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Abstract
This paper discusses the possibilities for developing a tomographic scanner for studying the
phase distribution of fluidized beds. The system is based on a medical x-ray source equipped
with 30 CdWO4 detectors. We mimic a five-source system via simulation and in experiments
of voids in a 23 fluidized bed filled with polystyrene particles. Both static voids and moving
ones are studied. The reconstruction uses the simultaneous algebraic reconstruction technique
with regularization. We find that it is possible to reconstruct objects with a spatial resolution of
about 5 mm at a frame rate of 200 Hz. It is concluded that noise levels should be kept
below 2%.

Keywords: x-ray tomography, time-resolved, SART, regularization, fluidized bed

1. Introduction

Fluidized beds are frequently encountered in many industrial
applications. They consist of a cylinder containing a
large quantity of small particles through which gas is
flowing upwards. The gas velocity is such that the
particles ‘float’ on the gas stream, creating a gas–particle
mixture that has fluid-like properties. Our understanding of
fluidization is still far from complete, although during the last
decade computational methods have increased our knowledge
significantly. However, due to their opaqueness, fluidized beds
create serious problems for experimentalists. The well-known
laser-based techniques developed for single phase flows are
inadequate for fluidized systems. Consequently, experiments
on local phenomena are rare. However, solids are to some
extent transparent to radiation such as x- or γ -rays and a
variety of nuclear techniques have been developed during the
last decade. In Duduković (2000) the use of nuclear techniques
in opaque multiphase systems is reviewed.

Radiation can be used to measure the volume fraction
of gas (or equivalent of the solids) in a fluidized bed.
If tomographic techniques are used, the volume fraction
distribution in a cross section of the fluidized bed can be
found. This is referred to as ‘nuclear densitometry’. Several

papers have appeared in the literature, not only dealing with
densitometry in fluidized beds, see e.g. Kumar et al (1995),
Kumar et al (1997) and Kumar and Duduković (1997). For
instance, Shollenberger et al (1997) investigated the volume
fraction in a 48 cm diameter bubble column, using a single
beam–detector pair to perform horizontal, unidirectional scans
over a cross-sectional plane. Provided cylinder symmetry
holds, the measurements contain enough information to
reconstruct the time-averaged volume fraction of the gas phase.
Mudde et al (1999) followed a similar procedure to measure
the solid volume fraction in a turbulent fluidized bed. Kumar
et al (1995) reported the use of a fan beam from a single
γ source with multiple detectors. They rotated the source–
detector combination around the column taking about 4000
projections. This way they could reach a spatial resolution
of 5 mm. Since the total measurement time is of the order
of 1 h, only a time-averaged volume fraction distribution
is reconstructed. This type of tomographic reconstruction
is referred to as computed tomography or CT. In medical
imaging, the use of x-ray tomography is standard practice.
The source–detector system again rotates around the patient.
This way high-resolution, static images can be produced.

The nuclear techniques compete with techniques based on
electromagnetic fields, like electrical impedance tomography.
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These EM methods are generally much faster, giving a high
temporal resolution. Frame rates of several hundreds per
second can easily be achieved (see, e.g., Reinecke and Mewes
(1996), Kühn et al (1996), Beck et al (1998)). However,
the EM techniques suffer from soft-field effects characteristic
of electrical methods, i.e. a change in the electromagnetic
properties in one location changes the field everywhere in
the domain. This causes poor resolution in the center of the
object. Nuclear densitometry relies on hard fields. Hence,
they do not suffer from this problem. But, the nuclear
techniques are rather slow. Due to inherent noise, the frame
rate (temporal resolution) that can be obtained is usually
low. High spatial resolution requires relatively long measuring
times as compared to the impedance techniques, slowing down
this technique.

An ultra fast x-ray tomographic system has been
developed by Hampel and co-workers, see e.g. Bieberle and
Hampel (2006) and Bieberle et al (2007). They generate the
x-rays by scanning a tungsten element with a fast moving
electron beam. This way, it is possible to create tomographic
images up to a rate of 10 000 frames s−1. This is evidently
showing that nuclear techniques can also be fast.

In the present paper, we focus on the use of x-rays
for tomographic imaging. The application we have in
mind is a bubbling fluidized bed. We aim at time-resolved
measurements, hence the actual sampling time per image needs
to be small. We have as our target to be able to generate more
than 100 images s−1 (see Mudde et al (2005)).

In this paper, we present simulations and experiments on
voids in a fluidized bed, using a standard medical x-ray source
operating in the fan-beam mode, with 30 detectors. The voids
are measured from five different angles, mimicking a 5-source
system. The measuring time per angle, however, is kept short,
i.e. of the order of 10 ms. The data are reconstructed with
an extension of the so-called SART algorithm by invoking
regularization based on a median filter. In section 2, the
experimental setup is discussed. Section 3 describes the
reconstruction algorithm used. Computer simulations are
presented in section 4. Reconstructions of measured data
are given in section 5. We discuss the influence of various
experimental settings on the data and will show that a frame
rate of 400 frames s−1 is feasible. Finally, we present
reconstruction of voids moving through the measuring plane
at a velocity up to 60 cm s−1.

2. Experimental setup

The fluidized bed is formed by a 23 cm inner-diameter tube
(perspex, wall thickness 5 mm). The particles are 2 mm
sized polystyrene particles. This polystyrene has a density
of 1.06 × 103 kg m−3. The mean density of loosely packed
polystyrene particles is 625 kg m−3. In the bubbling regime of
fluidization, voids travel upwards through the powder mass. A
schematic of a fluidized bed with two bubbles in the measuring
plane of the densitometer is given in figure 1.

In our experiments, the voids are mimicked by placing
empty cylinders (perspex, wall thickness 1.5 mm) inside the
particle phase. The fluidized bed is positioned on a rotating

source
bubbles

measurement
plane

Figure 1. Fluidized bed with two bubbles in the measuring plane of
the x-ray densitometer.

Table 1. X-ray tube data.

