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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 Disposition 

Since the discovery of the double helix of DNA and RNA') and the a-

helix of polypeptides^' it is well known that biopolymers and their syn

thetic analogs can retain a well ordered conformation, not only in the 

crystalline state but under certain conditions also in solution. This 

ordered conformation is stabilized by intramolecular hydrogen bonds. 

These conformations are extremely stable in the sense, that breaking of 

one hydrogen bond is not advantageous. This does not lead to the reali

zation of a noticeable number of additional degrees of freedom; only with 

the simultaneous breaking of a large number of adjacent hydrogen bonds 

the ordered conformation collapses. This explains the sharp changes in 

the conformational state of these polymers with small changes of the ex

ternal parameters. The transition from a well ordered (helical) confor

mation to a disordered (coiled) state usually takes place in a rather nar

row interval of temperature or solvent composition. 

At the present time conformational transitions in biological macro-

molecules are the subject of very intensive study, both experimental and 

theoretical. This is quite obvious, since such transitions are directly 

related to a number of extremely important life processes, such as the 

transfer of hereditary properties and the enzymatic activity of proteins. 

While within the living organism the study of these phenomena encounters 

great difficulties, an investigation of conformational transitions can 

be performed quite easily outside the organism. Under varying conditions 

the complete arsenal of modern physical methods can be applied, as for 

example O.R.D., small angle x-ray scattering, light scattering, I.R.-

spectroscopy, N.M.R., viscosity measurements, etc. 

Surprisingly the technique of flow birefringence has been applied 

to the study of conformational transitions only in a few cases. As an 

example the experiments can be mentioned, which were done by Tsvetkov 

et al.'i"), on the helix-coil transition of poly(y-benzyl-L-glutamate) 

(PBLG) in mixtures of dichloro-ethane and dichloroacetic acid. In the 

rather apolar solvent dichloro-ethane PBLG is present as an a-helix, 

while in the strongly polar solvent dichloroacetic acid the intramole

cular hydrogen bonds are broken and the molecule assumes a coil-confor

mation. At this transition the specific viscosity of the PBLG-solution 

decreases by a moderate factor of 2.5 only. However, the intrinsic ani-

sotropy of the molecules, a quantity which can be determined with the 
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aid of flow birefringence, appears to decrease by a factor of 40-50. 

This transition is thus accompanied by a tremendous change of the op

tical properties of the molecule. 

The theoretical background of flow birefringence as well as the tech

nique of measurement are rather complicated. Flow birefringence is char

acterized by two quantities which are measured separately, viz. the ex

tinction angle and the birefringence, both as functions of shear rate. 

In addition, the viscosity of the solution must be known for an inter

pretation of these measurements. The measured birefringence is mainly 

determined by the optical properties, the intrinsic anisotropy, of the 

macromolecules, while the extinction angle depends on the hydrodynamic 

properties of the particles. The viscosity of a polymer solution also de

pends on the hydrodynamic properties of the macromolecules. The example, 

given above, therefore clearly illustrates the great advantage of the 

combined hydrodynamic-optical measuring technique over a purely hydro-

dynamic one for the investigation of conformational transitions of poly

mers. The aim of this thesis is to investigate the importance of flow 

birefringence as a technique for the study of conformational transitions. 

As is well known, most biopolymers not only are stabilized by hydro

gen bonds. They also possess a great number of ionizable groups, arranged 

along the molecular chain. These groups are responsible for a pronounced 

polyelectrolyte character of these macromolecules. As a consequence, the 

molecular conformation of these polymers is also influenced by the degree 

of ionization of the molecules. From these facts it becomes obvious that 

the conformational transitions of these polymers usually have a quite 

complicated character. For this reason two separate synthetic polymers 

were chosen for this investigation, each possessing one of the character

istic properties of biopolymers: a polyelectrolyte without intramolecular 

hydrogen bonds and an uncharged polymer, which is capable of forming in

tramolecular hydrogen bonds. 

1.2 A Poly(amide carboxylic acid) 

Only a few investigations of the flow birefringence of polyelectro

lyte solutions have been published until now. The investigations of 

Fuoss and Signer^' and of Jordan and coworkers'''' on poly (4-vinyl-N-

butyl pyridinium bromide) and poly(4-vinyl pyridinium chloride) have 

shown that extinction angle and birefringence considerably change with 

an increasing degree of ionization of the macromolecules. The investiga

tions of Kuhn et al.'' and of Tsvetkov and coworkers'' on poly(acrylic 

acid) and poly(methacrylic acid) in aqueous solutions give similar results 

The interpretation of these results, however, is complicated by a consid

erable contribution of the form-birefringence. This birefringence be-
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comes considerable if too large a difference exists between the refrac

tive indices of polymer and solvent. In such a case the coil-molecule as 

a whole contrasts too much with the solvent. 

Vollmert and Horvath'°-'^' recently performed viscosity and light-

scattering measurements on a poly(amide carboxylic acid) (PACA) from 

pyromellitic anhydride and benzidine: 

Fig. 1.1. Structure of poly(amide carboxylic acid). 

As a solvent N,N-dimethyl acetamide (DMA) was used. On ionization of 

this polyacid with the organic base triethylamine (TEA) the viscosity of 

the solution sharply increases. For the ionized PACA the dependence of 

the reduced viscosity ri_ /c on concentration is characterized by a typi-
sp 

cal increase which is always observed with polyelectrolytes when the con
centration is lowered. On the other hand, for the unionized PACA the de
pendence of r\^_/c on concentration corresponds to that for uncharged ma-

sp 

cromolecules. 

The degree of ionization and, with it, the coil expansion of the 

PACA are determined by the equilibrium constant of the acid-base reac

tion, the concentration of the dissolved PACA and the concentration of 

TEA. As an excess of unreacted TEA remains non-ionic, it does not con

tribute to the ionic strength of the solution. 

In this thesis the flow birefringence of this polyelectrolyte system 

will be described. Because of the great number of aromatic rings in the 

PACA-chain this polyelectrolyte has a very high intrinsic anisotropy even 

in the uncharged state. As will be shown later, the intrinsic anisotropy 

of this uncharged PACA is about ten times as large as that of polystyrene, 

for example. Therefore the influence of the form-birefringence is rela

tively small, in spite of the rather high refractive index increment 

(dn/dc = 0.375 ml/g '")). In such a case also the ionic atmosphere of 

the protonated TEA-molecules around the charged PACA-molecules may have 

only a minor influence on the anisotropy of the macromolecule. Another 

advantage of the high optical anisotropy of the PACA-molecules is that 

the flow birefringence of its solutions can be measured at very low con

centrations of the PACA, where the polyelectrolyte-effects are most pro

nounced. 
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It may be concluded that the described system should be extremely 

suitable for the investigation and interpretation of changes of proper

ties as caused by ionization. For a preliminary presentation of this part 

of the work see ref. 13. 

1.3 Cellulose tricarbanilate 

Cellulose and its derivatives are reckoned among the stiff macromole

cules. Very flexible macromolecules assume an unordered coil conformation 

in solution. This conformation is characterized by a Gaussian distribution 

of the end-to-end distance of the molecular chain. Cellulose, occurring in 

nature, and its derivatives have too low a degree of polymerization to 

furnish such a Gaussian distribution. Most molecular theories, however, 

describing the behaviour of macromolecules in solution, are based on such 

a Gaussian distribution. Hence cellulose-derivatives are extremely suita

ble for a study of the influence of deviations from these Gaussian statis

tics on optical and hydrodynamic properties. 

For this investigation Cellulose tricarbanilate (CC) was used: 

Fig. 1.2. structure of cellulose tricarbanilate. The hydrogen bonds are given by dot

ted lines. 
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obtained by formation of a urethane from cellulose and phenyl isocyanate 

in hot pyridine, according to Burchard and Husemann'*'. These authors 

have shown with the aid of light-scattering and viscosity-measurements, 

that the coil-dimensions of the CC-chain are strongly dependent on the 

choice of the solvent. This polymer is soluble in organic esters, ethers 

and ketones. However, in general the molecular coil appears to have lar

ger dimensions in ethers than in esters and ketones. Especially in mix

tures of ketones and water or methanol very peculiar changes of the mean 

square radius of gyration of the CC-chains could be observed'^'. 

An explanation of this difference in stiffness, resp. coil-dimensions, 

was sought in the formation of intramolecular hydrogen bonds'''. Their 

occurrence can be deduced from the structure of the chain, as given above. 

With the aid of macroscopic Stuart-models it was checked that the given 

hydrogen bonds can occur from a sterical point of view. These hydrogen 

bonds form a sort of ladder-conformation which, as a matter of fact, 

causes a greater stiffness, than if the monomers are coupled only by 

single bonds. In fact, in the absence of hydrogen bonds the stiffness of 

CC is only determined by the sterical hindrance of rotations around the 

6-glycosidic bonds. 

Janeschitz-Kriegl and Burchard''' measured the flow birefringence of 

a number of sharp fractions of CC with different molecular weights. As a 

solvent benzophenone was used. In the present work the flow birefringence 

of CC is studied in ethers and esters and mixtures of both kinds of sol

vents. The aim was to check whether phenomena could be found with flow 

birefringence, which point to pronounced changes of the stiffness of the 

molecular chain. 

Also CC appears to have a high intrinsic optical anisotropy, which 

simplifies the choice of the solvents. In most cases, however, solvents 

were preferred, for which the refractive index increments were small. 

In cases, where this was impossible, the influence of the form-birefrin

gence was estimated. It appeared that also in those cases the influence 

of the form-birefringence was relatively small. 
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CHAPTER 2 

PRINCIPLES AND BACKGROUND OF EXPERIMENTAL TECHNIQUES 

2.1 Introduction 

An important field of research on polymers is the study of their hy

drodynamic properties in dilute solution. These properties determine the 

motion of the polymer molecules through a viscous medium under influence 

of external fields of force and of Brownian motion. 

In this chapter the general principles of viscosity and flow bire

fringence measurements will be discussed. For both techniques the field 

of forces is exclusively caused by a laminar shear flow of the solution. 

Any external forces, as for example electric or magnetic forces, are dis

regarded. Gravitational and inertial forces will be neglected and left 

out of consideration henceforth. This is a rather good approximation be

cause of the small dimensions of the molecules and the existence of 

Brownian motion. 

2.2 The stress tensor 

The flow field, used for both techniques, is a laminar shear flow. 

If one imagines that this flow takes place between two infinite parallel 

plates, which are moving with respect to each other at constant speed, 

one can define a coordinate system, such that the 1- (or x-) direction 

is chosen parallel with the stream lines, the 2- (or y-) direction per

pendicular to the shearing planes, resp. to the plates. The 3- (or z-) 

direction completes a right-handed Cartesian coordinate system. 

In that case the velocity of the fluid between the plates will be 

given by: 

^x " '̂1 = 'jy ^y " •̂ z " ° '^•^' 

where 

dv 
X 

dy 
(2.2) 

is the shear rate. 

Besides the normal energy dissipation in the solvent itself, an extra 

energy dissipation takes place in a polymer solution because of the work, 

done on the flowing fluid by the polymer molecules. The polymer mole

cules undergo a simultaneous orientation and deformation in the flow. To 

maintain steady shear flow a set of forces has to be applied on the 

plates. The force in the 1-direction, taken per unit-area of the plate, 



is called the shear stress and appears to be one of the components of the 

stress tensor. If the deformation in the fluid is uniform, this stress 

tensor describes the state of stress for each point within the flowing 

solution. 

The form of the stress tensor''^' is illustrated in Fig. 2.1: 

Fig. 2.1. Definition of the components of the stress tensor. 

To maintain an arbitrary flow field a force F. has to be exerted on 

a surface perpendicular to the i-direction (i = 1,2,3). After dividing 

this force by the area of the surface, on which it acts, a stress P^ is 

obtained. Its components in the 1-, 2- and 3-direction are: Piĵ < Pjp ^^'^ 

P.,. This can be done for all three directions i. In this way nine com

ponents are obtained, which define the stress tensor for the flowing 

solution: 

13 
(2.3) 

The components Pii, P22 and P33 are called normal stresses, the com

ponents Pi2< Pi3< P21» P23< P31 and P32 are shear stresses, because they 

try to change the shape of the cube. If there are no preferential direc

tions in the solution at rest, i.e. the fluid is isotropic, it can be 

proved that the stress tensor is symmetric''^': 

•13 
P . . 
31 

(2.4) 

Under this condition no resultant couple is acting on the fluid. Such a 

couple would cause an accelerating rotation. For the shear flow, as de

fined above, the components Pi 3, P23 and consequently P31 and P32 vanish 

for symmetry reasons''. 

For all theoretical and experimental considerations it will be sup

posed henceforth that the solution is incompressible. This is a necessary 

simplification, because otherwise considerable mathematical difficulties 
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arise. However, this is a reasonable approximation for dilute solutions, 

as the bulk modulus of fluids is always very large compared with the 

(time dependent) shear modulus. 

A further simplification is obtained by assuming that the stress ten

sor for a streaming solution o nacromolecules can be given as the sum of 

a spherically symmetric hydrostatic pressure, a contribution of the sol

vent and a separate contribution of the polymer molecules''"'. The con

tribution of the solvent is usually considered to bè independent of the 

polymer concentration. As is obvious, this assumption becomes more and 

more incorrect, when the polymer concentration is increased. However, 

with increasing concentration the relative solvent contribution decreases 

rapidly, so that it becomes completely negligible, anyway. 

Low molecular weight fluids, like the solvents used in this work, can

not build up normal stresses''. So these solvents contribute only to the 

shear stress. Moreover, this contribution appears to be proportional to 

the shear rate. The proportionality-constant rig is called the Newtonian 

solvent viscosity. It is independent of the shear rate. 

The stress tensor for a polymer solution, which is submitted to steady 

shear flow, now assumes the following simple form: 

A 0 o \ /O q o \ / p i i p,2 0 \ 

^ i j = " Po ° 1 ° •*• ^S I "3 ° 0 + j P2 1 P22 0 ] 
\ o 0 1 / \ o 0 0 j \ 0 Q- P33/ 

(2.5) 

where p = the hydrostatic pressure, 

p.J = the contribution of the polymer molecules to the stress ten-

sor P.j. 

It is quite irrelevant to include the hydrostatic pressure into the 

definition of the stress tensor for incompressible liquids. This compo

nent is therefore usually disregarded in theoretical considerations. 

For the study of the hydrodynamic behaviour of polymers we are only 

interested in the contribution of the macromolecules to the stress ten

sor, i.e. the last term of eq. (2.5). This tensor can be represented by 

a stress ellipsoid. In the Cartesian coordinate system, formed by the 

three principal axes of this ellipsoid, this tensor only has components 

on the diagonal. All components with mixed indices are equal to zero. 

Because of the simple form of the chosen flow pattern it can easily be 

seen that one of the principal axes (the Ill-axis) of this ellipsoid co

incides with the 3-direction. As a consequence, both other principal 

axes (the I- and Il-axis) must lie in the plane of flow, i.e. the 1-2 

plane. If the first principal axis is defined as the one making an angle 

X', smaller than 45 degrees, with the direction of the stream lines (see 
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Fig. 2.2. Laboratory coordinate system; 1 direction of flow, 2 direction of the 

velocity gradient, p 

stress tensor. 

principal stresses, x' orientation angle of the 

Fig. 2.2), one obtains the following equations for the transformation of 

tensor components: 

Ap sin 2x' = 2 P2 

Ap cos 2x' = Pi 1 

PlII= P33 

Pza 

(2.6) 

(2.7) 

(2.8) 

where Ap - P II' 
the difference between the two principal stresses 

in the plane of flow, 

Pii " P22 = the so-called first normal stress difference. 

A combination of eqs. (2.6) and (2.7) gives the following relation for 

the orientation angle x'= 

cot 2x' = P ' ' ; P" 
^ P21 

(2.9) 

For the technical processing of polymers a detailed knowledge of the 

mechanical behaviour of these polymers is quite important. In view of 

this a lot of research is done nowadays in order to measure the differ

ent components of the stress tensor. In fact, the relations between stress

es and flow pattern characterize the mechanical behaviour of the fluids. 

A great variety of techniques have been developed, which can be quoted 

under the head "rheology". 

An extensive discussion of all these techniques falls far outside 

the scope of this work. Mention will be made only of a few aspects, which 

are related to the work described in this thesis. 

2.3 Viscosity measurements 

Since a long time the contribution of the macromolecules to the 

shear stress P21 of a solution in laminar shear flow has been found 
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with the aid of various viscometric methods. The most common method 

is the one using the flow of the fluid through a cylindrical capillary, 

i.e. Poiseuille flow. All viscosity measurements in this work were per

formed by this method. For a detailed description of the apparatus ref

erence is made to chapter 4. 

As is well known, the relation between shear stress and shear rate 

is normally given by: 

P21 = nq (2.10) 

where the proportionality constant n is called the viscosity. For a poly

mer solution, however, this viscosity normally shows non-Newtonian behav

iour, i.e. n decreases with increasing shear rate. 

According to eq. (2.5) P21 is composed of a solvent and a polymer 

contribution, so that the latter can be found by subtracting the solvent 

contribution, as obtained at the same shear rate, from the total shear 

stress P2I: 

P21 = q(ri - ns' (2.11) 

The hydrodynamic behaviour of a macromolecule and, consequently, its 

contribution to the stress tensor are partly the result of the movements 

of the separated molecule and partly of mutual interactions between 

neighbouring macromolecules. In studying dilute solutions one is mainly 

interested in the behaviour of the isolated molecules and tries to elim

inate the mutual interactions. Thus, in the limit of zero concentration, 

the contribution of the individual molecules to the viscosity can be de

termined in the following way: 

[n] = lim = lim - ^ (2.12a) 
c-̂ 0 '^s^ c-0 ^ 

where c = the polymer concentration in g/cm', 

[nl = the intrinsic viscosity in cm'/g, 

ri = the specific viscosity. 

When only the zero shear behaviour of a polymer is of interest, the value 

of the intrinsic viscosity, extrapolated to zero shear rate, is used: 

[n]„ = lim [n] (2.12b) 

q+0 

The intrinsic viscosity of a polymer in a certain solvent is a quan

tity, which is determined exclusively by the hydrodyneimic properties of 

the individual macromolecules in that solvent and therefore is of special 

importance for the investigation of these properties. 
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2.4 Flow birefringence measurements 

Flow birefringence was discovered in 1870 by Maxwell^'. He observed 

that Canada balsam becomes birefringent when sheared. This birefringence 

disappears rapidly, when the flow ceases. When a fluid consists of geo

metrically anisotropic molecules, a co-operative mechanism of flow and 

Brownian motion causes a slight average orientation of these molecules. 

This induces an overall optical anisotropy within the fluid, which can be 

observed as a birefringence. Macromolecules are in general built up of 

optically anisotropic units. As a consequence, orientation and deformation 

of those molecules, as caused by flow, also result in a birefringence ef

fect. 

As is well known, a birefringent medium can be characterized by a re

fractive index ellipsoid'', resp. refractive index tensor, with three 

principal refractive indices n , n - and n ,.. For the same reasons, as 

in the case of the stress tensor, the n -direction coincides for a lam

inar shear flow with the neutral 3-direction. The other two principal 

directions lie in the 1-2 plane. One of them forms an acute angle x with 

the 1-direction, analogous to the orientation angle x' of the stress ten

sor. The thus defined orientation angle of the index ellipsoid is called 

the extinction angle. The extinction angle and the birefringence can both 

be measured separately as functions of shear rate. The apparatus, used 

for these measurements, is described in chapter 4. 

For pure low molecular weight liquids the birefringence is found to 

be simply proportional to the shear rate. The extinction angle remains 

45 degrees within the accessible range of shear rates. However, for poly

mer solutions the extinction angle has a value of 45 degrees only in the 

limit of zero shear rate. With increasing shear rate it decreases grad

ually: the refractive index ellipsoid of the streaming solution rotates 

around the neutral direction, finally aligning itself in the direction 

of the 1-axis. The birefringence initially increases linearly with the 

shear rate. At higher shear rates there are two alternatives: it either 

continues to increase more than linearly, viz. in the case of very flex

ible, sufficiently long macromolecules, or it shows a saturation effect 

for stiff unflexible molecules. A great number of examples of both types 

of effects can be found in review articles on flow birefringence'''"'''. 

It is usually assumed that the birefringence, which is observed in 

streaming polymer solutions, can be interpreted as composed of two in

dependent refractive index ellipsoids: the solvent ellipsoid and the 

polymer ellipsoid, and that both contributions are simply additive, the 

solvent contribution being independent of the polymer concentration. To 

obtain the pure polymer contribution to the flow birefringence the meas

ured extinction angle and the birefringence have to be corrected for 
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the solvent contribution. The pertinent correction formulas were derived 

by Sadron"' : 

An sin 2^^ = An sin 2x - An^ (2.13) 

An cos 2Xr, = An cos 2x (2.14) 

By a combination of eqs. (2.13) and (2.14) one obtains: 

cot 2x = —• -,^°^ ^,\ 77—r (2.15) 

'̂ c sin 2x - (An^/An) 

where the following parameters are used: 

An, X = the flow birefringence of the solution in the 1-2 plane, 

at shear rate q, 

An , Tc/4 = the flow birefringence of the pure solvent, at shear 

rate q, 

An , Xr: ~ the flow birefringence as caused by the dissolved macro

molecules after the correction for the solvent contribu

tion. 

For solutions of very flexible coiled macromolecules there appears 

to be a simple relation between their contributions to the stress tensor 

and to the refractive index ellipsoid of the streaming solution, the 

well known "stress-optical law". According to this law both ellipsoids 

are coaxial and the flow birefringence is proportional to the principal 

stress difference in the plane of flow; 

X^ = x' and An^ = C Ap (2.16) 

where C = the stress-optical coefficient. 

Inserting eq. (2.16) into eqs. (2.6) and (2.7) one obtains: 

An^ sin 2Xj. = 2 C P21 (2.17) 

An^ cos 2x^ = C (Pii - P22) (2.18) 

As a matter of fact these equations enable us to obtain the first 

normal stress difference pii - P22 for a flowing solution from birefrin

gence measurements. As we are only interested in the polymer contribution 

to the flow birefringence, the index c will not be used henceforth. If 

not explicitely stated otherwise or mentioned in the text, it is assumed 

that the measurements are automatically corrected for the solvent con

tribution. 

The eqs. (2.16), (2.17) and (2.18) are only valid, if the refractive 

index of the solvent is more or less equal to that of the polymer 

("matching solvent"). The refractive index increment dn/dc must be as 

small as possible. Otherwise the birefringence, caused by the shape of 
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the molecular coil (form birefringence), gives a complicated contribution 

to the stress-optical coefficient'''. 

For many polymers the stress-optical coefficient appears to be inde

pendent of the shear rate and, in the absence of the form birefringence 

effect, also independent of molecular weight'^' and concentration"'. 

However, solutions of relatively stiff or very short macromolecules show 

deviations from this rule: a decrease of the measured value of the 

stress-optical coefficient is found with increasing shear rate. More

over, on theoretical grounds it can no longer be expected that the prin

cipal axes of the stress- and refractive index ellipsoids will coincide. 

The stress-optical coefficient becomes dependent on the molecular weight: 

it decreases with decreasing molecular weight^"'. 

From a theoretical point of view the stress-optical coefficient ap

pears to be independent of the hydrodynamic properties of the macromole

cules. It is only determined by the microstructure, resp. the conforma

tion of the macromolecules. A detailed discussion of this fact will be 

given in the next chapter. It will be shown that very valuable informa

tion about the structure of macromolecules can be obtained from the 

stress-optical coefficient data. Conformational transitions of polymers 

will appear to be quite well observable from pronounced changes of the 

value of the stress-optical coefficient. 

For flexible coil molecules, the extinction angle coincides with 

the orientation angle of the stress tensor. In those cases the extinction 

angle is a quantity, which, just as the intrinsic viscosity, is determin

ed only by the hydrodynaunic properties of the macromolecules. As these 

two angles do not coincide for stiff macromolecules, the orientation 

angle cannot be derived from a measurement of the extinction angle. The 

investigation of the influence of chain stiffness on the extinction 

angle is one of the subjects of this thesis. This point will therefore 

be discussed more extensively in the following chapters. 
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CHAPTER 3 

THEORY 

3.1 Introduction 

The orientation and deformation of macromolecules in a flowing solu

tion are determined by the form and deformability of the particles. Very 

stiff particles, as Tobacco Mozaic Virus, poly(a-amino acids) in the 

a-helix conformation, globular proteins with a well defined secondary 

and tertiary structure, etc. cannot be deformed, so that flow only causes 

an orientation of these particles. Very flexible macromolecules, as the 

synthetic polymers polyethylene, polystyrene and many others, are statis

tically coiled up in the stationary solution. These coils possess on 

the average only a slight anisotropy of form. They undergo a combined 

deformation and orientation in flow. 

These combined effects determine the viscoelastic and optical proper

ties of polymer solutions in laminar shear flow. In the past several 

theories have been proposed which are able to describe these properties 

with reasonable success. It will be impossible to describe all these 

theories here. It should suffice to describe the general lines on a few 

models which have shown to give particularly simple or useful results. 

Before starting with an outline of viscoelastic theories and of the 

influence of chain stiffness on them, first clear criteria have to be 

established with regard to the chain stiffness of a certain macromolecule. 

3.2 Definition of chain stiffness 

A definition of the stiffness, resp. the flexibility, of a macro-

molecular chain must be derived from conformational statistics. These 

conformational statistics have been subject of very intensive studies 

in recent years'"''. The flexibility of a macromolecule originates from 

the large number of internal degrees of freedom, determined by rotations 

around single bonds. The contributions from other degrees of freedom, 

such as deformations of chemical bonds and valence angles, are usually 

quite small and can therefore be neglected. During such a rotation around 

a certain single bond the internal energy of the molecule appears to be 

a function of the rotation angle and passes through a number of minima 

and maxima. The minima correspond with the most stable conformations: 

the rotational isomers. The levels of the energy minima, however, can 

differ from each other; this implies that not all possible conformations 

are equally probable in an absolute sense. The maxima, usually called 

energy barriers, determine the rate, with which the different conforma-
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tions can interchange. If no strong external forces are applied and the 

energy barriers are not too high, the macromolecule will pass through 

a large number of conformations in a short time, due to Brownian motion. 

However, if the energy barriers are high, the macromolecule will show a 

certain chain stiffness. 

In connection with this problem usually a distinction is made between 

thermodynamic chain stiffness and kinetic chain stiffness'"'^'. The former 

depends on the relative levels of the energy minima and thus on the prob

ability of certain conformations. The thermodynamic stiffness is an 

equilibrium quantity, depending merely on temperature. The kinetic chain 

stiffness, also called "internal viscosity"'*'^', originates from the 

fact that, during deformation of a macromolecule, a certain number of 

energy barriers have to be passed to change conformation. This should 

cause a force, by which the macromolecule opposes the deformation process 

and which disappears as soon as the macromolecule is not further deformed. 

At this point, however, it should be emphasized that special techniques 

are necessary to separate effects stemming from this force and the one 

which is caused by friction of the parts of the macromolecule with the 

surrounding solvent molecules. As a consequence, a lot of controversy 

exists in literature about the theoretical and practical implications of 

the internal viscosity. Therefore the internal viscosity will be left 

out of consideration in this work. By chain stiffness only the thermo

dynamic stiffness will be meant. 

As the interactions just described occur between neighbouring atoms 

of the chain molecule, these effects are usually called "short-range" 

interactions. Apart from these interactions also "long-range" interac

tions or "excluded volume" effects are known to occur for macromolecules 

in solution. These interactions take place between atoms of the same 

chain molecule, which are at large distance along the contour of the 

chain, but approach each other in the process of random fluctuations 

in the coil. 

