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Abstract 

Estimating bike trip times is becoming more and more important in many different areas such as urban mobility and 

route planning. However, especially in real-world, the GPS data used to generate these estimations is frequently noisy, 

irregularly sampled, or incomplete. With an emphasis on how these strategies interact with trip length and speed 

variance, this study intends to examine the effects of various data resampling techniques on the precision of bicycle 

travel time estimations. To analyze the impact of different preprocessing methods, we apply and assess a graph neural 

network model using various resampling techniques. Instinctively, the assumption that we expect to be concluded from 

this research is that there is no single resampling technique works well for every kind of trip. Rather, trip parameters 

like duration and speed fluctuation have a significant impact on accuracy. 

 

1 Introduction 
 

There are twice as many bicycles in the world than cars and it is currently estimated that about 

100 million bicycles are in use all around the world [Hosmer, 2025]. As amazing and interesting as 

this sounds, this also emphasizes the importance of smart city planning and sustainable mobility 

becoming more and more vital because more bicycles means cities manage more traffic and they 

have to ensure safety for cyclists in a safer manner. This also highlights how crucial the ability to 

accurately estimate the time it takes to ride a bicycle from one point to another really is. In contrast 

to motor vehicles, bicycles are usually utilized in a wider variety of unpredictable ways. For 

example, cyclists may take shortcuts, go on tight paths or paths not intended for bicycle use, stop 

frequently and even violate traffic regulations more frequently in comparison to motor vehicles. 

Apart from GPS devices such as trackers installed in the bicycles, this is the reason that the GPS 

data that records these trips is frequently noisy, erratic, or lacking in some areas. However, 

machine learning models for predicting trip times are frequently trained using this same noisy and 

irregular GPS data. 

 

Resampling, or changing the spacing of time or distance points to smooth out irregularities, is 

one of the first stages in producing such data. Although resampling is frequently used in general 

time series modeling, it is yet unknown how exactly it affects bicycle trip time estimation. Neural 

network-based methods for predicting bicycle trips using raw trajectory data have been studied in 

the past [Reggiani et al., 2020], frequently with encouraging outcomes. But few research have 

examined the impact of resampling options on model accuracy, and those that have tended to 

concentrate on data from cars or public transportation instead of cycling.  Nonetheless, a study that 

focuses more intently on resampling techniques in the medical area exists [Khushi et al., 2021]. 

Even though this study and the previously mentioned one are done in vastly different fields, the 

methods and techniques used could have a big overlap. 

 

This paper seeks to fill that gap by asking the following research question: 

 

What is the impact of data resampling on the accuracy of travel time estimations, 

particularly for trip length and speed variation? 
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We explore this through a set of sub-questions: 

 

How do different resampling methods (e.g., fixed interval, rolling average, interpolation) affect 

prediction accuracy? Are shorter or longer trips more sensitive to the resampling method used? 

How does variation in cycling speed affect the performance of models trained on resampled data? 

Is there a single resampling method that performs reliably across most trip types? 

 

In order to address these issues, we employ a graph neural network model architecture that 

takes into account both route structure and trip dynamics, using real-world GPS records gathered 

from bicycle excursions. This real-world dataset includes data collected via the SimRa project 

conducted in Germany, mainly concentrated around the city of Berlin. The plan is to investigate 

several resampling techniques, group the findings by trip duration, and speed variation before 

evaluating the results using RMSE, MAE, and MAPE. 

 

The main contributions intend to be: 

 

A systematic analysis of how data resampling affects model accuracy in bicycle trip time 

estimation. An evaluation of different resampling methods using a graph neural model that handles 

spatial road data. Insights on which strategies work best for different trip types, and practical 

guidelines for improving future mobility prediction models. 