X-ray tube
Manufacturer Philips
Type SRO 25 50–ROT 350
Voltage (peak) 150 kV
Anode material Rhenium alloyed tungsten molybdenum
Anode angle 15◦

Anode diameter 90 mm
Inherent filtering 2.5 mm Al/90 kV

Tube collimator
Type 9804 602 615 01 XD

X-ray generator
Type Super 100 CP
Ripple 12-pulse equivalent

table, with its axis coinciding with the rotation axis of the
table. The x-ray source is placed on one side of the fluidized
bed and the array of sensors on the other. The scanner setup is
schematically shown in figure 2. The distance from the x-ray
target to the center of the fluidized bed is 68.5 cm and from
the x-ray target to the detectors is 138.6 cm.

The x-ray source used is of standard medical type. All
relevant data are summarized in table 1.

The x-ray tube is equipped with a depth collimator. The
collimator has a hand-operated diaphragm with which the x-
ray beam size can be adjusted. To visualize the selected
beam size, the collimator is equipped with a halogen lamp
that produces a light beam that coincides with the x-ray beam.
The x-ray tube is in principle fully operated via the control
panel that has been customized to allow triggered operation.

The detectors of the tomographic scanner all consist of a
CdWO4 scintillation crystal optically coupled to a PIN photo
diode. Details are given in table 2.

The x-ray fan beam diverges slightly in the vertical
direction, with an angle of less than 1◦. This causes the beam
height to be more than the crystal diameter. Therefore, the
beam is collimated at the detector side. In the design of the
current scanner setup it has been chosen not to collimate each
detector individually. Instead a collective collimator has been
built, consisting of a 5 mm thick lead shield with a narrow
slit, as can be seen in figure 2. The width of the slit is 7 mm.
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Figure 2. Schematic plan and side views of the tomographic x-ray scanner.

Table 2. Scintillator crystal–photo diode assembly.

Scintillation crystal
Type V10 C10 CdWO4

Dimensions 10 mm × 10 mm × 10 mm
Housing Aluminum
Decay time 14 µs
Emission maximum 475 nm
Scintillation yield 12–15 (photons keV−1)

Photo diode
Manufacturer Hamamatsu
Type S 1337–1010BR

As a consequence, the thickness of the x-ray sheet through
the bed that is seen by the detectors is approximately 5 mm.
The scintillation crystal of each detector is encapsulated in
a cylindrical aluminum housing with a diameter of 15 mm,
causing a detector–detector distance of 16 mm.

A curved plastic casing holds a horizontal array of 32
detectors. The curvature of the array is such that the distance
to the focal point of the source is equal for all detectors
(see top view in figure 2). Of these detectors 30 are used
to produce data for tomographic reconstruction, the two
outermost detectors are used to monitor the alignment of the
object vessel. Obviously, the rays that travel to the outer
detectors of the array encounter less material (and hence less

Table 3. Specifications of the A/D converter boards.

A/D converter board
Manufacturer Spectrum
Type MI.31xx
Number of channels 8
Data width 12 bit
Maximum sample rate 6.25 MS s−1

attenuation) on their paths, compared to rays traveling to the
central detectors. Additional copper filtering has been applied
to the outer ray paths, such that irradiation of the filled vessel
yields detector signals that are more or less within the same
range.

Detector data are acquired by four 2 GHz PCs, equipped
with eight channel A/D converter boards (see table 3).

Obviously, the maximum attainable speed of the A/D
boards is far beyond the required one. In different experiments,
we used BGO crystals that allowed measurement of single
photons. This requires high speed. Here the data acquisition
speed per detector is 25 kHz. The amplified analogue output
signal of the photo diodes is converted to 12 bits binary data.
The A/D converter boards can be operated in trigger mode. In
this mode, the boards will start collecting a predefined amount
of data at a set sample rate, when they receive an external
trigger signal.
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Figure 3. Five-source fan-beam configurations.

3. Limited data x-ray tomography

3.1. Configuration

There are a number of steps in the process from measurement
to tomogram, that determine the accuracy. One of them is the
noise on the measured data, while a second one is the choice
of the reconstruction algorithm. Previous work has shown
(see Mudde et al (2005)) that we need a five-source system as
illustrated in figure 3. From that study, it was clear that using
three sources was insufficient to get the required accuracy.
Behind reconstructed objects, as seen from the source, a noisy
tail appeared that corrupted the interpretation.

3.2. Measuring principle and reconstruction algorithm

When a narrow, parallel beam of mono-energetic γ - or x-rays
is transmitted through a closed system containing a particle–
gas two-phase mixture, the number of photons registered per
second, R, follows from the Lambert–Beer law and can be
written as

R = R0 exp[−((1 − α)µp + αµg)d] (1)

where R0 is the number of photons registered per second when
the system is empty, µp and µg denote the linear absorption
coefficient of the particle and gas phases, α is the volume
fraction of the gas phase and d is the inner diameter of the
system. It should be noted that the attenuation characteristics
of the fluidized bed wall is incorporated in R0. Further note
that both µp and µg are in principle functions of the photon
energy E. An x-ray source generates a wide spectrum of photon
energies. It can be shown (see, e.g., Alles and Mudde (2007))
that the attenuation of the photons beam can be described
with reasonable accuracy by using an effective energy Eeff :
the attenuation of the photon beam is then described via the
corresponding µ(Eeff). However, instead of using an effective
energy, we calibrate the detector response as a function of
the fraction of solids along the x-ray beams. The calibration

curve is accurately described by Acal +Bcal exp(−x/Ccal), with
x being the distance traveled by the beam through the powder
phase, see figure 9.

Using this calibration, the data measured in an experiment
can be converted to a measured distance, xmeas, the beam travels
through the powder mass. By using Ns different sources, with
Nr measured beams per source, we have Ns · Nr independent
measurements through the object.

