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Dispersion and Nonlinearity Identification for
Single-Mode Fibers Using the Nonlinear

Fourier Transform
Pascal de Koster and Sander Wahls , Senior Member, IEEE

Abstract—Efficient fiber-optic communication requires precise
knowledge of the fiber coefficients, but these often change over
time due to factors such as aging or bending. We propose a novel
algorithm that identifies the average second-order dispersion and
Kerr nonlinearity coefficient of a fiber, without employing any
special training signals. Instead, ordinary input and output data
recorded during normal operation is used. To the best of our
knowledge, this is the first such algorithm. The algorithm is based
on the nonlinear Fourier spectrum of the signal, which is known
to evolve trivially as the signal propagates through an idealized
model of the fiber. The algorithm varies the values of the fiber
coefficients until the corresponding nonlinear Fourier spectrum at
transmitter and receiver match optimally. We test the algorithm on
simulated transmission data over a 1600 km link, and accurately
identify the fiber coefficients. The identification algorithm is in
particular well suited for providing a fiber model for nonlinear
Fourier transform-based communication.

Index Terms—Chromatic dispersion, digital signal processing,
fiber identification, fiber-optic communications, Kerr nonlinear
effect, nonlinear Fourier transform.

I. INTRODUCTION

D IGITAL signal processing has become increasingly more
important in fiber-optic communication systems with high

data rates, as it allows to compensate for transmission impair-
ments such as chromatic dispersion and the Kerr nonlinear
effect [1]–[3]. In order to digitally compensate such effects,
the fiber is often modelled with a lossy and noisy nonlinear
Schödinger equation, in which the second-order dispersion co-
efficient β2 and the Kerr nonlinearity coefficient γ are assumed
to be known. The values of these two coefficients are usually
supplied by the manufacturer of the fiber link, but it often occurs
that the supplied values do not exactly fit the fiber anymore after
installation of the fiber due to bending, aging, and splicing [1]. It
may also occur that the fiber coefficients are not readily available,
or lost, as may be the case in small scale experimental setups.
For such scenarios, we present a novel nonlinear Fourier trans-
form (NFT)-based fiber identification algorithm to determine the
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values of β2 and γ, using input-output transmission data only.
This paper improves and extends our earlier NFT-based fiber
identification algorithm [4] in terms of robustness, versatility
and accuracy.

Several fiber identification algorithms have already been de-
veloped, but these either identify only β2 (e.g., [5], [6]), or iden-
tify γ using digital back-propagation (e.g., [7]–[10]). However,
these algorithms using digital back-propagation suffer from at
least one of the following shortcomings: β2 has to be known;
a specific modulation format has to be used; the quality of the
estimates depends on the chosen spatial numerical step. Other
methods determine γ by measuring self-phase modulation,
cross-phase modulation, or four-wave mixing using training
signals [11]–[13], but these require that normal operation of the
fiber is interrupted, which can be undesirable in scenarios where
the system is in constant operation, or when the training signals
are not straight-forward to generate or analyze. Furthermore,
several of these identification algorithms were demonstrated for
short fibers, and may therefore be less suitable for identifying
long links. Finally, we remark that applying standard black-box
machine learning techniques for fiber parameter identification is
not straight-forward. Due to their black-box nature, known phys-
ical models are not exploited. Instead, one has to provide large
representative data sets that cover a wide range of real-world
scenarios, which is a challenging problem in itself.

To overcome these drawbacks of current identification meth-
ods, we present a novel algorithm that identifies average values
for both β2 and γ, by comparing the nonlinear Fourier spectrum
of transmitted and received signals. Theory predicts that the
NFT spectrum at the transmitter and the NFT spectrum at the
receiver are linearly related for a noiseless lossless link [14].
Since additional loss and noise effects occurring in realistic
links can be taken into account using proper transformations,
it is possible to use the NFT spectrum for identification.

The NFT is typically computed with respect to a normalized
nonlinear Schrödinger equation (NLSE), which requires the
provided input-output data to be normalized. Our algorithm uses
the fact that the NFT spectrum at input and output only match
if the input and output signal are normalized with the correct
amplitude normalization constant cq and normalized fiber length
Z, which both depend on β2 and γ. First, an initial estimate for
cq is determined by comparing the third conserved quantities
of the NLSE of the input and output signals [15]. Starting from
this initial guess, cq is varied first and then Z until we find the
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normalization at which the NFT spectrum at input and output
match optimally. Assuming that the attenuation, fiber length,
and amplifier spacing are known, we can derive β2 and γ from
the identified normalization cq and Z.

Another application of our proposed algorithm is the iden-
tification of a suitable model for NFT-based communication
systems [16], without any prior knowledge of the fiber. NFT-
based transmission systems typically only require the correct
normalization constant cq and normalized length Z, and can
therefore be calibrated, even if no information of the fiber link
is available at all.

This paper is structured as follows. Section II gives an
overview of the fiber model and the nonlinear Fourier transform.
Section III provides two identification algorithms, based on
the continuous NFT spectrum and the discrete NFT spectrum,
respectively. Section IV combines both algorithms into one final
robust algorithm. Section V evaluates the final algorithm with
simulated test cases and Section VI concludes the paper.

