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1 Introduction 

On March 19, 2008 CUR Building & Infrastructure commissioned Deltares to carry out a 
desk study regarding interface stability of granular filter structures. Actually, the project 
focuses on two particular aspects of the interface between filter layer and base material: 

(1) interface stability as function of the thickness of the filter layer consisting of  
 standard armourstone gradings, and  
(2) interface stability of gravel mixtures with a wide gradation. 

 
The reason for the study is two-fold: 

• In the past many protective structures have been built using granular material, 
for example around bridge piers and spur dikes. In general, the structures 
consist of one or more layers. The filter structure should prevent erosion of base 
material and, therefore, sand tightness is required. This means that the internal 
stability (within the filter layer) as well as the interface stability (at the interfaces 
between the layers) has to be guaranteed. Due to larger design loads than 
assumed in the past, the interface stability is in some instances no longer 
guaranteed. Increasing the layer thickness might solve this problem. 

• Large amounts of wide-graded gravel mixtures will become available on the 
market in the near future because of various projects in the flood plains of 
rivers. These mixtures may be useful to be applied in (bed) protection 
structures. However, the strength against currents is known insufficiently, viz in 
the armouring phenomenon in relation to the layer thickness. 

 
For both typical situations it is assumed that the resistance of the material in the top 
layer – i.e. the armour layer stability – against the erosive forces of the flow velocities is 
sufficient. 
 
The objective of the study is to present an overview of the existing design formulas for 
interface stability for the above mentioned aspects, including remarks which formulas 
need improvement or are even missing. On the basis of the inventory recommendations 
are presented for future research including a list of priorities and quick wins. 
 
The approach is as follows: 

1. Overview of existing and derivation of new design formulas for interface 
stability  
The emphasis is on formulas for permanent current attack, however, formulas 
for non-permanent and short term hydraulic attack (e.g.by propeller jets), wave 
attack (on offshore structures, breakwaters) and transport filters are mentioned. 
Obviously, the applicability ranges of the formulas are mentioned.  

2. Determination of priorities and quick wins for design formulas for 
permanent current attack 

 
The study was carried out by Mr. Henk Verheij, dr. Gijs Hoffmans and dr. Henk den 
Adel of Deltares, and Mr. Gert Jan Akkerman of Royal Haskoning. Mr. Henk Verheij 
was responsible for the project management.  
Mr. Frans van der Knaap of Deltares was responsible for the QA. 
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2 Literature search 

2.1 Introduction 
 
Literature has been searched for:  

(1) permanent flow conditions  
a geometrically-closed and open filters and transport filters (section 2.2) 
b wide-graded filters (section 2.3) 

(2) other hydraulic conditions (section 2.4) 
a non-permanent and short duration hydraulic loads  
b waves  

 
Starting point for the literature search are the CUR report 161 “Filters in de Waterbouw” 
(CUR, 1993) and the paper by Hoffmans, Den Adel and Verheij “Shear stress concept 
in granular filters” presented in Melbourne (Hoffmans et al, 2000). 

The following types of filters can be distinguished (based on the two criteria enabling  
erosion: (1) Base material can pass the pores in the filter material, and (2) Hydraulic 
load is higher than threshold value): 

• Geometrically closed (sand-tight) filters: no transport of base material is possible 

• Stable Geometrically-open sand-tight filters, also called hydrodynamically sand 
tight filters: the hydraulic load is less than the threshold value 

• Instable Geometrically-open or transport filters: the hydraulic load is occasionally 
larger than the threshold value 

 
Note: the design method for transport filters differs from that for the other two. Relevant 
is the total amount of eroded material as function of the hydraulic load (duration and 
magnitude) during the life time of the filter structure. 
 
In Figure 2.1 definitions are presented. 

 
Figure 2.1  Overview of definitions for a one-layer filter structure 
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2.2 Permanent flow conditions 

2.2.1 Traditional filter criteria 
 
 General 
The requirements of granular filters are four-fold. First, the filter layer material that 
covers the base material should be sufficiently fine to control erosion of the base layer. 
Secondly, both the filter and the base layer should be permeable enough to permit 
adequate drainage of seepage water. Thirdly both the filter and base layer should be 
internally stable to avoid suffusion or internal erosion (e.g. washing out of the finer 
particles through the voids associated with the larger ones) and to eliminate the 
occurrence of piping and heave. Finally, granular filters must be installed in accordance 
with the practical requirements regarding the layer thickness.  
 
 Retention criterion 
The eroded material of the base layer passes through the filter layer either by outgoing 
flow perpendicular to the filter-base interface or by flow parallel to the interface. 
Particles that are transported by seepage flow between the larger particles in the filter 
may be washed out. Retention criteria in engineering practice are based on 
experiments performed with various combinations of filter and base materials. Based on 
Bertram’s experiments with nearly uniformly graded filter materials and vertical flow, 
Terzaghi and Peck (1948) specified: 
 

4/ 8515 <bf dd
        

 (2.1) 

  
where df15 is the particle (or grain) diameter in the filter layer for which 15% of the mass 
of the particles is smaller than df15 [m], db85 is the particle (or sand) diameter in the base 
layer for which 85% of the mass of the particles is smaller than db85 [m]. The U.S. Army 
Corps of Engineers (Heibaum, 2004) performed tests with narrowly graded sand and 
grain size distributions for the filters (defined as p < 5 with p = d90/d10). Based on these 
experiments, the following criteria have been developed: 
 

5/ 8515 <bf dd
       

  (2.2) 

25/ 5050 <bf dd
    

  (2.3)
 

 
where df50 and db50 are the median particle sizes of the filter and base layer respectively 
[m].  

 

      
 Permeability criterion 
Progressive accumulation of fines in the pores of a filter layer leads to clogging, which 
may lead to instability of the protection layers caused by uplifting. If the thickness of the 
filter and base layer is decreased by erosion, settlement of the filter structure occurs 
with local differences in the level of the top layer and as a consequence of these  
differential settlement local scour might occur. To reduce the load across the filter layer 
and thus to prevent uplifting this layer should be sufficiently permeable. An accepted 
permeability criterion originally derived for vertical flow direction is (Terzaghi and Peck, 
1948): 

4/ 1515 >bf dd        (2.4) 
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Equation 2.4 is valid for uniform filter and base materials. For materials where filter and 
base material have approximately the same d15, the filter may thus be prone to clogging 
in the long term. 
It should be noted here that uplifting may be prevented then by applying a sufficiently 
thick filter layer. 
 
 Internal stability criterion 
Suffusion or internal erosion occurs in filters that are internally unstable. Such filters 
typically have a wide gradation (d60/d10 > 6) and may result in washout of finer particles 
by seepage or turbulent flow. The criteria for internal stability for vertical flow in the 
direction of gravity are (Kenney and Lau, 1985): 

4/ 510 <dd    and   4/ 1020 <dd    and   4/ 1530 <dd    and   4/ 2040 <dd     (2.5) 
 
Internal erosion results in compaction and is less likely to lead to a rapid failure, than 
piping and heave. Piping starts at the exit point of seepage and develops in the base 
layer by backward erosion. When the pipe reaches approximately halfway the seepage 
length a sudden breakthrough may occur (Sellmeijer 1988). Heave is defined as the 
situation in which vertical effective stresses in the base layer fall away under the 
influence of vertical groundwater flow, also called fluidisation or the forming of 
quicksand.  
 
 Filter thickness 
To be practically effective, filter layers should have a minimum thickness of at least two 
to three times the diameter of the larger particles of the base layer. For controlled 
construction the thickness of a gravel filter layer should be at least 0.20 m, and sand 
filter layers should be at least 0.10 m thick (Pilarczyk 1990, 1998). In underwater 
placement, to ensure that bed irregularities are completely covered, the thickness of the 
top layer should be at least two to three times the size of the larger particles used in the 
layer, but never less than 0.30 m thick. 
 

2.2.2 Hydrodynamically sand-tight filter criteria 
 
Hydrodynamically sand-tight fliters, or geometrical-open sand-tight filters, are 
characterized by the condition that the hydraulic load is less than the threshold value. In 
other words: the strength is larger than the load, and consequently no erosion of base 
material will occur. 
 
Bakker et al. (1994) discussed a filter model that includes near-bed pressure fluctuations: 
 

 

15
2

50 0 50

2.2f h cb b

b f cf f

d R
d C e d

Ψ Δ
=

Ψ Δ               
(2.6) 

 
where C0 is a turbulence coefficient [-] that varies from 6 (when using the time- and 
space-averaged bed shear stress τ0) to 100 (when using the maximum bed shear stress 
τm) with a commonly applicable value of 15; the variable e [-] is a coefficient that takes 
into account the difference between the flow in granular filters and open channels (with an 
average value of e = 0.24); Ψcb  and Ψcf  are the critical Shields parameters for the base 
and the filter material respectively [-], and Δb and Δf are the relative density for the base 
and the filter material respectively [-]. 
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Although the prediction capacity of Equation 2.6 is reasonable for the experiments 
investigated, this relationship is not useful for non-uniform flow conditions as it depends 
on the ratio Rh/df50 with Rh is the hydraulic radius. The reason for this is that at locations 
with high turbulence, for example, downstream backward facing steps, the hydraulic 
radius is not the most appropriate parameter to take into account the correct flow 
conditions. 
 
On the basis of Equation 2.6 a simplified design equation was recommended in CUR 
report 161 (CUR, 1993): 

 

15

50 0 50

f h

b f

d R
d C d

α
=

      (2.7) 
 
Where α = 9.5 for base material with a db50 in the range of 0.15 to 5 mm and α = 19 for 
base material with a db50 larger than 5 mm, and C0 ∼ 15.  
 
Hoffmans et al. (2000) discussed a shear stress approach in a horizontal one-layer filter 
with a thickness (DF) above the base material in open channel flow. Equations for granular 
filters based on the Navier Stokes equation for uniform flow, Forchheimer’s equation 
and the hypothesis of Boussinesq have been combined. The hypothesis of Grass has 
been used to analyse the influence of gradation and armouring in a qualitative way. 
Subsequently, the mean turbulence in granular filters has been discussed (Figure 2.2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
  Fig. 2.2   Distribution of the mean and characteristic load 
 
The paper by Hoffmans et al. (2000) is based on various desk studies at Delft 
Hydraulics in the period 1998 to 2000: Verheij (1999, 2000, 2003). It resulted for 
instance in an equation for the filter velocity uf(z) (Verheij et al., 2000): 
 

 
( ) b

Sξzξz
f

beCeCzu ++= −
21

        (2.8) 

where  
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where us is the filter velocity at z = DF [m/s]; ubf is the flow velocity at the transition 
between base and filter material [m/s], αv (= 0.9) is a coefficient, ξ is a damping factor [-
], DF is the filter thickness [m], C1 and C2 are parameters [-], Sb is the bed slope [-], b is 
a coefficient in the Forchheimer formula; and z is the vertical co-ordinate [m]. 
  
For non-uniform flow conditions at bridge piers Wörman (1989) has investigated 
granular filters. Based on accepted theories he arrived at the following relationship for a 
single layer bed protection: 
 

 85

85

15 1Δ
Δ

16.0
b

f

f

f

b

f

f

F

d
d

n
n

d
D

−
=

    
             (2.9) 

 
where nf is the porosity of the filter material [-]. 
 
Note: In CUR report 161 an equation is presented with df50 in stead of df85. Wörman 
used a factor 1.25 between the two characteristic diameters and applying this factor 
results in a coefficient with a value 0.133 or 1/7.5 as shown in CUR report 161. 
 
Wenka et al (2007) carried out simultaneous pressure and 3D flow measurements in 
the pores of a granular layer. Filter thicknesses of 0.04 m, 0.1 m and 0.20 m with filter 
size df50 = 10 mm (d60/d10 = 1.25) and base material size db50 = 1 mm were tested with 
flow velocities in the range of 0.31 m/s to 0.86 m/s. 
The data can be interesting for validating other formulas. 
 

2.2.3 Transport filters 
 
Transport filters are not subject of this study, but in short the principles will be 
explained. A more elaborate description of the model can be found in Den Adel et al 
(1994). 

 
The transport model for filtration is a mathematical description of physical processes 
that occur in geometrically open filter structures. The model has been validated for 
water flow parallel to the interface between filter and base material. The model 
describes a bi-state situation: particles can be either at rest or moving.  
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Figure 2.3 The basics of the transport model 
 
The total number of particles is expressed by ρ, whereas μ is the number of particles at 
rest. All moving particles are assumed to be in motion with the same velocity, vp. 
Particles at rest can be brought into motion by hydraulic forces. Their corresponding 
frequency is ν1, see Figure 2.3. The frequency ν describes the probability per second to 

stop moving particles. For geometrically open filters this frequency, ν, is not that 
relevant, so can be neglected.  
The frequency ν1 – the probability per second to bring in motion an individual particle – 
consists of two parts: (i) the probability that a particle is brought in motion, and (ii) the 
conversion of this probability into a frequency [1/s]: 
(i) The first part describes the probability for a particle to be brought into motion. This 

probability is determined by the balance between strength of the particles and 
loading by the current. Both are considered to be probabilities, since the strength 
of the particles varies considerably; the same is true for the loading on the 
particles. Some particles are clamped between or shielded by other particles and 
are thus not exposed to the full extent of the loading. On the other hand, the water 
velocity in the filter varies with time and location.  
The resulting probability is determined by the material parameters of the base and 
filter (strength), the averaged value of the water velocity (loading) and a combined 
variance (strength and loading). The variance is found to be constant. The 
strength of the particles is converted into an effective water velocity at which ‘to 
some degree’ erosion will occur. The effective water velocity is directly related to 
the critical filter velocity as determined by Klein Breteler (1992).  

(ii) The second part converts the probability into a frequency. For this process a time 
scale is needed. The approach followed is to estimate the time scale of small 
vortices within the filter. This has lead to a relationship that includes the particle 
size and the water velocity within the pores.  

The model developed is therefore a combination of both loading and strength, each of 
which expressed in terms of frequency, ν1 [1/s].  
This model has been used to predict transport as measured in 3D laboratory 
experiments. The model has been validated for base material, ranging from fine sand 
(0.1 mm) to gravel (10 mm), and for filter material, ranging from fine gravel (2 mm) to 
boulders (300 mm).  
 
Locke et al (2001) published also an article on time-dependent particle transport 
through granular filters for perpendicular flow. In their method a finite difference model 
is needed in order to make predictions. The ideas presented by Silveira (1965) formed 
the basis for the method proposed by Locke et al (2001). It should be noted that the 
Silveira method is sound, but incomplete. The model overestimates the amount of 
material transported. 
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Laboratory tests and simulations of these tests are similar to the results as obtained in 
the filter research program of Rijkswaterstaat.  
The laboratory tests have been performed on coarse material: coarse sand (1 mm) and 
gravel (20 mm). The ratio F = df15/db85 varied: 4, 7, 10 and 12. When F = 12, and the 
flow conditions are stronger than a certain threshold value, the vertical filter is (of 
course) not sufficient to retain the base material.   
 

2.3 Wide-graded filter material 
 
Based on practice two gradations or grading widths of filter material (and armour stone) 
are distinguished within the framework of granular filter structures: 
 
 standard gradation  d85/d15 < 2.5 
 (wide) graded mixtures d85/d15 > 2.5 
 
The standard grading width is in accordance with the European standard EN-13383 for 
armourstone. All recommended armourstone gradings show a grading width less than 
2.01 (except for 45/180 mm).   
In addition, it should be mentioned that gravel from the Meuse River can be 
characterised by a uniformity coefficient CU (CU = d60/d10) of 6 to 10. This means that 
Meuse gravel belongs to the (wide) graded mixtures. 
 
The Rock Manual gives a different definition for the gradations of material 
(CUR/CIRIA/CETMEF, 2007): 
 
 Narrow graded mixtures  d85/d15 < 1.5 
 Wide graded mixtures  1.5 < d85/d15 < 2.5 
 Very wide graded mixtures  d85/d15 > 2.5 
 
Note: The main reason to apply rather narrow-graded armourstone gradings in coastal 
engineering is the stability against waves: small stones in a very wide graded armour 
layer may result in ‘rocking’ and thus damage. According to the Rock Manual nearly all 
armourstone gradings belong to the wide-graded mixtures, except for the gradings 
larger than 40-200 kg. 
 
