
Conflict-Free Replicated
Probabilistic Filter

Junbo Xiong

Conflict-Free Replicated
Probabilistic Filter

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Junbo Xiong

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
ewi.tudelft.nl

ewi.tudelft.nl

©2024 Junbo Xiong. All rights reserved.

Conflict-Free Replicated
Probabilistic Filter

Author: Junbo Xiong
Student id: 5689937

Abstract

Conflict-free replicated data types (CRDTs) offer high-availability low-latency up-
dates to data without the need for central coordination. Despite the current vast collec-
tion of CRDTs, few works have been done on maintaining probabilistic membership
information using CRDTs. In this thesis, we fill the gap by proposing conflict-free
replicated probabilistic filters (CRPFs). The CRPFs provide probabilistic guarantees
similar to that of the Bloom filter and the cuckoo filter, and allow for concurrent up-
dates implementing grow-only and observed-remove semantics. We check their cor-
rectness by both paper proof and software verification. Our experiments demonstrate
the performance of CRPFs in real-world settings regarding the empirical false positive
rate and memory consumption.

Thesis Committee:

Chair: Prof. Dr. Arie van Deursen, Faculty EEMCS, TU Delft
University supervisor: Dr. Burcu Özkan, Faculty EEMCS, TU Delft
Committee Member: Dr. Jérémie Decouchant, Faculty EEMCS, TU Delft

Ege Berkay Gülcan, Faculty EEMCS, TU Delft

Preface

I’d like to thank Burcu Kulahcioglu Ozkan and Ege Berkay Gulcan for their invaluable
guidance throughout the thesis project. I am also grateful to my family and friends for their
constant help and support.

Junbo Xiong
Delft, the Netherlands

September 1, 2024

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1
1.1 Research Questions . 2
1.2 Contributions . 2
1.3 Thesis Outline . 2

2 Background 3
2.1 Conflict-Free Replicated Data Types . 3
2.2 Probabilistic Filters . 4

3 Specification 9
3.1 System Model . 9
3.2 Grow-Only Bloom Filter . 10
3.3 Grow-Only Cuckoo Filter . 12
3.4 Observed-Remove Cuckoo Filter . 17
3.5 Scalable Filter Series . 23

4 Verification 29
4.1 Preliminaries . 29
4.2 Proof Sketch . 30
4.3 Verifying with VeriFx . 33

5 Implementation 35
5.1 Immutable and Mutable Variants . 35
5.2 Hash Functions Used . 35
5.3 Encoding of Cuckoo Entries . 35

v

CONTENTS

6 Evaluation 37
6.1 General Experiment Setup . 37
6.2 Empirical False Positive Rate . 38
6.3 Memory Consumption . 40

7 Related Work 43

8 Conclusion 45
8.1 Conclusions . 45
8.2 Future Work . 46

Bibliography 47

vi

List of Figures

3.1 An example of merging two GBFs . 11
3.2 An example of merging two GCFs . 16
3.3 An example of merging two ORCFs . 20
3.4 Scenarios where remove affects the probabilistic characteristics of the ORCF . 22
3.5 An example of merging two SFSes . 25

6.1 Effect of workload distribution and sync frequency on empirical FPR 39

vii

Chapter 1

Introduction

Membership queries answer the existence of a particular element in a dataset. Many prac-
tical problems can be seen as membership queries, such as identifying whether a URL is
marked malicious and checking if a username has already been taken. However, in the set-
ting of distributed systems, datasets are usually massive and partitioned. Lookup operations
on them are generally slow due to costly disk IOs and network requests. Therefore, precise
membership queries are sometimes undesirable.

An alternative approach is introducing approximate membership queries (AMQs) [19].
Here, approximate indicates that such queries return true for non-existing elements with a
certain probability, the false positive rate (FPR). Meanwhile, false negatives are not allowed.
Backed by probabilistic filters like the Bloom filter [6], AMQs are typically efficient in both
space and time since the filters store compacted information about original datasets into
memory and perform queries thereof. Unnecessary lookup operations can be filtered out
by conducting approximate queries first and following up with precise ones only when
the former responds with true. In some use cases, false positive results themselves are
accepted, and AMQs can replace the original queries directly.

To support AMQs on distributed data, previous works suggest merging Bloom fil-
ters [42, 24]. However, these works regard filters as static representations of local data
rather than dynamic data structures that can be actively updated in a distributed manner.
For instance, they fail to address the resolution of concurrent updates to the original data.
A potential solution is to handle those updates locally before broadcasting them to other
replicas. According to the CAP theorem [9, 20], the lower demand on consistency offers
higher availability as well as partition tolerance.

Conflict-free replicated data types (CRDTs) [38] are special data structures that allow
concurrent updates across distributed replicas without requiring any central coordination.
CRDTs provide eventual consistency [39], which guarantees that updates, even if conflict-
ing, can be merged so that all replicas will eventually converge on equivalent states once all
updates are delivered to all replicas. In spite of the extensive array of existing CRDTs, there
are currently no CRDT versions of probabilistic filters yet.

In this thesis, we try to explore probabilistic filters within the CRDT framework. We
propose novel conflict-free replicated probabilistic filters (CRPFs) for solving AMQ prob-
lems in distributed systems. We aim to maintain a distributed probabilistic guarantee where

1

1. INTRODUCTION

membership queries can yield a bounded probability of false positives but never false neg-
atives. The CRPFs are capable of handling concurrent updates of elements. We focus on
two popular types of filters, the Bloom filter and the cuckoo filter, and two concurrency
semantics, grow-only and observed-remove. We believe that these conflict-free replicated
probabilistic filters will enrich the current CRDT landscape.

1.1 Research Questions

The research questions to be explored are:

• RQ 1: What operations does CRPF support?

– RQ 1.1: What operations make CRPF a probabilistic filter?

– RQ 1.2: What operations make CRPF a CRDT?

– RQ 1.3: How is the design verified?

• RQ 2: What are the false positive rate and false negative rate of CRPF?

• RQ 3: How does CRPF perform empirically?

– RQ 3.1: How is the empirical false positive rate?

– RQ 3.2: How is the memory consumption?

1.2 Contributions

The contributions of this thesis are listed below.

1. Specifications of 6 conflict-free replicated probabilistic filters.

2. An analysis of false positive rate, both theoretical and empirical.

3. An open-source implementation of CRPFs and the verification process.

1.3 Thesis Outline

The thesis is structured as follows. Chapter 2 presents some background information on
CRDTs and probabilistic filters. In Chapter 3, we propose the specifications of our CRPFs.
We explain how we verify their correctness in Chapter 4 and how we implement them in
Chapter 5. Chapter 6 shows the experiment results and our analyses. Chapter 7 covers some
relevant literature.

2

Chapter 2

Background

This chapter explains the two central concepts in this thesis: conflict-free replicated data
types and probabilistic filters.

2.1 Conflict-Free Replicated Data Types

Conflict-free Replicated Data Types (CRDTs) [38, 39] are a group of data structures that
allow for concurrent updates in distributed systems without central coordination. Potential
conflicts introduced by the updates are resolved automatically so that strong eventual con-
sistency is guaranteed. With this consistency model, all replicas reach equivalent states if
receiving the same updates [39]. Current CRDT implementations encompass a wide range
of data types, including registers [38], counters [38], sets [38, 4], graphs [38], trees [32],
ordered sequences [36], maps [11], priority queues [44], HyperLogLog [35], and JSON doc-
uments [27]. In the following subsections, we describe approaches to replicating CRDTs
and strategies to make them conflict-free.

2.1.1 Replication Model

[39] introduces two approaches to modelling CRDT: state-based and operation-based. The
state-based approach formalises CRDT as join semilattice [5]. The states of a state-based
CRDT take their values from the lattice and are periodically propagated to other replicas.
The recipients then merge the received states with their own ones, which is defined to give
the least upper bound of the states. The states are updated by mutator operations. Every
mutator operation executes locally and transforms the input state into a greater one. This
way, the states evolve monotonically and converge towards the upper bound. State-based
CRDTs do not require a highly reliable network, thanks to the properties of the least upper
bound [39]. The states can be delivered more than once, in any order, or even indirectly
through other states.

The operation-based model views CRDT as the effect of a sequence of operations. Op-
based CRDTs broadcast operations through a reliable channel that guarantees exactly-once
casual delivery, different from state-based ones that send the entire state. The operations are
then applied to local states of the replicas to produce new states as effects. [39] shows that

3

2. BACKGROUND

if all concurrent operations commute, operation-based CRDTs will eventually converge.
Despite their differences, the two models above are equivalent in semantics. One model can
be emulated using the other.

2.1.2 Conflict Resolution Strategy

Several strategies have been proposed to resolve conflicting operations in CRDTs like con-
current add and remove of the same element. These strategies are implemented as various
merge functions in state-based CRDTs or as effect phases in operation-based CRDTs.

A trivial strategy is grow-only, which allows only a single type of monotonic mutation
and therefore avoids conflicts from the beginning. For example, a grow-only set [38] sup-
ports only element addition, and a grow-only counter [38] can only be increased. Since
the state grows monotonically, concurrent operations are directly aggregated by taking the
maximum, and no conflict will occur.

To support both adding and removing elements from a CRDT collection, [38] presents
a strategy called observed-remove. Like its name suggests, when an add conflicts with a
remove, add will take effect unless remove observes it. The observe here means that the
remove happens-after the add in the causal history. This strategy is also known as add-
wins since concurrent adds win against removes. Similarly, there is also the remove-wins
strategy [4], which lets concurrent removes take precedence over adds.

Another choice of arbitrating between conflicting operations is by comparing their
timestamps [29]. In the last-writer-wins strategy [38], operations are associated with unique
timestamps to form a total order so that the last operation according to this order determines
the final state.

Specific data types can implement their dedicated ways to resolve conflicts. For exam-
ple, multi-value register [38] keeps all the results of concurrent updates, which can then
be reduced into one single value through a subsequent assignment. [27] designs a CRDT
for JSON documents using a strategy aiming at preserving user input, even for concurrent
modifications in different levels of the document tree.

2.2 Probabilistic Filters

A probabilistic filter is an approximate but compact representation of a set. Compared to
ordinary sets that answer membership queries accurately, probabilistic filters have long been
the solution to approximate membership problems [16, 19]. In this section, we describe two
popular types of probabilistic filters and a technique that allows for unbounded capacity.

2.2.1 Bloom Filter

The Bloom filter [6] uses an array of m bits to represent the elements of a dataset. Initially,
all bits are 0. When an element e is added, it is first hashed by k independent hash functions

4

2.2. Probabilistic Filters

h1,h2, · · · ,hk to calculate indexes in the array:

i1 = h1(e),

i2 = h2(e),
...

ik = hk(e).

(2.1)

The bits in those indexes are then set to 1. Querying the membership status of a certain
element follows a similar procedure by examining whether all the corresponding bits are
1. If so, the Bloom filter reports that the element belongs to the dataset. Otherwise, the
element is not part of the dataset.

