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Preface

This thesis marks the end of my almost six-year journey at the Faculty of Technology, Policy and Man-
agement at TU Delft. I am incredibly grateful for my time at TU Delft, the amazing opportunities it gave
me, the knowledge I gained and the people I met. Six years ago, I started with no idea what I would want
to do with the rest of my life. Today, I am happy to say that I have found my purpose. I am committed to
advancing the energy transition to support a more sustainable and resilient future.

To me, this thesis reflects that. While it may not focus on large-scale projects for renewable energy
production, it highlights something equally important: ensuring that everyone has a fair opportunity to
participate in the energy transition. A sustainable future isn’t truly sustainable if it isn’t just.

“All models are wrong, some are useful ...”
– George Box (1979)

Many times during this thesis, I questioned whether what I was doing was truly useful, whether the as-
sumptions I made oversimplified the heterogeneity that underpins recognition justice, and whether there
was real logic behind the modelling choices. Thinking about this quote helped me with that uncertainty.
Models never fully align with reality. However, every step towards recognition in energy modelling is one
more than there was before and an improvement. Ensuring fairness in something as complex as the
energy transition is not just an interesting thesis topic; it is necessary. Misrepresentation or exclusion in
models can lead to policies that overlook vulnerable groups or reinforce existing inequalities. Even mod-
est adjustments to models such as HESTIA matter if they open the door for more targeted and effective
policy design, and more nuanced assessments of justice.

I would like to express my gratitude to my graduation committee: Igor Nikolic, Eugen Popa and Aarthi
Sundaram, for offering me this opportunity and for their thoughtful discussions and guidance during this
graduation process. Secondly, my family and friends, for their everlasting support not only during the
writing of this thesis but also during my whole academic journey. I hope to do you all proud with what
you will read here and what I will continue to do in the rest of my career.

Ilse de Droog
Hoofddorp, August 2025
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Summary

The energy transition in the Dutch built environment has been slowly progressing for over a decade. It
includes retrofitting homes, phasing out the use of natural gas and installing renewable energy systems.
This transition has been developing alongside a rise in energy prices, driven by a mix of geopolitical ten-
sions, market dynamics, climate policy, infrastructure limitations, and energy system transformations,
all unfolding during a period of increasing demand. Intensifying existing vulnerabilities for at-risk house-
holds, this development has made energy poverty an increasingly urgent issue in Dutch policymaking.

Energy poverty is strongly linked to the concept of energy justice. Consisting of three tenets: recogni-
tion justice, distribution justice and procedural justice, energy justice promotes a fair distribution of the
benefits and costs of energy services, combined with representative and impartial decision making in
energy policies. Energy models, increasingly used to determine energy policies, enable policymakers
to explore possible transition pathways and calculate the potential impact of policies. These models
are mainly techno-economic, not taking into account differences in social or behavioural factors, even
though these play a key part in households’ adoption of policies. Incorporating principles of energy jus-
tice ensures that model outcomes are not only efficient or cost-effective but also just and acceptable for
diverse groups, which is a necessary step in the decrease of energy poverty in the Netherlands.

A literature study reveals that when including energy justice in models, the focus has remained mostly
on distributive justice, especially in the context of energy poverty. Energy poverty, however, is more
than only a distributional issue. Effective policymaking and the models that inform it should account for
the diversity and complexity of participation in the energy transition, thus recognising the social, cultural
and structural dimensions involved. Recognition justice in energy models is essential to ensure that the
experiences and identities of marginalised groups are acknowledged and valued.

This study aims to demonstrate how accounting for recognition justice in energy models influences the
assessments of policy outcomes bymeasuring the percentage of the population at risk for energy poverty
every year. This is relevant in the context of energy poverty as policies that fail to recognise the diversity
in the needs and vulnerabilities of affected groups risk reinforcing existing inequalities and worsening
the problem. For this demonstration, the HESTIA model, developed by PBL and TNO, is used. This
model simulates the energy transition in the built environment for the whole Netherlands or on a more
local level, making it very suitable for analysing localised impacts of policy interventions for issues such
as energy poverty. The main research question for this thesis is therefore:

How can the integration of recognition justice in HESTIA impact the model to better capture the
consequences of energy policy interventions, measured through energy poverty?

Using a design study approach, this thesis explores the core components that make up recognition
justice and examines how these dimensions are insufficiently addressed in the current Dutch energy
policy. Furthermore, it investigates what adjustments are needed to properly incorporate these aspects
into HESTIA to account for recognition justice. To this end, model adjustments are designed and tested,
using the municipality of The Hague as a case study.

Comparing Axel Honneth’s and Nancy Fraser’s theories on recognition justice reveals that Fraser’s
theory more closely aligns with misrecognition in Dutch energy policies. Honneth’s theory of recognition
is focused on the needs of individuals and states that recognition is grounded in love, law and cultural
appreciation. Fraser thinks this is too individualistic a perspective and thinks that recognition justice
is rooted in the cultural status order. The cultural status order organises society in ways that privilege
some identities while (unintentionally) devaluing others. She defined three forms of misrecognition that
prevent participatory parity: cultural domination, non-recognition and disrespect. It occurs when societal
norms, values or cultural practices result in the oppression or disrespect of certain groups and deny them
the ability to participate in social interactions on equal terms with others fully.

With the Dutch energy poverty policy, participatory parity has not yet been achieved. Challenges in Dutch
policy making are stigmatisation, dominant norms shaping policies and certain groups remaining largely
invisible in policy making. Energy poverty policies are often short-term, one-size-fits-all policies. This
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risks systematically overlooking or misrepresenting the marginalised groups in the population, which
can exacerbate and reinforce inequalities and worsen energy poverty. Such misrecognition undermines
participatory parity.

Preventing misrecognition in the HESTIA model requires acknowledging the diversity in household
decision-making regarding retrofitting and the adoption of sustainable energy technologies. Although
HESTIA offers a detailed representation of spatial, technical, and economic processes within the energy
transition, it largely overlooks the social dynamics that shape this household behaviour. The model is
centred around investment decisions, using relative cost-benefit analysis to determine whether a home
will invest in certain technologies or insulation measures. Being a top-down model, not designed to
capture endogenous behavioural change emerging from social networks, HESTIA is not suitable to in-
corporate the diversity in the population’s behaviour required for recognition justice. To achieve this, a
multi-model design is required where, through a soft-link, an agent-based model can incorporate hetero-
geneity in households’ decision-making in HESTIA.

In alignment with the design science methodology requirements for this ABM are identified as:

1. The model has to generate outputs compatible with HESTIA to allow for exploring diverse policy
interventions and improving the assessment of their impact on reducing energy poverty.

2. The model should be able to (dynamically) process input data from HESTIA to initialise household
agent attributes and global parameters.

3. Themodel should assign each household agent a profile including income, household size, dwelling
age, home ownership status, dwelling size and energy label.

4. The model should adjust the decision-making rules for the differences in socio-demographic char-
acteristics.

5. The model should assign each agent with an attitude variable that influences their energy-related
behaviour, weighted for income and ownership-type.

6. The model should assign agents to an in-group.

7. The model should incorporate subjective norms that evolve over time and with interaction by al-
lowing each agent to form behavioural intentions based on interactions within their social group.

8. The model should convert attitudes, perceived behavioural control and subjective norms into a
probabilistic intention to adopt energy behaviours.

To recognise the differences in decision-making between households, the objective socio-demographic
characteristics and subjective behavioural characteristics which influence this decision-making have to
be included in a household’s profile. These objective attributes are household income and size, their
homes’ age, home ownership type and their energy label. The behavioural patterns are conceptualised
through the Theory of Planned Behaviour. Although often criticised for its focus on rational reasoning,
which does not fully represent the emotional, non-rational side of energy behaviour, it’s structure aligns
well with the rational way investment logic is conceptualised in HESTIA and its attributes - attitude, per-
ceived behavioural control and subjective norms - are proven to have a role in shaping energy behaviour
in The Netherlands. The resulting intention to invest per household is averaged per income group and
used to adjust S-curves in HESTIA’s investment logic, allowing it to diversify per income class.

The results show that incorporating behavioural characteristics into the investment model leads to a
reduction in energy poverty. However, the generalisability of these findings is limited by assumptions in
modelling behaviour, and the fact that the study was conducted as a case study in a single city, which
meant using localised housing data as well.

This decrease in energy poverty results from adjustments made to the S-curves, which have reduced
agents’ sensitivity to the cost/benefit ratio of investment options. As a consequence, options with a
more favourable cost-benefit ratio have, on average, become less attractive. At a lower cost-benefit,
the curves now accurately represent the higher willingness-to-pay among higher-income groups. How-
ever, the uniform method used to adjust the S-curves has also caused the tail of the curve to shift
upward. This results in a stronger attraction to options with less favourable cost-benefit ratios among
lower-income groups. Lower-income households appear to demonstrate a higher willingness to pay
than higher-income households, which may not be realistic. A random seed analysis over three seeds
shows a very limited variation, thus creating confidence in the results.
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A sensitivity analysis comparing the equally weighted base case with runs emphasising perceived be-
havioural control or subjective norms showed that, over the long term, energy poverty outcomes were
most sensitive to subjective norms, while income-class results revealed differing sensitivities between
the two runs. This suggests that the relative influence of the behavioural attributes should not be uni-
formly applied across all agents, as their effects can differ per income group. At the aggregated level,
these sensitivities are not reflected in the results. HESTIA seems to be responsive to large shifts in
adoption data, but not to smaller behaviour-driven changes.

The adjustments made in this thesis do show an interesting first attempt towards incorporating recogni-
tion justice in the HESTIA model. This study provides a contribution to the literature by being one of the
few explicitly focusing on recognition justice in energy models and including this concept through merg-
ing. Further, even though including social and ethical dimensions directly in HESTIA would improve
computational efficiency and decrease complexity, this study demonstrates how a soft-link between a
top-down and bottom-up model can aid in enhancing the social relevance of techno-economic models.

Future research could focus on extending the inclusion of household heterogeneity in HESTIA by altering
the implementation of the behavioural factors used to adjust the functional energy demand. Additionally,
future studies could test the consequences of using different behavioural theories to represent energy
behaviour or analyse the impact of policy interventions when accounting for different dimensions of
energy poverty.
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1
Introduction

Over the last years, the energy transition has been progressing alongside a complex mix of geopolit-
ical events, market dynamics, differing climate policies, infrastructure limits and increasing demands
(International Energy Agency [IEA], nd), causing a significant rise in energy prices. A critical point was
reached in 2021 and 2022, causing a global energy crisis (International Energy Agency [IEA], nd). This
has caused energy poverty to become an increasingly urgent issue on the Dutch policy agenda. In a
best-case scenario of rising energy prices, more than 6% of all households (500.000) in the Netherlands
will suffer from energy poverty by the end of 2025 (Batenburg et al., 2025). They struggle to pay their
energy bills, and some even have to choose between a proper meal and a warm home (Fryslân, 2024).
An individual is classified as energy poor when they have a low income, combined with either a house
of low energetic value, or a disproportionately high energy bill (Mulder, 2024). In this case, low-income
is defined as an income max. 30% above the minimum low-income boundary (Mulder, 2024), which in
2024 was between €12,216.55 and €36,781.05 depending on adult living circumstances (ages 18 and
over) (UWV, 2024). Energetic quality is an energy index calculated based on building characteristics,
building-related installations and standardised user behaviour.

Energy poverty disproportionately affects vulnerable groups, such as low-income families, the elderly,
and social housing residents (Jones and Reyes, 2023). It is also more prevalent among those with
lower education, women, disabled or ill people, and migrants (Ooij et al., 2023). As it impacts the
physical and mental well-being, social inequality, and housing conditions of households (Jones and
Reyes, 2023), energy poverty poses a significant concern for societal well-being. It is an increasing
concern, as research indicates that energy poverty numbers could increase by a third by 2030 (van
Berkel et al., 2021), affecting a total of 10% of the country.

1.1. Energy poverty as part of energy justice
Energy poverty is strongly connected to the concept of energy justice (van Berkel et al., 2021). Energy
justice is a conceptual and analytical decision-making tool focused on a fair distribution of the benefits
and costs of energy services globally, combined with representative and impartial decision-making in
energy policies (Jenkins et al., 2016; Sovacool and Dworkin, 2015). In this thesis, energy justice is
conceptualised as consisting of three foundational tenets, as described in McCauley et al. (2013), and
widely used in empirical and conceptual works (Wood and Roelich, 2020). These tenets are procedural
justice, distributional justice and recognition justice. Procedural justice guarantees fair participation,
distributional justice ensures an equitable share of the transition’s up- and downsides, and recognition
justice ensures all actors are acknowledged and included in decision-making (Rios-Ocampo et al., 2025).

Energy justice forces acknowledgement of the energy transition as more than a technological issue, but
one with social and political dimensions also (Sovacool and Dworkin, 2015). While energy poverty is
often framed as an issue of distributive injustice, its foundation is in recognition and procedural injustices.
In the context of energy poverty policy, including energy justice indicates where resources need to be
allocated, how democratic legitimacy can be achieved, and whose needs should be recognised and
prioritised, linking it directly to the three aforementioned tenets of justice (McCauley et al., 2013).

Energy poverty measurement carries significant recognition justice implications, such as policy resis-
tance, social divisions and political tensions (Tarasova, 2024). It can also result in amplification of the al-
ready existing injustices between vulnerable and non-energy-poverty suffering groups (Kaufmann et al.,
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2023). Energy transition policies have to recognise the diverse and complex ways in which vulnerability
influences decision-making and participation in the energy transition.

1.2. Current policies and their criticism
Since 2021, different measures have been implemented to aid households with their energy costs.
These were mainly focused on lowering the energy price or helping with paying the energy bills. Al-
though these measures helped mitigate immediate issues for a significant number of households, they
failed to acknowledge that structural barriers, such as income disparities, hidden energy poverty or poor
housing quality, significantly impact a household’s ability to manage energy costs and participate in the
energy transition (Mesdaghi et al., 2025; Mulder et al., 2023). This caused the aid to primarily help
high-energy users, no matter their income level, while neglecting vulnerable groups (Mesdaghi et al.,
2025).

Public awareness and engagement efforts aimed to inform households about policy options and mea-
sures to improve their situation often fail to reach disadvantaged groups. Information campaigns are
mostly in Dutch, excluding non-native speakers, while digital and written formats could be inaccessi-
ble for those with low literacy or limited internet access (Kaufmann et al., 2023; Mesdaghi et al., 2025).
Failure to consider these factors when designing information services may result in inaccessible or mis-
trusted advice, further excluding vulnerable groups from participating in energy-saving measures. Even
when support options are well-known, barriers are created through complex eligibility criteria or bureau-
cratic application procedures (Kaufmann et al., 2023). For example, Walker et al. (2014) estimate that
due to too specific eligibility criteria like social welfare benefits or age, there is a failure to fully recognise
the diverse experiences of fuel poverty, resulting in 40-60% of energy poor groups in Northern Ireland not
receiving the policies’ benefits, while households not in fuel poverty did qualify. This causes inequalities
to increase.

The Netherlands runs this risk as well, as applicants for subsidies or loans get rejected for reasons such
as receiving social welfare, not having a permanent employment contract, or having to pay more than
€250 in child support (Kaufmann et al., 2023). Further barriers stem from the upfront costs homeowners
must bear to qualify for subsidies, resulting in 21% of the population being unable to afford retrofits at
present, a much larger population than the 6% considered energy poor (Batenburg et al., 2025). These
barriers mean that thosemost in need of support are often excluded from the benefits of energy transition
policies, reinforcing existing socio-economic inequalities (Kaufmann et al., 2023)

The Dutch approach to energy poverty is through decentralised policy. Responsibility for energy poverty
largely falls on municipalities (van Binnenlandse Zaken en Koninkrijksrelaties, 2024). But, local govern-
ments have varying capacities and resources, resulting in uneven access to support for civilians, which
can potentially reinforce existing inequalities (Feenstra et al., 2021). This is evident, as 30% of munici-
palities have signalled they are unaware of which households need help with energy poverty, and only
35% feel they can effectively reach energy poor households (Vos, 2024).

The inconsistent local action is further complicated by the inadequate national measurement and mon-
itoring of energy poverty, which fails to capture the diversity of the problem. Different demographic
groups experience energy deprivation differently. Factors such as housing conditions, gender, migration
background or other socio-economic characteristics can significantly impact these experiences. With-
out detailed, disaggregated data, the complexity and overlapping factors contributing to energy poverty
remain largely invisible, leading to one-size-fits-all policies being implemented, which ignore the needs
of marginalised groups (Feenstra et al., 2021).

As a result, energy-poor households remain hard to identify and assist, while social and financial vul-
nerabilities persist (van Eijsden, 2025). The focus in policy making should switch from affordability and
efficiency alone to include the lived experiences of affected communities (Woods et al., 2024).

1.2.1. Energy models
In recent years, there has been an increase in the use of energy models to support decision-makers in
their policy-making. Thesemodels help policymakers explore possible transition pathways and calculate
the potential impact of various policies, which can help decision-makers better navigate the increasing
complexity of the energy sector (Henrich et al., 2021). Examples are machine-learning technologies
to detect, analyse and predict changing trends in local conditions and identify areas at risk for energy
poverty (González Garibay et al., 2023), applied for the Netherlands (Longa et al., 2021), and Europe



1.3. Problem definition 3

(Spandagos et al., 2023), or stochastic modelling used to determine the relative influence of various
parameters on energy poverty, providing insights at a household and national level, such as for Greece
(Papada and Kaliampakos, 2018). Although insightful, such models are predominantly techno-economic
and, as of today, not well-equipped to consider the ethical dimensions necessary to achieve just out-
comes (Gürsan et al., 2024; Henrich et al., 2021; Shetty, 2023). Energy models are said to often fail
in incorporating public perspectives fully, undermining the social relevance of models. This conversion
seems to be lacking due to the difficulty of quantifying social and political aspects, such as energy justice
considerations (Amin et al., 2024).

There are several strategies for integrating social aspects, such as energy justice, into models. Trut-
nevyte et al. (2019) identified bridging, iterating, and merging as key approaches. Bridging occurs when
modelling and research in social sciences happen at the same time, only meeting when researchers
discuss shared concepts. Iterating means that social science narratives are translated into quantitative
input assumptions used by the models, and potentially, outputs are used to adjust the narratives. Merg-
ing assumes that at least the key societal factors can be modelled, and thus, this strategy means an
in-depth integration of the two tracks. This either happens through structurally modifying existing models
or creating completely new models (Trutnevyte et al., 2019). Sundaram et al. (2024) highlight that most
studies stop at integrating social science narratives into model logic (iterating), through inputs, outputs
or model relationships. Embedding justice structurally into the modelling logic is rarely achieved. As a
result, energy models claim to address justice, but mainly do so procedurally through stakeholder en-
gagement, rather than embedding justice within the model logic. Ideally, justice is integrated both within
the model logic and modelling processes (Sundaram et al., 2024).

When integrating justice concepts in energy models, it seems that the focus remains mostly on distribu-
tive justice (Bal et al., 2023; Vågerö and Zeyringer, 2023), especially in the context of energy poverty
(Bouzarovski and Simcock, 2017; Menghwani et al., 2020). In their review of energy justice incorporation
in energy system models, Vågerö and Zeyringer (2023) noted that focus remains on distributive justice
and that although procedural and recognition justice are sometimes acknowledged, they are rarely quan-
tified in the model logic. Identical patterns were identified by Rios-Ocampo et al. (2025) and Sundaram
et al. (2024); distributive justice is often overrepresented compared to other tenets due to its quantifia-
bility, which makes it easier to integrate. Recognition justice is acknowledged as important, but most
models fail to account for diverse social groups or the structural barriers they face in decision-making
(Sundaram et al., 2024). It is rarely included in a meaningful way.

1.3. Problem definition
The literature described above suggests that energy poverty extends beyond a purely distributional is-
sue (McCauley et al., 2013). Effective policymaking, and the models that inform it, should account for
the diversity and complexity of participation in the energy transition, recognising the social, cultural, and
structural dimensions involved. In particular, incorporating principles of recognition justice in energymod-
els is essential to ensure that the experiences and identities of marginalised groups are acknowledged
and valued. Energy models that focus mostly on cost analysis when assessing policies have a lower
reliability when ignoring the important role of human behaviour and social equity in policy adherence
(Fattahi et al., 2020).

In this thesis, I focus on the HESTIA Model developed by the Netherlands Environmental Assessment
Agency (PBL) & the Netherlands Organisation for Applied Scientific Research (TNO). HESTIA’s primary
goal is to provide the most accurate representation of the housing stock and how it may evolve under
various influences. The model calculates the Climate and Energy Outlook (KEV) for households, es-
timating gas, electricity, and heat consumption, as well as the costs and benefits of investments for
relevant stakeholders. Through these insights into HESTIA supports evidence-based policymaking in
the built environment (van der Molen, 2023). Currently, HESTIA models households’ investment choices
for heating options based purely on techno-economic considerations. A household is modelled to only
consider the relative cost-benefits of the installation option when choosing between heating installations
when considering an investment (van der Molen, 2023), thereby overlooking behavioural differences in
population groups.

Demographic characteristics such as income levels, household size, age and gender of the head of the
household can be important influences on variations between households’ energy demand (Abrahamse
and Steg, 2009), as well as their investment behaviour. Accurately modelling the residential energy



1.4. Relevance 4

transition in the Netherlands is essential for effective policymaking. HESTIA primarily focuses on techno-
economic aspects while neglecting critical social and cultural dimensions and thus fails to align fully with
the principles of energy justice. In particular, there is a need to integrate recognition justice into energy
models, including HESTIA, to better reflect the diverse ways different population groups experience and
respond to the energy transition. This integration is vital for producing more accurate and just policy
analyses.

1.3.1. Research questions
In line with the identified problem and the requirement for integration of recognition justice in energy
models, this thesis poses the following research question:

How can the integration of recognition justice in HESTIA impact the model to better capture the
consequences of energy policy interventions, measured through energy poverty?

To structure the research process and ensure a systematic analysis of the problem, three sub-questions
have been formulated. This way, the study can, in a step-wise manner, provide a well-founded answer.
Together with the questions, their objective and research method are briefly mentioned.

1. How are misrecognition in energy policy and energy poverty connected?

• objective: To identify the theoretical framework of recognition justice and examine how its
absence shapes current energy poverty policies.

• research method: Systematic literature review

2. What is a suitable conceptualisation for modelling household energy behaviour in HESTIA?

• objective: To identify a suitable conceptualisation for modelling energy behaviour in a way
that enables integration of a form of recognition justice in the HESTIA model.

• research method: Systematic literature review

3. How does accounting for misrecognition in HESTIA affect energy poverty estimates?

• objective: To examine how incorporating recognition justice concepts affects the outcomes
of the HESTIA model, as measured through energy poverty numbers.

• research method: Agent-based modelling soft-linked to HESTIA modelling.

1.4. Relevance
This thesis aims to improve the integration of recognition justice in the HESTIA model. The focus is
specifically on how misrecognition in energy policymaking can lead to seemingly effective policies that
inadvertently reinforce energy poverty in the Netherlands. Since energy poverty aggravates social in-
equalities (Kaufmann et al., 2023), and negatively impacts the physical and mental health of those suf-
fering (Jones and Reyes, 2023), it is important that this is prevented.

Through the inclusion of social diversity in an agent-based extension of the HESTIA model, this study
focuses on how the integration of recognition justice shapes modelled household energy behaviours and
outcomes. These insights help inform the development of a more effective and equitable policymaking
tool.

By addressing these complexities, the research contributes not only to more inclusive policy making but
also advances the scientific understanding of behavioural modelling in energy models. More importantly,
this study focuses on integrating a form of recognition justice into an energy model - an approach largely
overlooked in energy model research.

1.4.1. Engineering and Policy Analysis
This research aligns perfectly with the objectives of the Engineering and Policy Analysis programme.
Through addressing misrecognition in energy policymaking and its consequences on energy poverty,
the thesis directly targets one of the systemic barriers within the grand challenge that is the energy tran-
sition. Moreover, the modelling approach aligns with the program’s modelling and analytics focus, and
it supports policymaking by decreasing the gap between social science and technical-economic models
so that policymakers can be provided with more realistic and just projections of policy effectiveness.
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1.5. Thesis outline
This chapter has outlined the problem this thesis addresses. It also includes the research objective
and questions. Chapter 2 will detail the chosen research approach and methodology, as well as outline
the encompassing research design. Subsequently, chapter 3 will detail the theoretical connection be-
tween misrecognition and energy poverty, after which chapters 4 and 5 describe the conceptualisation
of incorporating recognition in modelling. Chapter 6 describes the model formalisation, whilst Chap-
ter 7 discusses the results. Chapter 8 includes the discussion and recommendations. Lastly, in the
concluding chapter 9, the research questions are answered.



2
Research approach

This chapter describes the methodology used to explore how misrecognition in energy models and poli-
cymaking can contribute to the persistence of energy poverty in the Netherlands. Section 2.1 describes
the general research approach used, namely design science. Section 2.2 follows this by discussing the
details of the methods used for answering the different research questions. section 2.3 explains the
choice to use the municipality as the scope for the simulation.

2.1. Design science
In design science, an artefact - a model, framework or method - is developed to address a specific prob-
lem. This artefact is evaluated based on effectiveness in addressing the problem and its contribution to
theory. An artefact can also be an improvement or marginal modification to an existing artefact (Johan-
nesson and Perjons, 2021), which is how this thesis will leverage the approach; improving and modifying
the HESTIA model. Design science as a research approach brings the ability to not only understand the
problem, but to address it and to adjust the model to get closer to the solution of the complex problem.
Another benefit is that this approach is designed to be an iterative process (Johannesson and Perjons,
2021), which allows for opportunities to refine the model and further develop or adjust the underlying
theories (Carstensen and Bernhard, 2019), if required.

2.1.1. A brief overview of the design science framework
The structure of this study will be based on the 5-step method framework introduced by Johannesson
and Perjons (2021).

Problem explication: In this step, the problem and its underlying cause are identified and analysed. It is
split up into problem identification and problem analysis (Johannesson and Perjons, 2021). The problem
has been identified in chapter 1 and will be further analysed as part of the first research question in
chapter 3.

Requirement definition: In this step, the problem will be translated into requirements for the artefact
(Johannesson and Perjons, 2021). These requirements are crucial for the conceptualisation of modelling
recognition justice. They build on findings presented in chapter 3, and contribute to answering the
second research question. The requirements are outlined in chapter 4.

Design and development of the artefact: The design of the artefact is a key step in the conceptualisation
phase and contributes to answering the second research question, see chapter 5. The development of
the artefact focuses on the operationalisation of the recognition of justice in household energy behaviour,
achieved through an Agent-Based Model (ABM), see chapter 6. This model is based on input from and
used as input for the HESTIAmodel. Before model implementation, the necessary data, identified during
the conceptualisation phase, are collected and cleaned.

Demonstration of the artefact: Demonstration is the step in which the developed artefact will be used.
In this case, the modified model will be run and experimented with to assess how the incorporation of
recognition justice affects the calculations within the model. This phase also includes a sensitivity and
random seed analysis to assess the stability of the model results.

Evaluation of the artefact: This step is imperative for answering the third research question. In the design
science framework, this activity’s purpose is to evaluate the extent to which the artefact fulfils the require-

6
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ments, and it can address the problem that motivated the research (Johannesson and Perjons, 2021).
This evaluation will be done by examining how the inclusion of behavioural differences affects HESTIA’s
outcomes, specifically energy poverty, by running the model for eight years, 2020-2027, comparing the
results to those of the original model.

2.2. Research methods
2.2.1. Systematic literature review
A systematic literature review was applied for the problem explication and requirement definition steps
of the framework, which align with the first two research questions. The literature review for this thesis
is roughly based on the 12-step framework given by Kable et al. (2012). The purpose of the literature
review was threefold: To understand the current problemwith energy justice in energy poverty, the theory
behind recognition justice, and to link this to energy poverty (policy) in the Netherlands. All search terms
were applied in both Google Scholar and Scopus, as the initial round of literature search revealed that
this could yield differing results. In both search engines, the search was limited to Dutch or English
information. Initial filtering of the papers was based on titles. The remaining papers were selected
based on their relevance as determined through reading their abstracts. Appendix A shows, per article,
the search terms used.

Due to the interdisciplinary nature of this thesis and the several topics the literature review has to cover,
using a single search theme proved impossible. It can best be split into three steps, following the design
framework. Table 2.1 gives an overview of how the search terms relate to the research questions.

Problem explication
Problem identification

The application of the design science approach began in Chapter 1 with the problem identification. While
the formal explanation of the methodology follows in section 2.1, identifying the problem is not only a
component of the design science process but also a necessary precursor for determining the appropriate
research approach.

To develop a broad understanding of the field, the literature search began with a general search for
”energy justice” in both Scopus andGoogle Scholar. This initial search yielded a large volume of results,
from which five key papers were selected. The search was then refined by combining ”energy justice”
with ”energy poverty”, which returned 220 results on Scopus. Despite the volume, only five additional
papers were deemed relevant after screening titles and abstracts. To apply the theory to the Dutch policy
context, the search was refined by using (”policy” AND ”energy poverty” AND ”Netherlands”), which
yielded limited results, with three relevant papers selected for review.

Based on the identified information, a broader conceptual exploration was conducted using ((”justice”
OR ”social aspect”) AND ”energy model”) in Scopus, which returned 24 results, from which one ad-
ditional paper was included. Insights from these papers informed a more refined search, incorporating
key theoretical terms. The final search for the problem identification, using (”conceptualisation” AND
”energy justice” AND ”model”), produced 6 results, two of which were deemed useful based on ab-
stract review.

Problem analysis

As the previous literature resulted mainly in studies applying the concept, and not explaining the theoret-
ical framework, the problem analysis started with the search term applied being ( recognition justice
theory), resulting in no results through Scopus and many results through Google Scholar. Three papers
were selected.

Literature was considered relevant if it discussed energy poverty policy consequences or the connec-
tion between energy poverty and recognition justice. Combining this with previously identified literature
revealed that the search needed to be broadened to include the term ”policy instruments”. A refined
search using (”policy instruments” AND ”energy poverty” and ”Netherlands”) did result in one
additional paper, which was selected based on the same criteria. To expand the selection, backwards
snowballing was applied, which led to the identification of several additional sources. Furthermore, rec-
ommendations from my supervisory team helped finalise the literature list as presented in Appendix A.
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Requirement definition
For this third objective, the literature review required a more targeted strategy, focusing specifically on lit-
erature that explicitly identifies variables and their relationships. Based on previously identified literature,
it was identified that the focus specifically had to shift towards behavioural aspects and households, thus
extending the search field with terms such as ”households”, ”investment decision making”, ”behavioural
theory” and ”energy saving”. This resulted in three additional searches according to the following terms:
(”behaviour” AND ”energy saving” AND ”households), ( ”behaviour” AND ”energy saving” AND
”netherlands”), (”household investment” AND ”energy policy”) and (”investment decision mak-
ing” AND ”energy policy”). This resulted in 713, 32, 15 and 50 results, respectively, highlighting once
again that specificity in search terms is very important.

Nevertheless, these searches - filtered first on their title, second on their abstract and lastly on their
contents - ultimately yielded only three additional relevant papers. Further insights for this objective
were identified through both forward and backwards snowballing from the newly selected papers as well
as the previously reviewed literature.

Table 2.1: Overview of connection search terms, research questions, and design science framework steps

Search Terms Chapter Framework step

”energy justice” Ch1 Problem explication -
identification

(”energy justice” and ”energy
poverty”)

Ch1 Problem explication -
identification

(”policy” and ”energy poverty” and
”Netherlands”)

Ch1 Problem explication -
identification

(”policy instruments” AND ”energy
poverty” and ”Netherlands”)

Ch1 & Ch3 Problem explication -
identification and analysis

(”conceptualisation” AND ”energy
justice” AND ”model”)

Ch1 Problem explication -
identification

((”justice” OR ”social aspect”) AND
”energy model”)

Ch1 & Ch3 Problem explication -
identification and analysis

Recognition justice theory RQ1 Problem explication - analysis
(”behaviour” AND ”energy saving”

AND ”households”)
Ch4 Requirement definition

(”behaviour” AND ”energy saving”
AND ”Netherlands”)

Ch4 Requirement definition

(”household investment” AND
”energy policy”)

Ch4 Requirement definition

(”investment decision making” AND
”energy policy”)

Ch4 Requirement definition

2.2.2. Multi-modelling
The energy transition in the built environment describes a transition in a complex system. Modelling
such a complex system often means not being able to sufficiently incorporate the different paradigms
that make up such a system (Fishwick et al., 1994). As found in the literature review, it is difficult to
quantify social parameters, causing them to often be left out of energy models, as occurs in HESTIA as
well. Such socio-demographic parameters can be included in techno-centric energy models through the
inclusion of, for example, an Agent-Based Model (ABM) (Fattahi et al., 2020). For the artefact design, a
multi-modelling approach is used through which the HESTIA model is linked to an Agent-Based Model.
The ABM enables the incorporation of socio-demographic characteristics of households in the HESTIA
modelling logic.

In multi-modelling, there are three ways to connect the two models: hard-linking, soft-linking and in-
tegrating. With hard-linking, a reduced version of one model transfers its data to a larger model, and
both run in parallel. Soft-linking means that two stand-alone models are linked together manually, and
the processing and transferring of information between the models is iteratively controlled by the user.
Lastly, by integrating two models that internally interact through a shared model architecture (Fattahi
et al., 2020).
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The link between HESTIA and the ABM is through a soft-link. The models will communicate by ex-
changing .csv files used for model input. This is a suitable choice as the models do not run at the same
time and do not share one memory; in fact, they need to run consecutively. Both could run separately,
but in order to establish the desired integration of more agent heterogeneity in HESTIA to decrease the
misrecognition in the model, the two need each other’s output from t = n for the calculations in t = n+1.