II. FIBER MODEL AND NONLINEAR FOURIER TRANSFORM

The propagation of light through an optical single-mode fiber
under the influence of anomalous dispersion, self-focusing, at-
tenuation, lumped amplification, and noise can be modelled by
the focusing nonlinear Schrödinger equation [1, Ch. 9.1.1]:

Al = −iβ2
2
Aττ + iγ|A|2A− α

2
A

+

N∑

n=1

(rA+G(r, n))δ(l − nLspan), (1)

in which τ denotes retarded time, l the position in the fiber,
A(τ, l) the complex field envelope, β2 < 0 the dispersion co-
efficient, γ the Kerr nonlinearity coefficient, α the attenuation
coefficient, i the unit imaginary number, and δ the Dirac delta
function. Subscripts indicate partial derivatives. The link of
length L consists of N equidistant fiber spans, each with length
Lspan = L/N . At the end of each span, l = nLspan, an Erbium
Doped Fiber Amplifier (EDFA) is used to amplify the signal
with a factor r = eαLspan/2 (lumped amplification) to compen-
sate the loss. Additive white Gaussian noise G(r, n) enters the
system through Amplified Spontaneous Emission (ASE) during
amplification, with noise power dependent on the noise figure
of the EDFA and the amplification factor r.

Within each fiber span, the amplifiers can be ignored, and we
may change to the variableQ(τ, l) = eαl/2A(τ, l), which yields
a lossless NLSE with varying Kerr effect:

Ql = −iβ2
2
Qττ + iγe−αl|Q|2Q. (2)

Assuming that the wave envelope does not change much within
each fiber span, we may approximate Eq. 2 with a lossless path-
averaged (LPA) NLSE [17], in which the varying nonlinearity
coefficient is approximated with its path average, γ1. This leads
to the LPA-NLSE:

γ1 =
1

Lspan

∫ Lspan

0

γe−αl dl = γ
1− e−αLspan

αLspan
, (3)

Ql ≈ −iβ2
2
Qττ + iγ1|Q|2Q. (4)

When distributed Raman amplification is applied instead of
lumped amplification, path averaging can also be applied using
an integral with l-dependent attenuation. A link with distributed
Raman amplification is typically approximated better by the
LPA-NLSE than a similar link with lumped amplification [18].
In this paper, we therefore focus on the more challenging case
of lumped amplification.

The proposed fiber identification algorithm in this paper is
based on comparing the NFT of input and output signals, for
which the NLSE is required in normalized form. Let T0 be a
free time scaling parameter. We will only consider T0 = 1 s for
the identification algorithm, as increasingT0 only linearly scales
the nonlinear frequency λ in the NFT. We then switch to the
normalized variables [19]

t =
1

T0
τ, q = T0

√
γ1
−β2︸ ︷︷ ︸
cq

Q, z =
1

T 2
0

−β2
2︸︷︷︸
cz

l, (5)

This results in the normalized NLSE:

qz = iqtt + 2i|q|2q. (6)

Note thatβ2 appears in the denominator of cq . Small mismatches
in β2 might therefore result in large changes in the normalized
signal q. Hence, the proposed NFT-based identification algo-
rithm may be less suited for dispersion managed links with
near-zero average dispersion.

The normalized NLSE may be solved exactly in the nonlinear
Fourier domain, in which the NFT spectrum of the signal evolves
trivially. The NFT of a signal q(t) can be determined by solving
the Zhakarov-Shabat scattering problem [14], [15]:

d

dt

[
φ1(t, λ)

φ2(t, λ)

]
=

[
−iλ q(t)

−q∗(t) iλ

][
φ1(t, λ)

φ2(t, λ)

]
,

[
φ1(t, λ)

φ2(t, λ)

]
t→−∞−→

[
e−iλt

0

]
, (7)

where (·)∗ denotes the complex conjugate. We then define the
scattering coefficients a(λ) and b(λ) as the normalized limits of
φ1 and φ2 for t→ +∞:

a(λ) := lim
t→∞ e

iλtφ1(t, λ), b(λ) := lim
t→∞ e

−iλtφ2(t, λ). (8)

The NFT of q(t) consists of a continuous and a discrete spectrum.
We define the continuous spectrum as b(λ), λ ∈ R, and the
discrete spectrum as {λm, bm}Mm=1, in which the eigenvalues
λm are the zeros of a(λ) in the complex upper half plane, and
bm = b(λm). Each eigenvalue λm in the discrete spectrum corre-
sponds to a solitonic component in the signal, a shape-retaining,
localized wave. The continuous spectrum represents dispersive
components. As the signal q(t, z) propagates in the z-direction
according to the normalized NLSE (6), the eigenvalues remain
invariant, while the scattering coefficients evolve trivially [14]:

a(λ, z) = a(λ, 0), b(λ, z) = b(λ, 0)e4iλ
2z. (9)
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III. IDENTIFICATION USING ONLY CONTINUOUS OR