Tomographic reconstruction. Different strategies are used
for subtracting the required information from the measured
data. If sufficient a priori information on the objects to be
reconstructed is available, a parametric reconstruction can
be used. In this approach a number of objects at unknown
positions and of unknown size, but with known shape, are
searched for (see West et al (2000) and Bissessur and Peyton
(2005)). In the present case we used the general methods, that
do not use such a priori information. These reconstruction
methods can be broadly classified into two groups: analytic
and algebraic. The analytic methods are based on the
deconvolved backprojection, e.g. using the Fourier transform
and while accurate and fast, they require uniform and closely
spaced attenuation data. The filtered back projection algorithm
is a popular member of this family. In contrast, algebraic
techniques are iterative and reconstruct the object function on
a discretized domain. Although significantly slower, algebraic
methods offer more flexibility in terms of limited data sets
and are more appropriate for the CT configuration system
under consideration here. Detailed accounts of reconstruction
techniques can be found in Brooks and DiChiro (1976),
Herman (1980) or Kak and Slaney (1988).

The iterative methods are based on a finite series
expansion (see Herman and Lent (1976)). It is assumed
that a finite series of basis functions exists, whose linear
combination can provide an adequate approximation to the
spatial distribution of the measured quantity. In the present
case, we use the calibration procedure to convert the measured
line-averaged attenuation into a line-averaged solids fraction.
This means that the solids fraction α(x, y) is the quantity to
be reconstructed. For the basis functions an easy option is
to choose pixels. This choice has several advantages: (i)
simplicity, (ii) standard way of discretizing a digital picture,
(iii) it leads to a maximally sparse system matrix, which speeds
up the reconstruction. The unknown field α(x, y) is thus
estimated as

α̃(x, y) =
N∑

k=1

α̃kφk. (2)

The basis functions, {φk}, can be omitted by adopting a
lexicographic ordering for the pixels. For a given ray, traveling
through the object, the total solids fraction on the line, pi ,
referred to as ray sum, can be estimated as

p̃i =
N∑

k=1

Wikαk (3)

with αk being the pixel-based value of the solids fraction
distribution and Wik the weighing factor for pixel k for the
ith ray through the object. We use a linear weighing matrix

4



Meas. Sci. Technol. 19 (2008) 085501 R F Mudde et al

α
k-1

α1 α2

W length of intersection=ik

i th ray

−

Figure 4. Coordinate system.

W . Hence, the weighing factor Wik is the length of ray i
through pixel k (see figure 4).

The image reconstruction problem can now be formulated
as solving the unknown pixel-averaged solids fraction αk from
equation (3) for M different rays and N pixels.

In general, the above problem is ill-posed in the sense of
Hadamard. This is a.o. due to noise in the measured ray sums
and the approximate nature of the finite series expansion. We
write more formally

�p = W · �α + �ε (4)

where �ε contains all errors.
The algebraic reconstruction techniques (see, e.g., Brooks

and DiChiro (1976)) are concerned with minimizing the
mismatch between the data �p and W · �α. They do not consider
the stochastic errors contained in ε. For this reason, they are
referred to as deterministic models.

The ART method, introduced by Gordon et al (1970),
is an iterative method that solves �p = W · �α. A number
of refinements on the ART method have been proposed.
We have used the simultaneous algebraic reconstruction
technique (SART) (Andersen and Kak 1984). Instead of
sequentially updating the pixels on a ray-by-ray basis, SART
simultaneously applies to a pixel the average of the corrections
generated by all rays. This offers a reduction in the amplitude
of the salt and pepper noise that is usually present in ART.
However, it goes at the expense of the computation time. The
SART algorithm is given by

αn+1
k = αn

k +
w

W+,k

pi − p̃i

Wi,+
Wik (5)

with W+,k = ∑N
i=1 Wik,Wi,+ = ∑N

k=1 Wik and w a relaxation
parameter that should be between {0, 2}; we have set it to 1.
Historically, SART is reckoned to the algebraic reconstruction
methods. However, recently Jiang and Wang (2003) have
shown that SART is a maximum likelihood estimator for
the mapping of α in case the error in equation (4) is purely
stochastic with a Gaussian distribution.

Some further improvement can be achieved by penalizing
unrealistic images. For this, we use the so-called one-step-
late algorithm (see Green (1990)). It corrects reconstructed
image that suffer from salt and pepper noise. These noisy

solutions can be penalized by utilizing a smoothing function.
However, this can cause smearing of edges and smoothing
of low-contrast details. An algorithm based on the median
root prior potential function (suggested first by Alenius and
Ruotsalainen (1997)) has been used in our research. It is
well suited for removing impulse noise, while preserving
edges. In the reconstruction algorithm an extra step is added to
equation (5):

αn+1
OSL,k = 1

1 + β
αn

OSL,k − Med
(
αn

OSL,k

)

Med
(
αn

OSL,k

)
αn+1

k (6)

with αn
k being the value of pixel k after the nth SART step and

αn
OSL,k the same after the nth one-step-late correction.

The median filter Med(αk) sets the value of the kth pixel
equal to the median of the pixel values contained in the kth
pixel neighborhood. The definition of this pixel neighborhood
is the only parameter of the median filter. We use a 3 ×
3 neighborhood; a 5 × 5 neighborhood causes too much
smearing. The parameter β in equation (6) again controls
the weight of the prior.

4. Simulations

The system we study represents a fluidized bed in which
bubbles are moving upwards. Voids are created inside the
cross section of the circular fluidized bed. For the particular
configuration the forward problem is first solved: for each
ray the fraction of solids on the beam is calculated. In the
forward problem, the solid particles are assumed to form a
uniform quasi-fluid with a constant solids fraction equal to the
fraction at packed conditions. For the bubbles, we assume
that they are completely empty. This procedure provides the
set of ray sums, {pi}. Next, noise can be added to the ray
sums. The noise is supposed to be Gaussian, with a signal-to-
noise ratio of a predescribed percentage of the noise-free ray
sum. Obviously, for a complete study of the effects of noise
a more rigorous approach is required, based on Monte Carlo
simulations, that can deal with scattering effects. Here, we
lumped all effects into a single Gaussian noise contribution,
allowing only a relatively coarse estimate of the effects of
scattering.