Agent-based modelling
An agent-based modelling (ABM) is a model in which agents - a person, organisation or animal - are rep-
resented in a computer program. The actions and interactions of the autonomous agents are simulated
within a defined environment (Dijkema et al., 2013).

A socio-technical system like the one studied in this thesis is defined by intertwined social and technical
elements where human behaviour, human relationships and societal norms interact with infrastructure,
technologies and organisational frameworks (Chappin et al., 2020). ABM is very suitable for simulating
socio-technical systems, such as those examined in this thesis, due to its ability to represent heteroge-
neous agents, incorporate adaptation and learning and capture micro-level interactions (Chappin et al.,
2020; Dijkema et al., 2013; Fattahi et al., 2020).

As a form of incorporating recognition justice, this study focuses on integrating social heterogeneity into
the behavioural dynamics of the HESTIAmodel through the ABM. Themethods’ relevance and suitability
for this study are further highlighted in chapter 4.

2.3. Case study: The municipality of The Hague
The environment in which the ABM operates is the residential housing sector of the municipality of The
Hague. Concentrating on a smaller area and not the entire country significantly reduces the required
computational power and shortens HESTIA’s runtime (van der Molen, 2023). The Hague was selected
due to the broad availability of data, its diverse household composition and because, although energy
poverty is more severe outside of the Randstad, it still has a higher than average number of households
experiencing energy poverty (Klerks, 2024), making it an interesting area to test the effectiveness of the
changes. Due to the availability of historical data, the study begins in 2020. From this starting point,
the model adjusts the data based on internal interactions and developments. The simulation runs until
2030, both to limit computational demands and to avoid including the phase in which HESTIA begins
simulating newly constructed homes.

As there is some room for interpretation with this definition, for this study, the following choice was made.
A household is classified as energy poor if it falls within the low-income category and either spends more
than 10% of the upper threshold of this income bracket on energy bills, as this is in line with the threshold
used by the national association of housing associations (Aedes, nd), or has an energy label of E, F, or
G.



3
Linking recognition justice and energy

poverty

Including energy justice in energy models is fundamental to achieving just and equal policies. Academic
work on energy justice lacks a universally accepted, clear theory of justice (van Uffelen, 2022; Rios-
Ocampo et al., 2025). This introduces potential for discrepancies between model assumptions and
justice theories, especially in cases where justice modelling includes proxies for measuring, such as
energy poverty (Rios-Ocampo et al., 2025). Quantifying recognition justice aspects in energy modelling
is challenging. It risks leading to oversimplified interpretations of complex justice issues, which would
undermine the accuracy and effectiveness of models, decreasing their potential in policymaking (Rios-
Ocampo et al., 2025).

This chapter will thus focus on answering the sub-question ”How are misrecognition and energy poverty
connected?” and establish the theory of recognition justice that will be focused on in the rest of the thesis.
The chapter is split into two parts. Firstly, the two main approaches to general recognition justice will be
discussed, after which this is linked to the Dutch energy poverty policy context. Appendix A.1 describes
the literature review process that led to this content.

3.1. What is recognition?
Recognition is made up of a normative and psychological dimension. Normatively, recognising some-
one implies acknowledging a specific normative status for a person, such as a free and equal person.
Psychologically, recognition is imperative for an individual’s development of identity, since it is human
nature to depend on social feedback for self-worth (Miller, 2025). Although there are different theories
on how to interpret recognition justice, the foundation of this form of justice lies in theories from Axel
Honneth and Nancy Fraser (van Uffelen, 2022).

3.1.1. Honneth's self-realisation model
Alex Honneth’s theory of recognition justice comes together in the self-realisation model. He argues that
all injustices, including procedural or distributional, can be traced back to misrecognition.

A just society, in Honneth’s eyes, is one where recognition is available for everyone, and all can fully
develop their identity and participate as equals (Honneth, 1996). Recognition injustices can occur at
different levels of society and affect one’s relation to the self. He identified recognition as founded in
love, law and cultural appreciation (Miller, 2025; van Uffelen, 2022). Recognition through love gives one
self-confidence, through law it brings one self-respect, and through cultural appreciation it brings one
self-esteem. Honneth sees misrecognition in any of these as disrespect, which harms one’s relations
to oneself. Thus, disrespect is wrong: ”each human is worthy of having an unharmed self-identity” (van
Uffelen, 2022).

This is a very personal view of recognition as it focuses on the individual gains for people from recognition
through love, law and cultural appreciation. Because of this, Honneth’s theory of recognition justice is
very suitable to apply in the diagnostic phase of injustice. Applying this nuance can aid in finding how
and why people feel misrecognised (van Uffelen, 2022).

10
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3.1.2. Fraser's status order model
Nancy Fraser criticises this form of recognition as it focuses too much on ”identity politics” and takes
away from the relevance of distribution on the political agenda (Miller, 2025). Recognition, according to
Fraser, does not mean recognising group-specific identities but is recognising the status of all individuals
in the group as full participants in society (Fraser, 2001).

Recognition and redistribution are seen as interconnected, as cultural stigmatisation often reinforces
economic exclusion, and economic disadvantage can worsen cultural misrecognition (van Uffelen, 2022).
Thus, she advocates for an effective justice strategy that tackles both symbolic and economic injustices
together (Fraser, 1996). To achieve an effective justice strategy, recognition and redistribution should
not be addressed separately, but in parallel (Miller, 2025).

In this framework, recognition is grounded in the cultural status order (van Uffelen, 2022). The core
of the status order model is participatory parity: all people should be able to participate equally as
peers in society. Recognition ensures participatory parity through acknowledging and valuing individuals’
diverse identities and experiences, allowing everyone to engage fully and equally in life (van Uffelen,
2022). Fraser describes three forms of misrecognition which can prevent participatory parity: cultural
domination, non-recognition and disrespect (Tarasova, 2024).

Misrecognition through cultural domination occurs when cultural norms and institutional practices under-
value certain groups, preventing them from being seen as full members of society. Recognition justice,
according to this view, can be seen as targeting cultural injustices rooted in social patterns of represen-
tation, interpretation and communication (van Uffelen, 2022), which shape how groups are perceived.
There is a hierarchical order in cultural values; one is always more important than another, and these
values are deeply embedded in institutions, both formal and informal (van Uffelen, 2022).

Fraser emphasises how misrecognition is not merely an individual issue, as Honneth suggests, but
occurs when societal norms, values or cultural practices result in the oppression or disrespect of certain
groups and deny them the ability to fully participate in social interactions on equal terms with others (Zurn,
2005). This disrespect occurs when a person ”is persistently denigrated, belittled and stereotyped in
dominant discursive representations. It thus connects closely with concepts of stigma and stigmatisation”
(Simcock et al., 2021, p. 2).

Non-recognition sounds similar to misrecognition but is a category of misrecognition. It is a mechanism
through which misrecognition occurs. More specifically, misrecognition refers to an injustice where in-
dividuals or groups are denied the respect, visibility or status required for full participatory parity. Non-
recognition is a form of misrecognition where a group is ”not acknowledged, seen or ’counted’ in the
dominant discourses and value patterns of wider society” (Simcock et al., 2021, p. 2).

Recognition in the context of energy justice targets social stigmas, but also guarantees that diverse
voices are included in policy-making. Fraser argues for a focus on taking down barriers to participation
while acknowledging people’s diversity and the evolving needs of individuals and groups, but not to
solely focus on these identities (Tarasova, 2024). Affirming them could only reinforce stereotypes and
overlook structural issues. Instead, structurally change the underlying social and institutional conditions
that result in disadvantaged groups in the first place; ensure everyone can participate in society equally
and fully (Fraser, 2001). Once full participatory parity is achieved, there is recognition justice.

3.2. Misrecognition in the context of energy poverty policies
Energy poverty affects people differently; households in energy poverty should not be seen as a homoge-
nous group (Feenstra and Clancy, 2020; Mesdaghi et al., 2025). Failing to recognise the heterogeneity
within groups overlooks the diverse causes of energy poverty and leads to misrepresentation and inef-
fective policy targeting (Feenstra and Clancy, 2020; Gillard et al., 2017; Walker et al., 2014), excluding
many vulnerable households (Walker et al., 2014).

Disrespect, non-recognition and cultural domination in the residential energy transition could result in
ignoring diverse needs and decision-making processes related to energy use and investments. In policy
frameworks, this translates to certain groups being overlooked or undervalued.

Kaufmann et al. (2023) introduce the possibility that public engagement policies, such as municipal in-
formation evenings regarding retrofitting possibilities, are shaped by the priorities and biases of civil
servants; certain groups might receive more attention whilst others are overlooked, resulting in certain
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communities being excluded and less informed. In a way, this reflects Fraser’s concept of cultural hierar-
chies in the status order model, where some social groups are prioritised while others are marginalised.
Policies failing to recognise diverse social identities risk marginalising certain groups and reinforcing in-
equalities, which seems to be exactly what is happening in the Netherlands, as highlighted in section 1.3.

In the context of energy justice, Fraser’s dual approach to recognition provides an opportunity to address
the distribution inequality and exclusion that occur with energy poverty. The dynamic visualised in Fig-
ure 3.1 is evident in the Dutch policy approach, where marginalised communities can be overlooked in
the policy design, leading to inadequate support and deepening of energy poverty. Applied to the focus
of this study, Figure 3.1 is very relevant in explaining the consequences of misrecognition in HESTIA.
As HESTIA is a model used to calculate the consequences of intended policy measures, misrecognition
of household energy behaviour can cause misinterpretation of policy consequences. Those who are
misrecognised will not be accounted for in policy-making. These people are excluded from procedural
spaces, which maintains their misrecognition. This procedural injustice maintains barriers to participa-
tion in the energy transition for the misrecognised population. Unequal distribution of resources will
increase the inequalities.

Figure 3.1: A visual representation of the causal and explanatory interconnections between the three tenets of energy justice,
by Nathan Wood (Wood, 2023)

Fraser’s perspective aligns most with the challenges identified in the Dutch approach against energy
poverty visualised in Figure 3.2, where a more short-term, one-size-fits-all method risks systematically
overlooking or misrepresenting (vulnerable) groups in the population. Figure 3.2 combines the theory
on misrecognition with the patterns occurring in Dutch energy poverty policy currently to illustrate how
these are combined. In this figure, the opaque boxes illustrate the different levels of the theory, whilst
the bottom row connects these categories to policy issues mentioned in section 1.3.

Policies that do not consider the diversity in the population may overlook specific challenges faced by
households in the energy transition and consequently reinforce inequalities and hinder true participatory
parity in the energy transition. A lack of recognition from policymakers can exacerbate and reinforce dis-
tributional inequalities and worsen energy poverty ( Figure 3.1). It is imperative to move beyond stereo-
typical understandings of energy needs if interventions and policy are to have an effect (McCauley et al.,
2013; Walker and Day, 2012). Applying a one-size-fits-all understanding would lead to undercounting
and hiding the needs of vulnerable households (Snell et al., 2015).
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Figure 3.2: Fraser’s theory of misrecognition linked to Dutch energy poverty policy



4
Model requirements

Chapter 3 establishes the theoretical framework that links misrecognition to Dutch energy poverty poli-
cymaking. Aiming to take a step forward in preventing misrecognition in energy modelling, this chapter
outlines the key factors required to conceptualise a heterogeneity of households in HESTIA, thereby
improving the model. In line with the design science method, these key factors will be summarised as
the requirements for the to-be-designed artefact in this chapter.

Improvement of a model according to design science can relate to efficiency, usability, maintainability, or
other aspects of the artefact (Johannesson and Perjons, 2021). For this study, it will be used to increase
HESTIA’s usability and correctness. Usability is the effectiveness, efficiency and ease with which a user
can use an artefact to achieve a goal (Johannesson and Perjons, 2021). By allowing for more detail
in household behaviour, to improve the simulation of household investment decisions in HESTIA, the
model will be more effective in calculating the KEV, thus improving its usability. Secondly, correctness, a
quality only applicable to models, is the degree to which a model corresponds to the domain it represents.
Correctness in this application can also be seen as accuracy (Johannesson and Perjons, 2021). As the
goal is a more accurate representation of reality by accounting for differences in decision-making on
energy consumption and savings in the population, to ultimately create a more effective and equitable
policymaking tool, the correctness of the model can also be improved.

The first section of the chapter introduces the high-level requirements, which help outline the structure
of the artefact to be designed. Once these are established, the low-level requirements will specify the
functional elements that must be incorporated to ensure the artefact is fit-for-purpose.

4.1. Why does HESTIA need a separate artefact?
The Netherlands Environmental Assessment Agency (PBL) aims to include more behavioural dynamics
in HESTIA. This would allow the model to be more widely used for socio-economic questions. While it is
already positioned as a tool for socio-economic analysis (Tigchelaar, 2023), its current techno-economic
focus mainly frames the energy transition in the built environment as a technical challenge solvable
through retrofits. HESTIA offers a detailed representation of spatial, technical, and economic processes
within the energy transition, but it largely overlooks the social and behavioural dynamics that make
up households’ energy behaviour. Investment decisions are simulated by first determining whether a
household considers an upgrade to their dwelling, based on the lifespan of existing components, reno-
vation opportunities and policy incentives. The model will assess various investment options for a home,
considering technical possibilities and policy.

A serious effort is made to include behavioural diversity among households in their decision-making
through the incorporation of varying activation probabilities, for example, based on the range of nominal
lifespan of appliances and several building components. Nevertheless, the model simulates investment
decisions by assessing the attractiveness of different options for each household based only on the
cost-benefit ratio of each option (van der Molen, 2023).

A corrective factor ís included to compensate for the lack of consideration of non-financial and non-
rational factors (van der Molen, 2023), but this is a large simplification and neglects factors that make
up a household’s identity, which impacts how they make investment decisions. For these calculations,
there is once again that one-size-fits-all assumption, which can lead to blind spots in policy assessment.

14
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Furthermore, HESTIA allows users to scale the demand for functional energy products in real-time
(van der Molen, 2023). This behavioural adjustment factor modifies energy consumption based on user
assumptions and is supposed to reflect actions such as reducing shower time to save energy based on
a sustainability concern. The model applies this factor across multiple domains, including space heat-
ing, cooling, domestic hot water, electrical equipment, and cooking. In its current version, HESTIA does
not support the specification of behavioural factors for distinct building or population groups; instead, a
uniform factor is applied to all resident objects (van der Molen, 2023). Again, applying a one-size-fits-all
strategy.

The model currently fails to account for misrecognition as theorised by Fraser, which emphasises how
cultural norms and institutional practices systematically undervalue or marginalise certain social groups
through the denial of their needs, identities, and modes of interaction. As HESTIA reduces individuals’
diversity to singular behavioural profiles based on dominant norms (van der Molen, 2023), certain groups
are undervalued, and thereby their experiences, constraints, and motivations are ignored. Assuming
uniform, rational decision-making across all households, failing to recognise behavioural heterogeneity,
thus constitutes a form of misrecognition. This necessitates a shift toward the household perspective,
whereas HESTIA has a technological, stock-based perspective, recognising households not merely as
a passive unit within the built environment, thereby introducing a bottom-up view of the system.

While HESTIA is a powerful tool for assessing policy impacts and the influence of investments, it is a
top-down model, not designed to capture social interactions between households. Investment decisions
in HESTIA are primarily driven by cost-benefit calculations, activation moments, and policy impulses,
all specified exogenously through scenario-based input and static behavioural profiles (van der Molen,
2023). As such, the model does not include a structural representation of dynamic, endogenous be-
havioural change resulting from social networks, shifting attitudes, or peer influence.

To bridge this gap, a complementary approach is needed; one that simulates heterogeneous households
interacting with each other and their environment, and allows for behavioural change from the bottom up.
These requirements align with the core principles of Agent-Based modelling. ABMs seek to replicate
real-world concepts, actions, relations or mechanisms by simulating the behaviour of heterogeneous
agents within a defined environment (Nikolic et al., 2013b; Anderson et al., 2013). Instead of assuming
uniformity, ABM enables the exploration of complex, dynamic systems through a bottom-up perspective,
simulating individual decisions and interactions and capturing how this affects macro-level behaviour
(Derkenbaeva et al., 2024). This leads to the following conclusion for the required artefact:

Artefact definition

The artefact should be a separate agent-based model, in which households are the agents.

As the artefact is a separate model, it must produce results that can effectively interact with HESTIA
and its inputs. This ensures that household heterogeneity, which is identified as imperative for avoiding
misrecognition in the model, is incorporated in the model. Consequently, the high-level requirement for
the artefact becomes:

Requirement 1

The model has to generate outputs compatible with HESTIA to allow for exploring diverse policy
interventions and improving the assessment of their impact on reducing energy poverty.

4.2. Household requirements
It is increasingly acknowledged that people do not always make their energy-related decisions based on
economic logic alone. Their choices are shaped by the social contexts and interpersonal relationships
(Derkenbaeva et al., 2024), rather than the economically optimal choice like in HESTIA. To effectively
include diversity in energy decisions, it is important to understand: (1) which household characteristics
contribute to this diversity, and (2) how these characteristics drive energy decisions.

Trotta (2018, p. 530) distinguishes between energy-saving behaviours and energy efficiency investment
behaviours. Vasseur and Marique (2019) makes a similar distinction, distinguishing between technical
and behavioural energy saving measures. The resulting total set of categories, henceforth referred to as
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energy behaviour, represents the full range of actions and patterns related to energy use in the context
of the HESTIA model.

• Household energy consumption (HEC) - standard levels of energy use;

• Energy saving behaviour - which are actions that can be executed daily at home. These actions are
often related to energy consumption through electricity, water or heating (Nie et al., 2020; Niehoff
and Kuttschreuter, 2021; van der Molen, 2023);

• Energy efficiency investment tendencies.

On a household level, multiple studies have analysed the factors influencing energy behaviour. Although
they identified some significant factors of influence, determining the specific contribution of one factor
to a home’s energy use has proven difficult (Vasseur and Marique, 2019). Results differ per study due
to, for example, different datasets being used and different areas being analysed. Nevertheless, there
is a consensus on the key role of individual characteristics and how these should be split into objective
and subjective factors. Combined, objective and subjective factors account for a household’s energy
behaviour (Guo et al., 2018).

Linking the ABM to the HESTIA model first includes extracting data from this model. This puts forward
a crucial requirement. HESTIA is calibrated based on real-world data, shaping the characteristics of
the dwellings in the model (van der Molen, 2023). This data provides details for the ABM, such as
household demographics and socio-economic variables, and energy demand. This data is crucial for
the initialisation and decision-making of the agents in the ABM. As such, the ABM has to reflect up-to-
date conditions and should be able to dynamically integrate HESTIA’s data, to stay up-to-date during
whilst running. Moreover, HESTIA contains policy and scenario data which provide insights into existing
and future regulations which create the external conditions in which agents operate and influence their
investment decisions. Accordingly, the model’s environment must be structured to include these inputs.

Requirement 2

Themodel should be able to (dynamically) process input data fromHESTIA to initialise household
agent attributes and global parameters.

4.2.1. Socio-demographic characteristics
Various studies have analysed the socio-demographic determinants of energy behaviour (Abrahamse
and Steg, 2009; Abrahamse et al., 2011; Brown et al., 2023; Guo et al., 2018; Mashhoodi and van Tim-
meren, 2018; Mashhoodi et al., 2019; Niamir et al., 2020; Zhang et al., 2018). These studies examine
household characteristics such as average income, household size or number of family members, aver-
age age in the household, and the type of dwelling. Other frequently considered factors include building
age, dwelling size, level of education, gender, and the overall energy quality of the home. Factors identi-
fied to be significant are context-dependent across the various areas investigated. For studies focusing
on the Netherlands, factors identified to be significant are:

• Household income: This can be seen as economic comfort. A higher income is generally associ-
ated with a higher tendency to invest in energy-saving technologies (Niamir et al., 2020), such as
house insulation or solar panels. Households with a lower income are more inclined to increase
their energy-saving behaviour in an attempt to decrease their monthly bills - this is less of an issue
for people with higher economic comfort (Niamir et al., 2020). Higher incomes are associated with
increased energy consumption (Abrahamse and Steg, 2009; Abrahamse et al., 2011; Mashhoodi
et al., 2019; Niamir et al., 2020; Vasseur and Marique, 2019).

• Household size: Logically, household size generally has a negative relationship with the house-
hold’s total energy consumption (Niehoff and Kuttschreuter, 2021). Mashhoodi et al. (2019) also
identified that within the Netherlands, indicators can function as either local or national determi-
nants. Household size, for example, has been identified as a local determinant. Specifically for
The Hague, it identified household size to have a negative coefficient related to HEC. A larger
household size indicates a lower HEC per capita. According to Mashhoodi et al. (2019, p. 402),
this finding is in line with other studies and caused by economies of scale in large households.

• Building age: Several dwelling characteristics play a role in HEC as well as energy-saving invest-
ments. Older buildings are generally less energy-efficient and thus associated with higher HEC
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(Mashhoodi et al., 2019). This association is weaker in the Randstad than outside (Mashhoodi and
van Timmeren, 2018), but as this thesis is limited to one area within the Randstad, distinguishing
between strengths for this factor is unnecessary.

• Home ownership: Ownership status of a dwelling is a strong predictor of energy-saving invest-
ment tendencies (Mashhoodi et al., 2019; Niamir et al., 2020; Vasseur and Marique, 2019). As
a renter, there is usually less access to options to avoid energy poverty (Feenstra and Clancy,
2020).

• Energy label: Energy label is also identified as having a significant influence on energy saving
behaviour, specifically heating and cooling (Niamir et al., 2020). A lower energy label is assigned
to a home due to its higher energy loss. This loss generally gives a higher motivation to decrease
HEC to save on energy costs.

Requirements resulting from this list of variables are:

Requirement 3 & 4

• The model should assign each household agent a profile including income, household size,
dwelling age, home ownership status, dwelling size and energy label.

• Themodel should adjust the decision-making rules for the differences in socio-demographic
characteristics.

Interestingly, there seems to be a conflict on whether education levels have a significant impact on energy
behaviour. Wang et al. (2023) found that in China, education levels had a positive and signification effect
on HEC. In Ireland, however, Leahy and Lyons (2010) found it to have an insignificant effect. For the
Netherlands, Vasseur and Marique (2019, p. 19) found no significance for the influence of education
on taking technical energy saving measures and barely any significance for behavioural energy saving
measures. It was only found to be significant for ”turn off the lights when you are not there”. Niamir et al.
(2020) states the opposite, highlighting that the probability of households investing and their education
levels are highly correlated and that education levels play an important role in the energy transition.

Niamir et al. (2020) focus on Overijssel, whilst Vasseur and Marique (2019) use a dataset representative
for the entire Netherlands. As Mashhoodi et al. (2019) found that the influence of socio-demographic
factors varies across different locations within the Netherlands, and given the distinct characteristics of
the Randstad compared to other regions, it is not logical to adopt the conclusions from Niamir et al.
(2020). A broader, nationally representative conclusion is therefore more appropriate. For this study,
education is thus seen as not significant.

4.2.2. Behavioural characteristics
In the literature, there is a consensus that energy behaviour decisions are partly determined through sub-
jective characteristics grounded in behavioural theory. Subjective factors reflect individual behavioural
attitudes, preferences, and perceived behavioural control (Zhang et al., 2018). Different studies apply
different behavioural theories and test the influence of different subjective characteristics. Several stud-
ies prove that attitudes, subjective norms, and perceived behavioural control shape energy behaviour
(Abrahamse and Steg, 2009; Conradie et al., 2023; Abrahamse et al., 2011). These are aspects part of
the Theory of Planned Behaviour (TPB) by Icek Ajzen (Ajzen, 1985).

According to the TPB, behavioural intentions shape actual behaviour (Ajzen, 1985). These intentions
are influenced by three core components: attitude towards the behaviour, subjective norms and per-
ceived behavioural control. Attitude refers to an individual’s overall support for or against the behaviour.
Subjective norms capture the perceived social pressure from others to perform this behaviour (Guo
et al., 2018). The Theory of Reasoned Action states that attitude and subjective norms are the key de-
terminants of an individual’s intention towards a behaviour. The TPB expands the Theory of Reasoned
Action by including Perceived Behavioural Control (PBC) (Guo et al., 2018). This refers to a person’s
perception of their ability to perform a certain behaviour (Ajzen, 1985).

A person can have a positive attitude towards taking an action and can experience support from their so-
cial circle, but if they perceive that they are missing some crucial resources, they may still not undertake
that action. The interaction between the three variables differs per type of behaviour and per individ-
ual. The relative importance of each factor can vary depending on the behaviour and the individual’s
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characteristics (Ajzen, 1985).

TPB applied to energy behaviour
Applying the TPB to household energy behaviour, Abrahamse et al. (2011) found that intentions to reduce
HEC were positively related to attitudes and perceived behavioural control. Notably, there seem to be at
least two types of relevant attitudes: attitudes towards adopting energy-saving measures and attitudes
towards taking technical measures, such as investing in energy-efficient technologies (Nie et al., 2020).

Nie et al. (2020) reports estimates which indicate that technological measures are closely linked to in-
come and home-ownership. For example, renters were initially found to be 28.6% less likely to invest
in improving house insulation, but this estimate dropped to 26.3% when controlling for household char-
acteristics such as income and ownership. Higher-income households have a higher willingness to pay,
suggesting a more positive attitude, and are thus more likely to invest in technical improvements.

Requirement 5

The model should assign each agent an attitude variable that influences their energy-related
behaviour, weighted for income and ownership type.

Household decision-making tends to be shaped by interactions with peers (Niamir et al., 2020). Agent
interaction does not occur in isolation. It is not limited to a single agent’s unique characteristics. It occurs
through a summation of individual behaviour and the social and spatial structure of their environment.

Agents’ behaviours are affected by their interpretation of their neighbours’ and acquaintances’ behaviour
(Ebrahimigharehbaghi et al., 2022). The influence between agents is not just a function of their charac-
teristics but also of their geographical location.

de Vries (2020) highlights that individuals often align their behaviour with people in their ”in-group” - those
they feel connect to, such as neighbours or friends. In social comparison, people assess and adjust their
behaviour based on how they believe others act, especially when it comes to sustainability. These so-
cial norms can have an even stronger influence than personal attitudes (de Vries, 2020). Households’
behaviour is thus influenced by the dynamics of their social network. Households can experience de-
scriptive or injunctive norms. Descriptive norms are effective as they ”describe” the desired behaviour
of the in-group. The household sees what their in-group is doing and adjusts itself accordingly, to gain
their in-group’s approval. Injunctive norms are more intuitive. Households perceive a certain behaviour
as in line with their in-group and thus adopt that behaviour (de Vries, 2020).

A household’s ability to follow the social norms of its in-group is important to how they are seen and
accepted by their in-group. This serves as a big motivator to adhere to these social norms (Davoudi et al.,
2014). This motivation is so strong that normative feedback (comparing your energy use to another’s)
is more effective than informative feedback (receiving information on your energy use) (Davoudi et al.,
2014; de Vries, 2020). Accordingly, requirements five and six are formulated as necessary conditions
for the model.

Requirement 6 & 7

• The model should allow agents to assess if other agents belong to their in-group.
• The model should incorporate subjective norms that evolve over time and with interaction
by allowing each agent to form behavioural intentions based on interactions within their
social group.

It has been decided not to conduct an original survey to test which behavioural variables or theories are
influential on energy behaviour in The Hague for multiple reasons. Firstly, the goal of this study is not to
collect new data and prove hypotheses on behavioural theories that are applicable to energy behaviour.
The goal is to show if and how the inclusion of behavioural variables as a form of recognition justice
influences the outcomes of the HESTIA model. Secondly, due to time restrictions of this study, including
original surveys and their data analysis would make the scope of the study too large. Thirdly, the Theory
of Planned Behaviour is a common theory used to analyse energy behaviour (Derkenbaeva et al., 2023)
and its assumptions of rational decision making are in line with the investment-decision-making structure
in HESTIA.
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Requirement 8

The model should convert attitudes, perceived behavioural control and subjective norms into a
probabilistic intention to adopt energy behaviours.



5
Model conceptualisation

Following the definition of the requirements for the artefact, the next step in the design science framework
is the design and development of the artefact. This chapter will detail the concept formalisation, following
the conceptualisation of misrecognition in energy poverty policy and its prevention in models through
the requirements. Together with chapter 4, this chapter answers the sub-question ”What is a suitable
conceptualisation for modelling household energy behaviour in HESTIA?”.

5.1. Model design
This section discusses in detail the conceptualisation of the ABM and its link to HESTIA, also visually
represented in Figure 5.4.

5.1.1. Investment logic in HESTIA explained
Section 4.1 briefly discusses how, despite its technical detail, HESTIA overlooks the important people-
centred perspective when assessing changes in functional energy demand and investment behaviour.

In the model, installations are used to meet the demand for different functional products. Functional
products are installations used to meet functional demand. A distinction is made between functional
demand and meter demand. Functional demand is the energy requirement of a household, while the
meter demand is the actual amount of energy consumed to meet the energy requirement (van der Molen,
2023).

The fuel for these installations can differ from electricity and gas to wood pellets and biomass. In HESTIA,
installations are distinguished between being used for space heating (RV), water (TW) and cooling (KD)
(van der Molen, 2023). When an agent makes an investment decision for retrofitting their home, there
is a choice between improving insulation levels, one or more of the installations or both (van der Molen,
2023).

To allow for a more realistic representation of reality, not every household will consider investing in all
attributes of their home every year. Considering an investment in HESTIAmeans that a part of a dwelling
is ”activated” (van der Molen, 2023).

”Activation” means that a selected group of households are activated to look at all investments that are
possible for their home. A dwelling is eligible for activation when a building component or installation
reaches the end of its service life, during renovation or a move, or if policy mandates it. Renovation
occurs when more than 2 building components are activated at the same time, due to their lifespan
ending. A moving moment occurs randomly based on a set probability per year. If a moving moment
occurs, all building components and installations are activated for retrofitting, to simulate a new occupant
renovating their new home before moving in (van der Molen, 2023).

There are three options for activation (van der Molen, 2023):

1. ’ProductActief’ (English: product active), meaning that investment in installations is considered.

2. ’GebouwActief’ (English: building active), investment in insulation improvement is considered;

• In a dwelling’s building envelope, there are ten building components which can be eligible
for insulation improvements: windows (ground floor) (RO), windows (upper floors) (RB), roof

20
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Figure 5.1: Steps in investment logic, left: insulation track, middle: installation track, right: non-activated dwellings (van der
Molen, 2023)

(flat) (DP), roof (pitched) (DS), doors (DR), panels (PL), floors (VL), facade (MG), cavity wall
(MS), and cracks (KR).

3. A combination of these.

In HESTIA, the investment logic can follow one of three pathways: the insulation track (Dutch: iso-
latiespoor), installation track (Dutch: installatiespoor) or remain inactive. If a property is activated for
both tracks, it starts along the insulation track. Once an insulation ambition has been selected, it moves
to the installation track to explore the remaining relevant building options (van der Molen, 2023).

The insulation track focuses on improving a building’s thermal performance. Given that the total number
of possibilities is over a million, the model narrows the choices to five distinct and technically feasible
sets of measures: insulation ambitions (Dutch: isolatie ambitie) (van der Molen, 2023).

The installation track follows a similar structure. Applicable installation types (e.g., boiler, hybrid, or all-
electric (section C.3)) are identified based on infrastructure compatibility, policy eligibility, and insulation
level (van der Molen, 2023).

An initial selection is then made by choosing one option per system category. From these three options,
eventually one will be chosen, with each category having an equal chance of being selected. These
tracks are visualised in Figure 5.1.

The initial selection is based on the technological possibilities of a home; is the right infrastructure and
insulation level present, and is an investment option available, according to policy? For each possible
option, the odds that this option is selected are calculated based on its relative cost-benefit. The top
three installation options (one for each category of boiler, hybrid and all-electric) and 1 set of insulation
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Figure 5.2: Example S-curve concept

options (one option for each of the ten building components) are selected. For these final options, the
odds and probability of selection are calculated once more van der Molen (2023).

In the model, the selection of insulation measures and installation options is based on a probabilistic
calculation that uses S-curve logic to reflect differences in household behaviour and ambition.

For each insulation ambition level (e.g., Low, Medium, High), each possible insulation measure and
each available building option, an S-curve defines the likelihood that a measure will be chosen. These
curves are parametrised by a β coefficient, which controls the steepness of the curve and reflects the
sensitivity of an option’s attractiveness to the cost-benefit ratio, and a P50P point, representing the cost-
benefit threshold at which 50% of the population would be expected to adopt the option based on its
attractiveness (van der Molen, 2023).

There are three S-curves specified in the model:

• S-curve insulation measures

– Per insulation measure (combinations of building component and insulation level N1 to N4)

– Broken down by property type

• S-curve investments

– Per insulation ambition (none/low/medium/high/extreme)

– Broken down by property type

– Broken down by building option category

• S-curve building options

– Per building option

– Broken down by property type

The S-curves are based on a cumulative normal-distribution function (van der Molen, 2023), a form of
a sigmoid function as in Equation 5.1. It resembles the gradual adoption of a technology, with a low
adoption at a very high cost, a growing adoption as the costs decrease, and a plateau of the height of
adoption at the lowest cost option. These S-curves, in a way, are the closest to behavioural diversity in
the model structure as they reflect differences in perceived attractiveness and adoption probabilities of
investment options. The agent heterogeneity in investment decisions is thus integrated in the HESTIA
model through this logic.