Since all relevant bits are set and removal is not supported, there is no false negative in
the standard Bloom filter. False positive, on the other hand, is possible because a bit can be
set by any other elements. After adding n elements, the false positive rate is [6]:

ε =

[
1− (1− 1

m
)kn

]k

≈ (1− e−kn/m)k. (2.2)

Given this formula, one can construct a Bloom filter with an expected FPR ε and capacity
n. The optimal number of bits mopt and number of hash functions kopt are the values that
minimise FPR [19]:

mopt =
−n lnε

(ln2)2 , (2.3)

kopt =
− lnε

ln2
. (2.4)

2.2.2 Cuckoo Filter

Unlike the Bloom filter that uses indexes in a bit array to record elements, the cuckoo
filter [17] stores elements as fingerprints. It comprises an array of m buckets, and each
bucket contains c slots for the fingerprints. The fingerprint f of an element is a short bit
sequence of length l generated by a fingerprint function:

f = hF(e). (2.5)

The cuckoo filter adopts a partial-key cuckoo hashing algorithm [17] for locating the finger-
print of an element. It maps an element to two possible candidate buckets. One candidate
index i1 is calculated by an index hash function:

i1 = hI(e); (2.6)

the other index i2 results from:

i2 = altIndexOf(i1, f). (2.7)

5

2. BACKGROUND

The function altIndexOf is an involution given fingerprint f satisfying:

altIndexOf(altIndexOf(i, f), f)≡ i, (2.8)

so that i1 can be derived from i2 and vice versa. The authors of the original cuckoo filter
paper propose an involution based on bit-wise XOR [17]:

altIndexOf(i, f) = i⊕hI(f), (2.9)

yet other implementations are also possible, for instance, one utilising (modular) reflec-
tion [25].

Based on such an algorithm, an element can be added by storing its fingerprint f in
either of its candidate buckets that has available slots. If all of the slots are occupied,
a random fingerprint will be evicted from those slots and f takes its place. The victim
fingerprint is then displaced to its alternative bucket, where the above operations repeat
until a slot is found or a maximal number of iterations is reached. Since any element will
end up being a fingerprint in its candidate buckets, element removal and membership query
are straightforward. The former boils down to removing one instance of the fingerprint (if
any), and the latter is equivalent to checking the existence of the fingerprint.

Due to hash collisions in fingerprint and bucket indexes, membership queries with the
cuckoo filter do have false positives. The upper bound of FPR is given by [17]:

ε = 1− (1− 1
2l)

2c ≈ 2c
2l . (2.10)

Moreover, false negatives are not possible in the cuckoo filter if all removal operations are
“safe”. That is, removal should only be called with previously added elements [17].

2.2.3 Scalability

Both the Bloom filter and the cuckoo filter have a fixed limit upon the number of elements
they can hold. Such capacity is a parameter that needs to be specified at initialisation. If
more elements are added to the Bloom filter, its FPR will deteriorate according to Equa-
tion 2.2. The cuckoo filter will run out of its slots in such cases. To allow probabilistic
filters to handle additions more than the original estimation, [1] proposes scalable Bloom
filter. It uses a series of normal Bloom filters as sub-filters, and membership queries are del-
egated to these sub-filters. Despite that the authors only apply the technique to the Bloom
filter, we argue that the principle is independent of specific filters and can be extended to
others.

The scalable filter offers a bounded compounded FPR. Denote the FPR of the first sub-
filter as ε0. The FPR of the i-th sub-filter equals that of its predecessor times a tightening
ratio q:

εi = ε0qi. (2.11)

The ratio q is a value between 0 and 1. A typical choice is q = 0.5 [1]. For a scalable
filter containing w such sub-filters, the compounded FPR is thus the sum of a geometric

6

2.2. Probabilistic Filters

series [1]:

ε = 1−
w−1

∏
i=0

(1− ε0qi)≤ ε0

1−q
= 2ε0 . (2.12)

Therefore, by building the first sub-filter with an FPR half of the expected compounded
value ε , we can construct a scalable filter whose final FPR is bounded by ε .

Using Equation 2.3 and Equation 2.4, a Bloom filter can be created given the expected
FPR as a sub-filter. To halve the FPR of a cuckoo filter, one additional bit is allocated for
the fingerprint.

7

Chapter 3

Specification

This chapter describes the specifications of our conflict-free replicated probabilistic filters
(CRPFs). We first discuss the system model in Section 3.1 and then introduce the new
CRDTs in the following sections. We aim to show in detail what operations the CRPFs
need to support and analyse their probabilistic characteristics.

3.1 System Model

We adopt a system model similar to that in standard CRDT settings [38]. The distributed
system is formed from a number of replicas connected by an asynchronous network. Each
replica hosts one instance of the CRDT and is assigned a unique ID. It may crash but will
eventually recover without corrupting its state. The network may also crash, lead to par-
tition, but will eventually recover. We do not impose special restrictions on the network;
messages may be delivered more than once and/or out of order. The only requirement is that
they should eventually arrive at their recipients. Malicious behaviour and Byzantine faults
are beyond the scope of the thesis. Note that there is no central server in the network, and
all replicas operate without any global coordination among them.

In this system, we expect to maintain a distributed probabilistic guarantee of member-
ship status. The result of a membership query may be false positive but should never be
false negative.

We use the state-based approach [38] for specifying our CRPFs. Specification 1 outlines
a common interface of CRPF. We use the keyword payload to declare the state at each
replica and supply it with the initial value specified by initial. A query is a purely local
procedure that outputs a result without modifying the state. CRPF only has one query named
contains that checks whether an element is likely to be a member of the filter. An update first
changes the state at the source replica and then broadcasts the updated state asynchronously.
Note that, for clarity, we assume all types to be immutable in the specifications, though they
can be implemented otherwise. Every “mutation” returns a new instance rather than directly
mutating the old one in place. Hence, the return type of every update is the payload type.
There are two updates in CRPF, one for adding an element and the other for removing if
supported.

9

3. SPECIFICATION

Specification 1: Common interface representing state-based CRPF

1 payload payload name: payload type
2 initial initial value of payload
3 query contains(e: element type): bool
4 update add(e: element type): payload type
5 update remove(e: element type): payload type // Not all filters need to

support removal.
6 compare (other: payload type): bool
7 merge (other: payload type): payload type

The function compare defines a partial order of the states. It returns true if the state of
the current replica is partially less than or equal to other and false otherwise. Meanwhile,
merge yields the least upper bound of the current state and other given the partial order.
In practice, merge is called when a message (i.e. state) is received, while compare is never
actively invoked.

3.2 Grow-Only Bloom Filter

We propose our conflict-free replicated Bloom filter design: the grow-only Bloom filter,
abbreviated as GBF. Since it supports only adding elements, we base our design on the
grow-only set (GSet) [38]. Specification 2 represents a state-based grow-only Bloom filter
consists of an m-bit bit array and k hash functions {hi}k

i=1. We model the bit array as a
conceptual set of active indexes. Initially, all bits are set to 0, hence the empty set.

3.2.1 Supported Operations

Query and update operations in the GBF are the same as the corresponding ones in the
conventional Bloom filter. The addition of an element e is equivalent to a set union of the
current state and the corresponding set of hash indexes of e calculated using {hi(e)}k

i=1. If
the set is the subset of the current state, e is considered to be contained by the filter.

3.2.2 State Convergence

Likewise, the set union of the states of two GBFs yields their merged state, given that the
partial ≤ relation is defined as a set inclusion relation. Figure 3.1 illustrates a simple case
of adding elements and merging states of two GBFs each having two hash functions. In this
example, the merged state contains all active indexes introduced by e1 and e2. As a result,
membership queries about both elements yield true.

3.2.3 Probabilistic Characteristics

The false positive rate of the standard Bloom filter, shown in Equation 2.2, depends on the
number of bits m, the number of hash functions k, and the number of inserted elements.

10

3.2. Grow-Only Bloom Filter

Specification 2: State-based grow-only Bloom filter

1 payload S: set⟨index⟩
2 initial S←∅
3 query contains(e):
4 return {hi(e)}k

i=1 ⊆ S
5 end
6 update add(e):
7 return {hi(e)}k

i=1∪S
8 end
9 compare (S′):

10 return S⊆ S′

11 end
12 merge (S′):
13 return S∪S′

14 end

∅ ∅
S S′

{1,2} {2,4}

{1,2,4} {1,2,4}
contains(e1) = true
contains(e2) = true

contains(e1) = true
contains(e2) = true

add(e1) add(e2)

merge(S′) merge(S)

Figure 3.1: An example of merging two GBFs. In this example, e1 is hashed to {1,2} and
e2 to {2,4}. The merged states contain both elements.

11

3. SPECIFICATION

As for our grow-only Bloom filter, the difference in the formula for FPR only lies in the
last parameter since m and k are identical for all replicas and the hashing procedure is not
modified. In GBF, the total number of insertions that happen-before the query is used. We
denote the sum as ∑n. The false positive rate ε is thus bounded by:

ε =

[
1− (1− 1

m
)k ∑n

]k

≈ (1− e−k(∑n)/m)k. (3.1)

The false negative rate is zero, identical to the standard Bloom filter. GBF offers a proba-
bilistic guarantee similar to its conventional counterpart and is therefore suitable for direct
substitution.

3.3 Grow-Only Cuckoo Filter

As an alternative to the Bloom filter, we put forward a cuckoo filter implementing the grow-
only strategy, the grow-only cuckoo filter (GCF), by augmenting the grow-only set [38].
We elaborate in the following paragraphs Specification 3, the specification of a state-based
grow-only cuckoo filter having m buckets, each expected to store no more than c finger-
prints.

Similar to the conventional cuckoo filter, our grow-only cuckoo filter holds a cuckoo
hash table that is represented as a set of pairs of integers in the specification. The pair (i, f)
denotes an entry of fingerprint f in the i-th bucket. The precise slot is irrelevant since they
are all homogeneous. The algorithms for calculating the fingerprint and bucket indexes
are all identical to those of the standard cuckoo filter, which are defined in Equation 2.5,
Equation 2.6, and Equation 2.7.

A major difference is that the capacity c of a bucket is a hard limit in the standard cuckoo
filter, whereas it becomes a soft one in the grow-only cuckoo filter. This is because a bucket
may contain more entries than expected in GCF. A bucket containing exactly c entries is
considered full. It is regarded as overflowing if more entries are inserted. We delay the
reason for allowing overflowing until Subsection 3.3.2. Regarding the implementation, an
array is used to store the regular entries, and a map is added to accommodate the overflowing
parts.

3.3.1 Supported Operations

Both of its candidate buckets are inspected to query the existence of an element e. If either
one contains its fingerprint, a positive result is returned. This step is crucial before inserting
fingerprints into the table to avoid duplicated entries. The element will only be added if it
has not been contained yet.

Due to the difference in bucket capacity constraint, GCF adopts an alternative approach
to adding elements. Algorithm 1 defines cuckooInsert, a novel function for inserting entries
into a cuckoo hash table that takes into account overflowing buckets. The initial steps do
not vary greatly, in which both candidate buckets are examined for available slots. The one
that has empty slots is preferred. Otherwise, a random bucket is chosen. Then, it tries to
insert the entry into the chosen bucket.