In CUR report 161 (CUR, 1993) some remarks are made about wide-graded filters. For 
normally graded filter materials the pore diameter dpore is about 0.2⋅df15 (dpore is the 
characteristic diameter of the pores (m); for wide-graded soils the factor 0.2 decreases 
to for instance 0.1. In fact, the value of dpore is not related anymore to df15, but to a 
smaller particle. A factor 0.1 means a geometrically sand tight criterion of df15/db85 < 10 
instead of df15/db85 < 5 for normally graded filter materials. Thus, the existing criteria are 
too conservative for wide-graded filters. 
In CUR report 161 it is recommended to apply filter thicknesses that are at least 10⋅df50.  
 
Heibaum (2004) has presented the German method for designing granular filters, see 
Figure 2.4. The method is applicable for both narrow-graded and wide-graded mixtures. 
Note: A more commonly used definition of the gradation than the factor p = d90/d10 is 
either the grading width (= gradation), G = d85/d15, or the coefficient of uniformity, CU = 
d60/d10. 
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Figure 2.4 Granular filter design chart according to Cistin and Ziems (Heibaum, 2004) 
 
Grading affects the value of the critical Shields factor. Egiazaroff (1965) presented a 
modified Ψcf as follows: 
 

 
( )5015

2 /19log1.0Ψ ffcf dd−=
     

(2.10) 

 

There is still some discussion in literature about this formula that in essence has been 
derived to compute sediment transport of wide-graded sand-gravel mixtures.

  

 

 
Figure 2.5 Comparison between critical shear forces of Shields and Egiazaroff 
 
Figure 2.5 gives a graphic comparison between the Egiazaroff equation and the Shields 
equation. The graph looks to be in contradiction with the formula, Equation 2.10. 
However, one should keep in mind that in the case of wide-graded material the small 
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particles are hiding in the shelter of large particles and that is the reason that the critical 
shear force is higher compared with Shields. 
It is recommended to investigate whether Equation 2.10 can be useful in the framework 
of this study. 
 
For filter structures with an armoured upper part Chin et al (1994) determined a value 
for the critical shear stress on the basis of tests: 

20.5

50

50

0.05 0.4 0.6a
ca

d
d

−⎛ ⎞⎛ ⎞
⎜ ⎟Ψ = +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠      (2.11) 

where d50a is the median particle size of the material in the top of the armour layer (m), 
and d50 is the median diameter of the original filter material (m). 
It is recommended to compare the formulas 2.10 and 2.11. 
 
Within the framework of the Eastern Scheldt works research was carried out to the 
stability of the edge of the bed protection on the scour hole. In memo 22RABO-N-82009 
(Deltadienst, 1982) a short overview was presented on armouring based on research by 
Harrison (1950) and Gessler (1970). This resulted in the following findings: 

• The characteristic material diameter is d85 for mixtures with a value of the ratio 
d85/d15 of about 10 

• The thickness of the layer reduces with about 1 to 5 times d85 before armouring is 
fully realized 

Based on these findings the minimum thickness is set at 6 times d85. 
 
Research carried out at Delft Hydraulics with sea gravel (M1048, 1972) showed a 
smaller transport of uniform material than graded material with equal d50. However, the 
difference was small. Also the value of the critical flow velocity hardly differed. In 
addition, the model tests showed that at flow velocities just above the critical velocity a 
smaller amount of larger particles and a larger amount of finer particles are present in 
the transported material than in the original material. 
 
Research has also been carried out regarding sediment in rivers with armoured beds, in 
particular the River Meuse (Klaassen, 1990) and the Allier (Kleinhans et al, 2000). From 
the model tests at Delft Hydraulics followed that the destruction of the armour layer was 
caused by the occurrence of isolated dunes and not by increasing instability of armour 
layer particles; see Figure 2.6. The tests showed that after the passage of the flood the 
armour layer re-formed again, although at a lower level. 
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Figure 2.6 Schematic indication of breaking up of armour layer during passage of a flood  
 
Kleinhans et al (2000) describes in detail the options what happens during a flood with 
the armour layer.  Two situations can be distinguished: a static armour layer that will be 
stable during a flood or a dynamic armour layer where particles will be transported 
during a flood. A static armour layer is characteristic for rivers without upstream gravel 
supply as is the situation downstream reservoir dams. The Meuse has a river bed with a 
static armour layer, while the river bed of the Allier has a dynamic armour layer. 
 
Recently, information was found about the required minimum thickness of an armour 
layer that would prevent washing out of base material. Sumer et al (2001) and Dixen et 
al (2008) have presented experimental data on suction removal of sediment from 
between armour blocks due to currents and waves.  
 
Finally, Van den Berg (2004) carried out tests at the Delft University with top layers with 
and without a granular joint filling (gjf). The tests showed clearly that the stability of a 
single top layer of cubes as armour layer, expressed by the relative damage Nod 
(number of displaced elements) increased significantly when granular joint filling was 
applied; see Figure 2.7. 
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Figure 2.7 Stability of single top layers and a double top layer  
(Note: Nod is the relative damage, i.e. is the number of displaced elements) 
 
For non-uniform conditions Bezuijen and Köhler (1998) have examined the stability of 
revetment structures, which is governed by the interaction between pore water on the 
one hand, and the top layer, filter layer and base layer on the other hand. Based on 
theoretical considerations they derived an exponential function for the pressure 
decrease, which is here expressed in terms of relative turbulence intensities: 

  
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

15

2
0

2
,0 exp

f

F
f d

Dχrr
        

            
(2.12)

 
where χ is a damping parameter [-] with a value in the order of χ = O (0.1). Equation 
2.12 will be used in section 3.3.3 in deriving a new filter equation.   
 

2.4 Other hydraulic conditions 
 

2.4.1 Non-permanent conditions 
 
No literature was found regarding the stability at interfaces during non-permanent and 
short hydraulic loads, induced for example by jets of ship propulsion systems. 
 

2.4.2 Wave conditions 
 
Breakwaters experience the forces of waves. Since breakwaters have a slope the filter 
is subjected to horizontal and vertical gradients. In the following vertical filters and filters 
in breakwaters will be discussed. 
 
 Vertical filters 
With perpendicular flow, there is a serial system where the flow through base and filter 
layer has to be the same, causing a much larger gradient S in the base layer, because 
of the greater permeability of the filter layer. When the transport of particles is upwards in 
the vertical direction, erosion of the base layer will take place due to fluidisation (Figure 
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2.8). This situation is found when there is seepage through a body of sand. Usually a 
geometrically closed filter is applied when the flow is downwards directed. 
 
Van der Meulen (1983) carried out 38 experiments to investigate the principle working 
of vertical filters. In all these tests the filter consisted of two layers, a base layer below a 
filter layer in which the flow direction was upwards. Three different base materials were 
analysed (db50 varied from 150 μm to 460 μm) and the ratio between df15 and db85 was 
in the range of 2 to 20. The flow conditions were laminar since in all tests Ref was 
smaller than 1000. The experiments confirmed Terzaghi’s filter equation as well as 
Darcy’s law (or Equation 3.9 using b = 0), so if df15/db85 < 5 no particle erosion was 
observed. The experiments also showed that the critical mean energy slope (Sc) 
decreases if df15/db85 increases until a lower limit that is reached when the uplift force of 
the flow is greater than the weight of the fines. When the flow is directed upwards the 
failure mechanism heave can be given by the following expression: 
 

( )( )gρρngSρ sfc −−= 1
   or   1≈cS      

(2.13)
 

 
For df15/db85 > 5 and Sc > 1, the tests indicated that the filter could be stable and no 
washout of fines would occur, which can probably be ascribed to the formation of 
arches (De Graauw et al., 1983). Arches are defined as fines that are trapped (pre-
stressed) between the larger ones. When fines are transported from the base to the 
filter layer they arrive in larger pores with lower pore velocities. Hence, the resulting 
force on these fines decreases enormously. Tests show that if S lies in the range of 1 to 
3, the trapped fines dance in the pores of the filter layer. However, in case of cyclic flow 
the arches will disappear. 
 

 

        
1/ 5015 ≤bff ddn

         
6/1 5015 ≤< bff ddn

         
6/ 5015 >bff ddn

 
 
 Figure 2.8   Different filter mechanism (De Graauw et al., 1983) 
 
 
 Breakwaters  
Uelman (2006) investigated a breakwater with an unstable geometrically open filter (i.e. 
transport filter) that allows an acceptable and a predictable loss of core material of 
sand. He carried out wave flume experiments with different layer thicknesses and filter 
stone sizes. The transport of core material was governed by sheet flow transport (= bed 
load transport) and suspension transport. Thick filters and small filter stone sizes 
showed sheet flow transport. Decreasing thickness and increasing filter stone size 
resulted in an increase in transport and a change to suspension transport. An S-shaped 
profile developed. 
The total erosion, the erosion depth and the erosion area depend on the ratio of filter 
thickness DF and filter stone size df50. Increasing this ratio means decreasing erosion. 
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Ockeloen (2007) continued the research started by Uelman. He developed a best fit 
formula for the non-dimensional erosion area on the basis of tests: 

  4.021.0
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    (2.14) 

 
where Ae is erosion (or damaged) area [m2], Hrms is the root mean square wave height 
in front of the structure [m], Srms is the root-mean-square value of the gradient parallel to 
the slope [-], Lf is the fictitious wave length [m], defined as: (g/2π)T2, T is the wave 
period at the toe of the structure [s], and N is the number of waves [-]. 
It was observed that mostly suspended transport occurred due to the strong 
accelerations in wave run-up and wave rundown. The hydraulic gradient parallel to the 
interface was the driving force for the erosion of core material. 
The shortcomings of the deduced formula are that the gradient along the interface is 
difficult to determine, and that the grain size of the core material is not included. 
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3 New granular filter criteria 

3.1 Introduction 
 
In this chapter new filter criteria for interface stability for geometrically-open sand-tight 
filters will be derived in section 3.2 and 3.3. This is rather complicated. A concise 
version can be found in Appendix A with a paper presented at the ICSE-4 conference in 
Tokyo, 2008. Before the derivation, however, first the two research questions are 
illustrated. The two questions are: 
 
Q1: Relationship between layer thickness of a standard armourstone grading  

and the interface stability 
If for a particular reason (for example a higher flow velocity) a structure is no longer 
sand tight and erosion is a real threat, adequate measures have to be taken. One 
option is to replace the complete structure by a new bed protection, this is however 
costly. An alternative option is to repair the structure by making it sand tight again by 
increasing the layer thickness. In Figure 3.1 the issue is shown for a bed protection 
around a bridge pier. 

 
  Bridge pier 
 
current 

dumping extra armourstone until a 
layer thickness of X.d50 

 
  
 
 
  
 
  

 
Figure 3.1 Riprap bed protection around a bridge pier 
 
A thicker layer means a smaller hydraulic load at the interface between filter and base 
(see Figure 3.2). The effect of eddies is reduced because of the increased thickness. 
The (horizontal) flow velocity, which is the driving force for erosion also reduces. 
Turbulence and loading duration are crucial aspects regarding the interface stability, but 
also characteristic properties of the base material such as grading and cohesion. 
 

filter 

base material 

U 

uf 

u 

 
Figure 3.2 Flow velocity as driving force in a one-layer filter structure 



October 2009 Q4541 Title
  
 

18 Deltares & Royal Haskoning
 

 
 
Q2: Interface stability when applying wide-graded (gravel) mixtures  
This phenomenon can be described as follows (Figure 3.3): the water flow causes 
erosion of fine particles in the case of wide-graded gravel bed material and creates a 
dynamic equilibrium with an outer armour layer of stable larger stones.  In principle, 
wide graded mixtures also enable the creation of an armour layer. However, there is 
very limited knowledge about such armour layers. For instance, what is the resulting 
layer thickness, what are the dimensions of the armour layer and the composition of it 
related to the base material. 
 
 

D D0 

Base material with db,85/db,15 ; db,50 

Mixture of df,85/df,15 ; df,50 
U 

Figure 3.3 Definitions of armouring and relevant parameters 
 
 
The problem is illustrated in Figure 3.4 for the situation of a pipeline cover. The cover 
layer is eroded partly after a river bed lowering and the stability of the pipeline is 
endangered. 
 
 
current 
                  pipelines 
 cover layer 
initial river bed   
 
 
  

 
Figure 3.4 Cover layer of pipelines 
 
 

3.2 Hydraulic principles and incipient motion 

3.2.1 Turbulence 
 
The Reynolds number (Re) relates the inertial forces to the viscous forces and specifies 
the type of the flow (laminar or turbulent). Laminar flow occurs at Re < 500, where 
viscous forces are dominant. This flow domain is characterized by smooth, constant 
fluid motion. Turbulent flow, on the other hand, occurs at Re > 2000 and is dominated 
by inertial forces, which tend to produce random eddies, vortices and other turbulent 
flow fluctuations. The Reynolds number Re is defined as: 
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νURh /Re 0=        (3.1) 
 
where Rh is the hydraulic radius [m], U0 is the depth-averaged flow velocity in open 
channel flow [m/s], and ν is the kinematic viscosity [m2/s].  
For 500 < Re < 2000 the transition flow could be either turbulent or laminar (e.g. Graf, 
1998). Replacing Rh by df50 and U0 by the filter velocity (uf), the Reynolds number in 
granular filters (Ref) could be given by : 
 

ν/50 fff udeR =       (3.2) 
 
Turbulence in uniform open channel flow is generated close to the bed. In non-uniform 
flow conditions, turbulence is also caused by the geometry of hydraulic structures. The 
blunter the hydraulic structure and the rougher the bed, the higher the bed turbulence 
is. The definition of the relative depth-averaged turbulence intensity (r0) has been given 
by (Hoffmans 1993): 
 

0 0 0/r E U=
           (3.3)

 
 
where E0 is the depth-averaged turbulent kinetic energy in open channel flow [m2/s2]. 
For uniform flow Equation 3.3 reads: 
 

0 1.21 /r g C=       (3.4) 

 
where C is the Chézy coefficient  [m1/2/s] and g is the acceleration due to gravity [m/s2]. 
 
In granular filters water flows through open spaces and when the flow reattaches, small 
mixing layers occur that generate turbulence. The vortices in these open spaces are 
much smaller than the vortices in open channel flow and thus contain less energy. 
However, if the filter thickness (DF) is DF = 2 to 3df50, the turbulence intensity in both 
flows is assumed to have the same order of magnitude O(x), which is a conservative 
assumption compared to an exponential decrease: 
 

( ) ( )frOrO ,00 =
   

or   0 0/ /f fE U E u≈
   

(3.5)
 

 
where Ef is the mean turbulent kinetic energy in the filter layer [m2/s2] and r0,f is the 
mean turbulence intensity in the filter layer [-].  
 
Combining the definition of the mean bed shear stress, τ0 = ρu∗

2, where u∗ is the bed 
shear velocity (m/s), the Chézy equation u∗ = U0 g1/2/C and Equation 3.3 for uniform 
flow, τ0 can be rewritten as: 

( )2
00

22
00 7.0/ UrCgU ρρτ ==     (3.6) 

 
Following a similar approach for the filter layer, and assuming that u*bf = uf g1/2/Cf , uf = 
u∗  and r0,f = 1,21√g / Cf (where u*bf is the shear velocity at the transition of the filter and 
the base layer and uf is the mean filter velocity (m/s)), the shear stress at the interface, 
τbf, is:  

( ) 2
*,0

222
* 7.0 urCguu fffbfbf ρρρτ ===

   
(3.7)
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Hence, the parameter (η) that represents the relative turbulence in the filter layer, is 
given by: 

2
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(3.8) 

For thick filter layers the relative turbulence can be estimated using Equation 2.12. 

3.2.2 Flow in filters 
 
 Darcy’s Law 
Darcy laid the foundation of the theory of the flow through filters. Based on his classic 
experiments he stated that the discharge (Q) through a filter is proportional to the area 
(A) of the filter and to the mean energy slope (S = (H1 – H2)/L) where (H1 – H2) is the 
head over the filter and L is the length of the filter. Darcy’s law reads:  
 

Q AkS=   or   fu kS=       (3.9) 
 
where k is the permeability of the filter [m/s], which is determined by the geometric 
properties of the filter such as porosity, shape and size of the particles and the 
kinematic viscosity. Darcy’s law assumes laminar flow, which implies that the dynamic 
forces resulting from acceleration and deceleration in the flow are neglected in 
comparison with the classical Navier-Stokes equations.  
 
