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Abstract

Background

Robust Artificial-neural-networks for k-space Interpolation (RAKI) is a recently proposed
deep-learning-based reconstruction algorithm for parallel imaging. Its main premise is to
perform k-space interpolation using convolutional neural networks (CNNSs) trained on sub-
ject-specific autocalibration signal (ACS) data. Since training is performed individually for
each subject, the reconstruction time is longer than approaches that pre-train on databases.
In this study, we sought to reduce the computational time of RAKI.

Methods

RAKI was implemented using CPU multi-processing and process pooling to maximize the
utility of GPU resources. We also proposed an alternative CNN architecture that interpolates
all output channels jointly for specific skipped k-space lines. This new architecture was com-
pared to the original CNN architecture in RAKI, as well as to GRAPPA in phantom, brain
and knee MRI datasets, both qualitatively and quantitatively.

Results

The optimized GPU implementations were approximately 2-to-5-fold faster than a simple
GPU implementation. The new CNN architecture further improved the computational time
by 4-to-5-fold compared to the optimized GPU implementation using the original RAKI CNN
architecture. It also provided significant improvement over GRAPPA both visually and quan-
titatively, although it performed slightly worse than the original RAKI CNN architecture.

Conclusions

The proposed implementations of RAKI bring the computational time towards clinically
acceptable ranges. The new CNN architecture yields faster training, albeit at a slight perfor-
mance loss, which may be acceptable for faster visualization in some settings.
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Introduction

Long acquisition times remain a major drawback in MRI, creating a strong need for scan time
acceleration. Parallel imaging is the most commonly used acceleration strategy in the clinic,
where the local sensitivities of receiver coils are used for reconstruction [1-3]. One of the most
utilized parallel imaging approaches is generalized autocalibrating partially parallel acquisition
(GRAPPA), which estimates shift-invariant convolutional kernels from autocalibration signal
(ACS) data to interpolate missing k-space lines from acquired ones [3].

Recently, there has been an interest in using machine learning techniques for accelerating
MRI. These methods aim to generate more advanced regularizers by training on large amounts
of datasets, with highly promising initial results [4-17]. Training in this setting requires large
databases of MR images, and these methods do not exhibit any adaptation in a patient or scan-
specific manner. An alternative recently proposed strategy, called robust artificial-neural-net-
works for k-space interpolation (RAKI) uses machine learning in a scan-specific manner,
without the need for training databases [18]. RAKI interpolates missing k-space lines from
acquired ones using several convolutional neural networks (CNNs) trained on subject-specific
ACS data. The use of CNNs in RAKI was shown to improve the reconstruction quality over
GRAPPA at high acceleration rates both visually and quantitatively [18].

In the original implementation of RAKI, CNNs were trained using a gradient descent
approach with momentum [19] and central processing unit (CPU) processing. However, train-
ing multiple CNNs for each subject in this manner is a time-consuming task, leading to total
reconstruction times of up to an hour, hindering its translational utility.

In this study, we sought to speed up RAKI reconstruction towards clinically acceptable
computational times. We used a graphical processing unit (GPU) with CPU multi-processing
to maximize the number of simultaneous training tasks, and proposed an alternative CNN
architecture to reduce the number of required CNNs in the reconstruction and improve mem-
ory efficiency. Performance of different computational acceleration strategies and their combi-
nations were compared in terms of run-time and reconstruction quality, using high-resolution
phantom, brain and knee data.