The usefulness of this classification of intramolecular forces is 

based on the fact that the influence of the long-range interactions on 

the coil dimensions can be approximately eliminated, if measurements are 

done in the so-called 9-point or "Flory-point"'' . For a certain binary 

system of polymer and solvent, the 9-temperature can be determined by 

light scattering as the temperature, where the second virial coefficient 

becomes equal to zero. At that point the effect of exclusion is compen

sated in the average by the formation of a few intramolecular contacts. 

As a consequence, there is no longer any deviation from the coil dimen

sions as derived from simple random walk statistics (see below). 

An exact determination of the total number of possible conformations 

of a flexible macromolecule on basis of all possible effects is an in-
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tractable task. Already for a macromolecule, built up of only a few 

monomers, one meets with serious mathematical problems. Therefore usual

ly simplified statistical approaches are used. One of them, which has 

proven to be the most fruitful,is the "random walk" model of a polymeric 

chain, introduced by Kuhn'', Guth and Mark''. As the reader is expected 

to be quite familiar with this statistical theory no extensive discussion 

will be given. In a stationary solution without external force fields 

the mean square end-to-end distance of the model chain can be given by 

the simple relation: 

<h^> = Z A^ (3.1) 

where <hf̂ > = the mean square end-to-end distance of the chain, 

Z = the number of so-called random links or Kuhn elements, 

A = the length of the random links. 

The fully extended length or contour length L is the length of the 

stretched conformation with the lowest energy. In the Kuhn-statistics 

the following relation applies: 

L = Z A (3.2) 

The derivation of eq. (3.1) is based on certain approximations, which 

are valid only when the end-to-end distance of the chain is considerably 

smaller than its contour length. Therefore Z must be sufficiently large 

and the chain far from completely extended. In that case one obtains a 

Gaussian distribution of the endpoints. Zimm'' and Nagai'°' have shown 

that a Gaussian distribution of the end-to-end distance is always ob

tained for sufficiently high molecular weights (Z ->• °°) , not only for 

hypothetical, freely jointed chains, but also for macromolecules with 

fixed valence angles and restricted internal rotations (as long as no 

long-range interactions occur = 9-conditions). 

When for the Kuhn model the number of random links is small, the 

range of end-to-end distances for which the Gaussian statistics approxi

mately applies, becomes very limited. For very short chains, with Z = 5 

or smaller, the exact distribution of the end-to-end distance of the 

Kuhn model does neither agree with a Gaussian distribution nor with that 

of any realistic chain molecule'''. 

Equations (3.1) and (3.2) represent two relations for the two un

known quantities Z and A. For a given L a thermodynamically stiffer chain 

has a larger •=ĥ > than a more flexible chain. It follows that A increases, 

while Z decreases with increasing stiffness. In the case of Z -• °°, the 

chain takes the form of a Gaussian coil; in the case of Z -»• 0 it seems 

that the chain can better be approximated by a stiff rod. The total length 

of the chain is not large enough to form even one random link. Unfortunate-
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ly, the random walk problem yields rather unrealistic distributions of 

the end-to-end distances for Z < 5. This was the historical reason for 

the search for another sort chain statistics which is described below. 

While the Kuhn-statistics derives its great value from the good des

cription of Gaussian coils, for the description of stiff macromolecules 

another sort of statistics is often used for the just mentioned reasons, 

i.e. the statistics of the "wormlike chain", according to Kratky and 

Porod'^'. The macromolecule is considered to be a continuously bent 

thread with a negligibly small diameter. 

Fig. 3.1. Projection of a wormlike chain with end-to-end vector h on its initial tan-
-o 

gent. For infinite length the average of this projection becomes equal to the 

persistence length a. 

If one takes the tangent to this thread at one endpoint and considers 

the mean projection of the other endpoint on this tangent, one finds that 

for L ->• " the distance between the first endpoint and the projection con

verges to a finite length. This length, denoted by a in Fig. 3.1, is 

called the persistence length. According to Kratky and Porod the mean 

square end-to-end distance of the thread for any arbitrary value of L is 

given by: 

<h^> = 2 a^ [x - 1 + exp(-x)] (3.3) 

where x = L/a, the reduced contour length. 

In the limit of a stiff rod, i.e. for x -• 0, one obtains an obvious re

sult, viz. : 

With increasing contour length also this thread passes into a Gaussian 

coil, where the Kuhn- and the persistence-statistics have to be equivalent. 
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For X -*• "> eq. (3.3) takes the form: 

<h^> = 2 a L (3.5) 
o 

A combination of eqs. (3.1) and (3.2), however, gives for <h^> the product 

of AL. From this it appears that, for sufficiently long chains, both sta

tistical approaches are identical if: 

A = 2 a (3.6) 

Once again it must be stressed that the chain statistics, as des

cribed above, are valid only if the excluded volume effects can be neglect

ed. This applies also to the calculations of hydrodynamic quantities with 

the aid of these statistics. For strongly coiled macromolecules the ex

cluded volume has quite an influence on the hydrodynamic properties. How

ever, when the chain becomes stiffer and more extended, this influence 

will diminish. For strongly coiled macromolecules therefore one must keep 

in mind that differences between theoretical and experimental results can 

be due to an omission of the theoretical treatment with regard to the ex

cluded volume. 

3.3 Formulation of the hydrodynamic problem 

The irreversible processes in solutions of macromolecules are deter

mined by hydrodynamic forces, which the polymer molecules exert on the 

solvent, and by Brownian motion. The perturbation of the flow pattern of 

the solvent by the macromolecules determines the viscoelastic properties 

of these solutions. The stochastic process of chain movement under in

fluence of Brownian motion can be described by a distribution function"'''*, 

which satisfies a generalized equation of diffusion in the molecular con

figuration space*. 

* The term "configuration space" requires some explanation. In statistical physics the 

space, in which the mutual positions of atoms, that fluctuate as a result of thermal 

motion, are described, is usually called the "configuration space". In stereochemis

try, however, the term "configuration" refers to the structure of a molecule which 

changes only if chemical bonds are broken. On the other hand, a molecular shape 

which fluctuates as a result of thermal motion is called "conformation". The usage 

of the term configuration may at times violate conventions of organic chemists. 

Therefore, Birshtein and Ptitsyn̂ '̂ proposed to use the stereochemical term con

formation in all cases in which it is customary to talk ot configurations in statis

tical mechanics. However, the latter term was well established in statistical me

chanics, independently of its appropriation for special stereochemical purposes. We 

may, for example, conceive of a configuration of a macromolecular model as being 

specified by a point in configuration space, without any reference to the stereochem-
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For the purpose, a macromolecule is supposed to be built up of N+1 

structurally identical elements, usually called beads, connected by N 

bonds of arbitrary length. Interactions of the macromolecules with the 

solvent take place at the beads, elastic deformation of the macromolecules 

occurs within the bonds, usually represented by springs. If there exists 

no mutual connection between the orientations and lengths of the N springs 

in space, such a macromolecule possesses 3N+3 degrees of freedom which 

describe the positions of the N+1 beads in space. If, however, restrictions 

are imposed, such as a fixed bond length, the number of degrees of freedom 

is lowered considerably. 

Each configuration of this model is completely described by the N+1 

vectors r (n = 0,1,...,N), specifying the positions of the beads in 

space. The 3-dimensional space, where the position vectors are defined 

in, is assumed to be Cartesian. Now we can define a (3N+3)-dimensional 

Fig. 3.2. General model of a macromolecule; N+1 beads connected by N bonds of arbi trary 

length, r indicates the position of the n bead in space. 

space , in which the t o t a l configurat ion of the model chain i s given by a 
s i n g l e vector R. This vector R i s a (3N+3)-dimensional column vec tor , 
composed of the pos i t ion vectors r : 

R = (X,Y,Z) = 

'N 

with r ^^n '^n '^n ' ( 3 . 7 ) 

ical conformation of the real macromolecule. In this sense the term configuration 

space will be used throughout this work, as long as only statistical mechanical prob

lems are involved. When the real chemical structure of a chain is concerned, the ap

propriate stereochemical terms will be used. 



(Bars above the symbols indicate vectors in the configuration space, 

those below the symbols vectors in the 3-dimensional space). 

The description of macromolecular diffusion in this multidimensional 

configuration space was worked out in its most general form by Kramers'^' , 

Kirkwood and Fuoss''"'''. Their work was based on certain assumptions, 

which can be summarized as follows^"': 

(i) The polymer solution contains v identical polymer molecules per 

unit of volume and is dilute enough, so that no mutual interac

tions occur between separate macromolecules. 

(ii) The dimensions of the macromolecules are large, compared with the 

solvent molecules. The solvent is considered as a continuum. 

(iii) The solution is incompressible (compare section 2.2). The overall 

shear rate is identical with the shear rate of the solvent, un

disturbed by the polymer molecules. 

(iv) The Brownian motion can be described by a stochastic Markoff pro

cess. 

(v) The equations of motion of the particles are linear in the acceler

ations and velocities of the particles. This means that all de

formations, rates of deformation, linear velocities of the mass 

centers and angular velocities of the macromolecules must be infi

nitesimal . 

(vi) Inertia of the macromolecules is neglected. 

(vii) The macromolecules are apolar. 

(viii) The deformations of the macromolecules are purely elastic. 

On the basis of these assumptions the diffusion equation in the con

figuration space can be derived in its most general form^°': 

3y 
3t 

( — )'^- (-Vf + - _ 
3R " 3R 

i W + — -^ <C) 
P 3R 

(3.8) 

where 

_3 

3R 

3/3ro 

3/3r, 

3/3EN 

V = (3.9) 

T = the probability density of the beads in the configuration space, 

W = the internal energy of the macromolecule, as caused by elastic 

deformation, 

p = the hydrodynamic friction factor of a bead, 

V = the velocity which the fluid would have at the position r , if 

bead n were absent, 
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k = the Boltzmann's constant, 

T = the absolute temperature. (T as superfix means transpose)-

f is normalized over the whole configuration space V: 

I-^-S M'rg-'-d'rjj = 1 (3.10) 

This general diffusion equation is obtained from a more general Fok-

ker-Planck equation, defined in the combined momentum-configuration 

space of the macromolecule. Integration of the Fokker-Planck equation 

over the momentum space leads to the diffusion (Smoluchowski) equation 

which, as a consequence of this integration, holds in the sub-space of 

configuration. However, the mentioned integration can only be performed 

if several linearizations in the momentum space are permitted. These 

linearizations are summed up in assumption (v). This means that the dif

fusion equation is a linear equation, which is valid for systems depart

ing only slightly from equilibrium. An explanation of non-linear effects, 

such as a non-Newtonian viscosity, can probably not be based on this 

equation^''^^'. In fact, as it will become obvious below, all theories, 

based on this equation, naturally yield only linear effects. Non-linear 

effects in general emerged from modifications, rather arbitrarily intro

duced into the second term between the brackets in eq. (3.8). As a mat

ter of fact this means that the theory in its genuine state can only be 

used for the interpretation of experimental results, which are extrapo

lated to zero shear rate. Only in that case the system can be considered 

as departing slightly from equilibrium. A discussion, however, on the 

range of shear rates for which these theories remain valid, will be post

poned until chapter 7, where non-linear theories are discussed more ex

tensively. 

The right hand side of eq. (3.8) contains three terms, which de

scribe the different kinds of processes, which take place on a macromole

cule. The first term describes the transport of beads by the flow. 

Since there is a velocity gradient in the flowing solution, the fluid 

velocity will vary with the positions of the different beads of the 

macromolecule. As a consequence, the macromolecule will be deformed. A 

deformation is also caused by a diffusion process, which causes the 

beads to move apart in configuration space. This diffusion process is 

described by the last term of eq. (3.8). The factor kT/p can be writ

ten as the diffusion coefficient for a bead according to the first re

lation of Einstein for Brownian motion: 

E = kT/p (3.11) 

Because of the deformation of the macromolecule its internal energy is 

increased, which gives rise to a reverse flow of beads in opposite di

rection, described by the second term in eq. (3.8). 
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As the solution is macroscopically considered as a continuum, the 

macroscopic fluid velocity in shear flow at the position r can simply 

be given by: 

v° = q y v° = v° = 0 (3.12) 
x,n ^ -"n y,n z,n 

This equation is identical with eq. (2.1). We call this the "undisturbed 

fluid velocity" as, on a microscopic scale, the fluid velocity v at r 

differs from the undisturbed velocity v . The beads, which are in the 

vicinity of position r , disturb the flow pattern at that point. This 

disturbance is generally described by the Burgers^'', Kirkwood-Riseman^'*' 

approximation of the Oseen^^'-equation for hydrodynamic interaction: 

N 
V = v° + Z T„„ f (3.13) -n -n . mn -m m=0 

m/n 
where 

(l/6Trng)<l/(r^ - rĵ )> n?«m (3.14) 

T = the elements of a symmetric matrix of order N+1, 
ran -" 
f = the total force on bead m, as exerted by the connectivity in 
-m 

the chain and by Brownian motion. This force is in equilibrium 

with the force exerted by the solvent flow, 

<l/(r - r )> = the mean value of the reciprocal distance between -n -m ^ 
the beads n and m. 

As a matter of fact, f contains the forces due to diffusion and the elas--m 
tic deformation. Both kinds of forces on bead m can be obtained from the 

second and third terms of the right hand side of eq. (3.8) by multiplying 

them by p/t. This transforms both current densities into the correspond

ing forces. Taking that component of the corresponding (3N+3)-dimensional 

force, which applies to bead m, one obtains: 

m̂ = - I ^ " - "̂T 3I- InY (3.15) 

-m -m 

If eqs. (3.13) and (3.15) are combined and a new symmetric matrix B of 

order N+1 is defined with the elements: 

(3.16) 

(3.17) 
• • 3R " 3R 

where for V an analog definition is given as for V (see eq. (3.9)). 

(Double bars above the symbols indicate matrices in the configuration 

space). 

"mn " 

n e q . 

3 * _ 

3 t 

1 m = n 

T ^ ^ m ?« n 
mn 

( 3 . 8 ) b e c o m e s : 

3R P 
- ^ w + Ü Ï B 
3R P 

-^ y) 
3R 
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The matrix H describes the mutual hydrodynamic interactions between 

the beads. If these interactions are neglected, H becomes equal to the 

unity matrix. Now the hydrodynamic behaviour of the model chain is in 

principle determined. The knowledge of "f enables us to average over all 

possible configurations, which the macromolecule can assume in flow. In 

this way we are led to the calculation of hydrodynamic properties. As a 

matter of fact, an exact solution of f from eq. (3.17) is not always nec

essary. Certain averages over f can often be determined straightfor

wardly by a partial integration of eq. (3.17). 

3.4 Description of the elastic effects 

Much theoretical work has been done based on the general model de

scribed in section 3.3. However, many contributions differ from each 

other in the way the internal elastic energy of the model is described. 

For this purpose both bonds around the n bead are considered: 

n-1 

Fig. 3.3. Definition of the elastic forces within the model chain. 

Two sorts of elastic deformations can be introduced: 

(i) First, the bonds can be taken as Hookean springs. The longitudinal 

(directed along the chain) elastic force f ^, which arises in the .. —n, h 
n spring, is proportional to the distance between the beads n and 

n-1. The proportionality- or spring force-constant will be given 

by o: 

^n,L = °'ïn - En-l' '^-l^a) 

The internal potential energy of the model chain due to these forces 

is given by: 

"L = J^ I '̂ n - En-l'̂  '3.18b) 

(ii) Besides, another elastic force can be introduced. We can define a 

transverse (directed perpendicular to the chain) elastic force f^ „ , 
-n,Tr' 

which is proportional to the angle 0 between both bonds connected 

with the n bead. According to Harris and Hearst^'' this force 

reads: 
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f m = a(-r , + 2r -n,Tr -n-1 -n -n+1' 

where a = a bending force constant. 

The internal potential energy due to these forces reads: 

W, Tr 

N-1 
= I 

n=l 
^ (-r , + 2r 2 -n-1 -r -n+1 

(3.19a) 

(3.19b) 

The total elastic energy stored in the molecule is given by the sum 

of both. This can be inserted in the diffusion equation (3.17). 

In the past, most authors have restricted themselves to only one of 

both elastic ef fects^'* ' ̂ '~'°' . So Rouse^'' and zimm'"' only confine them

selves to longitudinal elastic forces. Particularly their results con

cerning flow birefringence of flexible polymers can readily be confirmed 

experimentally 3 1 ) However, their model fails to describe the behaviour 

of stiffer macromolecules. For those cases the model of Harris and 

Hearst^'' seems to give better results. The latter authors take both 

elastic forces into account. 

There appears to be an obvious correspondence between the Rouse-Zimm 

(RZ)-and the Harris-Hearst (HH)-treatment of the elastic energy'^'"'. 

In the RZ-treatment only the longitudinal elastic energy is inserted in

to the diffusion equation: 

_i w = — W = 4-
3R 3R 3R 

N 
Z 

n=l -n-1 
)2 } = aA'R (3.20) 

where A = a positive definite symmetric matrix of order N+l, given by 

Rouse^ *': 

' 1 

- 1 

0 

- 1 

2 

- 1 

0 

- 1 

2 

2 -1 

-1 1 

(3.21) 

However, Harris and Hearst introduce also the transverse elastic energy, 

so that in their treatment the elastic energy term in the diffusion 

equation reads: 

^ W 
9R 

4 w + 4 w 
3R ^ 3R ^^ 

= a S'R + 
, N-1 
3 r a ^ , — z i j Z (-r 
3R n=l 

, + 2r - r ,)M n-1 -n -n+1 

= a A-R + a B^R (3.22) 
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where B = also a positive definite symmetric matrix or order N+1, given 

by Harris and Hearst^'': 

1 - 2 1 0 

-2 5 - 4 1 

1 - 4 6 - 4 

If one defines 

0 0 

0 0 

1 0 

1 - 4 6 - 4 1 

0 1 - 4 5 - 2 

0 0 1 - 2 1 

(3.23) 

(3.24) 

where A is a parameter dependent on the relative contributions of both 

elastic effects to the total elastic energy, eq. (3.22) becomes: 

_ W = a A , „ . R 

where 

A„ = B + AA 

(3.25a) 

(3.25b) 

So, if the diffusion equation for the RZ-model is given by a combination 

of eq. (3.20) and (3.17), viz.: 

È1 = ( _5. )T. (.yÔ  + I o H-A-R + — H • -I- *) ' 
3t 3R P P 3R 

(3.26) 

the diffusion equation for the HH-model is simply obtained by replacing 

a5 by aA, 
HH" 

Equation (3.26) can be solved by using a linear normal coordinate 

transformation^°"'"' of the type: 

R = Q-5 

4 = r̂  
3R 

where 

SN 

(3.27a) 

(3.27b) 

with 1^ = (?n'n„-*„' (3.27c) 
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The vectors £ are linear functions of r and represent normalized con-^n -n ^ 

figurations (normal modes) with variable amplitudes in the configuration 

space, from which all possible configurations can be derived by summation. 

The transformation matrix Q, of order N+1, diagonalizes the matrix pro

duct H'A: 

Q . H • A • 5 = G (3.28a) 

where G = a diagonal matrix, built up of the eigenvalues YQ'^l' • • • ' Y«j of 

the matrix product, which are the (real) roots of the equation: 

det |H • I - Y Ï I = 0 (3.29) 

where I = the unity matrix. 

The columns of the matrix Q are the eigenvectors of the above mentioned ma

trix product. The same matrix Q can be used to diagonalize matrix A sepa

rately'»' : 

Q'̂ - A • Q = M (3.28b) 

where M = also a diagonal matrix with elements ]i . 

If hydrodynamic interaction is neglected, which is the case consider

ed by Rouse, the matrix H turns into the unity matrix. In that case it 

follows that: 

Q~ = Q'̂  and Y^ = y^ (3.30) 

After inserting eq. (3.12) into eqs. (3.10) and (3.26) one obtains the 

following results for the RZ-case: 

ƒ-.ƒ f d'£o---d'£N = J~' (3-31' 

where J = the Jacobian of the coordinate transformation, and 

As a matter of fact, similar results are obtained for the HH-model''', 

with a replaced by a and Y > resp. y replaced by y „„, resp. y , 
n n n,nn_ _n,nn 

corresponding to the diagonalization of the matrices H'S„„ and A„„ with 
the aid of a transformation matrix Q,,„. 

nn 

3.5 General form of results 

3.S.1 Separation of the diffusion equation 

With the aid of the transformed diffusion equation (3.32) the hydro-

dynamic properties of the macromolecules can be calculated, such as their 
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contributions to the stress tensor of the streaming solution. However, at 

first it has to be pointed out that the diffusion equation can be separa

ted. 

Formally one of the eigenvalues of the matrix product H-A, say YQ' 

appears to be equal to zero. This is recognized by the fact that the de

terminant of matrix S vanishes. According to Zimm'°' the advantage of 

this choice of coordinates is that one position vector £o remains for 

the description of the location of the center of resistance in the con

figuration space. It is just this vector ^Q, which corresponds to the 

eigenvalue YQ- SO ̂ ^ only of importance for the translation diffusion of 

the center of resistance of the polymer molecule, but does not influence 

the hydrodynamic properties of the solution. Therefore we are free to 

give ^Q any arbitrary value. If we put gg equal to the 0-vector, the 

center of resistance coincides with the origin of the coordinate system. 

The center of resistance usually does not coincide with the mass cen

ter of a macromolecule. The two centers do coincide only when no hydrody

namic interaction takes place within the macromolecule. As was mentioned 

before this means that the matrix H becomes equal to the unity matrix. 

Now the diffusion equation can be separated into a part, which de

scribes the movements of the center of resistance, and a second part, 

which contains the equations of motion of the N springs. Zimm'°' proved 

the separability only in the absence of external forces, i.e. for the 

case q = 0. However, Lodge and Wu'*' have shown that the separability 

generally holds, independent of the shear rate. They introduce an extra 

transformation, which first separates the equation for the center of re

sistance from the diffusion equation. The normal coordinate transforma

tion is then only applied to the equations of motion of the springs. This 

greatly simplifies the calculations in the RZ-case. However, the HH-case 

appears to become more complicated. Since the eigenvalues YI'--''YN '̂ ~̂ 

main unaltered yet, it seems reasonable to follow the description of Zimm 

without separation of the diffusion equation. 

3.5.2 The stress tensor 

The calculation of the polymer contribution to the stress tensor, p̂ -̂;, 

has been given in a clear way by Lodge and Wu''*'. Let us consider a macro

scopic plane, of area A, with unit normal e within the volume V of the 

solution. That volume V contains vV identical independent polymer mole

cules, each of them built up of N+1 beads. According to the definition 

of the stress tensor the material on the "+e"-side of the plane "(A,e)" 

must exert a force on the material on the "-e"-side. This force is exert

ed on the beads, which are just in the plane (A,e). 

Therefore we must determine the probability density * (u), to find 

the n bead of a certain macromolecule at the position u, situated in 
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the plane (A,e). In terms of Dirac 6-functions we have: 

*„(u) = S-^-f 6(u - r^)T(r(y...,r^)d'ro ... d'r̂ , 

= V"'/-^-/ f(ro r„_i'U,r„^^ rj,)d'rQ ... d'r^_^ X 

<J'̂ n+l ••• -̂ '̂ N <3-"' 

because of the normalization of T over the configuration space, eq. 

(3.10). The beads labelled n are uniformly distributed within the volume 

V, so that the number of beads labelled n within a specified volume AV 

is equal to: 

vV/^/*^(u)d'u = vAV/-^-/4'(r(, r̂ )̂ d'r^ . . .d'r^.^d'r^^^ . . .d'r^^ (3.34) 

For any given value of n in the range 0,1,...,N, let us consider the con

tribution to the stress tensor from all beads labelled n and situated in 

the plane (A,e). On each bead in that plane a force f is exerted by the 

"+e"-material. The number of beads n is given by eq. (3.34) with: 

AV = A u • e (3.35) 

On adding such contributions for all values of n and for all possible 

orientations of u, dividing by A and using the fact that e is an arbitra

ry unity vector, we obtain the required equation: 

p.. = -V I-^-S Ur^ r^) ^^^ f„^, r„^. d'r^ ... d'r^ (3.36) 

where r ., resp. f . = the projection of the vector r , resp. f , on 

the j-axis. 

We will write eq. (3.36) as: 

N 
Pii = -V < Z f X > = -V <F .X> (3.37a) 

n=0 ^'^ " ^ 

N 
P22 = -V < 2 f„ „ y„> = -V <F •¥> (3.37b) 

n=0 "'J' " " 

N 
P33 = -V < £ f z > = -V <F •Z> (3.37c) 

n=0 "'2 n ^ 

N 
Pi2 = P2i = -V < Ï f y > = -V <F •?> (3.37d) 

n=0 ' 

where < > indicates the averaging procedure using T according to eq. 

(3.36) and Fj^, Fy, F^, resp. X, Y, z, are defined in the configuration 

space, see eq. (3.7) . 

The force f̂^ is given by eq. (3.15). After inserting eq. (3.15) into 

the eqs. (3.37 a-d) and transforming to normal coordinates we obtain the 



37 

following results for the RZ-model: 

N 

kT n ^n Pi, = vkT I [-1 + ê? Un J-̂ n̂̂ ] (3.38a) 
n=l 

N 

P22 = VkT Z ["1 + kT ^n "^^"^n"^ (3.38b) 

N 
P33 = VkT Z ["1 + f^ Pn '̂ •=*n*] (3.38c) 

n=l 
N 

Pi 2 = P2 1 = VkT E [2- y^ J<Cnnn>] (3.38d) 

n=l 

The first terms in eqs. (3.38 a-c) are obtained from the diffusion term in 

eq. (3.15) by partial integration over the whole configuration space, 

making use of the fact that f and all derivatives of t vanish at infinity. 

The averages in eqs. (3.38 a-d) have been calculated by Zimm'"'. For 

shear flow, as given by eq. (3.12), they read: 

J<C^> = ^ [1 + p'qV2a^^] (3.39a) 
n 

''<> = ^'K> = ̂  (3-39b' 

J^^nV = ^ [Pq/2aY„] (3.39c) 

Inserting these eqs. into the eqs. (3.38a-d) finally gives the required 

polymer contributions to the stress tensor of the streaming solution: 

2 2 N 
Pi, = VkT -£-9- Z y-' (3.40a) 

20^ n=l " 

P22 = P33 = 0 (3.40b) 

N 
P21 = Pi2 = VkT |2 i; .̂ -1 (3.40c) 

n=l 

The corresponding equations for the HH-model are obtained by replacing a, 

resp. Y„, by a, resp. Y^^HH' 

The number of polymer molecules v per cm' can be expressed in the con

centration of the solution: 

cM /-, A-, \ 
V = T;— • (3.41) 

^A 

where c = the polymer concentration in g/cm', 

M = the molecular weight of a polymer molecule, 

N- = Avogadro's constant. 

Finally this results in the following equations for the intrinsic viscosi

ty and the orientation angle of the stress tensor: 
N- k T p N 

[n]„= P2./q n^ c = 2a n M \ ^n' (3.42) 
s n=l 
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and 

cot 2x' = Pii " P22 ^ 
2 P21 

N 

n=l 
N 

( Z 
n=l ^n ) 

VkT P21 

eR "̂N 

where 

JeR = 

N 
I Y~' 

n=l " 
N 

' n ^ l ^ n ' 

2 

(3.43) 

(3.44) 

the reduced steady state shear compliance, as defined by Tschoegl'^'. 

te Bfj is 

q (n " n, 

The reduced shear rate Bjg is defined by''': 

^N 
= vkT P2 C R T (3.45a) 

where R = the gas constant. 

The subscript N means, that the Newtonian solution viscosity has to be 

used for a calculation of 6„. When the parameter B„ is used one aims at 

a reduction of experimental data with respect to temperature, molecular 

weight and concentration. In theoretical expressions, which are valid 

only for infinite dilution, £„ can be given by: 

"̂N 

qtl^o "s " 
R T (3.45b) 

The corresponding formulas for the HH-case are obtained by the above men

tioned substitutions. 

Since according to section 3.3 the validity of this theory is re

stricted to very small shear rates, it can be expected that eqs. (3.42) 

and (3.43) are valid only for sufficiently small values of 6 „. 