A(cost/benefit) = 1

1 + exp (β · (cost/benefit− P50P))
(5.1)
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5.1.2. Agent-based model
The ABMwill be populated with agents based on a synthetic populationmeant to resemble the population
of The Hague. Agent attributes are initialised using secondary survey, census and HESTIA data. The
initialised agents interact, causing them to adjust their energy behaviour, following the Theory of Planned
Behaviour. Through the requirements, defined in chapter 4, the conceptual model for the ABM can be
established. In this conceptualisation, the system, agents, their states and their relationships are officially
defined (Nikolic et al., 2013a).

These features can be summarised as follows:

• Agents: Households, living in the municipality of The Hague in the Netherlands. Each household
has a unique profile comprising socio-demographic, household and behavioural characteristics.
The agent decision rules are grounded in the Theory of Planned Behaviour subsection 4.2.2.

• Agent heterogeneity: To accurately simulate the demographic diversity of the population, and en-
sure compatibility with HESTIA, a synthetic population is constructed by combining the existing
synthetic population from HESTIA and survey data from the case-study region, based on the re-
quirements identified in chapter 4. This approach can be further justified by the aforementioned
time constraints, which limit the opportunities to conduct primary data collection on household
profiles and their energy behaviour. The agents are initialised according to the profile given in
Figure 5.3.

Figure 5.3: Agent profile combining socio-demographic, dwelling and behavioural characteristics

• Relationships: The agents interact through their social networks. An agent’s opinion about their
energy behaviour can be changed through these relationships. As this study has a scope limited
to The Hague, social networks are limited to neighbours only. These neighbours are identified
using geographic proximity, using each household’s assigned coordinates. A household’s social
network, including friends and family, extends beyond the borders of the municipality. Due to the
limited geographical scope of this study, those social connections cannot be included. To avoid
wrongly and forcefully restricting every household’s social network within the city, friends and family
are excluded from the analysis.

• Environment: The environment in which the agents exist refers to the built environment of the
municipality of The Hague. It provides the context in which the influence of policy measures,
energy prices and climate scenarios will be tested.

• Time step: In HESTIA, investment occurs once a year. To align with this time step, one step in the
ABM also resembles a singular year.

5.1.3. Background of the applied theories
Theory of planned behaviour
Beyond structural and socio-economic attributes, agents are enriched with behavioural variables that
influence their decision-making processes, based on the Theory of Planned Behaviour. A recapitulation:
the theory states that an agent’s intention to act is the result of a decision-making process dependent
on three attributes: attitude, subjective norms (SN), and perceived behavioural control (PBC) (Ajzen,
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1985) (subsection 4.2.2). In this thesis, a household can demonstrate two types of behaviour: energy
saving and investment in energy efficiency measures for the home. For these intentions, the attributes
are defined as:

• Attitude towards investment: Does the agent see investing in energy efficiency measures as posi-
tive and beneficial?

• Attitude towards saving energy: Does the agent see decreasing functional energy use as positive
and beneficial?

• Perceived behavioural control of investment: Does the agent feel they have the resources and
opportunities to make an energy investment

• Perceived behavioural control of energy saving: Does the agent feel they could decrease their
energy use without being uncomfortable, and will this have any actual positive consequences for
climate change?

• Subjective norms for investment: How much pressure does the agent experience from their social
circle to invest or not invest in energy efficiency measures?

• Subjective norms for energy saving: How much pressure does the agent experience from their
social circle to change their energy consumption behaviour?

This conceptualisation is further elaborated and formalised in the next chapter.

Social identity theory
Social identity theory (SIT) is applied to determine whether an agent will be influenced by the opinion of
their neighbour. The theory states that people categorise themselves and others into groups (in-groups
vs. out-groups), and want to improve their self-esteem by aligning themselves more with their in-group.
Individuals often adopt aspects of the behaviour of others in their in-group, including norms (Worley,
2021).

The SIT applies to the agents in the ABM in a few steps. Firstly, social categorisation. People will classify
themselves and others into social groups; households will categorise themselves and their neighbours
into groups based on their energy behaviour (McLeod and Guy-Evans, 2023). In this thesis, the char-
acteristics that determine if neighbours are considered to be in a household’s in-group are household
size, ownership type, installations used for supplying their energy demands, income class, energy use,
dwelling type and energy label.

The next step is social identification. If a household considers itself similar to their neighbour, they will
start mirroring their norms, values and behaviours (McLeod and Guy-Evans, 2023). The more profile
features two neighbours have in common, the more they see each other as part of their in-group and
the more influence they have on each other’s behaviour. The total pressure of an agent’s neighbour
interactions in a year nudges the household to adjust its attitudes for the following year. To adhere more
to the behaviour of their in-group, decrease social friction and maintain group cohesion. This can mean
a positive or negative adjustment.

Thirdly, there is the social comparison. Individuals compare their groups to others and favour their group,
leading to in-group favouritism (McLeod and Guy-Evans, 2023; Worley, 2021). Households will adjust
their intentions to invest or save energy based on how strongly they feel their neighbour is in their in-
group and their investments. If their neighbour belongs to their out-group, they will feel justified in not
having similar attitudes as someone ”not like them” and not adjust their behaviour.

5.2. Designing the multi-model link
The agent-based model will, per time step, result in an intention to invest per agent. This value will
be averaged per income group. Based on this value, per income group, the S-curve variables will be
adjusted to introduce more heterogeneity in the HESTIA model. These intentions will be calculated at
the end of year t, and determine investment decisions for the following year t+ 1. This means that the
intention for t = 2020 impacts investment choices in 2021, the intention for 2021 impacts investment
choices in 2022 and so forth. By using a soft-link approach to connect HESTIA with the ABM, a hybrid
model is created that offers a solution for the top-down approach of HESTIA. Soft-linking these models
allows both to be developed, run and tested independently (Fattahi et al., 2020). Intermediate data can
more easily be analysed and validated.
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This approach does come with its challenges. As the twomodels are linked through the S-curve data and
income groups, the data must be correctly matched during the exchange. Connecting the two models
means accommodating their differing levels of aggregation. While HESTIA performs calculations at a
dwelling level, its outputs are aggregated to at least a neighbourhood level. The ABM, on the other
hand, operates and reports at the household level. This difference introduces a challenge for the correct
matching of the data. The ABM makes it possible to introduce more diverse, household-level variation
into the normally homogenous adoption pattern described by HESTIA’s S-curves. At the same time,
these S-curves present boundaries to the inclusion of the ABM’s output.

Using each agent’s intention to invest to create their S-curves would result in an unmanageable number
of curves, resulting in excessive computational demand. As a compromise, investment intentions are
averaged per income group. This reduces the number of S-curves per investment option to six; one per
income class. This maintains a realistic balance between more heterogeneity and the computational
feasibility of HESTIA.

Figure 5.4 gives a visual representation of the conceptual structure of the integrated model, highlighting
the interaction between the ABM and HESTIA.
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Figure 5.4: Conceptualisation multi-model design

5.2.1. Linking the model design to recognition justice
This thesis represents only a first attempt at including recognition justice in HESTIA, which has to be
done based on the availability of secondary data. The inclusion of recognition justice has been limited
to what is feasible given the current data constraints. The available data is on energy behaviour and
socio-demographic factors across income groups. HESTIA focuses on the cost-effectiveness of energy
investments. Thus, an accessible entry point for more diversity in HESTIA, which is seen as the first
step towards a more just HESTIA, is through income-based behavioural differences.

Reflecting back on Figure 3.2, in Figure 5.5, the link between the ABM and HESTIA through the in-
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vestment logic means that this simulation primarily focuses on highlighting misrecognition as cultural
domination. This sub-group of misrecognition translates to dominant norms shaping policies. The pa-
rameters defining the S-curves are based on calibration, to reproduce past investment behaviour as
accurately as possible (van der Molen, 2023), thereby implicitly reflecting dominant norms and average
patterns that have historically shaped household decision-making. By adding more socio-demographic
detail to households in HESTIA, the uniform application of behaviour is disrupted. It will be tested if this
offers a way to reduce misrecognition through improved representation of household circumstances.

Figure 5.5: Fraser’s theory of misrecognition linked to Dutch energy poverty policy targeted in the simulation

A more complete inclusion of recognition justice would require more and differently disaggregated data.
To capture non-recognition, data is required on the cultural diversity of households and how different
backgrounds shape energy behaviours and influence responsiveness to policy interventions. While
MilieuCentraal identified different patterns in energy behaviour for different cultural backgrounds (de la
Haije, 2024), there is seemingly a lack of quantitative data on these patterns. Including these dimensions
would require strong assumptions about behaviour, risking oversimplification or misrepresentation of the
affected groups.

Similarly, to account for energy poverty not being properly defined, which is both disrespect as well as
non-recognition, various new definitions and measurements of energy poverty would need to be imple-
mented and systematically compared, which in itself would constitute a separate research problem. By
increasing the socio-demographic details of households in the model, the S-curves, based on calibration
averages which are shaped by the dominant behaviour, are more diversified, so it is an attempt to show
how, when accounting for this diversity, policies may have different effects. The models are conceptu-
ally aligned, understanding each other’s information, but they are not integrated through shared code or
direct software interfaces.

By establishing a soft link between the ABM and the HESTIAmodel, and modifying HESTIA’s investment
logic to reflect agent-specific characteristics, recognition justice considerations are directly embedded
within the model structure. This aligns with the merging strategy proposed by Trutnevyte et al. (2019),
representing a deeper integration of justice aspects into the modelling process. This study accounts for
recognition justice by incorporating agent heterogeneity through diversified agent profiles; these profile
characteristics (in)directly influence agents’ investment choices in HESTIA. Household heterogeneity
impacts the investment logic, meaning that recognition justice is embedded in the model dynamics,
instead of remaining exogenous.

5.3. Key Performance Indicators
The impact of the adjustments to the HESTIA model will be measured by looking at the energy poverty
distribution across the Hague. As mentioned in the section above, although flawed, the definition of
energy poverty will not be changed, meaning that TNO’s definition of energy poverty will be used to
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measure its prevalence in The Hague.

Energy poverty is assessed based on several indicators. Low income, High energy cost (LIHE) or Low
income, Low energetic quality (LILEK); the household has (1) a low income, which is a maximum of
130% of the low-income threshold (Centraal Bureau voor de Statistiek, 2024a), and (2) either has a high
energy bill, or lives in a dwelling with low energetic quality (Loos, 2024). In the case of LIHE, a high
energy bill is defined as a bill higher than the average energy bill of homes with an energy label C, as
this is used as the reference point for the typical median energy bill (Loos, 2024).

Dwellings are classified as having poor energetic quality if their energy consumption is higher than the
average expected use of dwellings with an energy label C (TNO, nd). This can occur with any energy
label, although usually it happens with dwellings with energy labels D, E, F or G (Loos, 2024). To apply
these indicators, everyone in the lowest income class is included in the calculations. Whilst it could
be that their income is higher than 130% of the low-income threshold, this is unknown due to treating
income as a categorised variable, and it thus has to be assumed that everyone in this category could
qualify for energy poverty if they have low energetic value or high energy cost. This introduces an
important limitation. Households can be classified as energy poor even if their income exceeds the
income boundary set for energy poverty. This broad classification likely leads to some misrecognition,
as not all households in this group will experience energy poverty.

This is why the important distinction is made in this report. Households are not classified as energy poor
but as at risk for energy poverty. This distinction is crucial, as avoiding premature categorisation helps
reduce the risk of incorrect assumptions and misrecognition and ensures a more nuanced interpretation
of the results.

Although the High Energy Quotem (HEQ) is normally used as an indicator of energy poverty as well,
identifying any household that spendsmore than 10% of their income on their energy bills as energy poor,
despite their income (Centraal Bureau voor de Statistiek, 2024a), it has to be excluded as an indicator
in this study. It would introduce too big an assumption. Due to the income classification, applying HEQ
in this context would require selecting a specific point within each income class (the lower bound, upper
bound, or median) to calculate the 10% threshold. This choice would significantly distort the results,
potentially classifying an unrealistically large number of households as energy-poor.

The income classes used in this study are a standardised classification, based on single-person house-
holds (van Middelkoop et al., 2023). This standardisation is based on equivalence factors to account
for the non-linearity in income increases when household size increases (Arends-Tóth et al., 2022). To
ensure consistency in the assessment of energy poverty, CBS standardises the energy bills, using the
same equivalence factors (van Middelkoop et al., 2023).

In line with this method, the same equivalence factors are applied to the energy costs of the agents.
The energy bill has to be standardised, as the low-income boundary is always given standardised for a
single-person household, and if not applied, this would skew the results. Moreover, this resolves any
possible skewing of the results due to a multi-family dwelling having a high energy bill due to the many
occupants, but only having a ”single-person income”. Standardisation thus helps avoid distortions and
ensures that households with disproportionately high energy costs relative to their adjusted income are
accurately identified.

The equivalence factors of CBS cover households up to eight inhabitants (Arends-Tóth et al., 2022).
HESTIA includes a very small number of households with a household size larger than this. These
households are assigned the same equivalence factor as eight-person households. This might intro-
duce some minor distortion of the results. The impact is seen as negligible due to the small number
of households this size and the likelihood that economies of scale reduce per-person energy needs in
larger households (Mashhoodi et al., 2019). These agents are kept in the model to maintain a complete
representation of households in The Hague.

The low-income boundary represents the minimum purchasing power assumed to be sufficient for a
single-person household not to avoid living in poverty (Centraal Bureau voor de Statistiek, 2023b). This
value is based on the social benefits levels of 1979, when these were relatively high. Yearly, this amount
is indexed based on inflation to reassess the low-income boundary (Centraal Bureau voor de Statistiek,
2024a) (see Table C.2 in Appendix C).

Energy poverty risk is analysed over time to capture the impact of the model changes. To demonstrate
the broader influence of incorporating behavioural aspects into HESTIA, changes in energy label dis-
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tributions over time are analysed. This output is viewed as a high-level indicator of how investment
trends change when more agent heterogeneity is included, across all households, not just those at risk
of energy poverty.

In addition to these more aggregated results, a few individual households are selected to illustrate on
an agent level how their energy use, energy bills and investment choices differ to create a complete
understanding of the effects of changes to the model.

It is a conscious decision not to use policy compliance as a performance metric. Although it is intuitive
to expect changes in policy compliance in the model as more behavioural heterogeneity is included,
in HESTIA’s policy logic, it is a fixed variable (van der Molen, 2023). Modifying this logic as part of
the household’s behaviour would thus introduce inconsistencies in the comparison with the base case,
reducing the meaningfulness of the results.

5.4. Experimental design
5.4.1. Policies
HESTIA can simulate four different policy options: subsidies, norms, bans, and activation policies, which
refer to instruments that increase the probability of a specific demographic investing in specific parts
of their dwelling. Due to data availability and computational limitations, the analysis in this thesis is
restricted to 8 years from 2020-2027, thus mainly focusing on historical policies. As the focus of this
study is not to test specific policies, the simulation will be run with the policies provided in the standard
configuration of HESTIA.

In this list of policies, only one is an ”activation” policy, focusing on increasing the insulation of social
housing for labels E, F and G. No policies focus on informing agents on how to adjust their behaviour
or on supporting them through measures beyond financial incentives. The existing policies are limited
to subsidies or regulatory norms for retrofitting. This once again highlights the issues of misrecognition
in energy (poverty) policy identified in section 3.2; the policies have focused mainly on the affordability
of investments and are generalised in nature, failing to account for the diverse needs and constraints
of different households. As a result, these policies risk overlooking structural and informational barriers
that prevent certain groups, like energy-poor households, from participating in the energy transition.
This underlines the need for more inclusive, targeted approaches that address not only financial, but
also social and behavioural dimensions of energy-related decision-making.

5.4.2. Scenarios
HESTIA includes several scenario possibilities. As the goal of this study is not to provide policy advice
for a robust policy in an uncertain future, but to show the impact of including behavioural considerations
in policies, the scenario settings are kept as simplistic as possible, while still being realistic. This means
that spatial development, meaning the development of new-build houses, is not taken into account.

When considering building investments, a cost comparison is made in the model. These costs can either
be calculated in a national cost method or an end-user cost method (van der Molen, 2023). This choice is
an important model-setting. The national cost method was selected because, with the end-user method,
only costs for building owners are taken into account when calculating the business cases for the different
investment options (van der Molen, 2023). The national cost method also includes any costs for renters
in the business case assessment, allowing more room for their considerations in investment decisions.
In the context of accounting for recognition justice, it is important to apply the national cost method as
this allows for a broader societal perspective. It ensures that the cost-benefit consideration for tenants is
also included. This acknowledgement of these experiences and potential constraints makes the model
more inclusive and just.

HESTIA has energy prices included exogenously. It is based on historical data for the years 2000-
2022. Prices for 2022-2030 are determined using the national energy outlook calculation system and
the MONIT-database (van der Molen, 2023). Although the predicted prices for 2023 and 2024 might not
fully align with reality, this data is still used so as not to change too much of the model outside of the
study’s scope. These prices can also be found in Appendix C.

The climate scenario signifies how much the average outside temperature changes over time, which
influences the spatial heating and cooling demand. HESTIA presents four possible climate scenarios,
provided by the Royal Netherlands Meteorological Institute (KNMI) (KNMI, 2014):
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• GL (global temperature increase in 2050: +1◦ C with low change in air flow pattern).

• GH (global temperature increase in 2050: +1◦ C with high change in air flow pattern).

• WL (global temperature increase in 2050: +2◦ C with low change in air flow pattern).

• WH (global temperature increase in 2050: +2◦ C with high change in air flow pattern).

These scenarios provide a predicted temperature for 2030 and 2050, as well as the temperature in 1995
for a baseline value. Temperatures for years in between these are estimated through linear interpolation
van der Molen (2023).

WH is selected as the scenario for this thesis as global warming is very likely to reach 1.5◦ C between
2030 and 2052 and potentially up to 2◦ C in this century (Masson-Delmotte et al., 2018), making 1◦
C an underestimate of the consequences. The choice of WH over WL is not relevant for the relatively
short run time of this project (2020-2028). WH was selected due to the large changes this brings in
comparison with the current situation. Even though the scenario’s impact on the short-term scope of
this study is limited, should the run time be increased, it would provide a substantially different situation,
which would create an interesting insight into how the energy transition in the built environment would
adjust.



6
Model formalisation

This chapter describes the model implementation following the conceptualisation described in the previ-
ous chapter. It details the mathematical functions for the creation of the synthetic population, along with
the underlying data and assumptions informing agent behaviour. This is part of the development phase
of the artefact, according to design science.

The Agent-Based Model is formalised using the programming language Python, specifically with the
MESA framework. This modular framework is specifically designed for building agent-based models (ter
Hoeven et al., 2025). By applying object-oriented programming, this framework allows agents andmodel
components to be modularly structured as classes, which is very helpful for clarity, model management
and thus improves transparent model development.

6.1. Agent profiles
This section explains how the agents are initialised to create a realistic but synthetic representation of
the population of The Hague. Table 6.1 gives all the data sources used for this initialisation. Input data
from the HESTIA model is the main source of information, extended by CBS data. HESTIA’s primary
goal is to provide a realistic and detailed representation of the housing stock and how it evolves under
varying conditions. For this purpose, it offers a comprehensive delineation of the built environment in
the Netherlands starting from 2000, constructed using input data from, e.g. CBS, BAG, Arcadis, CEDelft
and the Kadaster (van der Molen, 2023).

The simulation will run from 2020 up to and including 2027. The year 2020 was selected as the start year,
as most external datasets used in the model are available for this point in time. Although the data for
perceived behavioural control is for 2018, it is assumed that data captured at such a disaggregated level
as the neighbourhood level is relatively stable over short periods. It is considered to be representative
of 2020.

An important consideration in the creation of the synthetic population is the limitation of presenting HES-
TIA data at such a disaggregated level. HESTIA computes at a dwelling level so it can process data at
any scale it is available, and that data on any cross-section of the population can be provided (van der
Molen, 2023). However, since HESTIA employs pseudo-random allocations for data, the data associ-
ated with any individual dwelling might be slightly inaccurate. This is to ensure the information cannot be
traced back to individual addresses or people (van der Molen, 2023). As such, HESTIA’s results should
always be reported at a higher aggregation level. Although the dwelling-level data is extremely useful
for constructing a detailed synthetic population, the outcomes of simulations based on this data should
be reported at a minimum of the neighbourhood level, to ensure reliability and avoid misrepresentation
van der Molen (2023).

From table 6.1 it becomes clear that not all input data is available at a dwelling level or municipal level.
To enable their use in the ABM, national distributions are assumed to be representative of The Hague.
These distributions are used to probabilistically assign values to dwellings within each neighbourhood,
matching the distributions from the aggregated data. This way, the overall pattern preserves the original
patterns of the data, ensuring that the synthetic population remains representative of the broader popu-
lation structure. Moreover, this pseudo-random assignment aligns with HESTIA methods and maintains
a certain level of anonymity, as individual households aren’t directly linked to specific data points, while
still preserving the statistical characteristics of the population.

31
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Table 6.1: Datasets used for population generation

Dataset Used for Aggregation level Source
Startcomponenten Dwelling

components,
household size,
location, functional
energy demand

Dwelling level van der Molen (2023)

Energieverbruik
huishoudens naar
inkomen, 2020

Household income National / quartile
level

van Middelkoop et al.
(2023)

Buurten Den Haag Geographical
information on
dwelling location

Neighbourhood
level

Gemeente Den Haag
(2018)

H4 Maatwerktabel -
Duurzaam wonen

2020

Installation attitude National level Kloosterman et al. (2021)

Bereidheid
energietransitiemaa-

tregelen 2018

Perceived
behavioural control

Neighbourhood
level

Centraal Bureau voor de
Statistiek (CBS) (2023)

6.1.1. Dwelling characteristics
Based on the input from HESTIA, a total of 264,056 households or dwellings are initialised, with the rele-
vant profile characteristics from requirement 3. This figure does not fully align with the approx. 271,000
households were reported in The Hague’s official census data. Similar discrepancies are also present
when comparing HESTIA data to census data on specific dwelling characteristics, such as ownership
type (fig. 6.1) and housing typology (fig. 6.2). This misalignment in data can be chalked up to agents
being considered as households, while being based on dwelling data. Some of these dwellings are oc-
cupied by more than one household, which explains the difference in household count. This introduces
a key distinction between the two datasets. This discrepancy is addressed in post-processing of the
results, through the standardisation of the energy bill as described in section 5.3.

Surprisingly, the census data contains an ’other’ bin for both characteristics. As HESTIA does not have
such a category, and it is impossible to determine what would make a household classify for this ’other’,
this small subset (0.9% for ownership and 1.8% for dwelling type) of households is excluded from com-
parison and assumed to be included in the other categories. The misalignment between value counts
per category can in part be attributed to the above-described difference in data aggregation between
HESTIA and The Hague census data. Nevertheless, the categories’ value counts all remain within a
comparable range. It is therefore decided that the alignment is sufficiently close to justify using HESTIA
as the source for the generation of the synthetic population.



6.1. Agent profiles 33

Figure 6.1: Comparison ownership type count HESTIA vs. The Hague census data (van der Molen et al., 2024; Gemeente Den
haag [Gemeentelijke Belastingdienst], 2025)

Figure 6.2: Comparison housing typology count HESTIA vs. The Hague census data (van der Molen et al., 2024; Gemeente
Den Haag [Gemeentelijke belastingdienst], 2025)

6.1.2. Address allocation
The Hague is a densely populated municipality. Its inhabitants are divided over 44 areas (Dutch: wijken)
or 113 neighbourhoods (Dutch: buurten) (Figure 6.3). Location of the households is an important factor
in this model as it provides the spatial data required to assign agents their neighbours in the ABM, which
in turn influences their social networks.

HESTIA links each dwelling to a planregio (van der Molen, 2023), which, when combined with geospatial
data (Gemeente Den Haag, 2023), allows for spatial positioning of agents and their neighbours. Planre-
gios represent an older system for neighbourhood identification but can be directly mapped to present-
day neighbourhood coding (van der Molen et al., 2024). These codes are all unique combinations of
letters and numbers. For example, the code BU05184214 consists of: BU (a neighbourhood or buurt),
0518 (municipality code for The Hague), followed by the district or area (42) and the neighbourhood (14),
these combined identify Waterbuurt (GeoGap B.v., nd).
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Figure 6.3: Aggregation levels The Hague Areas vs. Neighbourhoods (Gemeente Den Haag, 2023)

Within each neighbourhood, agents are assigned geographic coordinates randomly. Through thismethod,
buildings cannot be linked to actual addresses, thus maintaining the population’s anonymity. Although
this does reduce spatial accuracy, it provides sufficient information for assigning neighbours to the
agents.

Matching the households (agents) to geographic coordinates results in a population density as visualised
in Figure 6.4. Neighbourhoods with zero inhabitants - Oostduinen (neighbourhood 10), Vliegeniersbu-
urt (neighbourhood 107) and Tedingerbroek (neighbourhood 109) (Allecijfers.nl, 2025) - are excluded
from further analysis, as they do not contribute to the population-based outcomes being studied. In
Appendix B, the map is enlarged and an overview of all neighbourhood IDs and their names is given.

Overall, the maps appear largely similar, though a few notable discrepancies stand out. In particular,
the neighbourhoods of Vissershaven (02), De Bras, Waterbuurt (114), Vlietzoom-Oost (116), and De
Vissen (118) exhibit significant differences. Appendix B contains a larger map with a detailed legend
of each neighbourhood and neighbourhood ID. These variations could be caused by the interpolation
method used in HESTIA to calculate inhabitants per building. As the specific number of household
members is unknown, it is estimated in the model by using a formula that distinguishes by housing
type and area, determined in ’VIVET-project Referentieverbruiken Woningen’ (Beijnum and Wijngaart,
2023; van der Molen, 2023). It is the same formula for all areas in the Netherlands, based on average
national information. Since some areas are more densely populated than others, it is not surprising
that this introduces some errors in the calculations. This indicates that the synthetic data does not
perfectly mirror the census data, but the general patterns are sufficiently aligned to support the use of
the HESTIA dataset, as the primary goal is not to model The Hague with perfect demographic accuracy,
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Figure 6.4: Population density census data vs HESTIA (Gemeente Den Haag [Dienst Publieke Zaken], 2021)

but to determine the impact of incorporating recognition justice into HESTIA’s logic.

6.1.3. Income allocation
Income is an important indicator for a household’s energy behaviour as it is a determinant for the be-
havioural factors in the ABM. Including income as a factor for a household/dwelling in HESTIA would,
moreover, make the investment logic more elegant, given that the costs/benefit consideration for an
investment would also depend indirectly on income.

The dataset ’Energieverbruik naar huishouden en inkomen, 2020’ (English: ’Energy consumption by
household and income, 2020’) provides, on a national level, the distribution of income quartiles per
ownership type (van Middelkoop et al., 2023). By aligning the synthetic data with these distributions,
income classes can be assigned to the synthetic population based on ownership type, ensuring realistic
patterns. To ensure alignment with The Hague census data and facilitate easy validation, this distribution
is transformed into a quintile-based distribution before assigning it to the population. This approach
enhances accuracy and ensures consistency with established demographic norms.

Income, in this case, is standardised disposable income: gross income excl. income transfers paid,
income insurance premiums, health insurance premiums, and taxes on income and capital (van Mid-
delkoop et al., 2023). Income is assigned pseudo-randomly. Since income is a key determinant in calcu-
lations of energy poverty and determining behavioural intention, re-assigning income pseudo-randomly
in each simulation year would undermine the ability to make consistent year-to-year comparisons. Re-
assigning this variable every year would introduce unnecessary randomness that could compromise the
result analysis. So, agents are assumed to remain within their assigned income class throughout the
analysis. The changes in economic circumstances for the agents are considered to be outside the scope
of this study.

Agents are assigned an income class according to equation 6.1. For every ownership type t in T , the
sum of the distribution is 1, meaning that all households within an ownership type are distributed over
the six income classes (when including ’other’), and an income is assigned based on the odds of Pt:
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Figure 6.5: Comparison income distribution HESTIA vs. The Hague census data (Gemeente Den Haag [DHIC/Centraal Bureau
voor de Statistiek (IIV)], 2024)

∀t ∈ T :
∑
c∈C

Pt,c = 1 with Pt,c ≥ 0 (6.1)

ci ∼ Categorical(Pt) (6.2)

where:

• t ∈ T denotes one specific ownership type.

• ci ∈ C denotes one specific income category.

• C = {1, 2, 3, 4, 5, other} is the set of income categories.

• Pt,c is the categorical distribution over income categories for ownership type t.

Applying this logic to the HESTIA data yields the results shown in Figure 6.5, where it is compared
with the census data (Gemeente Den Haag [DHIC/Centraal Bureau voor de Statistiek (IIV)], 2024). As
previously discussed in the context of dwelling characteristics such as ownership and population density,
absolute numbers do not align directly with the census data. For validation purposes, the focus is instead
placed on the percentual distribution.

The income distribution in the HESTIA data had to be derived from national-level distributions (van Mid-
delkoop et al., 2023), as The Hague census data does not provide income distributions per ownership
type. It is thus expected that the distributions do not perfectly align with the The Hague census data. In
Figure 6.5, it becomes clear that the distributions align closely enough so the national census percent-
ages can be considered a reasonable proxy. The differences that do occur are small and can (in part)
be attributed to the The Hague census data not including the ’other’ category in its analysis.

For the remainder of the analysis, it is assumed that individuals in the ’other’ category have an unclear
income status, likely due to non-response in the original survey. In any calculations involving income,
these individuals are treated as having an equal probability of belonging to any income category.

6.2. Intention to invest
Intention to invest is implemented through a series of formulas, used to calculate the separate variables
of the Theory of Planned Behaviour. To facilitate the connection with HESTIA and its S-curves, as
described in 5.1.1, the total intention to invest is normalised. Moreover, this enables comparability across
agents, which eases interpretation.

As of right now, there is no specific information known about the difference in weights for subjective
norms, attitude and perceived control. de Vries (2020) does state that subjective norms can weigh
more strongly in energy decisions than one’s perceptions or attitudes. At the same time, Ajzen (1985)
has made it clear that the weights for the attributes can differ per person. The weights may differ per
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household, or could be similar within specific household groups. Assigning equal weights to all three
attributes provides a neutral and balanced baseline for determining agents’ investment intentions in the
absence of detailed empirical data. This approach avoids arbitrary prioritisation of a single attribute
and ensures that no single factor disproportionately drives the outcome. The ratio of the weights in
Equation 6.3 wa:wsn:wpbc is 1:1:1. The intention to invest is normalised before further use in the HESTIA
model in Equation 6.4. By normalising these intentions to be compatible with HESTIA, requirements 1
and 8 are met.

Iinvrawi = wa ·Ainv
i + wsn · SNinvi + wpbc · PBC inv

i (6.3)

I invi =
Iinvrawi − I invmin
I invmax − I invmin

(6.4)

Where:

• Iinvrawi is the un-normalised intention to invest for agent i

• I invi is the normalised intention to invest for agent i

• Ainv
i is the total attitude towards investment for agent i

• SN inv
i is the total subjective norms agent i experienced regarding investments

• wa = is the weight assigned to attitude

• wsn = is the weight assigned to the subjective norms

• wpbc = is the weight assigned to the perceived behavioural control

• I invmax is the maximum possible value for Iinvrawi

• I invmin is the minimum possible value for Iinvrawi

6.2.1. Attitude
Simply stating that households with higher incomes are more likely to hold positive attitudes toward
investment would not align with the principles of recognition justice. To introduce more diversity, the
concept of attitude towards investment has been divided into two distinct variables. The first focuses
specifically on the attitude towards investing in renewable technologies, using responses from a national
survey on attitude towards solar panel installation as a proxy (Kloosterman et al., 2021). The second
attitude variable is derived from the installations in a dwelling (see 5.1.1).

As these installations have different fuels, energy demands and efficiencies, they serve as a proxy for the
household’s attitude towards sustainability. The total attitude towards investment is defined in equations
6.5 and 6.6. Each attitude variable gets normalised as well, to ensure that the intention to act will not be
disproportionately influenced by either.

Ainvrawi = Asp
i +Ainst

i (6.5)

Ainv
i =

Ainvrawi −Ainv
min

Ainv
max −Ainv

min
(6.6)

Where:

• Araw
i is the un-normalised attitude towards investment for agent i

• Ai is the normalised attitude towards investment for agent i

• Asp
i is the total attitude based on current installations for agent i

• Ainst
i is the attitude based on current building option for agent i

• Ainv
max is the maximum possible value for Araw

i

• Ainv
min is the minimum possible value for Araw

i
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Attitude based on installation plans
This attitude is based on a 2020 study by CBS examining the views and behaviour of the Dutch population
regarding climate change and the energy transition (Kloosterman et al., 2021). Specifically, it uses data
concerning attitudes toward sustainable living, with a focus on the willingness to install solar panels.
Solar panel adoption serves as a proxy for a positive attitude toward all green energy investments, based
on the assumption that the decision to install solar panels reflects both an awareness of and willingness
to engage with sustainable technologies. The survey provides a distribution per income class across
the following statements:

1. Solar panels are currently present on the home;

2. The respondent does not know whether solar panels are present;

3. The respondent has concrete plans to install solar panels within the next two years;

4. The respondent is unsure whether they will install solar panels within the next two years;

5. The respondent is certain they will not install solar panels within the next two years.

The data is reported per income quartile, but for application in the model, it is resorted per income quintile.
By following a distribution per income class, this conceptualisation follows (partially) requirement 5. Due
to the absence of more detailed data, four key assumptions are made to generalise the data for use in
this model:

1. The nationwide distribution applies to The Hague;

2. Solar panels are used as a proxy for planning to do any retrofitting to the home;

3. Although the survey was for homeowners, it is generalised to renters as well;

4. Based on the percentages per income category, that percentage of agents with that income class
is assigned values randomly;

5. Categories 1 and 2 are mutually exclusive: an individual who is aware of the presence of solar
panels on their home cannot simultaneously be unaware of their presence, and vice versa. Simi-
larly, categories 3, 4, and 5 are also mutually exclusive, as an individual who has concrete plans
to install solar panels cannot at the same time be unsure about those plans or certain that they will
not proceed with installation.

