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FOREWORD




‘Qur highly industrialized society releases waste products in the atmos-
phere, which are not all harmless. These contaminants are transported and
dispersed by the mean wind and by the atmospheric turbulence. This is often
a complicated process and it is difficult to predict where and in what con-
centration these waste products can be found back. It is e.g. hard to
decide how to reduce average ground level concentrations. Only rough rules. .
can be given. One of these is to use tall stacks to emit the pollution. How-
ever, in practice it turned out that tall stacks are usually effective in

reducing ground level concentrations at night but not always during the day.

This difference in effectiveness of a tall stack can be explained by the

different structure of the atmospherié turbulence during the day or the night.
The part of the atmosphere, whose structure we need to know; is the layer
closest to the ground in which generally releases take place. In the lowest
layer of the atmosphere also called the boundary layer the motion of the air
is turbulent due to two different effects: friction with the surface and

heating by the sun.

First we consider friction. The air flow must obey the no-slip condition
at the surface. This results in a vertical velocity gradient, which at the
Reynolds numbers pertaining to the atmosphere is unstable. The consequence is

turbulence which obtains its energy from the mean shear.

Secondly we turn to heat effects. During the day the sun warms the earth
surface by shortwave radiation. This temperature difference between surface
and gir results in vertical accelerations and consequently the hot air rises,
which we call convective turbulence. During the night the earth only looses
heat and becomes cooler than the atmosphere. The opposite happens, that is

that vertical motion in the air is suppressed.

These two effects, friction with the surface and heat effects make the
boundary layer turbulent. The two causes of turbulence vary with time (day-
night) and the boundary layer height changes with them, which is an important
fact for dispersion. During the day, when the sun shines and feeds the

turbulence, the boundary layer has a typical height of 1-2 km, while during




the night it is much smaller, in the order of 200 m. This is of importance for
air pollution problems, because tall stacks may emit above the boundary layer
during the night. The contaminants stay there and at ground level no concen-
tration is measured. During the day even tall stacks emit in the boundary

layer and the pollutant spreads to the surface.

The relation between the turbulent state of the boundary layer, source
height and ground level concentration is extremely complicated and still not
well understood. Present relations to predict concentration levels e.g. the
Gaussian model (to be discussed later) are based on assumptions that are most
of the time incorrect. Tall stacks e.g. are not effective in minimizing the
ground level concentration during the day; on the contrary, a little distance
downwind the ground level concentration due to a tall stack might be larger
than from a ground level source. In order to predict with more accurécy
transport and dispersion of pollutants, we have to know more about the
structure of the boundary layer and its turbulence and the way they effect

dispersion. This thesis wants to add to this knowledge.

Three main classes of turbulence are distinguished. The type of turbu-.
lence occurring during a clear day caused by heating of the surface is
called convective. During a cloudy day heat effects might play a smaller role
and the boundary layer is called neutral, while in the night the surface cools
down, the turbulence is suppressed and the boundary layer stable. These types
of turbulence have very different characteristics. However, each class of
boundary layer has its own similarity laws in the sense that parameters exist
of the boundary layer in gquestion with which all variables of the turbulence
can be scaled, such that they obey a unique relationship. Also dispersion

measurements scale with these parameters.

The fact that such scaling parameters exist, is of great advantage to
understand dispersion. It was tried to express time or place evolution of the
measured concentration distribution as function of the scaling parameters and
of source height. This we call parameterization. An example is an expression
found by Briggs (1983) for the maximum surface concentration as function of
source height in convenctive boundary layers (see Ch. 4, Eq. (14)). How-
ever, it is not always possible to find parameterizations describing all

characteristics of the concentration distribution like plume height or




concentration fluctuations. When the measurements cannot be caught in such
analytical expressions, we can build physical models, like windtunnels or
water tanks that show how the turbulence and the mean wind transport and

disperse contaminants.

To understand the results of physical dispersion models in relation to
the turbulence we have to rely on knowledge of the last, which can be gained
from measurements. This konwledge can in turn also be obtained from models
describing the motion of the air in a turbulent boundary layer. These tur-
bulence or boundary layer models are based on the equations of motion,
which are nonlinear and very complicated. Even with the large computers of
today a solution cannot be calculated. The flow in the boundary layer cannot
be known in all its details. We have to relax on our requirements and be
satisfied with boundary layer models that describe mean guantities of the
flow, like e.g. profiles of the variance of the turbulent velocities. These
boundary layer models are satisfactory, because we are seldom interested in

more than the statistics of the turbulence motions.

In case the contaminants are released in an atmosphere with a mean
horizontal wind u, the dispersion models can make use of the following fact. |
If the advection by the mean wind is dominant over the downwind dispersion
material found at a distance x has travelled during a time t = u/x. Via this
relation model results for 1D vertical dispersion from ‘an instantaneous
source (release at a specific time) in an atmosphere at rest can be used for
similar dispersion from continuous sources in an atmosphere with a mean wind
that does not depend on height. The concentration -field at a downwind distance
x from this continuous point source is equal to the concentration field from
the instantaneous source measured at time u/x. Continuous single point sources
that emit in the convective boundary layer (CBL), where the mean wind does not

depend on height, have our main interest.

Atmospheric dispersion measured by air pollution control agencies is
usually observed at fixed points, the so-called Eulerian frame. The dispersion
so measured, is called abéblute dispersion in cbntrast with relative disper-
sion, where the dispersion relative to the center of gravity of the plume is
observed. Relative dispersion is difficult to describe in an Eulerian frame,

while much easier in a Langrangian frame, where the observer moves with




the particles released. Actually, both processes, absolute and relative

dispersion, can be described in such a Lagrangian frame.

The most well-known models for absolute dispersion are the Eulerian K-
models. They are based on the Eulerian conservation of mass equation. From
this equation a time rate equation for the concentration C is derived in which
the concentration flux wc appears: %% = - Q%%. This flux is related to the
concentration gradient by an eddy diffusivity K as we = - K %% (see also
Ch.1). In a model where the eddy diffusivity K is not a function of the
coordinates the concentration distribution is Gaussian, the Gaussian plume
models. In these Gaussian absolute dispersion models the mean concentration is
described as function of downwind distance x. The spread is determined by
spread parameters oy(x) and az(x) that are, besides a function of x, also a
function of atmospheric stability.Pasquill (1961) made plume spread functions
for different turbulence classes (Fig. 0.1). The plume behaviour in these
models is not dependent on source height, the plume axis is horizontal if no
boundary effects occur and no varying mean height is taken into account. These
models are shown to be incorrect in strongly inhomogeneous turbulence where
the height of the plume axis is seen to change rapidly with x. The exact
change is strongly dependent on source height. Note that the plume axis is the
averaged height of the concentration plume and.this changing of the axis
height with distance should not be confused with meandering, which is the slow

bodily motion of the plume.
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Fig. 0.1 Curves of oy and g, as reported by Pasquill (1961) for the turbulence
types
A: very unstable; B: moderately unstable;

C: slightly unstable; D: neutral; E: slightly stable;
F: moderately stable.




The first Lagrangian model we mention is the puff-model. We distinguish
material emitted at different timesteps from each other and call this a puff.
Puff-models describe how these puffs are advected by the mean wind, while a
relation is given for the concentration distribution evolution. These models
assume again that the concentration distribution is Gaussian which is not
always true. We turn therefore to more sophisticated models and refer for

further details to a review of Eliassen (1984).

In many Lagrangian dispersion models the velocity of each released par-
ticle is regarded to be a stochastic process. The dispersion is modelled by
the displacement statistics of an ensemble of released particles. The tur-
bulent flow, in which the particles are released, is specified by averaged
quantities. Many realisations of such a turbulent flow exist that all meet
these averaged values. Each particle of the ensemble is thought to be
released in such a different flow realisation. However, the dispersion models
do not give flow realisations but can suffice.with specifying flow properties
at the place of the particle. Together these particles form an ensemble whose
average values give us the dispersion characteristics. The concentration is
e.g. known from how many particles on the average are present in a certain

volume at a certain time.

We will mainly be concerned with absolute Lagrangian dispersion models.
Many different Lagrangian absolute dispersion models exist. These stochastic
dispersion models are also called Monte Carlo models. They differ in how
they formulate the effect of the turbulence on the motion of the particles.
Recently, simple and powerful models have been built based on a specific
stochastic equation, the Langevin equation. In this equation the effect of
the turbulence is modelled as a random force that changes the velocity of
the particles. These models are able to describe mean concentration, concen-
tration fluctuations, and if necessary more involved statistical variables
(relative dispersion). The most recent models can describe plume behaviour
in all turbulence situations. Even dispersion in very inhomogeneous circum=-

stances is stisfactorily described (see Ch. 4).

In this thesis we fill in the frame of ideas set up in this introduction.
The first chapter is a discussion of the atmospheric boundary layer. Our

interest is in dispersion of passive contaminants (that is non-buoyant) in




inhomogeneous boundary layers like the convective boundary layer. We discuss
the measured dispersion characteristics in such situations and we also discuss
preliminaries for Lagrangian models to describe these phenomena. The theoreti-
cal basis for stochastic Lagrangian models is built up in Ch. 2, where we

name especially the theoretical investigations we made, for a large time ana-
lysis of the Langevin model. Most Langevin models describe vertical dispersion
or vertical and lateral dispersion of non-buoyant material. After we have
given a review and interpretation of these models in Ch. 3, we build up our
own model. In our model the lateral dispersion is left out because the lateral
dispersion in a convective boundary layer is well-known and easy to predict
because it is proven to be almost Gaussian (Willis and Deardorff, 1978).
Downwind dispersion can be neglected compared to advection, so that our

model is 1-D describing vertical dispersion. Our model was published in an
article in Quart. J. Roy. Met. Soc. (1986) which is integrally included

in Ch. 4. Our study shows that the Langevin model is very powerful and can
describe the involved dispersion characteristics in very inhomogeneous situa-
tions, like in the convective boundary layer. However, it turned out that the
steady state of the concentration distribution in our Langevin model was not
uniform, which made us interested in comparing our model to another Langevin

model. This comparison is carried out in Ch. 5.
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1.3

Introduction

In this thesis we are concerned with dispersion in the atmospheric

boundary layer. Three main classes of boundary layers are distinguished:

neutral, stable and unstable (convective). The turbulence in these classes is
quite different and depending on this, dispersion in these layers show
different behaviour. However, the layer close to the ground, the surface layer

shows strong similarity and will be discussed first.

1.1 Surface layer

A concept very ofteﬁ used to organise experimental turbulence data is
scaling. Scaling parameters are sought so that turbulence variables, made
dimensionless with these parameters, show similarity, that is they collapse on
to universal relationships. These parameters can generally be interpreted in
terms of a characteristic height, velocity and temperature of the turbulence
process.

Near the ground there exists a surface layer where mechanical turbulence
is dominant and in which the so-called Monin-Obukhov similarity is valid. This
similarity theory says that all turbulence variables scale with Z,

T and 53;, where z is height, T, =T Eﬁ;, the kinematic surface
stress and we0 the kinematic surface heat flux. The characterist;c scaling
parameters become for lenght L, the Monin QObukhov length, u, = 13 for velocity

and T,= - weo/u* for temperature. The

length L is defined as the height where the productionvof turbulence by
buoyancy effects and windshear is equal. This length can be calculated by
equating buoyancy and mechanical production terms in the turbulent kinetic
energy equation (Businger, 1984). The kinetic energy equation in case of

horizontal homogeneity may be written in the form

189 | _ U, 85 o8 o luza b -
55p - T U g, t g We T3 Wiz u? + po) € o aum
where l q? = l T u is the kinetic energy per unit of mass, o the kinematic
2 2 i

Reynolds stress, u the horizontal mean wind, 6 the potential temperature, p
the pressure, L the density and ¢ the viscous dissipation. This equation is

derived from the equations of motion splitting all quantities in an average




value and a fluctuation (Reynolds decomposition). The first term on the
righthand side is the shear production term, which represents the rate at
which the mean flow contributes to the turbulent kinetic energy. The second
term is the buoyancy production term. The third term is a combined transport
and pressure term, which does not produce or dissipate energy.

We assume that the wind in the lowest layer up to the height -L, the
surface layer, is given by a logarithmic wind profile %% = U,/kz. Here k is
the von Karman constant. Then, equating the buoyancy and mechanical production

terms at the height z = -L we get

which yields indeed

-6 uy
L = ———— (1.2)
g weo k




1.2 Stable boundary layer

Above the surface layer .the boundary layer might have different ‘
stability. In a stable boundary layer (SBL) the air is cooled at the earth
surface due to outgoing radiation, subsequent conduction into the overlying
air leads to a stable temperature gradient. This usually occurs during the
night. The vertical motion of the air is suppressed and the only source of
tufbulence is wind shear (mechanical production). This mechanism can.sustain
turbuience only in a relatively thin boundary layer and that_is why a stable
boundary layer is only around 200 m deep. Profiles characteristic for the
windspeed, wind direction and potential temperature in the SBL are depicted in

Fig. 1.1,

The structure of the SBL is not only determined by turbulence, but also
by other processes like gravity waves (see e.g. De Baas and Driedonks, 1985)
and long wave radiation. Also due to the fact that this layer is usually non-
stationary. Generally valid expressions of profiles of the Reynolds stresses,
heat flux and velocity variances are difficult to find. Still, to get an
impression‘of these quantities we give the profiles found in a well behaved
SBL by Nieuwstadt (1984a) (Fig. 1.2) and refer further to observations of the
SBL structure which have been reported by e.g. Mahrt et. al. (1979) and in
articles of Nieuwstadt (1984a, 1984b).

In the stable boundary layer above the surface layer we can not find a
constant characteristic velocity, temperature and height scale. However, here
the turbulence variables scale with local values (Nieuwstadt 1984). The.
characteristic leﬁgth is A, the local Monin-Obukhov length, defined as

T3/2
A=~ ———
k(g/T)weo
-, .
—2 2y .
where v = [uw + vw 1%, k the von Karman constant.and, g/T the buoyancy
parameter. The characteristic velocity is Uy = (-uw(z))Z and the

characteristic temperature is T, = -w6(z)/u,(z).

In the limit % + o the dimensionless combinations of turbulence variables

approach a constant value. This region is called the z-less stratification

layer (Wyngaard, 1984). Here the scaling parameters are 1 = - uw and w8. The

characteristic velocity is ux(2z) and the temperature can be formed from these




scaling parameters analogous to the surface layer values.

These scaling regions are summarized by Holtslag and Nieuwstadt (1986),
whose graphical representation we give in Fig. 1.3. The regions are depicted
as function of the nondimensional height z/zi,and the stability parameter

zi/L. Here z; is the boundary layer height.

Stacks that emit non-buoyant material into the SBL have been observed to
have very thin plumes that do not spread over very long distances due to the
fact that vertical motions are suppressed by the stable stratification and
dispersion becomes a relatively slow process (Fig. 1.4).

The characteristic timescale of turbulence T is not the only timescale
involved. Also the buoyancy frequency N = (% %%)Z, where p is the mean air
density, plays a role. The behaviour of dispersion then depends on the
interplay of timescales T and N'1. Pearson et al. (1983) report that for large
dispersion times molecular diffusion becomes important involving a third
timescale. Their argument is that a fluid element in a SBL which has a density
that is different from its environment changes its density due to molecular
processes. For large times they expect the spread of a plume to continue to
grow due to molecular diffusion. However, data discussed by Britter et al.
(1983) and Venkatram et al. (1984) do not show this.

The fact that the dens;ty difference between fluid elements and their
environment changes in time makes a Lagrangian consideration more involved
(see section 1.5.2). An equation for the particle velocity is needed that
include the buoyancy effects due to this density difference and in addition we
need an equation for the density difference. In case molecular diffusion
indeed plays a role it is even more difficult. The fluid elements then loose
their identity. In the’Lagbangian study of Pearson et al. (1983) control

volumes are considered that might indeed loose the original fluid elements.

For further details on dispersion in the SBL we refer to the afore

mentioned articles and to the review of Hunt (1984).
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Fig. 1.1 Characteristic profiles of the windspeed S, wind

direction Y and potential temperature 6 in a stable

boundary layer (from Nieuwstadt, 1984a).
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Fig. 1.2 (a) The vertical profile of the moment flux t, nondimensionalized
with its surface value u§ as a function of z/h. The solid curve

is the function (1—:4/?1)3/2

,» where h is the boundary layer height.

(b) The vertical profile of the temperature flux we,
nondimensionalized with its surface value>§§; as a function of
z/h. The solid curve is the function (1 - z/h).

{c) The vertical velocity variance o;, nondimensionalized with u? as
a function of z/h, The solid curve is the function of
1.96 (1 - z/n)3/2, |

The data are grouped in intervals of z/h. At the

midpoint of each range the average of the nonfiltered

observations is shown by solid circles, together with

the standard deviation and the number of data. The solid

triangles indicate the average of the

filtered data. The observations of Caughey et al. (1984)

are shown by crosses. (From Nieuwstadt, 1984a).
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Fig. 1.3 Definition of scaling regions in the SBL (L > 0) as a function of the
nondimensionalised height z/h and the stability parameter h/L, where
h is the boundary layer height and L the constant Monin-Obukhov
length (Eq.1.2). The dashed line is given by z/L = 1. Basic scaling
parameters for the turbulence are indicated.
(From Holtslag and Nieuwstadt, 1986).

A temperature

Fig. 1.4 Shape of a plume released from a stack in (a) stable, (b) neutral and
(¢) unstable circumstances. To the left the temperature profile is

indicated, where the dashed line is the adiabatic profile.

(From "Luchtverontreiniging en weer", KNMI, 1979).




1.3 Neutral boundary layer

Neutral turbulence occurs when there are no buoyuancy effects. The only
turbulence generating mechanism is then windshear. This might happen when
there is cloudcover and strong winds. However, as already very small
temperature differences have strong effects, the flow in the atmosphere
seldomly occurs to be exactly neutral (unlike in windtunnels, where it is the
most easy to realize flow). Venkatram and Paine (1985) described dispersion in
a shear dominated boundary layer, usually called neutral, although as they say
also it is in fact a stable boundary layer. We will not discuss this type of

turbulence further.
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1.4 Convective boundary layer

1.4.1 Sublayers and scaling

During clear periods the sun heats the surface, which in turn heats the
air by convection. Strong upward air motions and large turbulence fluxes
result and the atmosphere effectively mixes released material in the vertical..
In this section we give a description of the convective boundary iayer and
characteristics of dispersion in such conditions. Dispersion models that
describe these phenomena are extensively discussed in Chapter 2 and 4.

We consider the horizontally homogeneous convective boundary layer (CBL),
where no clouds occur. The turbulence extends to a certain height, which we
call the boundary layer height z;. In the CBL convective turbulence production
(due to buoyancy effects) is dominant over mechanical turbulence production
(due to windshear), except close to the ground and the height, where the
production of turbulence by the two mechanisms is equal.

Except the surface layer below z = -L there can be distinguished two

other small layers, the free convection layer, where the adaption of the

surface layer to the bulk of the CBL the mixed layer takes place and the

entrainment layer at the top where interaction with the stable layer aloft

occurs (Caughey, 1984). Each region has its own scaling parameters. With the
basic scaling parameters a characteristic velocity, temperature and a length
can be formed. _

In the free- convection layer uy plays no role any more, but the scaling
height is still z. A characteristic velocity and temperature are defined as
function of the height 2z, kinematic surface flux wo_ and the buoyancy

parameter g/6. The characteristic velocity is w, = (% we 2)1/3,
.= (178 we)2/z)' 3

reach a height of about 0.1 Z;.

f

the temperature is 6 . This free convection layer might

At the top, from roughly 0.8 Zi, till 1.2 z3 in the entrainment layer

warm air from above entrains the boundary layer. The processes in this layer
are not yet well understood. We refer to a review of Driedonks and Tennekes
(1984).

We are most interested in the well mixed layer, that covers the largest

part of the convective boundary layer. In this layer all quantities are well
mixed'(Deardorff, 1974a,b; Willis & Deardorff, 197Y4; Deardorff & Willis, 1985;
Driedonks, 1981). The mean wind and potential temperature e.g. are praoticallyv
constant with height (see Fig. 1.5). We note here that recent "top-down and




bottom-up" theory on mixing in the CBL stgtés that the profiles might differ
from uniform depending on the ratio of the fluxes at the bottom and the top of

the CBL (Wyngaard and Brost, 1984).

Deardorff (1974a,b) found that the relevant scaling parameters in the mixed
layer are the boundary layer height Zj, a characteristic velocity scale wy
defined by

173 (1.3)

Wy = (% z; ﬁ;)
and the characteristic temperature 8, = - GE;/w*. All turbulence variables
should scale with these two variables wy and 6, to give dimensionless groups
that are only functions of z/zi-(mixed.léyer scaling). Deardorff found that
this is indeed the case for - zi/L >10 and u < 6 W,. The requirement limiting
the windspeed is usually satisfied, as wyx is often larger than 1 m/s, while a
typical u is 5 m/s. ,

The scaling regions in the‘CBL are summarized by Holtslag and Nieuwstadt

(1986), whose graphical representation is given in Fig. 1.6.

With these scaling parameters turbulence and dispersion measurements in
the CBL can be analysed. Ground level concentrations are often measured.
However, measurements in the atmosphere aloft are more difficult to obtain.
The CBL has a typical height of 1-2 km, while present measuring masts have at
most a height of about 300 m. The structure of the larger part of the CBL can
only be measured with aircrafts or floating balloons,., The first method with
aircrafts has the disadvantage of being very expénsive, while with the balloon
- method- large distances can not be covered in a short time and no instantaneous
view on the whole CBL can be obtained. For a survey on turbulence measuremehts
we refer to Caughey (1984) and for a literature survey on dispersion
measurements we refer to Vanderborght and Kretzschmar (1984). Laboratory
models are build to simulate turbulence and dispersion in the CBL. These
laboratory models revealed the more detailed structure. A description of .this

structure and of plume behaviour in the CBL follow.




mr—.___._ I [
7 ______
12
/ RUN 2A :
J 2A1
IO'—"‘_\( ———————————— f—_-
Q8¢ POT .
£ TEMP SPEED
N oe}
O.QF
02}
o.
293 295 297 2937 9 il 300 330 360

(K) (m/s) (degrees)

Fig. 1.5 Profiles of wind speed, wind direction and potential temperature.
The near-adiabatic iapse rate and the negligible mean wind shear
in the mixed layer are typical of strongly convective conditions.
(From Kaimal et al., 1967).
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scaling parameters for the turbulence are indicated.

(From Holtslag and Nieuwstadt, 1986).
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1.4.2 Turbulence structure in the CBL

- The CBL can be simulated in a windtunnel or a watertank. In such a
physical model attempts are made to duplicate the boundary layer at a reduced.
scale. But we have to be satisfied with an approximation of the atmospheric
situation. Atmospheric flows are e.g. much more intermittent than laboratory
flows and we can also not expect to find the full velocity probability
distributon function of the turbulence as the higher moments of this p.d.f.
are difficult to represent in a laboratory model (Plate, 1982). But for the
purpose of finding the general structure of turbulence the boundary layer can
accurately enough be simulated. In that respect the experiments in a watertank
by Willis and Deardorff (1974) gave new insight in the vertical stfucture of
the CBL.

We may also start from the fluid dynamic equations. Solutions to the full
equations of motion that describe the overall behaviour of turbulence are not
known as the equations are strongly nonlinear. However, numerically they can
be solved. Computer models are build that solve the equation of motion for the
CBL and results are obtained, that can not analytically be derived. Computer
models have the advantage that they-can be limited to a description of only
those dispersion characteristics that we are interested in, e.g. surface
concentrations. We mention the numerical models of Deardorff (1974a),

simulating the CBL, which added to the knowledge obtained in the watertank.

We now describe the insight in the CBL we gained from both laboratory
models and numerical models. In the CBL a highly organized structure of upward
motions, so-called updrafts, occur. They are accompanied by regions of
downward motion, the downdrafts. The air in updrafts moves much faster than in
downdrafts. Continuity requires that over a flat surface the average vertical
velocity is equal to zero. Therefore the updrafts occupy a smaller area in the

horizontal plane.

Due to the asymmetry in up- and downward motions the probability density
function of the vertical velocity at a certain height is found to be skewed
(see Fig. 1.7). The most frequent value of the velocity is not equal to the
zero mean velocity, but is found in downdrafts and the distribution has a
negative mode. The area under the probability curve at the positive half of

the velocity axis is smaller than at the negative half representing that




rising éir occupies a smaller area in a horizontal plane than sinking air. The
probability curve has a long tail for positive velocities, which is due to the
above discussed fact that rising air has relatively large velocities. The most
frequent velocity (the mode) becomes smaller with height, so that the velocity
distribution becomes more Gaussian. An example of such a distribution function

is given in Fig. 1.7.

Baerentsen and Berkowicz (1984) reviewed measurements that have been
carried out in the convective boundary layer in the atmosphere or in the
laboratory. They determined the profiles of Gg and ﬁ;, the second and third
moment .of the vertical velocity fluctuations. The profiles that fitted the

data best are given by

— 2/
u?/w? = 1.54(z/z ) 3 exp (- 2 z/2.)
3 ¥ i i

(1.4)

L}

Gg/w; 0.8 z/zi - z/zi)(T + 0.667 z/zi).‘1

We show in Ch. 2 that these profiles are needed as input for the Langevin
models. In the limit z/z, » 0 (reaching the free convection layer) these
profiles approach G§ - zé/3 and and-ag ~ z. This is consistent with free
convection layer scaling. In the free convection layer the variables

;g and Eg should scale with resp. w; and w}, where the characteristic
velocity wp is given by w, = (% we z) /3.

The profiles Eq. (1.4) are depicted in Fig 1.8.

Another very important parameter of convective turbulence is TL' the
Lagrangian timescale. The Lagrangian timescale is a measure for the lifetime
of eddies as experienced by a particle that travels with these eddies and
defined as the integral over the velocity autocorrelation. We . will review
measurenents that have been carried out to determine T, later, as they are
based on theory we did not yet discuss. We will see that T, -~ z /w,, which is

L i
in the order of 20 min.
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Fig. 1.7 Probability density of vertical velocity at three levels of a

convective mixed layer. (From Lamb, 1984)
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Fig. 1.8 a) The normalized variance of the vertical velocity fluctuations in
the CBL. Solid line: Eq. 1.4 Squares: Minnesodata data (Izumi and
Caughey, 1976). Circles: Aircraft measurements (Willis and
Deardorff, 1974). Stars: Water tank data (Willis and Deardorff,
1974).

b) The normalized skewness of the vertical velocity in the CBL.