12

3.3. Grow-Only Cuckoo Filter

The following steps in cuckooInsertImpl form a repeating procedure that moves entries
around to accommodate the newly inserted one. If the current bucket is not full, the entry
is inserted into an available slot there, and the procedure completes successfully. If the
bucket is just full, the entry replaces a random one in the bucket, and then the victim en-
try continues with cuckooInsertImpl in its alternative bucket. If the bucket is overflowing,
the algorithm first tries “smoothing out” the excess entries by displacing them. Then, the
remaining quotas for iterations are spent on inserting the original entry. cuckooInsertImpl
aborts if it runs out of quota, which ensures that the process terminates within a reasonable
amount of time. In this way, we make sure that no overflowing bucket is introduced due to
local adds and prevent accumulating even more entries in existing ones. Furthermore, the
algorithm redistributes the entries on the fly and rebalances the cuckoo hash table, which is
expected to improve the load factor.

Specification 3: State-based grow-only cuckoo filter

1 payload S: set⟨index × fingerprint⟩
2 initial S←∅
3 query contains(e):
4 f ← hF(e)
5 i1← hI(e)
6 i2← altIndexOf (i1, f)
7 return (i1, f) ∈ S ∨ (i2, f) ∈ S
8 end
9 update add(e):

10 if contains(e) then
11 return S
12 end
13 f ← hF(e)
14 i1← hI(e)
15 return cuckooInsert(S, i1, f) // No auxiliary data is needed in GCF.

16 end
17 compare (S′):
18 D←{(altIndexOf (i, f), f) | (i, f) ∈ S} // The dual set
19 D′←{(altIndexOf (i, f), f) | (i, f) ∈ S′}
20 return (S∪D)⊆ (S′∪D′)
21 end
22 merge (S′):
23 D←{(altIndexOf (i, f), f) | (i, f) ∈ S}
24 return S∪ (S′ \D)

25 end

13

3. SPECIFICATION

Algorithm 1: Static function that insert into the bucket at index i1 of state S an
entry made up of fingerprint f and optional auxiliary data x

1 def cuckooInsert(S, i1, (f , x)):
2 i2← altIndexOf (i1, f)
3 B1←{(i1, f ′,x′) ∈ S}
4 B2←{(i2, f ′,x′) ∈ S}
5 if |B1|< c ∧ |B2| ≥ c then
6 i← i1
7 else if |B2|< c ∧ |B1| ≥ c then
8 i← i2
9 else

10 i← randomChoose({i1, i2})
11 end
12 a← quota for iteration
13 (S′,)← cuckooInsertImpl(S, i, (f ,x), a)
14 return S′

15 end
16 def cuckooInsertImpl(S, i, (f , x), a):
17 if a < 0 then
18 throw “maximum number of iterations is reached”
19 end
20 B←{(f ′,x′) | (i, f ′,x′) ∈ S}
21 if |B|< c then
22 // Insert into an available slot directly
23 return S∪{(i, f ,x)}, a
24 else if |B|= c then
25 // Displace a random entry and shift it to its alt bucket
26 (f ′,x′)← randomChoose(B)
27 S′← S\{(i, f ′,x′)}∪{(i, f ,x)}
28 i′← altIndexOf (i, f ′)
29 return cuckooInsertImpl(S′, i′, (f ′,x′), a−1)
30 else
31 // Evict excess entries repeatedly and try rebalancing the

table
32 (f ′,x′)← randomChoose(B)
33 S′← S\{(i, f ′,x′)}
34 i′← altIndexOf (i, f ′)
35 (S′′,a′′)← cuckooInsertImpl(S′, i′, (f ′,x′), a−1)
36 return cuckooInsertImpl(S′′, i, (f ,x), a′′)
37 end
38 end

14

3.3. Grow-Only Cuckoo Filter

3.3.2 State Convergence

Since the same fingerprint appearing in either candidate bucket indicates the existence of
the same element (ignoring hash collisions), a cuckoo hash table S corresponds to a larger
conceptual set of entries. This conceptual universe set U comprises both the entries included
in S and equivalent entries in their alternative buckets. We call the latter the dual cuckoo
hash table D of S, given by:

D(S) = {(altIndexOf (i, f), f) | (i, f) ∈ S}. (3.2)

Then, we get:
U(S) = S ∪ D(S). (3.3)

Therefore, the partial order of two GCFs’ states can be defined based on the inclusion rela-
tion of their universe sets:

S≤ S′⇔U(S) ⊆ U(S′). (3.4)

Intuitively, the merge operation should be a set union:

S⊔S′ = S ∪ S′. (3.5)

Despite being theoretically correct, the naı̈ve solution leads to the duplication of entries cor-
responding to the same element. Figure 3.2a demonstrates an example case. An observation
is that one cuckoo hash table only needs to retain entries that are not covered by its dual ta-
ble because those entries are already included implicitly. Therefore, we can explicitly delete
entries in the dual table whilst still reaching an equivalent state. The merge function is thus
adapted to be:

S⊔S′ = S ∪ (S′ \D(S)). (3.6)

A step-by-step illustration of the function is depicted in Figure 3.2b.
Although local adds do not cause buckets to overflow, it is possible that several non-

overflowing buckets are merged into an overflowing one. Since checking the bucket size
beforehand is not possible without global coordination and the definition of CRDT requires
merge to be always enabled [38], we have to allow overflowing buckets in merge. In spite
of this, we leverage the special cuckooInsert algorithm to mitigate the issue.

3.3.3 Probabilistic Characteristics

As mentioned above, there are chances when the load factor α of some bucket exceeds
100% in GCF. For this reason, we incorporate the average load factor of the table ᾱ into
the estimation of FPR. In a conventional cuckoo filter, at most 2c entries are compared with
the expected fingerprint, hence the term in Equation 2.10. In GCF, 2cᾱ slots are accessed
per membership query on average. Therefore, the FPR of a GCF using l-bit fingerprint is
approximately:

ε = 1− (1− 1
2l)

2cᾱ ≈ 2cᾱ

2l . (3.7)

There are no false negatives in GCF.

15

3. SPECIFICATION

{(1, f1)⇒e1 ,(2, f2)⇒e2} {(3, f3)⇒e3 ,(9, f1)⇒e1}
S S′

{(1, f1)⇒e1 ,(2, f2)⇒e2 ,(3, f3)⇒e3 ,(9, f1)⇒e1}
S∪S′

contains(e1) = true
contains(e2) = true
contains(e3) = true

∃ duplicated entries of e1

(a) The result of merge using plain set union of states contains duplicated entries.

{(1, f1)⇒e1 ,(2, f2)⇒e2} {(3, f3)⇒e3 ,(9, f1)⇒e1}
S S′

{(9, f1)⇒e1 ,
(8, f2)⇒e2}

{(1, f1)⇒e1 ,
(7, f3)⇒e3}

D D′.

{(3, f3)⇒e3} {(2, f2)⇒e2}S′ \D S\D′

{(1, f1)⇒e1 ,
(2, f2)⇒e2 ,
(3, f3)⇒e3}

{(2, f2)⇒e2 ,
(3, f3)⇒e3 ,
(9, f1)⇒e1}

S∪ (S′ \D) S′∪ (S\D′)

contains(e1) = true
contains(e2) = true
contains(e3) = true

contains(e1) = true
contains(e2) = true
contains(e3) = true

merge(S′) merge(S)

(b) The detailed procedure of merge using Equation 3.6. There is no duplicated entry.

Figure 3.2: An example of merging two GCFs using different implementations. The finger-
print of element ei is denoted as fi. The indexes of candidate buckets are {1,9} for e1, {2,8}
for e2, and {3,7} for e3. The subscripts of the entries show the elements they correspond to.
All merged states are equivalent, containing all three elements. However, only the method
in Figure 3.2b succeeds in eliminating duplication.

16

3.4. Observed-Remove Cuckoo Filter

3.4 Observed-Remove Cuckoo Filter

The previous CRPFs only allow insertions. In this section, we propose a conflict-free repli-
cated cuckoo filter that also allows the removal of elements. We adopt the observed-remove
strategy [38] in order to specify the precedence of concurrent adds and removes. Thus,
we extend the optimised observed-remove set (ORSet) [4] to design our observed-remove
cuckoo filter, ORCF for short.

Specification 4 shows the specification of the state-based observed-remove cuckoo filter.
Its payload is composed of a cuckoo hash table S and a causal history H. An entry in S now
contains two more fields in addition to the fingerprint f , including a replica id r and a logical
timestamp t. These two fields form a version tag that records the source replica and the time
the entry is created. Since the replica ID is unique and the timestamp grows monotonically,
the tags act as globally unique yet partially ordered identifiers that help reconstruct the
causal order of operations. All tags that the replica has observed are stored in the causal
history H. In the specification, H is modelled as a set of tags, but in practice it can be
encoded as a version vector [34, 31], storing only the maximum observed timestamp per
replica.

3.4.1 Supported Operations

The ORCF supports membership query, element addition, and element removal. The mem-
bership query is slightly modified compared to that of the classical cuckoo filter. It checks
whether there is an entry whose fingerprint component is equal to the fingerprint f of an
element e in either of the element’s candidate buckets i1 and i2.

During element addition, the initiating replica’s ID r and the next available timestamp
t are associated with the fingerprint f to build an entry. The entry is then inserted into the
cuckoo hash table using the same cuckooInsert function in Algorithm 1. Meanwhile, the
new version tag (r, t) is added to the causal history. Note that, in contrast to the GCF, we
do not check whether an element is already contained before adding it to an ORCF. We
allow the cuckoo hash table to retain multiple copies of equivalent entries of an element, as
required by deletable cuckoo filters [17].

Removal of an element starts by finding all entries corresponding to the element. Then,
a random one among those is deleted from the cuckoo hash table. This is a routine procedure
for ordinary cuckoo filters. However, it has a downside under distributed settings, where it
may impact upon the probabilistic characteristics of the ORCF. We will cover this topic in
Subsection 3.4.3. Considering that remove does not create new entries or version tags, the
causal history is left untouched.

3.4.2 State Convergence

We first set up the partial order of the states. By definition, all updates, including add and
remove, should yield a greater state than its input. We notice that the causal history H is
only expanded by add and is not altered by remove. Thus, the partial order related to add
is:

H ⊆ H ′. (3.8)

17

3. SPECIFICATION

Specification 4: State-based observed-remove cuckoo filter

1 payload S: set⟨index × (fingerprint × replica id × timestamp)⟩, H: set⟨replica id
× timestamp⟩ // The set H is also known as casual history

2 initial S←∅, H←∅
3 query contains(e):
4 f ← hF(e)
5 i1← hI(e)
6 i2← altIndexOf (i1, f)
7 return ∃(r, t) : (i1, f ,r, t) ∈ S ∨ (i2, f ,r, t) ∈ S
8 end
9 update add(e):

10 f ← hF(e)
11 i1← hI(e)
12 r← replica id
13 t← max({t |(r, t) ∈ H}∪{0})+1 // The next available timestamp
14 S′← cuckooInsert(S, i1, (f ,r, t))
15 H ′← H ∪ {(r, t)}
16 return S′, H ′

17 end
18 update remove(e):
19 f ← hF(e)
20 i1← hI(e)
21 i2← altIndexOf (i1, f)
22 R←{(i1, f ,r, t) ∈ S}∪{(i2, f ,r, t) ∈ S}
23 S′← S\{randomChoose(R)}
24 return S′, H
25 end
26 compare ((S′, H ′)):
27 T ←{(r, t) ∈ H | ∄(i, f) : (i, f ,r, t) ∈ S} // The tombstone set
28 T ′←{(r, t) ∈ H ′ | ∄(i, f) : (i, f ,r, t) ∈ S′}
29 return H ⊆ H ′ ∧ T ⊆ T ′

30 end
31 merge ((S′, H ′)):
32 S1← S ∩ S′ // Not updated
33 S2←{(i, f ,r, t) ∈ S\S′ | (r, t) /∈ H ′} // Exclusive to S and not

observed by H’
34 S3←{(i, f ,r, t) ∈ S′ \S | (r, t) /∈ H} // Exclusive to S’ and not

observed by H
35 S4←{(i, f ,r, t) ∈ S | (altIndexOf (i, f), f ,r, t) ∈ S′} // Displaced
36 S′′← S1 ∪ S2 ∪ S3 ∪ S4
37 H ′′← H ∪ H ′

38 return S′′, H ′′

39 end

18

3.4. Observed-Remove Cuckoo Filter

That is, a smaller state observes a subset of the tags observed by a greater state.
As for remove, we need a set that grows as remove is called to establish the partial order.