 Forchheimer’s equation 
Forchheimer developed a relationship between the gradient S and the filter velocity uf, 
which is non-linear for sufficiently high flow velocities. This non-linearity increases with 
increasing values of uf and is caused by turbulence effects of the flow in the filter. The 
Forchheimer equation reads: 

 
2
ff buauS +=
       (3.10) 

 
where a [s/m] and b [s2/m2] are dimensional coefficients. The Forchheimer equation 
assumes that Darcy’s law is still valid. However, an additional term is added to account 
for the increased value of S. Based on measurements in permeable filters Den Adel 
(1986) deduced the following formulas for the coefficients a and b : 
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where nf is the porosity of the filter and ν is the kinematic viscosity. The predictability of 
uf in Equation 3.10 applying the expressions for a and b, lies in the range of ⅓ < ζ < 3 
where ζ represents the ratio of the measured and calculated value of the filter velocity 
uf. 
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3.2.3 Incipient motion 
  
 General  
Particle transport occurs when the load exceeds the strength. When the load is less 
than some critical value, particles remain motionless and can be considered as fully 
stable. But when load exceeds its critical value, particle motion begins. The initiation of 
motion is difficult to define, which can mainly be ascribed to phenomena that are 
random in time and space. In the modified Shields (1936) diagram (Figure 3.5), the 
influence of the instantaneous bed shear stresses (τ') is not directly specified. Although 
the distribution of τ' is unknown, there are indications that this distribution must be 
asymmetrical due to sweeps and ejections (Lu and Willmarth, 1973).  
 

 
 Figure 3.5   Modified Shields diagram; Ψ as function of D* = d50(Δg /ν2)1/3 

 
When dealing with particle stability in granular filters, the determination of the exact shape 
of the distribution of both load and strength can be avoided because a characteristic 
shear stress (τk) can be defined, this being a mean (or time and space-averaged) value 
and a fluctuating term that originates from the turbulence near the bed. In addition to the 
random nature of load, another random parameter in the process of initial instability is 
determined by the strength (τc,k) of the particles. 
 
 Hypothesis of Grass 
Based on statistical assumptions for both the characteristic bed shear stress (τ0,k) and the 
critical characteristic bed shear stress (τG,k), Grass (1970) defined (Figure 3.6):  
  

 0,0 0 γσττ k +=
        (3.12) 

 GGkG γσττ −=,          (3.13) 
where γ is determined by an allowable transport of the bed material [-], σ0 is the standard 
deviation of the instantaneous bed shear stress [N/m2], σG is the standard deviation of the 
critical instantaneous bed shear stress [N/m2], and τG is the critical mean bed shear stress 
as given by Grass. 
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 Figure 3.6   Probability functions of the load and strength (Grass 1970) 
 
 
Before continuing some remarks are made about uniform and non-uniform flow. Uniform 
flow means that the flow does not change in the flow direction. Obviously, this is not the 
situation downstream of a hydraulic structure or near a bridge pier. The flow 
characteristics will change at such locations. At least the turbulence level will be higher, 
but it also possible that even negative flow velocities occur (see Figure 3.6). The 
consequence for the design of bed protections is that the maximum load, mean velocity 
plus turbulence, will be decisive for the dimensions of the protection. 
 
The critical situation (loading equals strength) can be described by τ0,k = τG,k; see also 
Figure 3.6, with σ0 = V0τ0 (V0 is the variation coefficient representing the bed turbulence 
and σG = VGf τG (VGf is the variation coefficient representing the non uniformity of the top 
layer and variation in strength), where τG = ΨGf Δf ρg df50 (analogous to Shields), a 
general relationship for the top layer can be derived, as follows: 
 

 ( )γVgρ
γστ = d

GfGf
ff −

+
1Ψ

Δ 00
50      (3.14) 

 
where Δf (= ρs/ρ – 1) is the relative density of the top material [-], ρ is the density of the 
water [kg/m3], ρs is the density of the top material [kg/m3] and ΨGf [-] is related to the 
critical Shields parameter Ψc.  
 
A specific transport will occur if τ0,k = τG,k. For uniform flow, V0 ≈ 0.4, Grass found that 
for sand with VGf ≈ 0.3, was completely stable for γ = 1 and for γ = 0 a significant 
transport of sediment particles was observed. Based on his experiments, he reported 
that for γ = 0.625 the criterion of Shields (or Rouse curve in Figure 3.5) was met for the 
initial movement of sands up to a size of 250 μm. Note that τG ≈ 1.5τc where τc is the 
critical mean bed shear stress according to Rouse. 
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3.3 Derivation new criteria for interface stability of open granular filters 

3.3.1 Introduction 
 
Typically, granular filter elements (stone, gravel and sand) are sustainable and robust 
and give a good contact interface with the base layers (PIANC 1987, 1992). Granular 
filters could smoothen bed irregularities and thus provide a more uniform construction 
base. Moreover, they are easy to repair and, to some extent, they are self-healing. The 
major disadvantage of granular filters is the difficulty of assuring construction 
procedures underwater as to obtain the required thickness of the filter layers. In 
addition, conventional filters with several layers may be very expensive, especially in the 
Netherlands.  
 
Granular filters protect the underlying soil, i.e. the base layer, from erosion by flow 
induced loads (static and fluctuating components from turbulence). The approach flow 
velocity or water level difference produces the static load over hydraulic structures, 
whereas the fluctuating load reflects the turbulence caused by the geometry of the 
structures or by the roughness of the top layer. The erosion resistance (or strength) of 
granular filters is mainly characterised by the geometrical properties of the materials 
used.  
 
Hereafter existing and new approaches to designing horizontal filters, that are influenced 
by laminar or by turbulent flow are discussed together with the ranges of validity. 
 

3.3.2 Horizontal filters without bed turbulence 
 
 General 
Below hydraulic structures such as breakwaters and weirs, horizontal filters can be 
found. In this situation no water flow is present above the filter. Subsequently, bed 
turbulence does not play a role. The flow in the filter is driven by the water head 
difference over the structure. 
 
Obviously, the water flows parallel to the interface, and thus the gradient, S, in both 
layers is about the same, causing uf in the filter layer to be much higher than in the base 
layer, because of the greater permeability. At the interface there will be a velocity 
gradient, inducing a shear stress at the upper fines in the base layer. Van der Meulen 
(1984), Klein Breteler (1989) and Broekens (1991) conducted experiments in which the 
flow was parallel to the filter and base layer. In these tests the flow was laminar as well 
as turbulent and no open channel flow above the filter was considered. 
 
Note: obviously, turbulence in the filter is included, but as no channel flow above the 
filter was modelled, the bed turbulence in the flow above the filter is not included. 
 
 Modelling 
De Graauw et al. (1983) proposed an empirical relation between the critical value of the 
mean energy slope Sc and the critical bed shear velocity (u*c,bf) at the interface of filter 
and base layer: 
 

 
( ) 2

,* bfcturlamc uααS +=
   

where   50,* ΔΨ bbcbbfc gdu =  
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where αlam [m-2 s2] and αtur [m-2 s2] are coefficients that represent laminar and turbulent 
flow conditions respectively. Rewriting Equation 3.15 gives the dimensionless gradient: 
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According to Koenders (1985), Sc is in the low and high gradient range proportional to: 
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(3.17) 

 
Since the above mentioned approaches result in significantly different equations, the 
modelling of Sc is here reconsidered hereafter. The critical filter velocity (uc,f) is a function 
of filter characteristics on the one hand and the critical shear velocity u*c,bf on the other 
hand. Analogous to channel flow, uc,f can be written as: 
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where Cf is a coefficient [m1/2/s] representing the resistance in the filter layer and 
comparable with the Chézy coefficient, α15 is a coefficient [-], Δb is the relative density 
related to the base layer material [-] and Ψcb is the critical Shields parameter related to 
db50 [-]. Combining Equations 3.10, 3.11 and 3.18 and considering laminar flow (thus 
Ref < 500 and b = 0 in Equation 3.10) yields: 
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65Ψ160 ,15 ≈= lamcbL αα
      (3.19)

   
The value of αL ≈ 65 has been derived from Figure 3.7 with Sc,lam on the vertical axis 
and the right hand term of Equation 3.19 on the horizontal axis. 
Substituting Equation 3.18 in Equation 3.10 with a = 0, Equation 3.10 reads for 
turbulent flow (thus Ref > 2000): 

 

3
2

15

50
2,

Δ
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

f

b

f

b
Tturc d

d
n

αS with 
  

1.0Ψ2.2 ,
2
15 ≈= turcbT αα

  
(3.20) 

 
The value of αT ≈ 0.1 has been derived from Figure 3.8 with Sc,tur on the vertical axis 
and the right hand term of Equation 3.20 on the horizontal axis. 
 
The modified Shields diagram (see Figure 3.5) shows that for laminar flow or for fines 
smaller than 0.1 mm, Ψcb,lam could reach values up to 0.1. Assuming that Ψcb,lam = 0.1 
and using Equation 3.19, α15 = 65/(160·√0.1) = 1.28. Substitution of α15 = 1.28 into 
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Equation 3.20, Ψcb,tur = 0.1/(2.2·1.282) = 0.03, which is in agreement with turbulent flow 
observations. 
 
Although Koenders used a completely different approach of solving the equilibrium of 
particles in granular filters, the proposed equations for Sc (Equations 3.19 and 3.20) 
correspond quite well with his findings (Equation 3.17). Figures 3.7 and 3.8 show the 
results of 43 experiments in which the initiation of motion was investigated in the base 
layer of the horizontal filter. The vertical axis represents Sc and the horizontal axis 
represents the strength of both the filter and base layer. The scatter in the results can 
mainly be described to the complexity of the description of the incipient motion, see also 
Figure 3.5.  
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Figure 3.7   The critical mean energy slope, Sc, as function of strength; see Equation 3.19 
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Figure 3.8   The critical mean energy slope, Sc, as function of strength; see also Equation 3.20  
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Klein Breteler (1992) related the critical and actual filter velocity. It is recommended to 
compare his results with those results from Equation 3.20. 
 

3.3.3 Horizontal filters influenced by bed turbulence 
 
 General 
Filter structures with a flowing water layer above the structure, for example bed 
protections, experience the bed turbulence exerted by the flow. The stability of the filter 
structure has been examined below. 
Figure 3.9 gives an impression about the type of structures with high turbulence and non-
uniform flow.  
 

 
Figure 3.9  Examples of situations with high turbulence 
 
 
Hoffmans et al. (2000) discussed a shear stress approach in a horizontal one-layer filter 
with a thickness (DF) above the base material in open channel flow (Figure 3.10). 
Equations for granular filters based on the Navier Stokes equation for uniform flow, 
Forchheimer’s equation and the hypothesis of Boussinesq are combined. The 
hypothesis of Grass was used to analyse the influence of gradtion and armouring in a 
qualitative way. Subsequently, the mean turbulence in granular filters is included (see 
also section 3.2.1). The decrease of turbulence, which is relevant for thick filter layers, 
is simulated by the exponential relation as proposed by Bezuijen and Köhler (1998). 
Finally, experiments are applied to verify the proposed method in relation to the design 
equation of Wörman (1989).  
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Figure 3.10  Overview of definitions for a one-layer filter 
 
 
 Shear stress approach 
Considering uniform flow, the shear stress distribution is linear and the mean flow velocity 
as function of the vertical coordinate (z) is approximately logarithmic. In a granular filter the 
balance of forces acting on a control volume are (e.g. Shimizu et al., 1990):  
 

 
0

d
d

=++ bs
f gSρF

z
τ

   
with 

  
( )2

ffs buaugρF +−=   (3.21) 

 
in which Fs is the seepage resistance per unit width (N/m3), Sb (≈ S) is the bed slope (-) 
and τf is the mean shear stress in the filter layer (N/m2), which is not the same as the 
definition of the mean shear stress in open channel flow. The first term in Equation 3.21 
represents the momentum transfer from the free surface flow to the filter bed. Using the 
hypothesis of Boussinesq the expression for τf reads: 
 

 z
u

ρντ f
tf d
d

=
    

     (3.22)
  

 
where υt  is the turbulent viscosity (or eddy viscosity), which relates uf to τf. Most of the 
turbulence-model-development and application work has been carried out in the field of 
mechanical and aeronautical engineering. In the early 80’s Rodi (1984) has assessed 
the applicability of turbulence models to hydraulic flow problems. However, these 
models have not been extensively validated for flow in porous media such as granular 
filters. Therefore some assumptions have been made for νt. For example, νt is related to 
a representative length scale and to a representative flow velocity. The length scale has 
been determined by the open space or by the particle sizes: 
 

 15ffνt duαν =        (3.23) 
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where αν (≈ 0.9) is a constant. Combining Equations 3.21, 3.22 and 3.23 and assuming 
turbulent flow conditions (a = 0 in Equation 3.10) the exact mathematical distribution of uf 
as function of z in a one layer filter using the boundary conditions uf(0) = ubf and uf(DF) = 
us, is (Verheij et al., 2000) as follows:  
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where ubf is the mean pore velocity at the transition of filter and base layer[m/s], us is the 
mean near bed velocity [m/s] and ξ is a damping parameter [-]. The exact mathematical 
solution for the shear stress τ in the filter layer is (Verheij et al., 2000) as follows: 
 

 ( ) ( )ξzξz
fνf eCeCdρξαzτ −−= 21152

1
    

(3.24) 

 
which can be approximated by: 
 

 
( ) ( )FDzξzξ

bff eτeτzτ −− += 0     

    
   (3.25) 

For laminar flow conditions, Verheij et al. (2000) derived similar equations for both the 
filter velocity uf and the shear stress in the filter τf. The damping parameter for laminar 
flow is approximately 6 times greater than for turbulent flow (ξ = 30/df15). An analytical 
solution can also be obtained for a two-layer filter. Tables 3.1 to 3.3 show computed 
distributions of uf(z) and τf(z) using Equations 2.8 and 3.24 for a uniform flow at prototype 
scale and additional information about input and output parameters. 
 