3.6 Specification of the eigenvalues 

3.6.1 The Rouse-Zirm model 

As was pointed out in section 3.4 Rouse and Zimm are only concerned 

with longitudinal elastic effects. They identify the mean square length 

of the springs with the mean square end-to-end distance of a Gaussian 

chain molecule. Their model can be considered to be built up of a great 

number of Gaussian "submolecules" and is therefore usually referred to 

as the "subchain model". The elastic forces which arise in the subchains 

equal the elastic forces in a Gaussian macromolecule, as given by Kuhn 

and Kuhn'''. This implies that the spring force constant 0 for the RZ-

model is given by: 
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a = 3kT/b^ (3.46) 

where bl^ = the mean square end-to-end distance of the Gaussian subchain 2 _. 

in the absence of external forces. 

As to the choice of the number of beads we are free to give N any 

arbitrary value starting from 1 up to infinity. The value N=l, however, 

represents a special case. This model, two beads connected by a single 

elastic spring, is identical with the elastic dumbbell model of Kuhn"'. 

From a historical point of view this model is of great importance, as a 

great deal of pioneering work was done on this model with regard to the 

hydrodynamic properties of macromolecules. 

A third point of discussion is the hydrodynamic interaction. For the 

present purpose it suffices to state that one cannot 3 priori say how 

great the hydrodynamic interaction within a real macromolecule will be. 

So we can only approximately guess between which extrema it must lie. 

Only small deviations from equilibrium conditions will be regarded. 

Further, in the state of rest, the separate springs in the RZ-model are 

oriented in space in an arbitrary way with regard to each other. This 

will result in a Gaussian distribution of all springs. This distribution 

will hardly be disturbed by the small deviations from equilibrium. There

fore, the hydrodynamic interaction matrix T , eq. (3.14), is usually 

averaged over this Gaussian distribution in an early stage of the calcu

lations^ '*''''' , which gives for T : 

^ mn 

"̂ mn = 1/(6"')^ Ig b^ (|m - n|)^ (3.47) 

This expression is incorporated in the calculations. As to the errors 

introduced by this preaveraging procedure very little is known. However, 

there exist some indications'''"' that they are comparatively small. 

Svetlov''»' has recently given a solution of the diffusion equation with

out preaveraging the hydrodynamic interaction. The degree of hydrodynamic 

interaction is determined by the values ascribed to the non-diagonal ele

ments of the matrix H, eq. (3.16), i.e. to pT , where the hydrodynamic 

friction factor p and the magnitude of b act as adjustable parameters. 

With respect to the latter adjustment, a choice has to be made first with 

respect to the value of N, in accordance with the molecular weight. 

For the calculations of the intrinsic viscosity and the value of 

the reduced steady state shear compliance only the determination of the 

eigenvalues y,'•--/>« remains. The most simple case is the one in which, 

according to Rouse^'), the hydrodynamic interaction is completely absent. 

The model is considered to be fully drained by the solvent: the free-

draining case. The matrix H becomes equal to the unity matrix and the 

eigenvalues of S can be determined for any value of N ^'': 
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ŷ  = Y„ = 4 sinM JTÏÏTTT > " = 1 « (3-48a) 

which for sufficiently large N and n<<N can be approximated by: 

% = ^n = ^ <3-48b) 

N 

For sufficiently large N the elements of the n column of the transfor

mation matrix Q, corresponding to the n eigenvalue, are given by: 

Qmn = 'i'^ «0^) '3.49a) 

with 

a(r) = cos { —=— r ) , n - even (3.49b) 

a{r) = sin ( ̂ ^ r ) , n - odd (3.49c) 

where r = a new numbering parameter for the beads, given by: 

r = - ^ - 1 (3.49d) 

For large N the elements Q vary slowly with the index m, so that they 

may be considered to be continuous eigenfunctions of the matrix product 

After inserting the eqs. (3.46) and (3.48b) into eq. (3.42) and carry

ing out the summation using Riemann zeta functions the following equation 

is obtained for N -• «>: 

N b!̂  p N^ 

[̂ 'o = 36 M ^3 '^-^"^ 

The peculiarity of this relation is that it does not make much physical 

sense: if the hydrodynamic interaction is neglected one assumes that the 

hydrodynamic friction factor p of the beads practically vanishes: 

pT „ — 0. This means that also the contributions of the chain molecules '^ mn 
to the viscosity should be extremely small. 

However, more important in this context are the values, obtained for 

the reduced steady state shear compliance Jgo- For N=l, the elastic dumb

bell, only one eigenvalue is found which, according to eq. (3.44), gives 
a value for J _: eR 

(Free-draining) N = 1 J ĵ  = 1 (3.51a) 

This result has already been derived by Hermans'*''. An increase of N 

causes a decrease of the value of J „, which becomes for N approaching 

infinity: 

(Free-draining) N -»• »= ^ R = " • ̂  (3.5lb) 
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Fig. 3.4. Values of J against N obtained for the R2-model. Values of h* are given in 

the figure, h" = 0.0: free-draining, according to Rouse. 

The v a l u e s of J _ f o r t h e f r e e - d r a i n i n g c a s e a r e g i v e n i n F i g . 3 .4 a s a 

f u n c t i o n of N by a dashed l i n e . 

I f one t a k e s t h e hydrodynamic i n t e r a c t i o n i n t o a c c o u n t , f o r l a r g e N 

e q . (3 .29) can be app rox ima ted by an i n t e g r o - d i f f e r e n t i a l e q u a t i o n , o r i g 

i n a l l y d e r i v e d by Z i m m ' ° ' , b u t r e c e n t l y improved by O s a k i " ^ ' : 

a " ( r ) (1 - 4h*) + h ƒ a " ( s ) | r s I ' d s = - -T— Y a ( r ) ( 3 .52 ) 

with the boundary condition a'(± 1) = 0. (Prime and double prime at func

tion a(r) mean the first and second derivatives with respect to r). The 

variable s is defined in exactly the same way as r, eq. (3.49d). h and 

h* are measures for the hydrodynamic interaction"') : 

h* = h N"** = p/(12 n')^ b rig (3.53) 

A minor advantage in using h*, rather than h, is given by the fact that, 

for infinite N and finite hydrodynamic interaction h becomes infinite 

while h* remains finite as well. 

According to Lodge and Wu'*" a useful range for h- is 0 < h- < 0.26. 

Thurston and Morrison"'' even quote a value of 0.471 for the upper bound 

of h". However, Osaki"^' shows that for h* > 0.25 negative eigenvalues y 

can be found for large N. This is in contradiction to the principles of 

thermodynamics of irreversible processes. So as an upper limit of h* a 

value of 0.25 seems the most acceptable. 

The notation h > 1 used by Zimm actually corresponds to h-- = 0.25, 

as in that case only the integral term in the left hand side of eq. 

(3.52) remains. For that case and N ->• »> Zimm et al."^' have calculated 

the eigenvalues in a numerical way. One of their most satisfactory re

sults becomes obvious if one looks at the overall dimensions of the mo

lecular model. These dimensions are proportional to: 
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b' N'/^ = <h2>'/^ (3.54) 
O o 

where <h^> = the mean square end-to-end distance of the chain in rest, 

according to the definition given in eq. (3.1) . 

The Zimm case gives the following relation for the intrinsic viscosity: 

[n] = 2.84 x 10=̂ ' <h^>'/VM (3.55a) 

Equation (3.55a) has just the form of the well-known Flory-Fox equation"'' 

This equation holds for sufficiently high molecular weights. Apparently, 

the Flory-Fox parameter of eq. (3.55a) reads: 

*Q = 2.84 X 10^' (3.55b) 

Experimentally, a value between 2.5 - 2.9 x 10^' is found, when measure

ments are done on solutions of high molecular weight polymers in e-sol-

vents. The conclusion can be drawn that the treatment in terms of the 

non-draining case is quite adequate for sufficiently long molecules that 

form Gaussian chains. Tschoegl"'', Hearst"*' and Osaki"^' calculated $ 

for the intermediate values of h* and N -> <». They found values for $ 

from 0 for h* = 0 up to 2.84 x 10^' for h* = 0.25. 

The value of J „, found by Zimm, reads: 

(Non-draining) N -• " J ĵ  = 0.205 (3.56) 

For finite values of N the eigenvalue equation (3.29) has to be sol

ved by use of a computer. This was done by Thurston and Morrison"') for 

N from 1 to 15 and values of h* from 0.01 to 0.4. Lodge and Wu'*"' have 

recently extended these computations up to N = 300. The values of J „ 

calculated by Lodge and Wu are given in Fig. 3.4 as functions of N and 

h*. Again, a decrease of J „ is found when N is increased, while all 

curves converge to J = 1 for N = 1. This is a logical consequence of 

the definition of J „. Because N = l always results in only one eigen

value, J J, should always be equal to unity, independent of the magnitude 

of that eigenvalue. 

3.6.2 The Harris-Hearst model 

A much more complicated situation is encountered, when the HH-model 

is considered. As yet only the free-draining- and the non-draining-case 

were studied for N > 1. For the free-draining case the eigenvalue equa

tion for the HH-model can be solved. The following equation: 

'̂ n,HH = Y„,HH = vj^^ + Av^^^ E v^^^ - Av|^^ (3.57a) 

must hold simultaneously with one of the following two equations: 
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v' cot (ij V, N) = -v' coth {% v, N) , n - even (3.57b) 
l,n l,n 2,n 2,n 

v' tan (k V, N) = -v' tanh (Sj v- N) , n - odd (3.57c) 
l,n l,n 2,n 2,n 

which are derived from two free end boundary conditions, related to the 

special position of the last bead with respect to restoring and bending 

forces. In these equations the v 's and the v, 's are auxiliary quan

tities. As a matter of fact, for a solution of the eqs. (3.57 a-c) only 

a value for AN^ is needed. 

For this model two limiting cases can easily be discerned: the Gauss

ian coil limit and the limit of a straight elastic necklace, where all 

beads are arranged along a straight line and the deformability is pre

served only in the direction of that line. No bending of the necklace is 

allowed. The Gaussian coil limit is characterized by the absence of any 

resistance against bending, which results in a very large value of A. On 

the other hand, the straight elastic necklace is characterized by an 

overwhelming influence of forces resisting bending, which means a very 

small value of A. 

For the free-draining Gaussian coil limit it can be derived from the 

eqs. (3.57 a-c) that v, N becomes equal to nil, which gives for the eigen-1, n 
values: 

2 2 

(Free-draining coil) M„ „« = Tr̂  «« = ^ ( " ) (3.58) 
n r nn n rnn „2 

n = 1,. . . ,N 

The approximate eigenfunctions for the free-draining coil are identical 

with the Rouse eigenfunctions, given in eqs. (3.49 a-c). The HH-eigen-

values appear to be equal to the Rouse eigenvalues multiplied by A. It 

appears from an inspection of eq. (3.42), where a must be replaced by a, 

that both the Rouse model and the free-draining HH-model for the coil 

give the same results. The extra factor A"' in front of the sum of the 

reciprocal eigenvalues transforms a back in o, according to eq. (3.24). 

This results in exactly the same equation (3.50) as for the Rouse model. 

Also the value of J _ becomes 0.4. The conclusion can be drawn that both eR 
models are identical. 

The other limiting case, the straight pearl necklace, is characteri

zed by a very small value of A. In that case it can be derived from eq. 

(3.57a) that v and v must be nearly equal to each other. This re

sults in the following equations for the free-draining eigenvalues: 

(Free-draining straight necklace) 

'̂l,HH " ^1,HH " ^^ '̂ /'̂ ' "̂  ̂ '^^ A/N^)^ (3.59a) 
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^n,HH = ^n,HH = '" - ^'^ '̂/̂ ^̂  " = 2 N (3.59b) 

However, the first eigenvalue appears to be extremely small compared 

with all higher eigenvalues, which means that the contributions of these 

higher eigenvalues to the intrinsic viscosity and the value of J „ prac

tically vanish. This means that in this case a value of J „ equal to 

unity is found, as in the case of the elastic dumbbell. 

For a certain number of intermediate values of AN^ the eqs. (3.57a-c) 

were solved by a computer with the aid of an iterative procedure, 

which furnished a solution for v N in each quadrant. Since the contri

butions of higher eigenvalues to the value of J „ steadily decrease, the 

values of J _ were calculated with the first fifty eigenvalues. The re

sults obtained for the free-draining case are given in Table 3.1, column 2. 

Table 3.1 

Values of J _ and [cot 2Y/6„] ,. tor the HH-model eR N opt 
with AN^ varying over a wide range 

AN^ JeR [=°t ^X/^Nlopt 

Free-draining Non-draining Non-draining 

4 X 10"' 1.0 1.0 

7.05 0.80 0.75 

421 0.50 0.45 

9.7 X 10' 0.43 0.33 

4 X 10" 0.42 0.30 

4 X 10' 0.41 0.24 

4 X 10' 0.41 0.22 

The non-draining case is a lot more complicated. For lower values of 

AN^ a more detailed description of the dimensions of the model is required, 

before an averaging of the hydrodynamic interaction can be carried out. 

For this purpose Harris and Hearst^'' and Fixman and Kovac"'' derived a 

correlation between the present model and the statistical chain model of 

the wormlike chain. According to these authors there exists a relation 

between the bending force constant a and the persistence length a, given 

by: 

a = (3/2)kT a (3.60) 

From this equation a direct relation can be derived between A and the 

persistence length. However, the derivation of eq. (3.60) is not clearly 

understood, so that for the time being it is quite premature to found 

conclusions on it. 
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In the case of very high AN^ the Gaussian distribution of the springs 

remains. For that case Hearst et al.'^' find an intrinsic viscosity iden

tical with the result of Zimm, eqs. (3.55 a-b). For very small AN^ also 

an exact calculation can be carried out. The results are in agreement 

with both Kirkwood and Auer"' for the rod and Simha^"' for the prolate 

ellipsoid of large axial ratio, when for the length of these stiff 

models the finite mean length, caused by axial diffusion,, of the straight 

pearl necklace is inserted. 

Using eq. (3.60) Noda and Hearst"' have calculated J _ for several 

values of AN^ for the model with hydrodynamic interaction. Their results 

are given in Table 3.1, column 3. The result for the coil limit agrees 

with the Zimm-result, eq. (3.56), while for the straight necklace again 

a value equal to unity is found. It seems that for the straight pearl 

necklace the hydrodynamic interaction has no influence on the results. 

One remark remains to be made. This procedure, valid only for the 

straight elastic pearl necklace, does not give a value for the J^ of a 

straight rigid pearl necklace. This will be discussed in more detail in 

the next paragraph. 

3.7 A comparison with other model theories 

In conclusion of the discussion of the hydrodynamic properties of the 

general model it is quite illustrative to compare the obtained results 

with other model theories. For the single elastic dumbbell a J -value 

equal to unity has been obtained. Another model, which also is very well 

known, is the rigid dumbbell model: two beads connected by a rigid bond 

of fixed length. Recently Bird et al.^'' have shown that for the latter 

model the value of J „ equals 3/5. From this difference of J -values it 

may be concluded, that these two models show differences in hydrodynamic 

behaviour. 

A discussion of this fact was given by Janeschitz-Kriegl'''^^' in 

another context. In a well-known paper Kuhn and Kuhn''' have shown that 

the extra energy dissipation per unit of time due to the presence of a 

rigid particle in a flowing solution always consists of two parts: a 

contribution due to angular movements of the particle relative to the 

solvent and a so-called hydrodynamic contribution. The former is caused 

by diffusion forces corresponding to the state of orientation of the 

particle, the latter is due to radial flow of solvent along the particle. 

The radial force, as exerted by the flowing solvent, is balanced by the 

rigidity of the particle and has no influences on its orientation. For 

a rigid dumbbell it can be derived that the contribution by rotary dif

fusion to the intrinsic viscosity reads: 

(Rigid dumbbell) [n]^= (3/5)[n]^ (3.61a) 
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For elastic dumbbells another result is obtained. If no diffusion 

were present both beads of an elastic dumbbell would be contracted into 

one point, in a resting solution. Just due to diffusion both beads are 

on the average at a certain distance from each other. When the length of 

the rigid dumbbell is adjusted to this average distance for the elastic 

dumbbell both models give the same [n] . Moreover, in both cases the 

contributions by rotary diffusion to the intrinsic viscosity are the same. 

However, the remaining part of 2/5[n] , which is due to the radial "hydro-

dynamic" forces for the rigid dumbbell, must be ascribed to a disturbance 

of the equilibrium between diffusion and restoring forces in the case of 

the elastic dumbbell. Since, according to this description, the hydro-

dynamic properties of elastic dumbbells are completely determined by dif

fusion, one finds: 

(Elastic dumbbell) [n]^ = [nJ^ (3.61b) 

The eqs. (3.61 a-b) show exactly the same factor 3/5 as the different 

J p-values for both models. The reduced steady state shear compliance for 

an elastic dumbbell is a quantity, determined only by the diffusion of 

its endpoints, while for a rigid dumbbell the J _ must be smaller for 

physical reasons: the "hydrodynamic" forces give a contribution to the 

shear stress, which does not lead to a reversible change of the structure 

of the fluid. 

As was mentioned before, in the limit of AN^ •+ 0 the HH-model consists 

of a straight necklace, built up of N elastic dumbbells. Apparently, the 

hydrodynamic behaviour of this model does not differ from that of a single 

elastic dumbbell, if hydrodynamic interaction is disregarded. In both 

cases a value of J _ equal to unity was found. A similar remark applies 

to a comparison of the models of the straight rigid necklace and the sin

gle rigid dumbbell. For the straight rigid necklace Kotaka'"' already re

ported a value of J „ equal to 3/5. The same value was found for the 

rigid dumbbell, as mentioned before. The correspondences between both 

pairs of models can easily be accounted for. Since for a straight pearl 

necklace all dumbbells have the same spatial orientation and on the aver

age the same deformation, they all give the same sort of contribution to 

the hydrodynamic properties of the solutions as one single dumbbell of 

the same orientation and deformation. 

The question arises whether the general HH-model (with AN^ varying 

over a wide range) describes essentially the same effects as the RZ-model 

with a variable finite number of beads. In fact, the basic concept of the 

RZ-model, comprising an infinite number of beads was the existence of an 

infinite number of overall motions within the molecule: "normal modes". 

This resulted in the value of J^„ calculated by Rouse. However, the in-
eR ^ 

troduction of a bending force implies that the connected elastic dumbbells 
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are restricted in their mutual orientations in space. This restricts the 

number of degrees of freedom for this model and so decreases the number 

of effective normal modes. For the completely straight elastic necklace 

(AN^ = 0) the number of normal modes is practically reduced to a single 

one: the simultaneous stretching of all elastic dumbbells within the 

necklace. This comprises only one eigenvalue, which always results in a 

value of J equal to unity. 

A restriction of the number of beads in the RZ-model also decreases 

the number of normal modes to leave only one normal mode in the case of 

the single elastic dumbbell: the stretching of the dumbbell. So also in 

that case only one eigenvalue is involved, which differs in value from 

the above mentioned one, but that does not influence the value of J „• 

In the foregoing only a small choice is made out of a vast amount 

of theories, describing the hydrodynamic behaviour of macromolecules in 

solution. However, it falls far outside the scope of this work to de

scribe all theories. Only one theory still must be mentioned, as this one 

will be used in a later chapter. 

As pointed out in section 3.2, the best description of the dimensions 

of stiff macromolecules could be given with the aid of the statistics of 

the "wormlike chain". Eizner and Ptitsyn"' have treated the intrinsic 

viscosity of infinitely thin wormlike chains of finite length in terms 

of the intrinsic viscosity equation of Peterlin"'. Their relation reads: 

2'/Mb'/M^) $ N X(N/X) 
[n]„ = r r ; r (3.62) 

[45{2TT/3)^/32(3-2^)] (b/Xr^) + (l/X'/^ <r(X,N)N' 

where in the notation of the authors: 

i = the Flory-Fox constant, given in eq. (3.55b), 

N = the degree of polymerization, 

M = the molecular weight of the monomer unit, 

b = the length of the monomer unit, 

X = the number of monomers per persistence length a, i.e. X = ̂ is, 

r = the hydrodynamic radius of the monomer unit. It should be men

tioned that r cannot be related to the finite diameter of a 

short chain; r only characterizes a kind of friction factor. 

The ratio N/X equals the parameter x = L/a, used in eq. (3.3). The func

tion X(N/X) describes the ratio of the mean square radius of gyration of 

the wormlike chain to that of an infinitely long Gaussian coil; it has 

separately been calculated by Eizner and Ptitsyn. The function 9>(X,N) 

describes the intramolecular hydrodynamic interaction as a function of 

X and N. It was tabulated by Kurath et al."'. 

Actually eq. (3.62) turns out to be a kind of modified Flory-Fox 

equation (3.55a), in which the non-Gaussian character of the end-to-end 

distribution of the stiff chain is taken into account. In the form pre-



48 

sented, also this theory is only valid for theta solvents in which the 

excluded volume vanishes. For a graphic representation of the type of 

molecular weight dependence of the intrinsic viscosity obtained see the 

dashed line in Fig. 6.17. Equation (3.55a) would give a straight line 

in this double logarithmic plot. 

Finally, the question remains in how far the above described models 

reflect the hydrodynamic behaviour of real macromolecules. In fact, it 

needs no discussion that all these models only very crudely approximate 

the real structure of a macromolecule. However, the essential idea of 

model building in rheology is probably not so much a realistic descrip

tion but the development of equations containing a small number of meas

urable and readily interpretable constants"', in order to provide a 

coupling of the experiments with theoretical quantities. In that case a 

model theory derives its value from the experiments. Only if a certain 

model gives a reasonable description of experimental results, it proves 

its value. Probably one will never succeed in comprising all properties 

of a real macromolecule in a single model. Therefore an experimentalist 

will choose the one which furnishes the best agreement with his special 

measurements. But he should not believe that his model describes all as

pects of reality. 

3.8 The stress-optical properties of model chains 

3.8.1 The stress-optical law 

It has been pointed out in section 2.4 that the stress-optical prop

erties of very flexible polymers can be described by a stress-optical 

law. In this paragraph the theoretical backgrounds of this law will be 

discussed in further detail. 

The stress-optical law for polymer solutions has been first formula

ted by Lodge"'. It appears to be generally valid not only for dilute 

polymer solutions but also for higher concentrated systems up to polymer 

melts. Actually, the existence of a stress-optical law for permanent po

lymer networks, i.e. for rubber elastic solids, was already known since 

long"' . 

The theoretical derivation of this stress-optical law starts with the 

assumption that for very flexible macromolecules of sufficient length 

the end-to-end distance obeys a Gaussian distribution, as described by 

the Kuhn-statistics''. Hydrodynamically such a molecule is considered 

as an elastic dumbbell, with a spring force constant determined by the 

statistical entropy force of a Gaussian coil, eq. (3.46). The contributions 

of such dumbbells to the stress tensor of a streaming solution are given 

by the eqs. (3.38 a-d) with N equal to unity and <h!|> replacing b^ : 
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p.. = -V kT 6 . + V ^^^^^ <r r.> (3.63) 
"•3 ^3 ..h2> 1 J 

o 

where &•• = the Kronecker delta, 

r̂^ = the projection of the end-to-end vector of the dumbbell on 

the i-axis. 

There exists an analogous expression for the mean polarizability tensor 

of a solution of Gaussian coils. This expression, derived by Kuhn and 

Grun''' , reads : 

VTij = v<Yx>'Sij + (3/5)[v(ai - a2 )/<h^>] <r^r j> (3.64) 

where <Yĵ * = a function depending on the mean square end-to-end distance, 

but not on the orientation of the coils, 

Oi - 02 = the average difference of polarizabilities of the statisti

cal random link with respect to the directions parallel and 

perpendicular to its extension. 

For a solution at rest it is of particular interest that according 

to eq. (3.64) the mean polarizability difference y,, - y, of the whole 

coil molecule with respect to directions parallel and perpendicular to 

its end-to-end distance is given by: 

Y^ - Yx = (3/5)(ai - 02) (3.65) 

A comparison of eqs. (3.63) and (3.64) shows that the deviatoric com

ponents of both tensors are proportional to each other'»'. As a conse

quence both tensors are coaxial. The proportionality factor reads: 

(1/5)(a, - az/kT) (3.66) 

For a further derivation of the stress-optical coefficient, as given by 

eq. (2.16), one can proceed along the lines traced out by Kuhn and Grun"' 

The following relation for the stress-optical coefficient is obtained: 

2iT (n^+2)^ 01-02 
C = Tc- — ^ TTS- (3.67) 

45 n kT 

where n = the average refractive index of the solution. 

For the above given derivation the form birefringence is left out of 

consideration. 

It appears that C mainly depends on two quantities: the temperature 

and the anisotropy oi - 02 of the statistical random link. Molecular 

weight, concentration and shear rate do not occur in eq. (3.67). As to 

the temperature dependence of C very little is known. For the very 

flexible polymers polystyrene and polyethylene, for instance, the temp

erature dependence of C is very small'''. On the contrary there exists 
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a strong temperature dependence for cellulose tricarbanilate in benzo

phenone''' and for poly (dimethyl siloxanes) in the melt"'. The tempera

ture dependence for cellulose tricarbanilate in a series of other sol

vents will extensively be discussed in a later chapter. 

The anisotropy of the statistical random link is extremely sensitive 

to the length of the random link, the chemical structure of the chain 

and the degree and kind of solvatation of the chain'''. A change of one 

of these quantities will lead to a change of the anisotropy, which can 

be observed as a change of the stress-optical coefficient. Especially 

the first two quantities are related to the conformation of the macro-

molecule. As a consequence it must be expected that very valuable infor

mation concerning conformational transitions of polymers can be deduced 

from the experimental values of the stress-optical coefficient. However, 

if a change of solvent composition is involved in such a conformational 

transition, change of solvatation may have a disturbing influence. Inves

tigations done on atactic polystyrene''' have shown that this influence 

can amount up to 30% of the value of the stress-optical coefficient of 

the melt. A correction method or a way to exclude this influence are not 

known, so that the preferent solvatation will cause an uncertainty in the 

interpretation of the experimental results. 

3.8.2 Short stiff chain molecules 

Solutions of relatively stiff or short chain molecules do not obey 

the stress-optical law. For these cases the value of the above called 

stress-optical coefficient appears to be dependent on the molecular weight 

of the polymer: it decreases with decreasing molecular weight. Moreover, 

a decrease is found for the measured value of the stress-optical coeffi

cient with increasing shear rate. As a consequence, eq. (2.17) remains 

valid only in the limit of zero shear rate. As one cannot really speak 

of a stress-optical coefficient in those cases, sometimes another nota

tion is used, derived from dilute solution theories: 

[n]/[n]„ = lim 2C (3.68a) 
q^O 

where [n] = the Maxwell constant, defined by: 

[n] = lim (An - An )/qcn (3.68b) 
q+0 ^ ^ 
c*0 

The validity of eq. (3.68a) can easily be verified by combining the eqs. 

(2.11), (2.12 a-b) and (2.17), using the fact that sin 2x becomes equal 

to unity in the limit of zero shear rate. 

The molecular weight dependence of the ratio of the Maxwell constant 

and the intrinsic viscosity was calculated first by Tsvetkov'"' for free 

draining wormlike chains. These calculations were improved by Gotlib and 
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Svetlov'^'. As the stress-optical coefficient has been shown to be in

dependent of the draining of the Gaussian coil, these authors assumed 

that the same is also valid for short macromolecules. 