Solid line: Eq. 1.4 Circles: Lenschow et al. (1980). Crosses:
Water tank data (Willis, priv. comm.).

From Baerentsen and Berkowicz (1984),




1.4.3 Dispersion characteristics

A

A picture of the turbulence structure in the CBL has now become mére
clear. Our main .interest is in the behaviour of particles that follow this
turbulent motion. Insight in the dispersion characteristics was given by
experiments, carried out by Willis and Deardorff (1976, 1978, 1981) and which
gave - quite surprising results. They performed experiments with a ground level
source and with several elevated sources and found that the dispersion
charéctéristics of a plume are strongly dependent on source height. This is
explained by the fact that the vertical structure of the turbulence is
strongly height dependent. The vertical spread for small times
(t < 0.1 zi/w*) of particles released from elevated sources is larger than
from a ground source as the turbulence velocity fluctuations (Eg) increase
with height. But for larger times the spread of the ground level source plume
increases even such that it becomes larger than for an elevated source at

times t ~ 2/3 zi/w*. (see Fig. 1.9).

Particles released from a ground level source almost all move
horizontally untill they are swept upwards by an updraft. The lifetime of
updrafts is very large (larger than 2 zi/w*) and particles in an updraft
remain in there for a long time. By the time most particles from the surface
source are picked up in an updraft the few particles that started immediately
in an updraft still move upwards., This causes the plume axis (the average
. height of the particles) to rise after a time in the order of zi/w*. Particles
released from an elevated source have by contrast a larger probability to be
emitted in a downdraft than in an updraft. Because the downdrafts too haVe a

very long iifetime, the plume axis moves downward for small times (Fig. 1.10).

When particles released from an elevated_source approach the ground they
begin to move horizontally and it takes a while before they get picked up by
an updraft. This results in a accumulation of particles near the ground and a
maximum ground level concentration occurs (Fig. 1.10). The times for which
this occurs become larger with source height. Particles from sources above the
middle of the CBL are already well mixed before they can reach the ground. For

further details we refer to the review of Lamb (1984).
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Fig. 1.10 Contours in the vertical x, z plane of the dimensionless concen-
tration for the source heights: (a) zg/z; = 0.067 and (b) z4/z; =
0.24, Source height is indicated by arrow on ordinate.

(From Willis and Deardorff, 1976, 1978). (See also Ch. 5).



1.5 Numerical models for dispersion

We now arrive af the numerical models used to describe dispersion in the
convective boundary layer. Mathematical models vary with the point of view
taken by the modeller. Two basically different descriptions of dispersion
exist, the Eulerian and the Lagrangian description. A Eulerian description
gives values at a fixed point, usually points at rest relative to the earth.
Lagrangian models follow a particle moving with the air. Of the Eulerian
dispersion models we will only give the underlying ideas, while the Lagrangian

dispersion models are the subject of this thesis.

1.5.1 Eulerian models

- In Eulerian models the dispersion process is formulated in terms of the
equation of conservation of dispersed material. This is a differential

equation for the (instantaneous) concentration ¢ reads

In this equation the instantaneous velocity u of the turbulent flow appears,
with all its details abqut random fluctuations. This fiuctuating velocity

u is not exactly known and the equation can not be used in this form. From
this conservation equation, equations can bé derived in which only averaged
values occur (Businger, 1984). These statistical values, e.g. the mean wind,
the averaged.concentration and flux, can be measured and the equations qan be.
used in applications. We derive these equations for one dimension (the z-
direction) decomposing u and ¢ according to the Reynolds convention in a mean
value Gg
W= u3 + wand ¢ = C + ¢ in the conservation of mass equationvanq averaging

gives us the time rate equation for C:

resp. C and a fluctuating component w resp. c. Substituting

2 o oc _ o | |

Substracting this equation from the original equation for ¢, we get an
equation for c. Analogously an equation for w can be derived from the equation
of motion., Multiplying the equatibn for ¢ with w and the one for w with c,

adding and averaging gives an equation for the flux wc. An infinite series of
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time rate equations for the moments wnc can be generated-in this way. The next
problem is that an infinite series of differential equationé can not be
solved. Theréfore, ﬁsually this series is broken off after the first or second
equation. The last equation kept is closed by assuming that the highest moment
still appearing in this equation is simply related to lower moments. These are
the so¥called "K-models" resp. "second-order closure models"

The K-models close Eq. (1.5) by the assumption that we = - K %%, the
"gradient transfer hypothesis". A basic requirement for this hypothesis is
that the eddies working on the plume are smaller than the plume itself. In
case the eddy diffusivity K is assumed to be constant the resulting
concentration distribution is Gaussian. These are the "Gaussian plume models"

(Sutton, 1953, Monin and Yaglom, 1977, Ch, 10.3), which are often used.

We show that dispersion of a ground source can be described with a K-
model. Generally, the eddy diffusivity should scale with the characteristic
velocity and length scales. In the surface layer the characteristic length of
the eddies is linear in height and the eddies that act on a ground source
plume are of the size of, or smaller than the mean height of the plume. Thus a
basic requirement for the gradient hypothesis is satisfied and the dispersion
of the ground source plume in the surface layer can be described by a K-model
(Tennekes and Lumley, 1972). The evolution of the plume might also be
described by a time dependent eddy diffusivity. When the plume grows, the K to
be used becomes larger and this can instead be described by K being a function
of time. Controversy exists about whether it is physically correct that K is a
function of time K(t-to) (Deardorff, 19T74c, Yaglom, 1976, Pasquill and Smith,
1974).

For an elevated source it is not obvious what K we should use. The K-
theory can only succesfully be applied for large times when the length scales
of the turbulence are sufficiently small compared with the width of the plume.

| More details about K-models can be found in the literature (e.g. Pasquill
and Smith, 1974 and Wyngaard, 1984),.

The second order closure models carry along the equation describing the

time evolution of the concentration flux. These models are more involved and
we refer to the review of Wyngaard (1984) and Monin and Yaglom (1977, Ch. 19).

From now on we will only be concerned with Lagrangian models.




1.5.2 Lagrangian models

Légrangian modéls describe the motion of particles that passively f@llow
the flow. The particles are moved around by the various turbulence eddies SO,
that their trajectories are very random. To model this behaviour the particlé ’
velocity is subjected to a random forcing (see Ch. 2). The model is then a
stochastic model as opposed to Eulerian models which are usually

deterministic. We describe concepts on which Lagrangian models are based.

- Stochastic processes like the velocity in these stochastic Lagrangian
models are specified by their probability function. A probability distribution
function (pdf) P(z,t]z',t') defines the probability that a particle which was

at z' at time t' arrives at z at time t. (We consider 1-D problems). From

Lagrangian models this pdf can be obtained by releasing an ensemble of
particles at zg4 and tracing their trajectories. The number of particles that
arrive at time t in a small interval around z, gives the

probability P(z,tlzs,O). This ensemble must consist of a sufficiently large
number of dispersing particles to guarantee that the mean is taken over all
possible trajectories. For an extensive discussibn of ensembles we refer to
Lamb (1984), | | |

This probability function for z is related to the mean concentration C'by

the fundamental theorem. This fundamental theorem for an instantaneous source

at z = Zgs that emitted a mass Q at t=0 reads (Csanady, 1980,p. 23-25, Monin
and Yaglom, 1977, Ch. 10.2). |

C(z,t) = Q P(z,t]z ,0). , (1.6)

This ensemble averaged concentration is not equai to an instantaneocusly

observable one. The last is only one realisation out of the ensemble of
possible concentrations. Each time we measure we will find another realisation
and the instantaneous concentration deviates from the ensemble averaged

oncentration. This deviation from the mean is called the concentration

fluctuation. In testing the model results against measurements we should keep
this in mind. ‘

We are only concerned with Lagrangian models describing averaged

concentration and concentration flux. In Ch. 2 we show that these quantities
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can be calculated from stochastic Lagrangian models that describe the motion
of particles that move independently from each other. One particle is releaséd

at a time. These models are called single particle models and describe

absolute dispersion. Other Lagrangian models that, besides the mean

concentration and flux also want to describe concentration fluctuations,
release at least two particles at the same time. The movement of the two
particles is made interdependent to model the fact that the turbulence is
correlated in space. An ensemble of such pairs of particles is released. These

more particle models are called relative dispersion models or puff-models

(Csanady, 1980, p. 85). The last name is confusing as it is also used for a
totally different class of models, the first Lagrangian models we discussed in
the foreword. If even higher moments of the concentration need to be described
more than two particles, whose motions are interdependent have to be released
at the same time. Models that simulate an ensemble of such groups of particles
are called multiple particle models. In Ch. 2 we will extend on the value of
absolute and relative dispersion models. In this chapter we will restrict

ourselves to absolute dispersion.

The concept of an ensemble-mean used in Lagrangian models corresponds to
a large number of measurements in a long series of similar experiments. We are
not often able to perform so many similar experiments in practice as
atmospheric conditions differ from hour to hour. On the contrary,
concentrations and fluxes in the atmosphere are measured as time averages
during one single experiment. In stationary conditions the following
hypothesis is usually adopted. When the averaging time is made sufficiently
large it is assumed that the time-averaged value converges to the ensemble

mean. This highly likely hypothesis is called the ergodic theorem (Monin and

Yaglom, Ch. 3.3). It enables us to test models describing ensemble average

quantities against time averaged measurements,

1.5.3 Taylor's theorem

An important relation for particle spread in homogeneous stationary
turbulence is derived by G.I. Taylor (1921). In one dimension (the vertical)

for an atmoéphere at rest Taylor's theorem reads

(o

z5(t) = 2W* [ (t - ©) R (et , (1.7)

(o}
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where Z2(t) is -the spread of the .particles, W2 the second moment of the
Lagrangian velocities usually taken to be equal to the standard deviation,of

the vertical veloc1ty fluctuations u? and is the Lagrangian velocity

3 AL
autocorrelation. This autocorrelation is a measure of persistence of the

Lagrangian particle velocity W defined by

RL(t,T) = WEIW(t + 1) /7 W2(t). (1.8)

The ensemble averaging in this definition is carried out over velocities at
two different times of the same particle out of the ensemble at two different
times; so that RL gives indeed the persistence of the velocity of one
particle. In stationary turbulence the average is independent of t and

R, (t,t) = R (r). Measurements of the autocorrelation function .in homogeneous
turbulence show that R (t) can be approximated by an exponential,

R(t) = exp(~1/T}), although the exponential function drops off too qulckly at
longer timelags. This can also be assumed for convective turbulence but in

stable stratification R, shows negative loops (Pasquill, 1984),.

For small lag-times t the velocity has not yet changed much, the
persistence is still maximal, expressed by an autocorrelation
RL(T) equal to 1 and Taylor's theorem gives for the small time behaviour of

the spread:

.zZ(t)=E§t2”' : fort+0. (1.9a)
For large lag-times the two velocities W(t) and W(t + 1) in Eq. (1.8) of a
specifié particle'out of the ensemble become uncorrelated and the
autocorrelation RL goes to zero. Tayldr's theorem gives for large time
behaviour of the spread:

;f(t) = 2’E§'TL(t -t for t + ® , (1.9b)

where TL and t1 are Lagrangian timescales defined by

3
(1

7 1
= £ RL(T)dT and t1 E o

T T RL(j)dr . . ' (1.10)

O~ 8

In a convective boundary layer TL is in the order of 20 min. Consistent with

the restriction of vertical dispersion the integral timescale TL in stable
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boundary layers is very small or zero. Because T; is almost zero it may be
convenient to use other integral timescales more characteristic of dispersion
in the SBL like thezone based on the first moment of R; that is

T = | f © R (1)dt | (Pearson et al., 1983 and Venkatram et.al., 1984). For
intermédiate times the spread depends on the shape of RL(r). Taylor's theorem
for the exponential autocorrelation in homogeneous turbulence reads

Z2(t) = 2 u?
(t) u3

- 2 - -
[t TL TL (1 exp ( t/TL)J . (1.11)

Taylor's theorem is only valid in stationary homogeneous turbulence. For
inhomogeneous turbulence no analytical results exist against which the models
can be tested. Lagrangian models can be tested against both time asymptotes in
stationary homogeneous turbulence. In Ch. 2 we will describe the Lagrangian
Langevin equation which shows the correct behaviour for small and large time.
Eulerian K-models have the disadvantage that they only describe dispersion
accurately whén the length scales of the turbulence are small compared to the

width of the plume. They only give the large time asymptote.

1.5.4 Lagrangian timescale T

We see that the Lagrangian timescale TL is an important turbulence
parameter appearing in the description of dispersion. This Lagrangian
characteristic was not yet discussed. In stationary, homogeneous turbulence TL
can be derived from Taylor's theorem using Eulerian measurements for the

particle spread and the turbulence quantity Eg. (Note that this is based on

--the usual assumption that the Eulerian spread-u§ is equal to the Lagrangian
spread W2 appearing in the Taylor's theorem). This is an advantage as Eulerian
measurements, which are taken at a fixed point are much easier to perform than
Lagrangian ones. For inhomogeneous turbulence a considerable number of
theoretical and practical investigations have tried to relate Eulerian and
Lagrangian timescales. Once such a relation is established, no Lagrangian
measurements are required for application of e.g. the Lagrangian Langevin
models (see Ch. 2 and 4). These investigations and the resulting

parameterization of TL will be discussed.
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Taylor's theorem can be used to deduce the autocorrelation Ry, from
Eulerian spread measuqements inistationary, homogeneous situations.
Integrating this auﬁocorrelation gives Ty, without having to make Lagrangian
measurements. Unfortunately turbulence in the atmospheric boundary layer can
be considered only horizontally homogeneous.‘Taylor's theorem can only be used
to derive the horizontal integral timescale (defined as the integral overithe
horizontal velocity autocorrelation). Li and Meroney (1982) give an review of
different studies, measuring the horizontal T; based on this method. These
studies postulate that thé observed Eulerian spread can also be described by a

universal non-dimensional function f such that

LS (t) = g (t - T)RL(T)dT = Z t f(t/T ) , (1.12)

O Yt

where vZ is the variance of the cross-wind horizontal velocity fluctuations.
The function f is fitted to the data of oy and the time scale T; is a
(stability dependent) timescale, determined by f(t/T = 1) = 0.5. Different
functional forms for f were found that all fit the lateral spread data. Fromr
this function HL(T) and then TL can be derived. Results of these experiments
gave values of TL as function of stability and it turned out that TL's derived
from different functions f, varied as much as a factor 5. This method is
therefore very inaccurate. In addition, the vertical integral time scale
(defined as the integral over the vertical velocity autocorrelation) can not
be deduced this way, because the atmosphere is not homogeneous in the

vertical.

. For horiZonfal timescales in inhomogeneous conditions and for vertical
integral timescales a theoretical relation between T; and the Eulerian
integral timescale TE was sought. In Eulerian measurements the fluctuations
appear to be faster, because turbulent eddies are advected along a fixed point
by the mean wind. This is expressed by TE being smaller than TL' The lifetime
of an eddy TL is equal to the ratio of the integral length L and its velocity,

statistically represented by ¢ so that T. = L/¢. We assume Taylor's frozen

L
turbulence hypothesis to be valid i.e. that the mean wind u is sufficiently
strong to blow eddies along the measuring point in such a small time that the
eddies do not change. This can be assumed if the turbulence

intensity { = OL/G is much smaller than 1. Then the Eulerian timescale is

represented by L/u and the ratio of the two timescale TL/TE is proportional to
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the inverse of the turbulence intensity
T. /T, = B = B/i, (1.13)

The turbulence intensity i is a measure for the stability and B is a

proportionality coefficient.

Corrsin (1963) derived Eq. (1.13) differently, relating T;, and Tp by
considering spectra. He assumed that the peak frequency ng and nj, in the
inertial subranges of the Eulerian and Lagrangian spectra are proportional to
the timescales Tp resp, Ty. Gryning in his thesis (1981) extended on this by
not only considering the inertial subrange. Het assumed that for n < ng resp.
n < np the spectra are constant and equal to the peak value., Corssin's
assumption about a relation between peak frequencies and timescales is not
needed, now we can use the fact that the spectrum at zero frequency is
proportional to the integral of the autocorrelation which in turn is equal to
the timescale:

Sg.(0) = 4o (f) R. (t)dt = 4 T 2 (1.14)

2 o2 .
E,L E,L E,L "E,L

The spectra, as function of the frequency n, are described by

S.(n) =C 32/3 62/3 n_5/3 n>n
E = F
_ . =2/3 2/3 -5/3
=Cu € nE n < nE
(1.15)
. -2
SL(n) = A€en n > n, -
-2
= A e ng n < n

where ¢ is the dissipation and A and C constants.

The timescales follow as

.62/3 e2/3 n-5/3 0-2

Tp=4C E E

and

-2 =2




Assuming that in homogeneous, stationary turbulence the total turbulent energy
I SE(n)dn = o; is equal to I SL(n)dn = 02 and ;izmlnatlng N, and N, leads to
Eq. (1.13) with for B the expression B = 2.5 C™""/A. ‘

Now a theoretical relation between T and Tp is establlshed we Wlll
discuss methods to measure B or B. The first method makes use of the fact that
TL and TE are the integrals of RL resp. Rg and 8 can therefore be obtained by
measuring both autocorrelations at the same time We will give examples after
discussing the ideas behind a second method Thls second method assumes that
the Lagrangian and Eulerian autocorrelations are similar in shape but
B:

displaced over a scale factor TL/TE

n SL(n) =8 n SE(Bn) and RL(BT) RE(T). o (1.f6)
Slowing down the fluctuation rate in Eulerian measurements by an appropriate _
factor B should give the Lagrangian values. This implies that the spectra
should also have the same shape but Egs. (1.15) shows, however, that that is
not the case. Empirically, a certain resemblance is noted though (Snyder and
Lumley, 1971). The insensitivity of TL for the exact shape of the
autocorrelation implies that this metnod_can‘give reasonable results. We
discuss examples of methods to find the relation between T; and Tp. The first -
example is a laboratory experiment for (neutral(or:stable) grid turbulence amd
not based on either of the above methods. The second example is an experiment

in the convective boundary 1ayef where both methods were compared.

The first example a labopatory study by Snijder and Lumley (1971) was
made to derive autocorrelations in grid turbulence. It was essentially a study
where particles with different terminal velocities were used. For each kind of
particle TL was measured via the autocorrelation function RL(r). Extrapolating
the results to particles that are identical to fluid elements (no terminal
velocity) one value for the turbulence TL was obtained. Snijder and Lumley
also measured L/o where L is the integral length scale and ¢? is the variance
of the turbulence velocities. They found that TL is eXactly equal to
L/o. Unfortunately they did not measure TE directly at the same time and a
value for B is not derived. Only if we assume that Tg is exactly equal
to L/u, we find B = 1 (as used by Hunt, 1984). Assuming that the lighter:
particles represent Lagrangian measurements and the velocities of the heavy

particles can be interpreted as Eulerian, Snijder and Lumley calculate
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that TL/TE = B = 3, These results are very indirectly derived and are based on

broad assumptions.

The second example an experiment in the atmosphere to calculate
B and B was done by Hanna (1981). He released neutral balloons in the daytime
boundary layer with which he made Lagrangian measurements. At the same time
Eulerian measurements were made at a tower and by aircraft. Deriving Ty, and Tg
directly from measured autocorrelations he finds an average B = 1.6. Assuming
that the peak frequencies TM in the Eulerian and Lagrangian spectra are
related to T resp. Tg by TME,L= 6TE,L he finds that 8 ~ 1.8. Plotting
the g measured from the spectra against turbulence stability given by the
turbulence intensity i he finds that here is a large scatter (for vertical
measurements i = ow/ﬁ and for horizontal measurements i = °v,u/a)' In neutral
conditions with strong winds (large 1/1i) the relation is best represented
by B = 0.4/i. For convective conditions -with low winds (small 1/i) the

relation is B = 0.7/i. (Fig. 1.11)

The conclusion is that the value TL is not easy to specify. In trying to
parameterize TL as a function of more easily measurable variables we meet the
following difficulties. The factor B between TL and T depends on the
turbulence intensity i, a measure for stability. But also the proportionality
coefficient B in the relation B = B/i varies with stability. Pasquill and
Smith (1984) quote a variation in B from 0.35 till 0.8.

Once the relation between TL and TE is established we encounter the
problem of parameterizing TE’ Different parameterizations for different
stabilities exist. Hanna (1981) states that the Eulerian timescale for

“horizontal fluctuations can be given by
TE =0,25 zi/u. (1.17)
Mixed layer scaling gives that the vertical timescale Tg is proportional to

zi/w* expressed as Tg = ¢ zi/w*. In our model applied to a CBL (Ch. 4) we will
use

corresponding to ¢ = 1 and B = 1. This in turn corresponds to B = 0.7 and i =

1.4, which are values for strongly convective circumstances. For further
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t

details about measurements in the atmosphere we refer to Hanna (1984).

T Tt T
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Fig. 1.11 Observed ratios B = TL/TE plotted versus inverse tufbulence in-
tensity 1/i = E/ow or E/ou. Lagrangian timeécales were obtained from
the autocorrelations. The letter at each point represents the

velocity component. A circled letter indicates a tetroon.

(From Hanna, 1981)
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1.5.5 Discussion of Eulerian and Lagrangian models

As a conclusion we want to summarize the advantages of Lagrangian
dispersion models over Eulerian models. Ih the simplest Eulerian models
vertical dispersion of contaminants is characterised by an eddy diffusivity K,
usually modelled as K = OZTL; These models assume that the turbulence is
Gaussian. Lagrangian models are numerically easier and can take into account
more aspects of the turbulence (e.g. skewness) without becoming more com-
plicated. In Ch. 2 we describe how this is done in our Lagrangian model
based on the Langevin equation. An advantage of this Lagrangian model is
that it combines the numerical advantages of Lagrangian models with the
advantage of an Eulerian input. The only Lagrangian parameter that is
needed, is the Lagrangian time scale of the turbulence T;. Another advantage
of Lagrangian models is that, with the position of the velocity of each par-
ticle known at all times, it is possible to alter parameters at every time-
step. In doing so, dispersion in complex situations can be modeled without
significantly increasing the sophistication of the model. The effect of
windshear on the vertical dispersion can easily be included in Langevin
models as a height-dependent advection term with further possibilities of
exten§ion to 3-D dispersion. Although it is still debated whether buoyant
plumes (releases that are hotter than the air) can also be described, we
will show that Langevin models are'very successful for non-buoyant plﬁmes even

in very inhomogeneous turbulence.
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Introduction

The dispersion models we are concerned with are all Lagrangian models. In
this chapter we discuss both old and new theory useful in analysing these

Lagrangian dispersion models.

These Lagrangian models describe dispersion by following particles as
they wander around in the atmosphere. Most of these models describe the
velocity of the particles and well as a random or stochastic process. In the
models dispersion statistics are calculated by releasing many particles and
averaging over the stochastic values. The concentration distribution is
calculated from the trajectories of a large number of particles. The first two
sections 2.1 and 2.2 are a general introduction to the theory of stochastic
process. We discuss the notations used in the models and we also give an
extensive explanation on what is understood by the concepts "particle" and:

"concentration",

We make a distinction between instantaneous concentrations as occur in
the real atmosphere, specified in single particle models or in multiple
particle models. We show that these instantaneous concentrations contain
progressively more information on dispersion when "more particle" models are
used. Based on the explanation of what we understand by instantaneous
concentration we give a different and more elaborate derivation of a relation
between Lagrangian and Eulerian quantities involving concentration values
derived by van Dop et al (1985). '

Lagrangian dispersion models describe the velocity of released particles
by equations which are autoregressive. Different autoregressive models are
used. For one of those we use the word diffusion as this Lagrangian
autoregressive process can also be described by the Eulerian diffusion
equation. The general dispersion process need not be equivalent to diffusion.
Brownian motion e.g. looked upon at coarse timesteps is real diffusion, while
dispersion in turbulence is only in the far time limit a process which can be

described by the diffusion equation.

Recently there is much interest in Lagrangian dispersion models based on
the Langevin equation. This equation describes the velocity history by a
damping term and a term for the effect of turbulence eddies, the random

forcing term. The third section 2.3 is a discussion of two recent theoretical
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researches into modelling this random forcing function. We will show that
although these researches seemed different, they use the same techniques: one
research is done in phase space, the other in fourier space. The requirements
put on the dispersion process in the models are different, however, in

stationary turbulence they give the same prescription of the random forcing.

The fourth section is a paragraph on a rule how to integrate and
differentia;e stochastic processes, the so-called itd calculus. This we need
in the fifth section which deals with large time behaviour of Langevin models.
Large time limits existed for homogeneous situations. We expand their '
derivation to weakly inhomogeneous Gaussian turbulence and show how this can
be done by rescaling the turbulence. We discuss the implications cf'this large

time behaviour.
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2.1 Lagrangian models for dispersion

2.1.1 Lagrangian concepts

Notations

In a Lagrangian dispersion description particles are followed starting
from a source. The desired insight in the dispersion process is obtained from
the statistips of a large number of such particles. Before we describe the
theory of these Lagraﬁgian models we first explain some of our notations to
avoid confusion. | ‘ ' '

We use capitals for Lagrangian variables and lower case Symbols for
Eulerian variables. The Lagrangian variable Z(t) denotes a trajectory of a
particle. The lower case z is used for the spatial coordinate, which is an
independent variable. The 1D-models, in which we consider the motion of a
particle only along one coordinate direction, say the vertical, describe the
Lagrangian vertical velocity W(t) and the Lagrangian displacement (height)

Z(t) of a marked particle wandering through a turbulent flow .

The probability, that a particle is found in the Eulerian height
interval €{z,z + dz] and that its vélocity W at the same time ranges between
the Eulerian values w and w + dw is defined as P(z,w;t)dzdw, where P(z,w;t) is
the joint probability density function (pdf) of the two stochastic variables Z
and W at time t. The bivariate pdf P(z,w;t) is related to the monovariate pdf
P(z;t) by

[ Plzuit)aw = P(z;t) (2.1)
all w ’ ‘ .

The average over an ensemble of released particles at time t will be
denoted by an overbar. This is an average regardless of the position of the
particles in space. We have for instance

ff w P(z,w;t)dzdw
W(t) =

. (2.2a)

] Plzywit)dzdu

The number of particles this ensemble is taken over might be described by a
superscript e.g. w(t)N. On the other hand the average denoted by brackets is a
conditional average over all released particles, which are located in a

interval [z,z + dz] at time t. We have
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j Ww P(z,w;t)dw
<W> = , . : (2.2p)
f P(z,w;t)dw

Close to the source these two averages are about equal, because all particles
can still bve found in the same small height interval. As we will see they
become very different in inhomogeneous turbulence when time proceeds.

