
surprising, since it is used to describe the purpose of possibly very long methods, variables,
or blocks of code. The other categories show negligible differences between number of
blocks and lines.

We consider the quality metric code/comment ratio, which was proposed at line gran-
ularity (Oman and Hagemeister 1992; Garcia and Granja-Alvarez 1996), in the light of
our results. We see that 59% of lines of comments should not be considered (i.e., cate-
gories from C to F), as they do not reflect any aspect of the readability and maintainability
of the code they pertain to; this would significantly change the results. On the other
hand, if one considers blocks of comments, the result would be closer to the original
code/comment metric purpose. In this case, a simple solution would be to only filter out
the METADATA category, because the other categories seem to have a more negligible
impact.

Considering the distribution of the comments, we see that the SUMMARY subcategory
is the most prominent one. TThis is in line with the value of research efforts that attempt
to generate summaries for functions and methods automatically, by analyzing the source
code (Sridhara et al. 2010). In fact, these methods would alleviate developers from the
burden of writing a significant amount of the comments we found in source code files.
On the other hand, the SUMMARY accounts for only 24% of the overall lines of com-
ments, thus suggesting that they only give a partial picture on the variety and role of this
type of documentation. The second most prominent category is USAGE. Together with
the prominence of SUMMARY, this suggests that the comments in the systems we ana-
lyzed are targeting end-user developers more frequently than internal developers. This
is also confirmed by the low occurrence of the UNDER DEVELOPMENT category. Con-
cerning UNDER DEVELOPMENT, the low number of comments in this category may also
indicate that developers favor other channels to keep track of tasks to be done in the
code.

Finally, the variety of categories of comments and their distribution underlines once
more the importance of a classification effort before applying any analysis technique on the
content and value of code comments. The low number of discarded cases corroborates the
completeness of our taxonomy.

Empirical Software Engineering

A.1 Summary

A.2 Expand

A.3 Rationale

A Purpose

5,364
7,344

B.1 Deprecation

B.2 Usage

B.3 Exception

B Notice

C.1 TODO

C.2 Incomplete

C.3 Commented code

C Under dev.

D.1 Directive

D.2 Formatter

D Style & IDE

E.1 License

E.2 Ownership

E.3 Pointer

E Metadata

F.1 Auto-generated

F.2 Unknown

F Discarded

0 2k 4k 6k 8k

199
1,995

256
263

5,801
8,165

54
63

2,904
3,332

224
336

3,202
3,731

190
248

87
111

329
684

606
1,043

1,023
1,241

57
73

1,080
1,314

1,023 11,369

564
1,021

1,729
1,972

3,316 14,362

205
205

20
22

225
227

Blocks of comments OSS

Blocks of comments
Top Category OSS

Lines of comments OSS

Lines of comments
Top Category OSS

14k

0 2k 4k 6k 8k 14k

Fig. 2 Frequencies of comments per category in open source projects. Top, red bars show the occurrences
by blocks of comments and bottom, blue bars by lines

Empirical Software Engineering

Industrial projects: Distribution of comments Figure 3 shows the distribution of the com-
ments across the categories in the considered industrial systems. To differentiate from the
case of OSS systems, we use other colors: The top green bar indicates the number of
blocks of comments, while the bottom yellow bar indicates the number of non-blank lines
of comments.

Comparing number of blocks and number of lines, we see that most categories show
a negligible differences between the two granularities. The largest, yet unremarkable dif-
ference is in the PURPOSE category (this is expected since this category includes both the
SUMMARY and the EXPAND subcategories), in which we found 4,167 lines distributed over
3,436 blocks, with an average of 1.21 lines per block.

Considering the quality metric code/comment ratio in the industrial context, we see that
31% of the lines of comments should not be considered (i.e., categories from C to F). This
percentage is significantly lower than the case of OSS systems, whose distribution of com-
ment lines is skewed by the LICENSE category. Past research has shown that these types of
comments, which are especially structured, can be detected with high precision and recall
even in free form documents (Bacchelli et al. 2010).

The SUMMARY subcategory is the most prominent one, thus corroborating the impor-
tance of research investigating ways to automatically generate this kind of comments (e.g.,
Sridhara et al. 2010), also in the industrial setting. Matching the case of OSS systems, the
second most prominent subcategory is USAGE, immediately followed by INCOMPLETE.
This indicates that most comments target internal developers in the system, which is to be
expected in a close source setting.

Finally, also in the industrial setting, the taxonomy was extensive enough to allow us to
categorize all the source code comments without dropping any instance, even though we
created this taxonomy from comments in OSS projects.

OSS vs. Industrial: Comparison of the distributions Figure 4 shows a comparison of the
distribution of comments for the considered OSS systems and industrial projects, as a
proportion of the total number of lines/blocks of comments in each context. The large dif-
ference in the frequency of LICENSE lines is evident, while we see that the categories
PURPOSE, NOTICE, STYLE & IDE, and DISCARDED have substantially similar distribu-
tions. Another large difference regards the UNDER DEVELOPMENT category: The industrial
projects we analyzed use source code comments for commenting code and leave incom-
plete comments far more frequently than OSS systems. This could be an indication that, if
we exclude the LICENSE category, using code comments as an indicator for quality could
be more appropriate for OSS systems. In fact, INCOMPLETE and COMMENTED CODE sub-
categories could be an indication of bad practices and low readability and maintainability
of code, thus hindering the value of a comment/code metric. Investigating this hypothesis
is beyond the scope of our current work, but studies can be devised and conducted to verify
to which extent some types of comments indicate problems in the code, rather than a higher
quality.

Empirical Software Engineering

A.1 Summary

A.2 Expand

A.3 Rationale

A Purpose

3,250

3,594

B.1 Deprecation

B.2 Usage

B.3 Exception

B Notice

C.1 TODO

C.2 Incomplete

C.3 Commented code

C Under dev.

D.1 Directive

D.2 Formatter

D Style & IDE

E.1 License

E.2 Ownership

E.3 Pointer

E Metadata

F.1 Auto-generated

F.2 Uknown

F Discarded

0 650 1.3k 2k 2.7k

67
382

119
191 3,436

4,167

16
16

1,924
2,289

136
139

2,078
2,444

93
110

641
684

461
568

1,195
1,362

34
34

295
299

329
333

20
361

211
212

558
592

819
1,165

45
45

65
65

110
110

Blocks of comments IP

Blocks of comments
Top Category IP

Lines of comments IP

Lines of comments
Top Category IP

4k

0 650 1.3k 2k 2.7k 4k

Fig. 3 Frequencies of comments per category industrial projects. Top, green bars show the occurrences by
blocks of comments and bottom, yellow bars by lines