DISCRETE SPECTRUM

In this section, we present two separately executable algo-
rithms to estimate the fiber coefficients, which are combined
into one robust, final algorithm in Section IV. Both algorithms
are based on the simple evolution of the scattering coefficients
in Eq. 9. The first algorithm takes only the continuous spec-
trum into account; the second algorithm considers only the
discrete spectrum. Both algorithms can be split into two sep-
arate single-parameter identification problems: first, the ampli-
tude normalization cq =

√
γ1/(−β2) is identified, and second,

the normalized link length Z := czL = −β2

2 L. The amplitude
normalization will be determined using a local optimization
technique, starting from an intitial guess. The third integral
of motion of the normalized NLSE can be used to obtain an
initial estimate, c0q , as described in the Appendix. If other prior
knowledge is available of the fiber, this may also be taken into
account for the initialization.

For the proposed algorithm, we have chosen to define the NFT
spectrum as b(λ), although it is also common to define the contin-
uous spectrum as q̂(λ) := b/a, λ ∈ R, and the discrete spectrum
as {λm, q̃m}Mm=1, with q̃m := b/aλ(λm) (i.e., the residue of q̂ in
λm). We have chosen to use only b(λ), as it is usually less noisy
than b(λ)/a(λ), (see e.g., [20]).

A. Identification From the Continuous NFT Spectrum

The first identification algorithm considers only the contin-
uous part of the NFT, b(λ), λ ∈ R. Note that the nonlinear
Fourier transform of a signal depends on the applied amplitude
normalization, cq , in Eq. 5. We denote the b-coefficient in (8)
that corresponds to the signal q(t) = T0cqQ(T0t) in (7) by
b(λ, z; cq), where z denotes the normalized position of Q in
the fiber.

We observe from Eq. 9 that the correct value cq = c�q leads
to a constant absolute value of |b| throughout an ideal fiber, and
in particular, the absolute value at input (z = 0) and at output
(z = Z/T 2

0 ) are equal:

|b(λ, Z/T 2
0 ; c

�
q)| = |b(λ, 0; c�q)|, λ ∈ R. (10)

We may substitute bin(λ; cq) = b(λ, 0; cq) and bout(λ; cq) =
b(λ, Z/T 2

0 ; cq), which are determined from the NFT of the
normalized transmitted signal qin(t) and received signal qout(t)
respectively. Our strategy will be to vary cq , and identify the
normalization for which the |b| of the transmitted and received
signal match as well as possible. As shown in Fig. 1, the
absolute continuous spectrum at input and output are indeed
nearly identical for the optimal amplitude normalization, c�q ,
whereas a sub-optimal cq may cause a significant mismatch.

To quantify the mismatch, we measure the normalized abso-
lute error over a range of nonlinear frequencies [λmin, λmax]:

E|cs|(cq) =

∫ λmax

λmin

∣∣|bout(λ; cq)| − |bin(λ; cq)|
∣∣ dλ

∫ λmax

λmin
|bin(λ; cq)| dλ

, (11)

in which E|cs| denotes the relative error in the absolute value
of the continuous spectrum. The error is normalized with the

Fig. 1. The absolute continuous spectrum at input and output at optimal cq
(left), and at sub-optimal cq (right).

b-coefficient of the transmitted signal, as it does not contain
any ASE-noise, in contrast to the received signal. The range
[λmin, λmax] is determined by considering the occupied band-
width, i.e., the smallest linear frequency range containing at
least (e.g.) 90% of the signal energy:

[λmin, λmax] = [−ωmax/2,−ωmin/2], such that
∫ ωmax

ωmin

|F(q)(ω)|2 dω ≥ 0.9

∫ +∞

−∞
|F(q)(ω)|2 dω, (12)

with F(q)(ω) the linear Fourier transform of q(t) at angular
frequency ω. The reason for this choice is that the NFT of an
infinitesimal-energy signal q(t) and the linear Fourier transform
of q(t) relate through [19]

b(λ) = −(F(q)(−2λ))∗ . (13)

Also for higher-energy signals, (i.e., when the linear and nonlin-
ear Fourier transform differ significantly), we observed that the
frequency range [λmin, λmax] still contains a significant amount
of the energy, leading to a good signal-to-noise ratio for the
identification algorithm.

We minimize (11) with respect to cq by first performing a
coarse line search around the initial guess, c0q . The grid point
with minimal error is then used as initial guess for the local
minimization scheme from [21] (i.e., the standard fminsearch
function in Matlab) to obtain an estimate ĉq .

Comparing phase shifts to find Z: After identifying cq from
|b(λ)|, we may extract the normalized length Z by comparing
the phase shift between the continuous spectrum at receiver
and transmitter. From this point on, we consider only b(λ, z) =
b(λ, z; ĉq) with ĉq identified in the previous step. Assuming
propagation through an ideal fiber with ĉq = c�q and the correct
normalized length, Z�, the phase shift in b(λ, z) according to
(9) is given by

∠b(λ, Z�/T 2
0 ) = ∠b(λ, 0) + 4λ2Z�/T 2

0 mod 2π, λ ∈ R.
(14)

By replacing b(λ, 0)with the determined bin(λ), and b(λ, 0)with
bout(λ), Eq. 14 will hold approximately if ĉq ≈ c�q and Z ≈ Z�.
Note that Eq. 14 corresponds to fitting a parabola λ2 to the phase
shift in b, in a 2π-periodic space. When identifying Z, we will
also allow an offset ψ0 in the parabola.