Using this data as a basis for the assumption helps to reduce some of the uncertainty typically associ-
ated with quantifying subjective variables like attitude, thereby strengthening the validity of the analysis.
Moreover, breaking the data down by income class reflects the influence of income on investment be-
haviour (Niamir et al., 2020), and introduces a layer of diversity that alignsmore closely with the principles
of recognition justice. By accounting for differences across income groups, the varied capacities and
opportunities individuals have to engage with sustainable technologies are acknowledged, rather than
treating attitudes as homogenous across the population.

The investment attitude score based on the investment survey is defined as follows:

Asp
i = wt,i ·

5∑
k=1

wk · si,k (6.7)

Where:

• si = [si,1, si,2, si,3, si,4, si,5]
⊤ is a binary selection vector for survey options of agent i,

• wk = [w1, w2, w3, w4, w5]
⊤ is the vector of weights assigned to each installation choice

• wt = [w1, w2, w3, w4] is the vector of weights assigned to each ownership category

These weights are further elaborated in section C.3. The weights per ownership type are the same
throughout the entire model. A higher ownership-weight represents more agency in investment deci-
sions. By including this weight, the model design now fully fulfils requirement 5.

Important to note in this calculation is the mutual exclusivity of the response categories of the survey
and how these translate to attitudes:
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• si = [si,1, si,2, si,3, si,4, si,5]
⊤ is a binary selection vector for survey options of agent i,

• The binary variables follow the constraints:

– Exactly one option selected from the first group: si,1 + si,2 = 1,

– Exactly one option selected from the second group: si,3 + si,4 + si,5 = 1,

– Each si,k ∈ {0, 1},

Attitude based on installations
Each agent’s home has one building option per time step. Such a building option is a set of installations
used to supply their functional demand for space heating, water supply and cooling. Each of these
categories can have a different installation for base and peak demand, meaning that a combination of
six installations together makes a building option.

Given the wide range of available technologies to improve energy efficiency in one’s home, the assump-
tion is made that the choices made by households reflect their attitude toward sustainability. Appendix
C.3 includes all possible installations, the building options they sum up to and the sustainability ratings
given to each with an elaboration.

Not only do income level and ownership status significantly affect the feasibility of adopting specific
technologies, but a building’s age also plays a part in the technological possibilities. Thus, basing attitude
partially on the presence of these technologies, this approach presents an opportunity to, indirectly,
incorporate the influence of contextual factors, following requirements 4 and 5. These factors are income
and ownership status, in subsection 4.2.1 identified to correlate with attitudes toward investment.

Ainst
i =

∑
tc∈TC

wtc · Ttc, oi,tc (6.8)

Where:

• tc ∈ TC: One specific technology category.

• TC: The full set of technology categories, TC = {RVb, RVp, TWb, TWp, KDb, KDp}

• wtc: The weight assigned to each technology category

• oi,tc: The technology option selected by agent i in category tc

• Ttc,oi,tc : The sustainability score of the selected technology option in category tc

Each agent has one technology choice per category. The overall attitude is calculated by multiplying
the sustainability score of the selected technology by the weight of its category and summing these
products. The weights of these categories are determined based on the importance of each category,
determined by the height of their energy use. For the weights, no distinction is made between base and
peak demand. The reasoning behind these weights and the sustainability scores of each technology
option are also further elaborated in section C.3.

6.2.2. Perceived behavioural control
Perceived behavioural control in this context refers to a household’s perception of the difficulty of in-
vestment, based on both internal factors, such as knowledge, as well as external factors like financial
resources or ownership. In the model, this PBC will be weighted against both income and ownership
type to reflect this external influence.

The assignment of PBC indicators to the agents is based on survey information from the Hague, which
reflects, per neighbourhood, people’s feelings on two indicators (Centraal Bureau voor de Statistiek
(CBS), 2023):

1. Person wants to invest in a more economical home, provided it pays off ;

• This indicator reflects a conditional willingness to invest in a more efficient home, but only
if they are able to get a financial return. This is seen as a positive indicator of perceived
behavioural control because the agent would feel capable of taking action if there is a financial
reward in return.
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2. Person does not want to invest in a more economical home, does not know how, finds it too
expensive, and/or has not yet got around to it.

• This indicator reflects a low perceived control as it is characterised by an individual not wanting
to invest for a variety of reasons, ranging from monetary to time-related barriers.

Weighing these controls against income and ownership type to make it more personalised results in the
perceived control for investment being calculated with Equation 6.9.

PBC inv
i = wc,i · wt,i · (pbcinv,1,i + pbcinv,2,i) (6.9)

Where:

• wc,i is the weight corresponding to agent i’s income category

• pbcinv,1,i is the score on Indicator 1 for agent i

• pbcinv,2,i is the score on Indicator 2 for agent i

The choice for these weights is further elaborated in section C.3. By accounting for the influence of
income and ownership type in a household’s perceived control to invest, once again, this formalisation
fulfils requirement 5.

6.3. Social networks
6.3.1. Identification of neighbours
The create the social networks of each agent, they are assigned ten neighbours, based on geographical
proximity. The number of neighbours is an assumption. This assumption is based on two things. Firstly,
neighbours usually only make up a relatively small part of a person’s social network (Völker, 2000).
Secondly, since streets differ in length and layout, ten neighbours roughly represent the five closest
households plus the next five nearby, covering an immediate local circle where interaction and visible
peer effects are plausible. Looking out a window, a person would, for example, see their direct neigh-
bours’ solar panels and potentially their neighbours’ solar panels as well, but they do not see changes
made 5 doors down; this is why the simulation runs for 10 neighbours.

This assignment occurs through the KD-tree algorithm, as Vermeulen et al. (2017) proved that of dif-
ferent k-nearest neighbour queries, a KD-tree offers the best performance on finding agent neighbours
when they are assigned 2D coordinates. The KD-tree algorithm is a spatial partitioning method that,
by repeatedly splitting the space in which data points exist to ease the search for agents’ neighbours
(Vermeulen et al., 2017).

This algorithm uses Euclidean distance as the distance metric between agents (Scikit-learn developers,
nd). The agents’ location must be based on a projected coordinate system, as Euclidean distance does
not account for the curvature of the Earth. If the agent’s location was given in a geographic coordinate
system, it would have had to have been recalculated. However, as the geographical data used in this
study uses a planar coordinate system: EPSG:28992 Amersfoort/RD new (Gemeente Den Haag, 2023),
no such adjustments are required.

The KD-tree is constructed by recursively splitting the set of agents into smaller sets, based on their
coordinates (Vermeulen et al., 2017). One step, the data set is split in half by the median of the y-axis,
and the next step by the median of the x-axis, in the case of the Dutch RD coordinate system, northing
and easting (NSGI, nd) (visualised in figure 6.6). Such a split of the geographic region creates a ”leaf” on
the tree, providing a smaller geographic region in which to search for neighbours. This splitting continues
until the data cannot be split any further.
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Figure 6.6: Example splitting of geographical space

When searching for the closest neighbours to an agent, the algorithm starts at the ”root” of the ”tree” to
find the leaf in which the agent belongs. Each closest neighbour it finds in the closest leaves is saved
as the best, until one is identified as being closer to the agent (Friedman et al., 1977). The algorithm
does not stop when it has selected the first ten neighbours it finds, but finds the actual closest agents
(see Figure 6.7).

Figure 6.7: Example of nearest neighbour selection

6.3.2. Subjective norms
An agent has a social network consisting of their neighbours. The difference these agents have in
attitude influences the subjective norms an agent experiences from their neighbours. The strength of
this influence is determined by how strongly the agent perceives the social connection as part of their
in-group.

As explained in subsection 5.1.3, agents determine if a neighbour is part of their in-group by assess-
ing the similarity of several agent profile characteristics: income, ownership type, functional energy
demands the installed energy systems to supply this demand. Based on these characteristics, agents
experience descriptive norms: their neighbours have a certain attitude, so the agent adjusts their attitude
as they want to adjust to the behaviour of the people they identify (de Vries, 2020).

Injunctive norms, where agents believe their neighbours expect them a certain way (de Vries, 2020),
so they adjust their behaviour accordingly, are excluded from this study. Including perceived social
approval would require big assumptions about agents’ beliefs and social expectations, which would be
very complex to operationalise or validate.
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Shared characteristics increase perceived in-group membership between agents. This increases the
strength of the behavioural influence of a neighbour. Evenwhen they have only one or two characteristics
in common, the agents will begin to identify with each other. The strength of influence is not binary, but
increases with the degree of similarity between agents:

SN inv
i =


∑

j∈Ni

σij ·(Ainv
j −Ainv

i )∑
j∈Ni

σij
if

∑
j∈Ni

σij > 0

0 otherwise
(6.10)

Where:

• Aa
i : Attitude of agent i with respect to neighbour’s investment attitude

• Aa
j : Investment attitude of neighbour j with respect to agent’s investment attitude

• Ni: Set of agent i’s neighbours

• σij : Similarity between agent i and neighbour j, defined as:

σij =
1

|A|
∑
a∈A

⊮[ai=aj ]

Where:

– A: Set of attributes used to assess similarity

– |A|: Total number of attributes in set A

– ai, aj : Value of attribute a for agent i and neighbour j

– ⊮[ai=aj ]: Indicator function that equals 1 if ai = aj , and 0 otherwise

The subjective norm can take a negative value. This occurs when an agent’s attitude is higher than
that of its neighbours. In such a case, an agent would adjust its behaviour downward, align more with
its in-group. This reflects more realistic social dynamics where an agent not only listens to their social
network if they have a positive influence, but also when they are less optimistic. By including these
social dynamics, requirements 6 and 7 are fulfilled.

6.4. Establishing the multi-model link
The intention to invest is included in the HESTIA model logic by diversifying the β and P50P values for
each option, for each S-curve.

Specifically, in the ABM, an investment intention is determined for each income group. This intention
is then multiplied by the corresponding β and P50P values, resulting in a broader set of S-curves, one
for each technology category within each income group. It was decided to link the models based on
income, as household income is one of the main determinants of whether a household will experience
energy poverty (Feenstra and Clancy, 2020). The beta and P50P are determined using calibration of
historic data, but are generalised for the entire population - everyone with a certain investment option
uses the same values in their probability calculation (van der Molen, 2023). By adjusting these factors for
behavioural intentions per income group, the model incorporates a little more agent heterogeneity in the
investment logic. The differentiation in β and P50P not only leads to varying sensitivities to cost-based
attractiveness across income groups but also results in different midpoints for each group, reflecting
different investment thresholds per income group.

The β and P50P variables are used in several formulas during the investment process. The first steps
of the insulation track and installation tracks differ slightly, but the probability calculation for the actual
investment determination is the same for both tracks and described in Equation 6.14 and Equation 6.15.
Firstly, it is determined if the insulation ambition changes or will remain constant:

Insulationscore =
Areabuilding component

Areatotal
· efficiencygains · βambition − Costs · Lc · V AT · Subsidy · P50P

(6.11)
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Using this score per insulation measure the probability of adoption is calculated per insulation measure,
per insulation ambition, in Equation 6.12.

Oddsxx = einsulationscore · βambition · βmeasure (6.12)

Which leads to the probability calculation per insulationmeasure, per insulation ambition in Equation 6.13.

Probability =
Oddsx

TotalOddsxx
(6.13)

In the first step of the installation track process, available options are selected for the dwelling based on
the insulation ambition of the dwelling, as well as the technical match of an option and the dwelling and a
business case calculation. Next, the suitability of the available options is calculated, in Equation 6.14. In
this function, P50P values for the building options in this function bring the indication of what cost-benefit
ratio is acceptable to the households (van der Molen, 2023).

Suitabilityoption = Cj,mostexpensiveoption ∗ P50Pmostexpensiveoption − Cj,option ∗ P50Poption (6.14)

The option-specific odds for each building option are based on the suitability as well as the βs.

Oddsoption = eSuitabilityoption∗βoption∗βnonspecific (6.15)

The probability calculation, the final step in the investment logic, performs a randomised weighted draw
to select an agent’s final choice. The investment choices of households result in changes in agents’
profile characteristics. In time step t = t + 1, these changes get incorporated in the ABM, changing
the behavioural attributes, which are subsequently used in HESTIA to determine the next round of in-
vestments. This fulfils requirement 2. Figure 6.8 illustrates this exchange of .csv files. This soft-link is
repeated for all time steps.

Ideally, this exchange is established by using Python’s subprocess module. This module would allow
a user to run programs from Python code. It brings the opportunity to send such a program’s data,
retrieve its outputs a programs outputs, and integrate these programs with a Python model (All, 2024).
However, due to time limitations of this project, this module could not be implemented, and the soft link
was manually established.

Figure 6.8: Soft-link ABM and HESTIA, inspired by (Fattahi et al., 2020, p. A-15)
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Results

This chapter presents the results of the simulation, split into four parts. Section 7.1 discusses the indi-
vidual model’s results: HESTIA without any adaptations. This control run has a dual purpose. Firstly,
for verification, to ensure that the model performs as intended and to establish a baseline for compar-
ison with the adjusted version later on. The second purpose is validation. This base case is used to
check if the key outputs, such as energy poverty prevalence, are realistic and in line with reality. The
second section, 7.2.1, analyses the baseline results of the multi-model simulation. It shows the be-
havioural changes of the agents, specifically focusing on the changes in the intention to invest and how
this factor influences the S-curves. This analysis of the behaviour’s impact serves as the first step in un-
derstanding the results. The behavioural dynamics are not validated against empirical data, but serve
as internal verification of the ABM logic and demonstrate the influence of behavioural diversity. This
section also discusses the consequences of including more behavioural diversity in the HESTIA logic
for the household’s investment patterns and the energy poverty estimates. In section 7.3, the results of
the multi-model link are compared for 3 seeds to test the robustness of the results. Lastly, a sensitivity
analysis in section 7.4. The sensitivity analysis is used as further verification of both models. It is used
to indicate how the model’s results are affected by the weights of the three attributes of the Theory of
Planned Behaviour.

7.1. HESTIA's individual results
A control run is essential as it establishes a reference based on which the impact of including greater
agent heterogeneity within the HESTIAmodel can be assessed. This control run consists of the standard
HESTIA configuration, without any extra behavioural mechanisms incorporated. The policy interventions
are included as a standard HESTIA run, which is one with policy logic.

7.1.1. Municipal level results
Figure 7.1 shows a growth of energy poverty risk from 9% to 11.4% between 2020 and 2022. This trend
from the model closely mirrors the real-life developments (Duurzaam Den Haag, 2023). It increases
from 2020 to 2022, when it spikes, aligning with the peak of the energy crisis (Secretariaat-generaal van
de Raad, 2025). The risk remains at a higher percentage in 2023 and 2024, but does decrease slightly,
also in line with reality (Duurzaam Den Haag, 2023).

As the energy poverty indicator HEQ is left out of consideration in this study, this difference with historic
data is expected to be higher. The irregularity in these results can also be explained by the implementa-
tion of the LIHE and LILEK indicators. As the model tests every household with income class 1 for their
risk of energy poverty, those with an income above the low-income energy-poverty boundary are also
included, which likely compensates for the households being wrongfully excluded by leaving HEQ out
of consideration.

From 2025, no validation with real-life data is possible. The risk for energy poverty keeps decreasing, but
remains very limited. This is in line with HESTIA’s input data, as the predicted energy prices differ with
significantly smaller margins in 2025-2030, compared to the historic prices from 2020-2024. Although
this trend aligns with HESTIA’s input data, the model’s predictions do not match reports from TNO and
CBS, which state that the decrease in support measures and the rise in energy prices have led to a
54% increase in energy poverty between 2024 and 2025. They also anticipate that, due to rising energy
prices and the discontinuation of support measures, the number of energy-poor households in 2025 the

44
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Netherlands will beyond the levels seen during the 2023 energy crisis (de Volkskrant, 2025; TNO, 2025).

Figure 7.1: Evolution of energy poverty risk over time, control run

Figure 7.2 shows the distribution of energy labels over the years. It reflects how a significant number
of households have invested in their homes to increase their insulation levels to reduce their energy
bills. This figure further supports the energy poverty percentages shown in Figure 7.1 as the amount of
lower energy labels decreases, but never reaches zero, reflecting the persistence of dwellings with poor
energetic quality. Although energy poverty is not solely determined by a dwelling’s energetic quality, it
does play a big role in the household’s energy use, specifically the difference between functional demand
and meter demand.

Figure 7.2: Energy label count across the years, control run

7.1.2. Agent level results
To better understand this aggregated trend, the behaviour of five agents was analysed 1. These agents,
although all with different profiles, at one time or another were at risk for energy poverty. Together,
they provide good examples of the differences in how the risk for energy poverty can be created and
prevented. Table 7.1 presents an overview of their profile characteristics. Appendix D contains more

1HESTIA results are normally not suited to be reported on a dwelling level. However, the changes in the dwelling investment
decisions have to be analysed to test the impact of the agent heterogeneity. These are only intermediary results; the actual results
of energy poverty growth and prevalence are reported on a municipal level
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information on the investment choices made per agent. Across all agents, total energy bills increased
steeply between 2021 and 2022, which aligns with patterns resulting from the energy crisis in 2022. It
becomes clear that different household situations can still lead to a risk of energy poverty. The evolution
of their risk at energy poverty is visualised in Figure 7.3.

Agent 15 is continuously at risk for energy poverty. This 3-person household in a privately rented home
never adjusts its energy demand, causing its energy bill to follow the patterns of the energy prices. As
this household rents their home, they are dependent on the retrofitting choices of their landlord, and as
no investments are made, they are stuck with low efficiency installations and poor energetic quality.

Agents 2262662 and 227399, two agents with similar profiles, illustrate the relativity of the current energy
poverty indicators. Both are renters, one in social housing and the other in the private sector, and are
largely dependent on their landlords’ investment decisions. Different upgrades to their installations occur
in 2026 and 2027, respectively. Yet, at different times before these upgrades, and for agent 2262662
even afterwards, both households experience periods when they are classified as not at risk of energy
poverty. This highlights that, for vulnerable households, small fluctuations in the thresholds used to
define energy poverty can easily shift their risk assessment, even when their underlying situation has
not really changed. Measurement of energy poverty relies too heavily on broad averages instead of more
household-specific realities. As these households bounce back and forth across the energy poverty line
on paper, it does not mean they are suddenly struggling more or less in practice. This shows a clear
example of misrecognition as disrespect or non-recognition: energy-poor households are not properly
identified (section 3.2). This emphasises the need for more nuanced measurement and recognition of
the diverse ways households experience energy poverty.

Agents 105 and 40517 are both homeowners who have autonomy over their investment decisions, yet
their experiences with energy poverty risk differ. Agent 40517 represents a household that, around the
height of the energy crisis in 2022, entered energy poverty. Although this is not treated as an investment
motivator in the modelling logic, this household demonstrates how combining technical upgrades, struc-
tural insulation improvements, and solar panels is great to address the root causes of high energy costs.
Amid the energy crisis, this household invests in solar panels and new heating installations, These mea-
sures immediately lifted them out of energy poverty by improving both the energetic quality of the home
and installation efficiency. On top of this, the solar panels even allowed the net energy demand to fall
below zero, and this agent has a negative energy bill, most likely due to feed-in tariffs.

Agent 105 shows a contrasting situation. This homeowner remains at risk for energy poverty, as it has
not made significant investments. Their situation illustrates how targeted retrofitting could substantially
improve energy efficiency, lower consumption. After all, if this household were, for example, to improve
its insulation levels, its home would increase its energetic quality and lower its energy use and bills,
potentially significantly improving its situation.

Table 7.1: Household profile agents of interest

Agent 15 105 40517 262662 227399

NeighbourhoodUilennest Scheveningen
badplaats

Zeeheldenkwartier Laakkwartier-
Oost

Transvaalkwartier-
Noord

Dwelling
type &
building
period

Terraced
house,

1930-1945

Multiple-
family

dwelling, low
1965-1974

Multiple-family
dwelling high,
pre 1930

Multiple-
family
dwelling, low
1930-1945

Multiple-
family
dwelling, low
1975-1991

Household
size

3 2 2 2 2

Ownership
type

Private rent Own Own Private rent Corporation
rent

Energy
label

E E F D A(+)



7.1. HESTIA's individual results 47

Figure 7.3: Evolution of agent’s energy risk, bills and use per year, control run

Together, these agents can enter or exit energy poverty through many different pathways, and it is not
solely a matter of dwelling energy efficiency or technologies. Autonomy, affordability, policy design, and
measurement methods all shape who is at risk for energy poverty, and why. Renter’s ability to escape
energy poverty depends heavily on the willingness and capacity of property owners to invest in energy
efficiency and renewable measures (Feenstra and Clancy, 2020). While some policies acknowledge this
structural imbalance by targeting rental properties and incentivising landlords to invest (section C.2), this
is not always sufficient. Inaction by landlords should not trap households in energy poverty. To mitigate
this risk, households should get opportunities to improve their situation if their landlords choose not to
act, for example, by supporting individual behavioural changes or small-scale measures that tenants
can implement themselves. Strengthening policies that empower residents to take control, even within
structural limitations, is crucial. Good examples are initiatives such as the Energiehulpnetwerk from
Milieu Centraal, which assists tenants with practical guidance and small-scale energy-saving measures
(Milieu Centraal, nda).

Summarised, these agent-level insights confirm that while the average data for the municipality may
improve over time, households can still become at risk for energy poverty. Broad improvements in en-
ergy efficiency do not have to mean an improved situation for individual households. By focusing the
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policy on financial measures to improve technical upgrades, or mandates for technical upgrades, the
policy overlooks the everyday struggles of households for whom the issue is deeper than that. Recog-
nising this mismatch and accounting for the behavioural differences of the population that can lead to
this energy poverty risk is crucial. Without addressing the social aspects of energy usage and energy
poverty, efficiency-focused interventions alone can perpetuate and exacerbate inequalities. Improving
the buildings is not always enough to help people out of energy poverty.

7.2. Multi-model baseline results
This section analyses the effects of the above-discussed changes in the S-curves. These effects are
measured by looking at the energy poverty prevalence, energy label counts, and by analysing the in-
vestment choices of the same agents as in section 7.1.

7.2.1. Behavioural analysis
S-curves
Figures 7.4 and 7.5 are used to describe the impact of incorporating the behavioural heterogeneity
in HESTIA’s investment module. Firstly, Figure 7.4 demonstrates the consequence of diversifying the
investment logic per income class. This S-curve shows the consideration for the option geen_koop in
2021, which is one of the options that can be considered in the installation track for homeowners with
income class 1. The attractiveness of an option depends on the ratio between costs and benefits and
on homeowners’ assessment of that cost-benefit ratio (van der Molen, 2023). The figure shows that
the multiplication of the β and P50P value with the differing intentions to invest per income class has
significantly dampened the steepness of the curve. By lowering the curve, the percentage of a group
that finds an option attractive at a higher cost-benefit ratio decreases (van der Molen, 2023).

Figure 7.4: Example changes in S-curves per income class

The split of the singular curve into multiple, allows for diversity in investment considerations per income
class, but the flattening of the curve indicates that within such a group, there is less diversity in the
assessment of attractiveness of an option. The β parameter indicates the sensitivity to the value of the
cost-benefit factor (van der Molen, 2023). For lower-income classes, this β is lower, indicating that it
has less sensitivity to the value of the cost-benefit factor. This is visible in Figure 7.4 as well, although
the highest attractiveness for income class 1 is lower than for higher income classes, the lowest point
remains higher than for the other classes, as the lower the income class, the less sensitivity to the
cost-benefit ratio. Following Equation 6.15, this shift has caused the odds of the different options being
selected to be closer together. This effect is visible in Figure 7.5, where two building options for income
class 1 are compared in both the base case and the multi-model scenario run.
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Figure 7.5: Comparison S-curve of different options, base-case vs. multi-model

For the insulation choices, a similar pattern occurs for S-curves themselves, but in the mathematics of
the choices, the βambition has a slightly different meaning. The lower this coefficient, the less likely far-
reaching insulation measures. There will be less ambition to ensure a high insulation level. In this way,
with a “Low” insulation ambition, a set of measures will be chosen from a perspective that seeks to avoid
high costs and does not place a high value on energy savings (van der Molen, 2023). By decreasing
βambition and the P50P used to calculate the insulation ambition of a dwelling, followed by calculating the
odds of an insulation measure being selected with a reduced βmeasure, the insulation track will reflect
similar patterns as the installation track. The insulation decreases as well. Overall, this will result in
reduced odds per option. As with the building options, the overall attractiveness of all options is lowered,
and the differences in attractiveness per option decrease.

Intentions to invest
Figure 7.6 shows the changes in investment intentions over time. With all income classes included,
the changes per income class are hardly visible. The visualisation clearly shows a positive relationship
between household income and the intention to invest. Higher income groups consistently show greater
average intention levels, reflecting their increased sense of control and more favourable attitudes toward
investment. This trend is likely influenced by the fact that individuals in higher income brackets are more
likely to own their homes, which provides them with greater autonomy and decision-making power. They
also more often have already invested or plan to invest in sustainable technologies. subsection D.2.1
includes a visualisation per income class in which the changes over time are more clearly visible. This
change is the result of investments made by the agents and their neighbours, which influences their
attitude based on changing scores of building options and the subjective norms they experience.
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Figure 7.6: Comparison of investment intentions per income group

The limited changes in the average intentions per income class can at least partly be attributed to the
fact that these are averages across a large and diverse group of respondents. Taking an average
across so many agents dampens the extremes and nuances of individual differences. This argument is
supported by Figure 7.7, which compares the intention to invest of income class 1 to invest of the same
5 agents. The ABM was able to recognise a real difference in the agents’ behavioural intention, despite
their similar income class; they had enough profile characteristics and neighbourly influences that they
were not all as willing to invest in retrofitting their homes. Another reason for this limited change is that
the intention to act is only partly influenced by dynamic variables; the remainder is determined by static
parameters. Since these parameters remain constant over time, they inherently constrain the extent to
which intentions can change.

Figure 7.7: Comparison of agent investment intentions to income group average

7.2.2. Municipal level results
The soft-link of the Agent-Based Model to HESTIA has resulted in a slightly changed energy poverty risk
assessment for The Hague. Interestingly, although Figure 7.4 and Figure 7.5 show that the S-curves
have significantly changed, the percentage of households at risk for energy poverty per year does not
differ by a lot. By changing the investment option selection to be diversified per income group based
on investment intention, the energy poverty risk per year seems to be slightly lower. Where in the base
case, at its peak in 2022, energy poverty was at 11.4% (Figure 7.1), in the multi-model simulation, energy
poverty does not go above 10.8%.

Although the trend of energy poverty risk still follows the same pattern in the first years, a small increase
between 2020 and 2021, a larger increase in 2022, the pattern in the second half of the simulation
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is different. There is a steeper decrease in energy poverty risk after 2023, and this larger decrease
continues to 2027, whereas in the base case, the decrease over time almost stagnates Figure 7.8. This
only modest change in numbers shows that although the investment patterns have changed due to the
relative attractiveness of options being less distinct, resulting in more and more drastic investments, the
general attraction of investments has lowered enough to limit this effect.

Figure 7.8: Evolution of energy poverty risk multi-model

The energy label distribution does show a large difference compared to the control run, highlighting a
difference in the impact of the changes for the lowest income class only and the entire agent population.
The base case run of the multi-model shows a faster and stronger switch from the lower energy labels
to better labels. Both runs display the same trend: all energy labels below A(+) decline over time, while
label A(+) increases. This decrease in ”bad” labels reflects the stimulation for retrofitting investments
driven by policy incentives and embedded in HESTIA’s investment logic. Figure 7.9.

Figure 7.9: Energy label count across years compared for control run and multi-model

As visualising the investments of all households to analyse where the change in energy poverty comes
from is not possible, the investments per category, per income group, and per year are counted. These
comparisons are summarised in section D.2. The results show that although investments in installations
significantly increase, investments in the insulation of the building envelope decrease in the multi-model
simulation.
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The results show that in the first investment moment, from 2020 to 2021, there are no differences in
investment choices. However, as the model continues, and the intentions to invest grow, albeit a little,
there seem to be more and more consequences. All income classes show the largest difference in the
investments in heating installations, for both spatial heating and water heating. The results show that
for every income class, investments per category grow significantly over the years, in comparison to the
base case. The intentions to invest grow over time, leading to an upward shift of the S-curve and a higher
attraction to investments compared to the start of the run. Lower-income classes know relatively more
growth as their distinction between different options is less, thus increasing the probability of investment
options being selected over not investing. This explains the decrease in energy poverty; investments
in installations, generally, mean investments in more sustainable technologies, decreasing the energy
use, bills or both.

The results in section D.2 show that during the initial years of the simulation, the investments in insulation
are less than in the base case. This explains the lack of improvement in the energy label distribution,
as seen in Figure 7.9. This decrease balances the effects of the increase in investments in the building
options.

Based on the changes made to HESTIA’s model logic, the results can be very easily explained. The
insulation ambitions are significantly decreased due to βambition and its matching P50P value having been
adjusted by the intentions to invest. This, in combination with less attractive insulation measures due to
the change of βmeasure in Scurve_isolatie.csv, has allowed the odds of every insulation option to be so
significantly decreased that more often than not, the choice for no investment will be made. In the later
years, policy comes into play that stimulates investments in insulation measures, and as the intentions
to invest start to increase, so do the βs. For social housing specifically, norms are introduced that ensure
that anytime a dwelling makes the choice to invest in insulation, the energy label has to be improved
up to at least D. As the years progress, the compliance of this policy measure increases, ensuring that
more and more dwellings update their energy labels. This explains why the difference in investment with
the base case decreases over time, even growing to a surplus for some building components for some
years.

For the investment in building options, the reasoning is slightly different. Yes, the curves are lowered,
reflecting a generally lower attractiveness of the different investment options. However, there is less
freedom in the investments for building options, since if an installation’s lifespan has ended, there is no
other choice but to invest in a new technology. Choices are limited as the initial selection of building
options is not determined with S-curve data, but based on the technical specifications of the dwelling
and the business case of the installations.

This large increase in investment in building options explains the general lower energy poverty risk; more
investments in installations means more improvements to dwellings, lower energy use and consequently
lower energy bills for the people who choose to invest. Especially the relatively high increase in invest-
ments for income class 1 explains this decrease in energy poverty, as that is only calculated based on
the lowest income class.

7.2.3. Agent level results
To analyse the impact of the changes on an agent level, the same agents are selected as in the base
case. The evolution of their energy risk, energy bills and energy use is visualised in Figure 7.10.

Agent 15 illustrates that, even with the diversification of investment choices by income group, the original
model’s investment patterns remain true for certain households. This agent’s investment behaviour
remains unchanged; they consistently stay in energy poverty. Similarly, agent 105 shows no change
in investment patterns or energy poverty status, reinforcing the finding that model adjustments do not
affect all households equally.

40517 also maintains its pattern for energy poverty risk, but does show a different investment pattern.
In the control run, this agent only improves some insulation levels, while leaving their wall insulation at
the lowest level. In the multi-model, however, they upgrade their building envelope so that none of its
components remain at this lowest insulation level. This matches with the adjustments to the insulation-
related S-curves: although the general attractiveness of investing in insulation has lowered, the tail of
the S-curve has shifted upwards. As a result, relatively higher cost, lower-benefit measures -such as
investing in higher insulation levels even though this does not significantly increase the energetic value-
are relatively more attractive and thus this investment decision is made.
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The biggest changes are for agents 227399 and 262662. Where both agents bounced back and forth
between being at risk and not at risk in the control run, this pattern has now shifted. Agent 262662 now
invests in insulation alongside their building option upgrades, improving the home’s energetic quality
enough to achieve an A(+) energy label.

That they are no longer at risk for energy poverty after these investments, when they were in this state
in the control run, is a testament to the averages used to calculate energy poverty. While their energy
use increases again after these investments, it remains relatively lower than that of agents such as 205
and 227399, whereas in the control run, it rose above their demand. This further illustrates that even
marginal efficiency improvements can shift a household’s position relative to the average benchmark.

Agent 227399 continues to fluctuate between being at risk and not at risk, but now follows a different
pattern due to substantial improvements in insulation levels. This once again highlights how energy
poverty is treated as relative. Although this home has a high energy label, its energy bills do not decrease
significantly. Through the LIHE indicator, which is based on the average energy bill of households with
an energy label C, this dwelling will still be classified as energy poor between 2025 and 2027 until further
improvements to the building are made.

Figure 7.10: Evolution of agent’s energy risk, bills and use per year, multi-model
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Broadly, the structural patterns of energy poverty and investment behaviour remain consistent with the
control run; however, individual agent outcomes shift. The diversity in agent responses illustrates the
complex dynamics between affordability, energy efficiency, and model assumptions. These results un-
derscore the importance of considering both technical and socio-economic factors in policy design, as
well as the limitations of aggregate measures in capturing the lived experience of energy poverty.