Empirical Software Engineering

A.1

A.2

A.3

A

33.9%

37.5%

B.1

B.2

B.3

B

C.1

C.2

C.3

C

D.1

D.2

D

E.1

E.2

E.3

E

F.1

F.2

F

0.7%
4.0%

1.2%
2.0%

35.9%

43.5%

0.2%
0.2%

20.1%

23.9%
1.4%
1.5%

21.7%
25.5%

1.0%
1.1%

6.7%
7.1%

4.8%
5.9%

12.5%
14.2%

0.4%
0.4%

3.1%
3.1%

3.4%
3.5%

0.2%
3.8%

2.2%
2.2%

6.1%
6.2%

8%
12%

0.5%
0.5%

0.7%
0.7%

1.1%
1.1%

Blocks of comments IP

Blocks of comments
Top Category IP

Lines of comments IP

Lines of comments
Top Category IP

0 7% 14% 21% 28% 50%

18.5%

25.5%
0.7%

6.9%

0.9%
2.0%

20.1%
28.3%

0.2%
0.2%

10.1%

11.5%
0.8%
1.2%

11.1%
12.9%

0.7%
0.9%

0.3%
0.4%

1.1%
2.4%

2.1%
3.6%

3.5%
4.3%

0.2%
0.3%

3.7%
4.6%

39.4% 3.5%

2.0%
3.5%

6.0%
6.8%

49.8% 11.5%

0.7%
0.7%

0.1%
0.1%

0.8%
0.8%

Blocks of comments OSS

Blocks of comments
Top Category OSS

Lines of comments OSS

Lines of comments
Top Category OSS

07%14%21%28%50%

0 7% 14% 21% 28% 50%07%14%21%28%50%

Fig. 4 Frequencies of comments per category. Top, red bars show the occurrences by blocks of comments
and bottom, blue bars by lines

Empirical Software Engineering

4.3 RQ3. How Effective is an Automated Approach, Based onMachine Learning,
in Classifying Code Comments in OSS and Industrial Projects?

To evaluate the effectiveness of machine learning in classifying code comments we
employed a supervised learning method. Supervised machine learning bases the decision
evaluating on a pre-defined set of features, training on a set of labeled instances. Since we
set to classify lines of code comments, we computed the features at line granularity.

Text preprocessing We preprocessed the comments by doing the following in this order:
(1) tokenizing the words on spaces and punctuation (except for words such as ‘@usage’ that
would remain compounded), (2) splitting identifiers based on camel-casing (e.g., ‘Model-
Tree’ became ‘Model Tree’), (3) lowercasing the resulting terms, (4) removing numbers and
rare symbols, and (5) creating one instance per line.

Feature creation Table 3 shows all the features that appear in the final model (these fea-
tures are a subset of all that we initially devised). Since the optimal set of features is not
known a priori, we started with some simple, traditional features and iteratively experi-
mented with others more sophisticated features, in order to improve precision and recall for
all the projects we analyzed.

A set of features commonly used in text recognition (Sebastiani 2002) consists in measur-
ing the occurrence of the words; in fact, words are the fundamental tokens of all languages

Table 3 Machine learning features for comments classification

Feature Type Description

words numeric counts the occurrence of each word in the bag of unique words

punctuation boolean used in combination of a regular expression to distinguish source code
from natural language e.g., object.method(par1, par2);

words count numeric measures the length of the comment, using the words as unit size

unique words count numeric measures the length of the comment, only unique words are counted

row position numeric detects the absolute position of the comment

adjacent rows numeric recognizes the nature of the adjacent rows e.g., comments or code

deprecation boolean true if a comment contains special tags like @deprecation

usage boolean true if a comment contains special tags such as @usage, @return or
@value

exception boolean true if a comment contains special tags such as @exception or @throws

TODO boolean true if a comment contains keywords such as todo or fix or a link to a
bug is detected

incomplete boolean true if a comment contains an empty body

commented code boolean true if a comment contains code snippets

directive boolean true if a comment contains special sequence of symbols used by IDE

formatter boolean true if a comment is composed of patterns of symbols or characters

xlicense boolean true if a comment contains words such as license, copyright, legal or
law

ownership boolean true if a comment contains tags such as @author or @owner

pointer boolean true if a comment contains a reference to an external linkable resource

automatic generated boolean true if a comment contains text automatically inserted by IDE e.g.,
Auto-generated method stub

Empirical Software Engineering

we want to classify. To avoid overfitting to words too specific to a project, such as code
identifiers, we considered only words above a certain threshold t . We found this value exper-
imentally starting with a minimum of 3 and increasing up to 10, in one-unit steps. Since the
values above 7 do not change the precision and recall quality, we chose that threshold.

In addition, other features consider the information about the context of the line, such as
the text length, the comment position in the whole file, the number of rows, the nature of
the adjacent rows, etc.

The last set of features is category specific. We defined regular expressions to recognize
specific patterns. We report three detailed examples:

– This regular expression is used to match comments in single line or multiple lines with
empty body.

ˆ\s*\/(*|\s)*(\/|*\s**\/)\n*

– This regular expression matches the special keywords used in the Usage category.

(?i)@param|@usage|@since|@value|@return

– The following regular expression is used to find patterns of symbols that may be used
in Formatter category.

([ˆ{*}\s])(\1\1)|ˆ{\s}*\/\/\/\s*\S*
|\$\S*\s*\S*\$

Machine learning validation with 10-fold We tested both probabilistic classifiers and
decision tree algorithms. When using probabilistic classifiers, the average values of preci-
sion and recall were usually lower those obtained using decision tree algorithms. While,
using decision tree algorithms, the percentage value associated with the correctly classified
instances is improved. Particularly, with Random Forest we obtain up to 98.4% correctly
classified instances. Nevertheless, in the latter case, many comments belonging to classes
with a low occurrence were wrongly classified. Since the purpose of our tool is to best fit
the aforementioned taxonomy we found that the best classifier is based on a probabilistic
approach.

In Table 4 we report only the results (precision, recall, and weighted average TP rate)
for the naive Bayes Multinominal classifier that on average, considering whole categories,
achieves a better result accordingly to the aforementioned considerations. In Table 4 we
intentionally leave empty cells that correspond to categories of comments that are not
present in related projects. For the evaluation, we started with a standard 10-fold cross val-
idation. Tables 4 and 5 show these results in the columns ‘10-fold’ for open and closed
source, respectively. In both cases, we obtain promising performance for the six high-level
categories. Generically, the performance in the open source case is slightly higher than
the closed source one. For OSS systems, precision and recall are always above 93%; for
closed source projects, we have a drop of the performance up to 70% of precision for the
DISCARDED category. This difference is most likely attributable to the smaller number of
instances available for the training set of closed source projects. Indeed, the same trend is
also visible in fine-grained categories. The precision for inner categories is in average bet-
ter for OSS projects (with a minimum of 50% in the case of the RATIONALE category). In
the closed source projects, both precision and recall for inner categories reach high value up
to 100% for several categories, however, there are categories (RATIONALE DEPRECATION,
and UNKNOWN) where the performance is below 70%.