We can derive a conceptual tombstone set that records the version tags of deleted entries [4].
The tombstone set T is defined as:

T (S,H) = {(r, t) ∈ H | ∄(i, f) : (i, f ,r, t) ∈ S}. (3.9)

T is merely a conceptual set required only by compare. It is not stored as part of the payload,
thanks to the causal history H. Suppose a version tag is contained in the causal history, i.e.
observed, but is not part of any entry in the cuckoo hash table. In that case, it can be inferred
that the original entry this tag was associated with must have been previously observed and
then removed. With the help of the tombstone set, the partial order reflecting remove is
modelled as:

T (S,H)⊆ T (S′,H ′). (3.10)

The equation indicates that a smaller state cannot delete more entries than a greater state.
The integrated formula for compare is a logical conjunction of the two above:

(S,H)≤ (S′,H ′)⇔ H ⊆ H ′ ∧ T (S,H)⊆ T (S′,H ′). (3.11)

The observed-remove strategy requires that the merged state should encompass all ac-
tive entries expect those that are deleted after being observed. The preserved entries can be
categorised into four types based on their origins:

1. Entries not updated since the last merge, lying in the intersection of the two merging
tables.

S1 = S ∩ S′ (3.12)

2. Entries exclusive to the first input ORCF but not observed by the other. Those satis-
fying this condition are newly added and thus need to be kept. In contrast, exclusive
yet observed entries are deleted by the other ORCF and should not be included in the
merged state.

S2 = {(i, f ,r, t) ∈ S\S′ | (r, t) /∈ H ′} (3.13)

3. The dual of the above: entries exclusive to the second input ORCF but not yet ob-
served by the first one.

S3 = {(i, f ,r, t) ∈ S′ \S | (r, t) /∈ H} (3.14)

4. Displaced entries. They can be regarded as a special case of the first type of entries.

S4 = {(i, f ,r, t) ∈ S | (altIndexOf (i, f), f ,r, t) ∈ S′} (3.15)

The final merged cuckoo hash table is the union of the four cases above. The merged causal
history is a set union of the two inputs. The merge operation of ORCF is therefore:

(S,H) ⊔ (S′,H ′) = (S1 ∪ S2 ∪ S3 ∪ S4, H ∪ H ′). (3.16)

An example of merge is shown in Figure 3.3.

19

3. SPECIFICATION

{(1, f1,r,1)⇒e1 ,(2, f2,r′,2)⇒e2}

{(r,1),(r′,1),(r′,2)}

{(2, f2,r′,2)⇒e2 ,(9, f1,r,1)⇒e1}

{(r,1),(r′,1),(r′,2)}

(S,H)
...

(S′,H ′)
...

contains(e1) = true
contains(e2) = true

contains(e1) = true
contains(e2) = true

{(1, f1,r,1)⇒e1 ,
(2, f2,r′,2)⇒e2 ,
(3, f3,r,2)⇒e3}

{(r,1),(r,2),(r′,1),(r′,2)}

{(9, f1,r,1)⇒e1}

{(r,1),(r′,1),(r′,2)}

{(1, f1,r,1)⇒e1 ,(3, f3,r,2)⇒e3}

{(r,1),(r,2),(r′,1),(r′,2)}

{(3, f3,r,2)⇒e3 ,(9, f1,r,1)⇒e1}

{(r,1),(r,2),(r′,1),(r′,2)}
contains(e1) = true
contains(e2) = false
contains(e3) = true

contains(e1) = true
contains(e2) = false
contains(e3) = true

add(e3)
remove(e2)

merge((S′, H ′))
S1 =∅
S2 = {(3, f3,r,2)⇒e3}
S3 =∅
S4 = {(1, f1,r,1)⇒e1}

merge((S, H))
S′1 =∅
S′2 =∅
S′3 = {(3, f3,r,2)⇒e3}
S′4 = {(9, f1,r,1)⇒e1}

Figure 3.3: An example of merging two ORCFs using the same elements in Figure 3.2.
The example starts from a state that contains e1 and e2. When merge is called, e1 is merely
displaced and is not updated, corresponding to case 4. e3 is newly added, i.e. case 2 (or
case 3). Therefore, the two are present in the merged state. However, e2 is observed and is
then removed, hence its absence.

20

3.4. Observed-Remove Cuckoo Filter

3.4.3 Probabilistic Characteristics

The false positive rate and false negative rate can both be affected by the remove operations
that happen-before the membership query. We identify two scenarios where concurrent re-
moves lead to states that never occur in non-replicated cuckoo filters. Both of them involve
removal of elements that are hash collisions. Those elements differ in value but share iden-
tical fingerprints and candidate buckets. Figure 3.4 demonstrates the possible outcomes of
removes after adds of colliding elements e4 and e5 have been propagated to two ORCFs.
We analyse how they interfere with the probabilistic characteristics of the ORCF.

The ordinary cuckoo filter exhibits a zero probability of false negatives if all removes
are safe [17] from a local viewpoint. However, such behaviour is not guaranteed in the
ORCF. Figure 3.4a illustrates a scenario where locally-safe removals result in false negatives
in distributed settings. In the figure, both replicas concurrently issue the same operation
remove(e4). From their local perspectives, both replicas view the remove as safe because
they are removing an element that has been previously added. For this reason, the merged
filter is expected to remain well-formed, having a zero false negative rate. But this might
not necessarily happen. Due to the issue that e4 and e5 are hash collisions, both entries are
matched when the set R in Line 22 of Specification 4 is built during the removal of e4. Each
replica then selects a random entry from R to delete. However, it is possible that the two
replicas choose different entries to delete. In this case, the merged state does not contain
any entry. The membership query about e5 now gives false, which is a false negative since
e5 was never explicitly removed by a remove(e5).

Therefore, we require that all removes be casually-safe in order to eliminate false nega-
tives in ORCF.

Definition 3.1 (Casually-safe removal). An operation op removing element e is causally-
safe if the number of remove(e) that happen-before or are in parallel with op is less than
the number of observed add(e) in the operation history O. It is equivalent to examining
whether:∣∣∣{remove(e) ∈O | remove(e)≺ op ∨ remove(e) ∥ op}

∣∣∣
<

∣∣∣{add(e) ∈O | add(e)≺ op}
∣∣∣. (3.17)

A removal operation op satisfying Equation 3.17 will not delete entries brought by other
elements, even in the presence of hash collisions. If all ops meet the equation, no false
negative will occur. Recalling Figure 3.4a, we find that both sides of Equation 3.17 are
equal to 1 for the two removes. Neither of them is casually-safe, which explains the false
negatives in the merged state.

In the other scenario, remove contributes to a rise in the false positive rate. Depicted in
Figure 3.4b, the two replicas request removal of e4 and e5 respectively. As a result of hash
collision, they build an identical set R that consists of both entries. Unfortunately, it can
happen that they select the same entry to delete, leaving one entry in the merged state. In
the example, the entry introduced by e4 is deleted. Nevertheless, deleting the entry brought
by e5 has the same effect, as the filter cannot differentiate between them. In the merged

21

3. SPECIFICATION

{(i, f ,r,1)⇒e4,e5 ,(i, f ,r′,1)⇒e4,e5}

{(r,1),(r′,1)}

{(i, f ,r,1)⇒e4,e5 ,(i, f ,r′,1)⇒e4,e5}

{(r,1),(r′,1)}

(S,H)
...

(S′,H ′)
...

contains(e4) = true
contains(e5) = true

contains(e4) = true
contains(e5) = true

Two concurrent yet “safe”
removes of the same element
might delete different entries.

{(i, f ,r′,1)}⇒e4,e5

{(r,1),(r′,1)}

{(i, f ,r,1)}⇒e4,e5

{(r,1),(r′,1)}

∅
{(r,1),(r′,1)}

∅
{(r,1),(r′,1)}

contains(e4) = false
contains(e5) = false (FN)

contains(e4) = false
contains(e5) = false (FN)

remove(e4) remove(e4)

merge((S′, H ′)) merge((S, H))

(a) Safe removes [17] from a local perspective cause false negatives.

{(i, f ,r,1)⇒e4,e5 ,(i, f ,r′,1)⇒e4,e5}

{(r,1),(r′,1)}

{(i, f ,r,1)⇒e4,e5 ,(i, f ,r′,1)⇒e4,e5}

{(r,1),(r′,1)}

(S,H)
...

(S′,H ′)
...

contains(e4) = true
contains(e5) = true

contains(e4) = true
contains(e5) = true

Two concurrent removes
of different elements

might delete the same entry.

{(i, f ,r′,1)⇒e4,e5}

{(r,1),(r′,1)}

{(i, f ,r′,1)⇒e4,e5}

{(r,1),(r′,1)}

{(i, f ,r′,1)⇒e4,e5}

{(r,1),(r′,1)}

{(i, f ,r′,1)⇒e4,e5}

{(r,1),(r′,1)}
contains(e4) = true (FP)
contains(e5) = true (FP)

contains(e4) = true (FP)
contains(e5) = true (FP)

remove(e4) remove(e5)

merge((S′, H ′)) merge((S, H))

(b) Two different removes collide, resulting in false positives.

Figure 3.4: Scenarios where remove affects the probabilistic characteristics of the ORCF.
Both involve hash-colliding elements e4,e5 where e4 ̸= e5 but hF(e4) = hF(e5) = f and
hI(e4) = hI(e5) = i. Note that the correctness of the ORCF as a CRDT is intact.

22

3.5. Scalable Filter Series

state, membership queries about the two elements both return true in spite of two different
removes because of hash collision. The result is regarded as an increase in the FPR.

The increment of the FPR is reflected in the increment of the load factor. Therefore, we
can still abuse ᾱ to denote the average load factor and approximate the FPR of ORCF as:

ε = 1− (1− 1
2l)

2cᾱ ≈ 2cᾱ

2l . (3.18)

We believe that those removals have minimal impact on the FPR. For the problem to occur,
three conditions must be met simultaneously:

1. The elements to remove must be hash collisions.

2. The remove operations must be parallel.

3. The replicas must independently select the same entry.

In practice, a good hash function typically has a low collision rate. The causal order of
operations depends on the actual workload, but in general fewer operations are in parallel
as the CRDTs are merged more frequently. The third condition is a birthday problem [37].
Suppose there are d parallel removes deleting hash-colliding elements, and there are x en-
tries matched by those elements. The probability that at least two removes pick the same
entry is:

P = 1−
d−1

∏
k=1

(1− k
x
), where d ≤ x. (3.19)

Since the chances of the first two are small already, we deem that d is also small in most
cases. For d = 2, P is no larger than 0.5. Consequently, there is little likelihood of all three
conditions being satisfied at the same time, and the FPR does not tend to increase much.