Reconstructions of these voids are made with the
algorithms describe in section 3. We have varied a number
of parameters:

• β: setting β = 0 reduces the solution to the original SART
method; for β �= 0 we have a regularization according
to the median root prior method. We found that the
results are rather insensitive to the precise value of β

if 0.01 < β < 0.5. The fastest convergence was reached
for β = 0.1. Therefore, all reconstructions reported use
β = 0.1.

• Number of grid cells, Ngrid: this controls the speed and
possible resolution of the reconstruction.

• Number of iterations, Niter: this also influences the speed
and possible resolution of the reconstruction.
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Figure 5. Base case of three voids. The gray circles give the
original voids and the black ones the discretized version.

The voids are circular or ellipsoidal in shape, as we expect
that a horizontal cut through the bubbles in a fluidized bed
will be more or less circular. The grids used are all square
in shape. The fluidized bed has a diameter of 23 cm. As
mentioned above, our system in the simulations consists of
five x-ray sources, each with 30 detectors. The reconstruction
runs on a single PC (1.2 GHz). Each iteration step takes about
2.0 s on a 65 × 65 grid, slightly depending on the case.

4.1. Noiseless case

The base case is a 23 cm diameter fluidized bed with a
uniform powder fraction. Inside the cross section, that we will
reconstruct, three voids in the form of circles are placed. The
diameter and coordinates of their center of gravity {x, y, d}
are {4, 0, 5}, {0, 4, 5} and {−4,−4, 3}, respectively (all in cm;
the origin of the coordinate system coincides with the axis of
the fluidized bed). The void fraction α is stretched from 1, i.e.
powder only, to 0 which denotes no powder at all, i.e. air only.
Note that in all figures presented, we have reversed the pixel
values: black (=0) indicates air, white (=1) powder.

We use as a base grid for reconstruction, a square grid
of 65 × 65 pixels, with a pixel size of 3.54 mm. The base
case is shown in figure 5. For the calculation of the ray sums
we have used the discretized version of the voids. For this
discretization a threshold value of 0.5 is used. If 50% or more
of a pixel is part of a void, its value is set to 0. Otherwise its
value is 1. Note that the gap between the two large circles has
a width of the diagonal of one pixel, i.e. 5 mm. The voids have
a size of 160, 160, 54 (in pixel2).

For the reconstruction, the error is defined as the difference
between the original and the reconstructed images:

error =
∑Ngrid

i=1

∑Ngrid

j=1

∣∣αnew
ij − α

org
ij

∣∣
Nbed ∗ Nbed

(7)

with Nbed being the number of pixels inside the actual bed.
The reconstruction is started with as initial guess a

fluidized bed completely filled with powder. Note that the
pixels outside the fluidized bed are set to zero by definition.

0.1

0.01

0 1000 2000 3000 4000
# iteration

er
ro

r

Figure 6. Error of the reconstructed image as a function of the
number of iterations.

After each new iteration these pixels are set to zero again.
Thus, they do not influence the error. Furthermore, a single
pixel flipping from 0 to 1 gives a change in the error of
2.9×10−4. Smaller values can be achieved as the pixel values
may vary continuously from 0 to 1. In figure 6, the error is
given as a function of the number of iterations.

With increasing number of iterations, the image becomes
closer to the original one. In figure 7, several reconstructed
images are shown. In all cases the gap between the two large
voids is well recovered. In the binary images, an object is
defined as a collection of connected foreground pixels, using
an 8-connectivity scheme. Hence, the minimum size of the gap
implies that the two objects cannot touch. The more iterations
are used, the more is the noise in the image reduced. The
resolution, in terms of separation of objects, is thus better than
5 mm. Note that the error goes slightly up after approximately
2000 iterations. It is not clear why. However, the effect on
the reconstructed images is quite small: it concerns only a few
pixels.

A thresholding on the pixels of 0.5 is used to turn the raw
reconstructed images into binary ones: if a pixel value is larger
than the threshold its binary value is set to 1, if it is smaller to
0. In table 4, the area (in pixel2) and the center of gravity (in
cm) of the reconstructed voids are given. The area is found
from the images by simply calculating the number of pixels
that form the object in the binary image. The center of gravity
is also obtained from the binary object as the average of all x-
and y-coordinates of the object pixels. It is found that for the
noiseless case, the area and the position of the voids are well
reconstructed. It is found that 400 iterations are sufficient.

4.2. Influence of noise

The above reconstruction started from noiseless data. In this
section, Gaussian-distributed noise is added to the ray sums,
according to pi → pi · (1 + A · ni) with ni being a random
noise contribution with a Gaussian distribution of zero mean
and a standard deviation equal to 1. A is the amplitude of the
noise and is given as a percentage. In table 5, reconstructions
of the base case are compared when 1%, 2%, 4% or 8% of noise

6
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Figure 7. Comparison of the reconstructed images. Top: raw images, bottom: thresholded images (threshold value 0.5). From left to right
after 100, 200 ,400, 800 iterations, respectively.

Table 4. Base case: area in pixel2 and coordinates of center of gravity of objects. The original image is denoted by ‘org’ and the
reconstructed binary images by ‘b’ followed by the number of iterations to get them.

Area (pixel2) xc (cm) yc (cm) Area (pixel2) xc (cm) yc (cm) Area (pixel2) xc (cm) yc (cm)

Org 54 −4.03 −4.03 160 0.00 4.04 160 4.04 0.00
b100 42 −4.14 −4.08 162 0.09 4.12 162 4.12 −0.13
b200 49 −4.08 −3.96 159 0.04 4.10 162 4.12 −0.13
b400 51 −4.05 −4.00 162 0.02 4.06 162 4.09 −0.07
b800 51 −4.05 −4.00 164 0.05 4.05 161 4.08 −0.05

Table 5. Influence of noise: area and coordinates of center of gravity of objects. The original image is denoted by ‘org’; the reconstructed
binary images by ‘n’ followed by the percentage of noise added.