 

2 Methodology 

 
 In order to answer the main research question of this project, the CSE3000-eta-bicycle codebase 

will be used and worked upon. The current codebase uses a graph neural network (GNN) to estimate 

bicycle travel time based on GPS data. The goal is to enhance this codebase to use of different data 

resampling methods on the GPS data and measure whether or not these methods will have a noticeable 

impact on the final travel time estimations. The different resampling methods include distance-based 

sampling, rolling averages, downsampling and Kalman filter smoothing. These methods will be 

applied to the data attained by the SimRa project in Germany, which includes records of unpredictable, 

noisy bicycle rides. The final goal of this project is the provide a clear and unique insight into how the 

early stages of data selection can affect the model outputs and to help future works in mobility research 

make better choices when making design decisions. 

 

 The trips from the dataset will be group based on overall trip length. The categories include short 

trips (less than 8 minutes), medium trips (8-16 minutes) and long trips (16+ minutes). The model will 

then be trained and evaluated for each trip group type using the standard error metric, which includes 

the mean absolute error (MAE), mean absolute percentage error (MAPE) and root mean square error 

(RMSE). Each of these metrics will provide an insightful idea into how each resampling method is 

interacting with each trip group type. The results will help show if performance changes based on these 

trip types or if there is one method that is best fit for every trip. Parameters such as the seed or batch 

size are to be kept the same for each method in order to isolate the effects of resampling to carry out a 

controlled study that focuses solely on the preprocessing step. 
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3 Literature Review 

 
  Estimating bicycles travel time is regarded as a challenging issue due to the variability and noise 

of the data. Bicyclists frequently use their bikes in unexpected ways, stopping more often than 

vehicles, taking shortcuts, and riding through parks or alleys. All of these events add up to a great deal 

of unpredictability to GPS data. Bikes frequently travel more flexible routes in comparison to cars or 

public transportation, which hold traffic rules and regulations to a higher degree of importance. Due to 

so many bikers using paths that they are not predicted to use, makes using GPS to estimate travel time 

even more difficult than it already is. 

 

  In the past, older models such as time-based regression or historical averages have been applied, 

however they are not effective enough at handling the kind of volatility or noise presented by this issue 

(Amini et al., 2016; Pan et al., 2012). Additionally, these models will often disregard the layout of the 

road network or variations in key variables such as speed along the trip. Research that is more recent 

improves accuracy through the use of machine learning. For predicting factors like trip length or speed 

on particular road types, random forests, gradient boosting and support vector machines have 

demonstrated superior results (Lin et al., 2018; Yan et al., 2020; Cheng et al., 2019). However, these 

models also do not take into consideration the spatial layout or interactions between different road 

segments, and they primarily treat trips as simple time series. 

 

  A more recent method that uses the real road layout is graph-based models. These models can 

deal with data structured as road networks using Graph Neural Networks (GNNs), where each node 

represents a segment and each edge illustrates the connections between segments (Yu et al., 2017; Chai 

et al., 2018). This increases the model's awareness of route structure and helps capture more realistic 

interactions, including slower speeds in turns or crossings. GNNs or graph-based variations such as 

TAGCN or STGCN have been used to bicycle systems in a number of articles. By learning from past 

GPS traces and connecting them to road segments, these models, which were frequently first employed 

for demand estimation, have been modified to estimate time and speed (Zi et al., 2021; He & Shin, 

2020). Before entering such models, noisy travel data is additionally cleaned up using Kalman filters 

and other smoothing methods (Huang et al., 2022). 

 

 What is missing in most of the current research is a detailed look at how preprocessing affects 

these predictions. Many works use raw or smoothed data without comparing the impact of different 

resampling or filtering methods. Since trip time predictions depend a lot on clean and structured input, 

this paper focuses on that early stage, resampling, and how it affects GNN-based predictions of bicycle 

trip time. 
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4 Analysis of Segment-Level Resampling Effects 

 
 This section provides a more detailed look into each resampling technique, including how it is 

used in the project, how does the data changes, how this affects the performance and how this impacts 

the graph neural network's input. The techniques used in the project focus on transforming unprocessed 

trip data before it is being used in training. The resampling techniques being used are: rolling average, 

downsampling, fixed distance sampling, and Kalman filter smoothing. Although the resampling 

methods are applied to raw GPS traces (a series of location points over time), they affect the processed 

data that the model uses — like the speed, distance, or timing linked to each road segment the cyclist 

traveled on. 