3.5 Scalable Filter Series

As stated in Subsection 2.2.3, standard Bloom filters and standard cuckoo filters have a
limited capacity. It is also true for our conflict-free replicated probabilistic filters. To allow
filters to scale up as the number of elements increases, we propose a CRDT container named
scalable filter series (SFS). Based on SFS, we design the scalable versions of our three
CRPFs.

3.5.1 Supported Operations

Specification 5 demonstrates our SFS. It is made up of a list of homogeneous sub-filters
implementing Specification 1. Membership queries are carried out as an aggregation over
the list by checking if any sub-filter contains the queried element.

Apart from query, the SFS supports two types of update operations; one expands the
series, and the other shrinks it. The expand (as well as forceExpand) operation appends an
additional sub-filter to the series if the last one reaches its capacity limit, using the algorithm
proposed by [1]. Operation shrink removes the last sub-filter from the series when it is

23

3. SPECIFICATION

Specification 5: State-based scalable filter series

1 payload L: list⟨CRPF⟩
2 initial L← empty list
3 query contains(e):
4 return ∃ f ∈ L : f .contains(e)
5 end
6 update expand():
7 if L is empty ∨ L.last.cardinality≥ L.last.capacity then
8 return forceExpand()
9 else

10 return L
11 end
12 end
13 update forceExpand():
14 if L is empty then
15 f ← a new sub-filter whose FPR halves the expected compounded FPR
16 else
17 f ← a new sub-filter whose FPR halves its predecessor’s
18 end
19 return L.append(f)
20 end
21 update shrink():
22 if L is empty ∨ L.last.cardinality > 0 then
23 return L
24 else
25 L′← remove the last sub-filter from L’s list
26 return L′.shrink()
27 end
28 end
29 compare (L′):
30 w← |L|
31 w′← |L′|
32 return w≤ w′ ∧ ∀i ∈ [0,w) : L[i].compare(L′[i])
33 end
34 merge (L′):
35 w← |L|
36 w′← |L′|
37 if w > w′ then
38 return L′.merge(L)
39 else
40 return L′[i 7→ L′[i].merge(L[i])]i ∈ [0,w)

41 end
42 end

24

3.5. Scalable Filter Series

empty for the purpose of conserving memory. Note that the cardinality of the Bloom filter
and also GBF can be estimated with an algorithm proposed by [41]:

cardinality≈−m
k
· ln(1− |S|

m
). (3.20)

The cardinality of the cuckoo filter, including GCF and ORCF, equals the number of entries
it stores in the cuckoo hash table.

3.5.2 State Convergence

The compare and merge functions of SFS are defined as sub-filter-wise operations. If every
sub-filter in one SFS is smaller than that at the same index in another SFS, we consider
the former SFS to be smaller overall. Similarly, merge produces a new SFS where each
sub-filter is the result of merging the corresponding elements from the two original SFSes.
Figure 3.5 shows an example.

If the two operands of compare or merge have different lengths, the shorter one is con-
ceptually padded with sub-filters in the bottom state. It is worth noting that the bottom state
does not necessarily exist in the join semilattice of a state-based CRDT, and even if it does,
it might not be used as the initial state. Nonetheless, the initial state of all our CRPFs is
indeed the bottom ∅.

3.5.3 Probabilistic Characteristics

Since we make use of the exact scaling mechanism as [1], the FPR is also theoretically
bounded by twice the FPR of the first sub-filter, which has been discussed in Subsec-
tion 2.2.3.

sub-filter0

sub-filter1

∅

sub-filter′0
sub-filter′1
sub-filter′2

L L′

sub-filter0 ⊔ sub-filter′0
sub-filter1 ⊔ sub-filter′1

sub-filter′2

merge

Figure 3.5: An example of merging two SFSes of different lengths. The shorter one, L, is
conceptually padded with empty sub-filters. The two are then merged sub-filter-wise.

25

3. SPECIFICATION

3.5.4 Integration

In this subsection, we put forward the scalable versions of the CRPFs in this chapter,
namely, scalable grow-only Bloom filter (ScGBF), scalable grow-only cuckoo filter (ScGCF),
and scalable observed-remove cuckoo filter (ScORCF). SFSes are integrated into them as
payloads.

Specification 6 represents the specification of a state-based ScGBF. Unlike its non-
scalable version, an element is added to the last available sub-filter only if it is not yet
contained. In this way, we avoid adding the same element into multiple sub-filters. con-
tains, compare, and merge are simply forwarded to the SFS and are thus omitted from the
specification.

Adding elements to a state-based ScGCF, shown in Specification 7, differs from the
procedure of the ScGBF in the condition to expand the series. Because the cuckoo hash
table may report as being full before reaching its capacity, the ScGCF needs to scale in
case of insertion failure. We leave out trivial forwarding operations for the same reason
mentioned earlier.

We present the state-based ScORCF in Specification 8. Different from the two grow-
only filters above, the ScORCF tries adding an element to not only the last sub-filter but
also other non-full ones. Moreover, it synchronises the causal history with all sub-filters
using the latest one and supplies it to newly created sub-filters. This is the reason for the
additional field in the payload. The causal history is also involved in determining the partial
order and least upper bound of the ScORCF. The remove operation is straightforward. It
randomly selects a sub-filter that contains the element and requests the sub-filter to delete
an entry.

26

3.5. Scalable Filter Series

Specification 6: State-based scalable grow-only Bloom filter

1 payload L: SFS⟨GBF⟩
2 initial L← empty
3 update add(e):
4 if contains(e) then
5 return L
6 else
7 L′← L.expand()
8 i← |L′|−1 // the last
9 return L′[i 7→ L′[i].add(e)]

10 end
11 end

Specification 7: State-based scalable grow-only cuckoo filter

1 payload L: SFS⟨GCF⟩
2 initial L← empty
3 update add(e):
4 if contains(e) then
5 return L
6 else
7 L′← L.expand()
8 try
9 i← |L′|−1 // the last

10 return L′[i 7→ L′[i].add(e)]
11 catch “maximum number of iterations is reached” then
12 return L′.forceExpand().add(e)
13 end
14 end
15 end

27

3. SPECIFICATION

Specification 8: State-based scalable observed-remove cuckoo filter

1 payload L: SFS⟨ORCF⟩, H: causal history
2 initial L← empty, H← empty
3 query contains(e):
4 return L.contains(e)
5 end
6 update add(e):
7 L′← L.expand()
8 i← index of the last sub-filter f ∈ L′ such that (f .cardinality < f .capacity) and

f .add(e) is successful
9 if such i exists then

10 L′′← L′[i 7→ L′[i].add(e)]
11 H ′′← L′′[i].H
12 // Keep causal history in sync
13 return L′′[j 7→ (L′′[j].S, H ′′)] j ∈ [0,|L′′|), H ′′

14 else
15 return L′.forceExpand().add(e)
16 end
17 end
18 update remove(e):
19 R←{i | L[i].contains(e)}
20 if |R|= 0 then
21 return L, H
22 else
23 i← randomChoose(R)
24 L′← L[i 7→ L[i].remove(e)]
25 return L′.shrink(), H
26 end
27 end
28 compare ((L′, H ′)):
29 return L.compare(L′) ∧ H.compare(H ′)
30 end
31 merge ((L′, H ′)):
32 return L.merge(L′), H.merge(H ′)
33 end

28

Chapter 4

Verification

In this chapter, we try to verify the correctness of the specifications in the previous chapter.
We start by providing the formal definition of state-based CRDTs. Then, we verify using
mathematical reasoning and an automatic prover.

4.1 Preliminaries

4.1.1 Definition of State-Based CRDT

A state-based CRDT, also known as a convergent replicated data type (CvRDT), is formally
defined as a state-based object fulfilling the following three requirements according to [38].

1. Its payload state s is taken from a join semilattice ⟨S,≤⟩ where the partial order ≤ is
given by compare.

2. merge of any two states s1, s2 produces their least upper bound s1⊔ s2 in the semilat-
tice.

3. Any update is an inflation that never decreases the state, i.e. s≤ update(s).

4.1.2 Definition and Properties of Semilattice

A semilattice can be defined in either of the two equivalent ways: as a partially ordered set
or as an algebraic structure [5, 12].

A partially ordered set, or poset, is a set S equipped with a binary relation ≤ such that:

∀x ∈ S : x≤ x, (reflexivity) (4.1)

∀x,y ∈ S : x≤ y∧ y≤ x =⇒ x = y, (antisymmetry) (4.2)

∀x,y,z ∈ S : x≤ y∧ y≤ z =⇒ x≤ z. (transitivity) (4.3)

The ≤ relation exhibiting the three properties above becomes the partial order on S. Given
this partial order, an upper bound of two elements x,y ∈ S is defined as the element w ∈ S
that x≤ w∧ y≤ w. Among all such upper bounds, if there is one m that satisfies:

m ∈ S ∧ x≤ m ∧ y≤ m ∧ (∀w : w ∈ S ∧ x≤ w ∧ y≤ w =⇒ m≤ w), (4.4)

29

4. VERIFICATION

then m is called the least upper bound, also known as the join, of x and y, denoted as x⊔ y.
On top of poset, the definition of join semilattice can be drawn. If ⟨S,≤⟩ is a poset and
∀x,y ∈ S : x⊔ y exists, then ⟨S,≤⟩ is a join semilattice.

Viewed from an algebraic perspective, a join semilattice can be regarded as a set S
equipped with a binary operation ⊔. If the ⊔ operation fulfils:

∀x ∈ S : x⊔ x = x, (idempotence) (4.5)

∀x,y ∈ S : x⊔ y = y⊔ x, (commutativity) (4.6)

∀x,y,z ∈ S : (x⊔ y)⊔ z = x⊔ (y⊔ z), (associativity) (4.7)

then the algebraic structure ⟨S,⊔⟩ is proved to be a join semilattice whose partial order ≤ is
derived as:

x⊔ y = y =⇒ x≤ y. (4.8)

Note again that the two forms of definition are exactly equivalent [12]. The ≤ that
derives from ⊔ of an algebraic structure leads to the same ⊔ on poset, and vice versa.

4.2 Proof Sketch

In this section, we sketch out the proof of correctness of our CRPFs. These sketches are
intended to outline the design rationale behind the operations. The formal verification is
delayed to the next section.

We make use of the following lemma that declares a basic join semilattice of sets.

Lemma 4.1. The power set of a set whose elements are partially ordered by set inclusion
⊆ forms a join semilattice. The least upper bound operation is defined as a set union ∪.

4.2.1 Correctness of Grow-Only Bloom Filter

Theorem 4.2. GBF defined in Specification 2 is a valid CvRDT.

Proof. Given its compare and merge, GBF is a join semilattice by definition. Moreover, add
is a set union of the state and some other set; that is to say, the sole update is an inflation.
Therefore, GBF is a CvRDT.