Materials and methods
Overview of RAKI reconstruction

RAKI non-linearly estimates the missing k-space lines in a uniformly undersampled acquisi-
tion based on the acquired data, using multiple CNNs consisting of convolutional and non-lin-
ear activation layers. The reconstruction is similar to GRAPPA, but uses CNNs instead of
linear convolutional kernels for interpolation in k-space [18]. For processing, the complex k-
space is mapped to the real field, leading to a total of 2n, input channels, where #, is the num-
ber of coils. Let S(k, k,, j) denote the k-space point (k,, k,) of the jth channel. In RAKI, the
unacquired lines are approximated by:

{S(kx7 ky - mAk}”j)}me{l‘Z...R—l}

(1)
~ f({S(k, — b,Ak,.k, — Rb Ak, 1:2n,)},

€[~ By.By] by €[~ BB, ] )

where Ak, and Ak, are the sampling intervals in frequency and phase encoding directions, R is
the acceleration rate, m specifies an unacquired k-space position between two acquired lines,
B, and B, are set by the size of the convolutional kernel along k, and k, directions, f; represents
the set of functions that estimate unacquired lines from acquired data, and 1: 2n. denotes
indexing across all channels. In RAKI, f; is implemented using a three-layer CNN with the
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following structure [18]:
f(s) = wy x ReLU(w, * ReLU(w, *s)) (2)

where * denotes convolution; wy, w,, w3 are linear convolution kernels, of sizes b} x by x

2n,x ny, b x by x n; x n,,and by x b} x n, x (R — 1), respectively, and ReLU(x) = max
(x,0). Thus, each CNN has (R—1) outputs, corresponding to the missing lines between uni-
formly undersampled k-space lines for a given channel. This approach necessitates a total of
2n, CNNs [18]. In the learning phase of the algorithm, the convolutional kernels w;, w,, ws are
estimated by minimizing mean square error loss function over the ACS region.

GPU implementation using parallel multi-channel processing

RAKI was implemented on GPU using Tensorflow [20]. For optimizer, the gradient descent
with momentum used in [18] utilizes a fixed gradient step, which leads to slow convergence
[21]. Thus, Adaptive Moment Estimation (Adam) [22], which controls learning rates of all
parameters by an exponential moving average window, as well as the first and second
moments of historical gradients, was utilized in this study. This approach will be referred to as
the naive GPU implementation [21].

Further optimization of the GPU implementation was achieved as follows. Since RAKI
trains 2n. CNNs during a single reconstruction, where #, is typically 30 or 32, and these CNNs
are designed in a very compact structure that consist of only three convolutional layers and
two activations, each individual training task in RAKI requires only limited GPU resources.
Additionally, the subject-specific ACS data is comparably small compared to memory
resources. Thus, since the training across channels is performed independently, multiple train-
ing tasks were parallelized to increase GPU utilization, and to provide speed up compared to
sequential training procedures. For full GPU utilization, multiple CPU processes were
launched simultaneously with each process allocating an individual training task on the GPU.
For the CNN parameters used in this study, up to 16-20 CPU processes were concurrently exe-
cuted to maintain peak GPU utilization. This CPU multi-processing allowed the GPU to com-
mence processing of multiple calls at the same time. Furthermore, process pooling was utilized
to avoid GPU overloading, while optimizing GPU resource usage.

Line-by-Line CNN architecture for improved memory utilization

In the implementation in [18], each CNN estimated all the unacquired lines at a given coil,
which will be referred to as coil-by-coil (CBC) architecture. Consequently, 21, CNNs needed
to be trained during reconstruction. However, since training tasks are independent, each train-
ing task requires CPU-GPU communication proportional to the number of training tasks.
Furthermore, distributing GPU resources into a high number of tasks, for instance 2#,,
reduces available resources for each training task, leading to performance decrease. Therefore,
in this study, we investigated an alternative architecture that improves the GPU memory
usage. This architecture, which will be referred to as line-by-line (LBL), utilizes non-linear
interpolation with CNNs, but each CNN estimates the unacquired lines for all channels for a
given missing position m, as follows:

S(k,, k, —mAk,,1:2n)
(3)
~ f.(S(k, — b Ak, k, — Rb Ak, 1:2n)),

—B,.B,|.b,€[~B,.B,]

where 1:2n, denotes indexing across all channels. Note the unacquired data are estimated by a
CNN indexed by m, which outputs estimates in position # for all channels. Hence, this
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architecture reduces the CNN amount from 2#n. to R- 1. For instance, for R = 5, and n, = 32,
this leads to a 16-fold reduction. Note the kernel size of the third layer has been correspond-
ingly changed to b x b} x n, x 2n_for these CNNs, while the parameters of the other layers
were kept fixed to maintain a fair comparison between the two architectures. The main advan-
tage of this architecture from a computational perspective is the reduction of the number of
CNNess that are used in reconstruction, which in turn reduces the data transfer between CPU
and GPU, while allowing more GPU resources to be assigned to each training task.