Area xc yc Area xc yc Area xc yc

(pixel2) (cm) (cm) (pixel2) (cm) (cm) (pixel2) (cm) (cm)

Org 54 −4.03 −4.03 160 0.00 4.04 160 4.04 0.00
n1% 47.5 −4.10 −3.98 164 0.03 4.08 156 4.07 −0.07

±2.3 ±0.04 ±0.05 ±4 ±0.06 ±0.03 ±5 ±0.05 ±0.05
n2% 46.7 −4.16 −3.99 162 0.05 4.06 157 4.01 −0.09

±4.3 ±0.09 ±0.08 ±7 ±0.07 ±0.06 ±7 ±0.08 ±0.06
n4% 42.4 −4.20 −3.96 162 0.13 4.05 155 4.01 −0.08

±6.1 ±0.19 ±0.17 ±9 ±0.09 ±0.10 ±10 ±0.13 ±0.12
n8% 16 −4.60 −3.72 146 0.26 3.56 143 4.28 −0.62

is added. For each noise level, 40 different reconstructions are
used. In all cases 400 iterations are used in a reconstruction.
The results, i.e. the mean and standard deviation, are given in
table 5. Of the reconstructed voids with 1% noise in 2.5% of
the 40 cases, with 2% noise in 18%, with 4% noise in 37% of
the 40 cases the gap between the two large voids was partly
closed. Nevertheless, it was clear for the eye that two objects
were present in the reconstructed images.

From the table, we see that, obviously, the reconstruction
deteriorates with increasing noise. For a proper reconstruction
the noise level should be kept at a level of 1% or less. The
spatial resolution with 1% noise still allows us to discriminate
between objects that are spaced about one grid cell apart. A
consequence of the noise is that the area of the smaller object
is in the reconstructions smaller for higher noise levels. This
is caused by a smearing of the object over adjacent pixels.
As we kept the threshold constant, the area of the thresholded
object will drop. More advanced image analysis techniques, in
which the threshold is based on the actual image, will probably
improve the reconstructions.

4.3. Grid size

The influence of the grid size is investigated for the noiseless
case. For the same voids, we varied the grid size from
25×25, 35×35, . . . , 65×65. For each grid, a reconstruction
is made, based on 400 iterations. The area and location of the
voids are calculated using a fixed threshold value of 0.5. The
area is given in table 6, in cm2 rather than in pixel2 to facilitate
comparison. The gap between the two original voids is
0.65 cm. For the grid of 65 × 65 pixels, the pixel size is
0.35 cm (the pixel diagonal 0.50 cm) and the two large voids
are separated by at least one pixel. For the grids 25 × 25 and
35 × 35 the pixel size is larger than the separation distance
between the voids, and smearing potentially causes the two
large voids to merge into one object. This is indeed found: for
the 35 × 35 grid the two voids are ‘glued together’ but clearly
two objects can be distinguished. For the 25 × 25 grid, this
is no longer the case. Here, the two voids have merged into
one elongated object. Without a priori knowledge this object
cannot be separated into two.

7
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Figure 8. Reconstruction of two ellipses (65 × 65 grid, 400 iterations). Left: original discretized voids, middle: reconstructed image, right:
contour plot of reconstructed images (contour lines indicate gray levels of 0.2, 0.4, 0.6 and 0.8).

Table 6. Base case: area in cm2 and coordinates of center of gravity of objects. The reconstructed binary images are denoted by ‘g’
followed by the grid size.

Area xc yc Area xc yc Area xc yc

(cm2) (cm) (cm) (cm2) (cm) (cm) (cm2) (cm) (cm)

Org 7.1 −4.00 −4.00 19.6 0 4.00 19.6 4.00 0
g25 5.2 −4.14 −3.68 42.3 2.06 1.84
g35 6.9 −4.27 −3.94 20.7 −0.12 3.82 20.7 3.82 0.12
g45 6.3 −4.02 −3.92 18.0 0.00 4.09 18.3 4.03 −0.04
g55 6.0 −4.20 −4.03 18.2 0.04 3.97 19.2 4.06 −0.03
g65 6.4 −4.05 −4.00 20.3 0.02 4.06 20.3 4.09 −0.07

The area of the original circular voids is 7.1 cm2 and
19.6 cm2 for the small and two larger voids, respectively.
Obviously, due to the discretization and thresholding, the voids
on the actual grids are smaller.

The results for the 65 × 65 grid are the best, but the
difference with the 55 × 55 one is small. The 25 × 25 grid is
insufficient for decent reconstructions.

4.4. Elliptical voids

The cut of the measuring plane through the voids in an actual
experiment is not necessarily a circle. In this subsection, two
elliptically shaped voids are used. These voids have major and
minor half-axis a = 3 cm and b = 2 cm, hence an area of
18.9 cm2. They are shifted over a vector {xs, ys} with respect
to the origin and their orientation is rotated over an angle
θ . Figure 8 shows the original and reconstructed ellipses
for the noiseless case, with {xs, ys} = {−3 cm,±3 cm} and
θ = ±π/6. The minimum distance of the two ellipses is about
1.4 cm, i.e. about 4 pixels. Also a contour plot is given. The
ellipses are correctly reconstructed. Using a threshold value of
0.5 the reconstructed image is made binary. From this binary
image, the ellipse area and center of gravity are computed. For
the top ellipse we find A = 19.6 cm2, xc = −2.99 cm, yc =
3.06 cm. For the bottom ellipse these numbers are 18.4 cm2,

−3.01 cm, −2.97 cm, respectively.
We tested several other angles: no new peculiarities are

found. Like in the case of the circular voids, noise starts
blurring the images. Moreover, if the objects are separated
a distance smaller than 2 pixels they generally merge into a
single object. The angle of the major axis of the ellipse with
the horizontal in the images has been changed up to 60◦ and
the position of the two ellipses in the bed has been varied. No
particular dependence on these two variables was found. We

used two smaller ellipses (a = 2 cm, b = 1 cm). These can
be reconstructed correctly up to a noise level of 2%.