The average (time average or average over relaisations) of Eulerian
variables, e.g. the fluctuating turbulence vertical velocity u3(z,t) will be
denoted by an overbar. The average of the n~th power of ug is ug(z,t). Note
that this average is, like the bracketed average over Lagrangian variables a

local average.

Particles and concentration

Lagrangian descriptions make use of the concept of particles. Because

different views on particles exist, we specify what we mean by a particle.

We consider particles:-that are small enough to follow .all turbulent
eddies. In the atmosphere the smallest turbulence length scale, the Kolmogorov
scale, is in the order of 1mm. At these small scales velocity gradients still
exist, but we assume that the particle does not get distorted by them. The
motion of the particle can than be described as that of a single point. On the
other hand we assume that the particle is so large that it contains many
molecules. The particle can then be said to have a concentration and as we

neglect molecular processes this~particle concentration is conserved.

Compared to the.dimensions of the flow the bartiéles are still infinitely
small and the concentration Que to a particle must be described in terms of a
delta function. However we would like the concentration to be a smooth
function. To obtain'such a description and to remain consistent at the same
time with this delta function description we could define the inétantaneous
~ concentration ¢ as the total mass of particles in a height interval Az .
divided by Az. This interval should be small compared to the dimensions of the
flow, but sﬁill S0 large that it can contain many particles. If the i-th

barticle contains a mass g; of the contaminant the definition of ¢ reads

. 1 Z+Az , )
C(Z;Azot) =2 E £ Z: gi G(Zi(t'})"Z')dZ' .. ‘ (‘2>.3)
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This concept gives smooth functions of z for the concentration. However,
the fact that we should consider length intervals Az to define concentrations
makes the notation rather involved and does not lead to new insights. We

therefore simply write

c(z,t) = % g8,6(Z,(t)-2) (2.4)
and remember that instead of a point z we should consider a small interval
around it. The dispersion of contaminants in the atmosphere is then described
by the motion of fluid particles containing a certain mass of contaminants. We
will call these marked particles. It is assumed that the marked particles have

the same dynamics as surroundihg fluid elements.

"Instantaneous concentration”

Consider a dispersion problem in the aﬁmosphere. Concentration
measurements made at a certain time are called instantaneous concentrations
c. From a time series of these concentrations and of turbulence velocity 63,
quantities like the average concentration, the flux u3c and fluctuation
correlations can be calculated. The last quantity, the spatial fluctuation
correlations c¢(z)c(z') measured in such an air dispersion problem, are non-

zero, as the turbulence is correlated in space.

Two kind of dispersion descriptions exist, single and multiple particle
models, which are both able to describe averaged concentrations and fluxes,
but only the latter can describe the nonzero concentration fluctuations. This
is-because the‘instantaneous concentrations in the single particle model do
not contain information on correlations in space (as we will show in the next
section). Atmospheric dispersion can not fully be described by single particle
models. A single particle model can only fully describe an experiment in the
atmosphere, where one particle at the time is emitted, with such time inter-
vals that their initial velocities are uncorrelated. Then instantaneous
concentrations of the singlevpabticle‘model contain the same information as
the measured ones. However, single particle models are very useful when we are
only interested in the averaged concentration and flux, because they are |
Simpler than multiple particle models. We elaborate this in the next sections
by first discussing single and multiple particle models and then comparing
them.
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2.1.2 Single particle models versus multiple particle models

In single particle models one particle at a time is released. An ensemble
is build up by repeating this process over many different realisations of the
same flow, while the initial velocities of the particles are independeht of
each other. The random forcings different particles experience due to the
turbulence eddies, are also uncorrelated resulting in the fact that the motion

of different particles is completely uncorrelated.

Multiple particle models take into account that the turbulence is
correlated in space. M particles are released at the same time with initial
velocities and the random forcings that are interdependent in order to model
this aspect of the turbulence. An ensemble is build up of a large number of
such groups of particles. This latter model is usually also and therefore
confusingly; referred to as a puff model (see General introduction where the

first Lagrangian model we discuss is the puff model).
In the following we will explain the difference between instantaneous
concentrations in single and multiple particle models and the restrictions

this puts on the use of these models.

Single particle releases

First consider a 1D experiment where N particles are released at one
point all marked with the same mass g. The particles are released one by one,
setting time equal to zero for each particle when it starts. The path of
particle 1 is given by Zi(t) and we define an instantaneous particle

"concentration" due to (only) one particle by
S (2,t) = g8 (2t (b)-2) (2.5)

where § denotes Dirac's delta function. The sub- and superscript s stands the
realisation in the single particle model and is used to distinguish it later
from a realisation (release) in multiple particle model values. We write

concentration between quotes as this variable has the dimensions of mass. (As

stated earlier we should consider mass per interval).

A definition of an ensemble average consistent with this particle and




concentration concept is simply the sum over all particles. The ensemble
average of the discrete quantity Es, the concentration CS, is e.g. defined by
———N N i
C (z,t) =c (z,6) = ] g8(Z7(t)-z) . (2.6)
i=1

This is consistent with the fact that the integral of the ensemble average
concentration over height is equal to the total amount of mass released Q:

jC(z,t)dz = Ng = Q.

The fundamental theorem Eq. (1.2) links Eq. (2.6) to the probability
function P(z;t) by C(z,t) = Q P(z;t) . We then get

N .
C(z,t) = 1 g8(z (t)-2) = Q P(z;t) = Q [ P(z,w;t)aw . (2.7a)
i=1

We see that in discrete notation the pdf P(z;t) is given by

=

P(z,t) = ~ ) 6(z8(t)-2),
i=1

where N should be large.

We also want to discuss the flux in a single particle model. Therefore we
need the bracketed moment of the particle velocity W. Moments of W in
continuous notation are given by Eq. (2.2b). Using the above discrete rotation

of the pdf P(z;t) the conditional average reads

N . .
% 5 owtenszie)-2)
n i=1
WD = - o
8 1 N i
= ) 8(Z7(t)-2)
i=1

The concentration flux is defined as 535, where 63 is the Eulerian
turbulence velocity that transport the particle. The flux in the single

particle model is given by
63(zl,t) G(Zi(t)-z)g = <W>gNP(z,t) = (<w>c)8 , (2.7b)

where the one before last equality uses that the particles are passive: the

"Lagrangian® particle velocity W(t) is identical to the value of the




"Eulerian" velocity field 53(z,t) at the location of the particle.
For products that involve higher powers of velocity we get by the same method
Gg(zl,t)s(zl(t)—z)g = (e (2.7¢)

Splitting the instantaneous concentration ¢ in an ensemble mean C and a

fluctuation ¢ and using u, = u, we get

3 3

—— —

.aga = (<w“>c>s - Egc + ugc (2.8)

This formula, a relation between Lagrangian en Eulerian quantities involving
concentration values, was also given by v. Dop et al. (1985) in. their appendix
A. Here we have shown that it is valid when concentration values are used that
result from a single particle model. To avoid confusion about when this
relation ‘is valid we have been very careful in our derivation about what
information the concentration values carry. We will show that concentration
values resulting from multiple particle models contain more information e.g.:
about concentration fluctuations and carrying out the same analysis we show

that Eq. (2.8) is also valid in multiple particle models.




Multiple particle releases

Now ‘consider an experiment where at each time M particles are
simultaneously released (M = 2,3...). In total an ensemble of N particles is
used. In these models the initial velocities of the particles in one reléase
JA =1, «es, H) are correlated and also the random forcing different
particles experience in one release are interdependent. The path of particle i
in the j-th multiple particle release is given by Zi(t).-The instantaneous
concentration for each release is defined as

~

e (z,t) =

o , . .
n gs(zy(t)-z) , (2.9)

1

e~z

i

This instantaneous concentration Em Eq. (2.9) contains more information about
concentrations in the atmosphere than the one cS in a single particle release
(Eq. (2.5.)). We will show that apart from being able to derive the average
concentration and the flux from this quantity Em we can also use it to derive
the concentration fluctuations. This information is contained in n because
concentration fluctuations originate from the relative movement of particles
with respect tdO each other. This relative movement occurs because of the fact
that the turbulence velocities are correlated in space and is modeled in
multiple particle models as the paths of particles released at the same time

are dependent.

We will show that averages of values linear in instantaneous
concentration in both single and multiple particle models are the same, while
averaged values of quantities nonlinear in instantaneous concentration are
not.

The average concentration in a multiple particle release is given by

considering the ensemble of N/M releases:

c.(z,t) =

N
3 .

NS

c, = Em(z,t) = )

N/M  N/M .
gG(Zi(t)-z) (2.10)
3=1

/M
)
=1

J i=1
Let us investigate the RHS of this equation. The fact that the displacements
Zi‘of the M particles in one release j are correlated does not affect the
ensemble averages of quantities that only involve values of one single
particle i. The ensemble average of such a quantity is the same as it would be

in a single particle release. This means that we can drop the index j and
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write the RHS of Eq. (2.10)

N - N
i ~
as ) g6(Z (t)-z) = c, - Eq. (2.10) becomes
i=1
Cp(z,t) = cplz,t) =¢Cg =Q P(z;t) . (2.11a)

The conclusion is that both single and multiple particle models,give the
averaged concentration. Other quantities linear in ¢ can also both be
expressed in values obtained both in a single or in a multiple particle

experiment, E.g. the fluxes u.c are given by

3
——N/M - N

~n= _ =n= _ J=n=,  _ _.m
u3c = (u30)m = (u3c)s = <W>C(z,t) (2.11b)

and Van Dop et al.'s relation is proven to be also valid for multiple particle
releases.

Quantities nonlinear in instantaneous concentration can only be expressed
in multiple particle results. For example the instantaneous concentration
fluctuations in the m-th release can be defined as

- - M M > . j
¢ (z,t)e (z',t) = 1 ¥ g° s(z)(t)-z)e(zd, (r)-z"), (2.11¢)
m m . . i i
i=1 i'=i
which contains all cross products of the M particles in the j-th release. The
ensemble averaged concentration fluctuation is defined as
—N/M  N/M

Em(z.t)ém(z',t) = 321 Em(z,wém(z',t) ~ P,lz,2'5t) .

As the variables Zi and Zj are dependent, P2(z,z';t) cannot be!split into two
single probability distributions. This is equivalent to stating that
quantities that are products of properties of different particles can not be
obtained from single particle releases., Quantities that involve products of
two particle values, like concentration fluctuations, can be described in a
two-particle model. To obtain higher order products more information is needed
than the insfantaneous concentrations in single and two particle models
contain,

We conclude that the number of particles to be released simultaneously




depends on how detailed we want to describe dispersion. If dnly the mean
concentration is required a single particle model is sufficient. Concentration
- fluctuations follow from a two particle model and if higher products (of order
M) of different particles are needed, a:M-particle release model should be
used.

We are interested in the quantities such as mean concentration C, the
‘mean height Z, width of the plume Z% and fluxes Egg which are all quantities
that can be given by a single particle model. In the following we will only
deal with single particle models.




2.1.3 Autoregressive models

The displacement and velocity of particles released into a turbulent
atmosphere is a stochastic process. In an unbounded area the average distance
to thé source will grow in time.and the displacement process is a non-
stationary stochastic process.

" In a bounded area the dispersion always reaches a steady state, where the
velocity moments of the particles are equal to those of the turbulence at that.
height. These turbulence moments are constant iﬁ.time and the velocity process
is stationary.

This is also true for the velocity of particles dispersing in an
unbounded volume, if the turbulence is stationary and homogeneous. In
stationary homogeneous turbulence the particles will on phe average experience
the same velocity changes, irrespective of where the particles are. The
moments of the velocity of the particles will rema;n equal to those of tﬁe
turbulence (which do not change in time) and the velocity process is |

stationary.

In inhomogeneous turbulence the velocity process . is not stationary,
because the velocity changes depend on the position of the particles. While.
the particles spread more and more ﬁhe ensemblée of particles will see a larger
pabt of the inhomogeneous turbulence and averaged quantities like the velocity
moments bécome a functioo of time. These averaged quantities are not
stationary anymore. However, the velocity process in an unbounded atmosphere
with inhomogeneous turbulence may still be considered approXimately
stationary, when the dispersion process is considered over timesteps for which
the average particle displacement is much smaller than the lengthscale

associated with the turbulence inhomogeneity.

The class of models we want to use are applicable to stationary processes
(Box and Jenkins, 1971, Ch. 4). The fact that the velocity of particles
dispersing in an unbounded inhomogeneous turbulent atmosphere is a (weakly in-
stationary process, whereas the displacement is not, implies that dispersion
can easiest be modelled by a model for the velocity). We will therefore be

concerned with dispersion models describing the velocity.

The velocity process of particles dispersing in a turbulent medium can be
modelled by the class of autoregressive models. An autoregressive model is a

discrete stochastic model that describes the value of the process at a certain




time as a linear combination of values of the process at previous times
together with a random forcing. So if the velocity at a time tn is denoted by

Wy and the random forcing at this time by . then

Woma, W . %o W o+ eeas ¥

2 "n-2 *u (2.12)

ap wn_p n

is called an autoregressive process of order p (AR(p)). The rationale behind
this name is that W, is expressed as a function of other variables, or in
other words W, is said to regress on these other variables. When W, is
regressed on previous values of itself, the model is said to be

autoregressive,

The order of the AR, that we use to model dispersion problems with, is
dependent on the properties of the dispersion process. The autoregressive
process that we use should e.g. exhibit the same autocorrelation function and
spectrum as the dispersion process. In the next sections we will show that
each order of AR(p) exhibits a different class of auto correlations and
spectra, where the exact shape depends on the coefficients o of the AR(p).
Zero order models, the well known random walks, are e.g. used to describe
Brownian motion seen on coarse timesteps. The Langevin equation, a first order
process, was originally used to describe Brownian motion seen at finer
timesteps. Later this equation was also used for homogeneous turbulence
dispersion and recently it is applied to inhomogeneous turbulence. Second
order AR process have certain disadvantages, that make that they are not used
for dispersion modelling. The theory of all these models is discussed in the

next subsections.



2.1.4 Zero-order autoregressive model

The first type of dispersion we want to discuss is dispersion of
particles due to collisions of molecules, which is called Brownian motion.
This type of dispersion, seen at coarse timesteps, can be described by a zero-

order autoregressive model.

The phfsical picture of this dispersion process is as follows. The
particles are considered to be so small, that collisions with the surroundlng
molecules result in random changes of the particles velocity. On the other
hand the particles are considered to be much larger than the molecules and the
particles feel a friction in the fluid, due to which their velocity gets
damped.'The time scale, at which the pahticle velocity has become totally
independent cf its initial velocity due to this friction, is called 3—1. This
Brownian motion is sometimes aiso called molecular diffusion, However, it does’
not descrihe the mixing of two chemically different compodnds, nor does it
describe the diffnsion of molecules just like turbulence dispersion does not
describe the dispersion of turbulence.'On the contnary, the particles
considered here, are much larger than the molecules and experience collisions
with many molecules in one timestep. The total effect of these collisions is

modelled as one random velocity change (random forcing).

The equatlon used to describe Brownian motion depends on the coarseness
of our description. The tlmescale B of this molecular process is very small
(order of a second) and when this process is described by a model in
which At >> B 1, the velocity changes with uncorrelated jumps so that it can
be modeled by a zero-order autcregressive process. In this subsection we will
anaiyse this coarser description of Brownian motion and leave the discussion

of descripticns on a'finer time scale to the next subsection.

We describe Brownian motion in one direction, say the z-direction. The
zero-order AR model we use describes the velocity W of the particle at each
timestep At. The time passed after release is t = nAt and the velocity at
this timestep is given by the equation

(2.13a)

Here r is a white noise process with normalised variance




= . = -n!
"nat 05 Tnat Tnrat §(n-n'),
~where énn' is the Kronecker delta defined by
snn' = 0. for n = n! (2.13b)
= 1 forn =n' .

In the following this interpretation will be given to all §'s unless otherwise
specified. The factor Y is the variance of the velocity <w2(t)>z and a measure
for the intensity of the collisions. In homogeneous situations Y is a

constant, while in inhomogeneous situations Y is a function of height z.

We discussed before that each type of dispersion should be modelled by an
autoregressive process, that has the same auto correlation and spectra. We
investigate how these functions look for a zero-order AR model. By showing
that they are the same as the measured autocorrelation and spectra in Brownian
motion an coarse timestep we show that zero-order AR models are good

descriptions of Brownian motion.

The autocorrelation function Rw for a process W is defined by

w(k+n)At kat
Rw(kAt,nAt) = (2.14)

Weat

and is a measure of "persistence" of the velocity. If the velocity is very
persistent, it has the same value at the next time step and the
autocorrelation is equal to unity. A process, where the velocity is completely
independent on the former value, has an autocorrelation which is equal to
zero.- If w'is—a~stationarywprocess,~Rw4isrindependentwofuthe-time kAt -and only
depends on the time lag nAt. For the zero-order process Eq. (2.13) in
stationary homogeneous conditions (Y = constant) Ry, becomes

2

" (k+n)at kAt
R (nat) = -5 (2.15)

y2 73 no
kAt

where k is arbitrary.

We see, as expected for a zeroQOEder model, that the correlation between
velocities at different times (n = 0) is zero, which means that persistency of
the velocity is absent.

The spectrum of a stochastic process is defined as the Fourier transform




of ithe autocorrelation. In discrete form the definition reads it

® 16 nAt
©s(ey) = Y R(nat)e .

1
[

The spectrum for the zero-order process W Eq. (2.13) reads

® iennAt .
S (6. )= ) R (naAt)e =1, | -~ (2.16)
W n W
n=0
We conclude that any stationary dlspersion process with a deltafunction-like
autocorrelation (Eq. (2.15)) and (thus) a constant spectrum (Eq. (2.16)) can

be modelled by a zero-order AR process.

We now should show, that the zero-order AR process for the velocity has
the same velocity autocorrelation and spectrum as the one in Brownian motion,
measured at coarse timesteps. This can indeed be shown. However, we will

instead investigate the displacement characteristics of this zero-order model,

because they give us the concentration in which we are mainly interested. We
show that the displacement characteristics of the zero-order AR-model are a

good description of Brownian motion measurements.

The displacement can be investigated as follows. Each timestep At the

nAt equal to W AtAt. The sum of these

displacements gives the trajectory of a particle as function of time. The

particle makes a displacement step AZ

resulting pr‘o'cess‘ZNAt = g AZnAt is called the discrete random walk and is a

standard problem in textbooks on probability theory (e.g. Chandrasekhar,
1943). We will discuss how we can calculate the pdf of this randomwalk Z. Once

we have this pdf P(z,t) we can calculate variables that can be tested against
measurements, to se whether the zero-order AR is a good description of
Brownian motion. '

The displacement Z follows from the difference equation Eq. (2.13)

nAt
AZ = Z -2 =W At = 21)’g w . (2.17)
nat (n+1)At nAt nAt nAt ‘
__—_-—_ = 2

with w_._ nAt =0, w WoAt®n ' AL 6nn, At and 2D = Y“®At.
We see that the fact that the velocity changes with uncorrelated jumps (Eq.
(2.13)), results in displacement steps AZnAt that are also uncorrelated,
AZ is a white noise process with variance 2DAt. Why we use the factor 2D

nAt




_specific about the random term r
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will be explained in subsection 2.2.2.

To calculate the trajectory Zn t of the particles we should be more

A

nAt® Textbooks deal with two special white .

noise processes. The first assumes a Gaussian white noise (Durbin, 1983, p. 6,

Eq. (1.4)), the other a dichotome process (Chandrasekhar, 1943). In the second

white noise process, the dichotome process, w t has an equal probability of %

nA
to be positive or negative. The displacement is a constant step length & (note
lower case) to the right or to the left AZnAt = +/- %(In the first case

AZnAt could have all possible lengths, as the probability of these lengths was
Gaussian). As (AZnAt)2 = 2 DAt Eq. (2.17) we see that & and At are related

by %2 = 2 DAt. The pdf of AZ reads )

P(AznAt) =% G(AznAt-1)+z G(AZnAt+2), (2.18)

(Chandrasekhar, 1943),

From the Central Limit Theorem we know that both processes lead té a
Gaussian distribution of the sum Z because this theorem states that the sum of
independent random variables, regardless of their distribution function, is
Gaussian. In other words this theorem it follows that the probability of the
trajectories Z is rather unsensitive to the exact description of the white

noise w So these two cases of zero-order models, one with a Gaussian white

t.
noise process and the other with a dichotome white noise process, both give
the same random walk process Z. We derive the exact randomwalk pdf in the

first case.

== - In ‘the first case-w:;,~is Gaussian-and-the-probability for-AZ is - -

nAt .
consequently also Gaussian. A Gaussian pdf is specified by its first and

second moment. The first and second moment of AZ read

AZ = 0 and (AZ )2 = 2DAt.
nAt

The pdf for AZ reads

- (Azp 5y )
P (AznAt) = (uﬂDAt) 2eXP{" —mt_}- (2.19)

Note that we notate the probability of a stochastic variable Z to be equal to



z as P(z). ,
Our goal is to specify the characteristics of the paﬁticles trajectory, so we

. ask for the probability that the trajectory ZnAt = Z AZ reaches a certain

o nAt
point z. The steps AZ are Gaussian distributed and uncorrelated in time and it

follows that the sum of these steps ZN is also Gaussian distributed (This

At
can bé explicitly proven, see v. Kampen, 1983, p. 27). Its pdf is specified by
the first and second moment that read

! = 2 =
zNAt 0 and (zNAt) 2DNAt

and the probability function of the random walk we looked for reads

(Zypg)*

—ol &
TDNAL . (2.20)

= | -% —%
P(ZNAt) = (4mDNAL) 2 exp

Chandrasekhar proved that P(ZnAt) in the dichotome case is also given by
Eq. (2.20) by considering all possible random walks of N steps and

\ap (Path integral method). We
will not repeat this lengthy derivation here, but use the central limit

determining how many of these end in point Z

theorem as discussed above, that states that also in this case the pdf of the

trajectories Z is given by Eq. (2.20).

Nat

Cont inuous form

Autoregressive processes are defined as discrete process, while we want
to test the zero-order AR for Brownian motion against the continuous Taylor
formula Eq. (1. ). To do this the discrete random walk is replaced by a
continuous random process. We can construct this continuous process by putting
t = NAt and Z = NAZ and letting N + « while At » 0. At the same time the steps
must become infinitesimal AZ + dZ. The probability function of the cont inuous
random or drunkard's walk zZ(t) = dZ becomes the continuous equivalent of Eq.
(2.19)

P(z,t) = (HnDt)-Z exp(-22/4Dt) . : (2.21)

From this probability function it follows that the particle spread is given by

72 = 2pt. It is clear that Z as discussed in section 2.1.3 is indeed a non-




stationary process, because the spread of the particles is a function of time.
We see that this zero-order model gives the large time limit as predicted by

Taylor's theorem Eq (1.7).

We proved that zero-order processes are satisfactory descriptions of
Brownian motion seen at coarse timesteps. For t < 8_1, this zero-order model
is not an adequate description since we expect from Taylors theorem for small
times that ZZ ~ t2, Besides to Brownian motion at coarse timesteps this model
also applies to turbulence dispersion seen at timesteps which are much larger

than the Lagranglan timescale TL’

In the next paragraph we discuss first-order models, which will turn out
to be a good description of Brownian motion and turbulence dispersion for both

small and large times.
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2.1.5 First=- order autoregressive models

We described the Brownian motion on a coarse time scale, where
At > 8-1. This is a natural description as the timescale B—1 in this proceés
is small. In turbulence the timescale at which velocities become uncorrelated
(the Lagrangian timescale TL) is of order of 100s. Here a zero-order model
would be restricted to coarse timesteps, which are larger thanv1003. In such a
description all small time details would be lost. If we look at finer
timesteps, turbulence dispersidn and also Brownian motion has to be described
by a different model. At such finer timesteps the velocities of the particles
are correlated in time, the particles remember their previous velocity. That
the next velocity depends on the current value, means that we have to describe
the velocity process by an AR process of higher order. Here we investigate“the

firgst-order process.

Brownian motion and turbulent dispersion

For the description of Brownian motion at small timescale, we return to
the physical description we gave of this process. Due to the friction, ekerted
by the fluid on the particle the particle looses its velocity. This can be
modelled by including a damping term in the governing equation. In continuous
form the equation governing for Brownian motion becomes

di _ BW + n  and az _ W, v (2.22)
dt ,
where u is the random forcing due to collisions., This equation is called the
Langévin equation and for the description of turbulent dispersion in
homogeneous stituations the same equatioﬁ is used, substituting the Lagrangian
timescale TL for 8—1. However, in turbulent dispersion we don't consider hard
particles but particles as described in section 2.1.1.

We investigate this first-order dispersion model. This Langevin model
involves a white noise process for n assuming that accelerations of the
particles happen in an infinitely small time and are uncorrelated in time. In
Brownian motion but also in turbulence this is a fair assumption; the
accelerations in turbulence occur at the Kolmogorov timeécale tk, which is in

the order of a second. We also know that tk/TL - (Re)_z, This means that in

highly turbulent flow (Re >> 1) tk and TL are wide apart, so that a rénge-of




timeé t exists tk Kt (KT for which the accelerations of fluid particles

L’
can be indeed be considered to take place in an infinitely small time and can

. be considered to be uncorrelated. The moments of this white noise can be

argued for as follows.

When the temperature and composition of the medium are constant
throughout the volume considered, Brownian motion is a homogeneous process.
The random forcing and the timescale B do not depend on z. This process can
then be modelled by a random force with zero mean T = 0 and variance
;TETYETEFT = 2028(dt)-16t't". Here ¢2? is the variance of the particle
velécity, when the particle is in thermal equilibrium with the surrounding
molecules: g2 = ﬁz,
molecular mass. This expression for n? reflects that the variance of a white

with k the Bolzmann constant, T temperature and M the

noise process goes to infinity for dt » 0. Because of this we prefer to write

the Langevin equation in incremental form, using ndt = du

dw = - %— dt + dy and dZ = Wdt. (2.23)
L

Here du is a Gaussian white noise process with du = 0 and

du(t')du(t") = 2 o?8 dt 8¢ 1yn+ For turbulent dispersion we substitute T; for
8-1 and then o2 is the second moment of the turbulence velocities ¢2? = Eg.
To interprete this all the discrete form

At
wn+1 = (1 TL)wn * A

is probably the most clear. This in connection with defining integrals of

. stochastic variables as will be discussed in section 2.4. Although we prefer
this last discrete notation, we will not rigorously avoid the continuous
incremental form Eq. (2.23).