Empirical Software Engineering

Ta
bl
e
4

R
es
ul
ts
of

th
e
cl
as
si
fi
ca
tio

n
w
ith

na
iv
e
ba
ye
s
m
ul
tin

om
ia
lc
la
ss
if
ie
r
in

O
SS

V
al
id
at
io
n

P
=
Pr
ec
is
io
n
R
=
R
ec
al
l

C
ro
ss

pr
oj
ec
t

To
p
ca
te
go
ri
es

In
ne
r
ca
te
go
ri
es

10
-f
ol
d

C
D
T

G
ua
va

G
ui
ce

H
ad
oo
p

V
aa
di
n

Sp
ar
k

P
0.
88

0.
96

0.
68

0.
61

0.
72

0.
62

0.
65

Su
m
m
ar
y

R
0.
82

0.
99

0.
61

0.
69

0.
56

0.
69

0.
84

P
1.
00

0.
84

0.
00

0.
00

0.
09

0.
00

0.
00

E
xp
an
d

R
0.
98

0.
64

0.
00

0.
00

0.
05

0.
00

0.
00

P
0.
50

0.
56

0.
15

0.
00

0.
10

0.
03

0.
67

R
at
io
na
le

R
0.
69

0.
84

0.
23

0.
00

0.
41

0.
17

0.
17

P
0.
99

0.
77

0.
77

0.
81

0.
80

0.
83

0.
68

Pu
rp
os
e

Pu
rp
os
e

R
0.
99

0.
98

0.
98

0.
81

1.
00

1.
00

1.
00

P
0.
74

0.
75

0.
22

0.
14

D
ep
re
ca
tio

n
R

0.
78

0.
81

1.
00

1.
00

P
0.
86

0.
85

0.
50

0.
43

0.
67

0.
90

0.
56

U
sa
ge

R
0.
90

0.
87

0.
45

0.
64

0.
61

0.
65

0.
15

P
0.
76

0.
75

0.
43

0.
00

0.
58

0.
69

0.
13

E
xc
ep
tio

n
R

0.
98

0.
95

0.
87

0.
00

0.
88

0.
97

0.
29

P
1.
00

0.
50

0.
50

0.
36

0.
60

1.
00

1.
00

N
ot
ic
e

N
ot
ic
e

R
0.
98

0.
50

0.
50

1.
00

0.
41

0.
33

0.
17

P
0.
61

0.
97

0.
57

0.
29

0.
03

0.
19

T
O
D
O

R
0.
52

0.
96

0.
83

1.
00

0.
16

0.
11

P
0.
91

0.
92

0.
11

0.
95

In
co
m
pl
et
e

R
0.
96

1.
00

0.
88

0.
91

P
0.
91

0.
91

0.
05

0.
92

C
om

m
en
te
d
co
de

R
0.
91

0.
95

0.
06

0.
50

P
0.
98

1.
00

0.
00

0.
00

0.
00

0.
00

U
nd
er

de
v.

U
nd
er

de
ve
lo
pm

en
t

R
0.
93

0.
67

0.
00

0.
00

0.
00

0.
00

Empirical Software Engineering

Ta
bl
e
4

(c
on
tin

ue
d)