So far, this study shows that the application of the hypothesis of Boussinesq yields 
satisfactory results with respect to the distribution of the filter velocities in granular 
filters. Moreover, the shear-stress approach yields a prediction of the shear stress at 
the interface base layer – filter layer τbf, which is of interest for modelling the stability of 
the base layer. This analysis also demonstrates that the value of the damping factor ξ is 
extremely high, so the computed duf/dz is very large both in the near bed zone and at 
the transition to the base layer. In the filter layer itself the computed duf/dz ≈ 0, resulting 
in a zero shear-stress (Figure 3.10). Since the flow accelerates and decelerates in the 
open spaces of the filter, turbulence is generated and thus shear stresses will act on 
particles. Therefore, the hypothesis of Boussinesq does not represent the shear stress 
distribution in filter layers adequately.  
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       Table 3.1   Input parameters for the calculation of flow velocities using shear stress approach 
Symbol Name Value Remarks 
b Forchheimer parameter 9 s2/m2 calculated using Eq. 3.11 
C Chézy coefficient 32 m0.5/s calculated  
df15  15% filter stone size 0.15 m - 
df50  median filter stone size 0.30 m - 
DF  filter thickness 0.50 m - 
h  water depth 3.0 m - 
r0 relative turbulence 

intensity 
0.12 calculated using Eq. 3.3    

Sb  gradient 0.0013 Sb = (U0)2/(h C2)  
us  flow velocity at bed 0.12 m/s estimated by trial and error 
ubf  interface velocity 0.0005 m/s - 
uf  mean filter velocity 0.0115 m/s calculated using Eq. 3.10 
U0  depth averaged flow 

velocity 
2.0 m/s - 

ξ damping parameter 37 m-1 calculated using Eq. 2.8  
 
     Table 3.2   Computational results using Equations 2.8 and 3.24 (see also Table 3.1) 

z (m) uf(z) (m/s) τ(z) (N/m2) 
0.50 0.1200 35.29567 
0.45 0.0492 5.643063 
0.40 0.0224 0.902212 
0.35 0.0141 0.144246 
0.30 0.0122 0.023068 
0.25 0.0119 0.003723 
0.20 0.0118 0.000814 
0.15 0.0118 0.001499 
0.10 0.0116 0.008801 
0.05 0.0108 0.054955 
0.00 0.0005 0.343713 

 
         Table 3.3   Output parameters from shear stress approach  

Output parameters 
symbol value remarks 
u*  0.188 m/s u* = (τf (0.5)/ρ)1/2 
u*bf  0.019 m/s u*bf = (τf (0)/ρ)1/2 

uf   See Table 3.2 
η 0.01 η = τf (0)/τf (0.5) 

 
 
 Influence of the gradation 
Measurements of Klar (2005) showed that the local turbulence energy (kf) in the filter layer 
decreases with depth. Based on Klar’s uniform flow tests, kf is here approximated by an 
exponential function 
 

 
( ) ( )dreff zkzk l/exp=

   
with   15fd dχα=l        (3.26) 

 
where kf [= (rf uf)2], rf  is the local relative turbulence intensity in the filter layer, kref [= αref(u*)2] 
is the turbulence energy at a reference level close to the bed, αref and αχ are coefficients and ℓd is 
a length scale. In k-ε-models, αref = χk = 3.3 at z+ = 70 where z+ [= zu*/ν] is the dimensionless 
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vertical coordinate (see also Chapter 2). In the viscous sub layer αref could reach values up to 5.6 
(e.g. Hinze 1975). In the upper part of the filter layer, that is, for –1 < z/df15 < 0, Eq. 6.22 yields 
satisfactory results by using αχ = 0.2 and αref = 5.6 (Fig. 6.7). In the lower part, i.e., for –8 < 
z/df15 < –1, the calculated kf is adequate provided αχ = 2 and αref = 2.  
 

  
   Fig. 3.11   αref versus z/df15; experimental data of Klar (2005)  

 
 
 

Eq. 3.26 with αχ = 0.2 and αref = 5.6 
Eq. 3.26 with αχ = 2 and αref = 2 

By applying the hypothesis of Boussinesq, τbf is 
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in which αk is a coefficient and νt,bf is the local eddy viscosity near the interface of the 
filter-base layer. For uniform flow conditions, Klar (2005) found O(rf) = 1. Combining 
Eqs. 3.26, 3.27 and the definition of τ0 = ρ(u*)2 and assuming that ub,bf << uf,bf  with αχ = 
2, αref = 2 and rf = 1, the relative load (η) at the transition of the filter base layer is (z = –
DF) 
  

 
( )152

1
0 /exp/ fFkbf dD−== αττη        (3.28) 

 
If τ0 increases or if DF/df15 decreases, τbf increases which is in agreement with 
observations. In a similar way, η can also be derived using the characteristic load (τbf,k). 
The reason for this is the hiding effect, see also section 2.3. 
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Applying the hypothesis of Grass, the characteristic shear stress (τbf,k) and the critical 
characteristic shear stress (τc,bf,k) at z = 0 are (see also Figure 2.2): 
 

 
( )00, γστητ kbf +=

       (3.29) 

 ( ), , 50 1c bf k Gb Gb Gb b b Gbgd Vτ τ γσ ρ γ= − = Ψ Δ −    (3.30) 
 
Combining the Equations 3.14, 3.29 and 3.30 and substituting ΨGb/ΨGf = Ψcb/Ψcf in 
Equation 3.14, gives for geometrically open filters the following expression: 
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With Equation 3.31 the influence of the gradation on the stability of the base material can 
be explained in a qualitative way. For example, when the base material has a wider 
gradation than the filter material, thus VGb > VGf, the required ratio df/db is less than the 
value in situations where base and filter materials do have the same gradation. If only the 
filter material is wide-graded, thus VGb < VGf, the maximum value of df50/db50 is higher than 
for similarly graded materials. These predictions correspond with observations in flume 
experiments. Wide-graded base material has more fines than a less wide-graded 
material. The material in the filter layer has to prevent the erosion of the fines. This can 
only be achieved by reducing uf or by putting more fines into the filter layers. Wide-graded 
material in the filter layer has relatively more fines, which reduces uf and so τbf. Hence, 
the wide-graded filter material is allowed to have a df50 that is larger than for narrow-
graded or uniform material. Rewriting Equation 3.31, using Ψcb = 0.06, γ = 0.625 and VGb 
= 0, and assuming df50/db50 = 1/η (see also Equation 3.34), gives: 
 

 5015 /625.0375.0
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ffGf
cf ddVγ +

=
−

=
            

(3.32)
 

 
Consequently, for 0.5 < df15/df50 < 1, the use of Equations 3.31 and 3.32 gives similar 
results. 
 
Note: The derivation of Equation 3.32 is an attempt to present a formula that, in analogy 
with Egiazaroff (see Equation 2.10), shows the influence of the gradation. Some of the 
assumptions can be disputed or are not fully in line with some others; however, starting 
with the Grass method Equation 3.32 shows the influence. It is recommended to study 
this aspect in future studies. 
 
 Bed turbulence 
Bakker et al. (1994) discussed a filter model that includes near-bed pressure fluctuations: 
 

 

15
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50 0 50

2.2f h cb b
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where C0 is a coefficient that varies from 6 (when determined with the average shear 
stress τ0) to 100 (when determined with the maximum bed shear stress τm) and e is a 
coefficient that takes into account the difference between the flow in granular filters and 
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open channels (with an average value of e = 0.24). The ratio between 100 and 6 is 
approximately 15, which is in agreement with Emmerling’s (1973) findings who found: 
 

 018τpm =                 (3.33) 
 
where pm represents the pressure peak or the maximum under water pressure caused by 
velocity differences near the bed. Although the prediction capacity of Equation 2.6 is 
reasonable for the experiments investigated, the relationship is not useful for non-
uniform flow conditions as it depends on the ratio Rh/df50, because R is probably not the 
most appropriate parameter.  
 
On the basis of Equation 2.6 a simplified design equation has been recommended in 
CUR report 161: 
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where α = 9.5 for base material with a db50 in the range of 0.15 to 5 mm and α = 19 for 
base material larger than 5 mm, and C0 ∼ 15.  
 
Using Equation 2.10 and assuming that VGb = VGf, Δb = Δf  and Ψcb = Ψcf, Equation 3.31 
simplifies, thus r0,f = r0  to: 
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          (3.34) 

 
For uniform equilibrium and non-uniform gradually varied flows, r0 ranges typically from 
r0 = 0.042 (or η = 0.0012) to r0 = 0.126 (or η = 0.0111). For steep channel flow and non-
uniform flow when 0.2 < r0 < 0.5, the value of η lies in the range of 0.028 to 0.18. 
Consequently, for very high turbulence intensities, say r0 > 0.25 (or η > 0.04, see also 
Equation 2.3) geometrically closed filters are required. 
 
Van Huijstee et al. (1991) conducted experiments with bed turbulence above the top 
layer in which a distinction was made between simultaneous instability of base and top 
layer and instability of either top or base layer. In all these tests DF/df50 varied from 1.5 
to 4.5 and the critical value of df50/db50 ranged from 40 to 415. Equation 3.35 gives the 
relationship between the computed ratio of the median grain sizes and the ratio of the 
critical Shields parameters, Ψc (-), together with the inverse of the relative turbulence 
intensity, r0 (-). Figure 3.12 shows the critical value of [df50/db50]measured when erosion 
occurs versus the critical value of [df50/db50]computed: 
 

 cf

cb

b

f

rd
d

Ψ
Ψ

7.0
1

2
0computed50

50 =⎥
⎦

⎤
⎢
⎣

⎡

  
where 

1

50
0 2

12ln21.121.1
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
==

f

h

d
Rκ

C
gr

        
(3.35) 

with κ is 0.4, the Von Kármán constant. Since most of the experiments consisted of 
situations with thin filter layers, 100% of the measurements lie in the range of 0.5 < ζ < 
2, where ζ is the ratio between the measured and computed value of df50/db50.  
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   Figure 3.12   Critical values of [df50/db50]measured versus values of [df50/db50]computed (see also Eq. 3.35);  
           Erosion occurred simultaneously in filter and base layer (Van Huijstee et al., 1991) 
 
 
Wörman (1989) investigated granular filters at bridge piers. Based on accepted theories 
he arrived at the following relationship for a single layer bed protection under non-
uniform flow conditions: 
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For nearly narrowly-graded materials when db85/db50 = df85/df50 = df50/df15 ≈ 1.25, nf = 0.4, 
and Δb = Δf, Equation 2.9 can be rewritten as: 
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According to Wörman (1989) Eqs. 2.9 and 3.36 do not include any safety factor. When 
Eq. 3.34 can be approximated by  
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and combining Eqs. 3.28 and 3.34 gives with df50/df15 ≈ 1.25 for both uniform and non-
uniform flow 
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Consequently, Eqs. 3.36 and 3.37 are similar, since in both equations DF depends on 
the ratio of df50 and db50. Figure 3.13 shows Wörman’s equation (Eq. 3.36), Eq. 3.37 as 
a best guess predictor with αk = 0.05 (low turbulence) and an envelop curve by using αk 
= 0.5 (high turbulence) as first approximations. In addition, experimental data is plotted 
for both uniform flow (Van Huijstee and Verheij 1991) and non-uniform flow (Wörman 
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1989). The interesting region for designing and assessing geometrically open filters in 
non-uniform flow is the stable part that lies above Eq. 6.31 and adjacent to the zone 
representing geometrically closed filters.  
 
The differences between Eqs. 3.36 and 3.37 is the increase of DF with respect to 
df50/db50.  Wörman assumed that the decrease of the turbulence is under non-uniform flow  
 

 FfWbfW Dd // 500 αττη ==     
  
    

      (3.38)
 

 
Substituting Eq. 3.38 into Eq. 3.34, Eq. 3.36 is obtained, which results for large values of 
df50/db50 in a more robust design. Since Wörman did not measure the local flow 
velocities and turbulence intensities in the open spaces of the filter layer, it is 
recommended to carry out experiments to validate the turbulence penetration under 
non-uniform flow. 
 

 
              Fig. 3.13   DF/df50 versus the critical df50/db50. Eq. 3.37 as best guess curve (αk  
  = 0.05; low turbulence); Eq. 3.37 as envelop curve (αk = 0.5; high 

 turbulence) 
 
example 
The Dordtsche Kil is a Dutch waterway near Rotterdam in which the bed gradually 
erodes. As a result, the fixed bed protection above tunnels and gas and water pipelines 
roughens the bed owing to sills, which gives extra turbulence in the river. To prevent the 
deepening of the scour holes and to protect the primary water defences against the 
failure mechanism liquefaction, Deltares proposed to fill the scour holes and to 
construct a geometrically open filter at the critical locations. 
 
For design conditions, the soil and hydraulic parameters are: db50 = 0.25 mm, h = 10 m, 
U0 = 1.7 + 0.3 = 2 m/s (0.3 m/s is a correction for shipping); r0 = 0.18 and is 
approximated by: 
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in which D (= 1.5 m) is the height of the sill.  
 
The stability and the dimensions of the top layer are calculated by using Eqs. 6.15 and 
6.37 with Ψc = 0.03 and αk = 0.5 giving dt50 = 0.2 m and a required thickness DF,req = 1.9 
m. To optimise costs, Deltares advised a two-layered system: a top layer with dt50 = 0.2 
m, a minimum thickness of DF,1 = 2dt50 and a filter layer with df50 = 0.08 m. The top and 
filter layer form a geometrically closed filter since the ratio between dt50 and df50 is 
0.2/0.08 = 2.5. However, df50/db50 = 0.08/0.00025 = 320 thus the filter and base layer 
are geometrical open. By using Eq. 6.37 with df50/db50 = 320 and αk = 0.5 yields DF,2 = 
0.6 m. Hence, DF,req reduces from 1.9 m to DF,req = DF,1 + DF,2 = 0.4 + 0.6 = 1.0 m.  
 

3.4 Sensitivity analysis 
 
A sensitivity study has been conducted in order to evaluate the new design criteria for 
geometrically-open sand-tight filter structures. Basically the sensitivity of two equations, 
namely 3.31 and 3.37, has been evaluated within the scope of this work. A First Order 
Reliability Method (FORM) was used to evaluate the contribution of each parameter to 
the output. The method, also referred to as First Order Second Moment, can be used to 
estimate the mean (first moment) and the variance (second moment) of model output 
by computing the derivative of the model at a single point (Yen et al., 1986). This 
method is often used to evaluate the uncertainty propagation but it can also be used to 
evaluate the relative contribution of each parameter to the standard deviation of the 
model output, i.e. model sensitivity to input parameters. Such study could be of use to 
set up the priority for further investigations. 
 
The first step in the FORM analysis is to approximate the system output solution of 
interest in Taylor series form. In the simplest form, a first-order Taylor series 
approximation requires computing the model output at a single point and determining 
the derivative, i.e. change of model output due a change in model input.  
 
Equation 3.31 
A reliability function in Taylor series is used by taking into account only the linear term. 
For instance, the reliability function based on Equation 1.1 can be expressed as: 

Z = R – S = df50_acceptable – df50_actual  (2.1) 

50 50 _
11
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Gb cb b
b f actual

Gf cf f

VZ d d
V

γ
η γ

− Ψ Δ
= −

− Ψ Δ  (2.2) 

where db50 and df50 are the median diameters of base and filter layer material 
respectively; η is the turbulence parameter for the filter layer; γ is the transport 
parameter; VGb and VGf are the variation coefficients for base and filter layer material 
respectively; Ψcb and Ψcf are the Shields parameters for base and filter layer material 
respectively; Δb and Δf are the relative densities of base and filter layer material 
respectively.  



October 2009 Q4541 Title
  
 

36 Deltares & Royal Haskoning
 

 
The first step is to find the derivative of the function Z for each variable. These should 
be independent from other variables in the function.  
NOTE: Considering precisely, the value of VGb also depends somewhat on the db50 
value; however, this fact is ignored here to avoid the complication. It is assumed that it 
has no significant effect, as this parameter includes db85 and db15, both of which are also 
unknown and have to be assumed for the analysis.  
 
The derivative of the function Z (Equation 2.2) for each variable can be expressed as 
follows: 
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The next step is to calculate the value of each derivative for the mean value of each 
parameter. Consequently we need to assess the mean value of each parameter and 
also the standard deviation of each parameter to calculate the overall standard 
deviation (precisely saying, the variance) of the function F, which reads as:  
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1
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P

i
i i

Z X
X

σ σ
=

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

∑  (2.13) 

where P is the number of input parameters; Xi is input parameter and σ(Xi) is the 
standard deviation of each parameter. 
 
The contribution of each parameter to the standard deviation of the function can be 
calculated by using Equation (2.13) .  
 
The specific data are not available for all parameters in order to calculate the mean 
value and the standard deviation, so we calculated them based on some tentative 
maximum and minimum values for each parameter as shown here: 

Xmax = Xmean + n σ(Xi)  (2.14)  

Xmin = Xmean - n σ(Xi)  (2.15)  

According to so called empirical or three-sigma rule in statistics, η can be taken from 1 
to 3. For a Gauss distribution, almost all values lie within three standard deviations from 
the mean value. In this case, we took η = 2; i.e. within the range of twice the standard 
deviation, which implies that 95% of the values are within the range (considering Gauss 
distribution). This is generally accepted level, and thus appears to be appropriate for 
our sensitivity analysis in the absence of real data set. Then, the range of the values 
and thereby the expected standard deviation can be defined as: 

Range = Xmax - Xmin = 4 σ(Xi)  (2.16) 

σ(Xi) = = (Xmax - Xmin)/4 (2.17) 

We calculated the model sensitivity for four different cases selected from the available 
data for filter material: 
 Case 1: filter material according to 10-60 kg with df50_actual = 0.28 m 
 Case 2: filter material according to 63-180 mm with df50_actual = 0.115 m 
 Case 3: filter material according to 40-100 mm with df50_actual = 0.075 m  
   (minimum = 0.062 m and maximum = 0.088 m) 
 Case 4: wide graded filter material with df50_actual = 0.0375 m  
   (minimum = 0.025 m and maximum = 0.050 m). 
 