We first estimate Z and ψ0 by fitting 4λ2Z/T 2
0 + ψ0

with linear least squares to the unwrapped phase difference,
Δψ(λ) := unwrap(∠bout − ∠bin), with Δψ(0) ∈ [−π, π), and
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Fig. 2. Left: the initial least squares quadratic fit to the unwrapped phase
difference. Right: the quadratic fit to the unwrapped phase difference resulting
from (15), which allows for 2π phase shifts.

λ ∈ [λmin, λmax]. Although the resulting estimates are usually
accurate, it may occur that the phase difference is unwrapped
to the wrong side, causing 2π jumps in the unwrapped phase
difference (see Fig. 2, left). Therefore, we define an error norm
that is not affected by these 2π jumps:

E∠cs(Z,ψ0) =
1

λmax − λmin

∫ λmax

λmin

∣∣∣
[
∠bout(λ)− ∠bin(λ)

− (
4λ2Z/T 2

0 + ψ0

)
+ π

]
mod 2π − π

∣∣∣ dλ,

(15)

in which E∠cs denotes the average error in the phase of the
continuous spectrum. Note that we add π before the modulo op-
eration, and subtract π afterwards to ensure the phase mismatch
at every λ is in the region [−π, π) instead of [0, 2π). Similar
to the optimization of E|cs| (11), we first perform a coarse line
search around the linear least squares estimate forZ, and then the
iterative minimization scheme from [21] to obtain final estimates
Ẑ and φ̂0.

B. Identification From the Discrete NFT Spectrum

In this subsection, we propose a method to identify the nor-
malization cq and normalized lengthZ by comparing the discrete
spectra of the transmitted and received signal. Similar to the
continuous spectrum algorithm, we will first identify cq , and Z
afterwards.

We start by writing the discrete spectrum with an ex-
plicit dependence on cq . We denote the discrete spec-
trum that corresponds to the signal q(t) = T0cqQ(T0t) by

{λm(cq), bm(z; cq)}M(cq)
m=1 , with z the normalized position of

Q in the fiber. We note here that the energy Em of the solitonic
component corresponding to the eigenvalue λm increases with
its imaginary part, Em = 4�(λm) [19]. Increasing cq increases
the normalized signal energy, which usually increases energy
in the discrete spectrum as well. As a result, on average the
eigenvalues meander upwards in the complex plane in contin-
uous trajectories, and new eigenvalues may appear from the
real axis [22],[23, p. 12]. For small values of cq however, the
normalized energy will be too low, and the discrete spectrum
will contain no eigenvalues at all [24].

If the correct normalization c�q is applied, the eigenvalues
λm remain constant, and each b(λm) evolves according to (9),
assuming a lossless, noiseless fiber. Also for a non-ideal fiber, the

Fig. 3. The eigenvalues of a transmitted 7-soliton signal, evaluated with the
optimal normalization cq (left), and with a sub-optimal cq (right). Connections
indicate the least-cost perfect matching.

Fig. 4. The complete bipartite graph corresponding to 4 input eigenvalues,
and 2 output eigenvalues. 2 auxiliary eigenvalues have been added to the set of
output eigenvalues to ensure that the output and input eigenvalue sets are equally
large. A possible perfect matching l(k) is marked: {l(1) = 2, l(2) = 3, l(3) =
4, l(4) = 1}. The cost of this matching is E12 +E23 +E34 +E41.

solitonic components of the eigenvalues are still preserved rela-
tively well, as long as both the span length is much shorter than
the corresponding soliton period [25] and the signal-to-noise
ratio is sufficiently high. We will use this property, and identify
the normalization cq for which the discrete spectrum at transmit-
ter and at receiver correspond at well as possible. To illustrate
the effect of the normalization cq on the discrete eigenvalues,
Fig. 3 shows the spectrum of a 7-soliton signal [26] at both
transmitter and receiver. The left eigenvalues were determined
with the optimal c�q . The right spectra were determined with
a 22% larger cq, which caused a larger difference between the
spectra compared to the optimal cq . We also note that the increase
in cq resulted in more normalized energy, and accordingly, the
eigenvalues have shifted upwards, and a new, unmatched output
eigenvalue has spawned from the real axis.