We will show that by the above specifications of du it is ensured that in
Brownian motion the particles are continuously‘in thermal equilibrium if the
initial velocities are in thermal equilibrium. In turbulence dispersion we
consider particles that have the same mass as an equally large fluid element,.
"Thermal equilibrium” here means simply that the variance of the particle
velocities is equal to that of the turbulence velocities
(ﬁ(t) = 0 and ﬁ??ET = g2 = Eg). Before we show that this is ensured, we
discuss the first-order model and its autocorrelation and spectrum. Then we

will show that the models are fair descriptions for both small and large time




behaviour. This can be shown for both the velqcity and the displacement
characteristics.

We investigate the first-order dispersion model Eg. (2.23) in discrete
form, the form in which autoregressive processes are usually modelled. In
discrete form the Léngevin equation reads

,w( a W + Aun and

n+1)at % "nat At
| | | (2.24)
Z(neyB = Zppp WS

with a = 1 = At/TL. We investigate its autocorrelétion and spéétrum.

The autocorrelation Rw(kAt) of a first order velocity process Eq. (2.24)

can be caléulated by multiplying the equation by w( and ensemble

n+1-k)At
averaging. We obtain, if the correlation between the velocity and the random

forcing is zero, which we will show later (section 2.4):

=

w(n+1)Atw((n+1)-k)At wnAtw(n-(k-1)At, *

If the velocity process is stationary then we can divide this equation on both
sides by ﬁ§+1 = ﬁz. Then_from the autocorrelatiqn function definition
Eq. (2.14) we see that R, satisfies the relation
- R(kAt) = o R((k-1)At) for k 2‘1;'With R(0) = 1 we get R(kAt) = ak. For a
general first-order process Eq. (2.24) to be stationary we have to require
that -1 <acl 1. The negative a's correspond to an autocorrelation function
that for_iarge k's decéys exponentially to zero‘and oscillates in sign.'This
case is not of.our'intefest as we'have 0<a=1- %E < 1. For ﬁositive
a's and for large k's the velocity autocorrelation bgeomes
R(t) = 1lim (1 - %L)k = e Ti , | (2.25)
Ko L .
kAt = constant

where 1 = kAt. Note that the requirement that k is large or the requirement

At is small gi#e both the same i. So the shape of the autocorrelation function
of our firstvorder process Eq. (2,2”) is exponential and scales with TL. This
is consistent with the definition of Ty Eq. (1.10) as the 1ntegrai over the

autocorrelation from 1 = 0 till 1 = », Analogously the velocity
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autocorrelation of the Brownian motion process is an exponential function that

scales with 8—1.

From measurements it is indeed found that turbulent dispersion and alsd
molecular diffusion at a finer timescale can be described by exponential
autocorrelations. However, other autocorrelations like
R(T) = (1+1/TL)—2 describe the measurements equally well and it is concluded
that dispersion does not depend very strongly on the exact shape of R
(Pasquill, 1983, pp. 123-125).

A shortcoming of our Langevin model is that the autocorrelation
Eq. (2.15) has an undefined tangent at the origin. Near the origin the shape
of the autocorrelation function of turbulence dispersion should be determined
by the microscale t, , where t, is defined as
2
d RL(T)
t =-z de‘] ’
t=0

and the expansion of R(t) near the origin should read
R(t) =1 - =+ ...

Our Langevin model for turbulence dispersion does not show this behaviour for
times in the order of t, (order of second). However, this shortcoming is not

serious.

The spectrum of the Langevin equation can be calculated as follows.
»Npgqomposg“thg velocity and the random forecing function in a Fourier series
A(0) resp. B(8) defined by A - T

-]
isnAt
Woae = 2 A(B) e and

(2.26)

B(g)et®MAt

ot~ 8

Aun =

As Aun is a white noise process B is not a function of the frequency 8; duy has
a constant spectrum,

Substitution of Eq. (2.26) in Eq. (2.24) gives



A(D) = __B__._
i
e -Q

- Multiplying with its complex conjugate gives

Isf*

T 1+ of - 2a cos BAt

lace)|?

. Ty
Then expanding this in At neglecting terms of order 0(At®) results in
Is]*

1+ a2 - 2a + a (6AE)%

lace) |z =

o?

which by substituting a = 1 - &% and B2 = Tam)? = 2 & At gives
T T,
0? T, :
- 2 _ —_—
s(e) = [a(®)]* = 2 7 %7 & | (2.27)

This velocity spectrum has a 6-2 behaviour at frequencies large compared

to T;1. Monin and Yaglom (1977, Ch. 5.8) show that a Lagrangian spectrum of
turbulence velocities should have a minus-two power law in the inertial
subrange. Therefore the first-order process known as the langevin equation is

a good description for homogenecus turbulent dispersion on a finer time scale.

We showed that the Langevin model is a good description of turbulence
dispersion and of Brownian motion on coarse timesteps. Now we investigate the
velocity variance and spread of the particles as given by this model to show
that the random forcing function in this homogeneous model ensures that the
particles are always in thermal equilibrium with the environment if they are
released in thermal equilibrium. The Langevin equations in continuous )
incremental form Eq. (2.23) has constant coefficients in a homogeneous medium

and can be solved to give

/T mt/T w(y) T
W(E) = W e + e [ e du(t')  and
(ulo) ' . (2.28)
~t/T t t
28) =Wt (1-e -1 e T Thapeny v 1 [ duen)
oL _ L o L 5

where T; may be ihterchahged with 3_1 (Lin and Reid, 1962, Ch. 4).
It follows immediately with the above specified random forcing function and

initial conditions,'that W(t) = 0 and Z(t) = 0. This conclusion is only valid




in homogeneous conditions. In nonhomogeneous conditions du becomes a function
of displacement. Then we have to know the place of the particle from t'=0 till

t to calculate the integrals in which dp is involved.

Squaring Eq. (2.28) and ensemble averaging we get

~t/TL —t/TL tt (tr+t")/T
W) =W e + e [ [ e du(t " )du(e™)
[o2Ke]
~2t/T ¢ /T,
+ 2e j e : Wodu(t'5 .
(o]

The initial velocity W, is uncorrelated with du(t) and
du(t')du(t") = 2¢28 dt 8

prgn So we get

w2(t) = o? (2.29a)

We showed that the particles are always in thermal equilibrium with the

environment: W(t) = O and W2(t) = o2. Analogously we find

-t/T,
ZZ(t) = 2¢2 [t T, - TE (1 -e

) ' (2.29Db)
We see that the velocity process is indeed a stationary process, wherecas the
displacement is not.

Eq. (2.29b) is for both short and large times identical to Taylor's
classical formula (Eq. 1.10)

- Z%3(t) = ¢%t? .. . for t K TL‘ and

2
20°t TL for t » TL'

This first-order model (Eq. 2.22) or Eq. (2.23) with the proper initial
conditons appears to be particﬁlarly suited for the description of Brownian
and turbulent dispersion in homogeneous and stationary situations. This
homogeneous Langevin equation is not directly applicable to turbulent
dispersion in inhomogeneous conditions. In that case the random forcing
function has to be modelled differently. This analysis will be pursued later

in section 2.3, after we have prepared the necessary theory in section 2.2,




2.1..6 Higher order autoregressive models

The measured auﬁocorrelation and spectrum of dispersion processes that-wé
want to model, may be more complex than the ones described in the previous '
paragraphs. This might lead to. the idea of describing the velocity process by
a higher order AR-process, which has more degrees of freedom. waever, we show

that these processes lack an important property.

We introduce the concept Markov process. A Markov_proqess»is,a stochastic
proéess in which the next value only depends on the current value and not on
the previous values. Only zero-order and first-order AR processes possess this
Markov. property by definition. In the zero-order model Eq. (2.13) W

nAt

does not even depend on the current velocity W . The velocity is

therefore a Markov process, The displacement z(?n1iﬁ§s model Eq. (2.17), also
a zero-order AR process, is therefore also a Markov process. In the Langevin
model for W (Eq. 2.28), a first-order model for the velocity, the current
velocity depends on the velocity one timestep back and the velocity is thus
also a Markov process. From this Langevin equation an equation for the
disblacement can be derived, which can be shown not to possess the Markov
property, the individual displacement steps depend on former values. The

equation for ZnAt from Eq. (2.24)

Zme)at = Znat T Wnatlt

YA + (a W YAt

nAt (n-1)at * 2¥(n-1)at

Zoagh F @) o Zep gyt dHoyaglt -

This Z process is not a Markov process as values two timesteps back are

involved. It is a second-order AR process.

If a process is not Markovian, like our process for Z, weé can change to.a
description in which we include more variables and it can be shown that such a
multivariate process might be Markovian. In turbulence dispersion e.g. the
W ). Sometimes,

n+1’"n+1
reasons other than possessing the Markov property or not, make it even

process (Z,W) is Markovian as (zn,wn) determines (2

necessary to include more variables. E.g. in case of spatial inhomogeneity, we

cannot des¢ribe its effect on dispersion by only looking at the Markovian
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velocity process. We have to know where the particles are, to know the effect:
of the inhomogeneity. In other words we have to consider the bivariate process
W,2). |

Higher order AR processes do not possess the Markov property. In the next
chapter we will show that this is a serious disadvantage as we can no longer
derive its Eulerian equivalent the Kramers Moyal Expansion, that describes the
time evolution of the probability distribution. A second order model for the
velocity can be written as a Markov process for the acceleration and velocity.
However, little measurements exist for the acceleration and for these reasons
we think the Langevin model is the best AR process to describe dispersion
with,




2.31

2.2 Kramers Moyal expansions

- 2.2.1 Derivation of Kramers Moyal expansions

Tﬁe Langevin equation in homogeneous situations can-analytically be
solved. Expressions for the mean and variance of displacement and velocity can
be derived (see Eq. (2.28) and (2.29)). From these equations it followed that
in homogeneous turbulence the particles are always in thermal equilibrium. In
inhomogeneous turbulence this is not true, except for the release time (if the

initial conditions are so specified) and the steady state. In inhomogenedus

situations the resulting (nonlinear) Langevin equation cannot be integrated
and no'analytical results can be obtained. To prepare for an analysis of the
Langevin model in inhomogeneous conditions we derive an Eulerian equivalent of
the Lagrangian Langevin equation. With these Euleriah‘equivalents we show that
except for the zero-order model the dispersion models are not equivalent with
the diffusion equation. The higher-order processes can not be called
diffusion, ‘ |

In inhomogeneous turbulence we distinguish ensemble averages over all
particles from averages over particles at a certain height z, because only in
homogeneous turbulence these two avérages are equal.

Dispersion in inhomogeneous turbulence is described in the vertical by an
equation for the velocity W and the place Z of a particle. We consider a
general bivariate Markov process {(Z,W) in continuous notation, where Z and W
- are related by dZ = Wdt. By definition the evolution of a Markov process is

determined by its present state only. This is expressed in the general

Markov property for the probability density function P(z,w;t):

P(z,w;t) = _£ -i P(z=0,w-¥;t-dt)P, (olulz-¢,w-v)dedv , (2.30)

where Ptr(¢,w"2*¢,w-w)_is the stationary transition probability that a
particle at (Z-¢,W-y) makes a jump (&,¢) to (Z,W) in a time dt. Note that

® = dZ and ¢y = dW are Hagrangian variables, denoted by capitals, while z and w
are Eulerian coordinates. Since W and Z are related through dZ(t) = W(t)dt we

have
P (0, 0]z=0,w-0) = P (v]z-0,w-v)s(o-wdt).

Subsituted in Eq. (2.30) this gives
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P(z,w;t)

| P(z-¢,w-w;t-dt);tr(w"z-¢,w-w)6(¢-wdt)d¢dw
P(z-wdt,w-w;t—dt);tr(wﬂz-wdt,w‘w)dw- (2.31)

_Expansion of the integrand of Eq. (2.31) in a Taylor series, while

neglecting terms of higher order in dt, gives

P(z-wdt,w-y;t-dt)P,  (y[z-wdt,w-y) =

. - = (-1 " 3 ep, ) <
P(z,w;t)Ptr(wﬂz,w) - wdt = (PP, ) + X — n— - dt P
n=1 oW
(2.32)
In the following we will use
f Ptf’(wlz’W)dw = 1 s (20333)
all ¢
[P Glzwaw = b, (2.33b)
nA
o P n
J 38— wlzwa - ot (2.33)
oW oW

where the subscript w means that the conditional average is taken over
particles with velocity W. The identity (2.33a) is a general property of pdf.
The second identity (2.33b) can be rewritten as '

n J B n
[ @0 P (aW]z,wialai) = <(an)®>

that is Eq. (2.33b) is equivalent to the average of (dW)" over all marked
particles at height Z = z and with velocity W = w, It calculates the average
velocity change of particles at a certain point (z,w) in phase space. Eq.
(2.33¢c) estimates the change of this average when the Eulerian velocity w
change. As the velocity changes dW (integration variable) are not dependent on
the Eulerian velocity w (with respect to which we make the derivation) we can

take the derivation outside the integral sign.
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Substituting Eq. (2.33) into Eq. (2.32) we get

A 3(PP, )
P(z,w;t) = f P(z,w;t)Ptr(wﬂz,w)dw - dt f W dy

n, o (2.34)
® nd (PP_) " 4
s f T ety gy - aef P 2 .
n=1 ow

Using the Eq. (2.33) we get for the first term on the RHS of Eq. (2.34):.
[ Pzwit)P (w]z,w)ay = P(z,wst) [ P dv = P(z,ust) .

 Analogously, the last term of Eq. (2.34) gives

[P $g a0 - 55 -

In the second term we use, that we only consider particles with Z=z and W=w.

It becomes
PP
w28
3z
The third term yields

n ~
3" (PP, ) n ~
n tr _ 9 n
[ " ———av = &= [ 4" P, dy

aw“ 3w
n ~ n
_ 9 n _d n
= ;;; Pl w P, AV = ;;H PCY> .

Substitution of the above equations in Eq. (2.34) gives

n.n

- - aP a_ N
P(z,w,t) = P(z,w,t) - w dt,az + 1 — oo (P<y >w) dt T

Thus, we get the general KME for a bivariate Markov proéess (van Kampen, 1983,
p. 215)

n
(-1 3" P<y >w

{ }
n=1 n! awn dt

8P(z,wit) , 9P
at 9z

(2.35)

B~ 8
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Analogously, we can derive the KME for a monovariate process Z, This KME

for P(z;t) reads

3P v =0t
2 (z3t) = )
at n=1 92

<¢n>}

n (P, dt !

(2.36)
where <¢n> is the average of (dz)" taken over particles at the height z.

We derived KME's, a tool to investigate Langevinvmodels in inhomogenous
turbulence. In the next section we apply the general KME to the zero-order and
first-order autoregressive processes derived before for homogeneous
turbulence. This will show us that only the zero-order model is equivalent
with the diffusion equation. The treatment of dispersion for inhomogeneous

models based on the here derived general KME is presented in section 2.3.
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2.2.2 KME for zero order process in a homogenecus medium

We apply the KME derived in the proceeding section to the simple random
walk model, Eq. (2.17). This continous homogeneous random walk is the

monovariate Markov process dZ = 2Dzwt, where w is a (e.g. Gaussian) white

noise process with 5; = 0 and BE‘= dt. From thgs equation the

moments <(dz)™> can be derived. We have

<dZ> = dZ = 0 and <(dz)?> = (dZ)? = 2Ddt, while all higher moments are zero in
order dt. The KME for a general monovariate process Eq. (2.36) applied to this

random walk is a diffusion equation:

: . s
aP(gét) - D %E; . (2.37)

This is the reason why this special dispersion process is called a diffusion

process.

Here we also see why we choose the constant in the random walk process

Eq. (2.13) equal to 2D. It turns out that this gives the classical formulation
of a diffusion equation with diffusivity D. The pdf describing the probability
of the random walk trajectory P(z,t) = (unDt)-Zexp(-zz/MDt) (Eq. (2.2.1)), is
indeed the solution of this KME Eq. (2.37).




2.36

2.2.3 KME for first-order process in a homogeneous medium

Brownian motion on a finer timescale and also homogeneous turbulence
dispersion is described by a bivariate Markov Process (Z,W). The displacement
Z and the velocity W is described by Eq. (2.23)

dW = - H%E + dy and dZ = Wdt

L

with for du a Gaussian distribution specified by
<du> = dy = 0 and <(dp)2> = (dp)? = 202/TL dt. From this equation we derive
the moments of dW needed in the general KME:

@w> = - M4t a2y
W
L
2 202 2
<(dw)?> = =% 4t + 0(dt?)  and
W T

L

<(an)™ = 0(dt?) for n 3 3.

Substituting this in the general KME Eq. (2.35) we see that the bivariate

Markov process for (Z,W) corresponds with the KME

3P(Z.w;t) & _ __a__ !E 2 92P
At W3z T ow (TL) vor Ty aeE o (2.38)

In this first order AR model a timescale T}, is involved which causes its KME
not to be equal to the diffusion equation; we reserve with the general name
dispersion for these processes. We limited the discussion to homogeneous
first-order processes; inhomogeneous Langevin models will be discussed in
section 2.3, They will be shown to have KME's which are differential equations
of infinite order. Only in Gaussian inhomogeneous turbulence they reduce to a

third-order differential equation.
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2.2.4 KME for second order processes

A second order process for W is not a Markov process anymore. The
probability density function does not obey the Eq. (2.35) and no KME can be
derived. Our theoretical analyses break down as the derivation of the moments

of the random forcing 'is based on the KME's of our Lagrangian model.

Another idea would be to make a model for the acceleration. This
procedure of describing a higher derivative is useful in case the variable is-
not stationary. Differences of the variable might turn out to be stationary
(Box & Jenkins, Ch. 4). Such a model would imply very small timesteps while
little knowlédge of accelerations at this scale in the atmosphere exists. We

leave this idea therefore.
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2.3 Random forcing function in an inhomogeneous Langevin model

B 2.3.1 Introduction of two studies paper I and II

Until recently dispersion in inhomogeneous circumstances was still
problematic to model. Applying the homogeneous Langevin equation to these
circumstances lead to erronecus results. This equation could not for example
describe the complicated behaviour of plumes in the convective boundary layer
as discussed in Ch. 1. Recently two theoretical studies have been performed on
how to model the random forcing function in a lLangevin model, so that we can
apply ‘it to inhomogeneous turbulence. These studies resulted in formulas for
the moments of the random forcing function. In Ch. U4 we apply these formulas
to the convective boundary layer and herewith show the success of these
studies. The first research was done by Thomson (1984) to which we further
will refer as paper I. The second research by v. Dop et al. (1985) (paper II)
is an approach which for stationary circumstances leads to the same results
found in I.

We found that both paperé use the same mathematics. They db not directly
analyse the lLangevin equation, but analyse its KME (paper II) or the fourier
transform of the KME (paper I). We will show that the result of both
mathematical exercises is a set of moment rate equations for the velocity W of
the particle. Paper II gives them in real space, while paper I gives them in

fourier space.

The physics involved in the analyses is different though. The physics
differ in that paper I requires certain properties of the model for large
times whereas paperbll specifies reqhirements for all times. Paper I's
requirements lead to the moments of dy in stationary turbulence, while the
advantage of paper II is that it results in expressions for the momehts

of du that include instationary turbulence.

In the next three subsections the mathematics used in both researches is
given and intercompared to show that they are identical. Subsection 2.3.5 and
2.3.6 give the physics of both models and the resulting equations for the
moment s <(du)n>. The last chapter is a discussion of the physics used in both

papers and of the expressions for <(du)n>.
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2.3.2 Mathematics used in paper I1I: the KME and its moment rate equations

The mathematical analysis of the Langevin equation is made to investigate
what the moments of dp should be, in.order that the Langevin equation can
describe dispersion in inhomogeneous circumstances. In this chapter we discusé_
the mathematics used in paper II. The Langevin equation considered, has the

form dW = %— dt + dy. The moments of dpy are formally put equal to
L

<dw)™> = a, dt . (2.39)

We start the analysis from the KME of the Langevin equation. The general KME

for a bivariate Markov process is given in Eq. (2.35):
n
-1)" 3 (P<w >w

]
1 n! awn dt

3P(z,w;t)
ot

P
wa—z- ),

e~ 8

n

where the average <\pn(z)>w = <(dw)n>w is a conditional average over particles
with a velocity W(t) = w, passing through z at time t.

We can calculate <1pn>w from the Langevin equation. The Langevin model gives in
first order of dt

<w>w = <dw>w = [~ + a1(z)]dt and

L
T. (z)
L (2.40)

n n
<Y >w = <(dw) >w = an(z)dt for n>2.

Substituting Eq. (2.40) in Eq. (2.35) we get the KME of the Langevin equation

® v v
b+ ) (=1) a (z) &P (2.41)
=1 H v aw\)

oP(z,w;t)
ot

P 3 , wP
W T T ()
L v

From this KME we can derive moment rate equations for <w“> by multiplying

Eq. (2.41) with w? and integrating over w. They read

>

%% - - 3;: C, (2.42a)
3CW>C  _ 3<W3XC <W> (2.42b)
—at 3z + (a1 T)Cv

L
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IKW3XC _ _ 3<W3>C _ , <W3C
ot 3z 2 T, + (a

5 7 2a1<w>)C. (2.42¢)

These are the moment rate equations used in paper II.
In the next paragraph we turn to the mathematics of paper I and in subsection

2.3.3 we will compare them,




2.3.3 Mathemétics used in paper I, the equation for characteristic function

In this section we discuss the mathematics used in paper I to arrive at
an expﬁession for the random forcing function in the Langevin model applicable
to{dispérsidn in inhomogeneous turbulence, Paper I made use of moment
geﬁerating functions (mgf) £ of the probability function P(z,w;t). We will
first explain this concept. The mgf é(e) of a multivariate stochastic
process X = (X1,X2,..,Xk) is defined as a transform of P(X):

~ ’ .

g(8) = [ e  P(x)dx .

Expanding the integrand in a Taylor series we get

m m m

g(e) =m2=0 CRTIC LA SAETTRRE S (2.43)
i

Withj=1, 2, ees Ko
We see that the coefficients in the Taylor expansions of g(8) are the
moments of P(x). From this fact g gets its name of moment generating

function.

We will only make use of a slightly different concept namely the
characteristic function also denoted by g. This is the fourier transform
of P(g). This function has the advantage that it converges for all pdf's. It
is defined by . -

- 16.x
g(a) = [ e P(x)dx .

~

Expanding the integrand in a Taylor series we get

m, m, m,
- = (18,) (18,) "....(i6)) m,m, om
ge) = 7§ , : I AN
J.=

1 ]
m. <0 m1.m2!....mk. k

with j =1, 2, «.o., K.
In our first-order dispersion models we are concernedeith a bivariate

process (Z,W). We will not consider its general characteristic function, but




“‘”*““'*“-reads;~using—<(du0q>~= andtuforwn<z~1 Eq.. (2.39) and aj = 1:

we will make use of the marginal characteristic function (mef) of P(z,w;t),
which is defined'as_the Fourier transform in only one variable, here a

 transform of the velocity:

W

g(z,0;t) = I e 6 P(z,w;t)dw .

Expanding the integral in a Taylor series yields

(ie

n
n') f W P(z,w;t)dw .
0 !

S(Z,e;t) =

It~ 8

n

We have to be careful, as two kind of moments are in use (see Eq. 2.2):

— n
wn - I w P(z,w;t)dwdz
- J P(z,w;t)dwdz

Irwn P(w,z;t)dw I wn P(z,w;t) du = j wn P(z,w;t)dw
[ Pz,wit)aw  P(z;t) T c(z,t)

n
W > =

We see that the mecf gives us the bracketed moments <wn> times the averaged

concentration C(z,t):

19)"

n
T <V >C(z,t) . (2.414)

g(z,B;t) =
n

i~ 8
—~

0

For the mathematical analysis of the Langevin model we also need the

characteristic function of the random forcing function at a height z. It

p 16d ¢ 1" S
£ (8) = [ e % p(dp)an = ] =—a (z)dt =1+ ] a_(z)dt , (2.45)
z n-0 ™ n n=1 n! n

Paber I derived from the Langevin equation a time rate equation for the mfg of

W. After a slight modification we get a time rate equation for mef of W, which

reads
N - - ® n.n
%g . 3%® _ _ 8 &, - 1" )
t * 3952 ° T, 36 + 8 nz1 —— a_(2) + 0(dt?). | (2.46)

For the exact derivation of this equation we refer to paper 1. For future




discussions we note that subsituting the mef of W (Eq. (2. 44)) into the time
rate equation for this function Eq. (2.46) and equating powers of 6, gives us
- moment rate equations for the moments of W. This we will use in the next

subsection in the comparison of the mathematics used in paper I with the

mathematics used in paper II.
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2.3.4 Comparison of the mathematics used in paper I and II

Paper I and II derived moment rate equations for the moments of W. It can
easily be shown that the equations derived in paper I given by Eq. (2.46) are
equal to those derived in paper II (Eq. (2.42)). They are equal because the
mathematical analysis in both papers is the same although one analysis is made
in fase space and the other in fourier space. Altough this can easily be seen,

we will explain it.

The mef used in paper I is the fourier transform of the pdf P(z,w;t).
From this we expect that the time rate equation for the mef Eq. (2.46) is the
fourier transform of the time rate equation for P(z,w;t) the KME Eq. (2.41).
This can indeed easily be proven by multiplying the KME Eq. (2.41) by eiwe and
integrating over w. This fourier transform is then exactly equal to Eq.

(2.46).

It can also be put in different words, by saying that paper II also
derived the time rate equation for the cf Eq. (2.46), although not explicitly.
They multiplied the KME with w? and integrated over w to get the time rate
equations for <wn>. These operations for each single n can be combined.
Instead of multiplying the KME by wn we can multiply KME by f l§¥2 = eiwe
and then integrate over w. This is the same as fourier trans?;gming the KME.