V
al
id
at
io
n

P
=
Pr
ec
is
io
n
R
=
R
ec
al
l

C
ro
ss

pr
oj
ec
t

To
p
ca
te
go
ri
es

In
ne
r
ca
te
go
ri
es

10
-f
ol
d

C
D
T

G
ua
va

G
ui
ce

H
ad
oo
p

V
aa
di
n

Sp
ar
k

P
0.
96

0.
96

0.
00

D
ir
ec
tiv

e
R

1.
00

1.
00

0.
00

P
0.
81

0.
93

0.
00

0.
00

Fo
rm

at
te
r

R
0.
77

0.
28

0.
00

0.
00

P
0.
97

1.
00

1.
00

0.
00

St
yl
e
&

ID
E

St
yl
e
&

ID
E

R
0.
99

1.
00

1.
00

0.
00

P
0.
99

1.
00

0.
98

1.
00

0.
99

0.
99

1.
00

L
ic
en
se

R
0.
98

0.
99

1.
00

0.
95

0.
99

1.
00

1.
00

P
0.
80

1.
00

1.
00

0.
57

0.
00

1.
00

O
w
ne
rs
hi
p

R
0.
96

1.
00

0.
08

0.
27

0.
00

0.
98

P
0.
84

0.
80

0.
82

0.
81

0.
79

0.
97

1.
00

Po
in
te
r

R
0.
94

0.
74

0.
52

0.
54

0.
70

0.
85

0.
60

P
1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
89

M
et
ad
at
a

M
et
ad
at
a

R
1.
00

0.
68

0.
68

0.
57

0.
57

0.
95

1.
00

P
0.
90

0.
91

0.
13

0.
84

A
ut
o
ge
ne
ra
te
d

R
1.
00

1.
00

1.
00

1.
00

P
0.
65

1.
00

0.
00

0.
00

0.
00

U
nk
no
w
n

R
0.
77

0.
39

0.
00

0.
00

0.
00

P
0.
96

0.
00

0.
00

0.
00

0.
00

D
is
ca
rd
ed

D
is
ca
rd
ed

R
0.
98

0.
00

0.
00

0.
00

0.
00

W
ei
gh
te
d
av
er
ag
e
T
P
ra
te

0.
85

0.
88

0.
77

0.
79

0.
74

0.
80

0.
83

Empirical Software Engineering

Ta
bl
e
5

R
es
ul
ts
of

th
e
cl
as
si
fi
ca
tio

n
w
ith

ra
nd
om

fo
re
st
cl
as
si
fi
er

in
in
du
st
ri
al
pr
oj
ec
ts

V
al
id
at
io
n

P
=
Pr
ec
is
io
n
R
=
R
ec
al
l

C
ro
ss

pr
oj
ec
t

To
p
ca
te
go
ri
es

In
ne
r
ca
te
go
ri
es

10
-f
ol
d

P1
P2

P3
P4

P5
P6

P7
P8

P
0.
97

0.
52

0.
64

0.
84

0.
73

0.
63

0.
78

0.
83

0.
68

Su
m
m
ar
y

R
1.
00

0.
86

0.
87

0.
89

0.
86

0.
97

0.
69

0.
89

0.
77

P
1.
00

0.
75

1.
00

0.
86

0.
57

0.
96

0.
13

0.
60

E
xp
an
d

R
1.
00

0.
14

0.
29

0.
90

0.
57

0.
53

0.
10

0.
53

P
1.
00

0.
18

0.
50

0.
13

0.
71

0.
00

0.
54

0.
53

0.
00

R
at
io
na
le

R
0.
70

0.
30

0.
10

0.
83

0.
71

0.
00

0.
43

0.
16

0.
00

P
0.
98

0.
56

0.
92

0.
92

0.
95

0.
72

0.
88

1.
00

0.
70

Pu
rp
os
e

Pu
rp
os
e

R
0.
99

0.
99

0.
97

0.
91

0.
84

0.
94

0.
79

0.
72

0.
83

P
0.
83

0.
00

1.
00

0.
67

0.
85

D
ep
re
ca
tio

n
R

0.
45

0.
00

0.
86

0.
54

0.
72

P
1.
00

0.
40

0.
00

0.
77

0.
90

0.
81

0.
97

0.
84

0.
67

U
sa
ge

R
1.
00

0.
91

0.
00

0.
86

0.
69

0.
98

0.
85

0.
84

0.
81

P
1.
00

1.
00

1.
00

1.
00

1.
00

0.
72

1.
00

1.
00

E
xc
ep
tio

n
R

0.
96

0.
94

0.
25

1.
00

1.
00

0.
70

0.
31

0.
96

P
1.
00

1.
00

0.
00

0.
73

0.
65

0.
80

0.
87

1.
00

0.
69

N
ot
ic
e

N
ot
ic
e

R
1.
00

0.
58

0.
00

0.
88

0.
99

0.
97

0.
85

0.
58

0.
89

P
0.
99

0.
56

0.
00

1.
00

0.
15

T
O
D
O

R
0.
86

0.
55

0.
00

0.
53

0.
08

P
1.
00

1.
00

0.
50

1.
00

In
co
m
pl
et
e

R
1.
00

0.
24

0.
75

0.
79

P
0.
98

0.
68

1.
00

1.
00

0.
27

1.
00

0.
70

0.
37

C
om

m
en
te
d
co
de

R
0.
98

0.
62

1.
00

1.
00

0.
25

1.
00

0.
58

0.
41

P
0.
99

0.
96

0.
95

0.
11

0.
67

0.
27

0.
75

0.
95

0.
37

U
nd
er

de
v.

U
nd
er

de
ve
lo
pm

en
t

R
0.
97

0.
78

0.
96

0.
34

0.
69

0.
33

0.
88

1.
00

0.
45

Empirical Software Engineering

Ta
bl
e
5

(c
on
tin

ue
d)

V
al
id
at
io
n

P
=
Pr
ec
is
io
n
R
=
R
ec
al
l

C
ro
ss

pr
oj
ec
t

To
p
ca
te
go
ri
es

In
ne
r
ca
te
go
ri
es

10
-f
ol
d

P1
P2

P3
P4

P5
P6

P7
P8

P
0.
94

0.
00

0.
78

0.
00

0.
71

D
ir
ec
tiv

e
R

0.
92

0.
00

0.
53

0.
00

0.
42

P
1.
00

0.
90

0.
88

Fo
rm

at
te
r

R
0.
84

0.
55

0.
68

P
1.
00

0.
00

0.
99

0.
54

0.
00

0.
00

0.
00

0.
81

0.
87

St
yl
e
&

ID
E

St
yl
e
&

ID
E

R
0.
85

0.
00

0.
08

0.
34

0.
00

0.
00

0.
00

0.
52

0.
55

P
1.
00

0.
00

0.
63

0.
90

0.
00

1.
00

1.
00

L
ic
en
se

R
1.
00

0.
00

0.
69

0.
87

0.
00

1.
00

1.
00

P
1.
00

0.
54

1.
00

1.
00

1.
00

1.
00

1.
00

O
w
ne
rs
hi
p

R
1.
00

0.
51

0.
97

0.
78

1.
00

1.
00

0.
81

P
1.
00

0.
51

1.
00

1.
00

1.
00

1.
00

0.
89

0.
57

0.
57

Po
in
te
r

R
0.
98

0.
70

0.
97

0.
32

0.
71

0.
45

0.
73

0.
63

0.
31

P
1.
00

1.
00

0.
84

0.
91

0.
98

1.
00

0.
96

0.
96

0.
97

M
et
ad
at
a

M
et
ad
at
a

R
0.
99

0.
32

0.
61

0.
87

0.
26

0.
47

0.
79

0.
81

0.
98

P
0.
94

0.
10

0.
00

A
ut
o
ge
ne
ra
te
d

R
1.
00

0.
56

0.
00

P
0.
60

0.
25

U
nk
no
w
n

R
0.
99

0.
20

P
0.
70

0.
78

0.
28

0.
00

0.
00

D
is
ca
rd
ed

D
is
ca
rd
ed

R
0.
99

1.
00

0.
15

0.
00

0.
00

W
ei
gh
te
d
av
er
ag
e
T
P
ra
te

0.
95

0.
75

0.
68

0.
73

0.
77

0.
70

0.
78

0.
76

0.
71

Empirical Software Engineering

Cross-project validation Different systems have comments describing different code arti-
facts and are likely to use different words and jargons. Thus, term-features working for
the comments in one system may not work for others. To better test the generalizability of
the results achieved by the classifier, we conduct a cross-project validation, as also previ-
ously proposed and tested by Bacchelli et al. (2012). In practice, cross-project validation
for OSS case consists in a 6-fold cross validation, in which folds are neither stratified nor
randomly taken, but correspond exactly to the different systems: In the open source case,
we train the classifiers on five systems and we try to predict the classification of the com-
ments in the remaining system. We do this six times rotating the test system. Similarly, in
the industrial context we divided the dataset in eight folds corresponding to the eight indus-
trial projects, then we used one fold as test dataset and the remaining folds to train the
model. We repeated this process eight times to evaluate the performance for each project.
The right-most columns (i.e., ‘cross-project’) in Tables 4, 5, and 6 show the results by tested
systems.

Cross-license validation The different development setting, i.e., OSS or industrial, may
have an impact on software development (Paulson et al. 2004). In line with the hypothesis
of Paulson et al. (2004), we indeed found a difference in the comments usage between these
two different categories of development processes. We found that open source projects have
on average up to 8 blocks of comments per file, while the industrial projects decrease have
an average of 2 blocks of comments per file.

Therefore, these differences during the training of a machine learning classifier can
become crucial, as they may impact on the performance of the model.

To evaluate the impact of the different development setting on an automated approach to
classify code comments, we define and conduct a cross-license validation. We define cross-
license validation when the training set differs from the testing set for the license/setting of
the file to which the comment pertain, i.e., OSS or industrial. In our study, we conduct a 2-
fold cross-license validation, in which we train on projects from one setting (e.g., OSS) and
we test on projects from the other setting (e.g., industrial). In this validation, we alternate
OSS and industry as test and training sets. Table 7 contains the results, in terms of precision
and recall, obtained by evaluating our model on the top categories. The first row represents
the results obtained training the model on the OSS projects and testing it on the industrial
ones, instead the second row refers to the opposite situation where we trained the model
with the industrial comments and tested it with OSS ones. Even though the differences are
not major (e.g., 0.73 of precision for both DISCARDED categories), training the model with
the open source data achieves better results on average (e.g., the precision is up to 10%
higher for the category UNDER DEVELOPMENT using open source training set); this result
may be due to the higher number of comments in the OSS dataset or more diverse distribu-
tions of the features across the data. Overall, the within-project performance is marginally
better than the cross-project one, when the training is accomplished with open-source data.
Indeed, cross-project validation achieves performance above 0.73 in terms of weighted aver-
age TP rate, while within-project validation conducted only on open-source projects is up
to 0.88 in terms of weighted average TP rate. Based on our experience gained through the
manual classification, we argue that many comments in OSS systems are written with a dif-
ferent purpose than comments in closed-source projects. For example, OSS programmers
rely on code comments to communicate their development strategies, vice-versa, industrial
driven developers seem to rely on alternative channels to communicate with their team. This
observation is also reflected the different number of comments present in the two domains
as well as the different distribution across found categories. Moreover, this difference would