To quantify the error between the input and output spectrum
for a given cq , we propose an error norm based on creating pairs
of eigenvalues at input and output, and sum the error in each
pair. Note that the number of input eigenvalues, M in, and the
number of output eigenvalues, M out, may be unequal, M in 	=
M out. To allow for a perfect matching, we keep adding ‘auxiliary
eigenvalues’ at zero, λaux = 0, to the smaller set until the sets are
equally large (see also Fig. 3, right). Next, we create a complete
bipartite graph as shown in Fig. 4. Each input eigenvalue λin

k

connects to each output eigenvalue λout
l with edges (λin

k , λ
out
l ),
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with associated cost Ekl. The cost of the edges represents the
mismatch between eigenvalue λin

k and λout
l , and will be specified

later in this section, but we already mention that each edge cost
Ekl is always at most�(λin

k ) + �(λout
l ), i.e., proportional to their

combined energy.
We define the total error by finding a least-cost perfect match-

ing of the bipartite graph with edge costs Ekl. Let l(k) denote
a perfect matching, which assigns each input eigenvalue λin

k to
the output eigenvalue λout

l(k) (see Fig. 3 and Fig. 4). The least-cost

matching may be found inO(M3) time,M = max(M in,M out),
for example with fast versions of the Hungarian algorithm [27].
The final error is the cost of the least-cost perfect matching,
normalized by the sum of imaginary parts of all eigenvalues at
input and output:

Eds(cq) =
minl(k)

∑M
k=1Ekl(k)∑M

k=1 �
(
λin
k

)
+
∑M

l=1 � (λout
l )

, (16)

in which M , Ekl, and λm depend implicitly on cq . In case no
eigenvalues were found for both the input and output, we set
Eds to its maximum value, 1. We find an estimate c̃q as the value
minimizing Eds(cq).

Edge cost Ekl: Next, we consider the edge cost Ekl to repre-
sent the mismatch Ekl between λin

k and λout
l . A straightforward,

but effective edge costEkl is the Euclidean distance between in-
put and output eigenvalue. However, with this norm, eigenvalue
pairs with with small imaginary part, but large difference in real
part may dominate the error, whereas their energy (∝ imaginary
part) can be arbitrarily small. To ensure that eigenvalue pairs
with low energy cannot dominate the total error, we put an upper
bound on Ekl, equal to the sum of the imaginary parts of the
eigenvalue pair:

Ekl = min
(∣∣λin

k − λout
l

∣∣ ,� (
λin
k

)
+ � (

λout
l

))
. (17)

This way, if λin
k and λout

l contain little energy, they can also
contribute little to the total error. A mathematical motivation
for this upper bound forEkl is that new eigenvalues may appear
at the real axis as cq is varied. Therefore, we can argue that
instead of connecting an input and output eigenvalue to each
other, it may also be the case that each connects to a hypothetical
eigenvalue which is about to appear on the real axis right beneath
it, resulting in an error of �(λin

k ) + �(λout
l ). Note that the con-

nection between an eigenvalue λm and an auxiliary eigenvalues
λaux = 0 always assumes its maximum bound, �(λm).

Although the edge cost in Eq. 17 suffices in most circum-
stances, an alternative definition for Ekl may be used when
we already have a reliable estimate for Z available. Z may
be available when β2 and L are already known, and only γ1
is to be identified, or when Z was reliably estimated by the
continuous spectrum algorithm. IfZ is available, we may define
the error Ekl using both a mismatch in eigenvalue, Eλ

kl, as well
as a mismatch in spectral function, Eb

kl, (opposed to only using
the mismatch in λ as in (17)). Let the mismatch in eigenvalue be
given by the Euclidean distance between the paired eigenvalues,

Eλ
kl := |λin

k − λout
l |. (18)

Second, we consider the mismatch in the spectral function b.
According to Eq. 9, b(λ, Z/T 2

0 ) = b(λ, 0)e4iλ
2Z/T 2

0 . Let λkl :=

λin
k+λout

l

2 be the average of the input and output eigenvalue. We
may express the difference between bin

k and bout
l e−4iλ2

klZ/T 2
0 as

the result of a difference Δλ in λkl:

bin
k = bout

l e−4i(λkl+Δλ)2Z/T 2
0 ,

⇒ bin
k = bout

l e−4iλklZ/T 2
0 −8iλklΔλZ/T 2

0 +O(Δλ2).

By dropping the quadratic term O(Δλ2), we get a simple
expression for the mismatch Δλ in the spectral data:

|Δλ| ≈ Eb
kl :=

∣∣∣∣∣∣

log
(
bout
l e−4iλklZ/T 2

0 /bin
k

)

8iλklZ/T 2
0

∣∣∣∣∣∣
, (19)

and note that this relationship requires knowledge of Z. We
finally define the total mismatch as the average of both errors,
and bound it by the imaginary value of the eigenvalue pair:

Ekl := min

(
Eλ

kl + Eb
kl

2
,� (

λin
k

)
+ � (

λout
l

))
. (20)

When a reliable estimate for Z is available, using edge cost (20)
generally results in better estimates c̃q compared to using (17).