5. Experiments

5.1. Calibration

The reconstruction uses as starting point the measured
attenuation of the x-ray beams. A calibration procedure
relates the measured attenuation to the distance the x-ray beam
travels through the powder mass. The calibration curve is
obtained by placing a known length or powder mass in each
beam and measuring the attenuation. An example is given
in figure 9. This calibration curve is accurately described by
Acal + Bcal exp(−x/Ccal), with x being the distance traveled
by the beam through the powder phase. For each detector,
an individual calibration curve is obtained. Note that the
calibration curve in figure 9 is for the central detector and
covers only a range from 9 cm to 26 cm of polystyrene path
length. This is done as the expected path length will not drop
below 9 cm. Limiting the range allows for a better exponential
fit. This is a practical argument. For calibration over the full
range of possible path lengths, a different fitting function or
even a look-up table can be used. The exponential fit function
has no significance in the process. Indeed, for the detectors
receiving the x-ray from the side of the bed a different range
is used for the calibration.

5.2. Experimental procedure

For all experiments, the maximum tube voltage setting of
150 kV has been used. The photon rate of the x-ray source is
controlled by the tube current. For the current collimator
configuration, signal amplification and object, it has been
determined that the minimum tube current setting of 10 mA

8
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leads to optimal use of the available dynamic range for the
detectors.

The scanner system is controlled from one master PC.
Custom-made software has been developed for the automation
of tomographic measurements. Each measurement consists
of a sequence (see below) of commands and trigger signals
sent from the master PC to the different functionalities. This
measurement program is based on the simulation of a 5-source
setup, which means that the measurement sequence is repeated
five times. For each measurement the rotary table is rotated 72◦

in the clockwise direction. The specific steps for an experiment
are as follows:

(1) Move rotary table to predefined position.

(2) Load x-ray tube (trigger).

(3) Start data acquisition (trigger).

(4) Start x-ray pulse of predefined duration (trigger).
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Figure 10. Two bubbles (left), the gray line indicates the center line of one of the fan-beam positions. Measured data, in terms of length of
air on the beams, are shown on the right.

5.3. Pre-processing of tomographic data

Before the tomographic data are fed to the actual
reconstruction algorithm, some pre-processing takes place:

(1) The signal values of both the void measurement and
filled vessel reference measurement (including the void
cylinders filled with powder) are converted to equivalent
lengths of packed polystyrene, using the detector
calibration. Note that the calculated lengths include the
thickness of the perspex walls of the vessel and the walls
of the cylinders, expressed in equivalent lengths of packed
polystyrene.

(2) The converted void measurement data are subtracted from
the converted filled vessel reference data. In this way,
the contribution of the vessel walls and cylinder walls is
effectively removed.

(3) The calculated difference data file is in turn subtracted
from a data file containing the calculated lengths of
polystyrene corresponding to a filled vessel. Now the
data represent the total length polystyrene for each line.
These data are fed to the reconstruction algorithm.

In figure 10, a measurement through two air-filled
cylinders positioned in the fluidized bed is shown. The large
cylinder has a diameter of 5.1 cm. Its center of gravity
coordinates are {xc, yc} = {−16.7 mm,−52.1 mm}. x
denotes the horizontal coordinate and y the vertical one with
the origin coinciding with the axis of the fluidized bed, see
figure 10. The smaller cylinder has a diameter of 2.2 cm (with
{xc, yc} = {−7.2 mm,−9.0 mm}). The separation distance
between the two is 1 cm. The gray line indicates the center
line of one of the fan-beam configurations. The vertical axis of
the measured data is given in ‘cm air’. This denotes the length
a given beam moves through air in the bed. Note that this
comprises air in the cylinder (if the beam crosses a cylinder)
but also the air in between the powder particles. Furthermore,
it should be kept in mind that each beam moves over a different
length through the fluidized bed. Nevertheless, the measured

9
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Figure 11. Left: the effect of voltage ripple on detector signal. Right: the standard deviation of the mean signal values as a function of the
measurement time (number of samples in a subset).

data clearly reveal the two voids in the fluidized bed: see the
2nd and 5th fan beam where both a big peak and a small peak
are measured.

5.4. Measurement error and sample time

An important feature of tomographic measuring techniques
is the measurement time. This is one of the bottlenecks
for nuclear techniques. For measurements on static voids,
detector signals can be averaged over relatively long times.
This reduces the effect of stochastic errors. To determine the
real time resolution of the scanner system, the behavior of
the error is considered as a function of the frame rate. This
has been done by analyzing a data set of a single detector.
The data set consists of 18 000 data points of a static object
measured at a sampling frequency of 25 kHz: {Yi} with
i = 1, . . . , N and N = 18000. The data set has an average
value Ȳ = 1

N

∑N
i=1 Yi .

The full data set has been divided in K subsets of
equal size, each subset contains M data points: {Xj }K with
j = 1, . . . ,M and K = int(N/M). Each subset has a
mean X̄K = 1

M

∑M
j=1{Xj }K . The number of data points in

a subset, M, is equivalent to the measuring time for a single
tomogram. The uncertainty due to the finite measuring time
can be estimated by inspecting the uncertainty in the mean of a
subset. The standard deviation of this mean is calculated from
the unbiased variance:

Var([X̄1 · · · X̄N ]) = 1

N − 1

N∑
i=1

(X̄i − Ȳ )2. (8)

The results for a number of subset sizes, with the standard
deviation given in terms of centimeters packed polystyrene,
are shown in figure 11. The number of points in each subset
has been translated to a measurement time, �t , by using the
data rate of 25 000 Hz: �t = M/25 kHz. The five points with
the low standard deviation in the graph correspond to averages
based on 62, 125, 250, 500 and 1000 samples, respectively.