Empirical Software Engineering

Ta
bl
e
6

R
es
ul
ts
of

th
e
cl
as
si
fi
ca
tio

n
w
ith

ra
nd
om

fo
re
st
cl
as
si
fi
er

in
cr
os
s-
pr
oj
ec
tv

al
id
at
io
n

C
ro
ss

pr
oj
ec
tv

al
id
at
io
n

P
=
Pr
ec
is
io
n
R
=
R
ec
al
l

O
pe
n
so
ur
ce

C
lo
se
d
so
ur
ce

To
p
ca
te
go
ri
es

In
ne
r
ca
te
go
ri
es

C
D
T

G
ua
va

G
ui
ce

H
ad
oo
p

V
aa
di
n

Sp
ar
k

P1
P2

P3
P4

P5
P6

P7
P8

P
0.
95

0.
85

0.
93

0.
65

0.
79

0.
74

0.
84

0.
69

0.
89

0.
88

0.
84

0.
85

0.
75

0.
93

Su
m
m
ar
y

R
0.
98

0.
96

1.
00

1.
00

0.
96

1.
00

1.
00

0.
97

1.
00

1.
00

0.
96

0.
99

0.
90

0.
94

P
0.
85

0.
70

1.
00

0.
15

0.
15

1.
00

1.
00

0.
42

1.
00

1.
00

1.
00

0.
24

0.
57

E
xp
an
d

R
0.
64

0.
85

1.
00

0.
13

0.
75

0.
25

1.
00

1.
00

1.
00

1.
00

1.
00

0.
19

0.
57

P
0.
55

0.
00

1.
00

0.
15

0.
00

0.
00

1.
00

0.
40

1.
00

1.
00

0.
32

0.
56

0.
72

0.
36

R
at
io
na
l

R
0.
68

0.
00

1.
00

0.
51

0.
00

0.
00

0.
86

0.
29

0.
86

0.
87

0.
62

0.
36

0.
71

0.
56

P
0.
99

0.
85

0.
79

.9
8

0.
70

0.
70

0.
97

0.
86

0.
90

0.
89

0.
90

0.
99

0.
89

0.
74

Pu
rp
os
e

Pu
rp
os
e

R
1.
00

1.
00

1.
00

1.
00

1.
00

0.
99

1.
00

0.
99

0.
98

0.
99

0.
99

0.
97

0.
84

0.
78

P
0.
75

0.
00

0.
00

1.
00

1.
00

1.
00

1.
00

D
ep
re
ca
tio

n
R

0.
81

0.
00

0.
00

1.
00

1.
00

1.
00

1.
00

P
0.
88

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
84

U
sa
ge

R
0.
90

0.
85

0.
90

1.
00

0.
35

0.
33

0.
92

0.
38

0.
92

0.
93

0.
84

0.
92

1.
00

0.
81

P
0.
72

1.
00

0.
63

1.
00

1.
00

1.
00

1.
00

1.
00

0.
74

0.
68

1.
00

E
xc
ep
tio

n
R

0.
98

1.
00

0.
88

1.
00

1.
00

0.
55

0.
65

0.
50

0.
75

0.
43

0.
87

P
1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
74

0.
96

N
ot
ic
e

N
ot
ic
e

R
0.
99

0.
76

0.
73

0.
97

0.
24

0.
65

0.
95

0.
81

0.
87

0.
91

0.
81

0.
73

0.
86

0.
85

P
0.
59

1.
00

0.
00

0.
21

0.
96

0.
00

0.
77

0.
15

T
O
D
O

R
0.
50

0.
65

0.
00

0.
32

0.
67

0.
00

0.
67

0.
08

P
0.
90

0.
87

0.
78

0.
89

1.
00

In
co
m
pl
et
e

R
0.
88

0.
73

0.
63

0.
10

0.
25

P
0.
89

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
17

C
om

m
en
te
d
co
de

R
0.
97

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
99

0.
41

P
0.
99

1.
00

0.
76

0.
98

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
87

1.
00

U
nd
er

de
v.

U
nd
er

de
ve
lo
pm

en
t

R
0.
95

0.
55

0.
85

0.
86

0.
67

0.
99

0.
86

0.
85

0.
86

0.
87

0.
86

0.
87

0.
99

Empirical Software Engineering

Ta
bl
e
6

(c
on
tin

ue
d)

C
ro
ss

pr
oj
ec
tv

al
id
at
io
n

P
=
Pr
ec
is
io
n
R
=
R
ec
al
l

O
pe
n
so
ur
ce

C
lo
se
d
so
ur
ce

To
p
ca
te
go
ri
es

In
ne
r
ca
te
go
ri
es

C
D
T

G
ua
va

G
ui
ce

H
ad
oo
p

V
aa
di
n

Sp
ar
k

P1
P2

P3
P4

P5
P6

P7
P8

P
1.
00

0.
00

1.
00

1.
00

1.
00

1.
00

D
ir
ec
tiv

e
R

1.
00

0.
00

1.
00

1.
00

0.
75

1.
00

P
0.
90

0.
87

0.
98

Fo
rm

at
te
r

R
1.
00

0.
42

0.
57

P
1.
00

0.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
99

St
yl
e
&

ID
E

St
yl
e
&

ID
E

R
1.
00

0.
00

0.
79

1.
00

0.
89

0.
89

0.
82

0.
90

0.
84

P
1.
00

1.
00

1.
00

0.
99

1.
00

1.
00

1.
00

0.
93

1.
00

1.
00

1.
00

1.
00

L
ic
en
se

R
1.
00

1.
00

1.
00

0.
99

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

P
1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
99

1.
00

1.
00

O
w
ne
rs
hi
p

R
0.
98

1.
00

0.
97

1.
00

1.
00

1.
00

0.
97

1.
00

0.
91

P
0.
97

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.
97

1.
00

0.
95

0.
57

0.
67

Po
in
te
r

R
0.
99

0.
82

1.
00

0.
68

1.
00

0.
45

0.
42

0.
99

0.
71

0.
85

0.
86

0.
99

0.
57

0.
40

P
1.
00

1.
00

0.
99

0.
99

0.
94

0.
90

1.
00

0.
99

0.
91

0.
99

0.
99

0.
99

1.
00

0.
99

M
et
ad
at
a

M
et
ad
at
a

R
0.
95

0.
94

0.
89

0.
99

1.
00

1.
00

1.
00

1.
00

0.
97

0.
95

0.
98

0.
98

0.
91

0.
95

P
0.
00

0.
23

0.
78

0.
10

0.
00

A
ut
o
ge
ne
ra
te
d

R
0.
00

1.
00

0.
89

0.
78

0.
00

P
1.
00

0.
21

U
nk
no
w
n

R
0.
40

0.
17

P
0.
38

0.
55

0.
00

0.
10

0.
00

0.
00

0.
00

D
is
ca
rd
ed

D
is
ca
rd
ed

R
0.
15

0.
56

0.
00

0.
15

0.
00

0.
00

0.
00

W
ei
gh
te
d
av
er
ag
e
T
P
ra
te

0.
90

0.
92

0.
90

0.
98

0.
76

0.
86

0.
94

0.
94

0.
95

0.
91

0.
83

0.
90

0.
86

0.
88

Empirical Software Engineering

Ta
bl
e
7

R
es
ul
ts
of

th
e
cr
os
s-
lic
en
se

va
lid

at
io
n
in

te
rm

s
of

pr
ec
is
io
n
(P
)
an
d
re
ca
ll
(R
),
us
in
g
a
ra
nd
om

fo
re
st
cl
as
si
fi
er

To
p
ca
te
go
ri
es

Pu
rp
os
e

N
ot
ic
e

U
nd
er

de
ve
lo
pm

en
t

St
yl
e
&

ID
E

M
et
ad
at
a

D
is
ca
rd
ed

Te
st
in
g
on
:

P
R

P
R

P
R

P
R

P
R

P
R

In
du
st
ri
al
sy
st
em

s
0.
75

0.
98

0.
96

0.
49

0.
87

0.
69

0.
78

0.
13

0.
99

0.
69

0.
73

0.
91

O
SS

sy
st
em

s
0.
68

0.
99

0.
88

0.
67

0.
77

0.
50

0.
63

0.
66

0.
98

0.
55

0.
73

0.
30

Empirical Software Engineering

have an impact on the creation of new tools aimed at helping developers to increase their
productivity and to improve software reliability.

Summary The values for 10-fold cross validation reported in Table 4 show accurate results
(mostly above 95%) achieved for top-level categories. This means that the classifier could be
used as an input for tools that analyze source code comments of the considered systems. For
inner-categories, the results are lower; nevertheless, the weighted average TP rate remains
0.85. Furthermore, we do not see large effects due to the prominent class imbalance. This
suggests that the amount of training data is enough for each class.

As expected, testing with cross-project validation, the classifier performance drops.
However, this is a more reliable test for what to expect with JAVA comments from unseen
projects. The weighted average TP rate that goes as low as 0.74. This indicates that project-
specific terms are key for the classification and either an approach should start with some
supervised data or more sophisticated features must be devised.

The last analysis (i.e., the cross-license validation), where we divided the dataset in two
parts gathering in the same dataset all projects with the same commercial license (i.e., OSS
and industrial projects), shows that results are higher when using open source dataset to
train the model (up to 15% of PRECISION for STYLE & IDE category). Even though cross-
license shows a negative performance when using industrial comments to train the model,
the differences are in average below 7% for PURPOSE and METADATA categories in terms
of PRECISION. In the end, DISCARDED achieves the same performance for both categories
(0.73 in PRECISION). These results suggest that the proposed open source dataset may be
used by both open source organization and industrial companies to categorize Java code
comments. The higher performance of training on OSS may be due to the higher number
of manually classified instances from the OSS projects; a further study could investigate
whether a higher number of training instances from the industrial context would lead to
similar results.

4.4 RQ4. HowDoes the Performance of an Automated Approach Improve by
Adding Classified Comments from the SystemUnder Classification?

The answer to our previous research question shows that it is possible to create an automatic
classifier for code comments. However, when such a classifier is tested on an unseen project,
it achieves lower results, compared to testing it on a project for which some of the comments
are part of the training set. This is expected, since words used in the text are parts of the
training features. In this research question, we investigate how many instances should one
classify from an unseen system to make the classification algorithm reach higher results.

To this aim, we selected the industrial project that achieved the worst performance in
cross-project validation, then, we progressively added to the training set a fixed number of

Empirical Software Engineering

manual classified comments (i.e., in steps of 5 comments). For each iteration, we evaluated
the performance of a Random Forest classifier and computed precision and recall.

Figure 5 shows the classifier’s results by progressively including new manually classi-
fied comments. The blue line indicates the evolution of the precision curve by progressively
adding 5 random selected manual classified comments of the subject system; the red line
indicates the trend of the recall values. The lines show that the classifier starts from a mini-
mum of 0.65 and 0.74 for precision and recall, respectively. This is the scenario in which no
comments belonging to the unseen project are included in the training set. The maximum
performance corresponds to 0.89 of precision and 0.94 of recall, and it is reached when at
least 100 manually classified comments of the subject system are added to the training set.
The trend shows that the performance reaches a plateau after 100 manually classified instances.

Finally, we observe that in the starting phase (left side of the chart) the performance of
the model remains stably below 0.80 of precision and recall until the comments contribution
is below 30 threshold; instead it improves rapidly in the interval included between 30 and 70
blocks of comments. This observation seems to indicate the presence of an optimal interval
of comments that a human classifier should manually classify to boost the performance of
the proposed solution for a novel project.

The investigation highlights that the performance of the proposed model can be easily
and significantly increased by manually classifying a small sample of new comments (e.g.,
in our case the manual classification of just 60 blocks of comments boosted the prediction of
30%). We empirically found this sample size to be between 40 and 80 block of comments,
which corresponds to about 10 Java open source files (or about 3 hours of labeling efforts).

Fig. 5 Number of comments required to increase the performance for an unseen project

Empirical Software Engineering

5 RelatedWork

5.1 Information Retrieval Technique

Lawrie et al. (2006) use information retrieval techniques based on cosine similarity in vector
space models to assess program quality under the hypothesis that “if the code is high qual-
ity, then the comments give a good description of the code”. Marcus and Maletic propose
a novel information retrieval techniques to automatically identify traceability links between
code and documentation (Marcus and Maletic 2003). Similarly, de Lucia et al. focus on the
problem of recovering traceability links between the source code and connected free text
documentation. They propose a comparison between a probabilistic information retrieval
model and a vector space information retrieval (Lucia and et al 2000). Even though com-
ments are part of software documentation, previous studies on information retrieval focus
generally on the relation between code and free text documentation.

5.2 Comments Classification

Several studies regarding code comments in the 80’s and 90’s concern the benefit of using
comments for program comprehension (Woodfield et al. 1981; Tenny 1985, 1988). Stamelos
et al. suggest a simple ratio metric between code and comments, with the weak hypothesis
that software quality grows if the code is more commented (Stamelos et al. 2002). Similarly,
Oman and Hagemeister propose a tree structure of maintainability metrics that also consider
code comments (Oman and Hagemeister 1992) and Garcia et al. also use lines of comments
to measure the maintainability of a module (Garcia and Granja-Alvarez 1996).