Determine Z from |b(λm)|: We can (re-)estimate Z by com-
paring the |bin(λk)| with |bout(λl(k))| using the identified c̃q and
assignment l(k). The spectral function at input and output for
λm are related through Eq. 9, from which estimates Z̃k may be
obtained as

|b(λm, Z/T
2
0 )| = |b(λm, 0)|e�(4iλ2

m)Z/T 2
0

⇒ Z̃k = T 2
0

log
∣∣bout

(
λl(k)

)∣∣− log
∣∣bin (λk)

∣∣
� (4iλ2

kl)
, (21)

where Z̃k is an estimate for Z from the kth eigenvalue pair, and

λkl :=
λin
k+λout

l(k)

2 is the average of the paired input and output
eigenvalue. To use the available data as well as possible, we
consider all Z̃k for a final estimate Z̃. First, all pairs with max-
imal distance, Ekl = �(λin

k ) + �(λout
l ), are discarded, as these

eigenvalues are very distant from each other and are unlikely to
be related. Second, we discard outliers, i.e., estimations more
than two standard deviations away from the mean. Outliers are
common, as almost purely imaginary eigenvalues lead to a small
denominator in (21), yielding unstable estimations for Z. Third,
as eigenvalues with large imaginary part contain more energy, we
assign their associated estimates a larger weight, wk = �(λkl).
The final Z̃ is the weighted average of the remaining estimates,
Z̃ =

∑
k wkZ̃k/

∑
k wk.

IV. FINAL IDENTIFICATION ALGORITHM

In this section, we combine all previously described algo-
rithms to create one final robust algorithm. From our experience
with the continuous and discrete spectrum, we have found that
the continuous spectrum algorithm usually yields better results
forZ, while the discrete spectrum algorithm yields more reliable
results for cq. Therefore, we will first attempt to use the contin-
uous spectrum to identify Z, and then the discrete spectrum
to identify cq . If Z is identified reliably from the continuous
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Fig. 5. Overview of the final algorithm.

spectrum, this Z may also be used for the discrete spectrum
identification through Eq. 18–20.

In general, it holds that if the continuous or discrete spectrum
contains too little energy, or the signal-to-noise ratio is too low,
no good resemblance between input and output spectrum exists,
and thus the estimates of the corresponding algorithm should
be discarded. We therefore reject estimates for the continuous
spectrum when E∠cs >

π
8 (average absolute phase mismatch)

for the continuous spectrum algorithm, and Eds > 0.2 (relative
error) for the discrete spectrum.

We propose a final algorithm as summarized in Fig. 5. First we
find estimates ĉq and Ẑ using the continuous spectrum algorithm.
If these estimates are accepted, we apply the discrete spectrum
algorithm using the identified Ẑ to re-estimate cq , and accept
this estimate c̃q if Eds < 0.2. Otherwise, it is discarded. If the
continuous spectrum algorithm estimates were rejected, we fully
rely on the discrete spectrum algorithm. If the discrete spectrum
error is sufficiently small, Eds < 0.2, we accept the resulting
estimates c̃q and Z̃. In case both the continuous and discrete
algorithm did not provide reliable results, we can enlarge our
search range for the initial guess c0q . If this does not yield
any reliable results either, the algorithm cannot identify a fit-
ting normalization, most likely because the LPA-NLSE does
not model the fiber well enough, or because the considered
signal is too noisy. A more reliable estimate can be obtained
by running the identification algorithm for multiple signals,
discarding outlier estimates, and averaging over the remaining
ones.

V. RESULTS: IDENTIFICATION ON SIMULATED DATA

In this section, we demonstrate the capabilities of the iden-
tification algorithm on noisy transmission data simulated with
Eq. 1. We have considered two applications: first, we identified
the second-order dispersion β2, and the Kerr nonlinearity coef-
ficient γ using a conventional transceiver; second, without any
prior knowledge, the algorithm was used to calibrate a nonlinear
Fourier transform-based transmission system.

We applied the algorithm on input-output data from a fiber-
optic transmission system, simulated with the software NFDM-
lab [28]. For both applications, we considered the same NZ-DSF
fiber link, with 20 spans ofLspan = 80 km each, resulting in a to-
tal transmission length of 1600 km. The second-order dispersion
of the fiber was β2 = −5.00 · 10−27 s2 m−1, the Kerr nonlin-
earity coefficient was γ = 1.20 · 10−3 (Wm)−1, and the attenu-
ation coefficient wasα = 0.2 · 10−3 dB/m. After each span, an
EDFA compensated the accumulated loss through lumped am-
plification, and added white Gaussian noise with a noise figure
of fn = 6 dB. We used the LPA-NLSE (4) as reference solution,
which predicted a path-averaged (PA) model with path-averaged
Kerr nonlinearity coefficient γ1 = 0.318 · 10−3 (Wm)−1, nor-
malization coefficient cq = 2.52 · 1011 W−1/2s−1, and normal-
ized length Z = 4.00 · 10−23 s2. At the link input and output,
ideal low-pass filters were applied to account for transceiver
bandwidth limitations [28]. We assume that all other real-world
effects not included in the model are either zero-mean and can
be included in the noise term, or that they have been removed
by appropriate post-processing. For example, a carrier frequency
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Fig. 6. The identified path-averaged Kerr nonlinearity and second-order dispersion from conventional transceiver data. Left: high launch power (2.9 dBm) and
unadapted algorithm. Middle: medium launch power (−4.5 dBm) and the unadapted algorithm (middle). Right: medium launch power (−4.5 dBm), increased
acceptance rate from Eds < 0.2 to Eds < 0.2 for the discrete algorithm part.

offset can be detected and compensated with a simple nonlinear-
frequency shift [19]. We finally assume a coherent receiver
since both phase and amplitude information are required. To
compute the NFT in the identification algorithm, we used the
Fast Nonlinear Fourier Transform (FNFT) software library [29].