For the calculation of the Maxwell constant the assumption is made 

that an assembly of flexible macromolecules with continuously changing 

configurations can be replaced at small shear rates by an assembly of 

molecules with "frozen" configurations, where the distribution over thé 

different configurations is described by a weight function"'. This was 

already earlier intuitively assumed by Kuhn et al. "'. Brownian motion 

is taken into account only so far as rotary diffusion of the rigid con

figuration is concerned. In that case only the orientation of the macro

molecules in the flow determines the hydrodynamic and optical properties 

of the solution. The diffusion equation for a rigid macromolecule with 

an arbitrary configuration is solved, using a first order approximation 

with respect to the shear rate. The obtained probability density for the 

orientation of the macromolecule gives the Maxwell constant for this mo

lecule. Finally, the averaging over all possible configurations is car

ried out with the aid of the weight function. The intrinsic viscosity is 

calculated in the same way. As for higher shear rates also deformation 

effects would play a role, which can only be described by a second order 

approximation of the probability density, this theory is valid only in 

the limit oi zero shear rate. This implies also that no extinction angles 

other than 45 degrees can be given. 

The obtained result reads: 

[n] 4ir (n|+2)^ ^ aA6 x-cfi (x) 

TnT^ " 45 ~ ; r 2 ÏTT (t.2(x) (3.69) 

where AB = the anisotropy of the polarizability per unit length of the 

wormlike chain, 

!**", , = a complicated function of x = L/a, given by Gotlib and Svet-
(P 2 IXJ 

lov''', which describes the dependence of [n]/[n] on x. 

As a matter of fact, eq. (3.69) gives a very good description of 

the dependence of [n]/[n] on molecular weight'"'. Both, a change in 

stiffness of the macromolecule and a change of the chemical structure 

cause an alteration of the term aAB x'()) i (x)/<j)2 (x) , so that also the ratio 

[n]/[ri]_ is extremely sensitive to conformational transitions. 

From section 3.2 we know that the results of the persistence-statis

tics and the Kuhn-statistics are identical in the limit of Gaussian coils 

Hence one must expect that eq. (3.69) becomes identical with eq. (3.67) 

in the limit of very large x. This actually appears to be the case. To 

show this, one needs two results, viz. the limits of the function of x 

and of the optical factor. The first one reads: 
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As to the second one, Gotlib"' has derived that the average polarizabi

lity difference of a persistent chain in the coil limit is given by: 

Y^ - Yi = aAB (3.71) 

which according to eq. (3.65) is equal to (3/5)(oi - 02). Eq. (3.71) 

gives an important result. It means that the polarizability difference 

of a statistically coiled chain is equal to the polarizability difference 

of a rod with a length equal to the persistence length of the macromole

cule. When eqs. (3.70) and (3.71) are inserted into eq. (3.69) and com

bined with eq. (3.68a), one obtains eq. (3.67), which once again demon

strates the equivalence of both statistical theories in the coil limit. 

3.9 Some remarks on the coaxiality of the stress tensor and the refrac

tive index ellipsoid 

One of the main conditions for the validity of the stress-optical 

law is the coaxiality of the stress tensor and the refractive index el

lipsoid. For a deformed rubber-like solid the coaxiality of both ellipsoids 

is taken for granted. 

For the molecular theories, described in the foregoing, coaxiality is 

not self-evident any longer. For the elastic dumbbell model, which served 

as a model for the derivation of the stress-optical coefficient, the 

coaxiality appears to hold only in so far as the eqs. (3.63) and (3.64) 

are valid. The validity of these equations, however, is restricted to 

small disturbances of the equilibrium conditions. As will be seen in a 

later chapter, for larger deformations higher order terms occur which 

disturb the proportionality between the statistical restoring force and 

the optical anisotropy of a coil molecule. On adding the contributions 

of all oriented elastic dumbbells the coaxiality of both ellipsoids is 

then lost. 

The RZ-model could be considered as an assembly of a great number of 

elastic dumbbells connected with each other. As a matter of fact, a 

conclusion about the optical properties of this model can only be made 

after the introduction of a certain kind of anisotropy in this model. 

This is usually done by endowing each spring, resp. dumbbell, with a 

polarizability tensor, equal to the polarizability tensor for a single 

elastic dumbbell, as given by eq. (3.64)'»'. It only remains to define 

the vector denoting the end-to-end distance of the single dumbbell (r in 

eq. (3.64)) in the configuration space, in which the lengths of the 

springs, resp. dumbbells, can be expressed. Also in that case the con-
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tributions of the separate dumbbells to the stress tensor and the re

fractive index ellipsoid simply add up. As they are proportional to each 

other, the coaxiality of the macroscopic tensors is preserved. Therefore 

also for the RZ-model both ellipsoids are coaxial, provided that the de

formation of the dumbbells is restricted. A decrease of the number N of 

the springs does not alter this aspect of the model. So also for finite 

N the extinction angle and the orientation angle of the stress tensor 

coincide, which clearly benefits to the value of the flow birefringence 

as a technique for the determination of the state of stress in solutions 

of flexible macromolecules. 

Also for the HH-model one can define a polarizability tensor for 

the separate dumbbells in the same was as done for the RZ-model'''. So 

also in this case the orientation of the refractive index ellipsoid depends 

on the orientation and deformation of the separate dumbbells. However, be

sides a contribution due to the orientation and deformation of the dumb

bells, the stress tensor now also contains a contribution due to bending 

forces around the beads. As these forces are not assumed to influence 

the polarizability of the dumbbells, coaxiality does not exist any longer. 

The extinction angle and the orientation angle of the stress tensor will 

no longer coincide. As an illustration of the difference between both 

angles one can look at the calculations of Noda and Hearst'''. These 

authors calculated the extinction angle as a function of 6„ for several 

values of AN^ in the limit of non-draining. In Table 3.1, column 4, the 

ratio of [cot 2x/Bj,] is given for several values of AN^. For the RZ-model 

the ratio of [cot 2x/B[g] was equal to the value of the reduced steady state 

shear compliance JgR. In the HH-case there exists some difference between 

both quantities. Only for very large, resp. very small, values of AN^ both 

are equal. Very large AN^ corresponds to the RZ-case, very small AN^ 

means that all dumbbells of a chain take exactly the same orientation in 

the flow and, moreover, have the same deformation. This means that the 

contributions to the stress tensor and the refractive index ellipsoid are 

only by a certain factor higher than the contributions of a single dumb

bell. Also in that case one arrives at coaxiality, at least for low shear 

rates. 

After what has been said in section 3.7 this coaxiality for the 

straight elastic pearl necklace is obviously the result of an imperfec

tion of this model in describing the behaviour of stiff macromolecules, 

viz. its axial deformability. For a really rigid dumbbell J ĵ  would be 

equal to 3/5, while the corresponding optical quantity [cot 2x/B^] equals 

one'''. The same consideration applies to a straight rigid pearl necklace, 

which should be considered as a better approximation of a stiff rodlike 

macromolecule. Consequently, also for this model no coaxiality exists. 

In this paragraph it has been shown that a certain degree of stiffness 
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in a model causes a disturbance of the coaxiality of the stress tensor 

and the refractive index ellipsoid. As a consequence, one must be careful 

in assuming coaxiality for non-coiled stiff macromolecules. As to the 

experimental part of this work, therefore, the optically measured quan

tity [cot 2x/B.j] can only be identified with the hydrodynamic quantity 

J J, if the investigated polymer clearly behaves like a Gaussian coil 

molecule. 

3.10 Summary of the most important results 

Because of the comprehensiveness of the foregoing it seems useful to 

summarize at this stage the most important theoretical results. 

For solutions of very flexible polymers there exists a stress-optical 

law, describing the flow birefringence over a great range of concentra

tions and shear rates. For many polymers the stress-optical coefficient 

appears to be a constant dependent to some extent on the type of solvent, 

but independent of shear rate and, at the absence of form birefringence, 

also independent of molecular weight and concentration. One of the most 

important conditions for the validity of the stress-optical law is the 

coaxiality of the stress tensor and the refractive index ellipsoid. For 

macromolecules, possessing a certain degree of chain stiffness, this is 

usually not the case. In those cases only theoretical predictions can be 

made, valid in the limit of zero shear rate, where coaxiality is trivial. 

On the basis of a number of model theories the dependence of the 

orientation angle x'' resp. the extinction angle X' o" shear rate has 

been studied. For small shear rates a linear relation is predicted be

tween cot 2x', resp. cot 2x» and the reduced shear rate S„. For models 

whose overall dimensions do not obey Gaussian statistics the value of 

J „ is increased with respect to its value for Gaussian coils. The same 

applies to the ratio of [cot 2x/6f,] »̂ the optical equivalent of the 

hydrodynamic quantity J^j,. While for Gaussian coils both quantities can 

be identified (coaxiality) they show a small difference for models with 

a certain degree of chain stiffness. 

It appears that all values of J „ lie within a small range: 0.2 to 

1.0. For the non draining case of the HH-model the value of J _ increas-
eK 

es only with a factor of 5, going from a completely flexible coil to a 

completely straight pearl necklace with only axial deformability. An in

crease of the draining of that model even reduces the effect. The high

est value of [cot 2x/Bj,] ^, reported in literature"', amounts to 1.25 

for a completely rigid prolate ellipsoid of infinite axial ratio. The 

conclusion can be drawn that the effects of varying chain stiffness will 

be comparatively small and, as will be seen in the next paragraph, will 

hardly be discernable due to the great influence of polydispersity. 



3.11 Influence of polydispersity 

According to assumption (i) in section 3.3 we have discussed only 

monodisperse systems so far. However, in practice it is very difficult 

if not impossible to obtain monodisperse polymer samples. As a matter 

of fact, the polydispersity has a tremendous influence on the extinction 

angle. In comparison with experiment, eq. (3.43) would predict much too 

small values of J_pf if polydispersity were disregarded. 

The influence of polydispersity was already described by Hermans"'' 

for the dumbbell model. It can be deduced, that eq. (3.43) reads for a 

polydisperse system: 

=°t 2X' = JeR T B V (3-72a) 

N n 

where < > = the number average. 

With the introduction of a polydispersity-factor p, where 

^U n (3.73) 

''N n 

eq. (3.72a) reads: 

cot 2x' = P JgR <BN>n- ' (3.72b) 

The quantity <B„> can directly be obtained from eqs. (3.45), if the num

ber average molecular weight of the polymer is inserted. According to 

Peterlin'»'and Daum''' the polydispersity-factor p can be calculated, if 

the molecular weight distribution and the exponent o in the Mark-Houwink 

relation are known for the polymer. As is well known, this relation reads 

[n] = K M", where 0.5 < a < 1.0*. Using the latter relation one obtains: 

n 

These c o m p l i c a t e d m o l e c u l a r w e i g h t a v e r a g e s can be c a l c u l a t e d w i t h 

t h e a i d of an assumed m o l e c u l a r w e i g h t d i s t r i b u t i o n . For example , Daum^^^ 

* In a consequent treatment only a = 0.5 should be used, since th i s value holds for 
Gaussian s t a t i s t i c s (in 0-solvents). However, as has been pointed out in l i terature^^ , 
for a sharp fraction in a good solvent J i s scarcely greater than in a 9-solvent. 
I t appears that the influence of the polydispersity depends on the quali ty of the 
solvent, jus t by virtue of exponent a, which i s greater than 0.5 in a good solvent. 
The physical reason for t h i s surprising resu l t i s that the averaging actually i s car
ried out over the 6 -values, i . e . over the [n] ' s of the molecular weight fractions. 

N o 
Only the ra t io (pii-P22J/2p2i i s unsensitive to a {see eq. (3.43)). 
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gave a relation for p, if the molecular weight distribution is of the 

Schultz-Zimm type. For this type of distributions one obtains: 

<M> 
w ^ z+2 

<M> z+1 
n 

(3.75) 

where <M> and <M> are the number- and weight-average molecular weights, 
n w 

respectively, and z is an adjustable parameter. The corresponding rela

tion for p reads: 

p = ^' (Z+2+20): (3_7g) 

(z+l+a):^ 

P e t e r l i n and Munk'^' gave p-values for a s e r i e s of chosen values of 
<M>^/<M>j^ a n d a . 
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CHAPTER 4 

EXPERIMENTAL ARRANGEMENTS 

4.1 Materials 

4.1.1 Poly(amide carboxylic acid) 

For the investigations on the poly(amide carboxylic acid) (PACA) 

from pyromellitic anhydride and benzidine a sample was supplied by Dr. 

A. Horvath (Karlsruhe). Its weight average molecular weight <M> was 

125,000, and its polydispersity index <M> /<M> was 2.4. 

The solvent N,N-dimethyl acetamide (DMA) (Fluka A.G.) was dried over 

KOH and P2O5, resp., and distilled in vacuo. The viscosity of the DMA was 

0.8711 X 10"^ poise, its density 0.9317 g/cm', both at 30°C. Triethyl 

amine (TEA) (Fluka A.G.) was distilled from KOH in a nitrogen atmosphere. 

The solutions were prepared by adding about half the required amount 

of DMA to a weighed portion of a 5%-solution of PACA in DMA. To this 

solution an amount of a solution of TEA in DMA was added. This amount de

pended on the required number of gramequivalents. Finally, DMA was sup-

pleted until the right dilution was attained. At high concentrations of 

PACA (2 X lO"' g/ml) and great amounts of TEA (5 g-equiv. and more) a 

precipitation occurred. 

The retractive index increment of the PACA in DMA is 0.375 cmVg ''• 

Normally such a high value results in a rather large form birefringence. 

This effect can be calculated as a contribution C, to the stress-optical 

coefficient C [Eq.(5.3) of Janeschitz-Kriegl^']. Even for the unionized 

PACA, however, one obtains the rather small relative contribution: 

Cj/C = 1.67 X 10"^ (4.1) 

when the value of C is taken from the measurements to be described. Due 

to the extraordinary large value of the anisotropy of the PACA-chain, 

this contribution is small enough to lie completely within the limits of 

accuracy of the flow birefringence measurements. Therefore it can be 

disregarded throughout the investigations. 

The pure DMA does not show any measurable flow birefringence. This 

means that all formulas can be used without a correction for the solvent 

contribution to the flow birefringence. 

4.1.2 Cellulose tricarbanilate 

The investigations on cellulose tricarbanilate (CC) were done on a 

number of samples supplied by Prof. W. Burchard (Freiburg i. Br.). Only 

CC(Lonza) has been prepared in this laboratory from cellulose-2^-acetate 



59 

(Lonza), also supplied by Burchard. 

The low molecular weight samples CC I and CC II were prepared by 

partial precipitation from acetone solutions with the aid of water. The 

CC(L 610) sample was directly prepared from bleached Linters cotton. The 

way in which CC III was prepared, is unknown. 

Data on these samples are gathered in Table 4.1. The weight average 

molecular weights <M> were determined by light scattering from dioxane 

Table 4.1 

Data of the Cellulose tricarbanilate samples 

Sample 

CC Is 

CC I^ 

CC Is 

CC I, 

CC I, 

CC 1,2 

CC II2 

CC (Lonza) 

CC (L 610) 

CC III 

<M>^ X 10"' 

14.1 

14.0 

15.1 

15.1 

12.8 

8.2 

3.1 

185 

620 

2180 

[n 
20 

o (cmVg) 

C Dioxane 

13.7 

13.4 

13.0 

11.3 

10.8 

9.1 

5.35 

168 

555 

-

<M>^/<M>^ 

-
-
-
-
-
-
-
1.59 

-N-l.S 

<1.2 

solutions. About the heterogeneity of the low molecular weight fractions 

no details are known. However, for such small degrees of polymerization 

(6 - 30) one cannot expect that a partial precipitation gives a narrow 

distribution. So the polydispersity indices may be rather high (> 2 ) . 

The solvents were prepared in the following ways. 1,4-Dioxane (UCB) 

was dried over MgSO^ and distilled subsequently. Phenyl benzoate (Fluka 

A.G.) was recristallized from ethanol and thoroughly dried. Tri-o-cresyl 

phosphate (K&K Laboratories) was dried over MgSO^ and distilled in high 

vacuo. A colourless product was obtained. Diphenylether (Fluka A.G.) 

was dried over MgSO,. and distilled in vacuo. Also a colourless product 

was obtained. 

All solvents, except dioxane, can be considered to be matching sol

vents, which means that the refractive index increment of CC in these 

solvents is nearly zero. In dioxane the refractive index increment of CC 

amounts to 0.156 cm'/g at 20°C''. In the same was as done for PACA, the 

contribution of the form birefringence to the stress-optical coefficient 

can be calculated. One obtains for the sample CC(L 610) at 25°C: 

Cf/C 2.3 X 10' (4.2) 



60 

when the value of C is taken from the measurements to be described. As a 

consequence, this contribution lies within the limits of accuracy again. 

All solvents, except dioxane, show a measurable flow birefringence. 

This means that all measurements, done in those solvents, have to be cor

rected for the solvent contributions. As with all low molecular weight 

fluids, the birefringences increase exactly linearly with the shear rate. 

For the pure unmixed solvents the slopes of these lines are given in Table 

4.2, column 5, for the temperatures at which measurements were carried 

out. In addition, in this table also the densities and the viscosities 

of the pure solvents are given. 

Table 4.2 

Data of the pure solvents for Cellulose tricarbanilate 

Solvent 

Dioxane 

Phenylbenzoate 

Tri-o-cresyl 
phosphate 

Diphenylether 

Temp. 

{°C) 

25 

35 

50 

60 

75 

90 

75 

90 

100 

30 

60 

90 

30 

60 

90 

Density 

(g/cmM 

1.0283 

1.0171 

0.9998 

0.9893 

0.9735 

0.9543 

1.0893 

1.0766 

1.0682 

1.1523 

1.1284 

1.1051 

1.0666 

1.0411 

1.0152 

Viscosity x 10^ "̂='̂ '5 x 10" 

(poise) 

1.193 

1.017 

0.816 

0.718 

0.611 

0.514 

2.699 

1.982 

1.693 

60.208 

14.019 

5.839 

3.219 

1.764 

1.124 

(s) 

-

-

-

-

-

-

1.137 

0.843 

0.733 

10.1 

3.67 

1.31 

0.633 

0.322 

0.211 

4.2 Apparatus 

4.2.1 The coaxial cylinder apparatus for the measurement of floi> birefringence 

The apparatus for the measurement of flow birefringence was designed 

by Janeschitz-Kriegl and Nauta at the Central Laboratory TNO, Delft. As 

it has been described extensively in literature^'*', only a short de

scription will be given in the present report. 

Figure 4.1 gives a survey of the rotor unit. Pot and cover together 

form a container enclosing the essential parts of the unit. The whole 
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Fig. 4 . 1 . Cross-section of the rotor uni t . (1) pot , (2) cover, (3) ro to r , (4) bronze 

bush, (5) axle, (6) driving shaft, (7) internal cylinder of black g lass , 

(8) external (stationary) cylinder of black g lass , (9) screw pump, (10) bore 

for f luid c i rcula t ion, (11) chamber, (12) lower window, (13) upper window, 

(14) f i l l i n g hole, (15) f i t t i ng lower window, (16) f i t t i ng upper window. 

LL, d i rec t ion of the light-beam. 

f i t s i n a t h e r m o s t a t , which i s no t shown. A l l p a r t s of t h e u n i t a r e made 

of s t a i n l e s s s t e e l , e x c e p t t h o s e f o r which t h e m a t e r i a l i s e x p l i c i t e l y 

m e n t i o n e d . The m e a s u r i n g c e l l c o n s i s t s of two c o n c e n t r i c g l a s s c y l i n d e r s , 

of w h i c h the i n n e r one ( r o t o r ) i s d r i v e n ( C o u e t t e f l o w ) . The w i d t h of t h e 

a n n u l a r gap b e t w e e n t h e c y l i n d e r s amounts t o 0 .25 mm, t h e h e i g h t of t h e 

gap i s 5 cm. For t h e chosen d i a m e t e r of t h e r o t o r (5 cm) t h e i d e a l c a s e 

of two i n f i n i t e p a r a l l e l p l a t e s , moving w i t h r e g a r d t o each o t h e r a t c o n 

s t a n t speed, i s q u i t e w e l l a p p r o x i m a t e d . The c u r v a t u r e of t h e f low f i e l d 

can b e n e g l e c t e d f o r t h e c a l c u l a t i o n of t h e s h e a r r a t e . The speed of 

r o t a t i o n of t h e d r i v i n g u n i t can be c o n t i n u o u s l y v a r i e d ove r a r a n g e of 

61 
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3 decades. For the described apparatus this corresponds to shear rates 

between 10 and lO* (s"'). 

The light beam passes through the solution in a direction parallel 

to the cylinder axes. The maximum shear rate at which measurements are 

still possible is determined by the frictional heat produced in the fluid 

under shear. A radial temperature gradient in the gap of only a few 

tenths of a degree centigrade per millimeter will prevent the light-beam 

from passing directly through the fluid. The light-beam will be bent to

wards the region of lower temperature and reflected from the correspond

ing cylinder wall. As the reflection of a polarized light-beam from a 

metal wall causes a considerable phase difference, systematic errors would 

be introduced into the measurements. To suppress these effects the cylin

ders are made of black glass with a refractive index of 1.53. As a second 

useful property, glass has a low heat-conductivity. This enables us to 

prevent the formation of radial temperature gradients in the gap, as 

nearly no heat can flow to the wall. A slow convection stream is applied 

in axial direction with the aid of a screw pump, mounted at the lower 

side of the rotor. The maximum velocity gradient of the axial velocity 

profile amounts to one tenth of the velocity gradient of the main flow. 

The fluid describes a kind of helical flow-pattern. Due to this construc

tion the fluid temperature will increase linearly from entrance to exit. 

However, this increase of temperature of at most a few degrees will hard

ly influence the measurements in most practical cases. 

A very important feature is the construction of the windows. Both 

windows are cylindrical cuvettes made of one piece of glass, with a flat 

bottom which is polished on both sides. These windows have only a very 

small constant birefringence, caused by residual strains in the glass. 

The lower window fits (with the bottom on the upper side) slidingly 

in a fitting. It rests with the inner side of its bottom on a rim mount

ed in the interior of the fitting (Fig. 4.1, position 15, inner cylinder). 

The sealing of the window is achieved by spreading a thin layer of high

ly viscous silicone oil on the internal rim. When the rotor unit is fill

ed with fluid, this fluid penetrates between the fitting and the outer 

cylindrical surface of the window but encloses an air cushion, which 

prevents the fluid from reaching the mentioned silicone layer. 

For the upper window the sealing is less critical. The cuvette fits, 

with the bottom downwards, slidingly in a fitting and rests on three 

small ledges. A thin oil layer on the upper side of the cuvette also 

prevents the window from leaking by enclosing an air cushion in a small 

chamber, cut in the wall of the fitting. 

The above described construction of the windows enables us to carry 

out measurements at temperatures between 0°C and 160°C, without disturb

ances by leakage or parasitic birefringences in the windows due to chang

ing internal stresses. 
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Fig. 4.2. Optical alignment of the apparatus. 

Figure 4.2 gives a survey of the optical alignment of the apparatus. 

As a light source a high-pressure mercury arc is used. The spherical 

lens li forms an image of the lamp L on a slit diaphragm S. The astig

matic lens I2 forms an image of the slit at the place where the light-

beam leaves the gap of the rotor unit R. The breadth of this image must 

be somewhat smaller than the gap width so that, from a point of view of 

classical optics, all light passes through the rotor unit without being 

reflected from the cylinder walls. In reality diffraction occurs between 

the cylTnder walls of the rotor unit. With the aid of the spherical lens 

I3 an image of the diffraction pattern is formed in a Ramsden ocular Go. 

This diffraction pattern is confined in radial direction by the edges of 

the cylinders and in tangential direction by a diaphragm d2 (0 = 2 mms) . 

Besides a zero order maximum, due to the light passing through the rotor 

unit without reflection, also a number of higher order maxima can be 

observed, parallel to the zero order maximum. As only the zero order 

maximum can be extinguished between crossed nicols, this maximum is used 

for the measurements. If cylinders of black glass are used, the higher 

order maxima do not disturb the measurements because of their weak in

tensity. As polarizer and analyser Thompson-Glan prisms are used. If in 

the centre of the observed image the main directions of the crossed polar

izer P and analyser A coincide with the main axes of the birefringent 

medium, a dark area should be observed, corresponding to one of the four 

arms of the "cross of isoclines". A distance of 2 millimeters (the diam

eter of d2) along the circumference of the rotor corresponds to an angle 

of 5 degrees. Owing to the finite curvature of the cylinders the dark 

zone should therefore be much narrower than the mentioned 2 millimeters. 

In other words, the isocline should be embraced on both sides by bright 

areas. 

By means of the use of the astigmatic lens I2 a sharpening of the iso

cline is achieved; this lens produces a second image of slit S in the 

tangential plane. This image is far behind the exit from the gap. A simul-
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taneous shift in the radial plane by simply using a weaker spherical lens 

on the place of I2 would result in an unnecessary reduction of the light-

flux. In this way the position of the isocline can be determined, down 

to a birefringence of 0.5 x 10"', with an accuracy of 0.1 degree by simul

taneous rotation of the crossed polarizer and analyser, coupled by a rigid 

arm D. 

The apparent parasitic birefringence in the windows and the polarizing 

prisms can be compensated with the aid of a weakly birefringent glass 

plate, mounted revolvably on the housing of the polarizer. This compensa

tion method is extensively described by Janeschitz-Kriegl''. However, it 

must be said that the windows and polarizing prisms were of an extremely 

good quality, almost free of residual birefringences. 

The apparatus is calibrated with dioctyl-phtalate, a low molecular 

weight fluid, which gives an extinction angle of 45 degrees at all shear 

rates. 

The birefringence is measured by means of a compensation method. For 

the measurement of very small phase differences, up to 0.06 x 2-n radians, 

the method of de Sénarmont has been used, for greater phase differences 

the compensator of Ehringhaus (Fa. Zeiss) has been applied. The de Sénar

mont compensation method requires green light, achieved by a green filter 

F, the Ehringhaus compensator can be used in white light. 

4.2.2 Viscosity measurements 

Viscosity measurements were carried out with ordinary Ubbelohde vis

cometers, while densities were determined with the aid of pycnometers. 

The temperatures of the thermostats in which the measurements were done, 

were constant within 0.05°C. It has been assumed that, for the low poly

mer concentrations used in this work, the influence of concentration on 

the density of the solvent could be neglected. 

For several solutions the dependence of the viscosity on shear rate 

had to be measured. These measurements were done on an apparatus at the 

Central Laboratory TNO, Delft, described by Daum and Janeschitz-Kriegl'' 

The principle of this apparatus which avoids drainage of fluid along any 

vessel wall, is based on a cylindrical chamber, in which a piston can 

be moved up and down with known speeds. In the piston a cylindrical cap

illary is mounted with known length and diameter. When the piston is 

moved, a certain amount of fluid passes through the capillary. With the 

aid of a sensitive detection method the pressure on the fluid can be 

measured. From the calibration constants the shear stress at the wall of 

the capillary is obtained as a function of the apparent shear rate. To 

obtain the true shear rate at the wall the well-known Rabinowitsch'' 

correction has to be applied to these measurements. This correction reads: 
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q„ = Dg[(3/4) + (1/4) d In D^/d In T^] (4.3) 

where q = the true shear rate at the wall of the capillary, 

D = 4Q/TrR̂  = the apparent shear rate, 

T = PR/2L = the shear stress at the wall of the capillary, 

Q = the volumetric output rate, 

R = the radius of the cross-section of the capillary, 

L = the length of the capillary, 

P = the pressure drop over the capillary. 

In this way the viscosity as a function of the true shear rate is obtained 

as the ratio of T and q . 
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CHAPTER 5 

A COIL EXPANSION OF POLY (AMIDE CARBOXYLIC ACID) CAUSED BY IONIZATION 

5.1 Results of flow birefringence measurements 

The flow birefringence of a great number of solutions with various 

concentrations of poly(amide carboxylic acid) (PACA) in N,N-dimethyl acet

amide (DMA) and with several amounts of triethyl amine (TEA) added was 

measured. All measurements were carried out at 30°C. 

X 
il 

30(X) 9000 

- * q(s-') 

Fig. 5.1. Extinction angle against shear rate of a series of solutions of PACA in DMA 

with varying amounts of TEA added. Concentration of PACA: 0.3 x 10"^ g/ml. 