 

 The value and the order of features such as speed, distance traveled or the percentage of the trip 

that was finished are changed with each different resampling technique. Below is a more detailed 

description of each resampling method: 

 

 Default (None): No changes are made to the original GPS data. This specific model uses the raw 

data as-is and it acts as a baseline and provides the original, unprocessed values. 

 Downsampling: First, map matching is performed to determine which road segments the chosen 

GPS points correspond to. Then, every fifth point in the GPS trace is kept and the rest of the 

GPS points are discarded. Therefore, if a trip had 100 points, only 20 would remain. This 

significantly reduces the data volume and shortens the training time, but it comes at the cost 

of losing the fine-grained motion patterns. 

 Rolling Average: Each speed value is smoothened by averaging the speed value with nearby 

values using a rolling window (e.g., 5 points wide). For example, if a speed-reading suddenly 

jumps from 10 to 30 then back down to 12 km/h, this method will replace those values with 

something more stable like 16, 22, 23, 20, and 18. This helps reduce spikes and drops due to 

noise, but it might come at a cost of hiding real variability. 

 Kalman Smoothing: Kalman smoothing uses a mathematical model to guess what the "true" 

values of the data (like speed or distance) should be. It does this by treating GPS readings as 

noisy guesses rather than perfect truths. The method assumes that each GPS point might have 

some error. It also assumes that the actual path of the vehicle changes gradually and that 

future and past points can help improve each estimate. This method works in two steps, 

predict and update. The predict part makes a guess about the next value based on the current 

trend (e.g., continuing at the same speed) and then the update part adjusts that guess based on 

the actual GPS reading, using a balance between trusting the data and trusting the trend. This 

process is repeated for all points, resulting in a version of the trip that is smoother, less noisy, 

and often closer to the true motion of the vehicle. Kalman smoothing is more powerful than a 

simple average, especially when the GPS data is inconsistent. However, it is also more 

complex to run and can fail if the trip is too short or the input is too messy. 

 Fixed Distance Sampling: Points are kept at a fixed spatial interval (e.g., every 50 meters). A 

new point is kept every fixed number of meters (e.g., every 10 or 50 meters), regardless of the 

time it was recorded. This works well for regular-speed trips and keeps the spacing between 

data points physically meaningful. This aligns well with physical movement, especially for 

consistent-speed trips, but can underrepresent areas with complex changes. 
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 The pipeline was set up so that the preprocessing step was the only thing that varied between 

tests and it was done before the training stage. In reality, this indicates that the resampling technique 

was used immediately following the loading of the unprocessed GPS trajectory data, but prior to 

building the representation of the road segments. Following resampling, segment-level variables like 

average speed, travel distance, and time-to-go were recovered after the data was mapped to fixed road 

segments using a spatial matching procedure. The graph inputs were then constructed using these. The 

graph structure remained unchanged. In other words, the nodes (road segments) and the connections 

between them were constant throughout the studies. Depending on how the resampling technique had 

affected the underlying trip data, the only thing that changed were the feature values linked to each 

node. The anticipated result would be that different trip types—such as short versus lengthy travels or 

trips with greater speed fluctuation—would react differently to these changes. Longer trips may benefit 

from smoothing by preventing overfitting to local abnormalities, whereas short trips may be more 

susceptible to downsampling because there are fewer data points available initially. This hypothesis is 

tested on a variety of real-world travels in the evaluation that is detailed in the following section. 