Implementation details

GPU-accelerated RAKI reconstruction was implemented using Tensorflow 1.7.0 and python
3.6.2, supported by CUDA 8.0 and CuDNN 7.0.5, on Linux kernel 3.10.0. The Python environ-
ment was created under Anaconda 5.1.0. All programs were run on a server with two Intel E5-
2643 CPUs (6 cores each, 3.7 GHz), 256 GB memory and an NVIDIA Tesla V100 GPU (32 GB
memory) with single precision. CPU-based RAKI reconstruction was implemented using
Matlab 2016a and MatConvNet, as described in [18]. The RAKI networks shared the following
parameters b =5, by = 2,n,;=32b7 =1, by = 1, n,=8; b} = 3, b, = 2. Prior to training,
complex k-space data were mapped into real field, and then scaled into the range of [0, 0.015].
Parameters of Adam optimizer were set as: & = 0.001, 8; = 0.9, B, = 0.999, £ = 10~°. Maximum
training epoch was been chosen as 1000, and the training will be stopped prior than it if the
normalized change of loss within 100 epochs is less than 0.0001. The multi-channel recon-
struction result was combined by root-of-sum-of-squares. As weights were randomly initiated
in CNN training, which affected the total run time, each run was repeated 10 times, and the
reconstruction times were reported as mean * standard deviation. GRAPPA reconstruction
with a 5x4 kernel was also implemented for comparison with RAKI reconstructions.

Phantom imaging

Phantom imaging was performed on a 3T Siemens Magnetom Prisma (Siemens Healthcare,
Erlangen, Germany) system using a 32-channel receiver head coil-array and a head-shaped
resolution phantom. A 2D multi-slice spoiled gradient recalled echo (GRE) sequence with the
following parameters was used: FOV = 220x220 mm?, in-plane resolution = 0.7x0.7 mm?,
matrix size = 320x320, slice thickness = 4 mm, TR/TE = 500 ms/15 ms, flip angle = 70°, 27
slices, bandwidth = 360 Hz/pixel. Retrospective sub-sampling was performed at R = 3,4, 5, 6
with an ACS region of 40 lines at the center. Normalized MSE (NMSE) with respect to the
fully sampled data was used to compare the accelerated RAKI implementations.

Brain imaging

Brain imaging was performed on the same 3T system and on a 7T Siemens Magnex Scientific
(Siemens Healthcare, Erlangen, Germany) system using a 32-channel receiver head coil-array.
The imaging protocols were approved by the University of Minnesota institutional review
board, and written informed consent was obtained from all participants before each examina-
tion for this HIPAA-compliant study. For 3T imaging, a T';-weighted 3D-MPRAGE sequence
was acquired in a healthy subject (male, 41 years) with the following parameters: FOV = 224x
224x179 mm?, resolution = 0.7x0.7x0.7 mm?’, matrix size = 320x320, TR/TE = 2400 ms/2.2
ms, flip angle = 8°, bandwidth = 210 Hz/pixel, inversion time = 1000 ms, ACS lines = 40, with
iPAT = 2 and 5. Furthermore, the R = 2 acquisition was also retrospectively undersampled to
R =4and 6. For 7T imaging, 3D-MPRAGE was acquired in a healthy volunteer (male, 43
years) with the following parameters: FOV = 230x230x154 mm?, resolution = 0.6x0.6x0.6
mm?, TR/TE = 3100 ms/3.5 ms, flip angle = 6°, bandwidth = 140 Hz/pixel, inversion
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time = 1500 ms, ACS lines = 40, with R = 3, 4, 5, 6. Additionally, two averages were acquired
for R = 5 and 6 data to mitigate the SNR loss from undersampling [18]. The k-space data was
inverse Fourier transformed along the slice direction for all datasets, and a central slice was
processed. For these acquisitions, where a fully-sampled reference was not available, recon-
struction quality was assessed qualitatively.