Amounts of TEA added, expressed in g-equiv. per COOH-group: (o) 0; (•) 1 ; 

(A) 2; (V) 5; (0) 15. Temperature of measurements: 30°C. 

3000 6000 9000 

-^q(s-i) 

Fig. 5.2. Flow birefringence against shear ra te for the solutions specif ied in the 

caption to Pig. 5 .1 . 
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Figure 5.1 gives an example for the type of extinction angle curves 

found. In this figure the number of g-equiv. TEA per carboxylgroup serves 

as a parameter. The concentration of the chosen solution is 0.3 x 10"' g 

PACA per ml. The corresponding measurements of the birefringence An are 

given in Fig. 5.2. 

It is observed that, with increasing amounts of TEA, the deviation 

of the extinction angle from 45° rapidly increases, while also the bire

fringence appreciably increases. For the unionized PACA (0 g-equiv. of 

TEA), however, the deviation of the extinction angle from 45° and the 

birefringence at low shear rates are so small, that reliable measurements 

are possible only at rather high shear rates. 

In both figures a tendency to saturation can be observed with regard 

to the influence of large quantities Of TEA. If only a small quantity 

of TEA is added, the relation between the measured birefringence and the 

shear rate is linear. If larger quantities of TEA are added, a downward 

curvature is noticed at high shear rates. This points to a deviation from 

the stress-optical law (eq. (2.17)). 

As was pointed out in section 4.1.1, at high concentrations of PACA 

and great amounts of TEA a precipitation occurred. This can be observed 

on an anomalous extinction angle curve. Figure 5.3 gives the extinction 

angle curve for the solution with a PACA-concentration of 2 x 10"' g/ml 

and 5 g-equiv. TEA added. A rapid decrease of the extinction angle is 

observed at small shear rates. As has been pointed out by v.d. Put et 

al.'', this indicates that a rather small number of large particles or 

aggregates is formed in the solution. On the birefringence curve. Fig. 

5.4, nothing particular can be observed. This is, as well, in accordance 

with the findings in ref. 1. 

US' 

X 

id-

3i 

30'! I , 
0 3000 5000 9ÜÜC 

•q(sri) 

Fig. 5.3. Extinction angle against shear 

rate for a solution of PACA in DMA; con

centration of PACA: 2.0 X 10~3 g/ml; 

5 g-equiv. of TEA added. 

Fig. 5.4. Flow birefringence against 

shear rate for the same solution as 

in Fig. 5.3. 
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With the aid of eq. (2.17) stress-optical coefficients can be cal

culated from the measurements. The obtained values are given in Fig. 5.5 

as functions of the number of g-equiv. TEA per COOH-group and with the 

concentrations of PACA as parameters. Since several solutions show de

viations from the proportionality between birefringence and shear rate, 

all values are taken after extrapolation to zero shear rate. 

CxlO'lcm'/dyne) 

5.0 10.0 15.0 
*• gramequiva(ents TEA 

Fig. 5.5. St ress-opt ical coefficient c, calculated for a l l solut ions, against number 

of g-equiv. TEA per COOH-group added. Concentrations in g PACA per ml are: 

O 0.1 X 10-3; (7) 0.2 x IQ-^, (A) 0.3 x lO'^; (D) 0.5 x lO'^; (o) 1.0 x lO'^ 

(+) 2.0 X 10" ' . 

From an i n s p e c t i o n of F i g . 5 .5 t h e f o l l o w i n g f a c t s can be deduced : 

On a d d i t i o n of TEA t h e s t r e s s - o p t i c a l c o e f f i c i e n t f i r s t shows a c o n s i d 

e r a b l e i n c r e a s e . On t h e o t h e r hand , a c l e a r s a t u r a t i o n of t h e s t r e s s -

o p t i c a l c o e f f i c i e n t i s n o t i c e d a t l a r g e r cimounts of TEA added . An i n 

c r e a s e of t h e c o n c e n t r a t i o n of PACA s u p p r e s s e s t h e e f f e c t . 

F i g u r e 5.6 g i v e s t h e same r e s u l t s , now a s f u n c t i o n s of t h e concen

t r a t i o n of PACA and w i t h t h e numbers of g - e q u i v . of TEA p e r COOH-group 

as p a r a m e t e r s . One c l e a r l y o b s e r v e s t h a t a d e c r e a s e of t h e c o n c e n t r a t i o n 

of PACA r e s u l t s i n an i n c r e a s e of t h e s t r e s s - o p t i c a l c o e f f i c i e n t . 

The c u r v e s i n F i g s . 5 .5 and 5.6 show a s t r i k i n g r e s e m b l a n c e t o t h e 

n / c - c u r v e s of t h i s PACA, a s g i v e n i n F i g s . 5.7 and 5 . 8 . These f i g u r e s 
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2ao 
Cxio'fcm^/dyne 

polymer concentration x 10 (g/ml) 

Fig. 5.6. Stress-optical coefficient C against concentration of PACA. Number of g-equiv. 

TEA per COOH-group added: symbols as in Fig. 5.1. Closed points: values of C 

extrapolated to zero concentration, according to eg. (5.2). 

- ^ (cmVg) 

10001 

c = 0D9 10 (g/ml) 

c= 0.18-1(3 (g/mO 

c=0.28 1(5 ig/ml) 

c=0,37 1Ö^gAnl) 

0=0.75 lö'lg/ml) 

M,. =126000 

" 5 10 15 20 

» gramequivalents T E A 

Fig. 5.7. n /c against number of g-equiv. TEA per COOH-group added. Figure taken from 

the work of Horvath^'. 



70 

'sp 

6000 

5000 

cm̂ /g) 

iOOO 

3000 

2000 

1000 

\ 1 
\ \ K 

• ^ 

^ 

• 

^ ^ 

1 ' 

0.2 0.4 06 0.8 ro 1.2 l i 

polymer concentration x 10 (g/ml) 

Fig. 5.8. Tl /c against concentration of PACA, obtained from data in Fig. 5.7. Symbols 

as in Fig. 5.1. 

are taken from Horvath and Vollmert^'''. A detailed discussion of this 

fact will be given in the next paragraph. 

It should be noticed that the stress-optical coefficient of the 

unionized PACA (0 g-equiv. TEA) is independent of concentration. This 

is normally found for uncharged polymers of molecular weights high enough 

for the formation of Gaussian coils. 

In Fig. 5.9 an example is given of the usefulness of the reduced shear 

rate ^&„> • The points correspond to measurements at a variety of concen

trations of PACA. About 5 g-equiv. of TEA per COOH-group are added to 

each solution. All points fall on the same line within the accuracy of 

these measurements: for the rather low concentrations of PACA, used in 

this investigation, the reduction with respect to these concentrations, 

according to eq. (3.45a), seems successful. 

At the highest < B > -values a slight deviation can be observed from 

the proportionality between cot 2x and <6^> . This points, like the de

viation from linearity in Fig. 5.2, to a deviation from the Gaussian be

haviour of the chains. At lower <$„> -values, where the relation between 
N n 

> i s s t i l l l i n e a r , we can assume t h a t the s t r e s s tensor ''N n cot 2x and 

and the refractive index ellipsoid of the solution are sufficiently coax

ial that pJgjj can be determined directly from these optical measurements 

as the ratio [cot 2x/<8jj>^] ,.. The obtained values of pJ ĵ  are given in 

Fig. 5.10. This figure surveys the results of the entire investigation, 

as far as the extinction angle is concerned. Both, the concentration and 

the added amount of TEA, seem to have no significant influence on pJ „. 

The averaged value of pJ amounts to 1.60. 

The larger scatter, which is obtained when less TEA is added, is 
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Cot2X 

Fig. 5.9. Example of a reduction of the extinction angle x with respect to concentra

tion. Concentrations in g PACA per ml solution are: (0) 0.1 x 10"'; 

(V) 0.2 X 10"5; (A) 0.3 x 10"'; (D) 0.5 x 10"'; (o) 1.0 x 10"'. To all solu

tions 5 g-equiv. of TEA per COOH-group are added. F = free-draining approxi

mation; N = non-draining approximation. Shaded area; location of the measured 

points after a correction for polydispersity. 

5.0 10.0 
-»• gramequivalents TEA 

15.0 

tinction angle curves. The values are plotted against the number of g-equiv. 

TEA per COOH-group added. Symbols as in Fig. 5.5. 
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caused by the inaccuracy in measuring small deviations of the extinction 

angle from 45° (compare Fig. 5.1). Moreover, with these measurements also 

the birefringence is very small, making an accurate determination still 

more difficult. 

5.2 The influence of coil expansion on the stress-optical coefficient 

It is quite obvious that the increase of the stress-optical coeffi

cient of the PACA must be ascribed to an expansion of the macromolecules. 

Especially the resemblance of Fig. 5.6 to the n /c vs. c-curves char-
sp 

acteristic for polyelectrolytes seems to prove this. Also the equilibrium 

character of the acid-base reaction is clearly manifested by the satura

tion effect in Fig. 5.5. 

On the other hand, the unionized PACA shows no changes in the stress-

optical coefficient, when the concentration of PACA is changed. From this 

fact the conclusion may be drawn that PACA in DMA is incapable of a spon

taneous ionization. Admittedly, such an ionization will be detectable on

ly at low concentrations. The question remains, whether at these concen

trations changes in the stress-optical coefficient can be observed with 

a sufficient accuracy. 

As is well known, quantitative conclusions about the coil expansion 

of polyelectrolytes cannot be drawn from viscosity measurements, as the 

results of these measurements cannot safely be extrapolated to zero con

centration. As a matter of fact, the same is true for the stress-optical 

coefficient. Only when isoionic dilution, according to Pals and Hermans'*' 

is applied to viscosity measurements on polyelectrolytes, normal results 

are obtained, which can be extrapolated to zero concentration. 

However, Fuoss and Strauss'' found an empirical relation which seems 

to describe the dependence of n /c on c at low polyelectrolyte concen-
sp 

trations with a reasonable accuracy. This Fuoss-Strauss relation reads: 

^ 1 + B X (c)^ 

where A and B are adjustable parameters. This equation has been extremely 

useful for many polyelectrolytes. In fact, Horvath and Vollmert^''' have 

shown that it can also be applied to the changes of the viscosity of 

the PACA-solutions. 

Because of the resemblance of the curves in Fig. 5.6 to the n /c 
' sp 

vs. c-curves of this PACA (Fig. 5.8) a similar relation was tried for the 

dependence of the stress-optical coefficient on the concentration of the 

PACA'': 
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When l/C is plotted as a function of the square root of PACA concentra

tion, a straight line should be obtained. This is demonstrated in Fig. 

5.11 for several quantities of TEA added. Within the limits of accuracy 

a reasonable extrapolation to zero concentration can be carried out with 

the aid of eq. (5.2). The values of the stress-optical coefficient, ex

trapolated in this way, are given in Table 5.1, column 2. They are also 

shown in Fig. 5.6 as closed points at the ordinate axis. 

10 2.0 

-» Vconcxir 

Pig. 5.11. Extrapolation of the stress-optical coefficient to zero concentration, ac

cording to eq. (5.2). Number of g-equiv. TEA per COOH-group added: symbols 

as in Fig. 5.1. 

Table 5.1 

Stress-optical coefficient and coil-expansion for 

several amounts of TEA added 

TEA ( g - e q u i v . ) 

0 

1 

2 

5 

10 

1 5 

l im 
q*0 
c+0 

C X 1 0 ' (cm^/dyne) 

5 . 9 

12.2 
14.9 
17.4 
19.6 
2 1 . 2 

<h^> 

1 

2 . 1 

2 . 5 

2 . 9 

3 . 3 

3 . 6 

At infinite dilution no mutual shielding of charges on separate ma

cromolecules takes place. The coil expansion is then determined only by 

the charges on the same molecular chain. 

The expansion of the molecular coil can be described by an increase 

of the mean square end-to-end distance of the coil with regard to the 
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unionized state'»''. For the expanded state Gaussian statistics may still 

be applied, if the expansion is not too large. 

The charges on the molecular chain lead to a "long-range" repulsion, 

as well as to a "short-range" repulsion, which particularly influences 

the local chain-stiffness. Both effects together lead to an increase of 

the coil-dimensions. For a moderate expansion, we may apply a relation, 

which may be obtained from eqs. (3.64) and (3.65): 

T/ - Yi - ^ (5-3) 

where <h^> in this case means the mean square end-to-end distance in the 

undisturbed, i.e. uncharged, state and h is an arbitrarily chosen end-to-

end distance. If an external couple of forces is applied to the end-

points, an averaging over the square of this end-to-end distance seems 

reasonable. In this way the action of the electrostatic repulsion forces 

is rudely taken into account. Admittedly, this procedure is equivalent 

to the introduction of an effective statistical random link which increas

es in length with the degree of ionization. 

From eqs. (5.3), (3.65) and (3.67) it can be concluded that an expan

sion of the coil must result in an increase of the stress-optical coef

ficient C. The more the coil expands, the more C increases. 

On the other hand, the anisotropy y» - YI °f the macromolecule will 

also be influenced by a change of the chemical structure of the macromo

lecule, as caused by the ionization of the chain. This means that, in 

principle, the changes in the stress-optical coefficient must be ascribed 

to several effects. 

However, the COOH-groups on our PACA-molecule are located opposite 

to each other on the aromatic rings in the chain. The charges, introduced 

by ionization, are uniformly distributed along the molecular chain. There

fore it seems probable that the anisotropy per unit length of the PACA-

chain will hardly be changed by the ionization. This makes the assumption 

plausible that the increase of the stress-optical coefficient is mainly 

caused by the expansion of the macromolecular coil. 

In that case the degree of expansion, expressed as an increase of 

the mean square end-to-end distance, can be calculated with the aid of 

eqs. (3,67) and (5.3). The results of this calculation are given in 

Table 5.1, column 3. 

Another way of interpretation is found by a look on Fig. 5.12. In 

this figure the stress-optical coefficient, as extrapolated to zero con

centration, is plotted on a double logarittimic scale versus the intrin

sic viscosity, measured at corresponding degrees of ionization'"''. If 

the above made assumption with respect to the usefulness of the stress-

optical coefficient as a measure of coil expansion is correct, one should 
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lim C (cmvdyne) 
q_0 
c-0 

[71] {cm'/g) 

Fig. 5.12. Stress-optical coefficient C, extrapolated to zero concentration, against 

intrinsic viscosity [n] * at various degrees of ionization. Dashed line: 

slope 2/3. 

obtain a curve of slope 2/3, since the intrinsic viscosity should be pro

portional to the 3/2th power of the mean square end-to-end distance of 

the coiled molecule, eq. (3.55a). 

In Fig. 5.12 a dashed line of slope 2/3 is drawn for comparison. 

From this figure it becomes clear, however, that the growth of the stress-

optical coefficient with increasing degree of ionization is considerably 

slower than would be expected from the corresponding growth of the in

trinsic viscosity. More detail should probably not be deduced from this 

figure because of the limited reliability of the extrapolation methods. 

The interpretation of the just mentioned fact may probably be that the 

difference of main polarizabilities y^ - y^ of the chain is more sensi

tive to the local stiffening of the chain than to the expansion by long 

range interaction forces, whereas the intrinsic viscosity is influenced 

by both effects more equally. This interpretation should, nevertheless, 

be considered with some extra reserve as we do not know the influence 

of the growing number of charges on the polarizabilities. 

5.3 Hydrodynamic properties of the PACA-molecules 

For a discussion of the hydrodynamic properties of the PACA-molecules 

Fig. 5.9 is considered. Except for the highest <6jj>^-values, where a 

slight downward tendency can be observed, the linear relation between 

cot 2Y and <B.,> , as postulated by eq. (3.43), is obeyed by this poly-
^ N n 

mer. This means that the macromolecules behave hydrodynamically as flex

ible coils. 

For a comparison of these measurements with the results of the Rouse-

Zimm treatment of the "bead-spring" model, as given in Chapt. 3, two 
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theoretical lines are also given in Fig. 5.9. The upper line, denoted 

by F, stands for the free-draining approximation, the lower one, desig

nated by N, for the non-draining case. 

However, all experimental points lie far outside the theoretical ex

pected area between the F- and N-line. From the experience with other 

polymers one may expect that this deviation is mainly caused by the poly

dispersity of the polymer sample. In order to confirm this assumption, 

Peterlin's method, which was explained in section 3.11, is applied to the 

experimental results. 

As is well-known, a polycondensation reaction, like the one which 

takes place during the synthesis of this PACA, actually gives rise to a 

molecular weight distribution of the Schultz-Zimm type. A polydispersity 

index of 2.4 as found for this PACA corresponds to a value of -0.286 

for the adjustable parameter z in eq. (3.75). 

unfortunately, Horvath and Vollmert'>') only give the Mark-Houwink 

equation at 25°C for the unionized PACA in DMA containing LiBr: 

[n] = 3.40-10"' X <M>''-'" (5.4) 
o w 

A few measurements in pure DMA give higher values for the intrinsic vis

cosity of the PACA as a function of <M> . The exponent in the Mark-Houwink 

equation, however, does not seem to be changed. The difference of 5°C 

between the temperatures at which the measurements of Horvath and Vollmert 

and the present measurements were carried out, seems of minor importance. 

Thus, a value of 0.78 is used for the constant a which occurs in eq. 

(3.76). In this way one obtains for the polydispersity factor p a value: 

p = 6.25 (5.5) 

Using the average value for pJ = 1.60, as derived from Fig. 5.10, one 

finally obtains for J „ the value: -* eR 

JgR = 0.25 (5.6) 

This value actually lies between the free-draining and the non-draining 

limits of Rouse and Zimm, as was found earlier for many uncharged mole

cules. In Fig. 5.9 the location of the measurements, corrected for poly

dispersity, is indicated by a shaded area. 

5.4 Conclusions 

From the foregoing the following conclusions can be drawn. The value 

of the stress-optical coefficient appears to be very much influenced by 

an ionization of the molecule. Due to the high anisotropy of this PACA, 

even semi-quantitative conclusions can be drawn with respect to the de-
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gree of expansion. This will be impossible, however, for most of the more 

conventional polyelectrolytes in aqueous solution, because of the rather 

low optical anisotropy of these polymers. 

The hydrodynamic behaviour of the expanded chain does not deviate 

from that of an uncharged polymer (Fig. 5.10). No influence of the ioni

zation on J p can be observed. According to the linear theory, described 

in chapter 3, this should mean, that both the charged and uncharged PACA-

molecules are flexible enough to form Gaussian coils. In that case low 

values of J „ are expected, according to the Rouse-Zimm theory. These 

low values of J „ are indeed obtained. This gives also a justification 

of the use of eq. (5.3) for the calculation of the coil expansion. 

From the exact value of J „ obtained, one can conclude that both the 

charged and the uncharged chains behave like molecular coils, in which 

the solvent is non-draining. This conclusion agrees pretty well with the 

opinion expressed by Vollmert and Horvath'' that the PACA-molecules must 

be highly solvated in DMA. 
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CHAPTER 6 

THE INFLUENCE OF HYDROGEN BONDS ON THE CHAIN STIFFNESS OF CELLULOSE 

TRICARBANILATE 

6.1 Results of flow birefringence and viscosity measurements 

On starting this part of the investigation, the flow birefringence 

of a great number of solutions of the sample CC(L 610) was measured. Mix

tures of esters and ethers were used as solvents, their compositions 

varying from pure ester to pure ether. The compositions of the solvents 

will be expressed in weight percentages. The following two combinations 

of solvents will be discussed: 

a) Phenyl ester of Benzoic Acid (PhB) - Dioxane, 

b) Tri-o-cresyl Phosphate (TOCPh) - Diphenyl Ether (DPhE). 

The measurements were carried out at several temperatures. 

Figure 6.1 gives the extinction angle curves for solutions of 

CC(L 610) in dioxane, with concentrations varying from 0.2 x 10"' to 

0.8 X 10~' g/ml. These measurements were carried out at a temperature of 

25°C. The corresponding measurements of the birefringence are given in 

Fig. 6.2. It is observed that the relation between the measured birefrin

gence and the shear rate is linear only for the lowest concentration 

(0.2 X 10"' g/ml). At higher concentrations the birefringence increases 

less than linearly with the shear rate. 

Fig- 6.1. Extinction angle against shear rate for a series of solutions of CC(L 610) 

in dioxane at 25°C. Concentrations of CC(L 610) expressed in g/ml: 

(A) 0.2 X 10"^; (D) 0.3 x lO'^; (o) 0.5 x 10"2; ( + ) 0.8 x lO'^. 
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Fig. 6.2. Flow birefringence against shear rate for the solutions specified in the 

caption to Fig. 6.1. 

An example for the influence of temperature on the extinction angle 

curves is giver, in Fig. 6.3. The results given in this figure were ob

tained from measurements on a 0.564% (w/v)-solution of CC(L 610) in 

TOCPh at the indicated temperatures. A comparison of Figs. 6.1 and 6.3 

shows that the temperature has a much greater influence on the extinction 

angle curves than the concentration of the solutions. 
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Fig. 6.3. Extinction angle curves for a solution of CC(L 610) in TOCPh at different 

temperatures. Concentration: 0.564 x 10"^ g/ml. 
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Due to the high molecular weight of the sample CC(L 610) the extinc

tion angle curves deviate considerably from 45 degrees. With decreasing 

molecular weight, the deviation from the 45° angle decreases rapidly, as 

can be seen in Fig. 6.4. In this figure the extinction angle curves are 

given for a 1.3% (w/v)-solution of the sample CC(Lonza) in pure PhB at 

75° and 90°C. As quoted in Table 4.1, the molecular weight of this sample 

is much lower than that of the sample CC(L 610). In this connection it is 

important that the viscosities of dioxane and PhB are of the same order 

of magnitude (see Table 4.2). So they cannot account for the difference 

in the extinction angle curves. 

° 3000 6000 9000 
* q(5-̂ ) 

Fig. 6.4. Extinction angle curves for a solution of CC(Lonza) in PhB at different temp

eratures. Concentration: 1.32 x 10"^ g/ml. 

With the aid of eq. (2.17) the values of the stress-optical coeffi

cient can be calculated from these measurements. As was pointed out in 

section 4.1.2, all measurements, except those made in pure dioxane, had 

to be corrected for the solvent contribution to the flow birefringence. 

Furthermore, only the Newtonian viscosities of the solutions, as measured 

with the aid of Ubbelohde viscometers, were used for these calculations. 

As will be shown in chapter 8, Ubbelohde measurements are nearly always 

in fair agreement with the Newtonian viscosities at low shear rates for 

the sample CC(L 610). For the moment, we are only interested in the 

linear behaviour of this polymer: the values of the apparent stress-op

tical coefficients, as calculated with the aid of these Newtonian vis

cosities, yield the correct value of C by an extrapolation to zero shear 

rate. In Fig. 6.5 a few examples are given of the obtained results. In 

this figure the values are given of the stress-optical coefficients for 

the sample CC(L 610) in pure dioxane, resp. pure PhB, as functions of 

polymer concentration and with the temperature as a parameter. In both 

solvents no significant influence of concentration on the results is ob

served. A relative scatter of about 10% is quite normal for this sort of 
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Fig. 6.5. Stress-optical coefficient C, extrapolated to zero shear rate, against con

centration for solutions of CC(L 610) in dioxane and PhB. Temperatures are 

given in the figure. 

measurements. This concentration-independence was found for all the meas

urements with all different CC-samples in all kinds of solvents. The 

significance of this fact for the interpretation will be discussed in 

the next paragraph. In this respect the behaviour of CC does not differ 

from that of other polymers. 

On the other hand, the stress-optical coefficient of CC(L 610) strong 

ly depends on temperature in both solvents. It decreases strongly with an 

increase of temperature. This is quite a striking result, because up till 

now no other polymer is known to have a stress-optical coefficient, 

which is so strongly temperature dependent. The largest changes of the 

stress-optical coefficient of CC(L 610) were found in a mixture of TOCPh 

- DPhE 25/75. The stress-optical coefficient of CC(L 610) decreases in 

the mentioned solvent mixture from a value of -33 x 10"' cm'/dyne at 30°C 

to -13.3 X 10"' cm'/dyne at 120°C. 

The stress-optical coefficient of CC(L 610) in dioxane appears to be 

considerably larger than in PhB at corresponding temperatures. To inves

tigate this difference in more detail, the values of the stress-optical 

coefficient have been determined for CC(L 610) in a series of mixtures 

of both solvents. The results, given in Fig. 6.6, are averages of the 

values obtained on at least two concentrations. No systematic concentra

tion dependence was found in any case. PhB melts at about 70°C. As a 

consequence, on the ester side no measurements could be carried out at 

low temperatures. In Fig. 6.6 a clear transition can be observed, which 



82 

C«10^ 
(cmVdyne) 

100% PhB 50/50 lOOVoD 

Pig. 6.6. Stress-optical coefficient C, extrapolated to zero shear rate, for CC(L 610) 

in solvent mixtures PhB - dioxane. Temperatures: (+) 25°C; (Ĉ  35°C; (V) 50°C; 

(A) 60°C; (CD) 75°C; (o) 90°C; (x) 100°C. 
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Fig. 6.7. Stress-optical coefficient C, extrapolated to zero shear rate, for CC(L 610) 

in solvent mixtures TOCPh - DPhE. Concentrations: 0.5 x 10"^ g/ml. Tempera

tures: (+) 30°C> (o) 60°C; (D) 90°C; (7) 120°C; (O 135°C. 
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almost entirely takes place in the range of high PhB-contents of the sol

vent . 

A similar transition of the stress-optical coefficient was found for 

CC(L 610) in mixtures of TOCPh and DPhE, which is shown in Fig. 6.7. How

ever, CC dissolves in DPhE only at high temperatures, so that the flow 

birefringence in pure DPhE could not be measured at the given temperatures. 

The measurements, reproduced in Fig. 6.7, were made only on solutions 

with a concentration of 0.5 x 10~ g/ml. Measurements at other concentra

tions were not carried out in these solvent mixtures, in view of the 

high price of the TOCPh and practical difficulties in preparing good so

lutions. As a matter of fact, the measurements in the solvent mixture 

PhB - dioxane are much more accurate. Nevertheless, an increase of the 

stress-optical coefficient is observed as well on changing from ester to 

ether. The effect is even considerably greater in mixtures of TOCPh and 

DPhE. Another striking feature is that, at 30°C, the transition occurs 

at a higher content of DPhE than with the other temperatures, whereas 

in the solvent mixture PhB - dioxane no influence of temperature on the 

transition region could be observed. 

A further confirmation of the presence of a transition is obtained 

from the change of the intrinsic viscosity of CC(L 610) with composition 

of the solvent mixture PhB - dioxane. The values of the intrinsic vis

cosity, as measured at the same temperatures at which also flow bire

fringence measurements were carried out, are given in Fig. 6.8. A com

parison with Fig. 6.6 shows that both transitions occur at about the 

same solvent composition. However, the total effect, as observed on the 

[\{cm'/g) 

300 

[THJcrnVg) 

200 

100%Phe, 50/50 100%D 100%TDCPh 50/50 100%DPhE 

Fig. 6.8. Intrinsic viscosity of CC(L 610) Fig. 6.9. Intrinsic viscosity of CC(L 610) 

in solvent mixtures PhB - dioxane. in solvent mixtures TOCPh -

Symbols as in Fig. 6.6. DPhE. Temperature 30°C. 
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intrinsic viscosity, appears to be much smaller than on the stress-op

tical coefficient, although the transition in the intrinsic viscosity 

is much sharper. 

In Fig. 6.9 the intrinsic viscosity of CC(L 610) is shown as a func

tion of solvent composition for mixtures of TOCPh - DPhE at 30°C. This 

figure shows a remarkable result, as the change of the intrinsic visco

sity is just opposite to that of the stress-optical coefficient. One may 

incline to interpret this in terms of the formation of aggregates or a 

precipitation of the polymer. However, this should have influenced the ex

tinction angle curve (compare Fig. 5.3). In contrast to this figure, no 

abnormalities are shown by the extinction angle curves of a solution, con

taining 0.5 X 10"' g/ml of CC(L 610) in a mixture of TOCPh - DPhE 25/75. 