7.3. Random seed analysis
Both the ABM and HESTIA use pseudo-random assignment of parameter values. To assess if the results
are robust rather than noise introduced by this random initialisation, the model was run using multiple
random seeds.

Changing the seed of the model leads to different dwelling configurations. The outcomes of this ro-
bustness test can thus not be analysed on an individual agent level. There is no guarantee that under
a different seed, the same agent-ID has the same profile characteristics, making it impossible to com-
pare the investment decisions across different seeds. It would be like comparing apples with oranges.
Instead, only the risk of energy poverty per year and the energy label count per year are analysed.

Figure 7.11: Risk of energy poverty across years for multiple seeds

The box-plots in Figure 7.11 show the distribution of the risk for energy poverty per year for the different
seeds. Appendix E contains a table withmore detailed information. This table shows that the interquartile
distances, which describe the size of a box, are within an acceptable range (varying between 0.3 and
0.20). This indicates that the variation between model runs with different seeds is limited and confirms
the stability of the results.

The analysis of the energy labels over these three seeds also shows a variation within an acceptable
range (Figure 7.12). The variation between the three values differs between a few dozen and a few
thousand, but compared to the range of totals for these counts (80000 - 160000), this is not very large,
as clear from the whiskers of the box-plots. The three seeds tell the same story; over time, the lower
energy labels get improved to higher labels as investments are made to improve the energy efficiency
of the dwellings.
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Figure 7.12: Energy label count across years for multiple seeds

A pattern that becomes clear in the energy label count but not in the energy poverty assessment is that
over the years, the variation seems to increase compared to its minimal start. Many agent attributes
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are randomly assigned at initialisation, as is the neighbour assignment, which does not change over
time. It can be assumed that small seed-induced differences are gradually increased as the neighbourly
influence and subjective norms influence the attitude calculations and thus intentions to invest of the
agents. Although the variation in the later years is still within an acceptable range, it does show that the
model is somewhat sensitive to stochastic variation.

Using only three seeds means a very limited view of the stability of the results. A test with a minimum
of 5 and ideally 10 or more seeds would have been ideal, but due to time restrictions, this was not
possible. Nevertheless, the differences in the outcomes do not seem to be systematically higher or
lower for one seed. Plus, even though the energy label count does show there is some sensitivity to
stochastic variation, the acceptable range does create confidence in the results.

7.4. Sensitivity analysis
This section presents the sensitivity analysis, which is applied to understand the uncertainty in the
model’s outputs and how these relate to the uncertainty in the model’s inputs. As part of the valida-
tion process, it tests the robustness of model outcomes to variations in key parameters. Sensitivity
analysis strengthens confidence in the reliability and applicability of the results (Salciccioli et al., 2016).
If a model has similar results under this variation of parameters, these are seen as robust results (Hernán
and Hernández-Díaz, 2013). A deviation in the results is also possible, and this is important to note, as it
provides valuable information for assessing the validity of recommendations based on a model’s results
(Hernán and Hernández-Díaz, 2013). In such a case, it is important to investigate the relative influence
of each uncertain parameter on this variation in the model outputs (Wagener and Pianosi, 2019).

As part of the multi-model, the ABM introduces limitations to the available techniques for the sensitivity
analysis. The emergent properties and non-linear interactions within an ABM often result in an unclear
relationship between the model’s inputs and outputs. This makes it difficult to use traditional statisti-
cal methods to conclude the effect of parameter changes. In literature, three sensitivity methods are
discussed for an ABM: On-Factor-At-A-Time analysis (OFAT), regression-based analysis and the Sobol
method (ten Broeke et al., 2016). Regression and Sobol analyses are both approaches that try to provide
a complete picture of parameter sensitivity, but they do come with drawbacks for an ABM. Regression
models struggle with the high variance and outliers common in ABM results, while Sobol is sensitive
to skewed or extreme outputs. In addition, these methods are computationally expensive and offer lit-
tle insight into the underlying mechanisms of the model behaviour (ten Broeke et al., 2016). Although
technically possible, this makes these methods less suitable for ABMs.

ten Broeke et al. (2016) recommends OFAT-analysis. This simple, local approach addresses sensitivity
related to chosen parameter estimates and not for the entire parameter distribution (Hamby, 1994). One
uncertain variable is varied at a time, while keeping all others fixed. Several of the parameters in the
ABM are based on assumptions, In the sensitivity analysis, only the parameters with high uncertainty
and high impact are included. A variable is deemed to have high uncertainty if it is completely based on
an assumption and a parameter with a large influence on the intention to invest indicator. For the ABM,
the main parameters based on assumptions are the weights used to calculate the TPB attributes. As
these weights are sets, one set is seen as one variable. More specifically, the OFAT-analysis is applied
to the weights of the Theory of Planned Behaviour attributes, applied in Equation 6.3. The choice to
test the sensitivity of the results to this set of weights is based on its uncertainty and impact. It is fully
elaborated in subsection D.2.5.

In the base case, the weights for attitude, subjective norms and perceived behavioural control are set
equally, to avoid prioritisation of a specific single parameter. Nevertheless, de Vries (2020) and Davoudi
et al. (2014) imply that subjective norms carry more weight than your attitudes. Another argument can
be made that PBC should weigh the heaviest, as if someone does not feel they have the ability to invest,
they will not, despite their attitude or peer pressure. Thus, the sensitivity analysis is run twice with
adjusted weights for the PBC attributes; once where PBC weighs heavier than SN and once vice versa,
but both are still higher than attitude, to follow the findings from the literature. The experimental design
is summarised in Table 7.2. The resulting outputs are compared to the base case run of the multi-model,
making it easy to interpret (Wagener and Pianosi, 2019).
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Table 7.2: Experimental design analysis ABM

Run Variable

Multi-model run {wa, wsn, wpbc} = {0.33, 0.33, 0.33}
Sensitivity SN {wa, wsn, wpbc} = {0.1667, 0.5, 0.33}
Sensitivity PBC {wa, wsn, wpbc} = {0.1667, 0.33, 0.5}

Figure 7.14 illustrates that the differing weights of the behavioural attributes have a differing effect on
the energy poverty risk estimates. The base run results in higher intentions to invest, followed by the
PBC-heavy run, and the SN-heavy run results in the lowest scores. The energy poverty risk assessment
for both sensitivity runs starts off being almost equal, even though the intentions to invest for income
group 1 at risk for energy poverty do, in fact, differ. Over time, the results start to diverge. This lowest
intention to invest for SN results in the lowest energy poverty risk, as the lower the intention, the flatter
the S-curves, and the less distinction between attractiveness of investment options, leading to more
investments.

Given that energy poverty risk is assessed solely for the lowest income class, the sensitivity analysis of
the energy poverty risk does not reflect the complete model’s sensitivity to the parameters. The overview
of intentions to invest over time per income class, visualised in Figure 7.13, gives the impression of larger
sensitivity to the changes in parameters than are reflected in the model’s risk calculations. Notably, the
intention to invest has a very different sensitivity per income class. While the PBC- and SN-heavy runs
yield comparable outcomes for income class 1; both differing from baseline but relatively close to each
other, the difference between the scores per run within an income class changes alongside the income
groups. At the aggregated level, these sensitivities are not reflected at all, as the energy label distribution
over time is almost identical per configuration.

Figure 7.13: Evolution of intentions to invest per income class under sensitivity analysis
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The sensitivity analysis results highlight three significant points: Firstly, small differences in intentions
to invest do not seem to have a large impact on the overall results in HESTIA. It seems that HESTIA
is responsive to large shifts in adoption data, like those caused by the multi-model integration, but not
sensitive to smaller behaviour-driven changes. Secondly, the subjective norm-heavy configuration only
starts resulting in differing outcomes, reflecting that it takes time before social influence can shape the
outcomes of the model. Lastly, the ABM’s sensitivity results differing across income classes underscore
the importance of carefully calibrating behavioural weights in the model design. These findings suggest
that the relative influence of the behavioural attributes should not be uniformly applied across the agent
population, as their effects may vary significantly by socioeconomic status.

Figure 7.14: Evolution of energy poverty risk under sensitivity analysis



8
Discussion

This chapter includes a discussion of the findings from this thesis. It starts by reflecting on the study
and the modelling choices. This is followed by a more detailed discussion of the assumptions, data and
theories used in the model and their role in shaping the outcomes. It briefly discusses the academic
implications of this study before moving on to the implications for policymakers. The chapter ends with
recommendations for future research.

8.1. Reflecting on this study
8.1.1. Inaccuracy vs. injustice
This thesis set out to include the incorporation of recognition justice in the HESTIA model by increas-
ing the detail of households’ investment behaviour, under the premise that an inaccurate aggregated
representation of this behaviour means misrecognition and would potentially result in wrong policy rec-
ommendations, with the chance of reinforcing energy poverty. An important question to ask about this
premise is:

Does inaccuracy mean injustice?

Nancy Fraser argued that recognition justice is a three-pronged issue, which can only be completely
eradicated if it is tackled in parallel with economic inequality, one of the factors that plays a role in
energy poverty. Misrecognition occurs if certain groups are undervalued by cultural norms or institutional
practices.

The sensitivity analysis has shown that intentions to invest differ per income group and that these income
groups have a different sensitivity to attributes of the Theory of Planned Behaviour. This suggests that
the influence of behavioural attributes on investment decisions should not be uniformly applied across
the population. As HESTIA assumes uniformity in investment behaviour, the current representation of
household behaviour in HESTIA is therefore inaccurate. Not all households intend to behave in the
same way under the same circumstances. Overlooking this diversity in a model intended to be used
by governmental agencies to calculate policy targets risks undervaluing certain population groups, in
institutional practices such as policy design and resource allocation aimed at decreasing energy poverty.
In this situation, inaccuracy does mean injustice.

A second question that should then be asked is:

Is the applied method for the incorporation of recognition justice the most suitable one?

The current adjustments to the model have led to a flattening of the investment dynamics. This has the
side effect of making unfavourable investment options appear relatively more attractive to lower incomes,
whereas in practice this is rarely the case. The inclusion of the agent heterogeneity through the S-curve
parameters (β and P50P) meant that the intention to invest had to be normalised. Multiplying the S-
curve parameters with un-normalised values would in some cases result in βs higher than 1. If the β
is allowed to be 1 or higher, the curve would more closely resemble a step function, as illustrated in
Figure 8.1, which is the curve for one of the building options, as Figure 5.2, but with an β of 3.2. This
would result in erratic behaviour, where adoption would be extremely low until a certain price is reached,
after which adoption would suddenly be at its highest.

The original S-curve data is calibrated based on aggregated adoption data of the different options

59
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Figure 8.1: Example S-curve with β >1

(van der Molen, 2023). The goal of the adjustments to the S-curves was not to redefine the adoption
dynamics of specific technologies, but to add more variation across population groups. This is why the
S-curves were ”split” as it were between income groups. It introduces more heterogeneity whilst the
investment structure itself is mostly unchanged.

The adjustment of the S-curve parameters resulted in flatter curves, reflecting less sensitivity in the
attractiveness of an option, based on cost changes. The maximum attraction score of every option is
lower than in the control run, correctly reflecting a lower intention to invest. Unintentionally, the shift of
the curve led to the right side of the curve, the attraction of an option at a less beneficial cost-benefit
ratio, moving up compared to the control run.

As a lower income group has a lower intention to invest, according to Equation 8.1, the multiplication
with their lower intention to invest results in a more flattened curve than for a higher income class. The
higher intention to invest for higher income groups results in a higher attraction for options at a more
beneficial cost-benefit ratio. At a less beneficial cost-benefit ratio, the attractiveness is higher for lower-
income classes. This causes a relatively higher increase in investments for the lowest income groups
in comparison to the higher income groups.

A(cost/benefit) = 1

1 + exp (β · (cost/benefit− P50P))
(8.1)

Although mathematically this makes sense, the accuracy of this representation of investment behaviour
can be questioned. After all, households with a lower income generally have less tendency to invest in
energy-saving technologies (Niamir et al., 2020), as is also clear from the results, and would thus not
find a higher cost-benefit ratio more attractive than groups with more income.

This limitation does not discredit this approach or this research. This thesis presents only a first at-
tempt at adjusting HESTIA for recognition justice, and applying the investment intention in this way was
necessary with the limitations of the current model structure. It does reflect the difficulty of including
agent heterogeneity through behavioural elements to improve recognition justice in an existing model
structure. The investment structure, as it is, is not suitable for capturing the diversity of behavioural
responses required for meaningful representation of agent heterogeneity, and thus is not yet able to
properly account for recognition justice. This raises the question of whether the HESTIA model is suit-
able for socio-economic analyses at all. The model logic would need to be fundamentally restructured
to explicitly account for household-level decision processes, behavioural feedback and the interaction
of these aspects with technical measures. Only then could policy outcomes determined through this
model be said to have accounted for recognition justice.
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8.1.2. The multi-modelling method
It was already established, in section 4.1, that due to HESTIA being a top-down model, the most suitable
way to incorporate such adjustments would be to incorporate these household-level adjustments through
an additional, separate model layer.

This additional model layer significantly increased the complexity of the overall simulation. It also once
more highlighted how the current modelling architecture has no proper mechanism to represent house-
hold behaviour. The incorporation of the ABM results was only possible by grouping them per income
group, as adjusting the S-curve data for each agent would require too immense storage capacity for all
CSV files, as well as substantial computational power in terms of processing time and system resources.

The applied multi-modelling method brought advantages such as the ability to model the entire Theory
of Planned Behaviour structure in a bottom-up perspective whilst maintaining the top-down structure
of HESTIA. Although discrete-step data exchange in a soft-linked model preserves the modularity of
both models, enabling separate development, updates, and easier debugging, this does reduce the
user-friendliness of the model design. Data must be extracted and exchanged in a specific order to
prevent errors, and the manual extraction of data from HESTIA before loading it into the ABM adds
to the total runtime. Additionally, since the models are manually linked, each must complete a full run
before exchanging data.

There is no automatic back-and-forth data exchange. As a result, both models lack memory across
runs. To keep agent data and investment history, both must rerun all previous years cumulatively at
each step. This means one run consists of running 2020 for both models, then running 2020+2021,
then 2020+2021+2022, etc.. This significantly increases the runtime and further reduces the ease of
use.

8.2. Limitations
The behavioural logic in the Agent-Based Model is based on several assumptions and simplifications.
While these were essential to create a functional model, it is equally important to take the limitations
that these assumptions bring into account when discussing the takeaways from the results, as they can
influence the generalisability and validity of the conclusions. This section will discuss the three most
important assumptions, as well as the limitations they impose.

8.2.1. Dwellings vs. households
A conscious decision was made to treat the agents as households, rather than dwellings, as they are in
HESTIA. This choice was made to more easily attach behavioural variables to the agents. The agents
are based on HESTIA data, which does mean that they are based on dwelling characteristics. Multiple-
family homes (77% of all dwellings in The Hague) are treated as a single household in the ABM. This
simplification is addressed during the post-processing of results by applying standardisation, ensuring
that the energy cost and use do not distort the energy poverty estimates.

This choice does have an impact on the assignment of neighbours and subjective norms that are a
result of social interactions. It is a reasonable deduction that inhabitants of a multi-family building, such
as an apartment complex, see each other as direct neighbours and might even collectively decide on
retrofitting decisions for the building. These in-building social dynamics are excluded, as these buildings
are considered as one agent. This simplification aligns with the model’s abstraction levels.

Furthermore, as the focus of the study is on showing the effects of inclusion of recognition justice and
not on correctly predicting dwelling’s investment choices, such detailed dynamics are not as relevant,
and this limitation is accepted. In future research, these dwellings could be split up into separate agents,
and by including different levels of neighbourly influence, group dynamics could be distinguished be-
tween intra-building and inter-building influences. It is recommended that an extensive literature review/
exploratory survey is conducted to determine how size of the effect of splitting households on invest-
ment decisions and energy poverty prevalence. If found to be insignificant, it is not needed to introduce
unnecessary detail in the model.

8.2.2. Agent profiles
For the agents’ initialisation, several assumptions were made the agent profile characteristics that play
a role in its energy behaviour are limited to income, household size and dwelling characteristics such
as building age, home ownership, dwelling size and energy labels. As discussed in subsection 4.2.1,
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there is a conflict in the literature on the impact that education levels within a household have on their
energy behaviours (Niamir et al., 2020; Vasseur and Marique, 2019). Future research could explore the
role of education in energy behaviour, especially in the context of The Hague. If found to be significant,
it would be a valuable addition to the behavioural logic in this model.

Another profile characteristic that could have an interesting impact on a household’s energy behaviour
is political orientation, as there is an ideological divide on climate change views in Western European
countries (McCright et al., 2016). Several studies have found that a household’s political convictions
are a good predictor of their energy investment decisions (Dokshin and Gherghina, 2024; Gromet et al.,
2013). These studies are all applied to the United States. Although such behaviour seems plausible to
also occur in the Netherlands, there is no literary evidence and as such it has been left out of consider-
ation. Again, if such a relationship is found to be significant in future research, it would add extra depth
to the agent profiles and potentially be a valuable addition to the model.

The third limitation of the agents’ profile is in their geographical location. Based on the initialisation data
from HESTIA, the agents are assigned a neighbourhood. To prevent that, all agents are initialised on the
same point within their respective neighbourhoods, and they are given an ”address”, consisting of their
coordinates within their neighbourhood. Addresses are randomised within the neighbourhood to ensure
that the home cannot be traced back to a specific person. This might result in a house being positioned
in the middle of a road, or even a body of water. However, as this low spatial resolution is out of the
scope of this simulation, this is irrelevant. This randomised address assignment can result in neighbours,
assigned purely based on geographical proximity, having completely different building characteristics,
even though buildings on the same street usually share comparable attributes. The realism of the social
network structure might be weakened as a consequence. This limitation is accepted, however, as the
general patterns caused by neighbourly influences are considered more important than the individual
relationships between households.

In the current simulation, energy poverty risk can only be assessed by excluding HEQ as an indicator
and assessing all agents in the lowest income class for Low income/ High energy cost (LIHE) or Low
income/Low energetic quality (LILEK), causing an overestimation of energy poverty. This approach
brings the large assumption that only the lowest income group can be at risk for energy poverty, ignor-
ing that households in higher income classes can suffer the same fate due to rising energy costs or
overall insufficient structural interventions. The distribution of energy poverty is somewhat skewed as
income is randomly assigned based on the income distribution per ownership type, which is sourced
from national distribution data. While this ensures a representative population overall, it can lead to
unrealistic combinations at the household level. For example, very low-income households occupying
expensive, energy-efficient dwellings that would likely be unaffordable in reality. This can slightly dis-
tort the calculated energy poverty risk and may overestimate how much technical efficiency alone can
mitigate poverty. This does highlight the interesting point of how both models and policies risk misrecog-
nising the structural roots of energy poverty when they assume that energy performance improvements
alone will be sufficient, overlooking how affordability, ownership type, or the housing market shape real
households’ options.

Lastly, although the weights in the behavioural attribute calculations can differ per agent based on their
characteristics, they remain constant throughout the entire simulation. The weights for the attitude,
subjective norm and perceived behavioural control are the same for every agent, and remain static as
well. This is a generalisation since the relative importance of each TPB attribute can differ per individual
(Ajzen, 1985). Despite this generalisation and staticity of the weights, they still represent an improvement
in terms of recognition justice, as they allow for the inclusion of behavioural aspects, which are not
incorporated into HESTIA at all currently.

8.2.3. Behavioural logic
In this thesis, the three constructs of the TPB, attitude, subjective norms and perceived behavioural
control were used to determine an agent’s intention to invest in energy efficiency measures around their
home. The Theory of Planned Behaviour offers the opportunity to incorporate behavioural heterogeneity
into the model, which is crucial for recognition justice. The TPB is widely used as a behavioural theory
in ABMs due to its providing an uncomplicated way of explaining the individual choices an agent makes
during the decision-making process (Muelder and Filatova, 2018). The theory has several well-known
points of criticism. As the Theory of Planned Behaviour forms the foundation on which the ABM model
is built, it is important to reflect on how these critiques are dealt with in this study.
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Firstly, it has an exclusive focus on rational reasoning, overlooking the role of unconscious processes
and emotions in decision-making (Sniehotta et al., 2014). Especially in the context of energy behaviour,
this is a relevant critique as although investment decisions might seem rational, people tend to be driven
by status quo bias, loss or risk aversion, availability bias or temporal discounting (Frederiks et al., 2015).
Three perspectives are often used to analyse energy behaviour: an economic, psychological and soci-
ological perspective. The economic perspective suggests that people are utility maximisers who base
their decisions completely on rational cost-benefit analyses (Davoudi et al., 2014). This is a common
criticism of the Theory of Planned Behaviour; it ignores unconscious influences and the role of emotions
beyond anticipated affective outcomes on behaviour (Sniehotta et al., 2014). As the decision logic in
HESTIA follows this pattern, the Theory of Planned Behaviour is actually a fitting theory to apply. How-
ever, Christie et al. (2011) highlights how energy efficiency decisions are not only influenced through
a benefit assessment but also by perceived social risks. Homeowners are influenced by their desire
to fit in. They do not want to be the first to install a technology and stand out. To address this, the
subjective norms are loosely based on social identity theory, reflecting how much a person will adjust
their behaviour to improve their sense of belonging. While the decision to follow their group’s behaviour
remains an active rational choice (Davoudi et al., 2014), it allows the model to capture some of the
behavioural diversity linked to social belonging.

Another important critique of the TPB is its predictive validity; how it deals with the intention-behaviour
gap (Sniehotta et al., 2014). Generally, when the TPB is used, the intention to act is seen as a threshold.
If crossed, an agent will act. The intention-behaviour gap illustrates the occurrences when the threshold
is crossed by an agent, but no action is undertaken (Sheeran, 2002; Sniehotta et al., 2014). Sheeran
(2002, p. 3) state that intentions to act explain about 28% of the variation in behaviour. This means that
people’s intention to act only explains about 28% of people’s behaviour. 72% of behaviour cannot be
explained by intentions alone.

Intention to act is treated differently in this study. Not as a static threshold, but as a normalised continuous
value which increases the likelihood that an agent will make an energy investment. This is more in line
with Klabunde et al. (2015), where intention is used to calculate the probability that the agent will migrate.
This increases if the intention increases. Although applied in very different cases, both concepts share
the underlying principle that a high intention increases the likelihood of behaviour, rather than crossing
a certain threshold of intention, which is equivalent to behaviour. Moreover, behaviour is not completely
determined by the result of the TPB attributes. The intention is only one extra component in a multi-step
behavioural logic in HESTIA. Although a heightened intention to act increases the odds that a technology
will be adopted by a household, there is still a chance that nothing will happen, reflecting a more realistic
gap between intentions and actual behaviour.

The subjective and interpretive nature of TPB attributes brings challenges to the quantitative opera-
tionalisation of behaviour in an ABM (Muelder and Filatova, 2018). Different interpretations by different
modellers result in different ABM formalisations, even if the study contains the same factors; the archi-
tecture, meaning how these factors form behavioural rules, can be completely different (Muelder and
Filatova, 2018). There is also the risk of different factors being identified as relevant, or differences in
data distribution impacting a model’s sensitivity. This hinders the comparability of this study’s results. To
prevent these challenges as much as possible, as much transparency as possible in documenting the
data sources, assumptions and tests performed is imperative (Muelder and Filatova, 2018). To achieve
this, this study has included a detailed description of the calibration and validation steps, as described
in chapter 6.

The TPB is also criticised for its static explanatory nature, meaning that the TPB does not help in explain-
ing how the effects of behaviour influence future behaviour (Sniehotta et al., 2014). This study partially
addresses this limitation. Specifically, the intention derived from installations present in the building,
a proxy of the “sustainability” attitude, changes once installation investments have been made. Not
only does this impact the future attitude towards investments, but it also indirectly impacts the subjective
norms of the agent themselves as well as their neighbours. Nevertheless, perceived behavioural control
and the other attitude component based on installation plans remain static. So, although a limited feed-
back structure is present, the model does not fully reflect the dynamic nature of energy-related decision
making, and this limitation of the TPB is not fully addressed.
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8.2.4. Generalisability of results
The generalisability of these results is very limited due to a pair of reasons. Firstly, this study was done
using the municipality of The Hague as a case study. To this end, local census data was used in the
initialisation of the agents as well as in their behavioural rules. As Mashhoodi and van Timmeren (2018)
and Mashhoodi et al. (2019) have shown, there is a difference in the strength and relevance of energy
behaviour indicators. When studying a different geographical scope, it is important to use data from that
region to more accurately reflect the local energy behaviour.

Secondly, this research only indicates possible results. A big limitation arises due to a combination of
time limits and computational power. This restricted the opportunity to run the analysis for a longer time
frame. The investment cycle for retrofitting decisions is presumably longer than the seven years included
in this scope, as the lifespan of an installation is 10+ years (van der Molen, 2023).

8.2.5. Bug identified in the HESTIA model
Throughout this thesis, working with the HESTIA model, a bug was identified. Even though it does not
stop the model’s execution, they do reduce its usability.

The first identified bug concerns the housing stock. New construction in HESTIA starts from 2021 on-
wards. Scenarios indicate in which period how many homes will be built and where. At the start of each
9-year time frame (for example, 2021-2030), the new houses are added to the model (van der Molen,
2023). In theory, it is possible to disable this scenario setting (Listing 8.1), which would exclude new
constructions from the simulation.

1 container Basis : Using = "Units"
2 {
3 unit<uint32 > PlanRegio := Invoer/RuimtelijkeData/StudieGebied/buurt ,

Descr = "CBS-buurten worden als definitie van plangebied gehanteerd", IsHidden
= "True";

4 attribute <bool> BS_isActive (Classifications/BebouwingsSectorBase) : [ true,
false ], Descr = "Welke gebouwen worden meegenomen? [ Woningen , Utiliteit ]",

IsHidden = "True";
5

6 parameter <bool> RuimtelijkeOntwikkelingAan := false , Descr = "Wordt nieuwbouw
meegenomen JA/NEE";

7

8 parameter <string > RuimtelijkeOntwikkelingScenario := 'BAU'; //Keuze uit:
9 //GR, NOS, OO, VW, BAU
10 ...
11 }

Listing 8.1: New build scenario settings, in Basis.dms

When disabling this scenario setting, it does not exclude the new builds. All new builds between the
start year of the run and 2050 are added to the model’s intermediary results, even if these results are
for a year in which the building is not supposed to be built yet. All the information for these dwellings
is set to zero, but they are still added to the data hindering compatibility of results. The choice of this
model setting is thus not between including or excluding new builds; it is between including them all
at once or gradually. In most situations that HESTIA will be used for, new builds will have to be taken
into account to create a realistic simulation of the energy transition in the built environment and this bug
will not introduce any problems. However, in studies such as this one, where the changes in energy
efficiency of the existing buildings have to be assessed under ceteris paribus, this does create some
issues. Whereas normally key performance indicators such as annual energy label counts or metrics
per building type can typically be exported directly from HESTIA, in this study, the results had to be
exported on a dwelling level. This was necessary as the unintended new builds had to be manually
excluded before aggregating and calculating the final indicators.

8.3. Implications for literature
This thesis brings three contributions to the literature. Firstly, as discussed in subsection 1.2.1, energy
models have a predominantly techno-economic focus. The HESTIA model is no exception. By estab-
lishing a soft-link between an Agent-Based Model and HESTIA, the problem of a model focusing too
much on technical detail is attempted to be resolved by developing an ABM that includes stakeholder
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behaviour and neighbourhood effects, as loosely suggested by Fattahi et al. (2020). This demonstrates
how techno-economic energy models can incorporate social and ethical dimensions, thereby enhancing
their social relevance.

The second and third contributions lie in the integration of energy justice in models. Generally, when
models incorporate justice aspects, they focus on distributional justice, sometimes procedural justice,
but rarely recognition justice. Vågerö and Zeyringer (2023) demonstrated this occurrence when, out
of 33 studies they analysed for their inclusion of justice tenets in models, 79% (26) focused on distri-
butional justice, and only one considered recognition justice. Not only is this thesis, to this author’s
knowledge, one of the few considering the implications for recognition justice in energy models, but it
also demonstrates an application of merging, the highest level of justice integration in models.

By establishing a soft link between the ABM and the HESTIAmodel, and modifying HESTIA’s investment
logic to reflect agent-specific characteristics, recognition justice considerations are directly embedded
within the model structure. This aligns with the merging strategy proposed by Trutnevyte et al. (2019),
representing a deeper integration of justice aspects into the modelling process. This study accounts for
recognition justice by incorporating agent heterogeneity through diversified agent profiles; these profile
characteristics (in)directly influence agents’ investment choices in HESTIA. Household heterogeneity
impacts the investment logic, meaning that recognition justice is embedded in the model dynamics,
instead of remaining exogenous. This approach contributes to the literature, as most studies, according
to Sundaram et al. (2024), remain at the stage of iterating.

8.4. Recommendations for policy developers
It is important to remember that those who are and are not recognised in the energy transition can be
determined by political contexts (Tarasova, 2024). On paper, policies tested in HESTIA appear to be
working. Energy labels are improving, resulting in a more energy-efficient housing stock and reducing
energy poverty. The agent-level analysis has shown that while some households can make changes to
reduce their energy usage enough to escape the risk of energy poverty, others cannot, even if they do
invest in insulation or more efficient installations.

The results have illustrated how the relativity of energy poverty risk allows households to not be classified
as at risk, or the other way around, when their conditions would not be expected to result in this classi-
fication. The current indicators LILEK and LIHE rely too heavily on the broad averages of households
with energy label C (Loos, 2024), instead of focusing on household-specific realities. The identification
metrics for energy poverty are classified under misrecognition as disrespect and non-recognition. An
important policy advice, to improve the integration of recognition justice in HESTIA as well as energy
poverty policies in general, would be to apply more nuancedmeasurement and recognition of the diverse
ways households experience energy poverty.

A second advice that arises from this thesis is to enable further investigation into ways to improve the
accuracy of HESTIA concerning recognition justice. Improvements are required in the representation of
household behaviour, particularly for those most at risk of energy poverty. These improvements would
enhance HESTIA’s capacity to identify the impact of a policy in a more targeted manner and decrease
the risk of policies that miss structurally disadvantaged people and those who depend heavily on the
choices of others, preventing them from benefiting fully.

When linking the results back to recognition theory from Nancy Fraser, it is relevant to acknowledge that
although recognition of individual (group) challenges is important in establishing energy poverty policy,
it is more important not to focus completely on this (group) identity. Recognition should be focused on
the social status of people and whether or not they are prevented from participating as peers in society
(Fraser, 2001). Designing policies based on a specific identity or disadvantage would risk increasing
the very inequalities the policies aim to solve. Recognition in the status order model means transforma-
tive remedies: de-institutionalising patterns that impede parity of participation and to replace them with
patterns that foster it (Fraser, 2001, p. 25). Energy poverty policies, including a levelling effect, could
aid in achieving this. It would entail measures that are available to everyone but structured in a way that
disproportionately benefits those who need it most.

When using HESTIA to calculate the consequences of policy measures and determine how these are
implemented, the insights on patterns within specific groups should be kept in mind, but, in line with
Fraser’s theory, should not be used to design targeted policies, as this would be identity politics. Instead,
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allow this information to inform inclusive designs that work for everyone while improving the position of
the worst-off. This would bring society closer to participatory parity, ensuring that everyone participates
in and benefits equally from the energy transition.

8.5. Future research recommendations
In the above-discussed limitations, several suggestions for future research are alreadymentioned. Based
on the insights from this study, future research can consider several modifications and adjustments to
further investigate how recognition justice aspects can be merged into the model logic.

Firstly, as mentioned in subsection 8.1.1, there is doubt whether the current HESTIA model structure
is even suitable for more agent heterogeneity in its investment module. Future studies should explore
whether the investment logic can be formalised differently, without the S-curve structures, to allow for
more diversity in investment choices, to more accurately represent agent heterogeneity. If this is not
possible, another avenue to explore is how, while applying the S-curve logic, more household hetero-
geneity can be introduced in the model to (1) allow for diversity reaching further than income classes
only and (2) for barriers to investment to be more accurately represented.

Secondly, as section 4.1 mentions, HESTIA does include a corrective behavioural factor. This factor is
included in functional energy demand calculations to represent energy demand adjustments caused by
shortening shower time or lowering the average temperature of spatial heating (van der Molen, 2023).
These factors, although differing per functional demand category, are one-size-fits-all. It is the same
factor for all households, as it does not change during a model run (van der Molen, 2023). This current
research has focused solely on incorporating recognition justice aspects into the investment module of
HESTIA. Future work could extend this incorporation of recognition justice by developing behavioural
adjustment factors which can vary over time and per household (group), to more accurately reflect the
diverse realities of household energy consumption. It could be extended by researching how these
behavioural adjustment factors can be calculated per year and diversified per household (group) to
more accurately represent energy-saving behaviour. Such a primary investigation into the aspects that
influence energy behaviour in the region that is studied will provide more insights into the significance
of local determinants, such as education levels.

As discussed, applying the Theory of Planned Behaviour was suitable as it’s rational perspective on
behaviour aligns with the rational way decision-making is represented in HESTIA and because the
attributes for this theory have been proven to have a significant impact on energy behaviour in the
Netherlands. While the variables and theoretical approach behind the agents’ profiles and behaviour
are supported in literature, due to time restrictions, there was no opportunity to perform a local survey to
validate the relevance or relative importance of these variables for residents of the municipality of The
Hague. This means that in several calculations, heterogeneity is limited to diversity per income group,
neighbourhood or ownership type. Although this brings more heterogeneity to HESTIA than the original,
it still means focusing on group identities, as more individualistic data is unknown. For future studies,
it would be interesting to perform such surveys and analyse whether different behavioural theories are
better suited to represent energy-saving and energy investment behaviour of Dutch households.