Knee imaging

Knee MRI data were obtained from the NYU fastMRI initiative database [23]. Experiments
were performed on proton density weighted images with fat suppression, which was acquired
using a 15-channel knee coil. Scan parameters of these datasets are as follows: echo train length =
4, matrix size = 320 x 320, TR/TE = 2870ms/33ms, in-plane resolution = 0.5x0.5mm?, slice
thickness = 3mm, 36 slices, no gap between slices. These fully-sampled datasets were retrospec-
tively undersampled with R = 2, 3 and 4, and 40 lines in the center of k-space were used as ACS
data. Taking advantage of the copious amounts of data in this database, reconstructions were
performed on 190 randomly selected slices across different subjects. Structural similarity index
(SSIM), as well as NMSE with respect to fully sampled data was used to quantitatively measure
the reconstruction quality. SSIM and NMSE performance with respect to the fully-sampled data
was statistically compared using the Wilcoxon signed rank test among the two GPU implemen-
tations and GRAPPA over all the 190 instance for each acceleration rate. A type-I error of 0.05
was used to consider statistical significance.

Results and discussion
Phantom imaging

Reconstruction run times, including the learning phase, are listed in Table 1. Using the pro-
posed GPU implementation with CPU multi-processing, 2.9 to 4.2-fold speed-up compared to
naive GPU implementation was achieved for different acceleration rates, with a maximum of
4.2-fold speed-up obtained for R = 3. Additional speed-up was achieved with the proposed
LBL strategy, resulting in a 13.2 to 19.9-fold acceleration, where the maximum speed-up was
again achieved for R = 3. Fig 1 shows the reconstruction results using GRAPPA, as well as the
proposed RAKI GPU implementations with both CBC and LBL CNN architectures for differ-
ent rates. The LBL GPU implementation uses a different architecture, but leads to virtually
identical image quality for the phantom, while providing approximately 5-fold speed-up in
computational time over the CBC implementation. This visual assessment is consistent with
the NMSE values for this slice, 0.0010, 0.0018, 0.0033, 0.0069 for the RAKI GPU implementa-
tion with CBC architecture at R = 3 to 6 respectively, and NMSEs of 0.0011, 0.0017, 0.0034,
0.0072 for the LBL architecture for R = 3 to 6 respectively. Both CBC and LBL RAKI showed
advantage over GRAPPA reconstruction, which had NMSEs of 0.0011, 0.0019, 0.0035, 0.0088
for R = 3 to 6, respectively.

In-vivo imaging
Reconstruction run times for the different in vivo datasets, as well as for different R values are
reported in Table 1. Similar to phantom imaging, 2.0 to 4.9 fold speed-ups with respect to
naive GPU implementations were achieved by using the proposed optimized GPU implemen-
tation over the in vivo datasets. Further speed-up from 8.6 to 22.2-fold is achieved by using the
GPU implementation with the proposed LBL CNN architecture.

Fig 2 depicts the reconstruction results for a slice of the high-resolution 3T MPRAGE
acquisition. There is a minor increase in noise amplification with the proposed fast GPU
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Table 1. Run-times of all RAKI implementations.