This seems to indicate that the CC(L 610) is still completely dissolved. 

Yet, these results on the TOCPh - DPhE mixtures should be considered 

with some reserve. 

The above mentioned results seem to confirm Burchard's supposition'', 

viz. that a stiffening of CC occurs on changing the solvent composition 

from pure ester to pure ether. To study this stiffening somewhat more 

quantitatively, the dependence of the stress-optical coefficient of CC 

on molecular weight has been determined. For these measurements also 

the other CC-samples, mentioned in Table 4.1, were used. In Fig. 6.10 

stress-optical coefficients, as obtained in pure PhB and pure dioxane, 

-8.0 

CxlO^ 

(cm'/tlyne) 

I -6.0 

75C 

Phenyl Benzoate 

- ^ < M > „ 
10' 

Fig. 6.10. Plot of the values of the stress-optical coefficient C against molecular 

weight for a series of samples of CC in dioxane and PhB, at different temp

eratures. The full lines are theoretical curves according to the theory 

of Gotlib and Svetlov. 
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are given as functions of the estimated number average molecular weights 

of the samples. For the samples with weight average molecular weights 

between 3000 and 15000 only these molecular weight averages were known. 

As a consequence, for these samples results are plotted against the 

weight average molecular weights. Most C-values are averages of measure

ments on at least two concentrations. Of the high molecular weight sam

ple CC III unfortunately only a small quantity was available, so that 

measurements could be carried out at only one concentration. The non-

Newtonian behaviour of the viscosity of the solution, which is expected 

to be pronounced for this sample, could not be measured either. As even 

Ubbelohde measurements are expected to lie in the non-Newtonian region 

of shear rates, no exact values of the stress-optical coefficient could 

be determined. Shear rates in the Ubbelohde viscometers have been esti

mated for this solution on the only approximately valid assumption of a 

parabolic flow profile. The stress-optical coefficients, however, as cal 

culated from the flow birefringence measurements at those shear rates, 

can at the expected imperfect flexibility of the chain only be lower 

than the true stress-optical coefficients, as defined for zero shear 

rate. On the other hand, an extrapolation of the flow birefringence 

measurements to zero shear rate with the aid of the mentioned non-New-

Cot 2 X 

<B > 

Fig. 6.11. Example of the poor reduction of the extinction angle curves with respect 

to concentration for CC(L 610) in dioxane at 25°C. Concentrations: symbols 

as in Fig. 6.1.( ): curve extrapolated to zero concentration. F = 

free-draining approximation for Gaussian coils; N = non-draining approxi

mation. 
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tonian viscosities must give too high values of the stress-optical co

efficient. Both limits are given in Fig. 6.10 by the end-points of the 

vertical lines. As the best approximations for the true zero shear val

ues of the stress-optical coefficient the averages of both limits 

have been taken, given by the places of the symbols. 

In Fig. 6.11 an example is given for the reduction of the extinction 

angle curves with respect to concentration with the aid of the reduced 

shear rate <8fj> • The points correspond to the measurements reproduced 

in Fig. 6.1. It is clearly observed that the curves show an upwards 

shift with increasing concentration. The reduction of the measured ex

tinction angle curves with respect to concentration is not successful. 

This was found earlier for anionic polystyrenes by Daum'' and Janeschitz-

Kriegl''. Furthermore, a clear curvature can be observed for all concen

trations at high <B.,> -values. Only for the lowest <g„>„-values a linear 

' N n •* N n 
relationship between cot 2x and B , as predicted by theory, seems to 
hold. This means that CC{L 610) shows a linear behaviour only at the 

lowest <8„> -values, which could be reached. As for the moment we are 
N n 

interested only in that linear behaviour, the zero shear rate values of 

[cot 2x/<6„> ] have to be determined at the lowest possible values of 

The best way of doing this is to plot the calculated values of "•̂N n" 
[cot 2x/<$ > ] against <6„> . In Figs. 6.12 and 6.13 a few examples are 

given of this procedure. Fig. 6.12 corresponds to the measurements given 

in Figs. 6.1 and 6.11. The larger scatter, which is obtained at the low-

N n 
- v a l u e s , i s c a u s e d by t h e i n a c c u r a c y i n m e a s u r i n g e x t i n c t i o n 

Fig. 6.12. Values of [cot 2x/<B > ] against <B > for CC(L 610) in dioxane a t 25°C. 
N n N n 

Extrapolation to zero sheau: rate (<6 > = 0 ) . Concentrations: symbols as 
N n in Fig. 6 . 1 . (- ) : curve extrapolated to zero concentration. 
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Fig. 6.13. Values of [cot 2x/<6 > ] against <e 

trations: symbols as in Fig. 6.1.( • 

centration. 

for CC(L 610) in PhB at 75°C. Concen-

- - ): curve extrapolated to zero con-

angles close to the 45° angle. One observes that a linear region is 

hardly found. However, at <B„> "̂  10"' the value of [cot 2x/'=6j,>jj] seems 

to become independent of <Sf,> • so that an extrapolation to that '=B^*n~ 

value seems justified. Fig. 6.13 gives the results for CC(L 610) in PhB 

at 75°C. For these measurements, unfortunately, no extrapolation can be 

tried. However, a comparison with Fig. 6.12 shows that these curves, on 

the whole, are situated lower than the curves in Fig. 6.12 at correspond

ing concentrations. 

In Fig. 6.14 the values of £2 * for CC(L 610) in pure dioxane, as ex

trapolated to zero shear rate according to the above description, are 

plotted against concentration, with temperatures as parcimeters. From 

this figure it may be concluded that Ü not only depends on concentration 

but also on temperature. However, the temperature influence seems to di

minish when the concentration is lowered. In other words, for finite 

concentrations also the temperature reduction with the aid of gĵ  does 

not hold for CC(L 610) in dioxane. An extrapolation to zero concentration 

can be made with reasonable accuracy. At infinite dilution the temperature 

dependence of n practically disappears within the accuracy limits of the 

extrapolation procedures. 

In fact, the determination of the zero shear rate value of n is 

equivalent with the direct determination of the initial slope of the 

extinction angle curve. The accuracy of this determination depends on 

* In the text [i is used for typographic reasons instead of [cot 2x/<Bf,'„]„̂ Q-
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* concentration CC(L610) x10^(g/ml) 

Fig. 6.14. Values of [cot 2x/<B > ], extrapolated to <B.> "̂  10"^, against concentration 
N n N n 

for CC(L 610) in dioxane at different temperatures. 

the number of reliable extinction angle measurements carried out in the 

Vicinity of 45°. However, as can be seen in Figs. 6.1 and 6.3, for 

CC(L 610) only a few experimental points could be obtained between say 

40° and 45°. Because of the high molecular weight of the sample CC(L 610) 

the extinction angle rapidly deviates from 45° at small shear rates, 

while the created birefringence is still feeble-- This causes the diffi

culties in extrapolating [cot 2x/<8„> ] to zero shear rate. 

In this respect, measurements on the lower molecular weight sample 

CC(Lonza) look more promising. For this purpose a number of extinction 

angle curves were measured for this sample in pure PhB, resp. pure di

oxane. An excunple for the extinction angle curves has already been given 

in Fig. 6.4. As theoretically predicted, the extinction angle decreases 

linearly with increasing shear rate, as long as the measured values lie 

above 40°. The initial slope of the curves can now be determined direct

ly and with great accuracy. For solutions in dioxane, however, reliable 

results can only be obtained at low temperatures. At 90°C extinction an

gles deviate so little from 45° that a reasonable estimation of ü becomes 

impossible. 

The values of Q as obtained for CC(Lonza) according to this more 

direct method, are given in Fig. 6.15: in the upper part for dioxane, in 

the lower part for PhB, for the indicated temperatures. As to the dioxane 

part of this figure, the same trends are observed as in Fig. 6.14. In the 

PhB-part the temperature difference between both series of measurements 

is too small to show up in the results. A comparison of the results in 

" Roughly speaking, the initial slope of the extinction angle curve increases with the 

square of molecular weight, whereas the slope of the birefringence curve only in

creases linearly with molecular weight ' . 
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2D 
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O 0.2 0 / 0.6 03 1.0 1.2 l.i 1.6 1.8 
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Fig. 6.15. Values of [cot 2x/<6.> ], extrapolated to zero shear r a t e , against concen-
N n 

tration for CC(Lonza) in dioxane, resp. PhB, at different temperatures. 

both solvents shows again that the values of Ü for the solutions in PhB 

are generally lower than those for the dioxane solutions, also when the 

difference in temperature is taken into account. The same trend was al

ready observed on the solutions of CC(L 610), although for this polymer 

no zero shear rate values could be obtained in PhB-solutions. As is seen 

from Fig. 6.15, the extrapolation to zero concentration can easily be 

carried out. The resulting values are given in Table 6.1. Strictly speak

ing, the differences between these values are so small that they nearly 

lie within the accuracy limits of the extrapolation method. So it must 

Table 6.1 

N̂ n'q=0 
extrapolation to zero concentration. Approximate values of J „, a 

obtained after correction for polydispersity, are given between 

brackets 

Solvent 

25°C 

[cot 2 x/<BN^„lq=o 

50°C 75°C 90°C 

Dioxane 

Phenyl ester of 

Benzoic Acid 

2.17 (0.571) 2.00 (0.526) 1.90 (0.500) 

1.70 1.70 
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be concluded that, if the transition in the stress-optical coefficient 

is accompanied by a change of the value of Q (extrapolated first to zero 

shear rate and then to infinite dilution), this change must certainly be 

a very small one. 

6.2 Influence of solvent and temperature on the chain stiffness 

The experimental results clearly demonstrate that CC undergoes a 

kind of conformational transition when the solvent composition is changed 

from ester to ether. The simultaneous growths of the stress-optical coef

ficient and the Intrinsic viscosity, as observed in the mixtures of PhB 

and dioxane, probably point to a stiffening of the chain. However, a 

direct semi-quantitative interpretation of the increase of the stress-

optical coefficient in terms of coil expansion, as it seemed permissible 

for poly(amide carboxylic acid), is certainly not possible in this case. 

Primarily, the cellulose derivatives are so stiff that at the used mole

cular weights, no Gaussian coils are formed. As a consequence, eq. (5.3) 

cannot be applied to this system. Secondly, the molecular structure of 

CC is so complicated that one should not expect that the anisotropy per 

unit length of the CC-chain remains unchanged at a conformational tran

sition of the molecule. 

The most direct proof for the character of the transition can be 

derived from Fig. 6.10. The measurements represented in this figure can 

be interpreted straightforwardly by the theory of Gotlib and Svetlov, 

dealt with in section 3.8.2. In fact, the full lines connecting these 

points are theoretical curves with the following parameters: 

25°C 

50°C 

75°C 

90°C 

75°C 

C = -8 
00 

C = -6 

C = -4 
00 

00 

00 

76 

17 

55 

70 

06 

X 

X 

X 

X 

X 

10"' cm'/dyne, 

10"' cm'/dyne, 

10"' cm'/dyne, 

10"' cm'/dyne, 

10"' cm'/dyne, 

s 

s 

s 

s 

s 

= 50.0 

= 42.5 

= 42.5 

= 38.6 

= 30.0 

where C^ = ^([n]/[n] )^ = the value of the stress-optical coefficient for 

an infinitely long Gaussian macromolecule, 

s = the number of monomer units per statistical random link, which 

is twice the number of monomers per persistence length. 

The lowest molecular weight samples usually give too low values of 

the stress-optical coefficient, compared with theory. In the first place, 

this is caused by the use of the weight average molecular weights of 

these Scunples. As is well known, these averages are always higher than 

the number averages, which means that the measured points are apparently 

shifted to higher molecular weights. In the second place, this can be 

caused by the fact that, for these low molecular weights, the assumption 
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of the infinitely thin persistent thread does not hold. At these low de

grees of polymerization the diameter of the chain is of the same order 

of magnitude as its length. Sample CC II2 even corresponds to a total 

length of only six monomer units. For those cases Tsvetkov'*' has shown 

that the anisotropy of the side-groups takes over the function of the 

anisotropy of the main chain, which for CC must result in a decrease of 

the absolute value of the stress-optical coefficient and, in the worst 

case, even in a change of sign of the birefringence. It should also be 

noted that a logarithmic molecular weight scale is used in Fig. 6.10. 

This overemphasizes the importance of the experimental points at low 

molecular weights. 

Special attention should be paid to the number s of monomer units 

per random link for CC in dioxane at 25°C. From light-scattering meas

urements on CC in a 8-mixture dioxane-methanol 56.5/43.5 (vol.%) at 

20°C Burchard'''' has calculated a persistence length a = 141 A, on 

assuming a symmetric rotational potential around B-glycosidic bonds 

with respect to the straight zig-zag conformation of the chain. This 

corresponds to a length of the statistical random link A = 2a = 282 A. 

The best fit of experimental results was obtained when an average 

monomer length of 5.50 A was assumed. Using these values one obtains 

s = 51.3, which is rather close to the value given above for the dioxane 

solutions at 25°C. The difference of 5°C between the temperatures at 

which both kinds of measurements were carried out, seems of minor impor

tance. In fact, the monomer length of cellulose is well-known from x-ray 

diffraction to be 5.15 A. With this value even larger values of s would 

have been found, although this monomer length would not fit in the cal

culations of Burchard''. The fact that the value of s in the 9-mixture is 

a little higher than the above quoted value in pure dioxane is in accor

dance with the poorer solvent nature of a e-mixture. 

From Fig. 6.10 it can be concluded that the stiffness of the CC-

chain increases with a decrease of temperature: the number of monomers 

per random link grows with this decrease. The same naturally holds for 

the length of this link. On the other hand, it seems reasonable that 

also the transition of the stress-optical coefficient, as observed with 

a change of the solvent composition (see Fig. 6.6), must be ascribed to 

a changing stiffness of the chain. In the ester PhB the CC-chain is less 

stiff than in the ether dioxane. An interpretation of growing stiffness 

in terms of the formation of intramolecular hydrogen bonds is quite ob

vious . 

However, the stiffness of CC, as expressed in terms of the number 

of monomer units per random link, changes less than one would expect 

from the large changes of the stress-optical coefficient. Apparently, 

the stress-optical coefficient does not simply depend on the length of 
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Table 6.2 

Properties of two samples of CC in a series of solvents 

Code Mol.wt. Solvent 

XIO"^ 

Temp. 

(°C) 

25 

50 

75 

90 

75 

100 

30 

60 

90 

30 

60 

90 

120 

15 

25 

35 

40 

55 

80 

[̂ lo 
(cmVg) ( 

472 

390 

305 

255 

215 

180 

230 

185 

155 

65 

206 

174 

CxlO' (c 

cm'/dyne) 

- 8.30 

- 5.90 

- 4.05 

- 3.50 

- 1.86 

- 1.45 

- 1.40 

- 1.25 

- 1.15 

-33.0 

-25.5 

-15.2 

-13.3 

- 3.10 

- 2.10 

- 1.50 

- 1.20 

- 1.98 

- 1.54 

i-a2)xlO' 

(cm') 

-2270 

-1730 

-1370 

-1167 

- 510 

- 426 

- 334 

- 328 

- 329 

-7773 

-6601 

-4289 

-4063 

- 776 

- 544 

- 402 

- 327 

- 519 

- 430 

^ s 

50.0 

42.5 

42.5 

38.6 

30.0 

36.6 

34.7 

CC(L 610) 4.4 Dioxane 

Phenyl Benzoate 

Tri-o-cresyl 

Phosphate 

TOCPh-Diphenyl 

ether (25/75) 

Dibutyl ketone 

CC IXi, 5.0 Benzophenone 

the random link. In Table 6.2 a survey is given of the results obtained 

on CC(L 610) in the different solvents. In this table also results are 

mentioned, which were obtained on CC(L 610) in dibutylketone'' and on 

a sharp fraction CC IX^ of comparable molecular weight in benzophenone 

by Janeschitz-Kriegl and Burchard''. Before drawing conclusions from 

the values of the stress-optical coefficient about the chain-stiffness 

of CC, one should realize that the stress-optical coefficient C_̂  is, 

according to eq. (3.67), explicitely influenced by the refractive index 

of the solution and by the temperature. This means that the values of 

the anisotropy cii - Ü2 of the random link should be used, which can be 

calculated from the stress-optical coefficients with the aid of eq. 

(3.67). As far as possible, these calculations were carried out with the 

aid of the values of C , as obtained from the method of Gotlib and Svetlov. 

If these values were not known, the experimental values for CC(L 610) were 

used. From Fig. 6.10 it can be deduced that the errors made by this pro

cedure are comparatively small. The calculated values of ai - «2 are 

given in Table 6.2, column 7. Two groups of solvents can clearly be dis-
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cerned: on the one hand the ethers, in which CC possesses a relatively 

high anisotropy, on the other hand the esters and ketones, in which CC 

possesses a lower anisotropy. Apparently, the stiffness of CC is of the 

same order of magnitude in esters and ketones, but differs from that in 

ethers. 

30001 

(oii-aj'xIÔ Vm̂ ) 

2000 

1000 

10 20 
— » • s 

30 40 50 60 

Fig. 6.16. Anisotropy of the statistical random link (0̂ -02) against the number of mono

mer units per random link s, for CC in different solvents and at different 

temperatures. Solvents: (o) dioxane; (+) benzophenone; (Q) phenyl benzoate. 

In Fig. 6.16 the results shown in the last two columns of Table 6.2 

are plotted graphically to illustrate the tremendous influence of s on 

the anisotropy of the random link. From eqs. (3.65) and (3.71) it can 

be deduced that the anisotropy of the statistical random link should be 

proportional to the length of that link, provided that the anisotropy 

per unit length of the chain Ag remains the same. For CC this is certain

ly not the case, as can be seen in Fig. 6.16. The non-linear relation must 

therefore be due to other influences. 

Besides a stiffening of the chain also other reasons can be responsi

ble for a change of the anisotropy of the statistical random link: 

a) .A changing form-birefringence, 

b) A changing polymer-solvent interaction resulting in changes with re

gard to solvatation as well as excluded volume, 

c) A change of the chemical structure of the molecular chain. 

This classification is certainly quite arbitrary, as the different effects 

are usually interrelated. Therefore it will, in the general case, be im

possible to determine the influences of all these effects separately from 

only a restricted number of measurements. There are reasons, however, to 

expect a simpler situation with CC. 

As to the first effects, it can be said that these will become appar

ent when the solvent is changed. In this context one should remind that 
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dioxane and also dibutylketone are no "matching solvents". Therefore the 

anisotropies of the CC-molecules in these solvents must contain a certain 

positive contribution of the form-birefringence. However, in section 

4.1.2 it was already demonstrated that the latter effect lies within the 

measuring accuracy. Moreover, if form-birefringence occurs, the stress-

optical coefficient shows a systematic concentration dependence'', viz. 

a decrease with increasing concentration, when the total birefringence 

effect is positive, or an increase in absolute value, if the total ef

fect is negative. This was never observed, which again confirms that this 

effect may be neglected. 

Solvatation influences will probably play a role. From Fig. 1.2 it 

can easily be seen that CC has a kind of tape structure which contains 

the cellulose backbone in the centre. This backbone is surrounded on 

both sides by rather closely packed phenyl-groups. Both regions are easi

ly accessible to solvent molecules and will probably show their own sol

vatation behaviour. Indeed, the peculiar behaviour of CC in mixtures of 

ketones and water, resp. methanol, as observed by Burchard'"', may be 

due to this fact. Therefore it cannot be excluded that the transition 

of the anisotropy, as observed with a change of the solvent composition, 

is at least partly caused by a change of the solvatation of the molecular 

chain. 

For CC(L 610) in dioxane at 25°C a number of 50 monomer units was 

found per random link. This means that the total length of the molecule 

comprises only 17 random links. With such a small number of random links 

the molecule can scarcely form a Gaussian coil. In such a case, the ex

cluded volume cannot play a role of importance. 

Undoubtedly, however, the strong change of the anisotropy of the 

random link with temperature and also with solvent-composition, is main

ly due to an alteration of the chemical structure of the chain. As a 

matter of fact, the negative anisotropy of CC is caused by the presence 

of the strongly anisotropic phenyl-rings in the side-groups. Since the 

polarizability of a phenyl-group is much greater in the plane of the 

ring than in a direction perpendicular to that plane, the contributions 

of these groups to the anisotropy of the chain can be expected to depend 

to a great extent on the average orientation of the rings with regard to 

the longitudinal direction of the chain. A similar hypothesis has been 

put forward and checked some time ago for polystyrene'"'. From Fig. 1.2 

it can be seen that, when the indicated hydrogen bonds are formed, the 

phenyl groups are closely packed. A rotation of the phenyl groups is 

nearly completely blocked. Any breakage of hydrogen bonds results in a 

greater flexibility of the chain and, simultaneously, in a greater free

dom for rotation of the phenyl-rings. This certainly causes the observed 

decrease of the anisotropy of the chain. 
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Table 6.3 

Temperature coefficients of intrinsic viscosity and anisotropy and 

the conformational energy differences of two samples of CC in a series 

of solvents 

Code 

CC(L 610) 

CC IX, 

Solvent 

Dioxane 

Phenyl Benzoate 

Tri-o-cresyl 

Phosphate 

TOCPh-Diphenyl 

ether (25/75) 

Dibutyl ketone 

Benzophenone 

d(ln[n]o'/<lT 

(°C"') 

-0.98 X 10"' 

-0.71 X 10"' 

-0.66 X 10"' 

-0.68 X 10"' 

d(In 1ai-aj 

(°C"') 

-1.02 X 

-0.72 X 

0.0 

-0.90 X 

-3.53 X 

-0.74 X 

|)/dT 

10"' 

10"' 

10"' 

10"' 

10"' 

AE 

(kcal/mol) 

2.20 

1.85 

0.0 

2.09 

6.15 

1.75 

The transition of CC(L 610) in mixtures of TOCPh - DPhE must ob

viously be interpreted in the same way. In TOCPh - DPhE 25/75 the aniso

tropy is even higher than in dioxane, which probably indicates a still 

greater stiffness related to a different polymer-solvent interaction. In 

this respect one should be reminded that CC cannot be dissolved in pure 

DPhE at the temperatures used. This probably means that the mixture 

TOCPh - DPhE 25/75, especially at the lower temperatures, is nearly a 

e-solvent. In such a case the thermodynamic polymer-solvent interaction 

is minimal, which certainly promotes the formation of intramolecular 

hydrogen bonds. 

The effects of temperature on the anisotropy ai - «2 of the chain 

of CC(L 610) in the different solvents can be compared by calculating 

the temperature coefficients of this anisotropy from the data in Table 

6.2, column 7. The results are given in Table 6.3, column 4. It appears 

that TOCPh and dibutylketone differ clearly in their behaviour. Further 

both ethers dioxane and DPhE give a somewhat higher value than PhB and 

benzophenone. The latter solvents give nearly equal values. This again 

demonstrates the extraordinary position of the ethers as solvents, pro

moting the formation of intramolecular hydrogen bonds within CC. With 

the aid of light scattering Öhman and Shanbhag''' have found that CC 

behaves quite peculiarly in dibutylketone. This appears to be accompa

nied, according to the present results, by a marked temperature coeffi

cient of the anisotropy. As the temperature coefficient for CC in TOCPh 

is extraordinary as well, it is probable that CC will behave quite 

exceptionally also in this solvent. This may have something to do with 
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the temperature influence on the transition region for CC(L 610) in 

TOCPh - DPhE, which was reported above (see Fig. 6.7). 

As a final point of discussion it must be mentioned that, on the ba

sis of birefringence measurements on stretched poly(dimethyl siloxane) 

elastomers. Mills and Saunders''' have proposed a relation, which de

scribes the temperature dependence of the anisotropy of the random links 

over a limited temperature range. This relation reads: 

ai - 02 = (ai - a2)T=o> ^ exp(AE/RT) (6.1) 

where (ai - a2)r[.=„ = an adjustable constant, 

AE = a kind of conformational energy difference. 

As a matter of fact, also the results given in Table 6.2, column 7, can 

be described quite well by this relation. In this way the conformational 

energy difference of CC in all mentioned solvents can be calculated. The 

results are given in Table 6.3, column 5. However, the question remains 

in how far AE has any real significance. 

6.3 The hydrodynamic aspects of the conformational transition 

In this paragraph only the linear effects, accompanying the confor

mational changes of CC, will be discussed. An evaluation of the non-linear 

behaviour of CC is postponed to a later chapter. 

6. 3.1 The intrinsic viscosity 

Unfortunately, a quantitative interpretation of the observed transi

tions in the intrinsic viscosity cannot be given in terms of the chain 

stiffness. As a matter of fact, all known theories on the intrinsic vis

cosity of polymer solutions are derived for monodisperse samples. The 

polydispersity, however, has a great influence which varies with the de

gree of stiffness of the polymer. As the polydispersity of all samples 

used in this investigation is quite appreciable, only some qualitative 

conclusions can be obtained. 

Equations (3.55 a-b) describe the dependence of the intrinsic visco

sity on the molecular dimensions of a coil molecule. For the derivation 

of these equations the following assumptions were made: 

a) Excluded volume effects are negligible (8-conditions), 

b) The macromolecules are sufficiently long to behave as Gaussian coils, 

c) The macromolecules are non-draining. 

As to the first assumption, it has already been mentioned in section 

6.2 that the influence of excluded volume may in fact be negligible for 

cellulose derivatives. However, both other assumptions are certainly not 

satisfied. Cellulose derivatives are in general too stiff to behave like 

Gaussian coils. This also implies that these coils are far from non-
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draining. Consequently, the Flory-Fox parameter $ is not a universal 

constant: it has not yet reached its asymptotic value for very high mole

cular weights, in this connection the reader is reminded that * is 

explicitely influenced by the draining parameter h*. It decreases with 

decreasing h* (< 0.25). However, in spite of these restrictions Flory 

et al.'*' believe that the influence of temperature on the intrinsic 

viscosity of cellulose derivatives must mainly be due to changes of the 

mean square end-to-end distance <h'> of the chains. These changes are 

caused by alterations of the stiffness of the cellulose chain, due to 

restrictions of the free rotation around the 6-glycosidic bonds. Also 

the height of the jump in the intrinsic viscosity in mixtures of PhB -

dioxane, as shown in Fig. 6.8, must then be ascribed to this stiffening 

effect. Qualitatively the values of the intrinsic viscosity of CC(L 610), 

as given in Table 6.2, column 5, are in accordance with the observed 

changes of the stiffness of CC. 

The temperature coefficients of the intrinsic viscosity of CC(L 610) 

in the different solvents are given in Table 6.3, column 3. Except for 

dioxane, values are obtained which are of the same order of magnitude 

as those found for other cellulose derivatives''*'. The value found in 

dioxane is somewhat higher than normal, which again should be due to the 

extra stiffening of CC in this solvent by the formation of intramolecu

lar hydrogen bonds. As a matter of fact, in ethers also a higher temp

erature coefficient of the optical anisotropy was found than in most 

other solvents. 

As a next point of discussion it must be mentioned that Burchard et 

al.'^' have measured the molecular weight dependence of the intrinsic 

viscosity of CC in dioxane at 20°C. For these measurements a great num

ber of samples with narrow molecular weight distributions 

(<M> /<M> < 1.1) was used. These results are given in Fig. 6.17. In this 

figure also a number of measurements of Janeschitz-Kriegl and Burchard'' 

on sharp fractions of CC in benzophenone at 55°C is reproduced as well 

as the intrinsic viscosities of the samples CC Is, CC Iij, CC(Lonza) and 

CC(L 610) in PhB at 75°C. 

With the aid of the theory of Eizner and Ptitsyn, as dealt with in 

section 3.7, the molecular weight dependence of the intrinsic viscosity 

was calculated for CC in dioxane at 20°C by the present author. For the 

molecular weight of the monomer unit M of CC one obtains a value of 519. 