4.2.2 Correctness of Grow-Only Cuckoo Filter

Recall that, in GCF, compare is defined with respect to the universe sets as Equation 3.4,
yet merge in Equation 3.6 does not rely on them directly. We want to demonstrate first that
our custom merge function is equivalent to a set union of the universe sets.

Lemma 4.3. The dual cuckoo hash table operator D has the following properties:

1. D(D(S)) = S

2. D(S∪T) = D(S)∪D(T)

30

4.2. Proof Sketch

3. D(S\T) = D(S)\D(T)

Proof.

1. D is an involution, because the internal altIndexOf is an involution.

2. A function preserves unions [33].

3. An injection preserves set differences [33]. D is involutory and is thus also injective.

Theorem 4.4. The merge operation of GCF in Equation 3.6 is equivalent to the union of
universes U(S)∪U(S′).

Proof. Note that state equivalence is defined in terms of the partial order, meaning that two
states of the GCF are equivalent if and only if their universes are identical.

U
(
S ∪ (S′ \D(S))

)
= S ∪ (S′ \D(S)) ∪ D

(
S ∪ (S′ \D(S))

)
= S ∪ (S′ \D(S)) ∪ D(S) ∪ D(S′ \D(S))

= S ∪ S′ ∪ D(S) ∪ D(S′ \D(S))

= S ∪ S′ ∪ D(S) ∪ (D(S′)\S)

= S ∪ S′ ∪ D(S) ∪ D(S′)

= S ∪ D(S) ∪ S′ ∪ D(S′) ∪ D(S) ∪ S ∪ D(S′) ∪ S′

=
(
S ∪ D(S) ∪ S′ ∪ D(S′)

)
∪ D

(
S ∪ D(S) ∪ S′ ∪ D(S′)

)
= U

(
S ∪ D(S) ∪ S′ ∪ D(S′)

)
= U

(
U(S) ∪ U(S′)

)
Therefore, S ∪ (S′ \D(S)) and U(S) ∪ U(S′) are equivalent.

Apart from the theorem above, we still need two additional building blocks to prove the
correctness of GCF; one concerns the update operation, and the other is about the query
operation.

Theorem 4.5. The add operation of GCF inflates the universe set U(S).

Proof. Firstly, we notice that a successfully added element ends up being a new entry in
the table regardless of all possible displacement. Existing entries might be moved to their
alternative buckets but never leave the universe. If the insertion fails or the element al-
ready presents, the state is not affected. To sum up, add always reaches a state that is at
least as large as the original one in terms of set inclusion. And, since a function preserves
inclusions [33], add inflates the universe.

31

4. VERIFICATION

Theorem 4.6. The contains operation of GCF returns the same result for a state S and its
universe U(S).

Proof. The contains operation looks for the matching entry in both candidate buckets, going
over both S and D(S). Since U(S) is the union of the two sets, checking whether an entry is
included in U(S) gives the same result as doing so with S.

We are now able to show that GCF behaves the same way as CvRDT.

Theorem 4.7. GCF defined in Specification 3 is a valid CvRDT.

Proof. Given a GCF with state S, consider a companion state-based object whose payload
is the corresponding universe set U(S). We define its compare as ordinary set inclusion
and merge as set union. The query and update operations are the same as those of the
GCF. According to Lemma 4.1, the possible states of the companion object form a join
semilattice. Furthermore, because all update operations inflate U(S), the companion object
becomes a CvRDT.

Comparing GCF with the companion object, we observe that all query operations yield
the same values on them. For this reason, we consider their states as equivalent [38]. In
addition, they adopt identical partial order and produce equivalent upper bounds. Thus,
they are regarded as equivalent in general. Since the companion object is a CvRDT, GCF is
also a CvRDT.

4.2.3 Correctness of Observed-Remove Cuckoo Filter

To simplify the proof, we leverage the fact that the optimised ORSet in [4] is known to be a
CvRDT.

Lemma 4.8. ORSet is a valid CvRDT.

Reviewing the specification of ORSet, we notice that whether or not an entry is pre-
served in the merged state solely depends on the existence of its version tag in the two
merging states. A version tag is kept if either of the following is true.

1. It is in both sets of added elements of the two merging states.

2. It is in the set of added elements of one state and is not observed by the other state.

Moreover, the partial order is also related to version tags only. A smaller state cannot include
more version tags in the casual history or remove more from the set of added elements. In
other words, a smaller state has a smaller casual history and a smaller (conceptual) set of
tombstones.

We now show that ORCF uses an identical approach to arbitrate elements. Recall that
we divide the entries of ORCF into four categories, covered in Equation 3.12 to Equa-
tion 3.15. S1 and S4 correspond to the first case in the ORSet, while S2 and S3 are the same
as the second case. Meanwhile, it is obvious that the compare function of ORCF is identical
to that of ORSet. Since ORCF manages version tags the same way as ORSet, the states of
an ORCF also make up a join semilattice.

32

4.3. Verifying with VeriFx

In addition, the two updates are both inflations. add inserts a new version tag into the
causal history, and remove inserts one into the tombstone set. As a result, we have proved
the following theorem.

Theorem 4.9. ORCF defined in Specification 4 is a valid CvRDT.

4.3 Verifying with VeriFx

Despite the numerous existing CRDTs, their correctness is difficult to verify [21, 28]. For-
mal paper proofs are tedious and prone to mistakes [43, 21]. VeriFx [14] is proposed as a
tool offering automatic verification of the correctness of CRDT implementations. It trans-
lates Scala-like high-level code into Z3 programme and then verifies with the Z3 theorem
prover [13]. In the bundled example proof, the algebraic structure approach is used, partially
though. That is, it tries proving whether merge is idempotent, commutative, and associative,
using Equation 4.5, Equation 4.6, and Equation 4.7. If all three yield positive results, the
CvRDT is regarded as correct [14].

4.3.1 Modifications

There is a missing condition to check in the default proof: Equation 4.8. Although a merge
with the three properties above does define a join semilattice, the semilattice may derive
a partial order different from the one defined by compare. This is because the three steps
above do not utilise compare directly, but instead only make use of the equivalence relation
defined in terms of compare as Equation 4.2. As a result, any different partial order that
gives the same equivalence relation is able to pass the verification. Table 4.1 demonstrates
some erroneous CvRDTs with such configurations. Despite their mismatched merge and
compare, all of them are considered correct by the bundled example proof. Yet, even after
passing this check, the verification process is still only halfway done. All update operations
need to be verified for being inflation.

Thus, we modify the bundled proof so that faulty implementations can be identified. The
new proof strictly complies with the definition of join semilattice as an algebraic structure
defined by Equation 4.5 to Equation 4.8. Besides, we also include a proof using the poset

Table 4.1: Examples of erroneous CvRDTs yet still pass the verification.

Payload S
User-defined
x.merge(y)

merge-derived
x.compare(y)

User-defined
x.compare(y)

Z max(x,y) x≤ y y≤ x
Z min(x,y) x≥ y y≥ x

P(Z) x∪ y x⊆ y y⊆ x
P(Z) x∩ y x⊇ y y⊇ x

P(Z)

{
y, (x = y)
∅, (x ̸= y)

x = y∨ y =∅ y⊇ x

33

4. VERIFICATION

approach, corresponding to Equation 4.1 to Equation 4.4. Either one may be used while the
other serves as a double-check since they are equivalent. In addition, we leave a comment
to remind programmers to incorporate proofs of their update operations themselves since
update operations vary a lot and sharing code might introduce unnecessary complexity.

4.3.2 Results

We implement all specifications mentioned in Chapter 3 using VeriFx. All of them suc-
cessfully pass the modified verification. Therefore, we are convinced that our state-based
conflict-free replicated probabilistic filter specifications are correct.

34

Chapter 5

Implementation

We implement our conflict-free replicated probabilistic filters as a Java/Scala library. The
library is open-source and publicly accessible on our GitHub repository. In this chapter, we
point out a few parts of the implementation that are worth noting.

5.1 Immutable and Mutable Variants

We implement both immutable and mutable versions of our conflict-free replicated proba-
bilistic filters. They have the same API and are mostly implemented in the same way, except
that the immutable variants return new instances after being “updated” while the mutable
variants are updated in place and return themselves.

There is one exception regarding the SFS. Specification 5 implies that only the overlap-
ping part of two SFSes need to be explicitly merged, while the exceeding sub-filters can be
shared directly. However, it only works for immutable sub-filters. In the case of mutable
ones, we still need to merge them with button states, essentially making a copy.

5.2 Hash Functions Used

We utilise MurmurHash3 and FarmHash provided by the Google Guava project [22] in
favour of their performance and low collision rate. In conflict-free replicated Bloom fil-
ters, the two are used as the bases to generate the series of hash codes following Kirsch-
Mitzenmacher optimisation [26]. In conflict-free replicated cuckoo filters, the former acts
as the index hash function, and the latter is the fingerprint hash function.

5.3 Encoding of Cuckoo Entries

In GCF, entries are simple fingerprints without any special encoding. A byte is allocated to
store a fingerprint that is at most 8 bits long, and a short for a fingerprint up to 16 bits. In
ORCF, entries are not directly stored as tuples of three integers. Instead, they are encoded as
primitive types. Two configurations are provided. The first one uses a 32-bit int per entry,
which consists of an 8-bit fingerprint, a 4-bit replica ID, and a 20-bit timestamp. The other

35

https://github.com/C6H5-NO2/probfilter

5. IMPLEMENTATION

encodes an entry as long, reserving 16 bits for the fingerprint, 16 bits for the replica ID,
and 32 bits for the timestamp. The restrictions on length are merely limitations in practice
rather than in theory.

36

Chapter 6

Evaluation

This chapter describes the experimental evaluation of the conflict-free replicated probabilis-
tic filters. Our evaluation tests for the following properties.

1. The empirical FPR of CRPFs compared to the theoretical value and that of ordinary
filters.

2. The memory consumption of CRPFs compared to CRDT sets.

6.1 General Experiment Setup

We evaluate CRPFs configured as the following. The non-scalable filters are always created
with capacity matching the quantity of workload. The scalable ones start with a sub-filter
whose capacity is a quarter of the total quantity of workload. Subsequent sub-filters use the
same capacity without further expansion. Cuckoo filters are all configured with an iteration
quota of 500 attempts [17]. The names of the configurations are listed below.

• GBF 5: GBF having 5 hash functions

• GCF 4: GCF whose bucket expects 4 entries with 8-bit fingerprint

• ORCF 4: ORCF whose bucket expects 4 entries with 8-bit fingerprint

• ScGBF 5: ScGBF whose compounded FPR is the same as GBF 5

• ScGCF 4: ScGCF whose compounded FPR is the same as GCF 4

• ScORCF 4: ScORCF whose compounded FPR is the same as ORCF 4

The parameters for GBF 5, GCF 4, and ORCF 4 are picked so that their theoretical FPR are
all 3.125%.

As for workload generation, we adopt an approach similar to previous works on proba-
bilistic filters [17, 8, 23]. We use as keys 128-bit random integers generated by the standard
library of Java. The workload can be divided into parts to be executed on different replicas.
We only distribute it to at most two replicas in the experiments. We use d-(100− d) split

37

6. EVALUATION

to label the distribution scheme where one replica conducts d% of the workload while the
other does the rest. The label all local denotes the configuration where the workload is
handled by a single replica locally.