Energy poverty affects households for different reasons. Vulnerable groups are more often than not
low-income families, the elderly, lower educated people, women-led households or migrant s (Jones
and Reyes, 2023; Ooij et al., 2023). In this thesis, the focus was more on income-based recognition and
energy poverty. The aggregation in HESTIA’s dwelling-level data made it not possible to fairly include
other identity-based dimensions, such as cultural backgrounds or gender. For future research, it would
be very valuable to focus on different dimensions of energy poor, as this could influence how recognition
is conceptualised in models and how outcomes are interpreted through a justice lens.

Lastly, while this thesis calls for a move away from one-size-fits-all policies to allow for policies to recog-
nise the needs of groups vulnerable to energy poverty and be more levelling between vulnerable and
non-vulnerable population groups, this raises important questions. Such questions are: What would
happen to the pace of the energy transition in the built environment? Can fully achieving participatory
parity hinder the achievement of the climate goals? Investigating the trade-off between inclusivity and
the energy transition could provide very valuable insights into how to balance energy justice with the
urgency of the energy transition.



9
Conclusion

9.1. The research questions
To find the answer to the main question of this study, three sub-questions were asked. In this section,
these questions are answered.

9.1.1. Sub research question 1

How are misrecognition and energy poverty connected?

Most theories on recognition justice are founded on the theories of Axel Honneth and Nancy Fraser. Axel
Honneth’s theory of recognition justice is centred around the idea that social justice is achieved when
individuals receive recognition in three key spheres: love, law, and cultural appreciation. Misrecogni-
tion in one of these spheres leads to disrespect and harm to one’s self-identity. This theory would be
very suitable for application in the diagnostic phase of justice and help in determining why people feel
misrecognised, as it focuses on how individuals and groups experience misrecognition in their daily
lives.

In contrast, Nancy Fraser’s framework is more suited for analysing structural misrecognition in policies,
as it combines both cultural recognition and economic redistribution. Fraser argues that justice requires
addressing both of these dimensions simultaneously, as neither misrecognition nor economic inequality
alone could fully explain social injustice. Recognition is grounded in the cultural status order, and mis-
recognition occurs when cultural norms and institutional practices undervalue certain groups, preventing
them from participating as full members of society. Injustices are then reproduced through systemic and
institutional arrangements, rather than only through interpersonal relations, like in Honneth’s theory.
Misrecognition occurs in three forms: cultural domination, non-recognition and disrespect.

Misrecognition in Dutch energy poverty policies occurs through one-size-fits-all policies based on dom-
inant norms mainly based on affordability, institutional blind spots causing energy-poor households to
not be properly identified, and awareness efforts not being targeted at the right groups and ignoring cul-
tural & language barriers. In line with Fraser’s theory of misrecognition, these shortcomings represent,
respectively, cultural domination, disrespect and non-recognition.

Policies that do not consider the diversity in the population may overlook specific challenges faced by
households in the energy transition, and consequently, reinforce inequalities and hinder true participatory
parity in the energy transition. A lack of recognition of the diversity in households’ energy behaviour from
policymakers can exacerbate and reinforce distributional inequalities and worsen energy poverty.

9.1.2. Sub research question 2

What is a suitable conceptualisation for modelling household energy behaviour in HESTIA?

HESTIA offers a detailed representation of spatial, technical, and economic processes within the energy
transition, but largely overlooks the social dynamics that influence the energy transition of the built en-
vironment. By reducing individuals’ diversity in energy behaviour to singular behavioural profiles based
on dominant norms, HESTIA preserves misrecognition. To prevent this, a shift towards a household
perspective, with a bottom-up view of the system, is required. While HESTIA is a powerful tool for as-
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sessing policy impacts and the influence of investments, it is a top-down model, not designed to capture
social interactions between households.

To bridge this gap, a complementary approach is needed; one that simulates heterogeneous households
interacting with each other and their environment, and allows for behavioural change from the bottom
up. An agent-based model is a suitable complementary addition to HESTIA as it allows for the analysis
of complex, dynamic systems through a bottom-up perspective. It enables a simulation of micro-level
individual decisions and interactions, and how this affects macro-level behaviour.

People’s energy-related decisions are not based on economic rationality alone, but are shaped by social
context and interpersonal relationships. This household’s behavioural diversity is made up of objective
household characteristics and subjective behavioural factors. Objective profile characteristics affect
household energy consumption, while behavioural factors influence their decisions regarding energy
saving and investment. Objective factors that have been identified to have of impact on energy behaviour
are household income, household size, building age, home ownership, dwelling size and the dwelling’s
energy label.

The Theory of Planned Behaviour has been criticised for its focus on rational decision making, excluding
unconscious and irrational influences on behaviour. Nevertheless, it offers a structured and operational
framework that aligns well with HESTIA’s decision-making logic. Moreover, its attributes have been
proven to have a significant impact on energy behaviour in the Netherlands. Thus, this theory is used
to capture intention-based behavioural dynamics in the simulation. The inclusion of the social identity
theory ensures that social norms and influences are reflected. Households assess their similarity to
their neighbours and adjust their behavioural intention according to the difference in attitudes with their
neighbours, weighted for how close the neighbours are. Attitudes towards investment are influenced
by a household’s income, whilst Perceived Behavioural Control is weighted for income and housing
ownership.

By linking the weighted sum of these behavioural dynamics as intention to invest to the investment logic
in HESTIA, more household heterogeneity is introduced in HESTIA. This method (indirectly) captures a
range of behavioural differences across household profiles, thereby increasing household behavioural
heterogeneity and decreasingmisrecognition in household energy decision-making. Moreover, by giving
each agent their profile, weighing the behavioural variables based on their objective profile factors and
varying the weights of the subjective norms based on how much they identify with their neighbours,
allowing their attitudes to vary over time based on HESTIA’s intermediate outputs, the conceptualisation
adheres to the requirements defined for the artefact.

This conceptualisation is realistic and feasible as a way to increase recognition of justice in HESTIA. It
enables the model to more realistically reveal how different households, especially marginalised groups,
choose their investments. This, in turn, aids policy developers in developing more effective policies,
stepping away from one-size-fits-all solutions.

9.1.3. Sub research question 3

How does accounting for misrecognition in HESTIA affect energy poverty estimates?

Accounting for recognition justice by incorporating agent heterogeneity in HESTIA seemingly decreases
energy poverty risk over time. The adjustment of the investment logic, specifically by varying the S-
curve parameters β and P50P for the insulation ambition, chosen insulation measures and investment
in installations for the dwelling, by investment intention per income group, aimed to improve the different
willingness to invest per income class. Through this inclusion, HESTIA was able to acknowledge that
different income groups might have a different appreciation of investment options, based on their relative
cost-benefits.

These changes resulted in separate S-curves per income group, but also lowered and slightly moved
the curves to the left, resulting in a generally dampened response to the cost-benefit ratios. Through
these changes, the investment patterns in the HESTIA model changed. By moving the curve, the attrac-
tiveness of the different options came closer together, increasing the odds that more expensive options
were selected. This increase was seen particularly for income class one, as their general attractiveness
was suddenly, and probably unrealistically, higher at a higher cost-benefit ratio than in the base case.
As energy poverty is only monitored for this income group, their increase in investments and improve-
ments of their homes resulting in lower bills and energy use explains the decrease in energy poverty
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risk, especially as in the base case, the attractiveness decreases way more steeply, leaving.

This would appear to mean that incorporating more recognition by acknowledging diversity in investment
intentions would result in potentially more effective policies than initially thought, as energy poverty
seems to be lower. Although the S-curve adjustments correctly differentiated adoption attractiveness
per income group at lower cost/benefit ratios, the uniform adjustment of the curves also caused an
upward shift of the attraction to options with a less beneficial cost/benefit ratio, resulting in unrealistic
attractiveness rankings for the most expensive options. This suggests that one term adjusting the entire
curve is insufficient to represent structural investment barriers and the nuance in investment behaviour.

9.2. Final conclusion
Summarising these answers leads to the answer of the main research question, which is also the con-
clusion of this thesis:

How can the integration of recognition justice in HESTIA improve the model to better capture the
consequences of energy policy interventions, measured through energy poverty?

Misrecognition in energy poverty policies occurs through one-size-fits-all policies, institutional blind spots,
and the awareness efforts not being properly targeted at the people who need them. A step towards
preventing misrecognition in HESTIA, which could give a better idea of how different groups respond to
policy, and enable policies to be improved to further participatory parity, would be to allow more agent
heterogeneity in the investment logic of the model.

Measured in the percentage of the population that is at risk for energy poverty, adjusting the investment
logic for each income group’s intention to invest seems to have worked to capture a diversity in invest-
ment choices that leads to a decreased estimate of energy poverty risk. Based on the results of this
study, no definitive conclusions can be made regarding the assessment of policy effectiveness, as the
adjustments do allow for diversity in decision-making to be introduced, but also dampen the response
to different options within such a group. On the one hand, the adjustments made to the model have
introduced recognition of a level of diversity. On the other hand, the dampening of the response to
different options takes away some detail in the decision-making that might be crucial for an accurate
representation of the investment decision-making process of households. The conclusion of this study:

Recognition justice in energy models used to determine energy policy is imperative to improve energy
poverty in the Netherlands. The method tested in this thesis is an initial test of howmore social dynamics
can be included in HESTIA to provide this recognition. It showed that more and more nuanced changes
are required to fully capture the investment dynamics of households and incorporate the recognition that
is required to simulate the consequences of energy policy interventions on energy poverty.
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A
Literature review process

A.1. Research question 1
This appendix provides a table (table A.1) summarising all literature used in different stages of the litera-
ture review process. These are sorted alphabetically by the first author’s name for consistency with the
bibliography.
Through this process, I realised that my initial search terms were too broad, yielding many irrelevant
results and creating a chaotic process for myself. Consequently, I had to adopt several different search
strategies. For future research, I have learned the importance of developing a more focused search
strategy and refining it iteratively as the literature review progresses. A.1.

Table A.1: Papers used

Author Year Title Search method Search
engine

Abrahamse & Steg 2009 How do socio-demographic and psychologi-
cal factors relate to households’ direct and in-
direct energy use and savings

”demographic heterogeneity in
energy modelling” and ”recogni-
tion justice”

Google
Scholar

Abrahamse & Steg 2011 Factors related to household energy use and
intention to reduce it: The role of psychologi-
cal and socio-demographic variables

Forward snowballing from Abra-
hamse & Steg (2009)

Google
Scholar

Amin 2024 How do socio-demographic and psychologi-
cal factors relate to households’ direct and in-
direct energy use and savings?

(justice OR ”social aspect”) AND
”energy model”

Google
Scholar

Bal et al. 2023 A fairway to fairness: Toward a richer concep-
tualization of fairness perceptions for just en-
ergy transitions

”conceptualisation” AND ”en-
ergy justice” AND ”model”

Scopus

Bouzarovski 2017 Spatializing energy justice ”energy justice” AND ”energy
poverty”

Google
Scholar

Ebrahimigharehbaghi
et al.

2022 Identification of the behavioural factors in
decision-making processes of the energy ef-
ficiency renovations: Dutch homeowners

”behaviour” AND ”energy sav-
ing” AND ”Netherlands”

Google
Scholar

Feenstra et al. 2021 Humanising the energy transition: Towards
a national policy on energy poverty in the
Netherlands

”energy justice” AND ”energy
poverty”

Scopus

Fraser 1996 Social justice in the age of identity politics: Re-
distribution, recognition, and participation

recognition justice theory Google
Scholar

Gillard et al. 2017 Advancing an energy justice perspective of
fuel poverty: Household vulnerability and do-
mestic retrofit policy in the United Kingdom

”conceptualisation” AND ”en-
ergy justice” AND ”model”

Google
Scholar

Guo et al. 2018 Residential electricity consumption be-
haviour: Influencing factors, related theories
and intervention strategies

Forward snowballing from Abra-
hamse & Steg (2009)

Google
Scholar

Honneth 1996 The struggle for recognition: The moral gram-
mar of social conflicts

recognition justice theory Google
Scholar

Jenkins et al. 2016 Energy justice: A conceptual review ”Energy justice” Google
Scholar

Jones & Reyes 2023 Identifying themes in energy poverty re-
search: Energy justice implications for policy,
programs, and the clean energy transition

”Energy justice” AND ”energy
poverty”

Scopus

(continued on next page)
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(continued from previous page)
Author Year Title Search method Search

engine
Kaufmann et al. 2023 How policy instruments reproduce energy vul-

nerability - a qualitative study of Dutch house-
hold energy efficiency measures

”policy instruments” AND
”energy poverty” AND ”Nether-
lands”

Google
Scholar

Mashhoodi & van Tim-
meren

2018 Local determinants of household gas and
electricity consumption in Randstad region,
Netherlands: Application of geographically
weighted regression

Backward snowballing Mash-
hoodi (2019)

Google
Scholar

Mashhoodi et al. 2019 Spatial homogeneity and heterogeneity of en-
ergy poverty: a neglected dimension

”policy” AND ”energy poverty”
AND ”Netherlands”

Scopus

Menghwani et al. 2020 Planning with justice: Using spatial modelling
to incorporate justice in electricity pricing - the
case of Tanzania

”conceptualisation” AND ”en-
ergy justice” AND ”model”

Scopus

Mesgadhi et al. 2025 Beleidsverkenning energiearmoede en de
energietransitie [Policy discovery energy
poverty and the energy transition]

”policy instruments” AND
”energy poverty” AND ”Nether-
lands”

Google
Scholar

Miller 2025 Justice Recommendation supervisory
team

-

Mulder et al. 2023 Energy poverty in the Netherlands at the na-
tional and local level: A multi-dimensional
spatial analysis

”policy” AND ”energy poverty”
AND ”Netherlands”

Scopus

Niamir et al. 2020 Demand-side solutions for climate mitigation:
Bottom-up drivers of household energy be-
haviour change in the Netherlands and Spain

Forward snowballing Abra-
hamse & Steg (2019)

Google
Scholar

Nie et al. 2020 Split incentive effects on the adoption of tech-
nical and behavioural energy-saving mea-
sures in the household sector in Western Eu-
rope

”behaviour” AND ”energy sav-
ing” AND ”Netherlands”

Scopus

Niehoff & Kuttscheurter 2021 Energy Saving within Households: How the
Antecedents of our Behaviour Influence En-
ergy Consumption

”behaviour” AND ”energy sav-
ing” AND ”Netherlands”

Google
Scholar

Rios-Ocampo et al. 2025 A just energy transition is not just a transition:
Framing energy justice for a quantitative as-
sessment

”energy justice” and ”energy
poverty”

Scopus

Snell et al. 2015 Justice, fuel poverty and disabled people in
England

- -

Sundaram et al. 2024 Operationalizing justice in models used as
decision-support tools in local and regional
energy transition planning

Recommendation from supervi-
sory team

-

Tarasova 2024 Rethinking justice as recognition in energy
transitions and planned coal phase-out in
Poland

”recognition justice in energy
models”

Google
Scholar

Trotta 2018 Factors affecting energy-saving behaviours
and energy efficiency investments in British
households

”behaviour” AND ”energy sav-
ing” AND ”households”

Google
Scholar

van Ooij et al. 2023 Energy poverty: A science and policy state of
play

”policy” AND ”energy poverty”
AND ”Netherlands”

Google
Scholar

van Uffelen 2022 Revisiting recognition in energy justice recognition justice theory Google
Scholar

Vassuer & Marique 2019 Household’s willingness to adopt technologi-
cal and behavioural energy saving measures:
An empirical study in the Netherlands

”behaviour” AND ”energy sav-
ing” AND ”households”

Scopus

Vågerö & Zeyringer 2023 Can we optimise for justice? Reviewing the
inclusion of energy justice in energy system
optimisation models

”recognition justice in energy
models”

Scopus

Walker et al. 2014 Fuel poverty in Northern Ireland: Humanizing
the plight of vulnerable households

Backward snowballing Gillard () Google
Scholar

Wang et al. 2023 How family structure type affects household
energy consumption: A heterogeneous study
based on Chinese household evidence

”behaviour” AND ”energy sav-
ing” AND ”households”

Scopus

Wood 2023 Problematising energy justice: Towards con-
ceptual and normative alignment

Recommendation supervisory
team

-

Wood & Roelich 2020 Substantiating Energy Justice; creating a
space to understand energy dilemmas

Recommendation supervisory
team

-

Woods et al. 2024 Energy-efficiency policies reinforce energy in-
justices: The caring energy practices of low-
income households in Norway

”Energy justice” AND ”Energy
poverty”

Scopus



B
Case study scope

This thesis uses the municipality of The Hague as a field of study. The Hague was selected due to the
broad availability of data, its diverse household composition and because, although energy poverty is
more severe outside of the Randstad, it still has a higher than average number of households experienc-
ing energy poverty (Klerks, 2024), making it an interesting area to test the effectiveness of the changes.
This appendix once again shows the map of the municipality, on a neighbourhood level (Figure B.1). It
also includes a clear list of every neighbourhood ID, its neighbourhood name and the area it belongs to.

Table B.1: The Hague neighbourhood identification (Wikipedia-bijdragers, 2025)

Neighbourhood
ID

Neighbourhood name Area

01 Oud Scheveningen Scheveningen
02 Vissershaven Scheveningen
03 Scheveningen Badplaats Scheveningen
04 Visserijbuurt Scheveningen
05 Van Stolkpark en Scheveningse

Bosjes
Van Stolkpark en Scheveningse
Bosjes

06 Waldeck-Zuid Waldeck
07 Statenkwartier Geuzen- en Statenkwartier
08 Geuzenkwartier Geuzen- en Statenkwartier
09 Vogelwijk 13
10 Rond de Energiecentrale Regentessekwartier
11 Kortenbos Centrum
12 Voorhout Centrum
13 Uilebomen Centrum
14 Zuidwal Centrum
15 Schildersbuurt-West Schildersbuurt
16 Schildersbuurt-Noord Schildersbuurt
17 Schildersbuurt-Oost Schildersbuurt
18 Huygenspark Stationsbuurt
19 Laakhaven-Oost Laakkwrtier en Spoorwijk
20 Moerwijk-Oost Moerwijk
21 Groente- en Fruitmarkt Transvaal
22 Laakhaven-West Laakkwartier en Spoorwijk
23 Spoorwijk Laakkwartier en Spoorwijk
24 Laakkwartier-West Laakkwartier en Spoorwijk
25 Laakkwartier-Oost Laakkwartier en Spoorwijk
26 Noordpolderbuurt Laakkwartier en Spoorwijk
30 Rustenburg Rustenburg en Oostbroek
31 Oostbroek-Noord Rustenburg en Oostbroek
32 Transvaalkwartier-Noord Transvaalkwartier
33 Transvaalkwartier-Midden Transvaalkwartier
34 Transvaalkwartier-Zuid Transvaalkwartier
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35 Oostbroek-Zuid Rustenburg en Oostbroek
36 Zuiderpark Zuiderpark
37 Moerwijk-West Moerwijk
38 Moerwijk-Noord Moerwijk
39 Moerwijk-Zuid Moerwijk
40 Nieuw Waldeck Waldeck
41 Zorgvliet Zorgvliet
42 Stadhoudersplantsoen Duinoord
43 Sweelinckplein e.o. Duinoord
44 Koningsplein e.o. Duinoord
45 Zeeheldenkwartier Zeeheldenkwartier
46 Archipelbuurt Archipelbuurt
47 Willemspark Willemspark
48 Nassaubuurt Benoordenhout
49 Haagse Bos Haagse bos
50 Bloemenbuurt-West Bomen- en Bloemenbuurt
51 Bloemenbuurt-Oost Bomen- en Bloemenbuurt
52 Bomenbuurt Bomen- en Bloemenbuurt
53 Vruchtenbuurt Vruchtenbuurt
54 Heesterbuurt Valekboskwartier
55 Valkenboskwartier Valekboskwartier
60 Binckhorst Binckhorst
61 Landen Mariahoeve en Marlot
62 Rivierenbuurt-Zuid Stationsbuurt
63 Rivierenbuurt-Noord Stationsbuurt
64 Bezuidenhout-West Bezuidenhout
65 Bezuidenhout-Midden Bezuidenhout
66 Bezuidenhout-Oost Bezuidenhout
67 Kampen Mariahoeve en Marlot
68 Marlot Mariahoeve en Marlot
69 Burgen en Horsten Mariahoeve en Marlot
70 Oostduinen Oostduinen
71 Belgisch Park Belgisch Park
72 Rijslag Scheveningen
73 Westbroekpark Westbroekpark
74 Duttendel Westbroekpark
75 Uilennest Benoordenhout
76 Duinzigt Benoordenhout
77 Waalsdorp Benoordenhout
78 Arendsdorp Benoordenhout
79 Van Hoytemastraat e.o. Benoordenhout
80 Morgenstond-Zuid Morgenstond
81 Bosjes van Pex Bohemen en Meer en Bos
82 Rosenburg Waldeck
83 Eykenduinen Vruchtenbuurt
84 Leyenburg Leyenburg
85 Kerketuinen en Zichtenburg Loosduinen
86 Houtwijk Loosduinen
87 Venen, Oorden en Raden Bouwlust en Vrederust
88 Morgenstond-West Morgenstond
89 Morgenstond-Oost Morgenstond
90 Ockenburgh Kijkduin en Ockenburg
91 Kijkduin Kijkduin en Ockenburg
92 Bohemen en Meer en Bos Bohemen en Meer en Bos
93 Componistenbuurt Waldeck
94 Waldeck-Noord Waldeck
95 Kom Loosduinen Loosduinen
96 Zijden, Steden en Zichten Bouwlust en Vrederust
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97 Kraayenstein en Vroondaal Kraayenstein en Vroondaal
98 Dreven en Gaarden Bouwlust en Vrederust
99 De Uithof Bouwlust en Vrederust
100 Duindorp Duindorp
101 Erasmus Veld Wateringse Veld
102 Hoge Veld Wateringse Veld
103 Parkbuurt Oosteinde Wateringse Veld
104 Lage Veld Wateringse Veld
105 Zonne Veld Wateringse Veld
106 Vlietzoom-West Hoornwijk
107 Vliegeniersbuurt Hoornwijk
108 Bosweide Ypenburg
109 Tedingerbroek Ypenburg
110 De Reef Hoornwijk
111 De Venen Ypenburg
112 Morgenweide Ypenburg
113 Singels Ypenburg
114 Waterbuurt Ypenburg
115 De Bras Ypenburg
116 Vlietzoom-Oost Ypenburg
117 De Rivieren Forepark
118 De Lanen Leischenveen
119 De Velden Leischenveen
120 De Vissen Leischenveen
121 Rietbuurt Leischenveen
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Figure B.1: Neighbourhoods overview



C
Model development

This appendix gives more detail on the choices and assumptions made in the model development, as
well as some relevant input variables.

C.1. Energy prices
Figures C.2 andC.1 are screenshots from theCSV files HESTIA uses as input for energyprices: 20220709_Euro2020_gas.csv
and 20220709_Euro2020_gas.csv. As the simulation only runs from 2020 to 2025, only these prices
were included. The entire file can be found in the GitHub repository for HESTIA: Github/model=hestia-
public.

Figure C.1: Gas prices used in HESTIA

Figure C.2: Electricity prices used in HESTIA
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C.2. Policies
Table C.1 gives an overview of the policies implemented in HESTIA. Historic policies, meaning any that
were given with HESTIA, but were implemented before 2020, are also included as these determine the
starting situation of the dwellings in the start year.

Table C.1: Policy Subsidies Overview

Code Time Target
group

Basis Height sub-
sidy

Conditions Compliance

sub_ZonPV 2012/ 2013 Own solarpanels 15% Max. € 650 0.8
sub_HR 2009/ 2010 Own RO_N3, RB_N3* 35/m2,

max.
€1100

0.8

sub_SchZun1 2010/ 2011 All homes insulation €300 Label steps:
1

0.8

sub_SchZun2 2010/ 2011 All homes insulation € 750 Label steps:
2 to 6

0.8

sub_Eprem1 2013 All homes MS_N2, MS_N3,
MS_N4

6/m2 0.01

sub_Eprem2 2013 All homes MG_N2, MG_N3,
MG_N4

15/m2 0.01

sub_Eprem3 2013 All homes DP_N2, DP_N3,
DP_N4,
DS_N2,DS_N3,
DS_N4

10/m2 0.01

sub_Eprem4 2013 All homes VL_N2, VL_N3, VL_N4 7.5/m2 0.01
sub_Eprem5 2013 All homes RO_N3, RB_N3 20/m2 0.01
sub_Eprem6 2013 All homes solar boilers €455 0.01

sub_Eprem7 2013 All homes heat pumps €2700 0.01
sub_Eprem8 2013 All homes LTAS €230 0.01
sub_Eprem9 2013 All homes hybrid heat pumps €2000 0.01
sub_ISDE1 2016-2020 Own installations 20% 0.9
sub_ISDE2 2021/ 2022 Own insulation,(hybrid) heat

pumps, solar boilers
20% 0.9

sub_ISDE3 2021-2026 Own district heating connec-
tion

€ 3325 0.9

sub_ISDE4 2023-2026 Own (installations 15% 1 measure 0.9
sub_ISDE5 2023-2026 Own installations 30% Min. mea-

sures 2
0.9

sub_ISDE7 2027-2030 Own district heating connec-
tion

€ 3325 0.9

sub_ISDE8 2027-2030 Own district heating connec-
tion

€ 3325 Min. and
max. mea-
sure 1

0.9

sub_ISDE9 2027-2030 Own district heating connec-
tion

30% Min. mea-
sures 2

0.9

sub_SEEH 2016-2020 Own, So-
cial rental

insulation 20% Min. mea-
sures 2

1

sub_STEP1 2014-2015 Social
rental

insulation, installations €4500 Label steps:
6

0.8

sub_STEP2 2014 -2015 Social
rental

insulation, installations €3500 Label steps:
5

0.8

sub_STEP3 2014-2015 Social
rental

insulation, installations €2600 Label steps:
4

0.8

sub_STEP4 2014-2015 Social
rental

insulation, installations €2000 Label steps:
3

0.8

sub_STEP5 2016-2018 Social
rental

insulation, installations €9500 Label steps:
9

0.8

sub_STEP6 2016-2018 Social
rental

insulation, installations €8300 Label steps:
8

0.8

sub_STEP7 2016-2018 Social
rental

insulation, installations €7200 Label steps:
7

0.8

sub_STEP8 2016 -2018 Social
rental

insulation, installations €6200 Label steps:
6

0.8

sub_STEP9 2016 -2018 Social
rental

insulation, installations €4800 Label steps:
5

0.8
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Code Time Target
group

Basis Height sub-
sidy

Conditions Compliance

sub_STEP10 2016-2018 Social
rental

insulation, installations €3600 Max. € 3800
& Label
steps: 4

0.8

sub_STEP11 2016-2018 Social
rental

insulation, installations €2800 Label steps:
3

0.8

sub_STEP12 2016-2018 Social
rental

insulation, installations €1500 Label steps:
2

0.8

sub_SAH1 2020-2023 All rentals closing gas 40% Max. € 1200 0.094
sub_SAH2 2020-2023 All rentals district heating connec-

tion
30% Max. € 3800 0.094

PresWoCoInvest 2022-2025 Social
rental

solar panels, (hybrid)
heat pumps

100% Current la-
bel: A,B,C,D

0.075

SVOH 2022-2025 Private
rental

insulation, installation,
ventilation

75% Max. € 6000 0.2

SEEH1 2021-2030 Own, multi-
family

insulation 15% 1 Measure 0.06

SEEH2 2021-2030 Own, multi-
family

installations 30% Min. mea-
sures 2

nrm_EPC1 2000-2005 New builts DR_N0, MG_N3,
DP_N2, DS_N2,
RO_N2, RB_N2,
MS_N2, VL_N2

- - 1

nrm_EPC2 2006-2010 New builts DR_N0, MG_N3,
DP_N2, DS_N2,
RO_N2, RB_N2,
MS_N2, VL_N2

- - 1

nrm_EPC3 2011-2014 New builts DR_N0, MG_N3,
DP_N2, DS_N2,
RO_N2, RB_N2,
MS_N3, VL_N2

- - 1

nrm_EPC4 2015-2019 New builts DR_N0, MG_N3,
DP_N2, DS_N2,
RO_N3, RB_N3,
MS_N3, VL_N4

- - 1

nrm_EPC6 2000-2005 Existing
builts

DR_N0, MG_N3,
DP_N2, DS_N2,
RO_N2, RB_N2,
MS_N2, VL_N2

- Renovation
of 25% of
dwelling

0.1

nrm_EPC7 2006-2010 Existing
builts

DR_N0, MG_N3,
DP_N2, DS_N2,
RO_N2, RB_N2,
MS_N2, VL_N2

- Renovation
of 25% of
dwelling

0.1

nrm_EPC8 2011-2014 Existing
builts

DR_N0, RO_N2,
RB_N2, MS_N2,
VL_N2

- Renovation
of 25% of
dwelling

0.1

nrm_EPC9 2015-2019 Existing
builts

DR_N0, RO_N3,
RB_N2, MS_N2,
VL_N2

- Renovation
of 25% of
dwelling

0.1

nrm_EPC11 2000-2005 new built VT_Mec_Glk_new - - 1
nrm_EPC12 200-2023 new built VT_Mec_Vst_Glk_new - - 1
nrm_EPC13 2000-2005 Existing

builts
VT_Mec_Glk_new - Renovation

of 25% of
dwelling

0.1

nrm_EPC14 2006-2023 Existing
builts

VT_Mec_Vst_Glk_new - Renovation
of 25% of
dwelling

0.1

nrm_EPC15 2011-2014 Existing
builts

MG_N3, DP_N3,
DS_N3

- Renovation
of 25% of
dwelling

0.1

nrm_EPC16 2015-2019 Existing
builts

MG_N3, DP_N3,
DS_N3

- Renovation
of 25% of
dwelling

0.1

nrm_EPC17 2020-2050 Existing
builts

MG_N3, DP_N3,
DS_N3

- Renovation
of 25% of
dwelling

0.1

PresWoCo
(norm)

2022-2028 Existing
built, social
housing

Minimum label: D - Minimum la-
bel: D

0.4-1 (in-
crease by
0.1 per year)



C.2. Policies 88

Code Time Target
group

Basis Height sub-
sidy

Conditions Compliance

PresWoCoAct 2027-2028 Existing
builts,
social
housing

Building components - Current la-
bel: E, F or
G

0.5-1

PresWoCoCV
(ban)

2025-2030 social hous-
ing

VR, HR - Current label
A, B, C or D

Per policy this table contains:

• Code:the code used in the HESTIA model to track the subsidies.

• Time: This is the time window in which the subsidy is available. Any subsidies starting before 2020
but ending after are also included as they are available policies within the scope of the study.

• Target group: This shows which demographic groups are eligible to receive the subsidy. It is
categorised based on the ownership type of the dwelling.

• Basis: Shows what type of measures (installations or insulation levels) the subsidy applies to.

• Height subsidy: Indicates the amount of the subsidy either as a percentage of the investment, the
set amount available or the amount per square meter of improved building envelope.

• Conditions: Each subsidy can have a maximum of two conditions that must be met before it is
granted.

• Compliance: For each subsidy, a random draw is made per home with the weighting of the per-
centage entered. If this percentage is 75%, for 1 in 4 homes, they ignore the possibility of a subsidy
and make their investment decisions as if the subsidy does not exist at all.

Energy poverty
The energy bills for a household are determined by summing the following costs:

• Electricity costs

• Gas costs

• Biomass costs

• Oil costs, including tax*

• Pellet costs

• Maintenance costs LO

• Administrative costs LO

• Standing costs for the connections of the heat, gas, electricity and cold network.

An agent can have costs for a few or all of these options, depending on the installations they have
for their homes. These costs together make up all the energy costs spread over the different bills a
household receives. In HESTIA, oil has two cost items: the regular fuel costs and its taxes. Oil taxes
are considered separately as they vary over time, regardless of the basic price (van der Molen, 2023).

This total sum is standardised to a single-person household bill using equivalent factors from CBS’s
biannual publication on material well-being (Arends-Tóth et al., 2022). These factors express the extent
of economies of scale from joint households over single-person households. This means that, for ex-
ample, in the case of energy bill standardisation, for a single-person household, the factor is 1. Each
additional adult and/or child increases the factor, but as households increase in size, the increments
of the factor become smaller because the economies of scale in household energy consumption also
increase (Arends-Tóth et al., 2022). This is why using the same factor for any households with over
eight inhabitants is seen as a valid assumption; there would only be marginal differences from this size
on. The equivalence factors used differentiate between adults and children—for example, a household
with four adults receives a slightly different factor than one with four children (Arends-Tóth et al., 2022).
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In this study, the assumption is made that age-related differences in energy demand have a limited
impact on a total household’s energy demand, meaning that a home with two adults and one child is
assumed to have the same energy needs as one with three adults. For any household size higher
than four, the equivalence factors are determined by using the values corresponding to four adults, with
the increasing count of children. This ensures that the highest available factors are used, preventing
the potential underestimation of the energy needs of larger homes (see Figure C.3). These factors have
been the same since 2018 (Arends-Tóth et al., 2022), allowing for standardisation over the entire runtime
with the same factors.