 

5 Evaluation Setup and Results 

 
 The evaluation is performed based on the real-world cycling data collected through the SimRa 

project in Germany. This dataset contains GPS data of bicycle trips recorded in mostly urban 

environments, including information such as timestamped locations, speed, and distance. The data is 

known to be noisy and unevenly sampled, which makes it a good fit for studying the effects of 

different resampling methods. Each resampling technique was performed separately and used the same 

exact graph neural network design for all of its runs in order to assess how resampling affected 

prediction accuracy without changing the randomness of the seed. To prevent data bias, the dataset was 

divided into training, validation, and testing sets using fixed route identifiers. The resampling 

technique used on the input trip data was the only thing we altered between runs. 

 

 The three trip categories used include: short which is less than eight minutes long, medium which 

is eight to sixteen minutes long, and long trips which are more than sixteen minutes long. The model 

was then trained and evaluated independently for every trip length. This evaluation includes the use of 

the previously mentioned performance metrics of MAPE, MAE and RMSE. In Table 1. we can see the 

exact values and results of the evaluation for each trip type per each resampling method. 
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Table 1. Table of performance metrics by resampling method for short trips 

Resampling Method RMSE MAE MAPE 

Default 68.77 50.79 36.89 

Downsampling 70.72 53.78 43.50 

Rolling Average 59.65 44.46 32.23 

Kalman 60.89 44.88 29.31 

Fixed Distance 76.24 56.52 36.59 

 

Table 2. Table of performance metrics by resampling method for medium trips 

Resampling Method RMSE MAE MAPE 

Default 107.05 73.55 16.11 

Downsampling 111.44 75.37 17.05 

Rolling Average 99.64 67.47 15.13 

Kalman 96.45 62.13 14.12 

Fixed Distance 107.06 78.37 17.76 

 

Table 3. Table of performance metrics by resampling method for long trips 

Resampling Method RMSE MAE MAPE 

Default 694.14 215.89 14.99 

Downsampling 719.34 226.00 15.36 

Rolling Average 681.71 207.43 14.50 

Kalman 665.56 216.21 15.06 

Fixed Distance 669.21 237.92 17.11 

 

Table 4. Table of performance metrics by resampling method for overall trips 

Resampling Method RMSE MAE MAPE 

Default 529.02 151.88 19.16 

Downsampling 541.19 155.94 20.32 

Rolling Average 512.39 141.86 17.50 

Kalman 500.26 145.31 17.06 

Fixed Distance 503.90 163.87 20.39 

 

Table 5. Table of time performance for each resampling method 

Resampling method Epoch Time per Epoch (s) Total Time (s) 

Default 49 28.04 1373.96 

Downsampling 25 10.53 263.25 

Rolling Average 21 26.16 549.36 

Kalman 10 43.16 431.60 

Fixed Distance 19 9.53 181.07 
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Figure 1. Short trip performance metrics 

 
 

Figure 2. Medium trip performance metrics 
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Figure 3. Long trip performance metrics 

 
 

Figure 4. Overall trip performance metrics 
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Figure 5. Variation in predication error per trip 

 
 

  Several significant trends can be extrapolated from the figures and tables presented. Most 

notably, during long trips, all approaches tend to yield more significant error value. This is rather 

expected since longer trips inherently involve greater fluctuations in speed, road conditions, and GPS 

irregularities, making precise estimation more challenging. Going in depth for each technique reveals 

the following: 

 

 The downsampling technique performs the worst for short and medium trips, as shown in Figure 

1 and Figure 2. This is most likely due to the fact that deleting GPS locations removes important 

information, especially for shorter trips. Using every fifth or tenth GPS point can drastically distort the 

shape of already short trips, leading to higher RMSE, MAE, and especially MAPE values. In contrast, 

Figure 1 also shows that rolling average performs better in these shorter trips, with lower MAE and 

MAPE than downsampling. This is likely because it smooths out sudden changes while still preserving 

enough detail. Kalman smoothing, visible in all three figures, lands somewhere in the middle. It 

balances noise reduction with maintaining data integrity, but still introduces slight bias, especially in 

longer trips as seen in Figure 3. Fixed distance resampling shows major issues in short trips (Figure 1), 

with the highest RMSE and MAE. This might be due to poor alignment of resampled points in very 

short trajectories. Surprisingly, not applying any resampling method, referred to as the default method, 

does not perform best overall. It ranks slightly below downsampling in most cases, which may indicate 

that while raw GPS data can be useful, minimal resampling still helps improve model performance 

slightly. 
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  Figure 5. shows a box plot comparing the distribution of Mean Absolute Error (MAE) values 

across individual trips for each resampling method. Unlike the bar plots which show average error 

values, this visualization gives us a better insight into the consistency and spread of the predictions. 