It is clear from figure 11 that the standard deviation
increases quickly for measurement times smaller than

2.5 ms. This is caused by a voltage ripple on the high voltage
unit, see figure 11 (left graph). The point at which the ‘kink’
occurs corresponds to exactly one period of the voltage ripple.
This limits the accuracy of the tomograph for the moment.
Either the ripple needs to be reduced by a better power supply
or the measured data are corrected, by measuring the phase of
the voltage ripple. For the present equipment, the measuring
error can be kept below 1% (i.e. 0.2 cm over 23 cm diameter)
for measuring times of 2.5 ms or larger. The present setup,
thus, in principle allows accurate tomography with a frame
rate of 400 frames s−1. Note that for an actual scanner, with
multiple sources, scattering from x-rays from one source on the
detectors of another source may deteriorate the reconstructions
significantly. Most likely, collimation of the detectors will
be necessary. As an alternative, the sources could fire x-
rays not simultaneously, but sequentially. This way scattering
from one source to another set of detectors is excluded. This,
however, requires a fast system: the object under study should
be ‘frozen’ during this measuring sequence.

6. Experimental results

6.1. Static voids

The measured data are reconstructed on a 65 × 65 pixel
based reconstruction grid (spatial resolution 3.5 mm), using
the SART algorithm with regularization described above.
The result is given in figure 12. Both cylinders are clearly
identified.

By using a threshold value, the gray value figures are
turned into binary ones, from which the size and location of
the two voids are calculated. In table 7, the results for various
threshold values are given. We find that the size and position
of the large void are rather insensitive to the threshold used.
This is not true for the smaller void. Here, the area depends
on the choice of the threshold value. This is obvious from
figure 12: the gray values corresponding to the small cylinder
span only a small range. Here more advanced image analysis
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Figure 12. Reconstructions of the two cylinder case. The two
circles denote the true position and size of the cylinders.

Table 7. Characteristics of the two voids.

Area (cm2)
xc (cm) yc (cm)

Void Threshold Org Recon Recon Recon

1 0.45 3.8 1.0 0.2 −0.7
2 0.45 20.4 18.3 −1.3 −5.2

1 0.5 3.8 1.9 0.2 −0.7
2 0.5 20.4 18.5 −1.3 −5.2

1 0.55 3.8 3.6 −0.1 −0.5
2 0.55 20.4 19.3 −1.4 −5.2

1 0.6 3.8 4.6 −0.2 −0.5
2 0.6 20.4 20.2 −1.3 −5.2

1 0.65 3.8 4.9 −0.2 −0.5
2 0.65 20.4 21.4 −1.3 −5.2

1 0.75 3.8 5.1 −0.2 −0.5
2 0.75 20.4 23.5 −1.3 −5.2

techniques will be required to find objective measures of this
void.

In all cases, a clear separation between the two objects is
found. It is no problem to identify two objects.

A second case is measured and reconstructed, consisting
of two 5.1 cm diameter and two 2.2 cm diameter cylinders,
placed on the x- and y-axes, see figure 13. A threshold value of
0.5 is used to find the area and location of the voids. From the
area, A, an equivalent diameter is calculated as Deq =

√
4
π
A.

Our findings are summarized in table 8. Again we see that
we reproduce the voids quite accurately and that we tend to
underestimate the smaller ones.

6.2. Moving voids

Two different moving voids have been used. These voids are
moved upwards through the bed at a constant speed. Each
experiment is repeated five times, with a 72◦ rotation of the
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Figure 13. Reconstructions of the four cylinder case.

Table 8. Characteristics of the four voids.

Deq (cm)

Void Org Recon

Top 2.2 2.0
Right 5.1 5.3
Bottom 2.2 1.9
Left 5.1 5.0

bed for each measurement. This way a 5-source scan is
mimicked. A trigger is used to mark a starting position, so
all five measurements start with the moving void at exactly
the same position. This is obviously needed for a proper
tomographic reconstruction.

Moving void 1 is an air-filled cylinder with an outer
diameter of 51 mm and a height of 42 mm. Above and below
it is a 40 mm high chamber filled with the same powder as the
fluidized bed. The void is moving through a thin perspex tube,
that is placed off center. The cylinder is mounted at the end of
a rod, that is pulled upwards at a predefined fixed velocity. See
figure 14 for a sketch. Void 2 is an egg made of an air-filled,
thin expanded polystyrene shell. It has a diameter of 46 mm
and a height of 66.5 mm.

Moving cylinder. Figure 15 shows the response of one of
the detectors when the cylindrical void passes (rise velocity
20 cm s−1). Different points are marked in the graph. At
point 1, the x-ray tomograph starts measuring. The top
cylinder filled with powder is then already cutting through the
measuring plane. At point 2, the perspex disc separating the
upper powder chamber from the empty part of the void moves
into the field of view of the detector and the signal drops. The
signal reaches a sharp minimum when the disc with thickness
4 mm is completely inside the field of view of the detector. We
estimate that based on geometrical arguments the field of view
has a thickness of 4 mm. This seems to be confirmed by the
experiments. However, from the length of the time interval of
dip 3 ( 0.057 s) and the velocity of the cylinder (20 cm s−1) we
find that the distance over which the plastic disc is displaced
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Figure 14. Sketch of the moving voids used. Left: cylinder, middle: egg, right photo of egg.

from entering to leaving the measurement plane is 11 mm.
Combining this with the thickness of the disc (4 mm), we have
that in practice the measuring plane has a thickness of 7 mm.
This is about 40% more than estimate from the geometry. This
point needs further attention. Note that the copper rod used to
pull to object up also scatters the x-rays.

At point 4, the air pocket is detected and the output is
maximal. Dip 5 is again a perspex disc. At point 6, the output
level is slightly higher than the powder-filled bottom chamber
(point 7) would give. This is due to the fact that the lower
chamber is not 100% filled with powder: a small air gap is
present. This is detected by the system; it shows the level of
details that can be reached. Points 8 and 9 mark the perspex
screw and the magnet (used for triggering the x-ray system),
respectively (see figure 14). Finally, ten indicates that after
the passage of the void the powder has to flow into the space
left behind by the void. This takes some time as can be seen:
initially a higher output level is found before (at 11) the level
has returned to ‘all powder’. It should be noted that the data
are taken from a measuring plane of finite thickness.