R

Phantom
(Fig 1) 3
4
5
6
Brain 3T 2
(Fig 2) 4
5
6
Brain 7T 3
(Fig 3) 4
5
6
Knee 2
(Fig 4) 3
4

CPU-CBC (s)

8198 +43.8
7711 + 14.4
6931 +19.2
5900 + 30.6
7583 +12.0
7589 +13.8
6840 + 19.2
6055 + 11.4

9079 +13.2
8929 + 12.6
8027 +13.8
7413 +29.4
4595 + 27.6
4529 + 24,4
4044 + 34.8

Naive GPU (s) GPU-CBC (s) Speed-up GPU-LBL (s) Speed-up
1594+ 1.3 37.7+0.2 4.2 8.0+0.1 199
155.2+6.1 42.0+04 3.7 9.1+0.1 17.1
147.1 £6.2 47.5+0.3 3.1 10.9 £ 0.2 13.5
158.4+ 2.7 543+1.1 2.9 12.1 £ 0.0 13.2
155.3 +2.3 32.8+0.2 4.9 69+0.1 22.2
155.7 £ 2.2 40.4 £ 0.2 3.9 9.5+0.1 16.4
157.3+2.4 46.0 £ 0.6 3.4 11.0 £ 0.2 14.3
154.8 £ 1.6 51.8+0.5 3.0 12.6 £ 0.4 12.3
157.7+ 2.1 66.0 + 3.8 2.4 8.5+0.0 18.6
168.6 + 2.2 73.4+5.6 2.3 10.1 £ 0.1 16.7
165.0+ 1.9 67.2+1.1 2.5 114+0.3 14.5
168.9 + 2.2 749 +2.6 2.3 129+ 0.1 13.1
80.3+1.3 382+1.9 2.1 6.9+0.1 11.6
80.5+1.2 37.0 £ 0.6 2.2 7.7+0.1 10.5
78.8+£2.2 37.9+0.8 2.1 9.2+0.2 8.6

Running times are reported in seconds. Means and standard deviations were calculated from 10 repetitions of the algorithm, with changes due to the random

initialization of the weights in training. CBC and LBL refers to the output structure of the CNNs used in RAKI. The speed-ups in the table are reported with respect to

the naive GPU implementation.

https://doi.org/10.1371/journal.pone.0223315.t001

RAKI implementation with the LBL architecture as compared to the conventional CBC archi-
tecture at R = 5 and 6, while there are no visible differences for R = 2, 4. However, LBL RAKI
still holds an advantage over GRAPPA in terms of visual quality and noise amplification, espe-
cially for R = 5, 6. Furthermore, the use of LBL architecture enabled computational speed-ups
of 4.1 to 4.5-fold with respect to CBC architecture.

Fig 3 depicts a reconstructed slice for 7T MPRAGE acquisition at 0.6mm isotropic resolu-
tion. Similar reconstruction characteristics are observed in this scenario as well. Minor noise
amplification is observed with the proposed fast GPU RAKI implementation with the LBL
architecture compared to the CBC architecture, but only at the higher acceleration rates of 5
and 6. Up to approximately 8-fold acceleration is achieved with the LBL GPU implementation,
when compared to the CBC GPU approach for this dataset. RAKI reconstructions with both
CBC and LBL architectures show better noise resilience over GRAPPA.

Fig 4 displays reconstructions of proton density weighted knee images with fat suppression
from the fastMRI dataset [23]. For R = 2, no visual differences are observed among the three
reconstruction methods, which is consistent with SSIM values of 0.8543, 0.8643 and 0.8584, for
GRAPPA, RAKI GPU-CBC and RAKI GPU-LBL respectively. For R = 3, both CBC and LBL
RAKI show advantage over GRAPPA in terms of reconstruction noise visually, while CBC and
LBL RAKI methods are visually similar. The SSIM values for GRAPPA, CBC and LBL are
0.7373, 0.7988 and 0.7807 respectively, consistent with visual observations. For R = 4, GRAPPA
suffers from even higher reconstruction noise, while RAKI offers higher reconstruction fidelity
for both CBC and LBL implementations, with minor improvements with CBC over LBL. The
SSIM values are 0.5955, 0.7534 and 0.7382 for GRAPPA, CBC and LBL respectively.