Figure C.3: Recalculation equivalent factors

Table C.2 shows the yearly low-income boundary over the years in the scope of this project, as well as
how much the energy poverty boundary was in those years.

Table C.2: Low-income and energy poverty boundary

Year Low-income boundary
(€ per year)

Energy poverty boundary
(€ per year)

Source

2020 €13,247 €17,221.10 Griffioen and Schulenberg
(2021)

2021 €13,560 €17,628.00 Centraal Bureau voor de
Statistiek (2023b)

2022 €14,400 €18,720.00 Centraal Bureau voor de
Statistiek (2023a)

2023 €18,120 €23,556.00 Centraal Bureau voor de
Statistiek (2024b)

2024 €26,664 €34,663.20 Gemeente Amsterdam (nd)

C.3. Agent Based model
This section focuses on the rationale behind the weights and indicators in the formulas.

C.3.1. Income
This section elaborates on the variables used in the income assignment per agent. It reiterates the entire
equation and its symbols’ explanation, to put the explanation of, for example, the chosen weights into
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context. The assignment of income according to Equation 6.1 & Equation 6.2:

∀t ∈ T :
∑
c∈C

Pt,c = 1 with Pt,c ≥ 0

ci ∼ Categorical(Pt)

Where:

• t ∈ T denotes one specific ownership type.

• ci ∈ C denotes one specific income category.

• C = {1, 2, 3, 4, 5, other} is the set of income categories.

– In addition to the five income quintiles, the ‘other’ category accounts for households that could
not be monitored for their energy behaviour because their income is unknown, they share a
dwelling due to being institutionalised or students, have unknown energy consumption, or live
in non-residential units (Centraal Bureau voor de Statistiek (CBS), 2023).

– This ‘other’ category is not included in the census data, but is added to ensure a complete
distribution for the synthetic population.

• Pt,c is the categorical distribution over income categories for ownership type t.

C.3.2. Intention to invest
This section brings more detail on the equations used to calculate an agent’s intention to invest. Accord-
ing to Equation 6.3, the intention to invest is calculated by summing the weighted attributes of the theory
of planned behaviour, after which this intention is normalised to use in HESTIA.

Iinvrawi = wa ·Ainvi + wsn · SNinvi + wpbc · PBCinvi

Iinvi =
Iinvrawi − Iinvmin
Iinvmax − Iinvmin

Where:

• Iinvrawi is the un-normalised intention to invest for agent i

• Iinvi is the normalised intention to invest for agent i

• Ainvi is the total attitude towards investment for agent i

• SNinvi is the total subjective norms agent i experienced regarding investments

• wa = is the weight assigned to attitude, set at 0.1667

• wsn = is the weight assigned to the subjective norms, set at 0.5

• wpbc = is the weight assigned to the perceived behavioural control, set at 0.33

• Iinvmax is the maximum possible value for Iinvrawi

• Iinvmin is the minimum possible value for Iinvrawi

As all three attributes are weighed equally, the weight for attitude is 0.33, for subjective norms 0.33, and
for PBC it is 0.33 as well.

C.3.3. Attitude
The total attitude towards investment is calculated by summing and then normalising an intention based
on installation plans and an attitude based on the installations present in the home used to supply the
functional energy demand.

Ainvrawi = Asp,i +Ainst,i
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Ainvi =
Ainvrawi −Ainvmin
Ainvmax −Ainvmin

Where:

• Araw
i is the un-normalised attitude towards investment for agent i

• Ai is the normalised attitude towards investment for agent i

• Ainst,i is the total attitude based on current installations for agent i

• Ainst,i is the attitude based on current building option for agent i

• Amax is the maximum possible value for Araw
i

• Amin is the minimum possible value for Araw
i

Attitude installation plans
In the calculation of attitude based on installation plans, five response options to the question of whether
solar panels will be installed on the dwelling are considered. The attitude towards solar panels is used as
a proxy for all household energy installations in this thesis. Since responses 1 and 2, and responses 3,
4, and 5 are mutually exclusive, agents are assigned a binary score for one of the two groups according
to the distribution observed in the survey results (Kloosterman et al., 2021). These scores are then
weighted to reflect the extent to which each response indicates a positive attitude toward installations.
Mathematically, this is expressed as:

Asp
i = wt,i ·

5∑
k=1

wk · si,k (C.1)

where:

• si = [si,1, si,2, si,3, si,4, si,5]
⊤ is a binary selection vector for survey options of agent i,

• wk = [w1, w2, w3, w4, w5]
⊤ is the vector of weights assigned to each installation choice

• wt = [w1, w2, w3, w4] is the vector of weights assigned to each ownership category where:

– Asp,i is the total attitude based on current installations for agent i

– si = [si,1, si,2, si,3, si,4, si,5]
⊤ is a binary selection vector for survey options of agent i,

– The binary variables follow the constraints:

* Exactly one option selected from the first group: si,1 + si,2 = 1,

* Exactly one option selected from the second group: si,3 + si,4 + si,5 = 1,

* Each si,k ∈ {0, 1},

– wk = [w1, w2, w3, w4, w5]
⊤ is the vector of weights assigned to each category, with:

* w1 = 0.8

* w2 = −0.3

* w3 = 0.5

* w4 = 0.3

* w5 = 0.0

The explanation behind the weights is:

• w1 = 0.8 - installations present: this reflects a strong positive intention towards sustainability, but
there might be room for improvement.

• w2 = -0.3 Unsure of installations: Not knowing whether sustainability installations are present indi-
cates a lack of engagement or awareness, suggesting a weak sustainability attitude.
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• w3 = 0.5 - Plans to install: This is a good indicator of intention, though intention is not actual
behaviour, which is why this weight reflects cautious optimism

• w4= 0.3 - Uncertain about installation: Uncertainty does not reflect a strong commitment, but it can
also be due to external factors, which is why a moderate positive weight is still assigned.

• w5= 0.0 - No plans: This can imply simple disinterest, but it could also be due to lack of feasibility
or because the building is already upgraded to its limit. This response is seen as neutral, not
negative.

• wt = [w1, w2, w3, w4] is the vector of weights assigned to each ownership category, with:

– w1 is the weight for owning the home, set at 1

– w2 is the weight for private renters, set at 0.75

– w3 is the weight for social housing, set at 0.5

– w4 is the weight for ownership category ’other’ set at 0.25

Attitude based on building option
A building option is a set of installations for space heating, hot water supply and cooling, used in a
building to supply the energy demand for these categories. Table C.3 presents an overview of all possible
installation combinations of technology and their corresponding building options and energy labels.

Ainst,i =
∑

tc∈TC

wtc · Ttc, oi,tc (C.2)

Where:

• Ainst,i: The installation-based attitude for agent i

• tc ∈ TC: One specific technology category.

• TC: The full set of technology categories, TC = {RVb, RVp, TWb, TWp, KDb, KDp}

• wtc: The weight assigned to each technology category, with:

– wRVb = 0.15, wRVp = 0.15

– wTWb = 0.05, wTWp = 0.05

– wKDb = 0.05, wKDp = 0.05

• oi,tc: The technology option selected by agent i in category tc

• Ttc,oi,tc : The sustainability score of the selected technology option in category tc

Table C.3: Overview of building options and associated technologies (van der Molen, 2023)

Optie Cat. RVb1 RVp1 TWb1 TWp1 KDb1 KDp1 Label

VR_zKD ketel Vr-ketel Vr-ketel Vr-ketel Vr-ketel - - G+
VR_vKD ketel Vr-ketel Vr-ketel Vr-ketel Vr-ketel AC (vast) AC (vast) G+
VR_mKD ketel Vr-ketel Vr-ketel Vr-ketel Vr-ketel AC (mobiel) AC (mobiel) G+
HR_zKD_hTWds hybride Hr-ketel Hr-ketel Doorstroom Hr-ketel - - G+
HR_vKD_hTWds hybride Hr-ketel Hr-ketel Doorstroom Hr-ketel AC (vast) AC (vast) G+
HR_mKD_hTWds hybride Hr-ketel Hr-ketel Doorstroom Hr-ketel AC (mobiel) AC (mobiel) G+
HR_zKD_TWds hybride Hr-ketel Hr-ketel Doorstroom Doorstroom - - G+
HR_vKD_TWds hybride Hr-ketel Hr-ketel Doorstroom Doorstroom AC (vast) AC (vast) G+
HR_mKD_TWds hybride Hr-ketel Hr-ketel Doorstroom Doorstroom AC (mobiel) AC (mobiel) G+
HR_zKD ketel Hr-ketel Hr-ketel Hr-ketel Hr-ketel -v - G+
HR_vKD ketel Hr-ketel Hr-ketel Hr-ketel Hr-ketel AC (vast) AC (vast) G+
HR_mKD ketel Hr-ketel Hr-ketel Hr-ketel Hr-ketel AC (mobiel) AC (mobiel) G+
Pellet_zKD ketel Pelletkachel Hr-ketel Hr-ketel Hr-ketel - - G+
Pellet_vKD ketel Pelletkachel Hr-ketel Hr-ketel Hr-ketel AC (vast) AC (vast) G+
Pellet_mKD ketel Pelletkachel Hr-ketel Hr-ketel Hr-ketel AC (mobiel) AC (mobiel) G+
Olie_zKD ketel Oliekachel Oliekachel Oliekachel Oliekachel - - G+
Olie_vKD ketel Oliekachel Oliekachel Oliekachel Oliekachel AC (vast) AC (vast) G+

Continued on next page
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Table C.3 – continued from previous page
Optie Cat. RVb1 RVp1 TWb1 TWp1 KDb1 KDp1 Label

Olie_mKD ketel Oliekachel Oliekachel Oliekachel Oliekachel AC (mobiel) AC (mobiel) G+
Bioketel_zKD ketel Bioketel Bioketel Bioketel Bioketel - - G+
Bioketel_vKD ketel Bioketel Bioketel Bioketel Bioketel AC (vast) AC (vast) G+
Bioketel_mKD ketel Bioketel Bioketel Bioketel Bioketel AC (mobiel) AC (mobiel) G+
LweWP_zKD electric eWP (lucht) eWP (lucht) eWP (lucht) eWP (lucht) - - B+
LweWP_wKD electric eWP (lucht) eWP (lucht) eWP (lucht) eWP (lucht) eWP (lucht) eWP (lucht) B+
BweWP_zKD electric eWP (bodem) eWP (bo-

dem)
eWP (bodem) eWP (bodem) - - B+

BweWP_wKD electric eWP (bodem) eWP (bo-
dem)

eWP (bodem) eWP (bodem) eWP (bo-
dem)

eWP (bo-
dem)

B+

LleWP_zKD electric eWP (vent.) eWP (vent.) eWP (vent.) eWP (vent.) - - B+
LleWP_wKD electric eWP (vent.) eWP (vent.) eWP (vent.) eWP (vent.) eWP (vent.) eWP (vent.) B+
hEWV_TWg_zKD hybride EWV Hr-ketel Hr-ketel Hr-ketel - - D+
hEWV_TWg_vKD hybride EWV Hr-ketel Hr-ketel Hr-ketel AC (vast) AC (vast) D+
hEWV_TWg_mKD hybride EWV Hr-ketel Hr-ketel Hr-ketel AC (mobiel) AC (mobiel) D+
hEWV_TWeb_zKD hybride EWV Hr-ketel eBoiler eBoiler - - D+
hEWV_TWeb_vKD hybride EWV Hr-ketel eBoiler eBoiler AC (vast) AC (vast) D+
hEWV_TWeb_mKD hybride EWV Hr-ketel eBoiler eBoiler AC (mobiel) AC (mobiel) D+
EWV_TWeb_zKD electric EWV EWV eBoiler eBoiler - - A+
EWV_TWeb_vKD electric EWV EWV eBoiler eBoiler AC (vast) AC (vast) A+
EWV_TWeb_mKD electric EWV EWV eBoiler eBoiler AC (mobiel) AC (mobiel) A+
IR_TWeb_zKD electric Infrarood Infrarood eBoiler eBoiler - - A+
IR_TWeb_vKD electric Infrarood Infrarood eBoiler eBoiler AC (vast) AC (vast) A+
IR_TWeb_mKD electric Infrarood Infrarood eBoiler eBoiler AC (mobiel) AC (mobiel) A+
hEWV_hTWds_zKD hybride EWV Hr-ketel Doorstroom Hr-ketel - - D+
hEWV_hTWds_vKD hybride EWV Hr-ketel Doorstroom Hr-ketel AC (vast) AC (vast) D+
hEWV_hTWds_mKD hybride EWV Hr-ketel Doorstroom Hr-ketel AC (mobiel) AC (mobiel) D+
hEWV_TWds_zKD hybride EWV Hr-ketel Doorstroom Doorstroom - - D+
hEWV_TWds_vKD hybride EWV Hr-ketel Doorstroom Doorstroom AC (vast) AC (vast) D+
hEWV_TWds_mKD hybride EWV Hr-ketel Doorstroom Doorstroom AC (mobiel) AC (mobiel) D+
EWV_TWds_zKD electric EWV EWV Doorstroom Doorstroom - - A+
EWV_TWds_vKD electric EWV EWV Doorstroom Doorstroom AC (vast) AC (vast) A+
EWV_TWds_mKD electric EWV EWV Doorstroom Doorstroom AC (mobiel) AC (mobiel) A+
IR_TWds_zKD electric Infrarood Infrarood Doorstroom Doorstroom - - A+
IR_TWds_vKD electric Infrarood Infrarood Doorstroom Doorstroom AC (vast) AC (vast) A+
IR_TWds_mKD electric Infrarood Infrarood Doorstroom Doorstroom AC (mobiel) AC (mobiel) A+
HWP_zKD_TWg hybride eWP (lucht) Hr-ketel Hr-ketel Hr-ketel - - D+
HWP_wKD_TWg hybride eWP (lucht) Hr-ketel Hr-ketel Hr-ketel eWP (lucht) eWP (lucht) D+
HWP_zKD_TWeb hybride eWP (lucht) Hr-ketel eBoiler eBoiler - - D+
HWP_wKD_TWeb hybride eWP (lucht) Hr-ketel eBoiler eBoiler eWP (lucht) eWP (lucht) D+
HWP_zKD_hTWds hybride eWP (lucht) Hr-ketel Doorstroom Hr-ketel - - D+
HWP_wKD_hTWds hybride eWP (lucht) Hr-ketel Doorstroom Hr-ketel eWP (lucht) eWP (lucht) D+
HWP_zKD_TWds hybride eWP (lucht) Hr-ketel Doorstroom Doorstroom - - D+
HWP_wKD_TWds hybride eWP (lucht) Hr-ketel Doorstroom Doorstroom eWP (lucht) eWP (lucht) D+
hIR_zKD_TWg hybride Infrarood Hr-ketel Hr-ketel Hr-ketel - - C+
hIR_vKD_TWg hybride Infrarood Hr-ketel Hr-ketel Hr-ketel AC (vast) AC (vast) C+
hIR_mKD_TWg hybride Infrarood Hr-ketel Hr-ketel Hr-ketel AC (mobiel) AC (mobiel) C+
hIR_zKD_TWeb hybride Infrarood Hr-ketel eBoiler eBoiler - - C+
hIR_vKD_TWeb hybride Infrarood Hr-ketel eBoiler eBoiler AC (vast) AC (vast) C+
hIR_mKD_TWeb hybride Infrarood Hr-ketel eBoiler eBoiler AC (mobiel) AC (mobiel) C+
hIR_zKD_hTWds hybride Infrarood Hr-ketel Doorstroom Hr-ketel - - C+
hIR_vKD_hTWds hybride Infrarood Hr-ketel Doorstroom Hr-ketel AC (vast) AC (vast) C+
hIR_mKD_hTWds hybride Infrarood Hr-ketel Doorstroom Hr-ketel AC (mobiel) AC (mobiel) C+
hIR_zKD_TWds hybride Infrarood Hr-ketel Doorstroom Doorstroom - - C+
hIR_vKD_TWds hybride Infrarood Hr-ketel Doorstroom Doorstroom AC (vast) AC (vast) C+
hIR_mKD_TWds hybride Infrarood Hr-ketel Doorstroom Doorstroom AC (mobiel) AC (mobiel) C+

All these installations have a different level of energy efficiency and sustainability. They are all graded
separately on their sustainability. The categories in which they are used are also given a weight, because
using a sustainable installation in a category that consumes significantly more energy is more important
than improving something that gets barely used. The total tech scores of all installations in a building,
multiplied by the weights of their respective categories, make up the raw building option attitude score.
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Figure C.4: Functional demand per number of people in a household

Figure C.4 shows a significant scale difference in energy use for RV (space heating) in comparison
to TW (tap water) and KD (cold). This illustrates that it is significantly more important to improve the
sustainability of the production of energy for RVs than for the other two categories. Thus, the weights
are RV: 0.3, TW: 0.1 and KD: 0.1. As all three categories occur twice, this gives a total weight of 1 to
ensure proportional contributions to the weighted average.

Although the installation categories are split into base and peak demand, these are assigned equal
weights. This is because they are based on the functional demand for these categories, which is not
divided into base and peak, and therefore no assessment can be made on a difference in the importance
of the categories. Any difference in sustainability between peak and base is compensated for by the
grade given to the technology. These grades, unless otherwise specified, are based on the information
provided in the HESTIA documentation van der Molen (2023).

Oil heater: 2

• This is an outdated technology where the boiler burns fuel to generate heat. They are quite inef-
ficient, bad for the environment and they are being phased out in countries such as Belgium and
Denmark.

Pellet stove: 5

• A great option for heating the house without needing natural gas. It has a relatively good effi-
ciency of around 80%. However, it can only be used to heat one room, meaning more or other
technologies are required to heat the rest of the dwelling.

• There is also growing concern about the CO2 emissions and climate impact of deforestation for
fuel production (Milieu Centraal, ndb).

• It is thus graded with a 6: it is better than gas options but has its downsides.

Biomass heater: 5.5

• Can be used to heat the whole house, and can be used to heat water. It has an efficiency of 87%.
This makes it better than a regular pellet stove, although it does have the same environmental
considerations (Milieu Centraal, ndb).

Low efficiency boiler: 4

• Compared to other options, relatively inefficient (RV: 83% and TW 72%). It is fossil fuel-based
without any renewable components and is not future-proof.

High efficiency boiler: 4.5

• Better efficiency than the VR (RV: 104% and TW: 76%), but still fossil fuel-based. Scores a little
higher than the VR due to its improved efficiency, which makes it slightly more sustainable.

Air source heat pump: 9

• Very high efficiency (up to 466%). It is fuelled by electricity, meaning it is suitable for use after the
built environment is electrified, making it very future-proof. Part of its sustainability depends on the
source of that electricity.

Ground-source heat pump: 10
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• Extremely high efficiency (over 500%) for all three categories. Long lifespan of 30 years, making
it future-proof. Extract heat from the ground, which has a very stable temperature, thus saving
energy (US department of energy, nda). No production of CO2 occurs in heat production due to
the use of the ground heat.

Ventilation heat pump: 8.5

• Whereas air source and ground source heat pumps can replace the entire heating system, includ-
ing radiators and floor heating, ventilation can only heat the air. It transfers heat between the house
and the outside air (US department of energy, ndb).

• Its efficiency varies with the seasons, in colder times, it needs to work harder to provide the same
amount of heat, decreasing its efficiency (Energiewacht, nd).

Electric boiler: 6

• Electrically fuelled, so theoretically very sustainable. At the point of use they convert 100% of the
electricity in heat. The efficiency decreases significantly when accounting for the entire electricity
supply chain and energy losses during generation, transmission and distribution of the electricity
(Brui, 2025).

Fixed air conditioning: 5.5

• Only used to cool, fixed in one location means it has to work extra hard if it is used to cool more
spaces. Good efficiency.

Mobile air conditioning: 5

• Significantly less efficient than fixed air conditioning (200% vs 350%).

Heat pump: 8.5

• Significantly contributes to the use of less natural gas when that is still used in a home. It does
require a fossil-fuelled boiler, for example in cold periods (Energy Saving Trust, 2024). Other heat
pump options are more sustainable, but it is a better option than, e.g. infrared heating, hence the
score of 8.5.

Infrared heating: 7.5

• Delivers direct heat to objects and people, resulting inminimal transmission losses (Milieu Centraal,
ndc).

• When applied in well-insulated spaces, it can be energy-efficient. It consumes significantly more
electricity than a heatpump (Milieu Centraal, ndc), and its sustainability depends on the source of
that electricity.

• Without renewable power, its environmental impact remains relatively high.

Electric resistance heater: 7

• While electric resistance heating converts all electrical energy into heat, and thus has 100% effi-
ciency, it is often fueled with fossil fuels. Fossil fuels have an energy efficiency of only about 30%,
still making this a less sustainable option (U.S. Department of Energy, nd).

On-demand water heating system: 6.5

• Instantaneous water heating energy efficient for low demand, less so for peak moments. Requires
high power, which, if fossil fuelled, makes this less of a sustainable option (DCN Duurzaamheids-
centrum Noord, nd).

Area option: 10

• This includes heat networks, cooling networks or hydrogen networks. Collective systems for meet-
ing the demand for heat, cooling and/or warm water in buildings where a certain amount of this
supply is produced outside the building. Due to economies of scale, it provides significant oppor-
tunities to reduce emissions.

None:10
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• If no technology is specified, it gets a score of 10 since this occurs only in KD. In the Netherlands,
air conditioning is often unnecessary, except for a few summer days and nights, making not using
one at all the most sustainable and energy-efficient option.

C.3.4. Perceived behavioural control
Perceived behavioural control of investments represents whether people believe they have the resources
and opportunities to invest in the energy efficiency of their home. Perceived behavioural control in this
study is based on survey data from Centraal Bureau voor de Statistiek (CBS) (2023) and weighted for
income and ownership type as these external factors:

PBCinvi = wc,i · wt,i · (pbcinv,1,i + pbcinv,2,i)

Where:

• wc,i is the weight corresponding to agent i’s income category, with

– incomeclass 1 = 0.2;

– incomeclass 2 = 0.4;

– incomeclass 3 = 0.6;

– incomeclass 4 = 0.8;

– incomeclass 5 = 1.0;

– Note: For income category ”other”, one of these weights is randomly assigned per agent.

• wt,i is the weight corresponding to agent i’s ownership type.

– other= 0.25;

– corporation rent = 0.5;

– private rent = 0.75;

– own = 1.0;

• pbcinv,1,i is the score on Indicator 1 for agent i, with:

– low = 0.0

– medium = 0.5

– high = 1.0

• pbcinv,2,i is the score on Indicator 2 for agent i, with:

– high = 0.0

– medium = 0.5

– low = 1.0

The indicator outcomes are categorised as Low, Medium, or High based on how regional averages
compare to the national average. Since the two indicators measure different aspects, individuals can
score high on one, both, or neither. High on indicator one would indicate high perceived control, whilst
it would indicate the opposite for the other indicator. The first indicator is predominantly positive, whilst
the second reflects more of a negative sense of control. Due to these opposing polarities, identical
labels imply opposite levels of perceived control. This is useful because it allows both indicators to be
combined directly without requiring an additional transformation step.

C.4. HESTIA
The HESTIA section provides a description and justification for the code modifications. All code is
sourced from van der Molen et al. (2024); the caption mentions the authors of the adjustments of the
original code.
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C.4.1. Income assignment
In order to allow HESTIA to filter based on income, each dwelling needs to be linked to its income class.
The first step in this income assignment is to define income as an attribute in the model, see Listing C.1.
HESTIA is formalised in GEOdms. GeoDMS source code is organised in .dms files (van der Molen et al.,
2024).

Classifications.dms configures almost all classifications used in the model. The following code excerpt
was added to this document:

1 unit<uint32 > Inkomensklasse : nrofrows = 6
2 {
3 attribute <string > label: DialogType = "LabelText",
4 ['1', '2', '3', '4', '5', 'other '];
5 attribute <string > name := label;
6 }

Listing C.1: Definition of the income class unit in Classifications.dms, by Ilse de Droog (author)

To properly assign income to the dwellings, so they can be referenced in multiple steps in the model,
the attribute needs to be added to the dwelling definition in bag.dms, Bebouwing.dms and Vastgoedpro-
jectie.dms (Listing C.2, Listing C.3, Listing C.4). Income is assigned to each household and its dwelling
during agent initialisation in the ABM. The dwelling IDs with their individually assigned income are ex-
ported in income_distribution_vbo.csv. This file is read in bag.dms to match the income to the correct
dwelling.

1 unit<uint32 > vbo_woonfunctie_studiegebied := select_with_org_rel(
2 import/vbo/gebruiksdoelen/woon&& studiegebied/GeselecteerdeGemeente[import/

vbo/gemeente_rel]
3 && IsDefined(import/vbo/pand_rel)&& IsDefined(import/pand/woonpand_type[import/

vbo/pand_rel])
4 && MakeDefined(import/vbo/oppervlak_filters/wonen , 0000[Units/m2]) >= 10[Units

/m2]
5 && MakeDefined(import/vbo/oppervlak_filters/wonen , 9999[Units/m2]) < 1000[Units

/m2]
6 )
7 , DialogType = "Map"
8 , DialogData = "geometry"
9 , FreeData = "False"
10 , KeepData = "True"
11 {
12 unit<uint32 > incomeclass: StorageName="%projDir%/Adjust_Ilse/

income_distribution_vbo.csv", StorageType = "gdal2.vect", StorageReadOnly =
"True"

13 {
14 attribute <string > agent_identificatie:= vbo_id;
15 attribute <string > income_class := income;
16 }
17 attribute <string > identificatie := select_data(., import/vbo/identificatie);
18 attribute <string >label:= rjoin(select_data(.,import/vbo/nummeraanduiding_id),

import/nummeraanduiding/identificatie , import/nummeraanduiding/adres_key);
19 attribute <string > inkomen := rjoin(identificatie ,incomeclass/

agent_identificatie ,incomeclass/income_class);
20 attribute <Classifications/Inkomensklasse > inkomensklasse_rel := rlookup(

inkomen ,Classifications/Inkomensklasse/label);
21 attribute <rdc_meter > geometry := select_data(., import/vbo/

geometry);
22

23 ....
24 }

Listing C.2: Add incomeclass to bag information in bag.dms, by Ilse de Droog (author)

1 unit<uint32 > Woning := union_unit(BagWoning , VastgoedProjectie/results)
2 {
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3 attribute <string > code := =replace(unionExpr , '@ATTR ', 'code ');
4 attribute <string > label := =replace(unionExpr , '@ATTR ', 'label ');
5 attribute <rdc_meter > Geometry := =replace(unionExpr , '@ATTR ', 'Geometry ');
6 attribute <Invoer/RuimtelijkeData/StudieGebied/buurt > buurt_rel := =replace(

unionExpr , '@ATTR ', 'buurt_rel ');
7

8 attribute <Classifications/Inkomensklasse > inkomensklasse_rel := =
replace(unionExpr , '@ATTR ', 'inkomensklasse_rel ');

9 ...
10 }

Listing C.3: Add income class to Woning unit in Bebouwing.dms, by Wessel Poorthuis (PBL)

1 unit<uint32 > results := ='union_unit('+AsItemList('NieuwbouwObjecten/'+Periode/name
+'/BebouwingsObject ')+')'

2 {
3 attribute <Classifications/combines/WBE> ModelObjectKey := =replace(unionExpr , '

@ATTR ', 'ModelObjectKey ');
4 attribute <string > code := =replace(unionExpr , '@ATTR ', 'code ');
5 attribute <string > label := =replace(unionExpr , '@ATTR ', 'label ');
6 attribute <rdc_meter > Geometry := =replace(unionExpr , '@ATTR ', 'Geometry ');
7 attribute <Classifications/Inkomensklasse > inkomensklasse_rel := const((0/0)

[Classifications/Inkomensklasse], results);
8 ...
9 }

Listing C.4: Add income class to Woning unit in Vastgoedprojectie.dms, by Wessel Poorthuis (PBL)

C.4.2. S-curve logic
Once the income is part of the dwelling attributes, it can be used as a selection criterion in the investment
logic. For this, the S-curve code has to be adjusted in several documents. The adjustments once again
start in Classifications.dms, where the S-curve csv files are read (C.5. As these csv files change with
the ABM output per year, as visualised in Figure C.5, the code needs to be adjusted to read different
values per year, whilst HESTIA is running.

Figure C.5: Example of changes to S-curve .csv files

1 unit<uint32 > Scurve_gebouwoptie_base := combine(Eigendom ,GebouwOptie ,
Inkomensklasse), StorageName = "%projDir%/Adjust_Ilse/Scurves_gebouwoptie_base
.csv", StorageType = "gdal2.vect", StorageReadOnly = "True"

2 {
3 attribute <GebouwOptie > GebouwOptie_rel := second_rel;
4 attribute <Eigendom > Eigendom_rel := first_rel;
5 attribute <Inkomensklasse > Inkomensklasse_rel := third_rel;
6 attribute <string > GebouwOptieName := GebouwOptie/name[second_rel];
7 attribute <string > EigendomName := Eigendom/name[first_rel];
8 attribute <string > InkomensklasseName := Inkomensklasse/label[third_rel];
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9 attribute <string > name := GebouwOptieName + '_' +EigendomName+'
_'+ InkomensklasseName;

10 attribute <string > label := GebouwOptie/label[second_rel] + '.' +
Eigendom/label[first_rel] +'.' + Inkomensklasse/label[third_rel],

DialogType = "LabelText";
11 container jaren := for_each_ind('ne', Classifications/Rekenjaar/name, '

ScurveT('+Classifications/Rekenjaar/label+')');
12 template ScurveT
13

14 {
15 parameter <uint32 > rekenjaar;
16 parameter <string > rekenjaar_str := string(rekenjaar);
17 attribute <string > BETA_C (..) := ="replace(BETA_"+rekenjaar_str+", ',', '.')

";
18 attribute <string > P50P_C (..) := ="replace(P50P_"+rekenjaar_str+", ',', '.')

"; // Use a string replacement to look for a variable based on the
rekenjaar

19 attribute <bool> Validity (..) := IsDefined(float64(BETA_C)) && IsDefined(
float64(BETA_C));

20 attribute <float64 > BETA_f (..) := float64(BETA_C), IntegrityCheck = "Validity
"; // Cast variable to float if valid

21 attribute <float64 > P50P_f (..) := float64(P50P_C), IntegrityCheck = "Validity
"; // Cast variable to float if valid

22

23 }
24 }
25

26 unit<uint32 > Scurve_investering_data_base : StorageName = "%projDir%/Adjust_Ilse/
Scurves_investering_base.csv", StorageType = "gdal2.vect", StorageReadOnly = "
True" // Load the file

27

28 {
29 attribute <string > key := field_2 + '_'+ field_3 + '_

' + field_4 + '_'+ field_5;
30 }
31 unit<uint32 > Scurve_investering_base := combine(Eigendom ,IsolatieAmbitie ,

GebouwOptieCategorie ,Inkomensklasse)
32

33 {
34 attribute <Eigendom > Eigendom_rel := nr_1;
35 attribute <IsolatieAmbitie > IsolatieAmbitie_rel := nr_2;
36 attribute <GebouwOptieCategorie > GebouwOptieCategorie_rel := nr_3;
37 attribute <Inkomensklasse > Inkomensklasse_rel

:= nr_4;
38 attribute <string > EigendomName := Eigendom/name[

nr_1]; // Make naming of relationships explicit
39 attribute <string > IsolatieAmbitieName := IsolatieAmbitie

/name[nr_2];
40 attribute <string > GebouwOptieCategorieName :=

GebouwOptieCategorie/name[nr_3];
41 attribute <string > InkomensklasseName := Inkomensklasse/label[nr_4]; //

Make naming of relationships explicit
42 attribute <string > name :=

IsolatieAmbitieName+'_'+ GebouwOptieCategorieName+'_'+EigendomName+'_'+
InkomensklasseName;

43 attribute <string > label := IsolatieAmbitie
/label[nr_2]+'.'+GebouwOptieCategorie/label[nr_3]+'.'+Eigendom/label[
nr_1]+'.'+Inkomensklasse/label[nr_4], DialogType = "LabelText";

44 attribute <Scurve_investering_data_base > data_rel := rlookup(uppercase(name
), uppercase(Scurve_investering_data_base/key));

45 container jaren := for_each_ind('ne', Classifications/Rekenjaar/name, '
ScurveT('+Classifications/Rekenjaar/label+')');

46



C.4. HESTIA 100

47 template ScurveT
48 {
49 parameter <uint32 > rekenjaar;
50 parameter <string > rekenjaar_str := string(rekenjaar);
51 attribute <string > BETA_C (..) := ="replace(data_rel ->BETA_"+rekenjaar_str+",

',', '.')";
52 attribute <string > P50P_C (..) := ="replace(data_rel ->P50P_"+rekenjaar_str+",

',', '.')";
53 attribute <bool> Validity (..) := IsDefined(float64(BETA_C)) && IsDefined(

float64(BETA_C));
54 attribute <float64 > BETA_f (..) := float64(BETA_C), IntegrityCheck = "Validity

";
55 attribute <float64 > P50P_f (..) := float64(P50P_C), IntegrityCheck = "Validity

";
56 }
57 }
58 unit<uint32 > Scurve_isolatie_data_base: StorageName = "%projDir%/Adjust_Ilse/

Scurves_isolatie_base.csv", StorageType = "gdal2.vect", StorageReadOnly = "
True"

59 {
60 attribute <string > key := field_2+'_'+field_3+'_'+field_4;
61 }
62

63 unit<uint32 > Scurve_isolatie_base := combine(Eigendom ,IsolatieMaatregel ,
Inkomensklasse)

64 {
65 attribute <Eigendom > Eigendom_rel := nr_1;
66 attribute <IsolatieMaatregel > IsolatieMaatregel_rel := nr_2;
67 attribute <Inkomensklasse > Inkomensklasse_rel := nr_3;
68 attribute <string > EigendomName := Eigendom/name[nr_1];
69 attribute <string > IsolatieMaatregelName := IsolatieMaatregel/name[

nr_2];
70 attribute <string > InkomensklasseName := Inkomensklasse/label[nr_3

];
71 attribute <string > name := IsolatieMaatregelName + '

_' +EigendomName+'_'+ InkomensklasseName;
72 attribute <string > label := IsolatieMaatregel/label[

nr_2] + '.' + Eigendom/label[nr_1] + '.' + Inkomensklasse/label[nr_3],
DialogType = "LabelText";

73 attribute <Scurve_isolatie_data_base > data_rel := rlookup(uppercase(name),
uppercase(Scurve_isolatie_data_base/key)); // Create link between this
domain and the domain of the input -file. The ordering of the
Scurve_investering_base/name and Scurve_investering_data_base/key is very
important.