Moving egg. In figure 16 a typical raw signal is given for the
passage of the egg at a velocity of 10 cm s−1. The egg is
contained in a thin walled cylinder filled with the polystyrene
powder. The entire cylinder is moved upwards through the
fluid bed at fixed velocity.

Again the signal is averaged using a window of 5 ms to
remove the voltage ripple. These filtered signals are fed to
the reconstruction algorithm. A sequence of images with the
passing egg at various stages is generated. An example is
given in figure 17, showing the movement of the top of the egg
into the measuring plane.

These images are subjected to a threshold to determine
which pixel is part of the egg. The diameter of the
reconstructed cut through the egg is calculated from the area,

Ac: D =
√

4
π
Ac. The area itself is calculated as the weighted
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Figure 15. Typical detector signal for a vertical velocity of
20 cm s−1 of the cylinder. The signal is obtained by averaging the
raw signal over 128 points, i.e. a sampling time of 5 ms is achieved.
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Figure 16. Typical raw signal for the moving egg (10 cm s−1).

sum of the pixels in the fluidized bed. The weighing factors
used are the gray values, {gi}, of the pixels:

Ac =
∑N

i gi

N
Afluidbed (9)
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Figure 17. Reconstructed images of egg moving into the measuring plane (egg velocity 60 cm s−1). The top left image is the last image
before the egg moves into the measuring plane. In the top middle the first sign of the egg is picked up. The following images show that the
egg is moving upwards (time between frames: 5 ms). The right-bottom image shows one of the last stages: the full egg diameter is in the
field of view. The time difference between the last and last but one image is 170 ms.
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Figure 18. Diameter of the part of the egg in the field of view of the
detectors (60 cm s−1). Only the first part of the motion, i.e. with the
egg moving into the measuring plane is reconstructed. The crosses
(×) indicate the diameter estimated from the data without applying
a threshold value to the pixels; the circles do the same with a
threshold; the dotted line is the diameter as measured with a
marking gauge.

with the summation running over all pixels in the bed.
Obviously, thresholding needs to be used, as otherwise noise
everywhere in the reconstruction plane will bias the calculated
diameter toward higher values. Typically, the above procedure
without thresholding results in a diameter of 1–2 cm even
if the egg is not in the reconstruction plane. The threshold
levels have been adjusted manually, such that half of the
reconstructed diameters before the egg has moved into the
measuring plane are equal to zero. The diameter from the
tomographic reconstruction is compared to the true diameter
in figure 18.

Table 9. Egg diameter.

Velocity Maximum
(cm s−1) Threshold diameter (mm)

10 0.04 4.73
20 0.11 4.73
40 0.16 4.72
60 0.12 4.76

As can be seen from this figure, we slightly underpredict
the diameter when the egg moves into the measuring plane and
we overpredict it when the full diameter is in the plane. This is
the general trend for most of the experiments, i.e. at velocities
ranging from 10 cm s−1 to 60 cm s−1. At the moment the
reason why is still unclear. The underprediction might have
to do with the finite thickness of the measuring plane and the
nonlinear response of x-ray imaging. This point needs further
attention. The other velocities result in similar graphs with the
same order of magnitude for over and underprediction.

In table 9, the results of experiments at various velocities
are collected.

As can be seen from the table, the egg diameter measured
is independent of the egg velocity. We overpredict the egg
diameter by 1–1.5 mm. The underprediction in figure 18 is of
the same order of magnitude.

7. Concluding remarks

In this paper, we have discussed the possibilities of a time-
resolving x-ray-based tomographic scanner. Here, the key
parameters are spatial resolution and measurement speed. We
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have used a standard medical x-ray tube to produce an x-
ray fan beam. In combination with 30 CdWO4 scintillator
crystals, this forms our hardware. By using five different views
(i.e. rotating the object under study over 72◦) we generated
enough views for a reconstruction. In this way, we mimic
a scanner with five sources that simultaneously perform the
measurements. We have found that we can reach a spatial
resolution below 5 mm for a 23 column filled with polystyrene
particles. Moreover, the measuring time could be kept below
5 ms. This shows that x-ray tomography can reach frame
rates of 200 frames s−1. It is expected that by reducing the
amplitude of the voltage wiggle of the x-ray source a faster
tomographic system is possible, with frame rates of the order of
1000 frames s−1. Alternatively, an extra detector, measuring
the radiation from an x-ray beam that passes by the column,
could monitor the actual source strength. This way the
fluctuations could be corrected for.

The polyenergetic nature of the x-ray photons does not
permit a straightforward use of the Lambert–Beer law in the
tomographic reconstruction. However, a simple calibration
of the response of the detectors was sufficient to overcome
this problem. For an actual five-source system, the effects of
scattering from x-rays of one source on to the detector array of
another source will increase the noise levels. This effect has
to be investigated in future research.

From our experiments on voids we found that objects with
a diameter of 5 cm could very easily be found in a 23 cm bed.
Objects with a diameter of 2.2 cm were also detected, but their
size is under predicted. Nevertheless, from our experiments
we conclude that, in principle, an x-ray-based tomographic
system with 5 sources and 30 detectors each is able to capture
objects with a size of one-tenth of the fluidized bed moving
through a fluidized bed with a diameter of a few decimeters.

Moving objects can also be reconstructed with good
accuracy. We measured the passage of an egg shaped hollow
object, with a maximum diameter of 4.6 cm, at a vertical
velocity ranging from 10 to 60 cm s−1. From the reconstructed
images we could clearly see the passage of the egg. We found
that the measured diameter is about 3% too high, regardless
of the egg velocity. When the egg moves into the measuring
plane, we underpredict the diameter. These experiments show
that the system is fast and accurate enough to study moving
objects.
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