Fig 5 summarizes the mean and standard deviation of the SSIM and NMSE metrics for
GRAPPA, and CBC and LBL RAKI over the 190 knee MRI datasets from the fastMRI database
[23]. CBC RAKI performs best at all rates, while LBL RAKI also outperforms GRAPPA at all
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Fig 1. Reconstruction results of phantom imaging. Reconstruction was using the proposed GPU implementations with CPU multi-processing using the conventional
coil-by-coil (CBC) and the novel line-by-line (LBL) architectures, and GRAPPA using 5 by 4 kernel for different acceleration rates. Different reconstructions for the
same acceleration rate exhibit similar image quality and NMSE values. However, the optimized GPU-CBC strategy leads to 2.9 to 4.2-fold speed-ups compared to a naive
GPU implementation, while the optimized GPU-LBL strategy has further computational acceleration from 13.2 to 19.9-fold.

https://doi.org/10.1371/journal.pone.0223315.9001

rates, with 0.5%, 5.9% and 24.0% SSIM improvement at R = 2, 3 and 4. The relative differences
between CBC RAKI and LBL RAKI were smaller for SSIM at 0.7%, 2.3% and 2.0% at R=2, 3
and 4. Similar observations are made for the NMSE metric, where LBL RAKI outperforms
GRAPPA by 7.8%, 26.9% and 54.3% at R = 2, 3, 4, while the relative difference between CBC
RAKI and GRAPPA is 27.3%, 36.7% and 57.1% at R = 2, 3, 4. All the differences for SSIM and
NMSE were statistically significant at all rates (P < 0.05).

Discussion

In this study, we proposed various approaches to accelerate RAKI reconstruction. Individual
CNN training was accelerated by GPU-aided implementation. Multiple CNNs for RAKI
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R =2 R =4 R =35

GRAPPA

RAKI-CBC

RAKI-LBL

Fig 2. Reconstruction results of a central slice of MPRAGE data at 3T. The MPRAGE data was acquired at 3T with 0.7 mm isotropic resolution, using the proposed
GPU implementations with CPU multi-processing using the conventional coil-by-coil (CBC) and the novel line-by-line (LBL) architectures for different acceleration
rates. For R = 2 and 4, all reconstructions are visibly similar, but compared to a naive GPU implementation, the proposed GPU strategies lead to computational speed-
ups of up to 4.9 and 22.2-fold using the CBC and LBL architectures, respectively. For R = 5 and 6, slight noise amplification is observed for the RAKI-LBL
implementation compared to the RAKI-CBC implementation. However, RAKI-LBL is still advantageous compared to GRAPPA in terms of noise resilience. The
proposed GPU implementations of RAKI-CBC and RAKI-LBL led to 3.4 and 14.3-fold speed-ups over the naive GPU implementation for these acceleration rates,
respectively.

https://doi.org/10.1371/journal.pone.0223315.9002

reconstruction were trained in a parallel manner based on CPU multi-processing and process
pooling techniques, in order to maximize GPU utilization and achieve further acceleration.
Additionally, an LBL CNN architecture for RAKI was proposed to reduce the number of
CNNis required for reconstruction, which afforded additional speed-up with no significant
changes in image quality. These efforts reduced RAKI run-time from hour-long CPU process-
ing towards clinically acceptable range of seconds.
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RAKI-LBL. RAKI-CBC GRAPPA