We showed that both papers use the same mathematics and arrive at the

same moment rate equations for the velocity W.
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2.3.5 Paper I's derivation of the moments of the random forcing function

We discussed the mathematics that resulted in Egqs. (2.42) for the moments
of W in both studies. We-now turn to the physics of the analyses. These
consist of bequirements on the velocity statistics. of the particles. The
physical‘requiremegts‘différ in both papers. Paper I proceeded by considering
the steady state %% = 0. It was argued, that in this circumstance the released
particles must have the same velocity characteristics as the surrounding fluid
particles; so g = §, where §, is the mef of the turbulence velocity

fluctuations u3:

ug p(z,t) ,-

where p(z) is the density of the air p(z) = f P(z,u3)du3.

We note that paper I required that the mgf of the particle velocities g
and the mgf of the turbulence velocities éa are equal. From the equations for
these mgf's Eq. (2.44) and_(2.47) it follows that this is equivalent to

requiring that W>C(z) = ug

p(z). This is not equivalent as paper I claims

to <W™> = ug because C(z) = p(z), but only proportional to p{(z), because the
absolute value of the concentration C(z) varies of course with the total mass
released. The proportionality constant in C(z) = const p(z) is determinéd by
this total mass and the volume in which this mass is dispersed. From now on we
only consider situations where p does not vary in height so that p divides out

in Eq. (2.46) and this slight inaccuracy becomes unimportant.

Substituting the requirement > = ug in the steady state of Eq. (2.46)
we get '

A = if" 5%g o8

g 1 a(z) = —eeo + L for t + «

a -, nton 069z 'TL 30 *

We can write this equation, using the definition of the mef for dy
(Eq. (2.45)), as

- T4 3%
_ .4t 8 Ta dt” "a 2
fz(e) =1+ T~ 35t~ o3z ° o(dt?) . (2.47)
L g, g

a
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This analysis was made to derive equations for the function a,(z) in the

P

moments of du. By substituting g, and fz (Eq. (2.45)) in Eq. (2.47) and

equating powers of 6, there follow equations for a,(z) that we summarize by

dun+1 :H
- 3 3. n
a (2) = — +nTL Y (Du

ak(z) . , (2.48)

With these moments of the random forcing function <(du)n> the Langevin model

should give a good description of dispersion in inhomogeneous circumstances.
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2.3.6 Paper II's derivation of the moments of the random forcing function

Paper II derived the Langevin model for inhomogeneous turbulence by
comparing the Langevin model to the Eulerian conservation of mass. This
comparison is not made directly between the Langevin equation and the
conservation of mass, but made between the moment rate equations for the
velocity derived from either one. The moment rate equations for the velocity
as implied by the Langevin model were derived from its KME and are given in
Eqs.‘(2.u2). We will also derive the moment rate equations for the velocify

from the Eulerian equations.

The Eulerian moment rate equations, for the velocity are deduced from the
Eulerian equation of conservation of motion and of mass. They can, be derived
by decomposing the instantaneocus concentration 5 into a mean and fluctuating
part ¢c=C+cand analogous for other quantities involved (see e.g. Businger,
1984 ), These moment rate equation form an infinite hierarchy. The fifst three
Eulerian moment rate equations in a horizontally homogeneous case, and with no

mean flow read

du.c

%% =7 82 ! ' (2.49a)
du.c duZc du

37 __ 3 _—=3C _3

Tl 5% u3 3z te g and (2.49b)
duZc dulc du.c auz du. !

3 ___3 733 == _3 T 3 3

vl 3z u3 "z + u3 7 + 2 u3c % + 2(u3c) ( dt) . (2.49¢c)

——

(The notation ( )' = ( ) - ( ) is used.)

Paper II derived the moments of duy by comparing the Langevin moment rate
equations Egs. (2.42) to these Eulerian moment rate equations Egs. (2.49) in a
comparison for all time. In this comparison Eq. (2.8) is used, the equation
that relates Lagrangian moments to Eulerian moments. This analysis resulted in

the first three moments that are summarized by

—— —

aul o — '
ay(z) = e +n %ﬁ - 121 (Z) u3 K a, (z). (2.50)




These are the general equations as derived in paper II for the moments of the
random forcing in the Langevin model that make it applicable to inhomogeneous

~ turbulence.

To compare Eq. (2.50) with paper I's formula we deduce paper II's formula

in stationary turbulence. In stationary turbulence

n n n+1
du3 y au3 ) 8u3
- = L
dt i axi axi
aui
where in the last equality the continuity equation > - 0 is used. We want to

emphasize that even in a 1-D description of dispersioﬁ we still have to take

into account that the turbulence is 3-D. Also using that in horizontally

+

homogeneous turbulence un ! only depends on the vertical coordinate we have

. 3
n n+1

d du

b

dt dz °*

Using this in Eq. (2.50) we find that they are identical to Eq. (2.48).



2.3:7 biseussion

.Closure relations

In paper II expressions are derived for an(z) by comparihg the Langevin -
equation the Eulerian conservation equations. Correspondence of the Langevin
equation with the Eulerian conservation equations is not guaranteed by these
" formulas for the moments alone, in addition closure relations are needed.

The Langevin equation is equivalent to the Eulerian conservation equations for
the first three velocity moments in case the moments of dp are described by
Eq. (2.50), with as extra requirement that the following closure relations

‘must be satisfied:

du3 u,c
c—=r < - and (2.51a)
L
du..' u2e
3y _ _ 3
(uz0) (—t) T (2.51b)

In paper 11 the validity of these equations is discussed and though

Eq. (2.51a) has some justification, Eq. (2.51b) is generally not true. It is
found that Eq. (2.51a) is valid in case the following three assumptions are
satisfied: (i) The turbulence should be stationary, (ii) The concentration
distribution should not vary too much with height, so that the concentration
distribution can be assumed to be 1ocallyllinear and (1ii) The velocity- -
autocorrelation is assumed to be exponential. This last assumption is also

made in thé Langevin model and is often validated by experiments.

We want to compare the closure relations Eq. (2.51) with those applied in
the often used first order (K-) or higher order closure models and see whether
that gives us an idea of their'validity. These'Eulérian models break off the
infinite series of moment rate equations and close the last equation kept (see
Ch. 1). We briefly review the closures of these Eulerian equations where we
follow Deardorff (1978) for the case of homogeneous turbulence. In homogeneous
turbulence the concentration distribution is approximately Gaussian. Deardorff

stated that when the first equation for %% Eq. (2.49a) is closed

with u3c = - K %%, the Gaussian solution with the correct spreading is




reproduced for a single source, when the diffusivity K is given by

! - 2 ) - - -
K(t,e ) = uZ T {1 - exp(-(t-t )/T )},  (2.52)

L
where to is the release time.
To obtain the Gaussian solution for a single source in the second order

closure models the closures should read

u;c = -K %; E;E , . (2.53a)
u.c

1 ap 3

1.8 3 (2.53b)

p 9z TL,

]
and K given by the above formula Eq. (2.52).
The same Gaussian solution will result in third order closure models when the

closure relations read

- = 3
¢ = 3 u? - K — u% , 2.54
u3c 3 u3 u3c Y u3c (2.54a)

—  u?c
1 ap 3
— —— 22 ewm— - u
. u3c 52 TL (2.5U4Db)

and K again given by Eq. (2.52).

Problems with these Eulerian model closures do arise though, because when
the model is thus closed K should be a function of time, whereas K is an
- ——-dintrinsic function.of .the.fluid. In the general case of multiple, non- _
simultaneous sources (different to's) K is different for each source and K can
no longer be specified as one overall function of time t. Deardorff then
points out that depending on what approximation is assigned to K, other

closure relations for the pressure terms might give better results.

Although, the closure relations can not be exact, they give us an idea of
how well the Langevin equation describes a dispersion process. In a situation
where buoyancy, viscosity and the coriolis force can be neglected the closures
Eq. (2.53b) and (2.54b) become equal to the closures that guarantee that the
Langevin model is equal to the Eulerian conservation equation Eqs. (2.51).

This fact will later be used in Ch. U4 where we intercompare different Langevin
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models."

The question arises why in paper II closure equations occur, while in
paper I not. We show that this is go because the closure relations of paper II
are always satisfied in the steady state. Analogously to the general

derivation of the closure equations in section 2.3.6 we derive the first three
n

3 _
(paper I's requirement). We get a first equation which is identically zero and

‘then

Lagrangian moment rate equations for the steady state using <> = u

du? _
(az a1)C 0
(2.55)
2uZ  Bul
-3 _ 3y .
(a2 TL v )C =0

The first three Eulerian moment rate equation are identically zero in the
steady state so that if the Langevin model has to correspond to this Eulerian
description, the first and second Lagrangian moment rate equations should also
be identically zero. From this, the steady state equations for <(du)n> follow
without the need for closure relations and that is the reason why they do not
occur in paper I. Or in other words the closure relations found in paper II

are always satisfied in the steady state.

As a consequénce the approach in paper I is not able to deal with
nonstationary turbulence, where no steady state exist. Furthermore this
approach does not give us an idea of how good a description a certain Langevin
model is in the course of time, as no comparison with the Eulerian
conservation equations is made. In Ch. 5 we will use Paper‘II‘s method to make

an intercomparison for different Langevin models.




Moments of random forcing

We discussed the mathematics and physics of the analysis of the Langevin
equation in paper I and II which in both cases lead to the same formulation of
the random forcing applicable in ihhomogeneous turbulence. We want to discuss
the result, the relations Eq. (2.50) found for the moments of the random
forcing function dpy. In stationary inhomogeneous but horizontally homogeneous

turbulence the first three moments are given by Eq. (2.48)

du
- 3
a1(z) T dz
uz  du®
e p 343
az(z) = 2 T * and
L
u:  du® du?
- 23 3_ 373
ag(z) = 3 T, Yaz T 3Y37qz -

In Ch. 5 we show that the Langevin model where the random forcing
function is modelled by Eq. (2.48) is indeed a good description of dispersion
in inhomogeneous circumstances.

We want to discuss the form of the first moment <du>/dt =,dﬁ§/dz. This
first moment models the "drift acceleration" particles experience in
inhomogenecus circumstances. Particles that.move into a region with a
larger ﬁg tend to obtain larger velocities fluctuations (not velocities!) and
disperse therefore more quickly.- A mean acceleration into the regions with
larger G§ is generated. This is modelled in the first moment of du as can be

seen by averaging the Langevin equation:

—
aw> _ Y3
dt dz °

We see a mean acceleration occuring.

(The fact that the mean acceleration appears in the increment notation of the
Langevin equétion multiplied by dt nl <du> = dﬁ?/dz should not be
misinterpreted, it is not a drift velocity!)

The papers I and II modelled the Langevin equation such that it is
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applicable to inhomogeneous turbulence. In such circumstances not only the
velocity u3 but also TL might vary with height. The effect of T;, varying with
. height is, that the velocitiy of particles that move into a region where TL is
larger, becomes more persistent. A mean acceleration into these regions with
larger Tj appears (Durbin and Hunt, 1980). The effect of height variances. in
TL does not appear in the random forcing but is automatically incorporated in
the friction term - z——~. This will be shown more explicitly in section
2.5.4, where we derivé a large time limit of the Langevin equation and where

this drift term will appear.

. Let us consider the special case of Gaussian turbulence. The uneven

moments of uj are then zero, while the even moments are related by

2n (2n~1)! ,~—~—.n
u, (z) = ———— i(z)) .
3 2 Vn-1y)y 3

The first three moments of du given by Eq. (2.48) reduce to:

du§
a1(z) ol it (2.56a)
uz
a2(z) =2 T; and (2.56b)
L
a3(z) =3 E§ - (2.56¢)

We will prove that in Gaussian turbulence all higher moments of dy

are zero. We depart from the equation for the characteristic

function fz(e) of du in Gaussian turbulence. The general equation is Eq.
(2-)"7):

N dt 6 3g . dt 33%g

£F(B) =1 + 2= =2+ = + 0(dt?)

Z T 9 zo8 '
Lg% g 2

where g€ is the mef of us. In stationary Gaussian turbulence the mcf reads

g = exp(-¥ o2 WZ(2))p | (2.57)
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If we substitute this in Eq. (2.47) we find

. 2 32
- du3 At du3

= —_— 2 =¥ 2 3 2 2
fz(e) =1+ 06 A ==+0 T, uz + ¥ 8% At u =t 0(At?).

(2.58)

n . A
?—; £(8) ] and f(e) is a cubic polynomial in g, all
5] =0

Since <(du)n>
moments higher than the third are identically zero, which completes our prove,

This concludes our investigation of the moments of the random forcing in the

Langevin model, as applied to inhomogeneous Gaussian turbulence,
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2

2.4 Itd caldulus

Iﬁ this chapter we discuss how to differentiate and integrate stochastic
variables. For instance in the formal solution of the Langevin equation
t t
-W(t) = W(o) = f %‘ dt' + f du(t') (2.59)
o L o]
an integral over a stochastic variable appears. This stochastic variable is
not differentiable and the integralvis therefore not a well-defined function,
untill we have given an interpretation. An integral over a deterministic
variable a is defined in the Riemann-Stieltjes sense
lim %
jo= ) a(t, )at..
a0 j Y Y
It can be shown (Durbin, 1983, p. 8; Oksendahl, 1980, Ch. 3) that unlike in
*
the Riemann-Stieltjes integral it makes a difference which point tj in the

interval Atj = tj+1~tj is chosen, when we apply this definition to an integral
*
over a stochastic variable. The choice tJ = tj (the left end point) is called

the nonanticipatiﬁg definition of the integral and the integral'is calied the

It8 integral. This feature of not using "future" values gives the It6 integral

an advantage over other interpretations. For instance an integral

Z
f TL(z)du(z) is in the non-anticipating way defined as

2
S

-1 : |
:ZO SICRSTCANPENCREP o ‘
where zO = zs and zm = Z. The functiqn TL(zj) is independent of the increment

u(zj+1) - u(zj) and only depends on the "past", no "future" values'are
involved. Here we recall that in section 2.1.5 we stated that the discrete
form of the Langevin equation is preferable because of the discrete definiton

needed to interprete integrals of stochastic variables.

We have to give a differentiation rule that is consistent with the chosen
integration rule. With the It8 integral comes an Itd differentiation rule,
together called It8 calculus. (@ksendahl, 1980, Ch. 3).

The Itd differentiation rule states that if Z is a stochastic variable  and
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if.w(Z;t) is a function of Z and t, the differential y is given by the full

Taylor series

n
%T Q—% (az)? . (2.60)
15z

Q.
<
13
wlw
e
Q.
cr
+
It~ 8

In this series we may have to retain higher order terms of dZ. In case dZ is a

random variable with higher moments of order dt.

First we give an example of the differentiation rule, which we will use

in the next section. This is the calculation of the differential

Z dz!
a ] ") ,
zZ

s
where Z is a stochastic variable.

We put
Z dz'
v=
T(z')
z
)
It6 calculus states that because Y is a function of the stochastic variable Z
we have ’
dy d?y
d =dZ e + dz 2 — + e e 2161
lbz dz 2 % (dz) dz2 2 ¢ )

We calculate the terms on the RHS:

A
dy d az' 1
—_— = — = .62
iz - az zf TZY - D) (2.62a)
d2y 4 2 1 1 -dT o
w5 T T Tow (2-620)
Substituting Eq. (2.62) into Eq. (2.61) we get
4z' v (@) 4", 1
d ? Sz oy 4 () (2.63)
2 TET T L at o T

This was the calculation of the differential we need in the next section.

We illustrate tﬁis rule further by an alternative derivation of the Eq.
(2.50) for the moments of duy We apply the It8 differentation rule to
Y = W', It gives
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2.0
'ngg—-(dw)z.’.o-.

L
oW

aw”

dW +

n W aw 4 n(n~1)w“-2(dw)2 + e

Taking the conditional average using that <wm(dW)P> = <wm><(dW)P> and
substituting the moments <(dw)“>, derived from the Langevin equation, we get

n
KW W -1 _ -2
—ar-— = n '-'-T—‘— n(Wn >al + Z n(n 1) <w‘n >a2 + ...

L
Note that the moments <w“> are per definition no stochastic functions and
their derivatives with respect to t do exist. If we require that in a steady
state <wn> = ug, then the above equation gives us the same expressions for a
as expressed by Eq. (2.50).

n

Last but not least we give an example to show the consistency of Itd
differentation and integration while illustrating that "normal"
differentiation and integration rules do not apply. We consider the stochastic

function
f(wt,t) =C exp(wt - t/2), (2.64)
where Wy is Gaussian white noise with pdf

P(wt,t) = (2nt)_z exp(-mE/Zt).

(see also Durbin, 1983).
Itd differentiation applied to Eq. (2.64) gives

_ of 3%f 2 , ofF o _ -
df = awt dmt + ¥ awg (dwt) + 3t dt = f dmt + ¥ £ dt %y £ dt
and we find the equation
df = f du . (2.65)

This is a surprising result as from integration rules for non-stochastic
variables we would have expected that the solution of Eq. (2.65) would be

£ = C explug). ‘ (2.66)



However, to prove that Eq. (2.64) and (2.66) are not consistent, we It&-

differentiate the last to give

af 32f of
df = S, dw, *+ % S0 b+ e dt

= £ Buw, + ¥ £ dt

and the inconsistency is proven.

We showed that we have to be careful in differentiating stochastic variables.
The same goes for integration. We will show that Itd integration of Eq. (2.65)
gives Eq. (2.64).

Itd integration of Eq. (2.65) gives
m=1

I af = )} flw, ,t.) tw ~w, J.

t.’ - t. £,

=0 j SRR

To prove our first point we average this equation, where averages of a
function 8(wt’t) are defined as

(-

glu,,t) = _£ 8w, £)P(w, ,t)du .
This gives zero on the RHS, because of the non-anticipation and we get
f = C, where C = constant.
Executing the averaging of Eq. (2.64) we get

T - Cexp(ot/2) 02 -
f- [ explu -uirat)do, = C

(2mt)?.

and we proved that Eq. (2.64) and (2.65) are consistent in It® calculus.




2.5 Markov limits

2.5.1 Introduction

We are interested in the.behayiour of the marked particles at larée-
travel times. This behaviour can be decribed with the concept Markov limits.
These limits are Lagrangian equations that déscribe thé time history of the |
trajectories Z(t) for large times., However, we have to be careful in

specifying what we mean by large times.

In homogeneous turbulence the only relevant timescale is T, and by large
times we mean times large compared to T; that is the limit t/TL > o,
In inhomogeneous turbulence T is not a well defined integral timescale
anymore as the velocity is not stationary. (Durbin and Hunt, 1980). However,
in practice T is defined as described in Ch. 1. In addition T; is no longer
the only relevant timescale. There is also another timescale Ti which is
indicative for the effect of the inhomogeneity. How in detail this timescale
Ti depends on the turbulence properties, will be kepﬁ open here. When the
inhomogeneity timescale Ti is much larger than the Lagrangian timescale TL the
turbulence is called weakly inhomogeneous. By large times we will refer to
times, that are large compared to T, but still small compared to T;. Strongly
inhomogeneous turbulence means that Ti is of the same order as T}, and both

timescales play an equally important role.

Originally the concept "Markov limit" was used in homogeneous turbulence
for the limit TL + 0 and t fixed. Under certain constraints the
limit TL + 0 (t fixed) is equivalent to the limit t » = (TL) fixed and the
large time analysis of the Langevin equation in homogeneous turbulence was
therefore made before by taking the limit TL + 0 without however explicitly
naming the contraints. (Durbin, 1983). In inhomogeneous turbulence it appears
that the limits t + « and TL + 0 are no longer equivalent. TL is not the only
timescale involved, but also the inhomogeneity timescale Ti is introduced and

it can not be expected that the above limit T -+ 0 will give the desired large

time behaviour. We show that in both homogenegus and weakly inhomogeneous
turbulence extra constraints are necessary to guarantee the equivalence
between the two limits. A Markov limit derived without these contraints would
give wrong results, because in the process of letting TL + 0 the turbulence is
modified. What we need to do is to replace the limit t » « by another limit in

which the turbulence retains its characteristics. This will be the

limit T, >0 under the following constraint. We rescale the turbulence by
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letting TL + 0 while Gg + w, in such a way that its dispersive property,

specified by the diffusivity K = Gg TL’ remains the same function of height.

We see that in such a limit the characteristic length of the turbulence

- Tz
L u3 'I‘L
turbulence process to bring out the large time behaviour. The constraint on K

also goes to zero. This shows that in such a limit we rescale the

will appear to be of major importance.
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2.5.2 Markov Limit of homogeneous Langevin equation for W

Iﬁ homogeneous turbulence the velocity distribution is taken to be
Gaussian. The turbulence is fully determined by TL and 02 = Eg which are both
independent of height. We have already seen in section 2.3,7 that dispersion
in such circumstances can be described by a Langevin equation with all moments
of the random forcing function <(du)n> equal to zero, except the second, which
reads <{(du)? = 2 oz/TL dt. We can write dy = (202/TL)Zdw where dw is the so-

called Wiener process with dw = 0 and dw? = dt. The Langevin equation reads

2
aw = " ar + A%, and
T, T ) e
(2.67a)
dzZ = Wdt .

)
Here we will summarise the derivation of the Markov 1limit in homogeneous

situations. In -homogeneous cases new dimensionless variables
T = t/T, W=Wag,Z-= Z/oT; and d&t = TLZ dw, can be introduced. The

Langevin equation scaled with these variables reads

- Wdr + /2 det and

dw
(2.67b)

~ -

dZ = W dt .

it

We are interested in the limit t » «, As t is the only timescale, the
limit t » = (TL) fixed is equivalent to T
that letting TL
turbulence properties are basically modified, because the eddy diffusivity

L® 0 (t fixed). We want to stress

+ 0, while keeping all other parameters fixed, means that the

K = o‘TL goes to zero. We have to look for a way of replacing t » « by a
limit equivalent with a rescaling of the relevant turbulence quantities (in
this case the timescale TL and the energy scale ¢2?) such that the dispersive
character of the turbulence remains unchanged. This means, that in the limit
TL + 0 we have to change o? such that the eddy diffusivity K = czTL remains
unchanged. We will show that this constraint ensures that the Markov limit

model becomes equivalent with the diffusion equation

9 .a_ (K EE_) (2.68)
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First we illustrate the effects of the above defined limit on the
spectrum. The limit TL + 0 in the Langevin equation implies that the velocity
process W looses its memory so that the velocities become uncorrelated. The
velocity W becomes a white noise process. We have derived in Eq. (2.29) that
the spectrum of the Langevin equation for W in stationary homogeneoﬁs
conditions reads

02TL 1

.Sw(U)) =2 ‘ET"—'+ (wTL')'z"‘] KE

For TL » 0, while ozTL remains constant the spectrum becomes indeed the
spectrum of a white noise process: Sw = constant, whereas without the

constraint it would not (Sy would go to zero).

After this illustration we show how the limit TL + 0 is taken in the
Langevin equation to arrive at the Markov limit. Integrating the Langevin

2
equation Eq. (2.64a), resubstituting (?--%—)zdmt
L

= du, gives

t
[ (wat - 1, aw) = - T, [W(t)-W(0)] (2.69)
o)
Durbin (1983) showed that W(t)-W(o) remains bounded in "mean square sense".
Therefore the RHS of Eq. (2.69) goes to zero when TL + 0. On the LHS of Eq.

(2.69) we also find a term in which T| is involved namely

Ty, I dp = (202TL)det. This term is constant according to our constraint
that ozTL remains constant. We therefore keep this term so that

t t

[wat =1 [ an. (2.70)
— - o L T L S up—— o____.__u..\__;_,_ P
Differentiation and the relation W dt = dZ give the Markov limit of the
Langevin for homogeneous turbulence

4z = T, du = (20°T, )%duw, . (2.71)

L L t :

This derivation can also be found in Schuss (1980, Ch. 6), where the Markov
limit is called the Smoluchowski-Kramers approximation to the Langevin

equation.
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2.5.3 Kramers Moyal Expansion of the homogeneous Markov 1limit for the W-model

We derived the large time Lagrangian equation for Z(t), the Markov limit
Eq. (2.71). From this equation we can build up P(z;t). by releasing an ensemble
of particles and taking the ensemble average of their height. The time
evolution of P(z;t) for large times is described by a differential equation
which is the KME of the Markov limit.

Langevin Equation - Markov Limit

Y
Kramers—Moyal Expansion

of Markov Limit

Kramers—Moyal Expansion | — >

Fig. 2.1 Scheme of derivation of the equationsvused.

We derive this equation. In subsection 2.2.1 we derived the KME for a

monovariate process Z Eq. (2.36):

o (oD a<(dZ)P
ot noq M 32"

The moments <(d2)”> can be calculated from the Markov limit Eq. (2.71).
Substituting them into Eq. (2.36) leads to the equation

aP(z;t) - 92
ot 3z

z (a*T P) = -g; (021, &y, (2.72)

This is the well-known diffusion equation which as a solution has a Gaussian
distribution. This is also what we expect for large times from the Central
Limit Theorem. For large timeé the displacement process looses its memory of
the past and the increments dZ become (weakly) uncorrelated. The Central Limit
Theorem states that the sum of (weakly) uncorrelated stochastic variables
approaches a Gaussian probability distribution.

This Kramers Moyal Expansion of the Markov limit for homogeneous Gaussian

turbulence can also directly be derived from the KME of the Langevin equation
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for P(z,w;t) Eq. (2.38) (van Kampen, 1984, p. 234-236). This is done by
éxpanding P(z,w;t) ;n powers of T;. This equation can be integrated over w to
give the large time limit for P(z,t) Eq. (2.72). Different derivations are
summarized in Schuss (1980, Ch. 6), where also is shown that the velocity
distribution also becomes Gaussian. This derivation is based on the fact that
in homogeneous turbulence the expansion of P(z,w;t) in powers of T}, converges.
This direct derivation can not be applied in inhomogeneous turbulence where
more timescales play a role. For this reason we do not discuss this derivation

further.
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2.5.4 Markov Limit of inhomogeneous Langevin equation for W

Now we consider the Langevin equation in inhomogeneous turbulence, where
TL but also T1 plays a role.The Langevin equation can no longer be made
nondimensional with either T or T; because the moments of the random forcing
function are involved functions of TL and the inhomogeneous turbulence
properties (see Eq. (2.48) or (2.50)). We can no longer express du as a
function of the turbulence variables Ty, and ¢, like in homogeneous turbulence
we had dy = (202/TL)zdmt,

The Langevin equation can not be scaled because no nondimensionalized time can

but we know only its moments <(du)n>;

be found and the limit t + « is no longer equivalent to the limit TL + 0. We

have to be careful in specifying what we mean by a Markov limit,

The case we will treat is the weakly inhomogeneous case where TL is
smaller than Ti' We consider a Markov Limit that describes the behaviour of -

the Langevin equation for times larger than T; but still small compared to ISE

We will deal with inhomogeneous Gaussian turbulence, specified by the
Lagrangian timescale T; (z) and relevant velocity scale o(z). We will formally
deal with the inhomogeneity by splitting TL‘and o in a shape factor T(z) resp.
S(z) and an amplitude o resp. B so that TL(z) = o T(z) and o(z) = B S(z). We
replace the limit t » « by a rescaling‘of the turbulence, This means that we
rescale T; and ¢ such that the shape of T;, and o2 remains the same (which
means that the gradients are invariant), while we change their amplitudes
o and B. We take the limit a» O and B? » = while aB? = constant. This is
done‘bo guarantee that tﬁé eddy diffusivity K(z) = TL(z)oz(z) remains an

invariant function of z.