A. Identifying Fiber Coefficients From a
Conventional Transceiver

In this benchmark, we simulated data transmission using a
conventional time domain transceiver, and show that the fiber
coefficients β2 and γ can be accurately recovered. We assume
that the fiber length, amplifier spacing, and attenuation coeffi-
cient are known. The transmitted signal consists of a linear sum
of time-shifted raised cosine pulses, modulated with Quadrature
Phase Shift Keying (QPSK). The roll-off factor was 0.5 and
symbol duration T = 0.04 ns. The time shift between two sub-
sequent pulses is also T = 0.04 ns, to ensure zero intersymbol
interference (ISI) in the transmitted signal. The transmitted
signal consisted of burst of 128 pulses. In between two bursts,
a guard interval of 16 T was added. We considered two cases:
one with optimal launch power, −4.5 dBm, and one with high
launch power, 2.9 dBm. The optimal launch power was found by
optimizing detection performance after applying digital (linear)
dispersion compensation and average rotation compensation of
the symbols. Note that the NFT spectrum of this signal was not
specially tailored, we only spaced the bursts sufficiently far apart
with guard intervals such that the bursts did not significantly
interfere at output, and could be analysed separately.

For both cases, we transmitted a signal with 100 bursts, and
applied our algorithm to each burst at transmitter and receiver.
The identified coefficients were determined by first discarding
outliers (more than two standard deviations away from the
mean), and then averaging over the remaining estimations. The
path averaged coefficients were used as reference solution.
First, we consider the result for the high power signal, which
are shown on the left in Fig. 6. The identified coefficients
were β2 = −4.99 · 10−27 s2 m−1 (PA:−5.00 · 10−27) and γ1 =

3.16 · 10−4 (Wm)−1 (PA: 3.18 · 10−4). The corresponding Kerr
nonlinearity coefficient was γ = 1.19 · 10−3 (Wm)−1 (true:
1.20 · 10−3). Both coefficients were less than 1% off the true
values, showing that the fiber coefficients can be accurately
identified using our algorithm if the launch power is sufficiently
high.

Next, we consider the case with optimal launch power. The
algorithm still reliably identifies β2, but the estimate of γ is
poor. See the middle of Fig. 6. The poor performance of the
algorithm with respect to γ is due to the fact that at optimal
launch power (for a linear transceiver), nonlinear effects are in-
significant compared to the dispersive effect over the considered
fiber length. During further analysis, we observed that while
the signals were actually dominated by solitonic components
(about 80% of the total signal energy), the discrete spectrum
was consistently rejected due to significant mismatch in b(λj)
in Eq. 19. (Similar observations in which conventional OFDM
signals were found to be soliton-dominated have been reported
in [30]. Note that the solitons do not disentangle since the fiber
is too short.) The current estimates were thus solely based on
the continuous spectrum. In order to get a good estimate of the
nonlinearity parameter γ at optimal transmit power (for a linear
transceiver), we should not discard the discrete spectrum. Hence,
we increased the acceptance rates for the discrete estimates from
0.2 to 0.6 (this corresponds to accepting the discrete estimates
in almost all cases). The result is shown on the right in Fig. 6.
The new estimate is much better than before, although is it still
biased and and the individual data points show a large variance.
Thus, we were eventually able to obtain a reasonable estimate of
the nonlinearity coefficient. However, the benchmark also shows
that for highly accurate estimates of the nonlinearity parameter,
the launch power has to be high enough such that nonlinear
effects are not negligible.

B. Calibrating an NFT-Based Transceiver

In our second benchmark, we considered a scenario in which
we modulated data in the discrete NFT-spectrum. If the correct
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Fig. 7. The identified normalization from multi-soliton transceiver data. No
prior knowledge of the fiber was used.

normalization was used for the modulation, the transmitted
signal would consist of bursts of multi-solitons with 7 eigen-
values λm and zero continuous spectrum. Bits were modu-
lated into the phase of the residues, q̃m = b/aλ(λm), of each
eigenvalue using QPSK, identically following the modulation
format of Bülow et al. [26]: ∠(q̃(λin

m)) ∈ {− 3π
4 ,−π

4 ,
π
4 ,

3π
4 }.

The time normalization constant was T0 = 2 ns/(14π), which
transformed the bursts with normalized duration 14π to bursts of
physical duration 2 ns. We emphasize that it is no problem if the
identification algorithm uses a different value for T0 when nor-
malizing the input and output data. (When data is modulated in
the normalized nonlinear Fourier domain and then transformed
into the physical time-domain, the choice of the normalization
parameter influences the physical duration and amplitude of the
fiber input and thus has to be chosen correctly. In contrast, for
the identification algorithm, physical data is the starting point
and the time normalization constant only influences in which
normalized domain the nonlinear spectra are compared. The
only important point is that the input and output data have to
be normalized using the same constant.)