For other inputs, we basically use universal (if available) or tentative values, and some 
parameters were related to the values of filter material. For example, data for df50, df15 
and df85/df15 of the filter material are available. We used them to define other variables 
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like db50 (considering the retention criterion, namely df50/db50 < 25 (we used df50/db50 = 
25). Similarly, we used available data df50, df15 and df85/df15 to define VGf; and VGb was 
assumed to be 25% less than VGf as a criterion to reduce the mobility of fine material in 
the filter layer. Other parameters were assumed to be within tentative range as reported 
previously. Table 3.1 to   

Parameters Xmax Xmin Xmean (μ) σ 
db50 0.00035 0.00005 0.00020 0.00010 
η 0.0440 0.0012 0.0070 0.0110 
γ 1 0.250 0.625 0.188 

VGb 0.31 0.23 0.26 0.019 
VGf 0.39 0.29 0.33 0.024 
ψcb 0.057 0.037 0.047 0.005 
ψcf 0.047 0.023 0.035 0.006 
∆b 1.66 1.64 1.65 0.005 
∆f 1.71 1.69 1.70 0.005 

df50_actual 0.088 0.062 0.075 0.007 
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Table 3.4 give the values that were used for the various parameters in the calculations 
(for all four cases).  
 
Table 3.1 Input parameters for case 1 – light armourstone 10-60 kg  

Parameters Xmax Xmin Xmean (μ) σ 
db50 0.00035 0.00005 0.00020 0.00010 
η 0.0440 0.0012 0.0070 0.0110 
γ 1 0.250 0.625 0.188 

VGb 0.19 0.15 0.16 0.011 
VGf 0.24 0.18 0.20 0.014 
ψcb 0.057 0.037 0.047 0.005 
ψcf 0.047 0.023 0.035 0.006 
∆b 1.66 1.64 1.65 0.005 
∆f 1.71 1.69 1.70 0.005 

df50_actual 0.30 0.25 0.28 0.013 
 
Table 3.2 Input parameters for case 2 – course grading 63/180 mm  

Parameters Xmax Xmin Xmean (μ) σ 
db50 0.00035 0.00005 0.00020 0.00010 
η 0.0440 0.0012 0.0070 0.0110 
γ 1 0.250 0.625 0.188 

VGb 0.40 0.20 0.28 0.050 
VGf 0.50 0.25 0.35 0.063 
ψcb 0.057 0.037 0.047 0.005 
ψcf 0.047 0.023 0.035 0.006 
∆b 1.66 1.64 1.65 0.005 
∆f 1.71 1.69 1.70 0.005 

df50_actual 0.140 0.090 0.115 0.013 
 
Table 3.3 Input parameters for case 3 – course grading 40/100 mm  

Parameters Xmax Xmin Xmean (μ) σ 
db50 0.00035 0.00005 0.00020 0.00010 
η 0.0440 0.0012 0.0070 0.0110 
γ 1 0.250 0.625 0.188 

VGb 0.31 0.23 0.26 0.019 
VGf 0.39 0.29 0.33 0.024 
ψcb 0.057 0.037 0.047 0.005 
ψcf 0.047 0.023 0.035 0.006 
∆b 1.66 1.64 1.65 0.005 
∆f 1.71 1.69 1.70 0.005 

df50_actual 0.088 0.062 0.075 0.007 
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Table 3.4 Input parameters for case 4 - wide-graded material  

Parameters Xmax Xmin Xmean (μ) σ 
db50 0.00035 0.00005 0.00020 0.00010 
η 0.0440 0.0012 0.0070 0.0110 
γ 1 0.250 0.625 0.188 

VGb 0.28 0.20 0.24 0.020 
VGf 0.35 0.25 0.30 0.025 
ψcb 0.057 0.037 0.047 0.005 
ψcf 0.047 0.023 0.035 0.006 
∆b 1.66 1.64 1.65 0.005 
∆f 1.71 1.69 1.70 0.005 

df50_actual 0.050 0.025 0.0375 0.006 
 
The results of the calculations is presented in Figure 3.1: for the given combination of 
parameters for all cases, the trend is similar. Analysis shows that the most sensitive 
parameter appears to be the turbulence parameter for filter layer η. This can be 
attributed to the fact that the range of η is rather large due to the large range of relative 
turbulence intensities (ranging from uniform flow to high turbulence flow).  
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Figure 3.1 Contribution of parameters to the overall standard deviation of Equation 1.1 

 

The sensitivity for η has been evaluated also by changing its value and thus reducing 
the deviation. The mean value of η has been changed in Case 1 and Case 2 to 0.01 
with a standard deviation = 0.006. The results are shown in Figure 3.2 (Case 5 and 6 
denotes the cases with changed η). 
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Figure 3.2 Contribution of parameters to the overall standard deviation of Eq. 1.1: Sensitivity of  η 

 
Note that the above result indicates only that improvements of the accuracy of Equation 
1.1 can be obtained by improving the accuracy of η. The result itself will not change as 
this is related to the absolute mean values of the different parameters in the equation. 
The range of df50/db50 for case 4 (wide graded material) for the most sensitive parameter 
η is between 30 and 1140 (mean value 190). 
 
 
Equation 3.37 
Following the same approach  as in section 2.2, the reliability function for Equation 3.37 
assume three different filter layer thickness, i.e. 25 times, 10 times and 3 times the 
median diameter of filter layer material (i.e. DF_actual = n*df50) can be written as:  
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We also used a constant value of DF_actual, for which Eq. (5) has to be rewritten as: 
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with an additional equation: 
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Analysis was conducted for four cases with different filter material for a couple of values 
for αk. (Table 1.1 to 1.4) and two cases with a graded sediment as filter layer (Table 1.5 
and 1.6). 
 
Table 1.1: For coarse filter layer material (Case 1)  

Yi max min  mean (μ) σ(Yi)  
df15 0.25 0.2 0.23 0.0125 
αk 0.07 0.03 0.050 0.010 

df50 0.3 0.25 0.28 0.0125 
db50 0.00035 0.00005 0.0002 0.0001 

 
Table 1.2: For coarse filter layer material (Case 2)  

Yi max min  mean (μ) σ(Yi)  
df15 0.105 0.063 0.084 0.011 
αk 0.6 0.4 0.500 0.050 

df50 0.14 0.09 0.115 0.0125 
db50 0.00035 0.00005 0.0002 0.0001 

 
Table 1.3: For coarse filter layer material (Case 3)  

Yi max min  mean (μ) σ(Yi)  
df15 0.25 0.2 0.23 0.0125 
αk 0.6 0.4 0.500 0.050 

df50 0.3 0.25 0.28 0.0125 
db50 0.00035 0.00005 0.0002 0.0001 

 
Table 1.4: For coarse filter layer material (Case 4)  

Yi max min  mean (μ) σ(Yi)  
df15 0.105 0.063 0.084 0.011 
αk 0.07 0.03 0.050 0.010 

df50 0.14 0.09 0.115 0.0125 
db50 0.00035 0.00005 0.0002 0.0001 
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Table 1.5: For filter material with graded sediment (Case 1) 

Yi max min  mean (μ) σ(Yi)  
df15 0.0006 0.00025 0.0004 0.0001 
αk 0.07 0.03 0.050 0.010 

df50 0.02 0.01 0.015 0.003 
db50 0.00035 0.00005 0.0002 0.0001 

 
Table 1.6: For filter material with graded sediment (Case 2) 

Yi max min  mean (μ) σ(Yi)  
df15 0.0006 0.00025 0.0004 0.000 
αk 0.6 0.4 0.500 0.050 

df50 0.02 0.01 0.015 0.003 
db50 0.00035 0.00005 0.0002 0.0001 

 
 
Analysis of the cases with coarse filter material shows the sensitivity of the bed and 
filter materials (df15) for most cases (Figure 1.1-1.3). For the same filter material and two 
different values of the coefficient αk (cases 1 and 3), show that contribution of db50 is 
most pronounced for both cases, and also the contribution of finer size (df15) is 
significant, particularly for case 3 with higher value of αk. Moreover, parameter αk 
appears to be somewhat sensitive for case 1. Comparing cases 2 and 4 (coarser 
material compared to previous cases), it can be seen that the contribution of df15 is 
prevalent, particularly for case 2. Analyses were carried out for different value of actual 
filter layer thickness (3, 10 and 25 times median diameter of filter material respectively). 
Comparison shows that the sensitivity appears to be shifting towards the df50 with larger 
value of actual filter layer thickness. 
We analysed all these cases with a constant value of actual filter layer thickness with 
DF_actual (μ) = 0.5 m and σ (DF_actual) = 0.1. The result (Figure 1.4) shows the  contribution 
of the db50 and df15 similar to the case of small filter layer thickness (i.e. DF = 3df50). 
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Figure 1.1 Contribution of parameters for different cases (DF = 3df50) 
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DF = 10df 50
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Figure 1.2 Contribution of parameters for different cases (DF = 10df50) 
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Figure 1.3 Contribution of parameters for different cases (DF = 25df50) 
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DF = const (=0.5 m)
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Figure 1.4 Contribution of parameters for different cases (constant DF = 0.5 m) 
 
 
Also, we analysed the case with graded sediment for two different values of αk and 
different layer thickness (3 and 10 times df50 respectively). The result is shown in Figure 
1.5-1.6, which shows that all parameters except for df50 are insensitive. This appears to 
be mainly due to the graded sediment filter material which is much finer than generally 
used filter material.   
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Figure 1.5 Contribution of parameters for filter layer with graded material (DF = 3df50) 
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DF = 10df 50
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Figure 1.6 Contribution of parameters for filter layer with graded material (DF = 10df50) 
 

3.5 Conclusions and recommendations 
 
For horizontal geometrically open filters without bed turbulence, equations that are 
based on Darcy’s law, the Forchheimer equation and the Chézy equation are deduced 
and validated using flume experiments. Equations 3.19 and 3.20 are valid for laminar 
and turbulent flow respectively. 
 
Although the exact relationship between the inverse of the damping coefficient ξ in a 
filter material and its material properties is questionable, the type of relationship 
between characteristic length scale and particle size will hold (Equation 2.8), in spite of 
the fact that the assumptions for a continuum approach are violated. The practical 
considerations (Pilarczyk 1990, 1998) regarding the thickness of a filter layer ensure 
that fluctuations, as generated in open channel flow, are sufficiently damped.  
 
For horizontal geometrically open filters with an open channel flow above the filter 
structure a new criterion for the interface stability of granular filters has been derived, 
based on accepted theories – Equation 3.31. The influence of the grading effects of 
grading and gradation of the filter and base materials has been discussed and illustrated 
qualitatively. Although Equation 3.31 has been validated using uniform flow tests, no 
validation has been carried out for non-uniform flow conditions. Wörman has validated his 
design method (Equation 2.9) using experimental data from filter layers around bridge 
piers where the flow is highly turbulent. However, the horseshoe vortices and the Kármán 
vortex streets are not representative for all types of non-uniform flow. It is recommended 
to verify Equation 3.31 for non-uniform flow and for graded materials to investigate the 
effects of armouring. Moreover, Deltares advises to check the validity of the decrease of 
turbulence (Equations 2.12 and 3.34) in thick filter layers by carrying out sufficient 
experiments. 
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4 Overview of knowledge gaps and quick wins 

In Chapters 2 and 3 design formulas for granular filters are summarised. In this chapter 
knowledge gaps will be presented including a priority for possible research in the (near) 
future. Separately quick wins are mentioned. 
However, first the relevant equations are summarised: 
 
4.1 Summary of design methods 
 
The following methods can be applied for the design of geometrically open sand-tight 
granular filters: 
  
Questions 1: filter layer thickness, and Question 2: wide-graded gravel mixtures 
 

• A new formula also taking into account the layer thickness reads as follows: 
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 Note: this formula has not been validated. 
 
  The following assumptions have been made: 

- theoretical relationship for the relative turbulence in the filter (Equation 2.12) 
including the value of the damping factor χ: 
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- the value of the allowable transport is: γ = 0.625 
   
Question 1: filter layer thickness at bridge piers 
 

• The Wörman formula can be applied for bridge pier protections although the 
equation is rather conservative (due to high turbulence resulting from the 
horseshoe vortices and the Kármán vortex streets and a value of 2 times the 
approach velocity): 
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  Equation 2.9 is applicable for: 
  -  db85/db50 = df85/df50 = df50/df15 ≈ 1.25  
  - water depth - pier width ratios of 1.05 to 2.6, and  
  -  filter thickness – pier width ratios of 0.15 to 0.28. 
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Question 2: wide-graded gravel mixtures 
 

• Simplified Bakker/Konter-formula (CUR, 1993): 
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where α = 9.5 for base material with a db50 in the range of 0.15 to 5 mm and α = 
19 for base material larger than 5 mm, and C0 ∼ 15.  
 
The equation can be applied although it needs additional validation and another 
complication is the presence of the hydraulic radius Rh (in practice equal to the 
water depth). Probably Rh is not the most appropriate parameter; a local vertical 
length may be a better parameter.  
 
The applicability of Equation 2.7 is limited to values of Rh smaller than 10 m. 

 
• New formula based on a theoretical approach and taking into account the 

gradation of filter material via VGf and base material via VGb: 
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where η represents the relative turbulence in the filter layer and reads: 
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Note: Equation 3.31 has been validated for uniform flow only; see Figure 3.11. 
 

  The following assumptions have been made: 
- relative turbulence in the filter is linearly related to the relative turbulence in 

the flow (Equation 3.8) 
- theoretical relationship for the relative turbulence in the filter (Equation 2.12) 

including the value of the damping factor χ. 
 
In principle, Equation 3.34 is valid for thin and thick filter layers. 

  Up to now, Equation 3.34 is applicable for: 
- uniform flow conditions 
- DF/df50 in the range of 1.5 to 4.5 
- df50/db50 ranged between 40 to 415. 
 
A simplified version of Equation 3.31 reads: 
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Assumption: the relative turbulence in the filter equals the relative turbulence in 
the flow: r0,f = r0 

 
  Equation 3.34 is only valid for thin filter layers. 
 

• For wide-graded mixtures also the design method proposed by Cistin and 
Ziems (Heibaum, 2004) can be applied; see Figure 2.4. 

 

 
  Figure 2.4 Granular filter design chart according to Cistin and Ziems (Heibaum, 2004) 
 
Note: Not yet solved is the question how much wide-graded filter material has to be 
applied to create a stable filter structure, with stability at the interfaces water-filter 
material and filter material-base material. This aspect will be addressed more in detail in 
section 4.6.  
 
4.2 Knowledge gaps 
 
The knowledge gaps are summarised in Table 4.1 and discussed shortly in the next 
sections. The intention is to carry out specific research to these aspects.  
 
The priority of each knowledge gap has been mentioned as well as the option to obtain 
a quick win. The quick wins are discussed more in detail in section 4.3. Regarding the 
priority the following distinction has been considered: 
 
I knowledge gap resulting in “profit” by doing research 
II knowledge gap for which it is not clear whether research will give “profits” 
III knowledge gap for which research will not result in any “profit” 
 
In order to avoid misunderstanding: “profit” means better knowledge enabling a better 
and more reliable design and application of granular filters. Obviously, this may result in 
safer and cheaper structures and probably shorter construction time. 
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Table 4.1 Overview of knowledge gaps and assumptions 
No Name knowledge gap Priority Quick win 
1 Sensitivity analysis of Equations 3.31 and 3.37 I yes 
2 Validation Equation 3.31 for wide-graded material  I no 
3 Validation Equation 3.31 for non-uniform flow I no 
4 Damping turbulence acc. to Equation 2.12 and 3.8 

(inclusive order of magnitude of χ) 
I yes 

5 Validation Equation 3.34 for thin filters III yes 
6 Validation Equation 2.7 for non-uniform flow - *) no 
7 Validation Equation 3.37 for uniform and non-

uniform flow 
I no 

8 Equations for short hydraulic loads are missing I no 
9 Adaptation of the Wörman equation 2.9 II yes 
10 Design method for armouring of a filter structure 

(armouring) 
I yes/no 

*) Equation 3.31 is more important than Equation 2.7 because the perspectives are better. 
 