For b, the length of the monomer unit, a value of 5.15 A was taken, equal 

to the value obtained from x-ray diffraction data. For the number of mo

nomer units per random link s = 2X the value of 50 was used, the value 

found above for CC in dioxane at 25°C. The difference of 5°C between both 

kinds of measurements will be of minor importance. For r a value of 

9.2 A was chosen, in correspondence with the mean radius of the cross 
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1? 1?̂  10̂  1? 
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Fig. 6.17. In t r ins ic viscosi ty of cellulose t r i ca rban i la te fractions against molecular 

weight in various solvents: (o) dioxane 20°C; (x) benzophenone 55°C; 

(•) phenyl benzoate 75°C. ( ) curve according to the theory of Eizner 

and Pti tsyn for the parameters indicated; {*) theoret ical point for a pro

late e l l ipso id of one persistence length. 

sec t ion of the chain, as obtained from x-ray small-angle measurements on 
acetone s o l u t i o n s ' ' ' . I t must be said t h a t the influence of r i s not 
very pronounced; even a value of r = <» does not give much d i f fe rence . 
The r e s u l t of these ca l cu l a t i ons i s given by the dashed l ine in Fig. 
6.17. Except for the lowest molecular weight samples the experimental 
and t h e o r e t i c a l l i n e s almost completely co inc ide , which means tha t the 
flow bi ref r ingence and v i s c o s i t y measurements on CC in dioxane are in 
exce l l en t agreement. For the low molecular weight samples the model of 
the i n f i n i t e l y th in wormlike chain i s not qu i t e r e a l i s t i c . In fac t , the 
f i n i t e th ickness of the chain w i l l have a pronounced influence on the i n 
t r i n s i c v i s c o s i t y . This i s the reason why, a t low molecular weights , the 
charac te r of the t h e o r e t i c a l curve i s qu i t e d i f f e r e n t from the one drawn 
through the experimental p o i n t s . 

As has been pointed out by Janesch i tz -Kr ieg l and Burcha rd ' ' , short 
wormlike chains of f i n i t e th ickness can b e t t e r be approximated by p ro la t e 
e l l i p s o i d s . In the same way as done by these au thors the i n t r i n s i c v i s 
cos i ty of a p a r t i c l e , possessing j u s t the p e r s i s t e n c e length , can be c a l 
cu la ted . In fact a mistake was made by these authors in t h e i r ca lcu la t ion 
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of the volume of the equivalent ellipsoid. As this particle should con

tain 25 monomer units, its molecular weight would be 13 x 10'. The value 

of the intrinsic viscosity can be obtained from the works of Simha''' 

and Scheraga'''. The value as obtained by the present author on assuming 

a value of 5.15 A for the monomer length and a value of 9.2 A for the 

mean radius of the cross section of the chain, is indicated in Fig. 6.17 

by an asterix. This value again agrees quite well with the experimental 

results. 

The character of the curve drawn through the experimental results for 

CC in benzophenone and PhB, however, is quite different from the theoret

ically predicted curve in the whole range of molecular weights. The dif

ference between the experimental curves in benzophenone and PhB is prob

ably due to the fact that the samples measured in the latter solvent had 

a comparatively great polydispersity. In fact the curves obtained for 

benzophenone and for PhB are below the one obtained for dioxane. According 

to the Eizner-Ptitsyn theory this fact would correspond to lower values 

of X, in accordance with flow birefringence data. However, the curvatures 

of these experimental lines are just opposite to that of the theoretical 

line. As assumed already by Janeschitz-Kriegl and Burchard'', the reason 

for this fact must be sought in the excluded volume. In the solvents ben

zophenone and PhB, in which CC is much more flexible than in dioxane, the 

CC-chain will start to show a Gaussian behaviour in a lower molecular 

weight range than in dioxane. In that range also the influence of the ex

cluded volume will become perceptible. As a matter of fact, even in 

dioxane the highest molecular weight samples can be seen to deviate 

slightly from the theoretical line, due to excluded volume effects. This 

causes the upward curvature of the experimental curves. Finally it can 

be observed in Fig. 6.17 that all experimental curves seem to converge 

to the same values at small molecular weights, where the influences of 

both chain stiffness and excluded volume on the intrinsic viscosity vanish. 

6.3.2 The behaviour of the extinction angle 

It should be reminded that for the rather stiff CC-samples the opti

cally measured quantity [cot 2x/<Bj,> ] cannot be identified, after extra

polation to zero shear rate, with the hydrodynamic quantity pJ , as de

fined by eq. (3.72b). This procedure is strictly correct only in the case 

of Gaussian coil molecules. For the respective argumentation see section 

3.9. For the following, however, we must suppose for simplicity that all 

investigated samples are sufficiently coiled to justify the assumption 

that the values of n (see footnote on page 87) and pJ _ do not differ 

to a great extent. This means that we shall assume to be allowed to use 

the hydrodynamic theories, described in chapter 3, for an interpretation 

of the optically measured quantities, without introducing great errors. 
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It is a rather difficult task to draw conclusions from the observed 

changes of Q. However, a general trend can be deduced from the values of 

this quantity for CC(Lonza), as quoted in Table 6.1, and also from Figs. 

6.12 and 6.13: the value of Q shows a tendency to grow with increasing 

stiffness of the chain. Both the temperature- and the solvent-influence 

on the chain stiffness can be recognized in a change of the value of il. 

As far as the behaviour of Q reflects that of the quantity pJ„T, for 

these samples, it can be stated that the prediction put forward in 

chapter 3, viz. that J _ should increase with a growing stiffness of a 

macromolecule, seems to be confirmed by these experiments. However, in 

view of the limited accuracy of the extrapolation procedures the question 

remains in how far the observed changes can be considered as significant. 

As to the found influence of temperature on Q it must be mentioned 

that the reduction of the extinction angle curves of other polymers with 

the aid of the reduced shear rate 6,, was always found to give tempera

ture independent values of [cot 2x/B„]''. Obviously, the changes of 

stiffness with temperature were so small for those other polymers that 

the temperature reduction was not disturbed. 

Just as for poly(amide carboxylic acid) also in the case of CC the 

polydispersity of the samples has a tremendous influence on the experi

mental results. For a comparison of these results with theory again a 

correction for polydispersity must be made. If we assume that the mole

cular weight distribution of the sample CC(Lonza) is also of the Schultz-

Zimm type, the correction method of Peterlin can again be used in the 

form given in section 3.11. For this purpose one needs the polydispersi-

ty-index of this sample, as given in Table 4.1, column 4, and the expo

nent a in the Mark-Houwink equation. However, the value of a is not a 

constant for CC in all solvents and at all temperatures used (see the 

curved lines in the double logarithmic plot of Fig. 6.17). As a conse

quence, an exact correction for polydispersity cannot be made. 

To get an idea yet of the values of J „ certain additional approxi

mations can be made. From Fig. 6.17 it can be deduced that a smoothed 

exponent a for CC(Lonza) in dioxane at 20°C amounts to about 1.0. On 

using this value one obtains a polydispersity-factor p = 3.80. If one 

further assumes that this value will approximately hold in dioxane at 

all temperatures applied, it can be used for a correction of the experi

mental values of fi for the sample CC(Lonza), as quoted in Table 6.1. 

The results are given in Table 6.1, between brackets, behind the measuring 

results from which they were derived. These values will probably be rather 

good approximations of the values of the hydrodynamic quantity J „ for 

this sample. 

As a matter of fact, the obtained values are above the range quoted 

for Gaussian coils, i.e. 0.2 < J < 0.4. But even this sample CC(Lonza) 
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which comprises only about 4 random links in dioxane at 25°C, does still 

give values which deviate only slightly from those expected for Gaussian 

coils. 

The most promising way to find significant influences of chain stiff

ness on J„p is to measure the flow birefringence of a great number of 

samples over a wide range of molecular weights. This was done by 

Janeschitz-Kriegl and Burchard'' for sharp fractions of CC in benzophe

none. They found a clear increase of the values of [cot 2x/B(j] with de

creasing molecular weight which, according to section 3.2, also corre

sponds to an increasing chain stiffness. However, due to a lack of ma

terial their number of measurements was insufficient for an extrapola

tion to zero concentration. As a consequence, also in their case a cer

tain degree of uncertainty is retained with regard to the interpreta

tion of the obtained results. 

From the foregoing the conclusion may be drawn that both flow bire

fringence investigations have given some evidence of the theoretically 

predicted influence of chain stiffness on the reduced steady state shear 

compliance J„p- However, it is also clear that the extinction angle can 

never be a sensitive quantity from which information concerning the 

conformation or stiffness of macromolecules can be derived. Moreover, 

the influence of polydispersity nearly masks all other influences on the 

behaviour of the extinction angle. Consequently, the behaviour of the 

extinction angle can better be used as a measure for polydispersity it

self. This aspect of flow birefringence should certainly be explored 

more extensively. 

6.4 Conclusions 

As previously found for a variety of polymers, the theory of Gotlib 

and Svetlov gives a very good description of the molecular weight depend

ence of the stress-optical coefficient also for CC. The great useful

ness of this theory may be demonstrated by the fact that the stiffness 

of CC, as expressed by the number of monomer units per statistical ran

dom link, can be found in a straightforward manner. Furthermore, the 

obtained experimental results reveal a transition of the stiffness of CC, 

when the solvent composition is varied from pure ester to pure ether. In 

the ether dioxane CC has a stiffer structure than in the ester PhB, at 

comparable temperatures. Further, the stiffness of CC increases appre

ciably with decreasing temperature. An increase of its stiffness causes 

a tremendous growth of the stress-optical coefficient, appreciably great;-

er than the corresponding growth of the intrinsic viscosity. This demon

strates the great advantage of measuring the stress-optical coefficient 

on studying conformational transitions of polymers. 
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The high optical anisotropy, the high temperature coefficients of 

this quantity and of the intrinsic viscosity of CC in pure dioxane show 

that the behaviour of CC in this solvent clearly deviates from that in 

non-ether solvents. An explanation of this difference in terms of the 

formation of hydrogen bonds between neighbouring monomers was quite ob

vious. The great changes in the stress-optical coefficient are probably 

due to sterical hindrance of the free rotation of the anisotropic phenyl-

rings in the side groups of the chain. 

The value of 50 monomers per statistical random link, as found for 

CC in dioxane at 25°C, agrees quite well with the results obtained from 

light scattering measurements in the same solvent at 20°C. This value 

was introduced into the equation of Eizner and Ptitsyn for the calcula

tion of the intrinsic viscosity of CC as a function of molecular weight. 

The theoretical curve excellently coincides with the experimental one, 

except for the lowest molecular weights, where the model of the worm

like chain is not realistic, and for the highest molecular weights, where 

the excluded volume plays a role. This coincidence proves that the value 

s = 50 is a very realistic one. 

The influence of chain stiffness on the behaviour of the extinction 

angle appears to be very small; it nearly lies within the limits of ex

perimental error. Moreover, the influence of polydispersity masks the 

effect to a great extent. Nevertheless, with some reserve it may be con

cluded that the theoretically predicted increase of J „ and, consequent

ly, of the optical quantity [cot 2x/<Bj]> ] _„ with growing stiffness of 

a macromolecule is found in practice. However, it also appears that 

[cot 2x/<B»j> ] _(, hardly gives any valuable information concerning the 

observed stiffening of the CC-chain. 
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CHAPTER 7 

THEORETICAL DESCRIPTION OF NON-LINEAR BEHAVIOUR OF MODEL CHAINS 

7.1 Introduction 

In chapter 3 the hydrodynamic behaviour of a macromolecule was de

scribed with the aid of an idealized model. This theory was based on a 

generalized diffusion equation, which only holds for "systems slightly 

departing from equilibrium". This linear theory resulted in the eqs. 

(3.42) and (3.44) for the intrinsic viscosity and the reduced steady 

state shear compliance, which showed no dependence on shear rate. Hence, 

an interpretation of experimental results could only be carried out with 

the aid of this theory, as far as no dependence on shear rate was ob

served. As a consequence, the experimental results usually had to be 

extrapolated to zero shear rate in the foregoing chapters. Only at the 

lowest shear rates the supposed linearity was found (see e.g. Fig. 6.12). 

For values of <6„> higher than 10"' non-linearity became already quite 

well perceptible. 

For high shear rates the deviations from the supposed equilibrium 

conditions will probably become so large that the required linearizations 

in the momentum space, as mentioned in section 3.3, will no longer be 

permissible. In such a case higher order moments will become involved, 

which disturb the Markoffian character of the usual diffusion processes''. 

As a matter of fact, this Markoffian character was an essential condition 

for the derivation of the conventional diffusion equation (3.8). A foun

dation of non-linear behaviour asks for an extension of the kinetic 

theory to stochastic processes of non-Markoffian character. However, 

these new approaches are still nearly unexplored up till now. 

From the foregoing it becomes clear that a correct theoretical de

scription of non-linear behaviour is an intractable task so far. However, 

in the past several attempts were made to derive constitutive equations, 

which are non-linear in terms of shear rate. For this purpose, in some 

way non-linearity is introduced into the theory. According to a well-known 

procedure'''' the supposed linear relation between the deformations of 

the particles and the resulting elastic forces, as given for example by 

eqs. (3.18a) and (3.19a), is rejected. In fact, for real macromolecules 

such a linear relation will only hold at very small deformations. At lar

ger deformations the elastic restoring forces will increase more than 

linearly with deformation until they become nominally infinite, when the 

macromolecule is fully extended and a further deformation results in 

chain rupture. 
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When the diffusion equation is modified in this way, it will yield 

non-linear effects, although it does not comprise all possible reasons 

for non-linearity. Particularly diffusion is still described by the un

modified diffusion terms of eq. (3.8). Hence, from a diffusion equation 

modified in this way, a theory is derived which can better be called a 

"quasi-linear theory". 

It has also been shown that other effects, such as the excluded 

volume in good solvents'*', an anisotropy of the hydrodynamic interac

tion"»'' or the kinetic stiffness of the polymer chain'"'' can cause 

non-linear behaviour. So the question will remain, which one of the above 

called parameters must be considered to be the main reason for non-linear 

effects. 

7.2 Introduction of the inverse Langevin function into the Rouse-model 

A first attempt to make allowance for the restricted deformability 

of a macromolecule was made by Peterlin'' for the elastic dumbbell model. 

Later on this idea was also applied to the more general Rouse-model by 

Reinhold and Peterlin''. Their method will be described here. 

We can define a kind of contour length for the RZ-model, as: 

L = N b (7.1) 

where b' = the average of the mean square end-to-end distances of the 

Gaussian subchains (springs), which are supposed to build up 

the molecule: 

,2 = M-l 
N 
Z 

n = l 
b ^ = N - ' 

N 
Z < 

n = l 
'ïn -- ïn-l> (7.2) 

In the absence of external forces b becomes equal to b , defined pre

viously in eq. (3.46). For the RZ-model quantity b' can easily be cal

culated. With the aid of the normal coordinate transformation, as given 

by the eqs. (3.27 a-b), it can easily be derived that the relation be

tween the mean square length of the n spring and the normal coordinates 

is given by: 

N 
b' = Z {<c'> + <rî > + <*'>} {Q - Q , }' (7.3) 
n , ^m 'm m ' '•̂ nm n-l,m 

m=l 
where Q = the elements of the transformation matrix Q. nm 
For sufficiently large N eq. (7.3) can be approximated by: 

m=l 

After inserting the eqs. (3.39 a-c) and combining the result with eq. 

(7.2) one obtains the following relation: 
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b ^ = ^ N - ' Z (,)-'[! +|(y^)-'( aR )2] X E [3Q^/3n]' (7.5) 
m=l n=l 

For the Rouse case, i.e. in the absence of hydrodynamic interaction, 

u and Y are equal (see eq. (3.30)). After inserting the values of p m m m 

and Q , as given by eqs. (3.48b) and (3.49 a-c), one obtains the follow

ing relation: 

^^=^[^-ïfl0^]=^t^^TlN^^l 

since: 

M[n]Q rig q 
= ^ (T;') fê (7-7' "N R T , 'n ' 2O n=l 

From this result the conclusion may be drawn that the mean square length 

of the springs depends on the reduced shear rate Bj,. For a fluid at rest, 

i.e. B„ = 0, eq. (3.46) is regained. 

The obtained result implies that the contour length of the model chain 

increases with growing shear rate. This would clearly be a very non-physi

cal property of the model, because the contour length of a real macromole

cule is completely determined by chemical bonds, which cannot be extended. 

To correct for this effect, Reinhold and Peterlin'' have introduced a 

restricted extensibility of the subchains into the Rouse model. According 

to a method of Kuhn and Grun'' the inverse Langevin function is intro

duced into the formula for the longitudinal elastic force in the sub-

chain. This means that the elastic force becomes infinite at a certain 

maximum length b of the subchain. In this way eq. (3.18a) becomes: 

f̂  , = a E b -n,L n -n 

with 

E„=£"'(t^)/3t^ and t^ = h^/b^ (7.8) 

where X"' = the inverse Langevin function. 

The function E (t ) can be approximated by: 

•̂ t' 99 t** 
E = 1 + ^ - + -^frE- + . . • , for t - 0 

-> 1 / b 

= l/(3t - 3t') , for t ->• 1 (7.9) 

Because of the relationship b =|r - r ,1 the value of E depends 
^ n '-n -n -1 ' n ^ 

in a non-linear manner on the coordinates r and r , . For simplicity, 
-n -n-1 ^ 

however, in E some preaveraging is carried out over the root mean square 

length of the link b . In this way a set of modified eigenvalues is ob

tained. These eigenvalues are functions of &„ and, as a consequence of 

this dependency, also functions of the shear rate. The intrinsic viscosi-
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ty, eq. (3.42), and the reduced steady state shear compliance, eq. (3.44), 

show a decrease at increasing 6„. The magnitude of these effects can be 

varied by adjusting the value of b^/b , which is the ratio of the maximum 

length of the subchain to its length in the fluid at rest. The smaller 

b^/b is chosen, the stronger the non-linear effects. 

At the values chosen for b^/b by Reinhold and Peterlin, namely 2 and 

5, the deviations from linear behaviour become perceptible at B„-values 

higher than 1. However, experimentally such deviations are already ob

served at 6„-values of the order of 10"' and even at smaller values. Con-
N 

sequently, the conclusion may be drawn that the Reinhold-Peterlin method 

underestimates the non-linear effects. 

7.3 Condition of constant contour length 

In the Reinhold-Peterlin theory a simultaneous extension of all sub-

chains is allowed. This means that the contour length of their model 

still increases with growing shear rate. Therefore Noda and Hearst'"' 

have introduced a more stringent condition into the RZ-model and HH-

model, requiring the total contour length, as defined by eq. (7.1), to 

remain constant for all shear rates. 

7.3.1 The Rouse-Zirm model 

For the RZ-model the condition requiring the total contour length 

to remain constant is accomplished by adjusting the spring force con

stant o. It is used as a kind of Lagrange multiplier which forces the 

condition upon the model. If, in this way o is permitted to grow with 

increasing rate of shear, one obtains the paradoxical effect that some

where along the chain subchains have to contract in order to enable 

other subchains to extend. These two effects have to balance each other 

to keep the total contour length, as defined by eq. (7.2), constant. 

Thus, this theory is different from that of Reinhold and Peterlin. 

For the Rouse-model the average of the mean square length of the 

springs was already given in eq. (7.6). Now the spring force constant 

is adjusted to the shear rate q, in such a way that b' remains constant. 

Unlike the Reinhold-Peterlin method the eigenvalues remain unchanged. 

If we put the spring force constant in the resting fluid (q = 0) equal 

to o , the relation between the spring force constant o and the shear 

rate can be calculated from eq. (7.6): 

' ^ ^ = ^ = ̂ [ ^ ^ 5 ! ^ ^ 1 • n.10) 

which after some rearrangements results in: 

O 

where X = o/o • 
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Equation (7.11) predicts that a is a unique function of q. A similar re

lation can be derived for the Zimm-case, which describes the non-draining 

coil. 

It can now easily be shown how large the influence of eq. (7.11) is 

on the intrinsic viscosity and the reduced steady state shear compliance. 

Defining a relative intrinsic viscosity [n] , as the ratio of the in

trinsic viscosity at finite shear rate q to that at zero shear rate, we 

have the following relation from eq. (3.42): 

'"̂ 'rel = ['ll/tnlo = (a/tJo'"' = ^^^ (7.12) 

which, together with eq. (7.11), determines the dependence of the intrin

sic viscosity on the shear rate completely. 

Due to the fact that the set of eigenvalues remains unchanged, the 

value of J o will remain unchanged as well, according to eq. (3.44). 

However, in eq. (3.43) J „ has been defined as the ratio of cot 2x' and 

the reduced shear rate B„. Actually, eq. (3.43) should be interpreted as 

a linear relation between cot 2x' and the shear stress P21. As long as 

only linear effects are concerned, the shear stress P21 is directly pro

portional to the shear rate q (see eq. (2.11)), which allows the above 

given definition of J „. On the other hand, for the occurrence of non-

Newtonian solution viscosities the definition of J „ should be revised. 

In that case for P21, occurring in eq. (3.43), eq. (2.11) must be used 

with the non-Newtonian solution viscosities inserted. Therefore, the 

last term of eq. (3.43) should read: 

cot 2x' = Jgî B (7.13) 

where B = the reduced shear stress, defined in the same way as the reduced 

shear rate B„ (eq.(3.45 a-b)), but now with the non-Newtonian 

solution viscosities inserted, corresponding to the chosen val

ues of q. Only for very small shear rates the difference be

tween B[g and B vanishes. 

In the above given definition the ratio of 6/Bj. is identical with 

[n] ,. Consequently, as the value of J _ remains unchanged, eq. (7.13) 

predict 

as [n], 

predicts that [cot 2x'/Bij] must show the same dependence on shear rate 

'rel' 

7.Z.2 The Harris-Hearst model 

If the condition of a constant contour length is introduced into the 

RZ-model, the set of eigenvalues remains unchanged. This is obviously not 

the case for the HH-model. A look on the eqs. (3.58) and (3.59) shows 

that for the HH-model the value of the spring force constant a enters the 

eigenvalues in the form of A. The latter takes the function of the La-
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grange multiplier in the HH-model. Adjusting the bending force constant a 

makes no sense of course, as its magnitude does not influence the mean 

lengths of the springs. 

For the HH-model the same definition of the contour length, eq. (7.1), 

can be used. Noda and Hearst, however, give another definition, which in 

some cases leads to other results. As mentioned in section 3.6.2, there 

should exist a correlation between the HH-model and the statistical model 

of the wormlike chain. For the latter model the idea of a finite number 

of separate beads must be abandoned and replaced by a continuous model, 

for which the position of each point on the contour of the chain may be 

given by a continuous parameter. This requires a rewriting of all equa

tions in terms of this continuous parameter. As this subject, however, 

falls outside the scope of this work, the discrete bead method will be 

followed. 

For the HH-model the average of the mean square end-to-end distances 

of the subchains can be deduced in a simple way from the equation for 

the RZ-model by the substitutions given in section 3.4 and used repeated

ly in chapter 3. With these substitutions eq. (7.5) becomes: 

^̂2 = 3^^-. J^ (U,,HH'-'[1 ^ f 'Ym,HH)-' (!ê)'l - X ''^-.HH/^^J^ 

(7.14) 

Again, the simplest treatment corresponds to the absence of hydrody

namic interaction, i.e. the free-draining situation, for which 

Y ,,„ = p „„. Let us consider the two limiting cases of the HH-model, m,HH m,HH 
as they were discussed in section 3.6,2: the coil limit and the limit 

of the straight elastic pearl necklace. 

The coil limit appears to be the simplest case. Inserting the eqs. 

(3.49) and (3.58) into eq. (7.14) and rearranging the obtained results 

one obtains an equation identical with eq. (7.10) which is quite obvious. 

The dependence of A on shear rate is expressed by: 

X = A/A^ = a/a^ (7.15) 

where A is A at zero shear rate. As a matter of fact, Noda and Hearst 

obtain another result for the coil limit due to their different defini

tion of the contour length. 

Introduction of the constant contour length into the straight elastic 

pearl necklace gives a completely different result. As mentioned already 

in section 3.6.2, only the first eigenvalue plays a role of importance. 

For the free-draining case this eigenvalue is given by eq. (3.59a). The 

eigenvalue at zero shear rate is then obtained by replacing A by A . 

Pursuing this concept Noda and Hearst assumed that, to a first approxima

tion, u may be kept constant in the first eq. (3.57a), whereas only 
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the A occurring explicitely in this equation is varied. In this way they 

obtain: 

l'l,HH= ^1,HH = ^2 V ^ ' ^ '^'l^ VN^'** t^-lS' 

After inserting this equation into eq. (7.14) one obtains: 

Z' - Z' = q' p' N'/6 a'(12 A^N)' (7.17) 

where 

Z = V'I^HH'^'/^^^O = ^ * ['̂ 2 A^N')''/12] X (7.18) 

These relations also give A as a unique function of shear rate. This re

sult is, in spite of the different definition of the contour length, 

identical to that of Noda and Hearst. 

The influence of the constraint of constant contour length on the 

intrinsic viscosity is obtained from eq. (3.42): 

[n],3, = [n]/[n]„ = J^ <'^n,HH'"'^J^ 'i^n,HH';' = 

N 

J,[^l,n^^-'l,n '-' . . 

^[(v,,j;+A„{v,_^)^]"' 
n=l 

(7.19) 

The right hand side of eq. (7.19) is equal to 1/X in the coil limit and 

equal to 1/Z in the limit of the straight elastic necklace. Hence the 

dependence of [nl i on q is completely determined by eq. (7.19). 

The value of the reduced steady state shear compliance, as defined 

by eq. (3.44) , now depends on shear rate, as the value of A occurs in 

the eigenvalues: 

JeR = ̂ ^S^ (̂ -20) 

f^f^[^ï,n* ^-l,nï-'}^ 

However, for very large AN', i.e. for the coil limit, again a value of 

J ĵ  is found which does not depend on shear rate, as was also the case 

for the RZ-model. Surprisingly, also the straight necklace limit gives 

a Jgj^ independent of shear rate, as for that case only the first term 

of the sums is of importance. For intermediate values of AN' a slight 

decrease of J ĵ  is obtained with increasing shear rate. As before, the 

calculated values of J „ should be correlated with the orientation angle 

X' of the stress tensor in the way given by eq. (7.13), in which the re

duced shear stress B refers to the shear rate dependent non-Newtonian 

viscosity. 
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Noda and Hearst have calculated these effects for several values of 

AN', and not only for the free-draining, but also for the non-draining 

case. Besides [n] , and J _ also the dependence of the extinction angle 
rel eR 

X on Bv, was calculated. Their most important result probably is the fact 

that the non-linear effects depend on the value of AN'. For the limit of 

the straight elastic necklace of constant contour length the first non

linear effects in [n] and cot 2x' can be observed at Bjj-values of about 

10"'. For very flexible chains, AN' 'v- 10', the beginning of non-lineari

ty becomes observable only at 8f,-values of about 10'. This region between 

10"' - 10' actually is the region, in which non-linearity appears for 

nearly all kinds of polymers. The conclusion may be drawn that, in con

trary to the Reinhold-Peterlin method, the constraint of constant con

tour length seems to give results, which are more in agreement with ex

periments. 