The workload may contain two types of update operations: add and remove. We insert
all elements in the add workload into Bloom filters and sets. However, we stop inserting
into cuckoo filters when the maximum number of iterations is reached, i.e. when they are
full [17]. removes are only generated for elements that the filter or set already contains. We
denote the workload pattern containing a% of add and (1− a%) of remove as an a%-add
workload.

6.2 Empirical False Positive Rate

6.2.1 Setup

In this section, we measure the empirical FPR of different CRPFs concerning different
workload distributions and sync frequencies. We create two replicas of the studied filter,
apply 220 adds split according to a chosen distribution scheme, and merge them every 103

to 107 operations. Additionally, there is always a final merge after all adds are done. Three
representative distribution schemes are used: 50-50 split, 80-20 split, and 99-1 split. For
reference, a pair of fully synchronised CRPFs are also evaluated. The result is regarded as
the FPR of the corresponding ordinary filter.

The empirical FPR is estimated by testing 220 random keys that are never inserted and
checking if they are reported as being included. The procedure is repeated five times using
different keys and testing datasets. The average values of the metrics are recorded, shown
in Figure 6.1.

6.2.2 Results

Figure 6.1a illustrates the FPR of GBF 5. It shows that the value is identical to the regular
Bloom filter and is close to the theoretical FPR. Moreover, the FPR is unaffected by the
distribution scheme or sync frequency because of the simple design of merge. The merged
state, being a set union, is always identical to the state resulting from local adds. Therefore,
we consider GBF a great drop-in replacement for the Bloom filter in distributed settings.

From Figure 6.1b, we observe that the FPR of GCF 4 has mixed performance according
to the workload distribution and the sync frequency. When the filters are merged relatively
frequently, the FPR drops as the distribution becomes more even. We believe that this phe-
nomenon originates from the counterbalancing nature of add and merge. merge is inclined
to introduce overflowing buckets to accommodate all the entries in the two merging filters.
Conversely, add is forbidden from producing more overflowing buckets and actively tries
to reduce the number of overflowing buckets. In case of an even split, both GCFs have a
considerable number of full buckets before merge. It leads to more overflowing buckets in
the merged state, which makes subsequent adds more likely to fail. The filter thus reports a
lower load factor and therefore a lower FPR.

38

6.2. Empirical False Positive Rate

1 10−1 10−2 10−3 10−4 10−5 10−6 10−7

0.0280

0.0285

0.0290

0.0295

0.0300

0.0305

0.0310

0.0315

Sync Frequency

FP
R

Theor.
99-1
80-20
50-50

(a) GBF 5

1 10−1 10−2 10−3 10−4 10−5 10−6 10−7
0.02

0.03

0.04

0.05

Sync Frequency

0.10

0.15

0.20

0.25

0.30

FP
R

Theor.
99-1
80-20
50-50

(d) ScGBF 5

1 10−1 10−2 10−3 10−4 10−5 10−6 10−7

0.0280

0.0285

0.0290

0.0295

0.0300

0.0305

0.0310

0.0315

Sync Frequency

FP
R

Theor.
99-1
80-20
50-50

(b) GCF 4

1 10−1 10−2 10−3 10−4 10−5 10−6 10−7

0.025

0.030

0.035

0.040

0.045

Sync Frequency

FP
R

Theor.
99-1
80-20
50-50

(e) ScGCF 4

1 10−1 10−2 10−3 10−4 10−5 10−6 10−7

0.0280

0.0285

0.0290

0.0295

0.0300

0.0305

0.0310

0.0315

Sync Frequency

FP
R

Theor. 99-1
80-20 50-50

(c) ORCF 4

1 10−1 10−2 10−3 10−4 10−5 10−6 10−7

0.025

0.030

0.035

0.040

0.045

Sync Frequency

FP
R

Theor.
99-1
80-20
50-50

(f) ScORCF 4

Figure 6.1: Effect of workload distribution and sync frequency on empirical FPR

39

6. EVALUATION

However, if the filters are barely merged, the relation between those factors inverts. This
is due to the uptick in the load factor. A cuckoo filter with four slots per bucket can be filled
to a maximum load factor of 95% [17]. If the workload is split into two parts evenly, each
filter is able to buffer its part before merge. The merged filter thus reaches a higher load
factor, which results in a higher FPR. As a consequence, the FPR first decreases and then
increases as the sync frequency decreases.

The analysis above also holds for ORCF 4, whose results are shown in Figure 6.1c.
Unfortunately, the empirical FPRs of scalable CRPFs diverge dramatically from the ex-

pected values, depicted in Figure 6.1d, Figure 6.1e, and Figure 6.1f. We notice that the
values deteriorate much more rapidly than those in the non-scalable CRPFs. The surge
stems from the biased distribution of elements within the SFS of a scalable CRPF. When
the sync frequency is low, each replica places the elements in the first few sub-filters. Those
sub-filters are sufficient for accommodating the assigned workload and are full already be-
fore merge. As a result, they contain more elements than expected after merge, which leads
to the worsening of FPR. We argue that scalable CRPFs typically require a relatively high
frequency of merge to maintain the expected FPR.

6.3 Memory Consumption

6.3.1 Setup

We also evaluate the space efficiency of the CRPFs. The metric used is the serialised size,
which is the number of bytes for network transmission. We measure the raw size and the
size after GZIP compression [15], a common compression scheme for web protocols. The
configurations used are GBF 5, GCF 4, and ORCF 4. For comparison, we make use of the
GSet and ORSet implemented by Akka [30]. The CRDTs in this experiment are loaded with
a%-add workload containing 220 operations, where a can be 100, 80, or 51. The workload is
either split evenly between two replicas (50-50 split) or simply executed locally on a single
replica (all local). In case of a split, the CRDTs are merged after all operations are finished.
The experiment repeats five times, and we take the average values as results.

6.3.2 Results

Table 6.1 compares the serialised size of the grow-only CRDTs: GBF 5, GCF 4, and GSet.
It clearly demonstrates the space benefits of the CRPFs. Both GBF 5 and GCF 4 are seri-
alised into much less data than GSet without sacrificing much load factor. Note that there
is an uptick in the raw serialised size of GCF 4 under 50-50 split. This is due to the large
amount of overflowing buckets which store approximately 17% of the entries. These buck-
ets are implemented as a map from indexes to byte arrays, which is serialised much less
efficiently than the main buckets backed by an array. The discrepancy becomes smaller
after compression.

ORCF 4 is compared with ORSet under various configurations of add ratio, depicted in
Table 6.2. Our ORCF 4 utilises a relatively constant amount of memory. On the other hand,
ORSet assigns a fixed number of bytes for each element, and its size depends mainly on the

40

6.3. Memory Consumption

load of the set. When the load is high, ORSet consumes more memory than ORCF 4. When
the load is low, it does require less space than ORCF 4. However, in such cases, ORCF 4
mainly consists of 0, and can thus be compressed into a smaller object.

Table 6.1: Serialised size of grow-only filters and grow-only sets. BPE stands for bytes per
element.

Workload CRDT
Load
Factor

Serialised
Size (MB)

Serialised
BPE

Compressed
Size (MB)

Compressed
BPE

100% add
all local

GBF 5 100% 1.01 1.01 0.91 0.91
GCF 4 96% 1.05 1.05 1.04 1.04
GSet 100% 23.07 22.00 17.16 16.37

100% add
50-50 split

GBF 5 100% 1.01 1.01 0.91 0.91
GCF 4 98% 3.73 3.62 1.59 1.54
GSet 100% 23.07 22.00 17.16 16.37

Table 6.2: Serialised size of observed-remove filters and sets.

Workload CRDT
Load
Factor

Serialised
Size (MB)

Serialised
BPE

Compressed
Size (MB)

Compressed
BPE

100% add
all local

ORCF 4 96% 8.39 8.37 4.75 4.74
ORSet 100% 51.38 49.00 21.16 20.18

80% add
all local

ORCF 4 60% 8.39 13.34 3.42 5.44
ORSet 60% 30.83 49.00 12.66 20.13

51% add
all local

ORCF 4 2% 8.39 400.14 0.19 9.16
ORSet 2% 1.03 49.00 0.44 20.87

100% add
50-50 split

ORCF 4 100% 12.54 11.96 5.71 5.45
ORSet 100% 51.38 49.00 21.45 20.46

80% add
50-50 split

ORCF 4 60% 9.25 14.70 3.54 5.62
ORSet 60% 30.83 49.00 12.86 20.44

51% add
50-50 split

ORCF 4 2% 8.39 381.81 0.20 9.10
ORSet 2% 1.03 49.00 0.45 21.25

41

Chapter 7

Related Work

This chapter reviews existing literature that uses probabilistic filters in CRDTs. It also
shows how they are related to yet different from the work in this thesis.

[18] proposes Probabilistic Causal Context, a substitution for classic deterministic causal
context. Being a causal context, it stores causality metadata about the versions known by
the CRDT it is part of. Meanwhile, its size does not grow linearly with the number of nodes
due to its probabilistic approach. At its core is an age-partitioned Bloom filter [40]. This
variant of the Bloom filter represents, probabilistically, a sliding window over a stream of
elements. Old elements are forcibly removed from the filter in order to make room for new
data. As a result, Probabilistic Causal Context produces both false positives and false neg-
atives. When used as the causal context of a causal CRDT, e.g. an ORSet, the Probabilistic
Causal Context leads to inconsistencies of both types in the CRDT.

BloomCRDT, designed by [7], is a CRDT that provides the semantics of the ORSet
probabilistically. In contrast to traditional ORSet which uses a set to record tombstones,
BloomCRDT uses a Bloom filter as an approximation to the tombstone set. However, false
positives in the tombstone may lead to faulty removal of elements, that is, false negatives in
BloomCRDT.

Unlike the previous literature, the CRPFs in this thesis may only result in false positives
and never false negatives. In addition, our CRPFs function independently as probabilistic
filters rather than as parts of other CRDTs.

43

Chapter 8

Conclusion

This chapter concludes the thesis and addresses the research questions raised in Section 1.1.
Following that, some ideas for future work are discussed.

8.1 Conclusions

In this thesis, we propose three concrete designs for conflict-free replicated probabilistic
filters for approximate membership queries in distributed systems. We also extend scalable
filters into the context of CRDT and put forward the scalable variants of the three CRPFs
above. The thesis elaborates on the specifications of these CRPFs and verifies their correct-
ness. Furthermore, we empirically analyse their FPR and memory consumption.

In conclusion, our CRPFs are proved to be valid CRDTs. We find that their empirical
FPR aligns well with the theoretical value when the CRPFs are merged relatively frequently.
They consume less memory compared to CRDT sets regardless of workload. Our CRPFs
are indeed a solution to distributed AMQ.

8.1.1 Answers to Research Questions

• RQ 1: What operations does CRPF support?

ANS 1: We define an interface of CRPF in Specification 1. The contains, add, and
remove operations offer ways to manipulate the CRPF as a probabilistic filter. The
compare and merge functions make it a CRDT. Detailed designs for the CRPFs are
elaborated in Chapter 3. We prove their correctness using paper proof and software
verification in Chapter 4.