Although not the scope of this study, the literature review made clear that there is hardly 
information on the interface stability of granular filter structures in conditions with wave 
attack. From that point of view it obviously is a knowledge gap; it is, however, not a 
quick win. It is recommended to carry out a study similar to the present one, e.g. 
literature search resulting in an overview of knowledge gaps with respect to interface 
stability under wave attack.  
 

4.2.1 Non-uniform flow 
 
The knowledge gaps 3, 5, 6, 7 and 8 address non-uniform and/or non-permanent flow 
conditions. Non-uniform is defined here as rapidly changing flow. Gradually changing flow 
is for this study assumed to be ‘part’ of the uniform flow conditions. 
 
Equation 3.31 (knowledge gap 3, priority I) addresses the influence of the grading width 
and has already been validated for uniform flow using the Van Huystee et al (1991) test 
results.  
The same holds for equation 2.7 (knowledge gap 6, no priority). However, since Equation 
3.31 offers more perspectives than Equation 2.7 the last one will not be considered from 
hereon. 
Equation 3.37 (knowledge gap 7, priority I) has not been tested for uniform flow conditions 
either.  
 
Validation of the Equations 2.7, 3.31 and 3.37 requires physical model tests. These tests 
are time consuming and costly, and consequently no quick wins. Nevertheless, it is 
recommended to carry out these tests because of the high priority to have available  
validated relationships. 
 
Relationships for non-permanent and short hydraulic loads are missing (knowledge gap 
8, priority I). A short literature search did not provide relationships for the interface stability 
for this type of flow conditions. It is recommended to carry out a more intensive literature 
search and, in addition, a theoretical study in which a method will be developed. 
Obviously, this is not a quick win. 
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4.2.2 Wide-graded material 
 
The knowledge gaps 2, 5 and 10 deal with wide-graded filter materials. 
Equation 3.31 (knowledge gap 2, priority I) has been derived for wide-graded filters and 
validated for uniform flow conditions. Further validation requires physical model tests and 
consequently, this is not a quick win. 
 
Equation 3.34 (knowledge gap 5, priority III) is valid for thin wide-graded filters. Although 
the priority is low, this relationship can be validated quickly with available data.  
 
Knowledge gap 10 (armouring) refers to the required minimum thickness of a filter 
structure of which the material in the upper part will become stable due to armouring 
(after preceding erosion of fines), while it complies with the requirement of interface 
stability with the base material. 
 

4.2.3 Damping of turbulence 
 
Knowledge gaps 4 and 9 address the damping of the relative turbulence in the filter 
layer due to the layer thickness. The damping is assumed to follow the relationship 
according to Equation 2.12 (knowledge gap 4, priority I) with the damping factor χ. 
It is recommended to carry out a desk study to the value of χ. 
 
Equation 2.9 (knowledge gap 9, priority II) is the Wörman formula for bed protections 
around bridge piers. This formula implicitly contains a damping factor for the turbulence. It 
can be interesting to adapt the Wörman formula to conditions comparable with a bed 
protection downstream of a hydraulic structure. 
 

4.3 Quick wins 
 
Quick wins are defined as research that is highly effective in terms of research 
investments and practical applications (when successful).  
 
The present review of the state-of-the-art of design of filter layers as an effective 
measure for scour erosion shows that different formulae are derived that take into 
account the complex flow structure above the filter (including high turbulence), in the 
filter(s) and at the interface between the (lowest) filter and the base material. 
Hence, the effects of non-uniform flow and high turbulence may be incorporated well in 
filter layer design.  
 
At the other hand, some inconsistencies are still present between the different formulae. 
In addition, the complex and empirical nature of many of the formulas often requires a 
large number of parameters to be assumed in order to arrive at useful answers.  
 
Based on this observation, the following quick-wins are identified: 
 

• Knowledge gap 1: A sensitivity study can give insight into the limitations of 
Equations 3.31 and 3.37. This makes the setup of model tests easier. 

• Knowledge gaps 4: Measurements are available of Wenka et al (2007). These 
measurements can be used easily for increasing the applicability of Equation 
3.31 as well as 2.12 for the influence of layer thickness and damping of 
turbulence respectively. A limited desk study will already give proper results. 
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• Knowledge gap 9: The Wörman equation can be improved (viz making it less 
conservative) by using available bridge pier data. 

• Knowledge gap 5: Equation 3.34 can be easily checked with available data, 
although its priority is low. 

• Knowledge gap 10: Development of a design method for the required thickness 
of a filter structure of which the upper part becomes stable due to armouring. 

 

4.4 Hydraulic modelling 
 
Not a quick win, but a phased hydraulic modelling program may underline and extent 
the data of Van Huijstee et al (1991). As proper data are scarce, especially related to 
systematically varied turbulence intensities, filter thicknesses and filter gradings, 
experiments are necessary for further calibration, tuning and refinement of the formulae 
as proposed in this report. The phasing of these tests may be such that maximum 
practical spin-off is gained in the earliest stages. As an example: it seems to be 
worthwhile to start with tests that demonstrate (practical) maximum layer thicknesses 
and practical limits of filter gradation first. Next, further tests can be carried out that 
satisfy more scientific goals, based on expectations of practical spin-off. This step-by-
step approach will strongly lean on progressive practical and scientific knowledge. 
 
Furthermore, from a practical point-of-view it is important to verify the sensitivity of the 
interface stability for increasing the number of layers. E.g.: when increasing a bed 
protection by one or two layers to ascertain the stability, this may be practical. However, 
increasing the number of layers by 5 to 10 layers will usually not be practical. 
 

4.5 Evaluation 
 
In the preceding sections the knowledge gaps and quick wins are discussed as well as 
the required efforts to validate the derived equations for non-uniform flow conditions. 
However, one practical design idea for upgrading a present filter protection (that is not 
sufficient as regards the stability of the interface) has not been mentioned yet. This idea 
is to feed (‘sprinkle’) fine materials in the top layer, provided that this top layer is rather 
coarse and narrow-graded. When carefully dimensioned, these fine materials will not 
decrease the stability of the top layer and will be stable themselves (by hiding effects). 
These fine materials, however, may significantly increase the stability of the interface 
below the top layer and probably also the lower interfaces in case of multiple layers. 
The outcome of the white spot research as mentioned above, may indicate the 
usefulness of such a promising application. As an advantage above increasing the 
number of top layers, the flow blocking effect will not change and we anticipate that this 
application will be much more cost effective. When the above research shows positive 
results, some pilot testing may be required to explore and demonstrate this application 
in practice.  
 

4.6 Possible approach to estimate the thickness (reduction) of wide-graded 
layers 

 
Finally, the question: is it possible at this point in time to make a design of a bed 
protection that consists of wide-graded material?  
Based on the foregoing section the answer should be: No. An accepted proven method 
for the assessment of transport of fines and the subsequent armouring process of wide-
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graded gravel mixtures is not available. That is also the reason why ‘armouring’ is 
included in the list of the knowledge gaps (see Table 4.1). 
However, some promising results and proposed approaches can be found in literature, 
for instance the results of Sumer et al (2001) and Dixen et al (2008). Their method has, 
however, not been verified yet. Furthermore, results of the studies within the framework 
of the design and construction of the Deltaworks indicated that the thickness of wide-
graded gravel mixtures with d85/d15 ≈ 10 could reduce by 4 to 5d85. In a subsequent 
quick win study these methods will be discussed in more detail.  
 
Until further guidance is published, the alternative is to follow a pragmatic approach. 
Suppose the boundary conditions are known, i.e. the hydraulic load U0, the 
characteristics of the wide-graded gravel mixture (d15f, d50f and d85f) and the 
characteristics of the base material, d15b, d50b and d85b. The following procedure is 
proposed: 

1 Determine with Shields the median size of the material of the top layer of the bed 
protection required to ensure stability against current attack, d50a; this is the 
characteristic size of the top layer after washing out of the fine material, i.e. after 
‘armouring’.  

2 Assume that all particles larger than this required median size, d50a, are stable and 
that finer particles will erode until a top layer mixture results with a median particle 
size equal to d50a = di%,f, where di%,f is the size below which i% of the mass of the 
parent wide-graded filter material is falling. Usually, a secondary layer, consisting 
of parent material characterised by d50f, will remain; an extreme situation may, 
however, occur in the case that no parent material remains. 

3 The amount of material that has been washed out from the (top part of the) wide-
graded mixture can be assessed as follows: the amount of particles in the 
armoured layer larger than d50a is equal to the amount smaller than d50a (= di%,f). 
Hence, the total amount of top layer material is: 2(100 – i)% of the original amount 
of wide-graded material. The amount washed out is then: 100 – 2(100 – i)% = (2i 
– 100)%.  

4 The ratio d50a/d50f is in most cases << 20 (the criterion for geometrically closed 
filters), which means that the thickness of the top layer cannot be evaluated using 
Equation 3.37. The required thickness of the top layer to guarantee stability can 
be assessed at Da = 2d50a, which is a safe and reasonable assumption in the case 
of a remaining secondary layer of parent wide-graded material. The amount of 
wide-graded material to be placed before armouring is taking place, D0, can be 
calculated as the thickness of the (remaining) underlayer, Du, plus the initial 
thickness of the top layer subject to ‘armouring’, ‘D0,a = 100/[2(100 - i)]Da.  

Note: To assume a linear relationship between volume (or mass) and thickness is 
quite conservative, as part of the relative fine material that is washed out, 
originates from the voids between the coarser particles. 

5 For the extreme situation – no parent wide-graded material left between armoured 
top layer and base material – the interface stability should be evaluated with 
Equation 3.37. If not meeting this criterion, the layer thickness has to be larger 
than the minimum of 2d50a. For the usual situation – with a remaining layer of 
parent material between base and top layer, the interface stability has also to be 
evaluated. The first check is the geometrical sand tightness (e.g. d15f < 5d85b or 
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d50f < 20d50b); if this criterion is satisfied, that interface is stable. If it is not 
geometrically sand-tight, the same Equation 3.37 can be used for this purpose. 
Note that the relative turbulence intensity of the underlayer should be used 
instead of the usual parameter, r0. As the ‘armoured’ top layer is relatively thin, the 
turbulence intensity in both flows is assumed to have the same order of 
magnitude.  

6 Finally, the internal stability and the permeability should be checked. 
 
The following example may illustrate the procedure.  
Ad 1: Suppose that the wide-graded mixture can be characterised by: d50f = 0.15 m and 
that the top part has to consist of stones with a median size of d50a = 0.30 m to be 
stable (based on Shields or another accepted method).  
Ad 2: Use the cumulative distribution curve of the mixture to assess which di%,f value 
corresponds to d50a. In this example, this median size is equal to d80f (i = 80) of the 
parent wide-graded material.  
Ad 3: Part of the fine material of the parent wide-graded mixture will erode until a 
mixture results with d50a = 0.30 m. The amount of material of the new armoured top 
layer larger than 0.30 m equals the amount smaller than 0.30 m. Both represent 20% of 
the top part of the original wide-graded mixture, because d50a = d80f = 0.30 m. The 
amount of eroded material is then: 60%, = (2∗80 – 100)%.   
Ad 4: The filter layer is geometrically closed, as the ratio d50a/d50f is << 20. Hence the 
thickness of the armoured layer can be assumed to be Da = 2d50a = 0.60 m, which is 
regarded to be the minimum. The required initial thickness of the top part of wide-
graded material amounts to: D0,a = 100/[2(100 – i)]Da = 5/2∗0.60 m = 1.50 m. The 
minimum thickness of the underlayer, Du, is 2d50f = 0.30 m. The total thickness initially 
required amounts to: D0 = 1.80 m, which is equal to 12d50f.  
Note that the reduction of the thickness using this approach is not much different from 
the results of the Deltaworks studies as mentioned above. 
Ad 5: For the extreme situation – no intermediate layer of parent material – the interface 
stability at the base layer can be evaluated using Equation 3.37 (assuming that VGb = 
VGa, Δa = Δb and Ψca = Ψcb). To this end the values of the turbulence intensity, r0, the 
damping factor, χ, the median size of the base material, d50b, and d15a have to be 
estimated: assume r0 = 0.2, χ = 0.2, d50b = 500 μm and d15a = 0.20 m. Using Equation 
3.37 gives: DF = Da = 2.90 m. Such a large thickness (5 times as much as the minimum 
of Da = 0.60 m) could be expected in view of the large ratio of d50a to d50b (= 600). 
Alternatively, the maximum value of d15a could be calculated given the minimum 
thickness of DF = 0.60 m. The result would be: d15a,max ≤ 40 mm, which is << d15a (≈ 200 
mm). This means that the total layer thickness after armouring must be larger than 
2d50a, so that a double layer system can develop; or, in other words, the original layer 
thickness should be D0 = D0,a + Du = 1.80 m.  
The interface between parent wide-graded material and base layer: As d50f /d50b (= 300) 
>> 20, this is a geometrically open filter. The thickness and maximum value of d15f have 
to be evaluated using Equation 3.37. Assuming the same values of the parameters as 
used above and d15f = 40 to 50 mm), the minimum thickness is: DF = 0.4 m; this is a 
conservative approach, because damping of turbulence in the top armoured layer is 
neglected. The thickness applied (0.3 m) should therefore be slightly increased. Note, 
however, that the assumption r0,f ≅ r0 still has to be validated for such filters. 
Ad 6: Subsequently, the internal stability and the permeability can be evaluated. 
 
An alternative for the procedure described above might be to compute the amount of 
transport of filter material with the use of an appropriate sediment transport formula or 
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filter transport model, for instance the Egiazaroff formula (Equation 2.10), followed by a 
computation of the reduction in thickness and the new grading width of the filter 
material. 
 
It is recommended to carry out a desk study to see whether the procedure can be used. 
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5 QW-3: Adjustment of Wörman for a bed protection 

 
The Wörman formula is derived for the bed protection around bridge piers. This quick 
win is to see whether it would be possible to adjust Wörman formula for the conditions 
of bed protection under low turbulence. 
 
The Wörman formula reads as follows: 
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where, Δf and Δb = relative density of filter and bed material respectively; nf = porosity of 
filter material, df85 and db85 = grain diameter (finer of which is 85%) for filter and the 
base material respectively.   
 
Formula (3.1) was developed for riprap protection (without filter layer) around the bridge 
pier. The turbulence around the structure is considerably high due to the structure-
induced non-uniform flow. For the case of bed protection, only near-bed turbulence 
should be considered. Wörman formula, however, does not consider turbulence 
explicitly. He used a simple approach for the pressure gradient inside riprap layer (he 
found a linear relation) and parameterized it in the form of a non-dimensional parameter 
based on his experiments. 
 
In his derivation (Worman, 1989), he used following non-dimensional incipient erosion 
criterion for base material through riprap:  
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In which, U = mean velocity of undisturbed flow; Ss = specific grain density (= ρs/ ρw); 
ΔL = infinitesimal distance over which a pressure gradient in the riprap layer is defined 
(which was found to be proportional to riprap thickness, DF); β = friction factor for 
turbulent flow, and CD = drag coefficient for the grain. 
So, the variable  β appears to include turbulence effect, which was found to be constant 
from his experiments. He fitted the critical value of this parameter with relative material 
property (Figure 1). So, the region below this threshold line is stable. However, it can be 
seen that the equation is valid only for the range 0<db85/df85<0.1 as in case db85/df85>0.1, 
the value of U2/gDF is significantly large. Worman has recommended to restrict the 
generalization of this equation for the base material size larger than in his experiment.  
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Figure 1: Fitting curve for non-dimensional parameters considering initiation of erosion 
of base material on upstream side of the pier (After Worman, 1989; D15 is df15 and S is 
DF in our notation). 
 
Furthermore, he used Izbash formula for determining grain size of riprap material based 
on  critical velocity as follows: 
 

0.85 2 ( 1)cr su g S D= −     (3.3) 

 
where, D = grain size of filter material (Worman assumed D = df85). 
As per suggestion by Breusers et al. (1977), he chose the value of twice the mean 
velocity of undisturbed flow (i.e. ucr = 2U), and also evaluating β/CD from their 
experiments he reached to his original formula (3.1).  
Wörman did not mention the value of β/CD in the paper. Based on his relation, we found 
following: 
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=      (3.4)  

 
This implies that the effect of turbulence is incorporated implicitly.  
 