Noda and Hearst gave a great number of examples of the results of 

their calculations. A few will be given in the next chapter. 
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CHAPTER 8 

SHEAR RATE DEPENDENCE OF THE VISCOSITY AND FLOW BIREFRINGENCE OF 

CELLULOSE TRICARBANILATE 

8 . 1 E x p e r i m e n t a l 

8.1.1 tlon-Newtonian viscosity 

With the aid of the special TNO-apparatus the shear rate dependence 

of the viscosity of a number of solutions of CC(L 610) was measured in 

several solvents. In Figs. 8.1 and 8.2 a few examples of the obtained re

sults are given. In Fig. 8.1 the results are represented for solutions 

of CC(L 610) in PhB at 75°C. Fig. 8.2 deals with measurements done on so

lutions in dioxane at 25°C. The concentrations of the solutions are ex

pressed in (w/v)-percentages. In both figures appreciable non-Newtonian 

effects can be observed. In these figures also a number of measurements 

is given, carried out with Ubbelohde viscometers (crosses in centers of 

circles). The shear rates in the ubbelohde viscometers were estimated 

from the dimensions of the apparatus. The conclusion can be drawn that 

all viscosities, measured with these Ubbelohde viscometers, are in fair 

agreement with the Newtonian viscosities at low shear rates. The viscosi

ty of TOCPh is so high that Ubbelohde measurements for solutions in that 

solvent agree with the Newtonian viscosities only at low concentrations 

(< 0.5 X 10'' g/ml). 

f 
Tl-Tl (cp) 

10' 

O 
-o-

-i-^^—^ 

-§ 8-

-0 8 8—®^v^>-5:2!^ 

10' 
q(s^) 

10̂  10 

Fig. 8.1. Shear rate dependence of n-n.' i.e. contribution of solute to viscosity 

for solutions of CC(L 610) in Phenyl Benzoate at 75°C. Concentrations are 

expressed in (w/v)-percentages. ©: Experimental points obtained with 

Ubbelohde viscometers. 
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T\-\ (cp) 

Fig. 8.2. Shear rate dependence of n-n for solutions of CC(L 610) in Dioxane at 25°C. 

©: ubbelohde measurements. 

Using these results the shear rate dependence of the intrinsic vis

cosity in the different solvents can be estimated. Figs. 8.3 - 8.5 give 

the reduced viscosities of CC(L 610) as functions of the reduced shear rate 

<Bjj>. , where in the latter quantity the Newtonian solution viscosity is 

inserted. Fig. 8.3, resp. 8.4, correspond to the measurements given in 

Fig. 8.1, resp. 8.2. Fig. 8.5 gives the results for solutions of CC(L 610) 

in TOCPh at 30°C. From all figures it becomes evident that the decrease 

of the reduced viscosity with increasing <6j-> is more pronounced at 

higher concentrations. An extrapolation to zero concentration can be made 

<pN>n 
Fig. 8.3. Measurements of Fig. 8.1, replotted as n /c against reduced shear rate 

- ) : curve extrapolated to zero concentration, 
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Fig. 8.4. Measurements of Fig. 8.2, replotted as ri /c against <3 > . (-
sp N n 

extrapolated to' zero concentration. 

• ) : curve 

too 

>(cm3/g) 

300 

200-

100 

Fig. 8.5. n /c against 
sp 

<PN>n 

lo' 

for solutions of CC(L 610) in Tri-o-cresyl Phosphate at 

30°C. Concentrations are expressed in (w/v)-percentages. (• 

extrapolated to zero concentration. 

): curve 

with a reasonable accuracy. The results of this operation, viz. the in

trinsic viscosities as functions of <6„> , are given by dashed lines. 
N n 

The resulting curves, obtained for CC(L 610) in the three different 

solvents, are plotted together in Fig. 8.6 in terms of the dependence 

of the relative intrinsic viscosity [n]-._T on the reduced shear rate 
<6 N n 

The non-Newtonian effects become perceptible in all three solvents 

at <6.,> -values of about 10"', although there appears to be a slight in-
N n 

fluence of the solvent on the exact position of the curves. In none of 
the solvents sufficiently large values of <Bx,* can be attained to obtain 

-* ^ N n 
a new constant value of the intrinsic viscosity ("second Newtonian region" 
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"N n 

10' 10̂  

Pig. 8.6. Plot of the relative intrinsic viscosity [n] , of CC(L 610) against ^i^^^ 
for a series of solvents: (o) Dioxane, 25°C; (D) Phenyl Benzoate, 75°C; 
(+) Tri-o-cresyl Phosphate, 30°C. ( ): theoretical lines according 
to Noda and Hearst; ( ): theoretical lines for prolate ellipsoids with 
the indicated axial ratios P. 

P lo t t i ng the reduced v i scos i ty as a function of the reduced shear 
s t r e s s <6> , as was done by Munk and P e t e r l i n ' ' for so lu t ions of poly
s tyrene in Aroclor 1248, does not make much d i f fe rence . I t only seems to 
make the non-Newtonian e f f ec t s s t i l l more pronounced. For the r e su l t s in 
F ig . 8.4, for i n s t ance , t h i s would mean tha t a l l curves would converge 
in a s t ronger way. The Huggins constant approaches zero with increasing 

<B> , so t ha t the reduced v i scos i ty seems to become more and more inde-
n 

pendent of concen t ra t ion . This agrees qu i t e well with the observat ions 
of Munk and P e t e r l i n . 

8.1.2 Non-linear behaviour of the extinction angle curves 

In Fig. 6.11 already an example was given of the shear r a t e depen
dence of the ex t i nc t i on angle curves for CC(L 610) . The non- l inear e f fec t s 
exh ib i t themselves in a strong downward devia t ion of the double loga r i th 
mic cot 2Y versus <B„> -curves from a s t r a i g h t l i n e of uni ty s lope . In 

^ N n 
F igs . 6.12 and 6.13 i t a l so was shown tha t a l i n e a r r e l a t ion between 
cot 2x and <6„> niay hold only a t low values of <B„>„. 1^ N n N n 

We t ry to use the behaviour of the op t i c a l l y measured ex t i nc t i on ang
l e t o obtain some information concerning the behaviour of the hydrodynamic 
quan t i ty J „. Therefore, the measuring r e s u l t s depicted in F i g s . 6.12 eK 
and 6.13 must be used for a ca lcu la t ion of the values of the quanti ty 
[cot 2x/<B> ]< analogous to i t s hydrodynamic equivalent , def ined in eq. 
(7 .13) . The shear r a t e dependent so lu t ion v i s c o s i t i e s , corresponding to 
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those results, are known from the preceding paragraph. The results of the 

calculations are plotted against the reduced shear rate 6̂j,=> in Figs. 

8.7 and 8.8. A comparison of these figures with the original Figs. 6.12 

and 6.13 reveals that the curves obtained descend less steeply at large 

values of <B„>„. 
N n 

* < P N ^ 
Fig. 8.7. Measurements of Fig. 6.12, replotted as [cot 2x/<6> ] against <3 > • Concen-

(+) 0.8 X 10"2. trations expressed in g/ml: (D) 0,3 x 10"^; (o) 0.5 

( ): curve extrapolated to zero concentration. (--

10" 

): theoretical lines 

( ): theoretical line 

for prolate ellipsoids with the indicated axial ratio P. 

of J _ against 6„ according to Noda and Hearst 
eR N 

cot2X 

Fig. 8.8. Measurements of Fig. 6.13, replotted as [cot 2x/<3> ] against <6 > . Symbols 
n N n 

as specified in the caption to Fig. 8.7, 
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As all theoretical predictions are valid only for infinite dilution, 

the obtained results must be extrapolated to zero concentration. The re

sulting curves are given by dashed lines. Probably these lines will give 

reasonable indications for the dependence of the quantity pJgj^ = 

[cot 2x'/<B> ] on the reduced shear rate <6j,> - As to the kind of solvent 

no influence on the general shape of the curves can be observed, although 

also here the effect remains that the curves for CC(L 610) in PhB are 

below those in dioxane, as discussed already in section 6.3.2. 

8,1.3 Shear rate dependence of the stress-optical coefficient 

As a last kind of non-linear behaviour deviations from the stress-

optical law can be considered. In Fig. 8.9a choice is made out of the 

vast number of experimental data, gathered on this subject in the course 

of the investigations. The given results were obtained on solutions of 

CC(L 610) in dioxane at 25°C (concentration: 0.8 x 10"' g/ml), in PhB at 

75°C (0.8 X 10"' g/ml) and in TOCPh at 30°C (0.564 x 10"' g/ml). All val

ues were calculated according to eq. (2.17) using the non-Newtonian 

viscosities of the solutions. In all three solvents the stress-optical 

coefficients appear to be nearly constant up to a <B„> -value of about 

1.0. Thereafter a strong decrease is found. However, in dioxane hardly 

<B„> - values are obtained, which are sufficiently high to give a sig-
N n 

nifleant decrease of the stress-optical coefficient. In TOCPh the devia

tions are the most pronounced, as the high viscosity of this solvent 

leads to the highest shear stresses, which could be obtained throughout 

CxlO 

Fig. 8.9. Stress-optical coefficient C against <B > for a series of solutions of 
N n 

CC(L 610) in different solvents. (A) 0.8 x 10"̂  g/ml in Dioxane at 25°C; 

(o) 0.8 X 10"2 g/ml in Phenyl Benzoate at 75°C; (+) 0.564 x 10"̂  g/ml in 

Tri-o-cresyl Phosphate at 30°C. 
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this investigation in the various solvents used. 

One can clearly observe that the first deviations from the stress-

optical law occur at a <6jj> -value, which is more than a decade higher 

than that, at which the first non-linearities in the viscosity and the 

values of [cot 2x/<B„> ] become apparent. 

8.2 Discussion 

The foregoing results have shown the occurrence of strong non-linear 

effects for CC(L 610). On the viscosity the first deviations from linear 

behaviour could already be observed at <6.,> -values of about 10"' and 
N n 

on the ratio of cot 2x to <B> even at lower values of <&,,> . '̂  n N n 
A number of sharp samples of anionic polystyrene in monobromobenzene, 

investigated by Janeschitz-Kriegl'', give linear relationships between 

cot 2x and Bf, up to B(,-values of about 0.5. Also Munk and Peterlin'»'' 

found similar results for anionic polystyrene in Aroclor 1248, both on 

the intrinsic viscosity and on the relation between cot 2x and Bjj. One 

can conclude that for CC(L 610) an appreciable shift is obtained to lower 

values of ?,„. 

N 

This shift can be due to several reasons. First, like all cellulose-

derivatives, CC(L 610) is considerably stiffer than most synthetic poly

mers, such as polystyrene, polyethylene etc. The theory of Noda and 

Hearst""l, as dealt with in section 7.3.2, predicts a shift of the non

linear effects to lower values of B„ for stiffer molecules. For a compar

ison of the experimental results with their theory a number of theore

tical curves are drawn in Fig. 8.6. The dashed lines are curves according 

to Noda and Hearst, for several values of AN' (given at the curves), for 

the non-draining case. Besides, in Fig. 8.6 also several theoretical cur

ves are drawn for rigid rotational ellipsoids with various axial ratios 

P (points and dashes), taken from the work of Scheraga^'. The latter 

author uses a kind of dimensionless shear rate which, however, can be 

transformed into the reduced shear rate B., in a way, given by Kuhn et 

al.^' and Tsvetkov''. A comparison of both model theories shows that, for 

rigid rotational ellipsoids, the shape of the curves depends on the axial 

ratio, while the HH-model according to Noda and Hearst always gives curves 

of identical shape. However, with increasing chain stiffness (smaller 

AN') a shift occurs along the logaritlimic B«-scale to lower values of Bj,. 

The curve for P = 300 has a shape which is nearly identical with the 

shape characteristic for the curves of Noda and Hearst. The much greater 

chain stiffness of CC(L 610) compared to that of polystyrene can explain 

the shift of the non-Newtonian effects to lower values of B».. In this 

regard it is quite remarkable that, as far as the value of the anisotropy 

oii-a2 can be considered as representative for the chain stiffness (see 



Fig. 6.16 and Table 6.2) the relative positions of the curves in different 

solvents seem to agree with the respective values of a 1-02. However, this 

conclusion must be considered with some reserve, because of the errors 

made at the determination of the intrinsic viscosity as a function of 

^Vn-
A second reason for a shift can be sought in the polydispersity of 

the CC-sample. All theoretical curves for monodisperse systems predict 

that the total effect of non-Newtonian behaviour of a polymer solution, 

i.e. the change from constant [n] to constant [n]^, should occur with

in 2 to 3 decades of the shear stress. Indeed, this is found experimen

tally for monodisperse polymer samples''^'. The results in Fig. 8.6 are 

plotted against the reduced shear rate instead of the reduced shear 

stress. Still one can see that the non-Newtonian viscosity range for 

CC(L 610) seems to cover a broader region of shear rates than theoreti

cally predicted for monodisperse samples.The whole transition seems to 

comprise at least 4 decades in <B„> . As long as we have no personal ex

perience with the behaviour of monodisperse samples we cannot assess the 

influence of polydispersity. The deviation from Newtonian behaviour at 

6„-values, which are relatively small compared with those predicted by 

theory, can therefore largely be due to the polydispersity of CC(L 610). 

An even greater influence of polydispersity on the measurements can be 

found in Figs. 8.7 and 8.8. For a comparison with theory in these figures 

some theoretical curves of J _ vs. 6», are drawn. The dotted lines are 
eR N 

theoretical lines according to Noda and Hearst for different values of 

AN' for the non-draining case. Again it is clearly observed that a non-

linearity in the [cot 2x/<B>]-curves already becomes observable at 

much lower values of B„ than theoretically predicted for J _. Moreover, 

in both figures a much greater decrease of [cot 2x/<6>_] is actually ob

served, than the theory of Noda and Hearst predicts for J „ in the most 

pronounced case of AN' = 7.05. First, however, it must be stated that 
the values of J^„, as calculated by Noda and Hearst, are purely hydro-eK 

dynamic quantities, while the reported measurements, on the other hand, 

are optical ones giving [cot 2x/<B> ]. Only if coaxiality exists between 

the stress tensor and the refractive index ellipsoid the quantity 

[cot 2x/<B> ] can be put equal to pJ „. As long as we do not know the 

influence of non-linearity on the coaxiality a comparison of these ex

periments with hydrodynamic theory remains risky. Further, quite certain

ly the correction for polydispersity, as mentioned in section 3.11, can

not be made in the non-linear region. Hence, it becomes practically im

possible to draw conclusions with respect to the validity of the theory 

from these results: on the one hand, the polydispersity seems to spread 

the whole effect over a broad region of Bfj-values, on the other hand the 

polydispersity factor p can show appreciable changes with increasing Bv,-

values. 
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It must be mentioned that also the HH-model should not be considered 

as the most ideal model of a stiff macromolecule. The theoretical curve 

describing J as a function of B„ for the most stiff form (AN' = 

4 x 10"'), does not show any downward bent at increasing B„. The limit

ing case of the straight elastic pearl necklace of the HH-model cannot 

be considered as an equivalent of a truly rigid rod. The dumbbells, from 

which the HH-model is built up, always retain their axial extensibility. 

Even the constraint of constant contour length does not mean that the 

elastic dumbbells are transformed in rigid dumbbells. A rigid rodlike 

chain can probably much better be approximated by a rigid rotational el

lipsoid. Therefore, in Figs. 8.7 and 8.8 also a theoretical curve of 

[cot 2x/Bj,] vs. B„ is drawn for a rodlike rotational ellipsoid with an 

axial ratio P = 50, derived from the work of Scheraga et al.'"'. As a 

matter of fact, this model shows a much more pronounced non-linear be

haviour, although it must be reminded that the experimental points in 

these figures correspond to values of [cot 2x/6] instead of [cot 2x/B„], 

as derived from this theory. 

Referring to the theoretical work of Fixman''', Munk and Peterlin'' 

ascribe the dependence of [cot 2x/6] on 6 to a changing hydrodynamic 

interaction within the coil at a deformation of the chain. As a matter 

of fact, a strongly deformed coil will be better drained than an unde-

formed one. The theories, discussed in the foregoing, neglect this in

fluence of draining on the value of J „. However, although the influence 

of draining on the experimental observations will probably be quite 

small, it cannot be neglected completely. On the other hand, it does 

not seem correct to ascribe the whole change of [cot 2x/B] to this ef

fect. 

Especially with scunples of sufficiently large molecular weights the 

influences of molecular weight and polydispersity on the value of the 

stress-optical coefficient are quite small. Hence, Fig. 8.9 gives a pic

ture, in which the absolute values at least will not be influenced by 

polydispersity. On the other side, also in this case it must be taken 

into account that the polydispersity may have shifted the beginning of 

the deviations from the stress-optical law to lower values of <B„> • 
N n 

Nevertheless, it can be observed quite clearly that the stress-optical 

law remains valid for CC(L 610) until far in the non-linear region for 

the viscosity and the ratio of [cot 2x/<6> ]• In this respect CC does 

not deviate from the general behaviour of many other polymers. However, 

at <B„> -values above 1.0 yet appreciable deviations from the stress-

optical law are observed. For very flexible polymers in literature'»'''''' 

already many examples are known for a validity up to much higher values 

of B.,. Therefore the above mentioned results clearly demonstrate that 
N 

the stress-optical law, as proposed for very flexible Gaussian macro-
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molecules, looses much of its general validity in the case of stiff poly

mers. 

8.3 Conclusions 

Drawing final conclusions from this sort of measurements is as yet 

a precarious thing to be done. Primarily, a really good theory is still 

lacking. Secondly, the measured effects are nearly completely masked by 

a tremendous influence of polydispersity. Even at the narrowest mole

cular weight distributions obtainable (e.g. <M> /<M> < 1.05) a sample 

still comprises a rather broad region of molecular weights, which in

fluences the extinction angle to a considerable extent. Only the shear 

rate dependence of viscosity and flow birefringence of a completely mono

disperse sample can be used for a critical check of theory. 

Still it can be said that the theory of Noda and Hearst'"' and that 

of the rigid rotational ellipsoids^»'°' give at least a reasonable de

scription of what is found in practice. Primarily, they predict non-linear 

behaviour at the right B„-values. Secondly, the predicted general form 

of the results corresponds to the experiments. One may conclude that the 

constant contour length of the chain probably is one of the main reasons 

for non-linear behaviour. However, the non-linearity is also determined 

by a great number of other influences, which are not worked out in these 

theories. In so far one cannot expect the experimental results to be 

completely explained by these theories. 

For a further check of these theories one should have at one's dis

posal a great number of sharp fractions of polymers with widely varying 

degrees of stiffness. The stiffening observed on CC is probably too small 

to induce clear changes in the hydrodynamic properties of the chain. This 

would be a valuable subject of further research. 

For CC(L 610) the stress-optical law is valid only at small shear 

stresses. At higher shear stresses appreciable deviations occur, as one 

could have expected for stiff macromolecules. However, a very important 

result may be the fact that also for stiff macromolecules the stress-

optical law remains valid far into the non-linear region. In this respect 

the conclusion may be drawn that the stress-optical law has a more 

general validity than those theories which describe the hydrodynamic 

properties of flexible macromolecules in solution. 
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SUMMARY 

This thesis describes an investigation into the usefulness of flow 

birefringence as a technique for the study of conformational transitions 

of polymers in solution. In the theoretical part of this work various 

molecular theories are discussed, which describe the hydrodynamic and op

tical behaviour of macromolecules in dilute solutions. On the basis of 

the Rouse-Zimm model the contributions of the polymer molecules to the 

stress tensor of the flowing solution can be calculated. The intrinsic 

viscosity and the reduced steady state shear compliance J _ appear to be 

independent of the shear rate. This is a logical consequence of the use 

of the linear diffusion equation as a basis for these theories. 

Introduction of a kind of chain stiffness into these theories, for 

example by the reduction of the number of subchains or by the introduction 

of a finite bending force constant in the Rouse-Zimm model, raises the 

numerical value of J_D- However, even with a great stiffening of the 

chain the predicted changes of J _ remain relatively small. 

The stress-optical properties of very flexible polymers can be de

scribed by a stress-optical law. The pertinent stress-optical coefficient 

is independent of the molecular weight of the polymer. However, this law 

does not fit data for stiff polymers very well, while the stress-optical 

coefficient also becomes dependent on molecular weight. For those cases 

Gotlib and Svetlov gave a description of the molecular weight dependence 

of the stress-optical coefficient but only for the limiting case of zero 

shear rate. 

The experimental part of this thesis comprises investigations into 

two types of conformational transitions of polymers: a coil expansion of 

a polyelectrolyte due to ionization of the chain and the stiffening of 

cellulose tricarbanilate with a change of solvent, accompanied by the 

formation of intramolecular hydrogen bonds. 

Addition of the organic base triethylamine to a solution of a poly-

(amide carboxylic acid) from pyromellitic anhydride and benzidine results 

in a strong increase of the stress-optical coefficient. This increase 

can be interpreted in terms of an expansion of the molecular coil. A 

decrease of the polymer concentration increases the expansion, as the 

mutual shielding of charges on separate macromolecules is reduced. A 

relation is proposed, which describes the dependence of the stress-op

tical coefficient on concentration with reasonable accuracy. Making use 

of this relation semi-quantitative conclusions can be drawn as to the 

degree of expansion of this polyelectrolyte in infinitely dilute solution. 

With the aid of the theory of Gotlib and Svetlov the molecular weight 

dependence of the stress-optical coefficient for cellulose tricarbanilate 
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can successfully be described. The experimental results show a strong in

crease of the stiffness of this polymer when the solvent composition is 

varied from pure ester to pure ether. Moreover, the stiffness strongly 

depends on temperature. This increased stiffness must be. ascribed to the 

formation of intramolecular hydrogen bonds. This results in a tremendous 

increase of the stress-optical coefficient, due to sterical hindrance 

of the free rotation of the anisotropic phenyl rings in the side-groups 

of the chain. 

Scarcely any influence of the changing chain stiffness on the value 

of J J, can be deduced from the behaviour of the extinction angle curves. 

A possible influence is nearly completely masked by the prevailing in

fluence of the polydispersity on the measured extinction angles. 

Finally, a theoretical and an experimental chapter are dedicated to 

the non-linear behaviour of the cellulose tricarbanilate solutions. 

Three subjects are considered: the non-Newtonian viscosity, the non

linear behaviour of the extinction angle curves and the deviation from 

the stress-optical law. Into the known molecular theories a condition 

must be introduced, which requires the total contour length of a macro-

molecule to remain constant at a deformation of the coil. This condition 

results in non-linear effects, which at least qualitatively agree with 

the experimental data. However, this correspondence does by no means 

say that the constant contour length may be considered to be the only 

reason for non-linear effects. In fact, the theoretical description of 

non-linear behaviour is still very obscure. In this connection it is of 

some interest that the stress-optical law appears to have a more general 

validity than the above mentioned linear theories. It remains valid ex

perimentally at least in part of the region of shear rates, where the 

viscosity and extinction angle curve clearly show non-linear behaviour. 
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SAMENVATTING 

In dit proefschrift wordt een onderzoek beschreven naar de stromings 

dubbele breking, als techniek voor de bestudering van conformatie-over-

gangen van polymeren in oplossing. In het theoretische gedeelte worden 

verschillende moleculaire theorieën besproken, die het hydrodynamisch en 

optisch gedrag van macromoleculen in verdunde oplossing beschrijven. Op 

basis van het Rouse-Zimm model kunnen de bijdragen worden berekend van 

de polymeer-moleculen aan de spanningstensor van de stromende oplossing. 

De intrinsieke viscositeit en de gereduceerde evenwichtscompliantie J „ 

blijken onafhankelijk van de afschuifsnelheid. Dit is een logisch gevolg 

van het gebruik van de lineaire diffusievergelijking, als uitgangspunt 

voor deze theorieën. 

Invoeren van een vorm van ketenstijfheid in deze theorieën, bijvoor

beeld door een beperken van het aantal subchains of door het invoeren 

van een buigingskracht-konstante in het Rouse-Zimm model, heeft tot 

gevolg dat de numerieke waarde van J „ enigszins toeneemt. Zelfs bij 

grote verstijving van de keten blijven de voorspelde veranderingen van 

J „ echter relatief gering. 

De spanningsoptische eigenschappen van zeer flexibele polymeren kun

nen worden beschreven door een spanningsoptische wet. De daaraan ont

leende spanningsoptische coëfficiënt is onafhankelijk van het molecuul

gewicht van het polymeer. Deze wet geeft echter geen goede beschrijving 

van experimentele resultaten voor stijve polymeren, terwijl bovendien 

de spanningsoptische coëfficiënt afhankelijk wordt van het molecuulgewicht. 

Voor die gevallen geven Gotlib en Svetlov een theoretische beschrijving 

van de molecuulgewichts-afhankelijkheid van de spanningsoptische coëf

ficiënt, echter alleen voor het limiet-geval van afschuifsnelheid nul. 

Het experimentele gedeelte omvat een onderzoek naar een tweetal soor

ten conformatie-overgangen van polymeren: een kluwenexpansie van een 

polyelectrolyt ten gevolge van ionisatie van de keten en een verstijving 

van cellulose-tricarbanilaat bij verandering van oplosmiddel door vor

ming van intrcimoleculaire waterstof bindingen. 

Toevoegen van de organische base triethylamine aan een oplossing 

van een poly(amid carbonzuur) uit pyromellietzuur-dianhydride en benzi

dine resulteert in een sterke toename van de spanningsoptische coëffi

ciënt. Deze toename kan worden toegeschreven aan een expansie van de 

moleculaire kluwen. Verlaging van de polymeerconcentratie vergroot de 

expansie, daar de afscherming van de ladingen op de macromoleculen onder

ling afneemt. Er wordt een vergelijking voorgesteld, die de concentratie-

af hankeli jkheid van de spanningsoptische coëfficiënt met redelijke nauw

keurigheid beschrijft. Met behulp van deze vergelijking kunnen semi-
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kwantitatieve uitspraken worden gedaan over de mate van expansie van 

dit polyelectrolyt in oneindig verdunde oplossing. 

De molecuulgewichts-afhankelijkheid van de spanningsoptische coëf

ficiënt voor cellulose-tricarbanilaat kan met succes worden beschreven 

door de theorie van Gotlib en Svetlov. De experimentele resultaten tonen 

aan, dat de stijfheid van dit polymeer plotseling sterk toeneemt bij 

verandering van de oplosmiddel-samenstelling van zuiver ester naar zuiver 

ether. Bovendien blijkt de stijfheid sterk afhankelijk van de tempera

tuur. Deze toename van de stijfheid moet worden toegeschreven aan de vor

ming van intramoleculaire waterstofbindingen. Dit gaat gepaard met een 

geweldige toename van de waarde van de spanningsoptische coëfficiënt, 

veroorzaakt door sterische hindering van de vrije roteerbaarheid van de 

sterk anisotrope fenyl-ringen in de zijgroepen van de keten. 

Er kan vrijwel geen invloed van de veranderde ketenstijfheid op de 

waarde van J „ worden afgeleid uit het gedrag van de uitdovingskrommen. 

Een eventuele invloed wordt vrijwel volledig gemaskeerd door de overwe

gende invloed van de polydispersiteit op de gemeten uitdovingshoeken. 

Tot slot worden een theoretisch en een experimenteel hoofdstuk gewijd 

aan het niet-lineaire gedrag van de cellulose-tricarbanilaat oplossingen. 

Drie onderwerpen worden beschouwd: de niet-newtonse viscositeit, het 

niet-lineaire gedrag van de uitdovingskrommen en afwijkingen van de 

spanningsoptische wet. In de bekende moleculaire theorieën moet de eis 

worden verwerkt, dat de contourlengte van een macromolecuul konstant moet 

blijven bij deformatie van de kluwen. Dit resulteert in niet-lineaire ef

fecten, die althans kwalitatief overeenkomen met hetgeen experimenteel 

wordt gevonden. Deze overeenstemming betekent overigens geenszins, dat 

de konstante contourlengte kan worden beschouwd als de enige oorzaak van 

niet-lineaire effecten. In feite kleven namelijk aan de hele niet-

lineaire theorie nog vele bezwaren. In dit verband is het van belang dat 

de spanningsoptische wet een algemenere geldigheid blijkt te bezitten 

dan de lineaire theorieën. Deze wet blijkt experimenteel geldig te blij

ven tot in het gebied van afschuifspanningen, waar viscositeit en uit-

dovingskromme al duidelijk een niet-lineair gedrag vertonen. 
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