Fig 3. Reconstruction results of a central slice of MPRAGE data at 7T. The MPRAGE data was acquired at 7T with 0.6 mm isotropic resolution, using the proposed
GPU implementations with CPU multi-processing using the conventional coil-by-coil (CBC) and the novel line-by-line (LBL) architectures for different acceleration
rates. R = 5 and 6 data were acquired with two averages for reduced SNR penalty. For R = 3 and 4, reconstructions are visibly similar. Compared to the naive GPU
implementation, with the GPU strategies leading to computational speed-ups of up to 2.4 and 18.6-fold using the CBC and LBL architectures, respectively. Slight noise
amplification with the RAKI-LBL approach over the RAKI-CBC approaches are visible for R = 5 and 6. However, RAKI-LBL offers better noise resilience over GRAPPA.
GPU implementation of RAKI-CBC and RAKI-LBL led to 2.5 and 14.5-fold computational speed-ups over the naive GPU implementation for these rates, respectively.

https://doi.org/10.1371/journal.pone.0223315.9003

Acceleration of deep learning techniques using massive parallelization is an active area of
research. To date, most studies focused on the case where one large training task is performed
at a time [24, 25]. The computational acceleration need in RAKI is different since multiple
compact CNNs are trained independently. Due to the comparably small size of the individual
CNNs, powerful GPUs are not at full use if these networks are trained subsequently. Hence,
our approach was to parallelize the training on a single GPU without compromising the per-
formance of each individual training. This strategy of allocating multiple training tasks on a
single GPU facilitated peak performance resulting in faster RAKI reconstructions.

Further computational speed-up was achieved by reducing the number of CNNs required
for a RAKI reconstruction. Conventional RAKI requires 2, CNNs, where each CNN
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Reference R=2 R=3 R=4

RAKI-LBL. RAKI-CBC GRAPPA

NMSE=0.0163 | NMSE=0.0298 |
SSIM =0.8760 SSIM =0.8071

Fig 4. Reconstruction results of a proton density weighted knee image with fat suppression. Fully sampled data was provided by fastMRI dataset [23].
Reconstructions using GRAPPA, and proposed GPU implementations CBC and LBL are shown. For R = 2 case there is no visible difference between reconstruction
results. For R = 3, RAKI shows advantages in noise resilience compared to GRAPPA. Both CBC and LBL architectures lead to less noise than GRAPPA. This advantage
is even more apparent at R = 4, where RAKI reconstructions show considerably lower noise level than GRAPPA. For both R = 3 and 4 cases, RAKI-CBC and RAKI-LBL
have no substantial visual difference. Quantitative SSIM and NMSE metrics confirm these observations.

https://doi.org/10.1371/journal.pone.0223315.9004

corresponds to a certain coil over the real field. In this work, we proposed an LBL network
structure that outputs reconstructions across all coils for a specific missing k-space line, in
order to reduce CNN requirement in RAKI reconstruction. This strategy significantly reduced
the number of CNNs that needed to be trained, further improving the reconstruction times.
Two different GPU implementations were investigated in this study. The first one utilized
the same CBC structure as in [18], but used GPU and CPU multi-processing. Compared to a
naive GPU implementation, using this strategy improved processing speed from several min-
utes to less than a minute. Additionally, the use of fixed learning rate in the original CPU
implementation was identified as a limitation [18], which was ameliorated in this study by
using a more advanced optimization approach [21, 22]. Overall, our strategies reduced the
hour-long CPU run-time in [18] to seconds, while providing the best reconstruction quality,
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Fig 5. Mean structural similarity index (SSIM) and normalized mean squared error (NMSE) for different methods. SSIM and NMSE of GRAPPA, RAKI-CBC and
RAKI-LBL for 190 proton density weighted knee data with fat suppression from the fastMRI dataset [23]. Error bars represent standard deviation across datasets. SSIM
results showing both RAKI-CBC and RAKI-LBL offers better image quality than GRAPPA, with 24.0% improvement at R = 4. Similar observations apply to NMSE. All
differences between methods and across rates were statistically significant (P < 0.05), which are marked with *.

https://doi.org/10.1371/journal.pone.0223315.g005

robustness, even for high acceleration rates The LBL strategy gave further considerable speed-
up, with similar reconstruction quality at moderate acceleration rates of up to 4, although con-
sistent but minor noise amplification was observed for high-resolution brain imaging at high
acceleration rates of 5 and 6, while the visual differences were not substantial for the knee data-
sets. This indicates a trade-off between reconstruction quality and speed-up, which may be
acceptable in certain settings, considering the additional 5 to 8-fold speed-up in computational
time with this approach.