The middle line in each box shows the typical median error for that method, whilst the edges of the 

box and the lines or whiskers show how spread out the errors are. These dots represent individual trips 

that had unusually high or low errors. 

 

  By looking at this boxplots, it is clear that rolling average and kalman smoothening both stand 

out with lower median errors and tighter spreads, meaning they make more stable predictions across 

different trips. Downsampling performs slightly worse in terms of both error size and spread, but it still 

outperforms fixed distance, which shows the widest spread and some high-error outliers. Default sits 

between downsampling and rolling average. Although its average MAE is close to downsampling, the 

wider spread shows that it is less reliable on certain trips. This highlights the benefit of applying a 

resampling technique even if the improvement in average error seems small. 

 

 As for table 5. it reveals the trade-off between training time and model accuracy. The 

downsampling and fixed distance methods significantly reduced the training time due to fewer data 

points being used in the model training, but they often led to error values that are more significant. 

Reversely, the Kalman smoothing and rolling average methods had longer training time durations, but 

in certain cases produced more stable learning. 

 

 From these results, it can be said that across all trip types, no particular resampling technique 

performed better than the others for all trips and cases. For instance, by smoothing out unpredictable 

numbers, rolling average enhanced speed on longer flights, but it reduced accuracy on shorter trips by 

erasing information. However, downsampling decreased training time and noise, but it also decreased 

accuracy for trips with a lot of transitions. Although Kalman smoothing increased average accuracy, it 

occasionally caused bias in areas with large volatility. 
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6 Conclusion 

 
  This study focused on the impact of data resampling methods on the accuracy of bicycle travel 

time predictions. The main research question was: 

 

What is the impact of data resampling on the accuracy of travel time estimations, particularly 

for trip length and speed variation? 

 

 In order to find the answer to this question, we trained a graph neural network (GNN) model on 

each version of a real-world GPS dataset of bicycle trips using a variety of different resampling 

techniques. These techniques include: downsampling, rolling average, Kalman smoothing, and fixed 

distance resampling. The original raw GPS data was used to compare these resampling techniques to a 

baseline. The findings demonstrate that no single resampling technique works optimally for all kinds of 

trips. For lengthy trips where noise reduction helps with modeling broad patterns, certain techniques, 

like rolling average and Kalman smoothing, performed better. However, in shorter travels, these same 

techniques frequently eliminated valuable variety, which decreased accuracy. On the other hand, 

unprocessed, raw data yielded very powerful results, particularly for short and medium-distance travel. 

 

 One of the key contributions of this work is demonstrating how resampling alters the model's 

input features and impacts its performance over a range of trip lengths. The results indicate that trip 

characteristics should be taken into account when selecting a preprocessing approach and that 

resampling should not be used carelessly. This work also serves as a door leading to future research, 

which can go in a number of ways. Firstly, more sophisticated filtering techniques such as data-driven 

resampling algorithms or adaptive smoothing could be investigated. Secondly, it could be preferable to 

dynamically select the resampling method based on trip characteristics like duration, speed variance, or 

stop frequency rather than applying a single method to all data. Finally, only prediction accuracy is 

examined in this evaluation; robustness to noise, model interpretability, or training efficiency may be 

included in subsequent research. 

 

 In conclusion, this study emphasizes the necessity for more focused preprocessing techniques in 

bicycle travel time estimation, but also mobility prediction tasks as a whole. It demonstrated that 

choosing the proper preprocessing method has a discernible and noticeable effect on model 

performance. 
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