New recent studies add more emphasis to the code comments in a software project. Fluri
et al. present a heuristic approach to associate comments with code investigating whether
developers comment their code. Marcus andMaletic propose an approach based on informa-
tion retrieval technique (Marcus et al. 2005). Maalej and Robillard investigate API reference
documentation (such as javadoc) in Java SDK 6 and .NET 4.0 proposing a taxonomy of
knowledge types. They use a combination of grounded and analytical approaches to cre-
ate such taxonomy (Maalej and Robillard 2013). Instead Witte et al. used Semantic Web
Technologies to connect software code and documentation artifacts (Witte et al. 2007).
However, both approaches focus on external documentation and do not investigate evolu-
tionary aspects or quality relationship between code and comments, i.e., they do not track
how documentation and source code changes together over time or the combined quality
factor. More in focus is the work of Steidl et al. where they investigate the quality of the
source code comments (Steidl et al. 2013a). They proposed a model for comment quality
based on different comment categories and use a classification based on machine learning
technique tested on Java and C/C++ programs. They define 7 high-level categories that are
generically available in both Java and C/C++ programming languages. Moreover, they eval-
uated the quality of their taxonomy with a survey by involving 16 experienced software
developers. Despite the quality of the work, they found only 7 high-level categories of com-
ments based mostly on comment syntax, i.e., inline comments, section separator comments,
task comments, etc. This limitation may be a consequence of the aggregation of different
programming languages such as Java and C/C++. In our study, we refine such categories
by including a fine-grained taxonomy composed of 16 categories. Our taxonomy is tailored
specifically for Java programming language, indeed, the study involved only Java sources.

Padioleau et al. (2009) also conducted an extensive evaluation and classification of
source code comments. They had a different aim than ours: They focused on understanding

Empirical Software Engineering

to what extent developers’ needs can be derived from code comments (e.g., how comments
are used for code annotations or to communicate intentions behind the software develop-
ment paradigm); moreover they considered a different context (i.e., code comments from
three Unix-like operating systems (i.e., LINUX, FREEBSD, and OPENSOLARIS) written in
C). They conducted a classification along four dimensions: content, people involved, code
location, and time and evolution. The ‘content’ dimension is the most aligned with our
work. Although their focus (developers’ needs and software reliability) and data sources (C
systems) were different, some of their categories along the ‘content’ dimension share strong
similarities with our taxonomy (e.g., ‘PastFuture’ includes TODOs, as our ‘C. Under Devel-
opment’ does). Especially if we account for the subjective differences that are common in
manual classification studies, these similarities seem to indicate that it would be possible to
derive a taxonomy of code comments that goes beyond the boundaries of a single program-
ming language (indeed they also performed a preliminary investigation trying to classify
comments of a Java system according to their taxonomy that further suggests this possibil-
ity Padioleau et al. 2009). Interestingly, Padioleau et al. also showed how more than 50%
of the comments can be exploited by existing or to be proposed tools. We did not consider
this aspect in our work, but future studies can be devised to investigate it using our publicly
available dataset. An additional difference between our work and that of Padioleau et al. is
that we studied how our manually analyzed code comments can be automatically classified
according to our taxonomy using machine learning.

6 Conclusion

Code comments contain valuable information to support software development, especially
during code reading and code maintenance. Nevertheless, not all the comments are the same:
For accurate investigations, analyses, usages, and mining of code comments, this has to be
taken into account. By recognizing different kinds of code comments, as well as different
meaning brought by code comments we want to simplify developers’ activities and provide
better data for metrics. Following this direction, a developer may exclude comments that do
not involve a specific task and focus only on a subset (e.g., a developer that plans a main-
tainability task may be not interested in comments related to metadata information such
as license and ownership). Relying on our findings, a developer may dynamically choose
which categories highlight during a specific development phase. Moreover, our classifica-
tion system can be used to improve techniques that use comments as a way to measure the
maintainability of a software system. In fact, in this work, we investigated how comments
can be categorized, also proposing an approach for their automatic classification.

The contributions of our work are:

– A novel, empirically validated, hierarchical taxonomy of code comments for Java
projects, comprising 16 inner categories and 6 top categories.

– An assessment of the relative frequency of comment categories in 6 OSS Java software
systems.

– An estimation of the relative frequency of comment categories in 8 industrial Java
software systems.

– An exhaustiveness by cross-license validation of proposed taxonomy in a different
context.

– A publicly available dataset of more than 2,000 source code files with manually
classified comments, also linked to the source code entities they refer to.

Empirical Software Engineering

– An empirical evaluation of an enhanced machine learning approach to automatically
classify code comments according to the aforementioned taxonomy.

– An empirical evaluation aimed at understanding how many instances should be man-
ually classified from an unseen system to make the classification algorithm perform
similarly to an already seen project.

Acknowledgments This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sklodowska-Curie grant agreement No 642954. Bacchelli grate-
fully acknowledges the support of the Swiss National Science Foundation through the SNF Project No.
PP00P2 170529.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

Apache Spark (2016) http://spark.apache.org. [Online; accessed 03-Feb-2016]
Apache Software Foundation (ASF) - Apache Hadoop software library (2017). http://hadoop.apache.org/.

[Online; accessed 10-02-2017]
Bacchelli A, Lanza M, Robbes R (2010) Linking e-mails and source code artifacts. In: Proceedings of ICSE

2010 (32nd International Conference on Software Engineering). ACM Press, pp 375–384
Bacchelli A, dal Sasso T, D’Ambros M, Lanza M (2012) Content classification of development emails. In:

Inproceedings of ICSE 2012 (34th ACM/IEEE International Conference on Software Engineering), pp
375–385

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic minority over-sampling
technique. Journal of artificial intelligence research 16:321–357

Chawla NV (2009) Data mining for imbalanced datasets: An overview. In: Data mining and knowledge
discovery handbook. Springer, pp 875–886

de Souza SCB, Anquetil N, de Oliveira KM (2005) A study of the documentation essential to software
maintenance. In: Proceedings of the 23rd annual international conference on Design of communication:
documenting & designing for pervasive information. ACM, pp 68–75

Diakopoulos N, Cass S (2016) The top programming languages IEEE Spectrum, vol http://spectrum.ieee.
org/static/interactive-the-top-programming-languages-2016

Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychological Bulletin 76(5):378
Fluri B, Wursch M, Gall HC (2007) Do code and comments co-evolve? on the relation between source code

and comment changes. In: 2007. WCRE 2007. 14th Working Conference on Reverse Engineering. IEEE,
pp 70–79

Flyvbjerg B (2006) Five misunderstandings about case-study research. Qualitative Inquiry 12(2):219–245
Friedman J, Hastie T, Tibshirani R (2001) The elements of statistical learning, vol 1. Springer series in

statistics Springer, Berlin
Garcia MJB, Granja-Alvarez JC (1996) Maintainability as a key factor in maintenance productivity: a case

study. In: icsm, pp 87
Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. Adaptive Computation and Machine Learning

series. The MIT Press, Cambridge
Haouari D, Sahraoui H, Langlais P (2011) How good is your comment? a study of comments in java

programs. In: 2011 International Symposium on Empirical Software Engineering and Measurement
(ESEM). IEEE, pp 137–146

Hartzman CS, Austin CF (1993) Maintenance productivity: Observations based on an experience in a large
system environment, pp 138–170

http://creativecommons.org/licenses/by/4.0/
http://spark.apache.org
http://hadoop.apache.org/
http://spectrum.ieee.org/static/interactive-the-top-programming-languages-2016
http://spectrum.ieee.org/static/interactive-the-top-programming-languages-2016

Empirical Software Engineering

Jiang ZM, Hassan AE (2006) Examining the evolution of code comments in postgresql. In: Proceedings
of the International Workshop on Mining Software Repositories, MSR ’06. ACM, New York, pp 179–
180

Lawrie DJ, Feild H, Binkley D (2006) Leveraged quality assessment using information retrieval techniques.
In: 14th IEEE International Conference on Program Comprehension ICPC 2006. IEEE , pp. 149–
158

Lidwell W, Holden K, Butler J (2010) Universal Principles of Design, Revised and Updated: 125 Ways to
Enhance Usability. Influence Perception. Increase Appeal, Make Better Design Decisions, and Teach
through Design. Rockport Publishers, 2nd ed.