We can rewrite equation (3.1) with a new coefficient of proportionality (α, which is equal 
to 0.16 for the original equation (3.1)), and try to evaluate comparing with the available 
experiments:   
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For his own data, it can be seen that the prediction by the equation does not fit as an 
envelop curve for his experimental data (Figure 2). Also, it shows rather high filter layer 
thickness for the cases with low turbulence.  
The Wörman equation tends to be near the data of Van Huijstee and Verhij with 
considerably low value of α (<0.04; not shown here). Moreover, it cannot be used as an 
envelop curve as it is a linear function.   
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So, improvement is necessary considering the turbulence under uniform flow, and the 
damping of turbulence in filter layer. For this, we can refer to the recent work of 
Hoffmans et al. (2009).  
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Figure 2: Prediction using Wörman formula (lines) for his experiments (dots)  
 
 
We have attempted to linearise our previously proposed equation (Verheij et al., 2008) 
in order to make a fair comparison with Wörman formula. Based on the experiments of 
Klar (2005), Hoffmans et al. (2009) derived the following relationship for the relative 
load (η) for DF > 2df15: 
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Combining equation (3.6) with an approximated relationship, 
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and assuming df50/df15 ≈ 1.25, we get:  
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Basically, this formula is identical to Wörman’s relation, but it considers the turbulence 
damping. Also, formula works for both low and high turbulent flow with different 
coefficient αν (which is proposed to be varied from 0.05 to 0.5 depending on the flow 
condition (uniform or non-uniform with high turbulence).   
Now, we simply consider a linear approach as: 
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This gives us a linear relationship identical to Wörman equation as follows: 
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df50 ≈ 1.25df15. Comparison for different cases can be seen in Figure 3 below. This 
figure shows the comparison between predictions by using Wörman formula and new 
formula considering turbulence damping. Also, the prediction of a linear formula. From 
the result it can be seen that with highest value of αv, an envelop curve can be obtained 
that covers both cases with high (structure-induced) and low turbulence, whereas lower 
value appears to be appropriate for the uniform flow with low turbulence (as in 
experiments of Huijstee and Verheij, 1991). For the linear formula, we use αv = 0.05 (for 
low turbulence as in non-linear case), and χl = 1.2. For the high turbulence, coefficient 
χl will be higher. One can see from the figure (and from the relationship) that for some 
specific combination of coefficient for high turbulence, our linear relationship (Eq.(3.10)) 
would give similar result as Wörman’s equation.   
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Figure 3: Comparison of different approach with experiments 
 
 
Conclusions 
 

1- In order to implement Wörman equation for low turbulence, the parameter 
(U2/gDF)cr should be defined for the case of filter layer without presence of 
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structure. For this purpose, relevant experimental data is necessary (with 
respect to the condition of initiation of erosion of base material). 

2- The linear function presented here (Eq.(3.10)) which is identical to Wörman 
equation can be regarded as a version of Wörman equation for low turbulence 
case (or simply use Wörman equation with low coefficient ~ 0.08, which gives 
almost similar result as this linear equation).   

3- The equation with non-linear damping proposed in our previous study can be 
regarded as an improvement over Wörman’s equation, and can be used for low 
turbulence situation (normal situation without structure).  
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6 QW-5: Design of a thick bed protection consisting 
of wide-graded material 

In Section 4.6 a procedure has been presented for designing the thickness of 
wide/graded layers. Here the transport of wide-graded sand-gravel sediment will be 
considered which is applied as bed protection. Transport of graded sediment is a 
dynamic and complicated process to be described in a simple manner. Nevertheless, 
number of works have been conducted so far to describe the graded sediment as well 
as gravel bed transport processes.  
 
In general, two basic approaches of graded sediment transport can be considered:  

1 by using a conventional approach of bed load transport (basically used for 
uniform sediment) to compute fractional transport of sediment mixture 
considering hiding and exposure effect (as proposed by Ashida-Michiue 
with modified Egiazaroff approach, 1972; Wu et al., 2000 with Van Rijn’s 
transport equation), and 

2  the surface-based fractional transport of gravel by renormalizing sediment 
mixture removing fine sediment from it (as proposed by Parker, 1990), and 
later on modified by Wilcock and Crowe (2003) to include fine sediment and 
its effect on the mobility of gravels. 

 
We recommend the latter approach, since the former one produces complexity due to 
the uncertainty on hiding-exposure function and armouring effect. Latter approach is 
more reliable and straightforward as it is based on observations on graded sediment 
transport.  
The formula of Wilcock-Crowe (2003) will be used which allows to include the finer 
sediment as well (unlike Parker’s relation) as well as exposure effect of sand content  
through a correction to Shields number (it is postulated that sand content up to 30% 
causes the higher mobility of surface gravel fractions). 
 
This approach is similar to Parker’s approach (1990), but includes sand fraction as well 
as reduction of critical shear stress (precisely saying, reference shear stress for 
geometric mean size, τ*

ssrg) with respect to the sand content (which is considered to be 
less than 30% of the total mixture). They proposed an exponential function for reduction 
of reference shear stress.  
 
The relations read as follows: 
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Where Wi

* = the dimensionless bed load transport parameter (for i-th fraction); and 
defined by:  
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where s = ratio of sediment to water density; qbi = volumetric transport rate per unit 
width (for i-th fraction);  Fi = proportion of i-th fraction in filter material; u* = shear 
velocity. 
 
φ is defined as follows:  
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where, τ*

sm  = Dimensionless bed shear stress; τ*
ssrm = Dimensionless reference shear 

stress; and Dsm = mean diameter  
 
Dsm is defined as arithmetic mean Dsm = ΣDiFi, where Di is i-th particle diameter and Fi 
is proportion of i-th fraction (Parker proposed to use geometric mean; however herein 
we used arithmetic mean). 
 
Dimensionless bed shear stress can be calculated as: 
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The reference shear stress is calculated as: 
 

0.021 0.015exp( 20 )ssrm sFτ ∗ = + −                                (2.6)   
 
where Fs denotes the sand fraction in gravel mixture. 
 
 
Calculation procedure with example 
Step 1  
Grain-size characteristic of filter material: Calculation of fractional size (Di) and 
proportion (Fi) 
Graded sediment characteristics, i.e. sieve analysis or fractional content should be 
given. A brief grain characteristic is given in Table: 
 
Table 2.1 Grain characteristics 
Range, mm μ (Dbi), mm % finer 

0.25~0.6 0.4 15 
10~20 15 50 
60~150 100 85 

 
However, for a proper consideration we expand this data in a wider range by linearly 
interpolating/extrapolating the given values (Table 2.2 and Figure 2.1): 
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Table 2.2 Extended grain-size distribution characteristics 
Dbi, mm % finer 

0.25 0 
0.4 15 
1 17 
2 19 
10 38 
15 50 
40 60 
60 68 
75 75 

100 85 
150 100 

 
For the reasons of comparison, we use two approaches: the first approach is to exclude 
the fine sediment (d 2 mm) and renormalize the grain-size distribution and fractional 
content as proposed by Parker (1990), and the second approach is to include all 
sediment size. 
In case of renormalization, the fraction content increases depending upon the 
proportion of gravel fraction (Fg), i.e. renormalized Fi = Fi/Fg . On the basis of increased 
fraction content, grain-size curve can be modified (this leads to the increment of median 
grain size of the mixture).   
 
Calculation result of fractional diameter and fractional content (proportion) for both 
cases is presented in Table 2.3 and 2.4 respectively. Both initial and renormalized 
grain-size distribution curve is shown in Figure 2.1.  
 
Table 2.3 Calculation of fractional diameter and proportion considering all sediment 
fraction 

Dbi, mm Di % finer Fi 
150   100   

  122.47   0.15 
100   85   

  86.60   0.1 
75   75   

  67.08   0.07 
60   68   

  48.99   0.08 
40   60   

  24.49   0.1 
15   50   

  12.25   0.12 
10   38   

  4.47   0.19 
2   19   

  1.41   0.02 
1   17   

  0.63   0.02 
0.4   15   

  0.32   0.15 
0.25   0   
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    Fraction gravel (Fg) = 0.81 
    Fraction sand (Fs) = 0.19 
 
 
Table 2.4 Calculation of fractional diameter and proportion excluding finer fraction (<2 
mm) 

Dbi, mm % finer Fi 
2 0   
10 23.5 0.23 
15 38.3 0.15 
40 50.6 0.12 
60 60.5 0.10 
75 69.1 0.09 

100 81.5 0.12 
150 100.0 0.19 
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Figure 2.1 Grain size distribution including and excluding finer sediment 
 
Step 2 
Calculation of fractional transport 
 
- For the example given here, we assume u* =0.15 m/s (which is a characteristic value 
for a Dutch river during high flow). Otherwise, this can be calculated for the given flow 
condition. 
- Dsm (=ΣDiFi) is equal to 40.5 and 49.9 mm for the cases of including and excluding 
finer sediment respectively.  
- For comparison, we considered the sand content Fs to be 0 and 0.2 (as shown by 
grain characteristics). Using Eq. (2.6) results in the following values of dimensionless 
reference shear stress (τ*

ssrm): 
τ*

ssrm = 0.036 (if Fs = 0), and τ*
ssrm = 0.021(if Fs = 0.2) 

- Having known Dsm and u*, τ*
sm  can be calculated using Eq. (2.5): τ*

sm  = 0.034 (same 
for both cases). 
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- Calculate b and φi using Eq. (2.4) and then Wi
* for each (i-th) fraction can be 

calculated by using Eq. (2.1). 
- Knowing Wi

*, bed load transport rate for each fraction (qbi) can be calculated using Eq. 
(2.3). 
- From qbi, daily transport per unit width for each fraction (Qbi) can be calculated:  
Qbdi = qbi*3600*24 
 
A comparison on daily transport rate of each fraction is given in Figure 2.2 to Figure 2.4. 
Figure 2.2 and 2.3 show that the effect of sand content on the mobility of gravel fraction 
leads to the increased transport rate for all fraction for both cases (with and without finer 
sand). From Figure 2.4, it is evident that the consideration of all fraction gives higher 
transport than the case of excluding the finer sediment (i.e. after renormalization). 
Consequently, to be in the safe side, it is better to consider all sediment size (i.e., 
without excluding finer sand size < 2 mm) and also the effect of fine sand on gravel 
transport rate as it gives higher transport. 
 
Knowing the total volume of filter material per width and the transport rate of each 
fraction, total period for the removal of certain fraction from the mixture can easily be 
calculated.   
Let’s assume that the total volume of filter material per unit width (V) is 100 m3/m. Then 
the volume of each fraction (Vfi) can be calculated by multiplying total volume to the 
proportion of each fraction (i.e., Vfi= V*Fi). Knowing the daily transport rate of each 
fraction, time to erode (Tedi) each fraction can be calculated (i.e., Edi = Vfi / Qbdi). Results 
for both cases are depicted in the Table 2.5 and 2.6. Results are shown for all cases 
mentioned above. 
 
If we consider the worst case, we can see that the 85% of the filter layer mixture of 100 
m3/m will be eroded in less than 3 days. Increment of coarser fraction leads to the 
stability of the filter material (as can be seen from the result with excluding finer 
sediment and renormalizing gravel content). 
 
Table 2.5 Calculation result of transport rate and eroding time (case with all farctions) 

Di Fi qbi (m3/s/m) Qbdi (m3/day/m) Vfi  TEdi (days) 
(mm)   Fs = 0 Fs = 0.2 Fs = 0 Fs = 0.2 (m3/m) Fs = 0 Fs = 0.2 
0.3 0.15 2.62E-06 1.58E-05 82.64 497.19 15.00 0.18 0.03 
0.6 0.02 2.30E-07 1.70E-06 7.26 53.70 2.00 0.28 0.04 
1.4 0.02 1.33E-07 1.31E-06 4.18 41.27 2.00 0.48 0.05 
4.5 0.19 5.04E-07 8.25E-06 15.89 260.04 19.00 1.20 0.07 
12.2 0.12 1.41E-07 3.47E-06 4.44 109.35 12.00 2.70 0.11 
24.5 0.1 6.06E-08 1.98E-06 1.91 62.44 10.00 5.23 0.16 
49.0 0.08 1.55E-08 7.20E-07 0.49 22.69 8.00 16.38 0.35 
67.1 0.07 5.20E-09 2.69E-07 0.16 8.48 7.00 42.68 0.83 
86.6 0.1 2.39E-09 1.24E-07 0.08 3.90 10.00 132.42 2.56 

122.5 0.15 4.55E-10 2.35E-08 0.01 0.74 15.00 1046.05 20.24 
 
 
Table 2.6 Calculation result of transport rate and eroding time (case with excluding finer 
fraction) 

Di Fi qbi (m3/s/m) Qbdi (m3/day/m) Vf  TEdi (days) 

(mm)   Fs = 0 Fs = 0.2 Fs = 0 Fs = 0.2 (m3/m) Fs = 0 Fs = 0.2 
4.5 0.23 1.5E-07 4.9E-06 0.0133 0.42 23.5 1760.7 55.7 
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12.2 0.15 4.3E-08 1.8E-06 0.0037 0.16 14.8 3963.6 94.6 
24.5 0.12 2.0E-08 9.5E-07 0.0017 0.08 12.3 7303.4 151.1 
49.0 0.10 6.2E-09 3.2E-07 0.0005 0.03 9.9 18340.6 354.9 
67.1 0.09 2.7E-09 1.4E-07 0.0002 0.01 8.6 37691.0 729.4 
86.6 0.12 1.6E-09 8.3E-08 0.0001 0.01 12.3 89243.9 1727.0 

122.5 0.19 4.3E-10 2.2E-08 0.0000 0.00 18.5 493523.8 9550.4 
, 
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Figure 2.2 Comparison of daily transport of each fraction with and without effect of sand 
content (case including all fractions)  
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Figure 2.3 Comparison of daily transport of each fraction with and without effect of sand 
content (case exclusive finer fraction, i.e. < 2 mm)  
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Figure 2.3 Comparison of daily transport of each fraction with and without finer fractions 
(For Fs = 0.2). 
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7 Conclusions and recommendations 

A desk study has been carried out to present the state-of-the-art of criteria for the 
interface stability of granular filter structures. In addition, the practicability of the criteria 
has been indicated and knowledge gaps and quick wins have been identified. Actually, 
the project focuses on two particular aspects: 

1. interface stability as function of the thickness of the filter layer consisting of 
standard armourstone grading, and  

2. Interface stability of mixtures with a wide gradation. 
 
The study has brought an overview of the existing design formulas for interface stability 
for the above mentioned two aspects, including remarks which formulas need 
improvement or are even missing.  
 
The study has resulted in a new filter criterion for geometrically-open sand-tight filter 
structures in a flow channel: 
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(3.37) 

 

The formula includes grading effects (parameters VGf and VGb for filter and base material 
respectively) as well as interface stability as a function of filter layer thickness (parameter 
DF).  
It is recommended to validate the new filter design formula in a hydraulic model. 
 
Moreover, knowledge gaps have been defined and prioritized. An assessment of quick 
wins has been made in order to define short and long term research. Short term 
research, a desk study, may give quick wins for the hydraulic gaps 1, 4, 5 and 9 (see 
Table 4.1). Long term research, physical model tests, is needed for the high priority 
knowledge gaps 2, 3, 7 and 10. Furthermore, it is recommended to carry out a literature 
inventory to knowledge gaps with respect to interface stability under wave attack.   
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   This study investigate s the stability of horizontal granular filters which protect the 
underlying soil, i.e., the base layer, from erosion by static and fluctuating loads. The 
head usually characterizes the static load over hydraulic structures, whereas the 
fluctuating load represents turbulence caused by the geometry of hydraulic structures or 
by the roughness of the top layer. The erosion resistance or strength of granular filters is 
mainly characterised by the geometrical properties of the materials used. In general, two 
types of granular filters can be distinguished, namely geometrically closed and 
geometrically open filters. Here filter equations based on accepted theories are 
discussed for laminar and turbulent flow in horizontal filters. When the top layer is 
influenced by bed turbulence generated in open channel flow, also filter equations are 
derived. 
 