We proceed to find this Markov limit. The Langevin equation reads

.
dw = TL(Z) dt + du(z) .

Multiplying by a gives

_ W
aqw = T dt t o du(Z) . (2.73)
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Integrating this Langevin equation over time 1eads to

t .
W(t') dZ!
j dt - adyu ,) = [ (e - o du(z")) = - alW(t)-w(0)]
Zz(t' t! £ T(Z") !
s - (2.74)
where z_, iIs the release point. We take the limit o » 0, while aB? is kept

s
constant. The factor [W(t)-W(0)] on the RHS remains bounded for all time in

"mean square" sense. This can be seen from the physical insight that because
the velocity is an almost stationary process, the velocity remains bounded in
statistical sense. The RHS goes to zero when a + 0. The term on the LHS that
contains a might also contain terms that involve aB? which remain constant in

the limit and we keep this term therefore. We get

[ a du(z') . (2.75)

z
S

Z
dZ'
T

To differentiate this Eq. (2.75) we have to apply Itd calculus. (See section
2.4). Application of the Itd differentiation rule to the RHS of Eq. (2.75)

gives

Z :
d [ o du(z') = o du(z) .

Z
S

Differentiation of the LHS gives (see examples of Itd calculus in section 2.4)

dz' _dz

T(Z)

S

[«
N N
=N

L1 e+ L @R - I e -
Iod] s T )
where a prime on the RHS denofes derivation with respect to z;
The higher moments of dZ in this éqUatiéh”can not automatically be neglected
not even in order dt, because they are no longer given by <(dz)™ = <Hh>ar™,
In the integrated Langevin equation Eq. (2.7T4) we left out the RHS and so
changed the original Langevin equation to a different (large time) equation.,
This means that the displacement Z of the large time equation is no longer so
simply related to the velocity in the original Langevin equation.

Equating the LHS and RHS of Eq. (2.75) we have

t2 T"

1 T! 1 2T
;(dZ) - Z-TT;- (dz)? + -é (_T_s— - .'Iﬁ) (dZ)® + +ve = a du. (2.76)
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For turbulence with an integral timescale Ty, independent of height, the Eq.
(2.76) becomes much simpler. This equation will be treated as an intermezzo in
the next section as an illustration. The general case with T} a function of z

will be treated afterwards.

Intermezzo: The Markov limit for turbulence with constant TL

In this chapter we illustrate the concept Markov Limit by discussing the
one for turbulence with constant TL' Substituting dT/dz = 0 in Eq. (2.76)
gives the Markov Limit '

dz = T, du(z) . (2.77)

The behaviour of this equation for large times can easiest be shown from the
KME of this Markov limit. The moments <(dZ)n> that we need in the general KME
Eq. (2.36) can be derived as follows. We have <(d2)"> = T/ <(dw)™.

In turbulence where the velocity fluctuations are Gaussianly distributed the
moments of dy are given by Eq. (2.56), where <(du)n> = andt. Imposing

that o’(z)TL should be kept a constant function of z, while taking T = 0 we

get
# d(e?T, ) ‘
LY dK(z)
TLa1(z) = P e , (2.78a)
Tiaz(z) = 2 TLo2 = 2 K(z) , (2.78b)
3a (z) = 3T g2 392 _ 377 () 9KE2) | ' (2.78¢)
L3 L dz L dz : *

and we have that the function a,(z) are always equal to zero for n > 4

v
=
.

an(z) =0 for n (2.78d)

It follows that only the first two moments of dZ are nonzero and we can

write

d(g2T, ) '
2
dZ = <dZ> + (<59§%—>)Z dw, = —————E—'dt + (202 TL)Z dw

t dz t’
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which is the Markov limit Durbin (1980) and Durbin and Hunt (1980) used,
although they did not give a (correct) derivation (see Ch. 3).

Substitution of Eq. (2.78) in the general KME Eq. (2.36) shows that the
KME in this case becomes the diffusion equation Eq. (2.72):

9P(z;t) 9, .. 3P
5t = 3z (0T, 3z

Monin and Yaglom (1977, Ch. 10.3) state that this equation indeed describes
dispersion correctly in inhomogeneous turbulence for diffusion times larger

than T|.

Markov limit for general inhomogeneous turbulence

We start with multiplying the general Eq. (2.76) by T/2 to get

dT
4Z - ¥ == —L (42)% + + (2
L dz 6

T!2

77 du . (2.79)

) (dz)® + T
_T-" sees = L

-

For inhomogeneous Gaussian turbulence we can proceed as follows. We take Eq.
(2.79) to higher powers and take the conditional average. On the RHS then
appears the term <T2(du)n>. This quantity is defined in the non-anticipating

sense so that T; and du are independent (see section 2.4). The RHS becomes
n

TE(z)((du)n> = TL an(z)dt and are given in order dt (see Eq. (2.56) for an)
by
T, aj(z) = T, (2) do? ., aB? T(Z)'ds? > invariant-function of z;
L 1 L dz dz ’
TE a2(z) = 2 TLo2 = 2 K(z) +.invariant function of z,
3 - s 2 do - 2q% 73 g2 952
TL a3(z) 3 TL of =53 3 a a2g* T* S = 0
and
n
TL an(z) 0 for n > 4 as an(z) = 0 for n > 4,

(2.80)

The third and higher powers of Eq. (2.79) form an infinite series of equations
for the moments <(dZ)n> each with zero RHS. Generally the equations are
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independent and the solution is that all moments <(dz)“> for n > 3 are zero.
From this statistical reasoning we conclude that Eq. (2.79) becomes

dT

dz - % %“'_a'lzi (d2)* = T, du .- (2.81)
L

Note that dispersion in non-Gaussian inhomogeneous turbulence is described in
Langevin models by a dp whose higher moments are all of order dt. This
characteristic of 'the model leads to the fact that we cannot derive a Markov

Limit for these cases.
Solving the quadratic equation Eq. (2.81) we get for one root

dz = (%}: ii7:—];) 1 f1-0-2 d—z%du)yz} . (2.82)
Any root (1 + x)}g can be expressed as an infinite polynome in x. It is
allowed to break this expansion off for an approximation in case the terms in
the polynome converge to zero. To prove this for the root (1-2 Tﬂ du)Z in
Eq. (2.82) we use the fact that the third moment of Tﬂdu goes to zero in the
limit o« » 0, while aB? is constant analogously to the third moment TLdu. All

higher moments of T'dpy are always zero in order dt. Reasoning with statistical

L .
arguments we break off the expansion of the root (1-2 TL du)z after the second
term. This expansion then reads
dTL dTL 2
- - —_— 2
1 Iz du %( dz) (dw) and
Eq. (2.82) becomes
dTL : :
- — 3 2
dZ = TL du + ¥ TL iz (au)? , (2.83)

the Markov limit for Gaussian inhomogeneous turbulence.

In the large time limit we have that the third and higher moments of TLdu are

zero and the first two moments are given by Eq. (2.80). We then can write

2
T du =T do” dt + (2 TLoz)};dw

t L]

Substituting this in Eq. (2.83) this Markov Limit reads
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¥> d(Tqu) o

dz = (2 TL 02) 'dwt t— dt , (2.85)

which is the Markov Limit used by Durbin (1980) and Durbin and Hunt (1980)
(see Ch. 3), who however did not give a derivation for this equation. Durbin
(1980) noted that the last term in Eq. (2.85) contains a drift velocity
Vd = d(TLaz)dz. Tracing back this term we find that both the damping term
-W/T; as well as the first moment of du in the Langevin equation contribute to
this drift velocity. We keep in mind that drift velocities in the Markov
limit, an equation for dZ, are consistent with drift accelerations in the
Langevin model, an equation for dW. This can be understood by investigating
how e.g. <du> appears in both equations. With these two ways to write the
Markov limit for Gaussian inhomogeneous turbulence Eq. (2.83) and (2.85) we

conclude this analysis. In the next section we derive their KME's.



2.5.5 KME of the Markov Limit in case TLiand g are functions of z

§

We could derive the KME of the Markov limit in Gaussian inhomogeneous
turbulence from Eq. (2.83). But it is much easier to start from Eq. (2.85).
From Eq. (2.85) we can derive the moments needed in the KME:

d(o*T )
Wz>- = e dt
<(dz)?> = 2 ¢T dt and | (2.86)
n
<(dZ) > =0 for n2>3.

Substituting these equations in the KME for a monovariate process Eq. (2.36),
we see that this derivation results in the fact that the KME of the Markov
limit of the Langevin model for W is also equal to the second order
differential equation (Fokker Planck equation), the diffusion Eq. (2.72):

3P(z;t) 3, ;. B8P
3t -z (O TL 5z

just like in homogeneous turbulence. We streés again that the constraints on K

are necessary to obtain this result.
Intermezzo

Just for fun we also derive the KME of the Markov limit from Eq. (2.83).

The moments <(dZ)n> we need are as follows. The first moment reads

daT

L
42> = TL(z)a1(z)dt + % T, 5% a2(z)dt

dT d(e?T, )
o2, o My, 20
(T (2) =gz *+ o* —qp) dt = —g;—dt,

which is constant in the limit T, » O while 02T, = constant.

L
The second moment in order dt is derived by squaring Eq. (2.84) and

conditional averaging:

dT

L
2y o T2 2~ a (z)dt .
<(dzZ)?*> TL az(z)dt + TL = 23 )
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The second term on the RHS of this equation can be written as

dT ' dT

L — 2
TL 3z 2 (z)dt = TL 1

2 ma2 2 dT ds
dz = 3a(aB?)? T2(z)S%*(z) == = 35 9t .

This term goes to zero for o + 0 while aB?® is constant.

Thus <(dZ)?> = Ti a,(z)dt = 2 oT dt.

The third moment <(dZ) >, which is derived by taking Eq. (2.83) to the third
power, contains a term TLa3(z)dt. This term goes to zero in the limit
according to Eq. (2.80). The other terms in the expression for <(dZ)®> contain
higher moments of du and are always zero in order dt. This also goes for all
terms in the expressions for higher moments of dZ and summarizing we have
again found the Eq. (2.86) and the rest of the derivation of the KME goes

analogously.
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2.5.6 Conclusions

The Langevin-ﬁodel for W is shown to give the correct large time
behaviour in inhomogeneous Gaussian turbulence where T is either constant or
a function of height. This behaviour is described by the ordinary diffusion

equation and leads to a homogeneous steady state concentration distribution.

The Markov limit describing this behaviour is derived by putting

constraints on the eddy diffusivity K = ozT , while letting T. » 0. If we had

L? L
not taken into account the constraints on K then in the case where ¢? and Ty,
are function of height a Markov 1limit would have reéulted, that is not
equivalent with the diffusion equation. With these conclusions we end ouﬁ

chapter on theory of the Langevin equation for W.
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3.1 Introduction

Lagrangian dispersion models have been used to describe dispersion in a
wide variety of atmospheric circumstances. The models differ in how the
velocity of released particles is described. The first four models we discusé
are partly determinsitic, partly stochastic models. Almost all other
Lagrangian models are fully stochastic and based on one particular stochastic
equation, the Langevin equation. The review of these models is based on the
théory of the Langevin equation described in Ch. 2. Much of this theory will
be used in this chapter. ' |

First we discuss the relatively simple Langevin models for homogeneous
turbulence. After this we turn to models for inhomogeneous conditions. The
applicability of these models depends on the way the random forcing is
prescribed. We show to which atmospheric situations certain models apply and
indicate the errors if the models are applied outside their range of validity.
Models were created that are successful in the neutral and stable surface
layer, while the step to convective surface layers was more involved. This is
because the still Gaussian turbulence intensity becomes height dependent.
Langevin models for non-Gaussian turbulence velocity distributions (like in
the convective boundary layer) are only recently made.

In Fig. 3.1 a schematic summary is given of the authors whose study we
discuss. The order of the studies is given by their random forcing modelling.
Also is indicated the situation the authors applied their model to. These
situations are not necessarily identical to the atmospheric conditions the
model can be applied to, as we will show in this chapter.



Models

Partly Deterministic and Stochastic
Lamb 1978 ch 3.2
Weil and Furth 1981 convective boundary layer
Venkatram 1982
Misra 1982
Langevin Models for W
Gifford 1982 homogeneous ch 3.3
Reid 1979 neutral surface layer ch 3.4
Ley 1982 neutral surface layer
Leg 1982 neutral boundary layer
Durbin 1980 neutral boundary layer
Hall 1975 neutral and convective surface layer
Durbin and Hunt 1980 neutral boundary layer ch 3.5
‘Legg and Raupach 1982 neutral, within and above crop
Davis 1983 neutral boundary layer
Ley and Thomson 1983 stable and unstable surface layer
Langevin Model for W/o ,
. Wilson, Thurtell and Kidd 1981 homogeneous turbulence and ch 3.6
: neutral boundary layer :
: 1983 inhomogeneous Gaussian turbulence
Markov Limit for W/o
Durbin 1984 inhomogeneous Gaussian turbulence ch 3.6
Theoretical Investigations '
Janicke ' 1981 ch 3.7
Thomson 1984
van Dop, Nieuwstadt and Hunt 1985
Langevin Model for W/o 7
‘Beerentsen and Berkowicz 1984 convective boundary layer ch 3.8
Langevin Model for W s .
de Baas, van Dop and Nieuwstadt 1986 convective boundary layer ch 3.8

Fig. 3+1 Summary of models to be discussed.

The models are ordered according to their random forcing modelling.
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3.2 Partly deterministic Lagrangian models

3.2.1 Lamb's model

Lamb (1978, 1984) made a 3D-Lagrangian model to simulate dispersion in

the convective boundary layer (CBL). He calculated trajectories gi(t) of
released particles. The velocity is split into a deterministic and a

stochastic part. Lamb's model equation reads
d = - .
It gi(t) ui(xi(t),t) + Ui(t) . (3.1)

Here ui(g,t) is the deterministic Eulerian velocity obtained from grid cell
averages of a numerical model for turbulence in the CBL of Deardorff (1974)
and Uy is a subgrid velocity due to scales of motion smaller than gridsize in
Deardorff's model. Lamb considered Ui to be a Lagrangian random velocity,
whose statistical properties are determined by the local subgrid scale
turbulence. He described this Lagrangian part of the velocity by the following
Langevin equation

Ui(t) = q Ui(t-At) + Y E(xi)ri , (3.2)

where r; is a random variable with zero mean and variance one. Note that Lamb
did not use a Langevin equation for the total velocity. The variable E is
proportional to the mean subgrid scale kinetic energy e nl. E = (% e)g. The
data for e are given by Deardorff's model. The constants o and Y are chosen
such, that the form of the spectrum of the subgrid velocities and their
~-integral timescale. are represented. This subgrid velocity spectrum is a
bandwidth limited spectrum (only subgrid scales are included) and its

timescale is therefore very small.

With this model he simulated dispersion in the CBL from a continuous
point source at several heights. The behaviour of plumes in the CBL was
investigated before in a laboratory by the watertank epxeriments of Willis and
Deardorff (1976, 1978, 1981). (see Ch. 1). Lamb compared his results with
these watertank experiments of Willis and Deardorff and the surface data of
the Prairie Grass experiment. He found that the results of his numerical model
were in excellent agreement with these experiments. Both the laboratory and

numerical plume showed the same involved behaviour (see Fig. 3.2). However,'
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the maximum ground concentrations due to elevated sources were somewhat less

in Lamb's model than in the tank experiments.

o 1}0———“"”‘/’—\-_—' . (u;

0 05 1 X XM 1.5 R 25
hu

Fig. 3.2 Comparison of crosswind integrated concentration distributions
(a) predicted by the numerical model of Lamb (1978, 1984) with
(b) the corresponding field measured in the laboratory by Willis and
Deardorff, (1978, 1981)
(From Lamb, 1984)
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3.2.2 Weil and Furth's, Venkatram's and Misra's model

Three models were proposed in which the initial velocity of the particles
is a stochastic process determined by the wind statistics at release time at
the source. The velocity evolution of the particles is deterministically
prescribed.

Weil and Furth (1981), Venkatram (1982) and Misra (1982) each proposed
such a 1D-Lagrangian dispersion model to predict the ground level mean
concentration in the CBL. These models were designed to be simple and to
require short computer time.

We first discuss Venkatram's model, which is the simplest. Venkatram
released partiéles with vertical velocities that adapt immediately to the
turbulence; The particle velocities have the same skewed probability
distribution as the vertical turbulence velocity in a CBL (see Fig.1.7). The
particles keep this initial velocity and at the boundaries they only invert
direction (Fig. 3.3). This implies that the Lagrangian timescale of the
velocity process cannot be calculated from the velocity autocorrelation (Eq.
(1.10)). Venkatram derived analytical expressions for the ground level

concentration.

Inversion
— N

e Cdd 8
Ground

Fig. 3.3 Geometry of dispersion along straight lines in Venkatram's model.
(From Venkatram, 1982).

Weil and Furth also released particles with velocities that adapt

immediately to the turbulence. The skewed vertical velocity distribution was



3.9

built up by making a distinction between upgoing and downgoing particles,
which is based on the concepts of downdrafts and updrafts. At release 40% of

~ the particles were situated in an updrafﬁ. These -particles had a velocity
probability distribution function (pdf) that is exponential with a mean
upwards velocity ;u = 0.6 Wy where.w* is the characteristic vertical velocity
defined by Eq. (1.3). The 60% that move downwards after release also have an

exponential velocity pdf with a mean downwards velocity Wy = -0.4 w,. These
numerical values are based on the studies of Lamb (1978, 1982). The particle
velocity is constant untill the particle reaches a boundary, where
"reflection" was imposed, given by wq = -2/3 Wy Or W, = =3/2 wg. The
particles remémber their initial velocities at all time and again the

Lagrangian timescale in this model cannot be calculated from Eq. (1.10).

~In Misra's model particles are also released in up- or downdrafts, but
the particles do not fully adapt to the turbulence. Their initial velocity
distribution is Gaussian instead of skewed.-The.evolution of the velocity is
specified by supposing that ‘the downdrafts do not spread out. The particle
velocity in such a downdraft Wy varies with height in a deterministic way. The
initial downdraft velocity wq is simply multiplied by a function of height., Of
the updrafts less is specified. They are supposed to be well mixed before they
reach the ground and only their impéct on the ground level concentration is
specified. _

Despite their limitations these simple.models reproduce most features of

the ground 1eyel concentration in the CBL for sources at several heights (Fig.
3.4),

Venkatram (1982)
Ca=0) } ,{ Willis & Deardorff (1978)
T f \ Misra (1982)

/
!
-7\, Wil and Furth (1080
200 AR Lamb (1978)
| b
I

/
e
L/

10

T
—

1 [
t
]

P P " A .

i
10 20

—
Fig. 3.4 Comparison of model results for a source at z

s = 0.26 2.
C(z=0) is the nondimensional (crosswind integrated)

groundlevel concentration,




3.3 Homogeneous Langevin models

We discussed dispersion models that describe the velocity of the released
particles in a partly determinsitic, partly stochastic way. We now turn to
models in which the velocity of the particle is fully described as a
stochastic process (Monte Carlo simulation). The motion of the particles is
simulated by a stochastic differential equation. In analogy with the
description of Brownian diffusion these models are based on one special
stochastic equation, the Langevin equation which mode;s the effect of the

turbulence on the particles as a random force. This equation reads

aW = - 2= dt + du (3.3)
L
where W is the particle velocity, TL the Lagrangian time scale and du are the

random velocity increments (random forcing).

In homogeneous turbulence the random forcing function is modelled by

A
dy = (Zoz/TL)2 dwt,
variance dt. The Langevin equation then reads

where dwt is a white noise process with zero mean and

% do, (3.4)

W 202
dw = - 7= dt + ( T

L L

)

We call this equation the homogeneous Langevin equation.
With this equation analytical expressions can be derived for the mean
veloeity W(t), displacement Z(t), their spreads W2(t), ZZ2(t), autocorrelation

and spectra. Much of this theoretical work (of which we gave a description in

Ch. 2) was done by Lin and Reid (1962).

3.3.1 Gifford's model

We discuss an application of the Langevin equation to homogeneous
conditions by Gifford (1982). The input parameters are the initial velocity of
the particles at the source, the (constant) Lagrangian timescale TL and the
(constant) turbulent energy o¢2?. Gifford assigned values to these parameters by
fitting the results of the Langevin model to atmospheric dispersion data for
small and large time. He showed that the horizontal spread in tropospheric
diffusion experiments, can very well be represented by this Langevin model.

Not only tropospheric, but also stratospheric data are represented excellently
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over a very wide range of atmospheric diffusion scales which range from

seconds to days,. corresponding to distances from the source from several-

meters to several hundred kilometers (see fig. 3.5).
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Fig. 3.5 Summary of data on horizontal atmospheric diffusion, from Hage
and Church (1967). The solid curve illustrates Eq. (3.3.)

(From Gifford, 1982a)



3.4 Langevin models for situations with a Gaussian height independent

turbulence velocity distribution, where only T; varies with height

In this section we study Langevin models, made for neutral surface
layers. In neutral surface layer the turbulence is no longer homogeneous,
because the timescale Ty, varies proportionally with height. However, the
intensity of the turbulence velocities ¢® can be taken as constant and the
velocity probability distribution as Gaussian. We investigate whether the
homogeneous Langevin equation can also be used in neutral surface layers and
we will show that this is indeed the case. Later we show this Langevin the
formulation is erroneous when applied to a stable or convective surface layer.

)
3.4.1 Reid's model

Reid (1979) proposed a 1D-Langevin model for vertical dispersion in a

neutral surface layer. He used the following discrete Langevin equation for

the vertical velocity of the particle

- exn(- At _exo)- 28ty K
w1+1 = exp( TL(z))wi tor, (1-exp) TL))2 , (3.5)

which is in first order At a discrete form of the equation

dt 202 ¥
W= - TZTET W+ (T;szzdwt . (3.6)

The random variable ry and dwt are white noise processes with zero mean and

variance resp. 1 and dt and ¢? is the vertical turbulence velocity variance
-z

" equal to 0’“=‘u3u ‘We- see that his equation is formally equal to the

homogeneous Langevin equation Eq. (3.4) only TL has been substituted by TL(z).

Reid did not give a derivation for the formulation of this random forcing
function, but assumed that the homogeneous formulation could be extended to

dispersion in a neutral surface layer. It follows e.g. from Thomson's study

(1984) that this is only true, if the Reynolds stresses u,u, and u2u3 can be

neglected. Thomson discussed the theory of 3-D dispersion, modelled by three
Langevin equations. According to this study the correct random force in a
neutral surface layer would be <(du)?> = 2 {ﬁ?ﬁ; + Gg}dt/TL. In a neutral
surface layer the wind varies with height resulting in a Reynolds

stress u1u3 which is nonzero. Thus even a 1D Langevin model should include
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more dimensional quantities, like ﬁ:ﬁ;, in the random forcing du.

Deriving the KME of such a 1-D model we see that it has large time behaviour,
which can not be described by a diffusion equation. The cohclusion is that a
1-D formulation in a neutral surface layer is erroneous. We should go for a
more dimensional Langevin model where we appropriately ‘include the stresses in
the random forcing formulation. Then we get a model with a large time
behaviour described by a more dimensional diffusion equation, with diffusivity

nsor u.u..
te i%;

Model results

Reid discussed the results of his model applied for surface and elevated
sources. The results of the surface sources were compared to the Porton data
described by Pasquill (1961). To describe such a specific dataset, variables
in the model were tuned to the measurements. Reid assumed that Z and varied
the constant ¢ from 0.3 to 0.5, This causes the mean particle height Z to vary
by as much as 20% at a distance of x = 500 m. The formulation
TL = 0.4 z/u, gave the bést agreement with .the Porton data (Fig. 3.6). Reid
also compared his surface source results to similarity laws for the
concentration profiles of Nieuwstadt and Van Ulden (1978) derived from the
same Porton data and the Prairie Grasé experiments and he found good

agreement,
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Fig. 3.6 Downwind variation of mean particle height 7 for a surface source.
The solid line represented the Porton data, further denotes a
. Reid's model,
x Ley's model (to be discussed in section 3.4.2) and
A Hall's model (to be discussed in section 3.4.3).

Reid compared his results for elevated sources to the Gaussian plume
formula and Taylor's theorem although both formula's are in principle not
valid in inhomogenecus turbulence. He allegedly finds discrepancies such as
that in his model the mean height of the particles decreases just after their
point of release, whereas in a Gaussian plume model f/zS increases
monotonically. We can show from formula's derived by Hunt (1984) that his
- model shows the correct behaviour in contrast with the Gaussian plume model.
Hunt derived an expression for the shorttime behaviour of the mean particle
height Z not only as function of time but also an expressionas a function of

downwind distance x. The last one reads

- 2
L. .2 (2 P-yudn, (3.11)
dx (w?®  (u)d dz
i = du — do?
Generally the behaviour of Z depends on both iz’ uw and —az" Depending on

these variables Z might become larger or smaller.
In a situation with yy = 0 and 5; constant (as in Reid's model) the shorttime

behaviour reads
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dax = T =, dz X . . (3.12)

We see that Z decreases with distance in case u increases with height. This
can be understood by considering particles at a distance x. We know that
particles above source height z  were transported by a larger horizontal wind
and reached the point x therefore in a shorter time than barticles under

souﬁce height z_., This means that particles above 2 had generally less time

SO

to disperse than particles under'z . The averaged height 7 becomes less. Reid

s
finds indeed that Z decreases for short times.

Interesting is Reid's examination of the physics involved in dispersion.
Reid discusses the effect of Ty varying with height. In comparing a case where
T, is constant with a case where T increases linear with z he comes to the
conclusion that in the constant T;, case the mean height case Z is far less
than in the varying case (Fig. 3.7a). This fact can be explained by the fact
that drift terms up gradients in TL occur as discussed in section 2.3.7

(second part).