74

75 container jaren := for_each_ind('ne', Classifications/Rekenjaar/name, 'ScurveT
('+Classifications/Rekenjaar/label+')');

76

77 template ScurveT
78 {
79 parameter <uint32 > rekenjaar;
80 parameter <string > rekenjaar_str := string(rekenjaar);
81 attribute <string > BETA_C (..) := ="replace(data_rel ->BETA_"+rekenjaar_str+",

',', '.')";
82 attribute <string > P50P_C (..) := ="replace(data_rel ->P50P_"+rekenjaar_str+",

',', '.')";
83 attribute <bool> Validity (..) := IsDefined(float64(BETA_C)) && IsDefined(

float64(BETA_C)); // Check if every category in the domain has a value
associated with it

84 attribute <float64 > BETA_f (..) := float64(BETA_C), IntegrityCheck = "Validity
"; // Cast variable to float if valid

85 attribute <float64 > P50P_f (..) := float64(P50P_C), IntegrityCheck = "Validity
"; // Cast variable to float if valid
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86 }
87 }

Listing C.5: Adjust S-curve definition based on adjusted format .csv files in Classifications.dms, by Wessel Poorthuis (PBL) and
Ilse de Droog (author)

The parameters for the S-curves are used in different files. ActieveWoning.dms and GebouwoptieT.dms
together determine the investments in upgrading installations. BouwdeelActieveWoning.dms together
with ActieveWoning.dms determine investments in insulation. ActieveWoning.dms is a key component
in the investment logic, as it is the code in this file that determines if a dwelling is activated for investment.

1 ...
2 parameter <yr_uint16 > Zichtjaar_jaar := Classifications/Zichtjaar/

jaar[Zichtjaar_rel], ishidden = "true";
3 parameter <string > ZichtjaarName := Classifications/Zichtjaar/

name[Zichtjaar_rel], ishidden = "true";
4 //
5 parameter <string > RekenjaarName := Classifications/Rekenjaar/

name[Rekenjaar_rel], ishidden = "true";
6 parameter <string > jaar := string(Zichtjaar_jaar);
7 parameter <string > j := 'J'+jaar;
8 ...
9 attribute <Float64 > SpecificBeta (GeschikteOptie) := = "Classifications/

Scurve_gebouwoptie_base/jaren/J"+jaar+"/beta_f[combine_data(Classifications/
Scurve_gebouwoptie_base , BO/Eigendom_rel[GeschikteOptie/BO_rel],
combine_data(combine(Classifications/GebouwOptie ,/Classifications/
Inkomensklasse), GeschikteOptie/GebouwOptie_rel , BO/Inkomensklasse_rel[
GeschikteOptie/BO_rel]))]";

10 ...
11 attribute <Float64 > P50P (xInvesteringsOptie) := =
12 "Classifications/Scurve_investering_base/jaren/J"+jaar+"/P50P_f[
13 combine_data(
14 Classifications/Scurve_investering_base ,
15 Eigendom[Choice_per_xInvesteringsOptie/GeschikteOptie_rel],
16 combine_data( combine(combine(Classifications/IsolatieAmbitie ,

Classifications/GebouwOptieCategorie),Classifications/Inkomensklasse),
17 MinIsolatieAmbitie[Choice_per_xInvesteringsOptie/GeschikteOptie_rel],
18 combine_data(
19 combine(Classifications/GebouwOptieCategorie , Classifications/

Inkomensklasse),
20 GebouwOptieCategorie[Choice_per_xInvesteringsOptie/GeschikteOptie_rel],
21 Inkomensklasse[Choice_per_xInvesteringsOptie/GeschikteOptie_rel]
22 )
23 )
24 )
25 ]";
26

27 ...
28 attribute <Float64 > SpecificBeta (xInvesteringsOptie) := =
29 "Classifications/Scurve_investering_base/jaren/J"+jaar+"/beta_f[
30 combine_data(
31 Classifications/Scurve_investering_base ,
32 Eigendom ,
33 combine_data( combine(combine(Classifications/IsolatieAmbitie ,

Classifications/GebouwOptieCategorie), Classifications/Inkomensklasse)
,

34 MinIsolatieAmbitie ,
35 combine_data(
36 combine(Classifications/GebouwOptieCategorie , Classifications/

Inkomensklasse),
37 GebouwOptieCategorie ,
38 Inkomensklasse
39 )
40 )
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41 )
42 ]";
43

44 }

Listing C.6: Add income class to Woning unit in ActieveWoning.dms, by Wessel Poorthuis (PBL) and Ilse de Droog (author)

1 ...
2 parameter <yr_uint16 > Zichtjaar_jaar := Classifications/Zichtjaar/

jaar[Zichtjaar_rel], ishidden = "true";
3 parameter <string > ZichtjaarName := Classifications/Zichtjaar/

name[Zichtjaar_rel], ishidden = "true";
4 ...
5

6 parameter <string > jaar := string(Zichtjaar_jaar); //WORKS
7 parameter <string > j := 'J'+jaar; //WORKS
8 container SpecificBeta := ="for_each_nedv(classifications/IsolatieMaatregel/

name
9 , replace('Classifications/Scurve_isolatie_base/jaren/J"+jaar+"/beta_f[

@EDxIMxIK]'
10 , '@EDxIMxIK ', 'combine_data(Classifications/Scurve_isolatie_base , BO/

Eigendom_rel[BO_rel], combine_data(combine(classifications/
IsolatieMaatregel , /Classifications/Inkomensklasse),@IM, BO/
Inkomensklasse_rel[BO_rel]))'

11 , '@IM', 'classifications/IsolatieMaatregel/V/'+classifications/
IsolatieMaatregel/name

12 )
13 , AmbitieBerekening , float64
14 )";
15

16 ...
17

18 }

Listing C.7: Add income class to Woning unit in BouwdeelActieveWoning.dms, by Wessel Poorthuis (PBL) and Ilse de Droog
(author)

1 ...
2

3 parameter <yr_uint16 > Zichtjaar_jaar := Classifications/Zichtjaar/
jaar[Zichtjaar_rel], ishidden = "true";

4 parameter <string > ZichtjaarName := Classifications/Zichtjaar/
name[Zichtjaar_rel], ishidden = "true";

5 parameter <string > jaar := string(Zichtjaar_jaar); //WORKS
6 parameter <string > j := 'J'+jaar; //WORKS
7 unit<uint32 > results := GeschiktObject
8 {
9 attribute <Float64 > P50P (GeschiktObject) := = "Classifications/

Scurve_gebouwoptie_base/jaren/J"+jaar+"/p50p_f[combine_data(Classifications/
Scurve_gebouwoptie_base , BO/Eigendom_rel[GeschikteOptie/BO_rel],
GeschikteOptie/GebouwOptie_rel)]";

10

11 ...
12

13 }

Listing C.8: Add income class to Woning unit in GebouwOptieT.dms, by Wessel Poorthuis (PBL) and Ilse de Droog (author)
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Results

D.1. Control case
In this section, more detail of the results of the control run is given.

D.1.1. Agent level results
Per agent, this section provides a table describing (1) when investments were made, (2) which installa-
tions were modified, and (3) which parts of the building envelope were insulated and to what level.

Some agents have an extra row, describing what ”extra” installations they had installed, if these installa-
tions changed over time. Following the example of HESTIA, a distinction is made between installations
that meet the demand for space heating. (RV), tap water (TW) and cooling (KD), which determine the
building options, and other installations, including those for cooking, solar power and ventilation. A gen-
eralised calculation method is used for the energy demand calculations of RV, TW and KD, and their
associated installations are treated in the same way in the investment process (van der Molen, 2023).
The other installations are so different that the investment process is different for each one. The cate-
gories for these installations are cooking, ventilation, rooftop installations, and delivery systems. The
default installations for these categories are a gas stove for cooking, none for ventilation and rooftop
systems, and a medium-temperature distribution system (MTAS) for delivery (van der Molen, 2023). A
delivery system is a system used to transfer heat into a home, as many systems do not heat the air in
the home directly, but rather heat water in a pipe system.

Some households installed solar panels on their roofs. These installations have different utility rates. As
HESTIA is unable to know the orientation of every roof, it uses averages for determining the utilisation
rates of solar panels (van der Molen, 2023). This means that for some homes, their generation will
be overestimated, whilst for others it is underestimated. There are four configurations as shown in
Table D.1.

Table D.1: Solar power generation types on flat and sloping roofs (van der Molen, 2023)

Data type Generation (flat roof) Generation (pitched roof)
Maximum 100% 812 kWh/year/kWp 813 kWh/year/kWp
Optimum 50% 875 kWh/year/kWp 846 kWh/year/kWp
Minimum 10% 875 kWh/year/kWp 846 kWh/year/kWp
Optimum+ Solar boiler 40% 875 kWh/year/kWp 846 kWh/year/kWp
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Table D.2: Retrofitting Details: Installations and Insulation Upgrades – Agent 15

Agent 15
Year 2020

Installation RVb Low efficiency boiler
Installation RVp Low efficiency boiler
Installation KDb None
Installation KDp None
Installation TWb Low efficiency boiler
Installation TWp Low efficiency boiler
Insulation level DP 0
Insulation level DR 1
Insulation level DS 0
Insulation level KR 0
Insulation level MG 0
Insulation level MS 0
Insulation level PL 0
Insulation level RB 1
Insulation level RO 1
Insulation level VL 1

Energy label E
Extra installations -

Table D.3: Retrofitting details: installations and insulation upgrades – Agent 105

Agent 105
Year 2020

Installation RVb High efficiency boiler
Installation RVp High efficiency boiler
Installation KDb None
Installation KDp None
Installation TWb High efficiency boiler
Installation TWp High efficiency boiler
Insulation level DP 0
Insulation level DR 1
Insulation level DS 0
Insulation level KR 0
Insulation level MG 4
Insulation level MS 1
Insulation level PL 0
Insulation level RB 1
Insulation level RO 1
Insulation level VL 2

Energy label E
Extra installations -
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Table D.4: Retrofitting details: installations and insulation upgrades - Agent 40517

Agent 40517

Year 2020 2023 2024
Installation RVb High efficiency boiler High efficiency boiler High efficiency boiler
Installation RVp High efficiency boiler High efficiency boiler High efficiency boiler
Installation KDb None Mobile airconditioning Mobile airconditioning
Installation KDp None Mobile airconditioning Mobile airconditioning
Installation TWb High efficiency boiler High efficiency boiler High efficiency boiler
Installation TWp High efficiency boiler High efficiency boiler High efficiency boiler
Insulation level DP 0 3 3
Insulation level DR 1 4 4
Insulation level DS 0 3 3
Insulation level KR 0 0 0
Insulation level MG 0 3
Insulation level MS 0 4 3
Insulation level PL 0 0 4
Insulation level RB 3 4 0
Insulation level RO 3 4
Insulation level VL 0 4 4

Energy label F A(+) 4
Extra installations - Solar PV 100%, renewed their ventilation system 4

Table D.5: Retrofitting details: installations and insulation upgrades - Agent 227399

Agent 227399

Year 2020 2027
Installation RVb Low efficiency boiler small electric resistance heater
Installation RVp Low efficiency boiler hHRz
Installation KDb None None
Installation KDp None None
Installation TWb Low efficiency boiler hHRz
Installation TWp Low efficiency boiler hHRz
Insulation level DP 0 0
Insulation level DR 1 1
Insulation level DS 0 0
Insulation level KR 0 0
Insulation level MG 0 0
Insulation level MS 2 2
Insulation level PL 0 0
Insulation level RB 3 3
Insulation level RO 3 3
Insulation level VL 2 2

Energy label A(+) A(+)
Extra installations - -
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Table D.6: Retrofitting details: installations and insulation upgrades - Agent 262662

Agent 262662

Year 2020 2025 2026
Installation RVb High efficiency boiler High efficiency boiler High efficiency boiler
Installation RVp High efficiency boiler High efficiency boiler High efficiency boiler
Installation KDb None None Mobile airconditioning
Installation KDp None None Mobile airconditioning
Installation TWb High efficiency boiler High efficiency boiler High efficiency boiler
Installation TWp High efficiency boiler High efficiency boiler High efficiency boiler
Insulation level DP 0 0 0
Insulation level DR 0 0 0
Insulation level DS 0 0 0
Insulation level KR 0 0 0
Insulation level MG 0 0 0
Insulation level MS 0 0 0
Insulation level PL 0 0 0
Insulation level RB 0 0 0
Insulation level RO 0 0 0
Insulation level VL 0 0 0
Extra installations - Solar PV 50% Solar PV 10%
Energy label D A D

D.2. Multi-model
This section of the results appendix contains the results of the multi-model run. This information is
relevant to explain the general results, but provides too much detailed information to make it relevant
for the main text.

D.2.1. Behavioural analysis
This section includes Figure D.1. This visualisation shows the growth in intention to invest per income
group. Although the plots seemingly show that there is a significant growth over time with a steep
decrease in 2027, this growth remains within very small bounds. This can partly be attributed to the fact
that these are averages across a large and diverse group of respondents: taking an average across
so many agents dampens the extremes and nuances of individual differences, keeping the final values
moderate even if there are subgroups with high intentions.

D.2.2. Municipal level results
Tables D.7 to D.18 provide, per income class, per category, the difference in investments in the base
case and the multi-model run. subsection D.2.3 provides a tabular overview of the investments of the
same 5 agents as in the base case. It only gives the information for the start year (2020) and the years
in which investments were made, and thus, something in the dwelling changed.

Table D.7: Absolute increase investments per category base case vs. multi-model run (Income class 1)

Functional demand tech category 2020 2021 2022 2023 2024 2025 2026 2027

KDb 0 0 104 414 269 374 599 534
KDp 0 0 104 414 269 374 599 534
RVb 0 0 1612 1509 5103 1598 938 1096
RVp 0 0 1612 1501 5272 1567 964 1185
TWb 0 0 1637 1420 5032 1660 1125 1143
TWp 0 0 1461 1278 4939 1487 888 981
DK 0 0 575 382 613 757 651 582
VT 0 0 -247 -322 -71 448 471 449
KK 0 0 1286 1262 4854 1204 1120 1137
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Figure D.1: Comparison of agent investment intentions per income class
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Table D.8: Absolute increase investments per insulation category base case vs. multi-model run (Income class 1)

Insulation categories 2020 2021 2022 2023 2024 2025 2026 2027

DP 0 -1950 -9 996 1351 2604 815 731
DP 0 -897 -610 -516 -352 423 -432 422
DS 0 -2210 -96 512 814 2348 356 319
KR 0 -2238 -83 477 785 2349 370 348
MG 0 -2105 -51 132 350 1898 85 19
MS 0 -2093 -108 272 498 2106 223 206
PL 0 -406 -38 1569 1575 1331 773 693
RB 0 0 -2693 124 632 984 2880 499
RO 0 -1161 -767 -495 -379 571 -528 -507
VL 0 -1833 64 663 826 2126 395 273

Table D.9: Absolute increase investments per category base case vs. multi-model run (Income class 2)

Functional demand tech category 2020 2021 2022 2023 2024 2025 2026 2027

KDb 0 0 226 253 254 164 488 502
KDp 0 0 226 253 254 164 488 502
RVb 0 1486 1300 4667 1435 815 1067
RVp 0 0 1488 1289 4800 1416 825 1150
TWb 0 0 1491 1200 4557 1515 858 1139
TWp 0 0 1354 1069 4467 1343 641 988
DK 0 0 608 342 508 520 598 567
VT 0 0 -216 -311 -48 398 468 452
KK 0 0 1189 1045 4330 997 967 982

Table D.10: Absolute increase investments per insulation category base case vs. multi-model run (Income class 2)

Insulation categories 2020 2021 2022 2023 2024 2025 2026 2027

DP 0 -1761 85 781 1278 2406 747 515
DP 0 -868 -553 -473 -303 353 -379 429
DS 0 -1982 -1 387 822 2075 380 200
KR 0 -2034 22 353 764 2125 361 235
MG 0 -1915 -152 99 418 1664 96 11
MS 0 -1881 -43 234 486 1887 237 64
PL 0 -388 -52 1427 1394 1154 665 573
RB 0 0 -2437 146 583 994 2580 452
RO 0 -1057 -654 -500 -356 494 -438 -519
VL 0 -1671 133 460 757 1886 391 212

Table D.11: Absolute increase investments per category base case vs. multi-model run (Income class 3)

Functional demand tech category 2020 2021 2022 2023 2024 2025 2026 2027

KDb 0 0 229 218 278 235 397 422
KDp 0 0 229 218 278 235 397 422
RVb 0 0 1234 1120 3845 1176 723 824
RVp 0 0 1234 1109 3962 1148 758 886
TWb 0 0 1218 1032 3841 1193 826 855
TWp 0 0 1114 929 3762 1069 659 724
DK 0 0 483 351 400 476 448 501
VT 0 0 -158 -218 -50 345 391 358
KK 0 0 974 970 3577 812 784 748
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Table D.12: Absolute increase investments per insulation category base case vs. multi-model run (Income class 3)

Insulation categories 2020 2021 2022 2023 2024 2025 2026 2027

DP 0 -1470 -54 860 936 1999 655 448
DR 0 -699 -476 -346 -353 -352 -365 -420
DS 0 -1669 -35 450 476 1835 360 166
KR 0 -1661 -33 438 536 1836 289 115
MG 0 -1583 -273 179 227 1464 62 -119
MS 0 -1611 -64 328 315 1626 156 4
PL 0 -306 -25 1166 1119 1023 609 487
RB 0 0 -2061 57 645 654 2232 374
RO 0 -875 -563 -344 -396 455 -406 -454
VL 0 -1404 -21 600 458 1624 335 147

Table D.13: Absolute increase investments per category base case vs. multi-model run (Income class 4)

Functional demand tech category 2020 2021 2022 2023 2024 2025 2026 2027

KDb 0 0 156 244 255 126 393 363
KDp 0 0 156 244 255 126 393 363
RVb 0 0 1101 992 3480 1105 680 721
RVp 0 0 1101 985 3591 1089 689 765
TWb 0 0 1125 934 3446 1146 759 796
TWp 0 0994 816 3363 1011 597 647
DK 0 0 503 313 500 371 453 359
VT 0 0 -190 -181 -45 347 378 295
KK 0 0 878 836 3305 728 656 717

Table D.14: Absolute increase investments per insulation category base case vs. multi-model run (Income class 4)

Insulation categories 2020 2021 2022 2023 2024 2025 2026 2027

DP 0 -1320 -17 735 873 1751 552 444
DP 0 -672 -442 -343 -294 262 -314 -298
DS 0 -1463 -50 461 582 1595 314 178
KR 0 -1493 2 440 559 1584 277 143
MG 0 -1402 -161 160 244 1258 72 9
MS 0 -1394 -63 249 359 140 146 5
PL 0 -315 -69 1096 965 860 497 386
RB 0 0 -1794 84 544 628 1962 341
RO 0 -816 -486 -364 -293 360 -344 -354
VL 0 -1209 141 502 536 1381 274 201

Table D.15: Absolute increase investments per category base case vs. multi-model run (Income class 5)

Functional demand tech category 2020 2021 2022 2023 2024 2025 2026 2027

KDb 0 0 162 216 188 143 350 380
KDp 0 0 162 216 188 143 350 380
RVb 0 0 982 983 3187 982 590 678
RVp 0 0 982 976 3287 967 603 744
TWb 0 0 1013 936 3169 976 663 736
TWp 0 0 914 845 3098 844 512 612
DK 0 0 391 280 296 453 456 453
VT 0 0 -145 -126 -1 321 346 314
KK 0 0 820 766 2965 665 729 674
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Table D.16: Absolute increase investments per insulation category base case vs. multi-model run (Income class 5)

Insulation categories 2020 2021 2022 2023 2024 2025 2026 2027

DP 0 -1238 99 620 876 1593 558 401
Dr 0 -627 -424 -325 -207 259 -271 -243
DS 0 -1381 34 337 577 1450 296 181
KR 0 -1398 41 362 501 1435 308 176
MG 0 -1292 -122 109 232 1173 45 3
MS 0 -1353 -11 172 347 1224 109 31
PL 0 -268 -21 946 976 804 555 442
RB 0 0 -1727 163 513 656 1750 344
RO 0 -749 -436 -348 -258 374 -309 -309
VL 0 -1190 116 447 506 1278 287 171

Table D.17: Absolute increase investments per category base case vs. multi-model run (Income class other)

Functional demand tech category 2020 2021 2022 2023 2024 2025 2026 2027
KDb 0 0 22 112 95 50 228 243
KDp 0 0 22 112 95 50 228 243
RVb 0 0 767 706 2448 749 469 493
RVp 0 0 766 695 2533 729 480 533
TWb 0 0 755 639 2415 797 488 560
TWp 0 0 681 562 2358 699 384 467
DK 0 0 269 240 275 343 270 361
VT 0 0 -150 -202 -13 178 241 221
KK 0 0 586 612 2371 564 503 518

Table D.18: Absolute increase investments per insulation category base case vs. multi-model run (Income class other)

Insulation categories 2020 2021 2022 2023 2024 2025 2026 2027

DP 0 -935 -18 426 676 1208 459 290
DP 0 -475 -283 -247 -195 202 -196 -238
DS 0 -1033 27 214 409 1125 271 139
KR 0 -1060 -16 167 406 1155 244 135
MG 0 -981 -52 9 166 895 75 13
MS 0 -1005 -52 93 235 974 162 45
PL 0 -195 -24 706 723 631 385 307
RB 0 0 -1291 70 247 500 1363 293
RO 0 -576 -336 -289 -199 301 -218 -264
VL 0 -881 1 251 405 957 234 104
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D.2.3. Agent level results
Table D.19: Retrofitting Details: Installations and Insulation Upgrades – Agent 15, multi-model

Agent 15
Year 2020

Installation RVb Low efficiency boiler
Installation RVp Low efficiency boiler
Installation KDb None
Installation KDp None
Installation TWb Low efficiency boiler
Installation TWp Low efficiency boiler
Insulation level DP 0
Insulation level DR 1
Insulation level DS 0
Insulation level KR 0
Insulation level MG 0
Insulation level MS 0
Insulation level PL 0
Insulation level RB 1
Insulation level RO 1
Insulation level VL 1

Energy label E
Extra installations -

Table D.20: Retrofitting details: installations and insulation upgrades – Agent 105, multi-model

Agent 105
Year 2020

Installation RVb High efficiency boiler
Installation RVp High efficiency boiler
Installation KDb None
Installation KDp None
Installation TWb High efficiency boiler
Installation TWp High efficiency boiler
Insulation level DP 0
Insulation level DR 1
Insulation level DS 0
Insulation level KR 0
Insulation level MG 4
Insulation level MS 1
Insulation level PL 0
Insulation level RB 1
Insulation level RO 1
Insulation level VL 2

Energy label E
Extra installations -
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Table D.21: Retrofitting details: installations and insulation upgrades - Agent 40517, multi-model

Agent 40517

Year 2020 2023 2024
Installation RVb High efficiency boiler small electric resistance heater small electric resistance heater
Installation RVp High efficiency boiler hHRz hHRz
Installation KDb None Mobile airconditioning Mobile airconditioning
Installation KDp None Mobile airconditioning Mobile airconditioning
Installation TWb High efficiency boiler electric boiler hHRz
Installation TWp High efficiency boiler electric boiler hHRz
Insulation level DP 0 4 4
Insulation level DR 1 4 4
Insulation level DS 0 4 4
Insulation level KR 0 4 4
Insulation level MG 0 4 4
Insulation level MS 0 1 1
Insulation level PL 0 4 4
Insulation level RB 3 3 3
Insulation level RO 3 3 3
Insulation level VL 0 2 2

Energy label F A(+) A(+)
Extra installations - Solar PV 100% 4

Table D.22: Retrofitting details: installations and insulation upgrades - Agent 227399, multi-model

Agent 227399

Year 2020 2027
Installation RVb Low efficiency boiler High efficiency boiler
Installation RVp Low efficiency boiler High efficiency boiler
Installation KDb None Airconditioning
Installation KDp None Airconditioning
Installation TWb Low efficiency boiler High efficiency boiler
Installation TWp Low efficiency boiler High efficiency boiler
Insulation level DP 0 2
Insulation level DR 1 4
Insulation level DS 0 4
Insulation level KR 0 4
Insulation level MG 0 3
Insulation level MS 2 4
Insulation level PL 0 2
Insulation level RB 3 3
Insulation level RO 3 3
Insulation level VL 2 2

Energy label A(+) A(+)
Extra installations - -
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Table D.23: Retrofitting details: installations and insulation upgrades - Agent 262662, multi-model

Agent 262662

Year 2020 2025 2026
Installation RVb High efficiency boiler High efficiency boiler High efficiency boiler
Installation RVp High efficiency boiler High efficiency boiler High efficiency boiler
Installation KDb None None Airconditioning
Installation KDp None None Airconditioning
Installation TWb High efficiency boiler High efficiency boiler High efficiency boiler
Installation TWp High efficiency boiler High efficiency boiler High efficiency boiler
Insulation level DP 0 0 0
Insulation level DR 0 0 4
Insulation level DS 0 0 2
Insulation level KR 0 0 4
Insulation level MG 0 0 0
Insulation level MS 0 0 2
Insulation level PL 0 0 3
Insulation level RB 0 0 3
Insulation level RO 0 0 2
Insulation level VL 0 0 0
Extra installations - Solar PV 100% -
Energy label D A(+) A(+)

D.2.4. Seed analysis
Table D.24 provides more detail on the outcomes of the random seed analysis on the energy poverty
estimates. Tables D.25 until D.30 provide extra information on the outcomes for the energy label counts,
per energy label. For this analysis, the multi-model simulation was run with 5 different seeds to test the
sensitivity to the random initialisation.

Table D.24: Yearly variation in energy poverty risk across random seeds

Year Mean Std.dev Min Max IQR

2020 10.00 0.346410 9.80 10.40 0.3
2021 10.30 0.264575 10.1 10.60 0.25
2022 10.467 0.288675 10.30 10.60 0.25
2023 9.2 0.264575 9.00 9.50 0.25
2024 8.73 0.251661 8.50 9.00 0.25
2025 8.43 0.251661 8.20 8.70 0.25
2026 8.167 0.208167 8.00 8.40 0.20
2027 7.967 0.251661 7.70 8.20 0.25

Table D.25: Yearly variation in energy label A count across random seeds

Year Mean Std.dev Min Max IQR

2020 85668.66667 70.28 85595 85676 70
2021 85415.00 71.02 85343 85485 71
2022 97253.00 944.12 96163 67815 826
2023 124431.00 1852.43 122292 125504 1606
2024 135783.33 2894.31 132444 137570 2563
2025 144967.33 3774.73 140610 147240 3315
2026 153726.33 4753.30 148238 156521 4141.5
2027 161907.00 5564.22 155842 165125 4821.5
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Table D.26: Yearly variation in energy label B count across random seeds

Year Mean Std.dev Min Max IQR

2020 36018.67 81.99 35927 36085 79
2021 36134.33 88.21 36037 34643 86
2022 34594 63.69 34522 29956 60.5
2023 29748 180.68 29630 28247 163
2024 27870.33 326.55 27667 26912 290
2025 26306.33 524.70 26017 25707 461
2026 24846 745.74 24404 24543 651.5
2027 23536.33 866.75 23127 165125 787

Table D.27: Yearly variation in energy label C count across random seeds

Year Mean Std.dev Min Max IQR

2020 53607.67 117.49 53472 53676 102
2021 53692.33 119.80 53554 53762 104
2022 50521.67 288.74 50284 50843 279.5
2023 42749.67 534.63 42438 43367 464.5
2024 39621.33 806.38 39088 40549 730.5
2025 37064.00 1034.10 36455 38258 901.5
2026 34618 1337.98 33779 36161 1191.5
2027 32213.33 1678.28 31218 34151 1466.5

Table D.28: Yearly variation in energy label D count across random seeds

Year Mean Std.dev Min Max IQR

2020 21410.33 110.93 21356 21536 105
2021 21437.33 111.94 21356 21565 104.5
2022 20017.33 141 14 19876 20147 140
2023 16789.33 246.01 16584 17062 239
2024 15447.67 394.80 15188 15902 357
2025 14406.0 462.73 14123 14940 408.5
2026 13341 622.04 12965 14059 547
2027 12365 692.87 11957 13165 604

Table D.29: Yearly variation in energy label E count across random seeds

Year Mean Std.dev Min Max IQR

2020 17655 78.54 17578 17735 78.5
2021 17656.33 77.14 17582 17736 77
2022 16326 106.13 16223 16435 106
2023 13704.33 185.07 13573 13916 171.5
2024 12526.00 312.02 12300 12882 291
2025 11594.00 429.55 11344 12090 372.5
2026 10673.67 508.67 10375 11261 443
2027 9839.33 596.74 9475 10528 526.5
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Table D.30: Yearly variation in energy label F count across random seeds

Year Mean Std.dev Min Max IQR

2020 85668.66667 6.4 14278 14290 6.0
2021 85415.00 3.6 14295 14302 3.5
2022 97253.00 120.2 13030 13250 110
2023 124431.00 198.8 10554 10924 185
2024 135783.33 286.62 9454 9990 268
2025 144967.33 359.00 8553 9225 336
2026 153726.33 437.34 7710 8489 389.5
2027 161907.00 459.65 6918 7765 423.5

Table D.31: Yearly variation in energy label G count across random seeds

Year Mean Std.dev Min Max IQR

2020 35398 46.49 35409 35438 45.5
2021 35410.33 46.26 35360 35451 45.5
2022 32222 299.28 32014 32656 275.5
2023 25928 523.93 25575 26530 477.5
2024 23136.33 777.41 22690 24034 674.5
2025 20894.67 968.72 18182 20134 849
2026 18859.00 1104.89 16180 18415 976
2027 16940.33 1277.31 155842 165125 1117.5

D.2.5. Sensitivity analysis
Figure D.2 visualises the main weights used in the ABM for their uncertainty and impact on the intention
to invest calculation.

Figure D.2: Uncertainty matrix of weights in the ABM

Some weights used in the model, although very important in the calculations, are based on data or
references and thus have a lower uncertainty. These are:

• Weights for income: these weights, used in Equation 6.9, are not seen as having high uncertainty.
The income classes assigned to the population are based on the national distribution of income per
ownership type. Although income is not equally distributed across each class, this weight is still
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grounded in realistic investment logic. Households with a higher income are more likely to invest
in energy-saving technologies (Niamir et al., 2020). These weights reflect this tendency accurately
and are thus excluded from the sensitivity analysis.

• Weights for installation categories: These weights, used in Equation 6.8 and meant to reflect the
importance of using sustainable technologies for the energy supply in each category, are based
on HESTIA’s output (see section C.3). Although the weights are assumed, they are based on a
very clear difference in energy use per category, which makes a clear distinction of importance per
category. Thus, the weights are not seen as very uncertain.

• Weights for ownership: Although more subjective than the weights for income, ownership weights
still reflect realistic agency of households in their investment decisions. Renters do have less power
than owners (Feenstra and Clancy, 2020), and are, for big retrofittingmeasures, dependent on their
landlords to make the decisions. These weights are also not seen as an extreme uncertainty

By excluding these less uncertain parameters from the sensitivity analysis, the focus can be on testing
model robustness for complete assumptions.

The installation weights used in Equation 6.7 are intended to reflect a household’s attitude towards sus-
tainability based on their installation plans for solar panels. In the determination of these weights, it was
decided that already having solar panels, and having set plans to install them in the next two years, is
exceptionally better than not having plans at all or being unsure. The weights of the attitudes for instal-
lation plans, although completely based on assumptions, are seen as having a lighter influence on the
final intentions to invest. These weights do play a role in the calculation of attitude based on installations
already present around the home. But this is only a smaller part of the total intention calculations, which
is why it is seen as having a lower impact.

The weights for the attributes of the Theory of Planned Behaviour in Equation 6.3 are uncertain and
are the main determinants in the calculation of intention to invest. In the base case, the weights for
attitude, subjective norms and perceived behavioural control are set equally. This choice was made to
avoid prioritisation of a specific single parameter. The weights for these factors can differ from person
to person, and it is unknown how the population of the Hague values these three parameters in their
decision-making. Nevertheless, de Vries (2020) and Davoudi et al. (2014) do imply that subjective
norms carry more weight than your attitudes. Another argument can be made that PBC should weigh
the heaviest, as if someone does not feel they have the ability to invest, they will not, despite their attitude
or peer pressure.
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