   Key Words : Granular Filters, Laminar Flow, Open Channel Flow, Turbulence, 

Turbulent Flow  
 
 

1. INTRODUCTION 
 
   Typically, granular filter elements (stone, gravel and sand) are robust and give a good 
contact inter- face between the filter and base layers. Granular fil- ters could smoothen bed 
irregularities and thus pro- vide a more uniform construction base. Moreover, they are easy 
to repair and sometimes they may be self-healing. The major disadvantage of granular fil- 
ters is the difficulty of assuring uniform construction underwater to obtain the required 
thickness of the filter layers. 
   Granular filters protect the underlying soil, i.e. the base layer, from erosion by static or 
mean hydraulic load and fluctuating loads. The head usually char- acterizes the static load 
over hydraulic structures, whereas the fluctuating load represents turbulence caused by the 
geometry of hydraulic structures or by the roughness of the top layer.  
   The erosion resistance or strength of granular filters is mainly characterised by the 
geometrical properties of the materials used. In a geometrically closed filter, the ratio 
between the largest and smallest particles is so small that the bigger particles block the 
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smaller ones. Geometrically open filters are characterised by particles that can erode 
through the filter layer.  
   Here equations are discussed for designing and tes- ting horizontal filters, which are 
influenced by lami- nar or turbulent flow. Moreover, this study examines the effects of bed 
turbulence in filter layers. 
 
2. HYDRAULIC MODELLING 
 
   To model static and fluctuating (hydraulic) loads various parameters can be used, for 
example, energy slope (or filter velocity), shear velocity (or shear stress), pressure 
fluctuations (or turbulent kinetic energy) and drag, lift and shear forces. The energy slope, 
shear velocity and pressure fluctuations can all be related to forces acting on particles.  
   Turbulence in open channel flow is generated close to the bed and in non-uniform flow 
turbulence is also caused by the geometry of hydraulic structures. The blunter the hydraulic 
structure and the rougher the bed, the higher the bed turbulence is. In granular fil- ters water 
flows through open spaces and when the flow reattaches, small mixing layers occur gener- 
ating turbulence. The vortices in these open spaces are much smaller than the vortices in 
open channel flow and thus contain less energy. The depth-aver- aged relative turbulence 
intensity (r0) in channel flow and the mean relative turbulence intensity (r0,f) in the filter 
layer are defined as 
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where h is the flow depth, k0 is the depth-averaged turbulent kinetic energy in open channel 
flow, k0,f is the mean turbulent kinetic energy in the filter layer, uf is the filter velocity, U0 is 
the depth-averaged flow velocity in open channel flow and σu, σv and σw are the standard 
deviations of the fluctuating flow ve- locities in the x (= longitudinal), y (= transverse) and z 
(= vertical) direction respectively. For uniform flow r0 = 1.21g0.5/C where C is the Chézy 
coefficient and g is the acceleration due to gravity. 
   To determine uf and its critical value (uc,f), the Forchheimer equation and an equation 
similar to Chézy are applied. When granular filters are influenced by bed turbulence from 
channel flow the load is described using the shear stress approach of Grass (1970) and an 
equation for the decrease of the pres- sure in the filter layer as proposed by Bezuijen and 
Köhler (1998).  
   Forchheimer found a relation between the mean energy slope (S) and uf which is non-
linear at sufficiently high velocities. This non-linearity increases with uf and is caused by 
turbulent effects of the flow in the filter 
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in which a [s/m] and b [s2/m2] are dimensional coefficients. The Forchheimer equation 
assumes that Darcy’s law is still valid. However, an additional term is added to account for 
the increased S. Based on permeability measurements, Den Adel (1986) found for the 
coefficients a and b  
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where df15 is the particle (or grain) diameter in the filter layer for which 15% of the particles 
is finer than df15, nf is the porosity of the filter and ν is the kinematic viscosity. The 
predictability of S in Eq. 2 applying a and b, lies in the range of ⅓ < ζ < 3 where ζ is the 
ratio of the measured and calculated S. 
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3. INCIPIENT MOTION 
 
Particle transport occurs when there is no balance between load and strength. When the load 
is less than some critical value, particles remain motionless and can be considered as fully 
stable. But when load exceeds its critical value, particle motion begins. The initiation of 
motion is difficult to define, which can mainly be ascribed to phenomena that are random in 
time and space.  
   When dealing with particle stability in granular filters, the exact shape of the distribution 
of both load and strength are irrelevant because a characteristic load1 (τ0,k) and a 
characteristic strength1 (τG,k) can be defined. A characteristic value is a value that is higher or 
lower than the mean value. Usually characteristic values are expressed as a mean value and a 
fraction or manifold of the standard deviation. Consequently, the problem of particle stability 
could be transferred to the magnitude of this fluctuation. Using the hypothesis of Grass (1970), 
which is based on statistical assump- tions for both τ0,k and τG,k read (Fig. 1) 
  
 characteristic load:     0,0 0 γσττ k +=            (4) 

 characteristic strength:  GGkG γσττ −=,         (5) 
 
 

 
 
Fig. 1   Probability functions of load and strength (Grass 1970) 
 
where γ is determined by an allowable transport of the bed material, σ0 is the standard 
deviation of τ0,k, σG is the standard deviation of τG,k , τ0 is the mean load (or mean bed shear 
stress) and τG is the mean strength (or critical mean bed shear stress) as given by Grass. 
   If τ0,k = τG,k and σG = VG τG with τG = ΨG  Δ  ρ g d50 (analogous to Shields), a general equation 
for the filter layer (or top layer) follows  
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γστ
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Δ 00
50       (6) 

 
where df50 is the mean particle diameter of the filter layer, VGf is the variation coefficient that 
represents the influence of the non uniformity of the filter layer, Δf (= ρs/ρ – 1) is the relative 
density of the filter material, ρ is the density of the water, ρs is the density of the filter 
material and ΨGf is related to the critical Shields parameter (Ψc). 

                                                  
1 Under channel flow conditions, τ0,k and τG,k are the instantaneous bed shear stress and the critical instan-

taneous bed shear stress respectively. 
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   A specific transport will occur if τ0,k = τG,k. For uniform flow, σ0 ≈ 0.4τ0, Grass found that a 
bed of nearly uniform sand, VGf ≈ 0.3, was completely stable for γ = 1 and for γ = 0 a 
significant transport of sediment particles was observed. Based on his tests, he reported that 
for γ = 0.625 and using ΨGf = 1.5Ψc the criterion of Shields (or Rouse curve) was met for the 
initial movement of sands up to a size of 250 μm.  
       
4. HORIZONTAL FILTERS WITHOUT BED TURBULENCE 
 
   When the water flows parallel to the interface, the gradient in both layers is about the 
same, causing uf in the filter layer to be much higher than in the base layer, because of the 
greater hydraulic conductivity. At the interface there will be a velocity gradient, inducing a 
shear stress at the upper fines in the base layer. Van der Meulen (1984), Klein Breteler 
(1989) and Broekens (1991) conducted flume experiments in which the flow was parallel to 
the filter and base layer. In these tests the flow was laminar as well as turbulent and no open 
channel flow above the filter was considered.  
   The critical filter velocity (uc,f) is a function of filter characteristics on the one hand and 
the critical bed shear velocity (u*c,bf) at the interface of filter and base layer on the other hand. 
Analogous to channel flow, i.e., using Chézy’s equation, uc,f could be written as 
 

    
bfc

f
fc u

g

C
u ,*, =

 
with 

6
1

50

15
15 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

b

f
f d

d
gαC and 50,,* ΔΨ bbbcbfc gdu =              (7) 

where Cf is a coefficient [m0.5/s] representing the resistance in the filter layer, α15 is a 
coefficient, Δb is the relative density related to the base layer and Ψc,b is the critical Shields 
parameter related to db50. Combining Eqs. 2, 3 and 7 and considering laminar flow (thus Ref 
= df15 uf /ν < 1000 and b = 0 in Eq. 2) yields (Fig. 2) 
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Laminar Flow Ref < 1000
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Fig. 2   Sc as function of strength:
( ) ( )

( ) 6
5

3
1

1
15

50
3

2 Δ1

f

b

f

bf

d

d
gn

νn−
 

 
   Substitution of Eq. 7 in Eq. 2 with a = 0, Eq. 2 reads for turbulent flow, thus Ref > 1000 
(Fig. 3) 
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   The Shields diagram shows that for laminar flow or for fines smaller than 0.1 mm, Ψc,b,lam 
could reach values up to 0.1. Assuming that Ψc,b,lam = 0.1 and using Eq. 8, α15 = 
65/(160·0.10.5) = 1.28. Substitution of α15 = 1.28 into Eq. 9, Ψc,b,tur = 0.1/(2.2·1.282) = 0.03, 
which is in agreement with turbulent flow measurements. 
   According to Aguirre Pe (see Hoffmans 2006), who investigated the incipient motion of 
gravel (df50 = 0.05 m) under steep channel flow conditions (0.01 < Sc < 0.1), r0 lies in the 
range of 0.3 to 0.6. In the tests carried out by Deltares, df15/db50 varied from 50 to 300 giving 
8 < Cf < 10 and 0.4 < r0,f  (= 1.21g0.5/Cf) 0.5, so the order of magnitudes of r0,f and r0 are the 
same, thus O(r0,f ) = O(r0).  
   As given by Koenders (1985), who used a fully different approach of solving the 
equilibrium of particles in granular filters, Sc is in the low and high gradient limit 
proportional to  
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whence follows that Koenders results show similar proportions as in the proposed Eqs. 8 
and 9.   
 

Turbulent flow Ref > 1000
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Fig. 3   Sc as function of strength:
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5. HORIZONTAL FILTERS INFLUENCED BY BED TURBULENCE 
 
  Hoffmans et al. (2000) discussed load in a horizontal one-layer filter with a thickness (DF) 
above the base material  in  open  channel  flow (Fig. 4). Equations for granular filters based 
on the Navier Stokes equation for uniform flow, Forchheimer’s equation and the hypothesis 
of Boussinesq are deduced and validated. 
  The distribution of τ being defined as load in a one- layered filter is 
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where ξ is a damping parameter and τbf is the mean load at the interface of the filter-base 
layer. Similar to channel flow τbf could be related to τ0 as follows (see also Appendix A) 
 

 0ηττbf =    with 
  

2
,07.0 frη =                   (12) 

 
Fig. 4   Overview of definitions for a one-layer filter 
 
 
If either τ0 or r0,f increases, τbf also increases which is in agreement with observations.  
   In a similar way equations can be derived for filters at the interface of the filter-base layer. 
Applying the hypothesis of Grass, the characteristic load (τbf,k) and the characteristic strength 
(τc,bf,k) of the base material at z = 0 are 
 

 ( )00, γστητ kbf +=        (13) 

  ( )GbbbGbcbGbkbfc Vγgdργσττ −=−= 1ΔΨ 50,,     (14) 
 
   By combining Eqs. (6), (13) and (14), gives for geometrically open filters 
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   With Eq. (15) the influence of particle gradation on the stability of the base material can be 
explained in a qualitative way. For example, when the base material is more graded than the 
filter material, thus VGb > VGf, the required ratio df /db is less than the value in situations where 
base and filter materials do have the same gradation. If only the filter material is broadly 
graded, thus VGb < VGf, the maximum value of df /db is higher than for similarly graded 
materials. These predictions correspond with observations in flume experiments.  
   A widely graded base material has more fines than a more uniform material. The material in 
the filter layer has to prevent the erosion of the fines. This can only be achieved by reducing uf 
or by putting more fines into the filter layers. A widely graded material in the filter layer has 
relatively more fines, which reduces uf and so τbf. Hence, the widely graded filter material is 
allowed to have a df50 that is larger than for uniform material.             

 

   Van Huijstee and Verheij (1991) conducted tests where bed turbulence was generated 
under uniform flow. In addition, a distinction was made between simultaneous instability of 
base and top layer and instability of either top or base layer. In all these tests DF /df50 varied 
from 1.5 to 4.5 and the critical df50/db50 obtained from tests ranged from 40 to 415. Figure 5 
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shows the critical [df50/db50]measured when erosion occurs versus the critical [df50/db50]computed 
assuming that η = 0.7(r0)2 (or r0,f = r0 see also section 4), VGb = VGf and Δb = Δf 
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where Rh is the hydraulic radius and κ (= 0.4) is the constant of Von Kármán. Since most of 
the experiments consists of a thin filter layer, 100% of the measurements lie in the range of 
0.5 < ζ < 2, where ζ is the ratio between the measured and computed df50/db50. 
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Fig. 5   [df50/db50]measured versus [df50/db50]computed 

             Experiments in which simultaneous erosion occurs in  
             filter and base layer (Van Huijstee and Verheij 1991) 
    
  For uniform equilibrium and non-uniform gradually varied flows, r0 ranges typically from 
r0 = 0.042 (or η = 0.0013 for large smooth channel) up to r0 = 0.126 (or η = 0.0113 for small 
rough channel). For steep channel flow and non-uniform flow when 0.2 < r0 < 0.5, η lies in 
the range of 0.028 to 0.18. Hence, for very high turbulence intensities, say r0 > 0.25 
geometrically closed filters are required, that is df50/db50 < 25 or η > 0.04. 
  Bezuijen and Köhler (1998) examined the stability of revetment structures, which is 
governed by the interaction between pore water on the one hand, and the top layer, filter 
layer and base layer on the other hand. Based on theoretical considerations they de- duced 
an exponential equation for the pressure de- crease, which is here expressed in terms of 
mean relative turbulence intensities 
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where the order of magnitude of χ is O(χ) = 0.1. Hence, r0,f not only depends on r0 but also 
on DF and df15. Combining Eqs. 15 and 17 gives 
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   Wörman (1989) investigated granular filters at bridge piers. Based on accepted theories he 
arrived at the following relation for one-single layer bed 
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   For nearly uniform-graded materials when db85/db50 = df50/df15 ≈ 1.25, nf = 0.4, and Δb = Δf, 
Eq. 19 can be rewritten as 
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      (20) 

   
   Figure 6 shows Wörman’s equation (Eq. 20), Eq. 18 as an envelop curve using χ = 0.3 and 
r0 = 0.25 as first approximations and experimental data from Van Huijstee and Verheij 
(1991), which all lie in the un- stable part of the diagram. The interesting section for 
designing and testing geometrically open filters in non-uniform flow is the stable part that 
lies above Wörman’s equation or above Eq. 18 and adjacent to the zone representing 
geometrically closed filters (df50/db50 = 25 or η = 0.04). 
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 Fig. 6   DF/df50 versus the critical [df50/db50]. In Eq. 18 χ = 0.3 
               and r0 = 0.25 are first estimations.  
 
 
6.  CONCLUSIONS 
 
   For horizontal geometrically open filters without bed turbulence, equations that are based 
on the Forchheimer and Chézy equations are deduced and validated using flume 
experiments. The best guess predictors, Eqs. 8 and 9, are valid for laminar and turbulent 
flow respectively. 
  For horizontal geometrically open filters in which open channel flow is considered a filter 
equation is derived which is based on the shear stress approach as proposed by Grass. The 
influence of both the thickness of the filter layer (Eq. 17) and grading effects of the filter and 
base materials have been shown qualitatively. Although Eqs. 15 and 18 are validated using 
uniform flow tests, no validation has been carried out for non-uniform flow conditions.  
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   Wörman’s equation is validated applying data from filter layers around bridge piers where 
the flow is highly turbulent. However, the horseshoe vortices and the Kármán vortex streets 
are not representative for all types of non-uniform flow.  
 
APPENDIX A 
The mean load at the interface of the filter-base layer and the mean bed shear stress are defined 
as 

 
2
*bfbf uρτ =    and   

2
*0 uρτ =                 (A1) 

 
For open channel flow, Chézy’s equation reads 
 

 000* 83.0/ UrCgUu ==                     (A2) 
 

In the present study, Eq. A2 is used to model the resistance in the filter layer as 
  

   ffffbf urCguu ,0* 83.0/ ==                (A3) 
 
Substitution of Eqs. A2 and A3 in A1 gives  
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Assuming that u* = uf , η is 
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