Only the correct normalization cq and the normalized length
Z are required for successful transmission, but these were
guessed poorly as cq = 3.00 · 1011 W−1/2s−1 (PA: 2.52 · 1011)
andZ = 8.00 · 10−23 s2 (PA: 4.00 · 10−23). As a result, the error
vector magnitude (EVM) in the received symbols was 35 dB, and
communication was unsuccessful. Although the symbols could
not be recovered, we could use the transmitted and received sig-
nals to identify a new model. We applied the combined algorithm
to each of 100 bursts of presumed 7-soliton signals, discarded
outlier estimates (more that 2 standard deviations away from
the mean), and averaged the remaining estimates to obtain
cq = 2.54 · 1011 W−1/2s−1 and Z = 3.85 · 10−21 s2, as shown
in Fig. 7. Using this new normalization, we generated a signal
modulated with new symbols, and the symbols were successfully
received. The transmission with the identified model resulted in

an EVM of −8.2 dB in the symbols, whereas the path-averaged
model resulted in−8.6 dB. Thus the identified model performed
comparable to the path-averaged model, only showing a minor
increase in EVM.

VI. CONCLUSION

We have proposed an algorithm to identify the second-order
dispersion β2 and Kerr nonlinearity coefficient γ of an optical
fiber, based on the nonlinear Fourier transform (NFT) of trans-
mitted and received signals. The algorithm models the fiber with
a lossless, path-averaged nonlinear Schrödinger equation, and
identifies a normalization for the NFT such that the correspond-
ing NFT spectrum of the transmitted and received signal match
optimally to each other. β2 and γ are finally derived from the
identified normalization, using the known fiber length, amplifier
spacing, and attenuation coefficient. Although β2 and γ cannot
be found without prior knowledge of the fiber, the normalization
can nonetheless be identified, which already suffices to calibrate
an NFT-based transceiver. The entire algorithm can be applied on
any sufficiently high energy signal, and does not require special
training signals.

We have demonstrated the capabilities of the algorithm with
two benchmarks, in which the fiber coefficients were accurately
identified. Due to its versatility and accuracy, the proposed
identification algorithm may prove an attractive alternative to
currently existing fiber identification methods.

APPENDIX

IDENTIFICATION FROM CONSERVED QUANTITIES

The normalized focusing NLSE (6) has an infinite number of
conserved quantities [15], the first three of which are

C1 = −
∫ ∞

−∞
|q|2 dt, (22)

C2 =
1

2

∫ ∞

−∞
qq∗t − q∗qt dt, (23)

C3 =

∫ ∞

−∞
|q|4 − |qt|2 dt. (24)

The value of these constants does not depend on the location in
the fiber as long as the signal propagates according to the NLSE.
Given an arbitrary input signal qin(t) = T0cqQ

in(T0t) and its
corresponding output signal qout(t) = T0cqQ

out(T0t), we may
determine cq by comparing C3 at input and output:

C in
3 (cq) = Cout

3 (cq), ⇒
∫ ∞

−∞
|cqQin|4 − |cqQin

τ |2 dτ

=

∫ ∞

−∞
|cqQout|4 − |cqQout

τ |2 dτ,

⇒ c2q =

∫∞
−∞ |Qin

τ (τ)|2 − |Qout
τ (τ)|2 dτ

∫∞
−∞ |Qin(τ)|4 − |Qout(τ)|4 dτ . (25)

This relation provides a fast and easy method to obtain estimates
for cq > 0. We note that the first and second conserved quantities
cannot be used in a similar fashion because cq drops out when
equating them. On the other hand, higher conserved quantities
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Fig. 8. The distribution of c2q , estimated from the conserved quantity C3 of a
transmitted raised cosines signal at launch powers of −4.5 dBm and 2.9 dBm.
Note the difference in scale between the plots.

can be used, but contain higher derivatives and powers, which
are increasingly sensitive to noise. Using C3 through Eq. 25
is thus the most suitable to estimate cq. Using optimal linear
launch power (−4.5 dBm) and high-power (2.9 dBm) signals
from the conventional transceiver, described in Section VI, we
have determined c2q from 100 bursts. The results are shown in
Fig. 8. At −4.5 dBm launch power, the estimates are highly
biased, and the resulting cq is a factor 2.5 too high (i.e., c2q about
6 times too high). At higher launch power, the estimates for cq
improve, but still contain a bias of about 5%. In general, we
observed that changing the modulation format or the fiber itself
can drastically influence the bias. Furthermore, the estimates are
very sensitive to noise, considered bandwidth and interference
with neighboring bursts. The estimates are unfortunately too
biased and unstable to immediately use as final estimates for
cq , but they still provide an order-of-magnitude indication, and
can be used as initial estimates for our NFT-based identification
algorithm.
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