Lucia D et al (2000) Information retrieval models for recovering traceability links between code and
documentation. In: 2000. Proceedings. International Conference on Software Maintenance. IEEE, pp
40–49

Maalej W, Robillard MP (2013) Patterns of knowledge in api reference documentation. IEEE Trans Softw
Eng 39:1264–1282

Manning CD, Raghavan P, Schütze H et al (2008) Introduction to information retrieval. Cambridge
University Press, Cambridge, vol 1

Marcus A, Maletic JI (2003) Recovering documentation-to-source-code traceability links using latent
semantic indexing. In: 25th International Conference on Software Engineering Proceedings. IEEE, pp
125–135

Marcus A, Maletic JI, Sergeyev A (2005) Recovery of traceability links between software documentation
and source code. Int J Softw Eng Knowl Eng 15(5):811–836

O’brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Quality & Quantity
41(5):673–690

Oman P, Hagemeister J (1992) Metrics for assessing a software system’s maintainability. In: Conference on
Software Maintenance Proceerdings. IEEE, pp 337–344

Padioleau Y, Tan L, Zhou Y (2009) Listening to programmers taxonomies and characteristics of comments
in operating system code. In: Proceedings of the 31st International Conference on Software Engineering,
pp 331–341, IEEE Computer Society

Pascarella L, Bacchelli A (2017) Manually classified dataset of source code comments. https://doi.org/10.
5281/zenodo.2628361

Paulson JW, Succi G, Eberlein A (2004) An empirical study of open-source and closed-source software
products. IEEE Trans Softw Eng 30(4):246–256

Sebastiani F (2002) Machine learning in automated text categorization. ACM Computing Surveys (CSUR)
34(1):1–47

Sridhara G, Hill E, Muppaneni D, Pollock L, Vijay-Shanker K (2010) Towards automatically generating
summary comments for java methods. In: Proceedings of the IEEE/ACM international conference on
Automated software engineering. ACM, pp 43–52

Stamelos I, Angelis L, Oikonomou A, Bleris GL (2002) Code quality analysis in open source software
development. Inf Syst J 12(1):43–60

Steidl D., Hummel B, Jürgens E (2013a) Quality analysis of source code comments. In: IEEE 21st
International Conference on Program Comprehension, ICPC 2013, San Francisco, pp 83–92

Steidl D, Hummel B, Juergens E (2013b) Quality analysis of source code comments. In: IEEE 21st
International Conference on Program Comprehension (ICPC). IEEE, pp 83–92

Tan L, Yuan D, Krishna G, Zhou Y (2007) /* icomment: Bugs or bad comments?*. In: ACM SIGOPS
Operating Systems Review. ACM, vol 41, pp 145–158

Tenny T (1985) Procedures and comments vs. the banker’s algorithm. SIGCSE Bull 17:44–53
Tenny T (1988) Program readability: Procedures versus comments. IEEE Trans Softw Eng 14(9):1271–1279
Triola MF (2006) Elementary statistics, 10th edn. Pearson/Addison-Wesley, Reading
Witte R, Zhang Y, Rilling J (2007) Empowering software maintainers with semantic web technologies. In:

The Semantic Web: Research and Applications, 4th European Semantic Web Conference, ESWC 2007.
Proceedings, Innsbruck, pp 37–52

Woodfield SN, Dunsmore HE, Shen VY (1981) The effect of modularization and comments on program
comprehension, pp 215–223

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.5281/zenodo.2628361
https://doi.org/10.5281/zenodo.2628361

Empirical Software Engineering

Luca Pascarella is a Ph.D. student at the Delft University of Technology, The Netherlands. He is also collab-
orating as a researcher at the Software Improvement Group (SIG), in Amsterdam. He received his B.Sc. and
M.Sc. in Software Engineering from the University of Sannio, Italy. Since he started his research career in
2016, he focused on ancillary aspects of the source code such as code comments to understand their role in
software quality. His research aims at improving modern code review tools with augmented defect prediction
techniques.

Magiel Bruntink is Head of Research of the Software Improvement Group (SIG), a consultancy that focuses
on the automatic analysis of software quality and related decision making. He has a scientific background
in program analysis and empirical study. Most of his work consists of mixed industry-academic projects,
positioned within the software engineering domain.

Empirical Software Engineering

Alberto Bacchelli is an SNSF Professor in Empirical Software Engineering in the Department of Informatics
in the Faculty of Business, Economics and Informatics at the University of Zurich, Switzerland. He received
his B.Sc. and M.Sc. in Computer Science from the University of Bologna, Italy, and the Ph.D. in Software
Engineering from the Università della Svizzera Italiana, Switzerland. Before joining the University of Zurich,
he has been assistant professor at Delft University of Technology, The Netherlands where he was also granted
tenure. His research interests include peer code review, empirical studies, and the fundamentals of software
analytics.

	Classifying code comments in Java software systems
	Abstract
	Introduction
	Motivating Example
	Code/comment Ratio to Measure Software Maintainability
	An Existing Taxonomy of Source Code Comments

	Methodology
	Research Questions
	Selection of Subject Systems
	RQ1. Categorizing Code Comments
	Comment granularity
	Definition phase
	Validation phase
	Exhaustiveness by cross-license validation

	A Dataset of Categorized Code Comments
	Manual classification

	Automated Classification of Source Code Comments
	Classification granularity
	Classification technique
	Data balancing
	Classification evaluation
	Effort/performance estimation

	Threats to Validity
	Taxonomy validity
	External validity

	Results and Analysis
	RQ1. How Can Code Comments be Categorized?
	RQ2. How Often Does Each Category Occur in OSS and Industrial Projects?
	OSS projects: Distribution of comments
	Industrial projects: Distribution of comments
	OSS vs. Industrial: Comparison of the distributions

	RQ3. How Effective is an Automated Approach, Based on Machine Learning, in Classifying Code Comments in OSS and Industrial Projects?
	Text preprocessing
	Feature creation
	Machine learning validation with 10-fold
	Cross-project validation
	Cross-license validation
	Summary

	RQ4. How Does the Performance of an Automated Approach Improve by Adding Classified Comments from the System Under Classification?

	Related Work
	Information Retrieval Technique
	Comments Classification

	Conclusion
	References