The two CNN architectures considered in this study had the same number of layers, kernel
sizes, and number of outputs except for the last layer. This led to different numbers of parame-
ters that needed to be learnt. For the CBC architecture, the number of parameters is given as
6407, + 208 + 48R for each CNN. 21, such CNNs resulting 1280n? + 5161, + 96Rn, parameters
in total, whereas for the LBL architecture, there were 7367, + 208 parameters for each CNN,
and totally (736#, + 208)(R—1) parameters for the (R—1) CNNs. Note in this study, n, = 32
for phantom and brain imaging, and n, = 15 for knee imaging. Thus for R < 6, the CBC archi-
tecture had more than 4-fold as many as parameters as the LBL. This suggests that the LBL
architecture can potentially support deeper CNNs with more outputs per layer. However, for a
fair comparison between the two architectures, while avoiding any additional confounding
factors, both architectures were tested with the same number of layers and other network
parameters in this study. According to our experiments, using larger kernel sizes did not
improve the reconstruction quality for either GRAPPA or RAKIL

Further acceleration may be achieved by using multi-task learning. In multi-task learning
[26-28], a single network offers multiple output utilities, by allowing partial parameter sharing
between different output branches. Aided by this mechanism, reconstruction of the whole
multi-coil image may be accomplished using a single multi-task network, rather than multiple
individual networks. This strategy facilitates overlaps between the network architectures for
multiple outputs. Thus, it has the potential to provide a more efficient reconstruction
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procedure than existing RAKI-CBC and RAKI-LBL. Since the scope of this study is to acceler-
ate RAKI reconstruction proposed in [18], we have tried to keep algorithmic modification to a
minimum. However, future studies using more advanced multi-task learning models to fur-
ther accelerate the reconstruction are warranted.

For the GPU implementation, there is a non-trivial overhead due to data transfer to GPU,
which impacts the overall run-time. To quantify the effect of this overhead, we computed a
data transfer to computation ratio for the different implementations. For RAKI-CBC, this
ratio was between 0.4 and 0.6, while for RAKI-LBL, the ratio was between 2.2 to 2.4. Thus, for
the latter implementation more than half of the total run-time is spent on data transfer to the
GPU. Further reduction in this overhead would be beneficial for the implementations, but are
currently unavoidable due to hardware limitations.

While RAKI enables scan-specific machine learning reconstruction, more conventional
machine learning reconstruction algorithms have also been considered in the literature. These
methods require large databases of fully-sampled images for training. Transfer learning meth-
ods have also been proposed to partially address the need for large databases, which may not
be available in all target applications. In transfer learning, neural networks are pre-trained on
an available large database, and then fine-tuned on smaller datasets for the specific application
[29, 30]. However, these methods still require fully-sampled data for training. Thus, they may
not be applicable to scenarios, where it is infeasible to acquire such datasets, for instance for
the high-resolution whole-brain imaging considered in this paper, since the scan time would
be prohibitive. Additionally, the databases used for training with or without transfer learning
may have limitations on pathologies of interest, bringing risks in generalizability for diagnosis
of rare pathologies [31]. This latter problem is also addressed by the scan-specific nature of
RAKI.

In summary, we proposed several strategies to accelerate RAKI reconstructions in order to
facilitate translation of this scan-specific machine learning parallel imaging reconstruction to
the clinic. The original CBC RAKI reconstruction was accelerated by a factor of 2.1 to 4.9 com-
pared to a naive GPU implementation. Additional speed-up of up 8.6 to 22.2-fold compared to
anaive GPU implementation, was achieved using a novel LBL CNN structure in RAKI, further
bringing the computational time towards clinically acceptable range.
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