The influence of the effect of varying TL on the Spﬁead of the plume is
not 1mportan£ for small downwind distances as can be xseen in Fig. 3.7b, while
for large distances TL being a function of z causes the plume to spread more
rapidly. It is then empiricaliy concluded that for the spread of the particles
at short distances the windshear effect dominates T -variation effects, while
for large distances they might be equally important or the TL-effect might be

larger.
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3.4.,2 Ley's model

Ley (1982) proposed a 2-D dispersion model for the neutral surface layer.

The vertical dispersion is described by the homogeneous Langevin equation Eq.
(3.4). The downwind dispersion is not described by a Langevin equdtion, but an

alternative stochastic equation
dU = u + aU + BW + dn . ' (3.13)

We first discuss the arguments (which we think are incorrect) leading to

the formulation of the random forcing duy in the vertical Langevin equation. We

will see that the formulation of duy is however correct in case the stress

u,u can be neglected (as discussed in the former section).

173
Ley and later also Legg (1983, see section 3.4.3) started with the
Langevin equation Eq. (3.3) in discrete form

At T
Wi+1 = (1 - -,ITJ(—Z)-)Wi + Aui . (3.14) |

She squared this equation and took the ensemble average. Then she used the not

always correct equation that

N _TT . 2 o
i+1> = W] = <w§> uz = of . | | (3.15)

In inhomogeneous circumstances this is only valid in the steady state. Then

w§+1 = Wf and the particle velocity statistics are equal to those of the
turbulence velocities so that <w;+1> = <w;> = u§(z). In this neutral case

G§ is not a function of 2z and w; = <w;> from which the above equation
follows. From Eq. (3.15) she reached the equation

2
02 = (1 - 85702 + a2z + <21 - ywoap . (3.16)
W TL w TL i .

In this equation she neglected the last term on the RHS. This can indeed be
justified, because the Lagrangian timescale T, and the random forcing
function Au are uncorrelated with the velocity W. (Note that TL and Au are
also uncorrelated, if we specify stochastic quantities occurring in the
Langevin equation in the non-anticipating way (section 2.4). This non-

anticipating specification implies that Tj(z) is taken at the left end point
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z = Z; of the interval [Zi’zi+1] over which Au is taken).

After neglecting the last term in Eq. (3.16) this equation gives

203
<(aw)> = - At + 0(at?) .
L
As all other moments of duy are zero this leads to the fact that the continuous

random forcing function can be formulated as du = (Zo;/TL)zdwt.

We discussed the Langevin modelling of the vertical velocity of the

particles. We now discuss the modelling of the horizontal velocity of the

particles Eq. (3.13). We denote the horizontal turbulence velocity in the
downwind direction by uqy. The additional turbulence description needed to
determine a, B and dn is E? = 0; = constant, Ru(dt)’= exp (—dt/Tu) and

u1u3 = - ui. The determination of a, B and dn is again based on equalities
that are only valid in the steady state. The resulting formulation can not be
compared with the theoretical results of Thomson (1984) as Thomson's results
are for models, where both velocity components are modelled by a Langevin
equation, while Ley's equation for the horizontal particle velocity is not a
Langevin equation. The correlation between the two directions of motion should
accordihg to Thomson only be modelled in a joint moment of the random forcing
functions dn and du. The difference with Ley's model is that there the
correlation is also incorporated in a term proportional to W in the equation

for U.



Model results

Ley discussed the results of surface sources, which were compared to the
Porton data. Variables in the model were tuned to this dataset. Ley got the
right results for 7z by varying the von Karmanyconstant k and the friction:
velocity uy keeping ux/k equal to 0.62, Varying k from 0.33 till 0.43 caused
7 to vary as much as 20% at a distance of 500 m, The values k = 0.4 and ux =
0.25 turned out to be the best for the Porton data (Fig. 3.6). We may cdnclude
that both Reid's and Ley's model, although different,_can be tuned to this
dataset. |

Ley also compared surface source results to the similarity laws derived
from the Prairie Grass and Porton data by Nieuwstadt and Van Ulden (1978) and
finds good agreement with the similarity shape of the concentration profiles
just like Reid with his 1-D model.

Ley's examination of her 2-D formulation is interesting, although we can
not directly apply her results to a 2D Langevin model. If no downwind
dispersion is assumed (which reduces her 2-D model to a 1-D model) or when
the downwind dispersion is uncorrelated with the vertical dispersion

(g = 0, uw = 0) the average height Z(x) of the particles beCOmes‘8% lower.




3.4.3 Legg's model

Legg (1983) made a 2-D Langevin model for the neutral boundary layer in
b

which the correlation between the two directions of motion is only modelled
via the random forcing function. His equation for W is in first order At equal

to Eq. (3.4) and for U he proposes

N 2062 , u,u 20 (u,u,)
Un+1 - %E ur Q- %E)Un * (-TE)Z 0103 Awé + )Z(1 _El 2 )Z Awg ’
L L L uw L uw
(3.15)
where o; = Eg, aﬁ = G? and Amé and Awg are white noise processes with zero

mean and variance At. Legg realised that in the derivation of the random
forcing function it had to be argued that correlations between T|, W and
duy pr dn are neglected. As noted before this is exactly so because TL and

dy or dn are not correlated with W.

Thomson's (1984) theoretical investigation can be used to investigate
this 2-D Langevin model of Legg. Thomson argued that in Gaussian turbulence,

with o2 independent of height, the 2-D Langevin model should be

_dt

dwW = W + dp and
TL
(3.16a)
dU=-g-EU+dn,
TL

-where the timescales in_both _equations are taken to be equal to TL and

dw> = 0 , <dn> = g—t u ,
L
<(dp)2> = 2 %E (u1u + ul) , <(dn)2> = 2 ac (W, u, + uz) ,
L 3 3 TL 173 1
<dndp> = at (uZ + 2 u,u. + u2) (3.16b)
T 1 173 37 ° *

We see that Legg's formulation of the random forcing differs considerably from

Thomson's theoretical results.
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Model results

Legg applied_his model to an elevated source and compared the results to
a heat dispersion experiment in a windtunnel. To reproduce the measurements
Legg tried different descriptions of the windtunnel flow. One of these is a . -
horizontally inhomogeneous boundary layer formulation. We note that in such
cases the random forcing modelling becomes more involved than the ones in Eq.
(3.4) and (3.16) and we refer for further details to Thomson (1984). Tuning
the value of the timescale in the Langevin equation Legg could reproduce the
results (Fig. 3.8). Legg also compared the 1-D formulation (line (a) and (b))
with the 2-D formulation (line (c)). He concluded that the inclusion in the
dispersion model of streamwise velocity fluctuations and their correlation
with vertical fluctuations increases the depth and rate of rise of the plume
from an elevated source, It should be investigated, whether Thomson's
formulation for a 2D model would show the same feature. Legg also modified his
2-D formulation to include the effect of skewness of the turbulence velocity.
As the skewness in the windtunnel flow is small only little difference in the .

results appeared (line d).
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Fig. 3.8 Mean particle height 7 and vertical plume spread o, against

downstream distance in a neutral surface layer. Symbols (o) show

experimental results and the lines show Markov chain similations

with:

(a) long/short dashes: o, = 0.63 ms“1 o, = 0.00 ms_1

(b) long dashes A (0.68--0.05x)m&»-1 o, = 0.00 ms-1

(c) short dashes 2o, = (0.68-0.05x)ms_1 o, = (1.21-—0.016x)ms—1
: uw = -(0.28-0.033x)m>s 2 T, = 0.15

(d) continuous As previous line but with a jointly skewed

distribution of u' and w'.

(d is zero plane displacement) (From Legg, 1983)




3.22

3.4.2 Durbin's model

We further want to mention Durbin (1980), who studied open channel flow.
He introduced an equation to describe the large time behaviour of dispersion.
This equation is

dT y

d‘; dt + (2 02T )%du, . (3.17)

dZ = ¢2

We have shown in section 2.5 that this equation, the Markov.limit of the
Langevin equation Eq. (3.4), indeed describes the large time behaviour in
turbulence with constant ¢? and where TL may be a function of z.

The KME of Eq. (3.17) is the diffusion equation

oP(z;t) _ 3_
ot - 02

(ozTL %% .

The Markov 1limit is only applicable to dispersion for times large
compared to TL' However Durbin noted that in case of a surface source, the
Markov limit is valid for all times. This is so if we accept like Durbin
claims that the value of T to be used in the comparison of t with Ty, is
TL(Zs)’ which for a ground source is zero. However, for a surface source
Durbin only shows large time results (Fig. 3.9) and his statement is not
proved. On the other hand he does show that the Markov limit is not valid for
small times for an elevated source where TL(ZS) is larger than t.

Note that the results of the Langevin equation (Eq. (3.4)) show many
fluctuations as only a 100 particles are used to obtain ensemble averages,

while the Markov limit results are obtained from an analytical solution of its

-~KME., - - e e L . - . .
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Fig. 3.9 Comparison of the Langevin equation Eq. (3.4), the Markov limit
Eq. (3.17) and experimental data in an open channel flow with
TL = 0.8 z(1~-2) -and o, = 1.0, for a surface source,
Hatched lines: experimental data
Dashed line : Langevin equation
Solid line ' : Markov Limit
(From Durbin (1980), rescaled with the bottom of the channel at
z = 0, the top at z = 1).
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3.4.3 Hall's model

Hall (1975) made a 2-D model for the surface layer. It is a Langevin
equation for the vertical velocity W and a zero order process for the

horizontal velocity U

B _ At W,
W = (0= 90+ () duy (3.18)
L L
U1+1 = u + An1+1 and
Zi+1 = w1 At .

This model does not take into account that the horizontal velocity process has
a non-zero time scale. The random forcing formulation in the W-equation is
only valid in Gaussian turbulence with a constant c; and zero Reynolds
stresses and as discussed in section 3.4.1, neglecting the Reynolds stress in
duy is also erroneus.

The moments of the random forcing function dn are again derived assuming
equalities between particle characteristics and turbulence velocity

characteristics that are only valid-in the steédy state.

Model results

Hall did not only apply this model to a neutral-, but also to a

convective surface layer. In the neutral surface layer only Ty, and u are

functions of height, while o;, o; and u1u3 are constant. His results were

" “compared to the Porton—data-and after tuning TL they fit -the measurements . .

(Fig. 3.6). In the convective surface layer T, and u but also oG and o; are

functions of height, while

u
173
Langevin model to situations where the turbulence velocity characteristics are

is still constant. Applying the homogeneous

inhomogeneous is certainly not correct. This is apparent in his results
compared to Porton data given by Pasquill (1961) for a surface source in a
convective surface layer (L = - 5m). His model resulted in an underestimation
of the measured cloud height at all distances (Fig. 3.10). This can be
explained by the fact that his model does not incorporate the drift
acceleration of particles in inhomogeneous turbulence due to gradients

in o;. As we have seen in section 2.3.5 and 2.3.6 this should be modelled by a
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mean'value 6f the random forcing in the z-direction equal to dt do;/dz.,Not
including this drift velocity causes the particles to collect in regions of
low turbulence variance, which in the convective surface layer is close to the
ground. The mean height of thelparticles is then too low, as Hall indeed found
in his simulations. We conclude that Hall's Langevin model is not applicable
to a convective surface layer. Models that are applicable to such

circumstances are discussed in the following section.

—> NI

A

A.

100

300

downwind distance (in m)

'Fig. 3.10 Comparison of Hall's model (1975) with Porton data for a
surface source in a convective surface layer (L = -5m).
Solid line : Hall's Langevin model Eq. (3.18)
Dashed line: Porton data.
(From Hall, 1975)
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3.5 Langevin models for situation with height dependent Gaussian turbulence

In the previous section we discussed that the homogeneous Langevin
equation is a correct formulation for dispersion in the surface layer
where ¢? is constant and where T[, can be constant or a function of z. The next
group of models we want to discuss are models that take into account the
effect of inhomogeneity in o?. The first attempt to model this was made by
incorporating a mean drift acceleration in the homogeneous Langevin equation,
or equivalently a drift velocity in its large time equation, the Markov Limit.

To avoid confusion about the concept drift velocity versus drift

acceleration we note again that the effect of inhomogeneity described as a

in ¢2 by a mean drift velocity d(ozT )/dz:

drift velocity d(ozTL)/dz in the Markov limit is consistent with a drift

acceleration do2/dz in the Langevin equation. This is shown in section 2.5.4.

3.5.1 Durbin and Hunt's model

Durbin and Hunt (1980) described dispersion in the neutral boundary layer

in a windtunnel experiment of Shlien and Corrsin (1976). Near the surface the

boundary layer is described by a constant ¢2? = uz

3
In the larger part of the boundary layer o2 is on the contrary a function of

and TL a function of height.

height, while Ty, is constant. To describe dispersion in this neutral boundary
layer Durbin and Hunt used the homogeneous Langevin equation. Because they
only show results in the surface layer where o2 is constant nc inconsistencies

between model results and measurements appear.

Besides this homogeneous Langevin model they also use a large time

equation, the Markov limit, which incorporates the effect of inhomogeneity

d(o’TL) y
dZ = —— dt + (20T )*dw . - (3.19a)
This is a generalisation to height dependent og2-cases of Durbin's homogeneous
Markov 1limit Eq. (3.17). According to the theory discussed in section 2.5 this
Markov limit is the correct formulation for regions where ¢2? is a function of
z. Durbin and Hunt based the incorporation of a drift velocity on arguments of
Monin and Yaglom, who state that in horizontally homogeneous turbulence whose

mean vertical velocity G; = 0, the pdf P(z;t) should obey (1977, Ch. 10.3, Eaq.
10.,49),



3.27

éfégiﬁl -« i, (3.19b)

Any dispersion model should result in large time behaviour described by this
diffusion equation. The KME of the Markov limit Eq. (3.19) is indeed equal to
Monin and Yaglom's formulation in case K = ozTL and we conclude that this
Markov limit model gives the correct large time behaviour in turbulence with

height dependent Gaussian velocity distributions.

The homogeneous Langevin equation Durbin and Hunt used has a Markov
limit 4z = (20°T,)%du,

(3.19) we see that the homogeneous Langevin equation and the Markov limit Eq.

. Comparing this Markov limit with the Markov limit Eq.

(3.19) are only consistent in homogeneous situaticns. The reason why no large
discrepencies for large time between both models occur is that they only show

results in the surface layer, where o¢? is conétant.

- They apply their models to a surface source. As stated earlier by Durbin
(section 3.4.4) the Markov limit should describe dispersion from surface
sources at all times. To prove this statement they check whether the Langevin
equation and the Markov limit describe the measurements equally well. They
show direct simulations of the Langevin model while they however only derive
an approximation for Z(x) from the KME of the Markov limit Eq. (3.19b) as
follows. The mean height can be defined as M,/M, where M, = Z z,P(x;2)dz. ;
This equation can not analytically be solved in this neutral surface layer ,
where K and u are functions of height and is therefore approximated. In |
comparing this result with the Langevin model we have ﬁo be careful., Both
models start with Z(o) = 2 = 0 and if differences with respeét to each other
exist, they only slowly accumulate. Within the restrictions of this Markov
limit results it is hard to judge whether the Markov limit and the Langevin

equation are indeed equivalent (see Fig. 3.11).

The statement that the Markov limit should describe dispersion from
surface soruces of all times is based on the assumption that the relevant TL
is small compared to t (section 3.4.4), But if we argue for instance instead
that the value of TL that sould be taken in the comparison of t with TL is TL

at mean plume height TL(E) we find that the Markov limit is not equivalent to

the Langevin equation for x < 20 zj.
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Fig. 3.11 Comparison of the Langevin Eq. (3.4) (solid line) and an
approximation to the Markov limit Eq. (3.19) (dashed line) with
windtunnel data (triangies) in a neutral surface layer.

(From Durbin and Hunt, 1980).
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3.5.2 Legg and Raupach's model

We now dlscuss ‘a model proposed by Legg and Raupach (1982) for
inhomogeneous turbulence. Legg and Raupach simulated disper31on w1th1n and

above a crop canopy by means of the vertical 1-D Langevin equation

do?
= (exp(~ 38)-1)w + (1-exp(~ 28%))%, o+ (1-exp(- Lyr, 2,
TL TL L L ~dz

which in first order dt is equal to

202 ¥ do?
AW = - 5 gt + (—2) do, * —2 dt . (3.20a)
TL TL t dz

This study incorporates the by now well familiar drift acceleration do;/dz
in the Langevin equation to model the effect of inhomogeneity in the
turbulence fluctuations o; = Eg. They base their arguments for the drift
acceleration on the mean momentum equation that for stationary horizontally

homogeneous flow reads

This equation states that when there is a gradient in the vertical velocity

variance do;/dz there is a mean force on the particle due to the mean pressure

gradient. This force should be included in the Langevin model as a mean
acceleration. The Langevin model with this term included Eq. (3.20a) can be

written as

dw = - %— dat + dy ,
L
do; : . .
with - <dw = at , 4 o (3.21)
dz .
20;
<(du)?> = —— dt and
TL .

<@ =0 for n3.
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Model results

Legg and Raupach applied this model to dispersion in and above a crop. The
flow field in the crop and in the first meter above it is described by

u(z) = u(h) exp Y(Z -1) z < h
U*
z-d
T ) oz
zu*
Uw(Z) = 0,125 u, + 1.125 " z i h
' (3.22)

= 1,25 Uy Z >h
_ 0.32(h~-d)

TL(z) = 1% ™ z<h
- 0.3§(z-d) z > h

W

where h is the crop height, d the zero plane displacement,_zo the roughness
length and Y an extinction coefficient within the crop. Total reflection at
the ground and at 1.5 h were assumed. An initially uniform distribution
remained uniform in this model although the scatter near the ground becomes
large. We can speculate on the reason why this model does preserve an
initially uniform concentration distribution, while ours in its application to
a convective boundary layer (Ch. 4) did not. Our speculation is that the
boundaries might be a problem in case the characteristic length of the
turbulence § = TLo is large compared to the height of the layer (resp. h and

" zy). Calculating % by putting & = TL(R)otl)rgives,inALegg,and Raupach's case
2/h = 0.05 while in our model 2/zi = 1.4,

Let us investigate the random forcing in this model. In section 2.3.5 and
2.3.6 we showed that the first two moments of du are correctly modelled in
case of inhomogeneous Gaussian turbulence. This model neglects the third
moment of dy for z < h, whereas the theory for the Langevin model in
inhomogeneous conditions told us that the third moment of the random forcing
function should be equal to 3 o; dc;/dz. We discuss the effect of omitting a
nonzero third moment of the random forcing in inhomogeneous Gaussian
turbulence. This can easiest be shown by considering the shorttime expansions

around Z4, the point of release, of mean height, spread and third moment of
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the particle height. These expansions for height and spread will be derived in
the coming section 5.3 and the expression for the third moment can be derived

analogously. They read

dg?

— _ 2 - ag” L2

Z zs - }; a1(z)t + s e e yz dz t + ® e 0

(Z-zs)i = ﬁg t2 + % az(z) t? ... = g2 t? + ... (3.23)
23T _ “ _ i 2 da? .,

(z zs)3 =¥ a3(z)t t e =379 5 t +...

This first formula is consistent with Hunt's (1984) general expression for the

mean height as function of x (Eq. (3.11)) which include effects of Reynolds

stresses, windsheéar and skewness of the turbulence. Let us consider a/source

in the region where o¢? increases with height. From Eq. (3.23) it follows that
do* > 0 the mean height of the cloud

dz
increases. At the same time the particle cloud becomes more and more skew with

in the region near the ground, where

time because the third moment is non zero. The skewness is positive which
means that the height at which the concentration is maximum decreases. This is
schematically shown in Fig. 3.12. In a model where the third moment of duy is
zero no distinction is made between the mean height of the plume and the
height where the concentration is maximum, boundary effects excluded. As Legg
and Raupach start with a uniform concentration distribution errors due to this

fact do not show in their results.



3.32

Pl P
Z"‘. ________________
1
0 a5 1 '
C@) t/7(29)
— —

Fig. 3.12 (a) Concentration distribution of the vertical velocity close to
the source.
(b) Mean plume or cloud height Z (solid line) and height of the
maximum mean concentration Z, in convective conditions
doZ/dz > 0, w® > 0 (z_/z, =~ 0.1).
(From Hunt (1984)
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3.5.3 Davis' model

P.A. Davis (1983) made a 2D-model for the neutral boundary layer, in

which all parameters u, uw, ¢ TL and T depend on height. The vertical
W u _

w? :Gﬁy
velocity is'given by Legg and Raupach's Langevin- Eq. (3.20a). The horizontal

velocity fluctuation is modelled by

U(t + At) = S(t + At) + BW(t + At) and

(3.24%)

S(t + At) = a S(t) + ¥Yn ,

where S is a dummy variable. This equation is different from Ley's (1982) as
the horizontal particle velocity does not depend on the history of the
vertical velocity but only on its actual value. It is also different from
Legg's (1983) model, as the horizontal particle velocity is not modelled by a
Langevin equation. The derivation of the coefficients a, B and Y is again
based imposing that the particles have the same velocity characteristics as: .

the turbulence velocity, a requirement only vallid in stationary turbulence.

Davis found that the effect of making a 2-D~model by taking the
correlation between horizdntal'and Qértical fluctuations into account did
increase Z and o, at all downwind distances for elevated sources. The amount
he found is less than found by Ley with her (different) 2-D-model in the
surface layer. He also derives an analytical expression for the spread of the

plume résulting from his model given as function of dimensionless parameters.
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3.5.4 Ley and Thomson's model

Ley and Thomson (1983) made a 2-D model for diabatic (stable and
unstable) conditions. They used Langevin formulations for the vertical
velocity of the particles (Eq. (3.20a)) and for the horizontal velocity. The

horizontal Langevin equation is a version of the one used by Legg (1983):

dU = (exp(- %—t) - 1)U + dn. (3.25)
L
The derivation of the first two moments of du is analogous to the theory
discussed in Ch. 2. The random forcing dn is modeled by imposing that the
particles mean horizontal velocity, horizontal velocity variance and
covariance between vertical and horizontal fluctuations in the steady state

should equal those of the air (u, 03, 1u3). In this study the equality is
explicitly only required in the steady state but still their formulation

of dy and dn is not consistent with the theory discussed in Ch. 2. In this
Langevin model the random forcing function dn and dy are assumed to be
Gaussian so that only the first two moments are specified. The fact that the
third moment, which should be there from a theoretical point of view, is not

taken into account, leads to errors as discussed in section 3.5.2.

Model results

‘Legg and Thomson applied their model to stable and unstable surface

layers both with Gaussian velocity distributions. The turbulence is

characterised by o;(z) = ﬁg, oi(z) = u?, TL(z) and h1u3(z). The profiles in
“the stable “surface layer are given by profiles valid for the whole boundary
layer
a;/ui = 2.25(1-2/21)2 ,
o;/ui = 5.29(1-2/2,)* and (3.26)
uju /ui = (1~z/zi)2 ,

where Z; is the boundary layer height. These profiles give almost constant

values for o;, a; and u1u3 in the surface layer (z << zi).
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The unstable surface layer is given by

o2/uf = 1.69( + 3ﬂz/L)2/3 ,
o2/u = (12 + 0.5]z,/L])?"3 and (3.22)
u1u3/u; =1

where L is the Monin Obukhov length. Thus in the unstable surface layer

only o; is a funetion of height.:

For u(z) and T (z) the similarity expressions of the surface layer are

used:
du Ux
= - kz (1 +5 z/L) L>0 (stable)
u, _y
=z (1 - 16 z/L) ™ L<O {unstable)
(3.28)
TL = ku,z/(1 + 5z/L)o; L>0 (stable)

= ku,z(1 - 16 z/L)z/o; L < 0. (unstable)

In this study the values for T; are determined from equating the eddy

diffusivity K to T o; where K = ku*z/¢m(z/L) with ¢m(z/L) the non-

mass L mass
dimensional profile of mass transfer. Note that this description leads to the
fact that TL is ux dependent even in unstable conditions, whereas free

convection scaling states that TL should depend on wy instead of ux.

It:turned out that their model results could be tuned -to measurements by
varying the constants in the modelling of the turbulence. They compared their
model with the Prairie Grass data, Porton data and Lagrangian similarity
theory and find reasonable agreement within the limits of accuracy of the

variable constants (Fig. 3.13).

With this study we end our discussion of models for dispersion in
situations where both T, @nd the Gaussian turbulence velocity distribution
vary with height. Next we note studies with another Langevin model for W/e. In

Ch. 5 we will theoretically compare both Langevin models.




Model: L=100m
P.P.G.: Runs 37, 46.
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" Fig. 3.13 Comparison of ‘project- Prairie-Grass -(P.P.G.)--profiles.with the_  _ _ _
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z(m)

Model: L=~7-7m

«PP.G.: Runs 15, 485

0-04
C (sm-?)

0-06

Langevin model Eq. (3.20) and (3.25) The horizontal axis, C,

represents cross-wind-integrated concentration per unit source

strength for the P.P.G. data, and concentration per unit source

strength for the model output. Continuous line: the model profile.

Broken line: model profile. Dots: P.P.G. values.

(From Ley and Thomson, 1983)
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3.6 Langevin model for W/o and its Markov limit

3.6.1a.Wilson et al's Langevin model for W (1981a)

Wilson et al. (1981a) introduced a handy numericai method for. the
homogeneous Langevin model by scaling both time and particle height. Later he
extended this idea to also transforming the particle velocity W by dividing it
by o. This led to a different Langevin model and well a Langevin model for the
quantity W/¢. First-we discuss their article (1981a) on simulation of
dispersion in a neutral surface layer with g2 = uz constant and TL a function

3
of height. :

In this phper they only scale time and height. They showed that the

homogeneous Langevin equation Eq. (3.4) can be scaled by introducing

T, (H) ' T (H)

dt' = dt T;TET and dz' = ’ (3.29)

T T. (z)
where H is a reference height. This gives

A

.ls:

aW(L") -g- v (2% )%y and

T (H)
(3.30)

dZ(t') = W(t')dt!'

'This transformation leads to an equation with constant coefficients and is
therefore more easy to handle, This equation can be solved analytically and
the height of a particle at any time can be transformed back by the inverse of
- Eq. (3.29). \

3.6.1.b Wilson et al. (1981b) : . g

In a following article Wilson et al. (1981b) added an extra term to the
homogeneous Langevin equation for W to model the effect of ¢ being a function
of height. They assumed that the variation of ¢ in the turbulence considered
is so slow that the gradient can be considered constant. They proposed the

equation




=AW=
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do(z"')

aw = - W o

. (3.31) .

dt' , (20%(H) K. o,
TL(H) + (TL(H) )2dmt a(H)TL(z)

We discuss several aspects of this extra term.