• RQ 2: What are the false positive rate and false negative rate of CRPF?

ANS 2: In Chapter 3, we derive formulae for estimating the false positive rate of the
CRPFs. We propose a requirement on remove operations to keep the false negative
rate as zero.

• RQ 3: How does CRPF perform empirically?

45

8. CONCLUSION

ANS 3: We conduct experiments to analyse the empirical FPR and memory con-
sumption of the CRPFs. The results shown in Chapter 6 demonstrate that FPR can
be affected by workload distribution and the sync frequency. Furthermore, CRPFs
generally require less space than CRDT sets, thanks to that they store only hash rep-
resentations.

8.2 Future Work

We identify the following directions for future investigation.
Better analyses of the probabilistic characteristics. The current algorithm to remove

elements from ORCF might introduce false positives as well as false negatives. However,
the formula for FPR is a rough estimation. A better analysis can be drawn if more informa-
tion about the operation history is taken into account. Similarly, false negatives also depend
on the operation history. We only find that the false negative rate is zero when all removals
are causally-safe. The precise probability in other circumstances is unexplored.

δ -based replication. The specifications of CRPFs in this thesis are all state-based,
meaning that the whole state will be transferred upon merge. Despite experiments demon-
strating that the size of the state is relatively small, one can still argue that the size is not
negligible. The transferred state can be further reduced by adopting δ -based replication [2].
These CRDTs are called δ -CRDTs. They disseminate the changes δ rather than sending
the whole states so that network overhead can be optimised. Implementing efficient δ -based
CRPFs is left as a future work.

Other probabilistic and concurrency semantics. It is also interesting to design CRDTs
based on other probabilistic filters, such as the counting Bloom filter [10], the quotient
filter [3], and the Morton filter [8]. Concurrency semantics other than grow-only and
observed-remove, like last-writer-wins, can also be applied to CRPFs. Those semantics
are useful in specialised settings [38].

46

Bibliography

[1] Paulo Sérgio Almeida, Carlos Baquero, Nuno Preguiça, and David Hutchison. Scal-
able bloom filters. Information Processing Letters, 101(6):255–261, 2007.

[2] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Efficient state-based crdts
by delta-mutation. In International Conference on Networked Systems, pages 62–76.
Springer, 2015.

[3] Michael A Bender, Martin Farach-Colton, Rob Johnson, Russell Kraner, Bradley C
Kuszmaul, Dzejla Medjedovic, Pablo Montes, Pradeep Shetty, Richard P Spillane,
and Erez Zadok. Don’t thrash: How to cache your hash on flash. Proceedings of the
VLDB Endowment, 5(11), 2012.

[4] Annette Bieniusa, Marek Zawirski, Nuno Preguiça, Marc Shapiro, Carlos Baquero,
Valter Balegas, and Sérgio Duarte. An optimized conflict-free replicated set. arXiv
preprint arXiv:1210.3368, 2012.

[5] Garrett Birkhoff. Lattice theory, volume 25. American Mathematical Soc., 1940.

[6] Burton H Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422–426, 1970.

[7] Ewout Bongers. Conflict free r tree. Master’s thesis, Delft University of Technology,
2021.

[8] Alex D Breslow and Nuwan S Jayasena. Morton filters: faster, space-efficient cuckoo
filters via biasing, compression, and decoupled logical sparsity. Proceedings of the
VLDB Endowment, 11(9):1041–1055, 2018.

[9] Eric A Brewer. Towards robust distributed systems. In PODC, volume 7, pages 343–
477. Portland, OR, 2000.

[10] Andrei Broder and Michael Mitzenmacher. Network applications of bloom filters: A
survey. Internet mathematics, 1(4):485–509, 2004.

47

BIBLIOGRAPHY

[11] Russell Brown, Sean Cribbs, Christopher Meiklejohn, and Sam Elliott. Riak dt map:
a composable, convergent replicated dictionary. In Proceedings of the First Workshop
on Principles and Practice of Eventual Consistency, pages 1–1, 2014.

[12] Brian A Davey and Hilary A Priestley. Introduction to lattices and order. Cambridge
university press, 2002.

[13] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340. Springer, 2008.

[14] Kevin De Porre, Carla Ferreira, and Elisa Gonzalez Boix. Verifx: Correct replicated
data types for the masses. In European Conference on Object-Oriented Programming,
2023.

[15] L Peter Deutsch. GZIP file format specification version 4.3. https://rfc-editor.
org/rfc/rfc1952.txt, 1996. Accessed: May 31, 2024.

[16] Martin Dietzfelbinger and Rasmus Pagh. Succinct data structures for retrieval and
approximate membership. In International Colloquium on Automata, Languages, and
Programming, pages 385–396. Springer, 2008.

[17] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher.
Cuckoo filter: Practically better than bloom. In Proceedings of the 10th ACM In-
ternational on Conference on emerging Networking Experiments and Technologies,
pages 75–88, 2014.

[18] Pedro Henrique Fernandes and Carlos Baquero. Probabilistic causal contexts for scal-
able crdts. In Proceedings of the 10th Workshop on Principles and Practice of Con-
sistency for Distributed Data, pages 1–8, 2023.

[19] Andrii Gakhov. Probabilistic data structures and algorithms for big data applications.
BoD–Books on Demand, 2022.

[20] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. Acm Sigact News, 33(2):51–59, 2002.

[21] Victor BF Gomes, Martin Kleppmann, Dominic P Mulligan, and Alastair R Beresford.
Verifying strong eventual consistency in distributed systems. Proceedings of the ACM
on Programming Languages, 1(OOPSLA):1–28, 2017.

[22] Google. Guava explained. https://github.com/google/guava/wiki, 2016. Ac-
cessed: May 31, 2024.

[23] Thomas Mueller Graf and Daniel Lemire. Xor filters: Faster and smaller than bloom
and cuckoo filters. Journal of Experimental Algorithmics (JEA), 25:1–16, 2020.

48

https://rfc-editor.org/rfc/rfc1952.txt
https://rfc-editor.org/rfc/rfc1952.txt
https://github.com/google/guava/wiki

Bibliography

[24] Gaurav Gupta, Minghao Yan, Benjamin Coleman, RA Elworth, Tharun Medini, Todd
Treangen, and Anshumali Shrivastava. RAMBO: Repeated and merged bloom filter
for ultra-fast multiple set membership testing (MSMT) on large-scale data. arXiv
preprint arXiv:1910.02611, 2019.

[25] Kun Huang and Tong Yang. Additive and subtractive cuckoo filters. In 2020
IEEE/ACM 28th International Symposium on Quality of Service (IWQoS), pages 1–
10. IEEE, 2020.

[26] Adam Kirsch and Michael Mitzenmacher. Less hashing, same performance: Build-
ing a better bloom filter. In Algorithms–ESA 2006: 14th Annual European Sympo-
sium, Zurich, Switzerland, September 11-13, 2006. Proceedings 14, pages 456–467.
Springer, 2006.

[27] Martin Kleppmann and Alastair R Beresford. A conflict-free replicated JSON
datatype. IEEE Transactions on Parallel and Distributed Systems, 28(10):2733–2746,
2017.

[28] Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, and Joseph M Hellerstein.
Katara: Synthesizing crdts with verified lifting. Proceedings of the ACM on Program-
ming Languages, 6(OOPSLA2):1349–1377, 2022.

[29] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications, 1978.

[30] Lightbend. Akka documentation. https://doc.akka.io/, 2011. Accessed: May
31, 2024.

[31] Dahlia Malkhi and Doug Terry. Concise version vectors in winfs. In International
Symposium on Distributed Computing, pages 339–353. Springer, 2005.

[32] Stéphane Martin, Mehdi Ahmed-Nacer, and Pascal Urso. Abstract unordered and
ordered trees crdt. arXiv preprint arXiv:1201.1784, 2012.

[33] James R Munkres. Topology. Prentice Hall, 2000.

[34] DS Parker, GJ Popek, G Rudisin, A Stoughton, BJ Walker, E Walton, JM Chow, D Ed-
wards, S Kiser, and C Kline. Detection of mutual inconsistency in distributed systems.
IEEE Transactions on Software Engineering, 9(03):240–247, 1983.

[35] Redis. HyperLogLog in active-active databases. https://redis.io/docs/latest
/operate/rs/databases/active-active/develop/data-types/hyperloglog
/, 2023. Accessed: Dec 14, 2023.

[36] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. Replicated abstract
data types: Building blocks for collaborative applications. Journal of Parallel and
Distributed Computing, 71(3):354–368, 2011.

49

https://doc.akka.io/
https://redis.io/docs/latest/operate/rs/databases/active-active/develop/data-types/hyperloglog/
https://redis.io/docs/latest/operate/rs/databases/active-active/develop/data-types/hyperloglog/
https://redis.io/docs/latest/operate/rs/databases/active-active/develop/data-types/hyperloglog/

BIBLIOGRAPHY

[37] Mahmoud Sayrafiezadeh. The birthday problem revisited. Mathematics Magazine, 67
(3):220–223, 1994.

[38] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A comprehensive
study of convergent and commutative replicated data types. PhD thesis, Inria–Centre
Paris-Rocquencourt; INRIA, 2011.

[39] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free
replicated data types. In Stabilization, Safety, and Security of Distributed Systems:
13th International Symposium, SSS 2011, Grenoble, France, October 10-12, 2011.
Proceedings 13, pages 386–400. Springer, 2011.

[40] Ariel Shtul, Carlos Baquero, and Paulo Sérgio Almeida. Age-partitioned bloom filters.
arXiv preprint arXiv:2001.03147, 2020.

[41] S Joshua Swamidass and Pierre Baldi. Mathematical correction for fingerprint simi-
larity measures to improve chemical retrieval. Journal of chemical information and
modeling, 47(3):952–964, 2007.

[42] Dinusha Vatsalan and Peter Christen. Multi-party privacy-preserving record linkage
using bloom filters. arXiv preprint arXiv:1612.08835, 2016.

[43] Peter Zeller, Annette Bieniusa, and Arnd Poetzsch-Heffter. Formal specification and
verification of crdts. In 34th Formal Techniques for Networked and Distributed Sys-
tems (FORTE), pages 33–48. Springer, 2014.

[44] Yuqi Zhang, Lingzhi Ouyang, Yu Huang, and Xiaoxing Ma. Conflict-free replicated
priority queue: Design, verification and evaluation. In Proceedings of the 14th Asia-
Pacific Symposium on Internetware, pages 302–312, 2023.

50

	Preface
	Contents
	List of Figures
	Introduction
	Research Questions
	Contributions
	Thesis Outline

	Background
	Conflict-Free Replicated Data Types
	Probabilistic Filters

	Specification
	System Model
	Grow-Only Bloom Filter
	Grow-Only Cuckoo Filter
	Observed-Remove Cuckoo Filter
	Scalable Filter Series

	Verification
	Preliminaries
	Proof Sketch
	Verifying with VeriFx

	Implementation
	Immutable and Mutable Variants
	Hash Functions Used
	Encoding of Cuckoo Entries

	Evaluation
	General Experiment Setup
	Empirical False Positive Rate
	Memory Consumption

	Related Work
	Conclusion
	Conclusions
	Future Work

	Bibliography