In this last term T (z) occurs, but we assume that is meant T (H) as that
is consistent with their later statements. The extra term implies then a
height independent drift acceleration {o(H)TL(H)do/dz}/dt that however goes to
infinity in case dt » 0, which is unrealistic. It can also be shown that this
term is incorrect by transforming Eq. (3.31) back and comparing it to the
theory of section 2.3.7. ¥ '
The transformation in this article (1981b) is given by

T, (H) T. (H)
, L L a(H) o(z)
' = e t = —_———— LI R .
dt dt TL(Z) , dz dz TL(Z) o) and C o preTy (3.32)
Executing the back transformation this gives the equation
aw = - 4t 2R ) T (2) 48 (3.33)
TL(Z) TL(z) O L dz ’

which has a drift acceleration o(z)T (z) —— dt 1. Note that both the second

term and the last term on the RHS of this: Langevin equation are different from
what they should be according to the theory discussed in Ch. 2. Based on this
theory we showed in section 3.5.2 that the Langevin model in height dependent
Gaussian turbulence should read (see Eq. (3.20))

W 2 y d
T (2) - (§L)?dw + % o(z) 52 dt.

2
sater t az 4 e

TL(

N

We see that in the second term on the RHS of Eq. (3.33) o2(H) enters
instead of ¢2(z). The difference in the last term, the drift acceleration term

is discussed in a later paper by Wilson et al. (1983). There it is wrongly
dc

assumed that Legg and Raupach (1982) used diW = TL T instead of
dW = dt dgz. This might be explained by the fact that in the other studies the

drift acceleration is expressed as

do

= (1 - exp(-dt/T )TL i
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— 2
The drift acceleration is then not given by dW = TL 9%; but in first order dt

- 2
by the correct expression dW = 9%; dt.
We must conclude that Wilson et al.'s Langevin model (1981b) for W is not
correct and therefore leave the discussion of this model. In the next chapter

we will consider their W/¢ Langevin model.
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3.6.2 Wilsons' Langevin model for W/g

In the paper (1983) Wilson et al. introduced a Langevin equation
for W/o. They were led to this model by their idea of scaling particle
variables with relevant turbulence parameters. The Langevin equation for W/¢ '

which they introduce reads in discrete form, in order At,

%
& ca-25H &y, ¢ e 52, (3.34a)
i+l L i L
where Awt is a white noise process with zero mean and variance At.
dg
Writing this in terms of W using Oip1 = 95 + wi iz At gives
wz 2 y 2
N _ At i de 20°\% do
e = @ TL)wi + 5, 02 At + (——TL) Aw, + % At == (3.3Up)

Wilson et al. state that this equation is negligibly different from their
Langevin equation for W Eq. (3.33) in case T, d does not vary much with
height. This claim is not correct as Eq. (3.34b) is a nonlinear equation due
to the extra second term on the RHS and the drift term is different from the
one in Eq. (3.33). In Ch. 5 we will show that the Langevin model for W and

for W/o are essentially different. Dividing the Langevin equation (3.30) for W
by o is not a scaling when ¢ is not constant, but it changes properties of the
model essentially with respect to the original Langevin equation for W. There
is an essential difference between the models which, become clear in Ch. 5. In
that chapter we will show that Wilson et al.'s Langevin equation for W/¢ Eq.
(3.34) is correct in case of Gaussian turbulence.

Wilson et al. applied their model for W/¢ and Legg and Raupach's correct
 Langevin model for W to a case of Gaussian turbulence with - '
Wz) = 0.50(2/2)° 1?51 (2) = (2/2)°*"® and o (2) = 0.30(2/2)%*"

They only show results at a downwind distance of 100 m. This corresponds to a
travel time hundreds are more TL' For such large times both the

W/o-model and the W-model results can be described by the diffusion equation
(see Ch. 5) and this is indeed what Wilson finds (Fig. 3.14). We stress that
this does not mean that the W/o¢ and W model are identical for all time with

the diffusion equation.
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Fig. 3.14 The concentration profile for large times of a ground-level source

in turbulence with power-law profiles of windspeed U, g2 and TL‘

- diffusion equation with K =02TL
. Langevin equation for W Eq. (3.20)
Langevin equation for W/¢ Eq. (3.34)

(From Wilson et al., 1983)
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3.6.3 Durbin's Markov limit model for W/¢ model

Durbin (1984) wrote a paper in which he initiated the large time analysis

of Langevin models. Note that already in an earlier study (1980) he used a
large time equation, the Markov limit. In that study he did not base this
Markov limit on large time analysis but on analogies with the diffusion
equation. The large time an analysis is a strong tool when we want to
investigate the random forcing function in the Langevin models, The modelling
of the random forcing function should be such that the large time behaviour of

the Langevin equation is described by a diffusion equation.

Durbin derives a Markov limit, which describes the large time behaviour
of the Langevin model for W/¢ in inhomogeneous Gaussian turbulence. He showed
do

2
that the incorporation of a drift term % 3z dt ensures that the Markov limit

of this Langevin equation is equal to the diffusion equation.

He wrote this paper as a comment on Wilson's et al. (1983) and Legg and
Raupach's papers (1983) because his analysis shows the necessity of
incorporating a drift term in the Langevin model for W/o¢ applied to
inhomogeneous turbulence. We have to keep in mind though, that Durbin (198%)
and Wilson et al. (1983) considered the Langevin model for W/o, while Legg and’
Raupach (1983) considered the Langevin model for W. In Ch. 2 we showed
however, that also in the Langevin model for W a drift term needs to be
incorporated. Again only then the Markov limit for the W-model becomes equal
to the diffusion equation.
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3.7 Theoretical investigations into inhomogeneous Langevin models

The studies discussed above dealt exclusively with the first two moments
of the random forcing in Langevin models. Janicke (1981) started a new path of
development, by indicating a way to derive all moments of the random forcing.b
He himself however, still only considered the first two moments of the random
forcing function, but his ideas were later generalised by other authors.
Janicke assumed the random forcing function in the W-equation to be Gaussian.
The KME of the W-model is then in inhomogeneous Gaussian turbulence a second
order differential equation, the well-known Fokker Planck equation (Eq. 2.80).
From this KME moment rate equations for W were derived (see also section
3.3.2). Janicke argued that in the steady state the moments of the particle
velocity W should be equal to those of the turbulence velocity u3. Using this
in his comparison of the KME moment rate equations to the Eulerian equations,
he finds that the first moment should be <du> = dt Qg%_ This is 'the same drift
term as was argued for by Legg and Raupach (1983) and Ley and Thomson (1983)
on physical grounds. Janicke illustrates that this drift term indeed prevents

particles from collecting in regions with low variance.

This idea is later generalised by Thomson (1984) and Van Dop et al.
(1985) (seé section 2.3). Théy do nét restrict their analyses to Gaussian
velocity and random forcing distributions but consider general pdf's with an
infinipe series of érbitrary momehts. Thomson considéred only the steady state
reduiring that then <W™> = ;g.'Van Dop et al. (1985) continued along this line
carrying the idea further by considering an analysis of the moment rate
equation for all time. Here we will not go into these last two theoretical

studies but refer to the ektenéive discussion made in section 2.3.
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3.8 Langevin models for situations with skewed turbulence velocity

distributions

In the papers discussed above papers the Langevin equation was adapted to
the dispersion in the neutral boundary layer and also to the convective and
stable surface layer. The first and second moment of the random forcing in the
model were modelled, while any higher (also nonzero) moments were neglected.
These models are only applied to situations where the turbulence velocity
distribution P(u3) was allowed to be height dependent but still Gaussian.

We now describe studies that deal with dispersion in boundary layers,
where the turbulence P(u3) is no longer Gaussian but skew, which e.g. occurs
in the convective boundary layer (CBL). The first model we discuss is the
model of Baerentsen and Berkowicz. This model is not based on the theory of
Langevin models described in Ch. 2, in contrast our own next model we shortly
review, For a full description of our model and its application we refer to
Ch. 4.

3.8.1 Baerentsen and Berkowicz's model

The first Langevin model, that deals with a skewed turbulence velocity
distribution P(u3), was proposed by Baerentsen and Berkowicz (1984). They
considered the convective boundary. Their model is based on the fact that the
motion in the CBL consists of strong updrafts and weak downdrafts. The total
turbulence velocity us is modelled as the weighted sum of the yelocities in
the up~ and downdrafts, whose distributions are assumed to be Gaussian. Both
these distributions are characterised'by the mean veiocities ;; and ;_ and
‘variance”o;“and"ozwfor resp. the up--and-downdrafts. A.weighted _sum of these
two Gaussian distributions is made to represent the skewed distribution P(u3).
This can be done by requiring that the weighted sum of these moments of the
up- and downdrafts distributions 1is equal to the corresponding moment of the
turbulence. The three equations for the first, second and third moment yield

values for ;+, ;_, o, and o_ and the weight factor if an extra assumption

+

(here w, = o, and w_ = ¢) is assumed.

Once these turbulence values are calculated, they are used in determining
the particle velocity. The particles either move with an up- or downdraft. The
motion of the particles within down- or updrafts is separately modelled, each

by a Langevin model for W/o:




3.45

o(z(t+dt))

‘ . dt _ _aat\y do?
WSL'C"‘dt‘)' = W + U(Z(t)_)—— exp( T_-)W(t) + U(Z)(1 QXD( T ) dwt+ }é -—d—£ dt ,
J (3.35a)
which in first order dt is equivalent to
= _dt w2 d 202\% dg?
aW = w - = W(t) + — 3 4t * (—;—)2dwt + % —5z dt - (3.35b)

The drift term in this equation is correct in a Langevin model
for W/¢ (Thomson, 1984), although_Baerentsen's and Berkowics's argument
leading to it is not correct. Their argument is based on a Tayldr expansion of
the particle velocity W(t). This expansion should be made via W(t) = u3(Z(t)).
In making a Taylor expansion of ug it should be taken into account that the
turbulence is three dimensional. The expansion around a point 2y should be
(Hunt, 1984)

du3
u(z ) = =—=1 (X-x ) + ...
3"p dxj % -~ ~p

~p

w(t)

1]
=

(zp) + t uj —= ] + ... (3.36)

1
=
w
~~
N
el
S
+
ct
—
+
-
.

where in the last equality the three dimensional continuity equation is used.
(see also Ch. 5). It follows with horizontal homogeneity that

d<W> = dt dﬁ?/dz. Baerentsen and Berkowicz's did not take all these aspects
into account and found thus a drift term with a factor ¥ in front.

A drift term can straightforwardly be included in the linear lLangevin
model for W. But the W/o-model nonlinear in W and including a drift term such
that d<W> = dt dﬁg/dz is more involved. Pardoxically enough, the drift term
that gives the desired result in this W/o-model is the one used by Baerentsen
and Berkowicz. For correct arguments leading to the driftterm in the
W/o-model we again refer to the discussion of the model for W/¢ by Thomson

(1984),
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In Baerentsen and Berkowicz's model an exponential jump probability is
further assumed that gives the probability to jump from an up- into a
downdraft and vice versa.:The four timescales involved, two in the Langevin
equations and two in the jump probability functions, are in not-obvious-
formulas related to the dissipation rate €y By varying this €y they could
tune their models to the watertank results of Willis and Deardorff (1976, 1978
and 1981).

An advantage of Baerentsen en Berkowicz's model is that only Guassian
pdf's are used, which can be generated with high accuracy on a computer.
However their model is specific for the CBL and is not applicable to other

atmospheric turbulence situations.

@
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3.8.2 Our model

For completeness we shortly review our own work. For .a more detailed
discussion we refer to the next chapter. The Langevin model we build is a
Langevin model for W with the first three moments of the random forcing
spécified according to Thomson and van Dop et al.'s results discussed in
section 2.3. The model is applicable to all atmospheric stabilities. To show
the strength of the model we simulated dispersion in the strongly
inhomqgéneous convective boundary layer. The only parameters needed are
profiles of T, Ggland'ﬁg. The agreement between model results and
observapions may be charactgrized as good. (see Figs. 4.2).

The. theory for Langevin models requires that the third moment of the

random forcing function should be nonzero in skew turbulence,

3 e (a2 2 __ 2
<(dp)®> = ( TL + 3u3 dz)dt

in case the fourth moment of the turbulence velocity is modelled by a Gaussian

assumpt ion Ug = 36?2

essential for the behaviour of dispersion near the source and also for large

.. In our model we have found that this requirement is

times. For short(times~this can thebretically be shown. The short time _
behaviour of height and spread in a Langevin model will be derived in Ch. 5.3

Eq. (5.10) and the third moment can be derived analogously. They read

(Z—zs) = + % a1t2 L

e 4. B

—r Y2  _ 32 2 4 (e A - 2Vt

(Z2-z)* = ul t + (3 a, TL)t + oees
~ o

Z-2)° - E§ £+ (ag- % Tf)t“ e

Leaving the third moment of du out means that the skewﬁess of the plume is not
correctly represented leading to wrong concentration levels. For larger times
the third ﬁoment of dy is also important as we show in the next chapter. It is
responsible for the fact that a much better uniform concentration is found in
comparison with the case where the third moment is taken to be zero. The
article in our model published in Quart. J. Met. Soc. (1986), is integrally

included in Ch. 4 and redundancies might occur.
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3.9 Discussion and conclusion

We discussed several dispersion models based on the Langevin equation.
These models describe the vertical velocity of the dispersing particles by
dW = -~ %— + dp. In these models the parameters T and du are prescribed in
such a wgy that the Langevin equation can be applied to different atmospheric

situations.

Dispersion in the homogeneous conditions can be described by a Langevin
equation in which only the second moment of the random forcing is nonzero.
Dispersion in neutral surface layers where only T; depends on height can be
described by the same formulation of the random forcing. It is shown that this
formulation is seriously in error when applied to more complex situations
where turbulence intensity varies with height. Dispersion in such layers, like
the stable and unstable layers, has to be described by a Langevin model for W
in which more moments of the random forcing du are nonzero. The first attempts
for such layers included a drift acceleration in the Langevin model by putting
the first moment of du equal to 9%— dt This is done to prevent that particles
collect in regions of low turbulence intensity. This formulation is still not
entirely correct because, even in Gaussian inhomogeneous turbulence, the third
moment of duy is nonzero. Neglecting'this term means that the skewness of the
plume is not represented, and as a result no distinction is made between the
mean height aﬁd the height of maximum concentration. Results of the Langevin
model for dispersion in skewed turbulence, like in the convective boundary
layer, are also discussed. It will be shown in Ch. 4 that both short and large
time behaviour improve considerably if the third moment of du is correctly

modelled. Our Langevin model w1th the random forcing based on theoretical

results of Thomson and Van Dop et al. will be shown to be a powerful model. It

should be applicable to all atmospheric conditions,

In the above it is discussed that vertical dispersion is strongly
influenced by the profiles of T;, and the turbulence velocities. But it also is
by height variation of the mean horizontal wind. This effect can easily be
modelled in a 1-D Langevin model by an advection term in the horizontal. The
model fesults are then usually described as function of downwind distance x

instead of time.

Another dispersion model the Langevin model for W/o is introduced.
In Ch. 5 we will investigate this model theoretically to show that the model
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for W is essentially different from and more correct than the model
for W/o The conclusion is that the Langevin equation for W is a powerful
dispersion model, if the random forcing is specified by its-first, second and

third moment.
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4,1 Introduction

The dispersion in convective conditions has been first studied by Willis
and Deardorff by means of a watertank (1976, 1978, 1981). The characteristics
of the dispersion were quite unexpected at the time of its discovery. Material
emitted at ground level first remains at the surface but then rises quickly to
midlevel of the boundary layer, whereas particles released from elevated
stacks first descend and then move to midlevel. These chahacteristies have
since peen confirmed by other observations of Poreh and Cermak (1984) in a
wind tunnel and of Briggs (1983) in field experiments. Euierian K-theory is
unable to describe these phenomena, it does not give the proper vertical
dispersion for small times. The rising of the plume would require negative K
values, and in reality material emitted from elevated eources reaches the “
ground sooner and closer to the source than these models predict. An
alternative is to use Lagrangian models in which the motion of individual
fluid particles is considered. In these models the dispersion for times
smaller than the Lagrangian timescale is better deséribed.'Besides that the
conservation of mass is ensured and no problems occur with numerical stability

of the equations used.

A Lagrangian model of Lamb (1978) simulated the above described
dispersion phenomena byvascribing to particlee a velocity that consists of two
parts W = Wy + Wg. The first part'wd'is the velocity determined by Deardorff's

numerical model (1974): W. is a stochastic velocity deseribing the subgrid

s
part. Overall the agreement with the watertank experiment of Willis and

Deardorff is very good.

Misra (1982), Weil and Furth (1981) and Venkatfam (1982), arguing that
the particle is either moved by an updraft or by a dewndraft, set up two
simple stochastic differential equatione. By choosing the correct stetistics
for the.uperaft and downdraft they were able to eimulate sevehal aspects of
convective diffusion. ' ‘

Other models describe the movement of the perticles by the Langevin
equation in analogy with the description of Brownian diffusion.

The models based on the Langevin equation simulete dispersion in terms of
a stochastic differential equation (random walk or Monte Carlo simulation).
The stochestic term in the Langevin equation describes the forces exerted on
the particles by the turbulence (Lin and Reid, 1962) and is expressediin terms

of turbulence statistics




dw = -(W/TL)dt + du (4.1)

where W is the particle velocity, TL the Lagrangian time scale-and dp are the

random velocity increments.

The Langevin equation was first applied to describe dispersion in
homogeneous turbulence (Lin and Reid, 1962; Gifford, 1982 a and b). This can
be described by du = 0, (dp)Z? = 2G§dt/TL and (dp)® = 0 where Eg is the
variance of the turbulence velocities. In this case analytical expressions for
the velocity of a particle and its position may be obtained by successive
integration of Eq. (4.1). The result is an exponential velocity
autocorrelation, which is well known to be able to describe homogeneous

dispersion adequately (Tennekes, 1979).

The Langevin equation has been furthermore applied to the surface layer,
where the turbulence was taken to be homogeneous but the timescale varied with
height. The resulting equation was solved numerically by Hall (1975), Reid
(1979) and Ley (1982). Their results were tested against the known analytical
solution of the diffusion equation valid for large times and against data like

those of the Prairie Grass experiments.

However, the Langevin Eq. (4.1) derived for homogeneous turbulence can
not be applied unmodified to a non-homogeneous boundary layer. For instance,
particles have a tendency to become trapped in regions with small variances.
To avoid this phenomenon Legg and Raupach (1982) and Ley and Thomson (1983)
added an extra term to the Langevin equation. This adding an extra term is

equivalent to a nonzero mean random forcing EH = dt 3u2?/3z, but they still

3

take'(du)fgi'2u§‘6€7TET“TEE&“B§5€‘EHéi?“EFgGﬁéﬁEE“bﬁ“ﬁHé“N&Viéb"éthéé""”"‘"
equations and they state, that a gradient in the velocity variance induces a
mean pressure force, which has to be added to the Langevin equation. Janicke
(1981) derived the same expression for du. He required that the Fokker-Planck
equation (the Eulerian equivalent of the Langevin equation) should yield
particle velocity moments, that for large times are equal to the turbulent
velocity moments in equilibrium. Thomson (1984) extended these arguments,
taking higher background Velocity moments into account. By using moment-
generating functions, he derived the‘moments of the random-forcing function by
demanding that the probability density of the particles leads to a

distribution of particles, that for large times has the same density



d;stributidb asfthé air.
Aidifferent approach is used by Van Dop et al. (1984) who deal with the
génerél case of ‘non-stationary and non-homogeneous turbulence. They consider

the Langevin'eqdétidn of the following form

dw = {-(W/TL) + a1}dt + ag dw, ' (4.2)
with
"d'.;; =0, (dw )? = dt . (4.3)

This set of equations is equivalent to Eq. (1) if we take

du = a,dt, (a2 = a,dt. By means of Taylor expansion for small times of the

rate equations fo W and W2, Van Dop et al. obtain expressions for a1»and as.

These expressions turn out to be equivalent to formulas for the moments

of duy found by Thomson. They also prove the validity of their results for all
time by showing, that the moments obtained from Eq. .(4.2) and (4.3) are

consistent with the moments obtained from the Eulerian conservation equations.

Baerentsen and Berkowicz (1984) split the particle velocity intd two
parts on the same principle, the up- and downdrafts, as Misra, Well and Furth
and Venkatram did before, but Baerentsen and Berkowicz use two separate
Langevin equations to describe them. They also allow a particle to jump from
an updraft into a downdraft and vice versa with a given probability. These
four processes involve separate timescales, which were tuned by testing the
results against the watertank experiments of Willis and Deardorff. With this

tuning their model compared very well with the water tank results.

Qur approach differs from the study of Baerentsen and Berkowicz in that
we do not split the particle velocity into two parts, but we use only one
single Langevin equation to describe all particle velocities. The purpose of
this paper is to consider, whether this single equation, with the moments of
the random velocity incrementé as defined by Thomson, is able to describe
dispersion in the horizontally homogeneous steady convective boundary layer.
Moreover we will consider the influence of the moments of du on the solution.
The results are compared with the water tank experiments of Willis and
Deardorff (1976, 1978, 1981), the numerical experiments of Lamb (1978), the

field experiments of Briggs (1983) and the windtunnel experiments of Poreh and
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Cermak (1984).

The modelling of the Convective Boundary Layer (CBL) is described in the
- next section. The Langevin model we used to describe the dispersion in the CBL
is explained, whereafter the results are given and discussed. In the last but
one section we discuss some details of our simulation. The last section |

contains our conlusions.
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4,2 Convective boundary layer

Usually during daytime the air is heated at the surface and the boundary

layer becomes unstable. The vertical turbulence structure becomes organised in

a pattern of updrafts and downdrafts, where on the average the updrafts move
faster than the downdrafts. Because the vertical speed, averaged over a large
horizoﬁtal area, should be zero, the downdrafts occupy a larger area than the
updrafts at each level of the boundary layer. If the turbulence is
inhomogeneous, the vertical velocity distribution is height dependent.
Furthermore the vertical velocity distribution is skew. The Eulerian
properties of the convection (outside the surface layer, where the stresses
are constant) can be scaled with the convective velocity Wy = (ziﬁggg/T)1/3
and the height Z; of the boundary layer if -zi/L > 10 (L is Obukhov

length, GE; is-the surface heat flux). Below this value the turbulence beg{ns
to be affected by shear stress (Willis and Deardorff, 1976, 1978 and 1981).
This type of scaling is called mixed layer scaling. It is assumed that,the,‘
Lagrangian and Eulerian correlation functions pL(t) and pE(t), are similar in
shape but displaced by a scale factor B: pL(Bt) = pE(t) (Hanna, 1982). From
the definition °f,TL follqws B = TL/TE' The Lagrangian properties then also
.+ The various theoretical estimates of B all lead to the

i
form Bi = constant, where i is the turbulence intensity defined as ou/ﬁ. The

scale with wy and 2z

numerical values of the constant range from 0.35 to 0.8 (Pasquill and Smith,
1983). Hanna (1981) found for a convective boundary layer |

Ty = 0.25 z,/u = 0.69 iz/w,, where g = 0.36w, is substituted (Hanna, 1982).
Then we get

0.24 2, /Wy < T < 0.55 2z, /Wy , ‘. (4.4)

but we have to keep in mind that there is a large uncertainty in the
consténts;

Many measurements have been carried out to detérmine the profiles of the
second and third moments of the vertical turbulence'velocity. Baerentsen and
Berkowicz used the following profiles expressed in terms of mixed layer

scaling:

— B L2/ . : )
u§/w: = 1r5u(z/zi) 3 exp(~ 22/21) o (9’5)




ﬁ-g/w; = 0.8(z/zi)(1 - z/zi)(1 + 0.667z/zi)-1 . (4.6)

In order to avoid difficulties, as will be discussed later, we use for the

third moment a slightly modified expression:

ﬁ_g/w; = 1.4(z/z,)exp(- 2.5 z/z;) (4.7)

(see Fig. 4.1).

T 0.9
2/2;

0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

Fig 4.1

_ Second and third moments of turbulence vertical velocities as described by Egs. (5) and (7) (solid
line). Stars: water-tank data (Willis and Deardorff 1976); circles: aircraft measurements (Willis and Deardorff
1974); squares: Minnesota data (Izumi and Caughey 1976); crosses: water-tank data (Willis, published by
Baerentsen and Berkowicz, 1984). Dashed line denotes uj profiles of Baerentsen and Berkowicz (1984)

(Eq. (6)).
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4.3 The Langevin model

Next we consider the Langevin Eq. (4.1) for inhomogeneous conditions. The
theory has been developed by Thomson (1984) and Van Dop et al. (1984). Their
results lead to the following expressions for the moments of the random '

forcing function du.

dy = At{aag(z)/az}

(du)? = At{2u§(ZT/TL + aug(zi/az} (4.8)
@nT - Ac{aagfzier . aE§(23/az SETHOLTH AT

Wé solve the Langevin equation in a finite difference form. We use the

following explicit scheme:

W(t + At)

W(E)(1 = B86/T ) (1 + Bat/T) ™ + au(t + Kat/T )]

Z(t + At) = Z(t) + 4at{w(t + at) + w(t)}

(4.9)

with”At thé timestep used in the integration procedure. This scheme is
unconditionally stable and doesn't caﬁse computer‘time problems.

Finally to assign a value to the random forcing at each time step for
each particle we construct the distribution density function P(du). This can
be constructed from the Eq. (4.8) in the same mathematical way Baerentsen and
Berkowicz (1984) constructed their distribution function for the velocity of

the updrafts and downdrafts P(u3) (See appendix I).
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4,4 Results

The Langevin model described above is applied to dispersion in a
convective boundary layer, neglecting streamwise and cross-wind diffusion. The
profiles used in Eq. (4.8) are Eq. (4.5) and Eq. (4.7) together with -
T, = z,/wy, which relation will be discussed later. A slight adjustment is
applied to the G§ profile near the ground. There we took G§/W§ constant in a
shallow layer of depth §, where é/zi = 0,0025. The velocity variance in this
layer was put equal to u%(d/zi)/wz. The reason for this will be discussed

later.

At the top and at the bottom reflection boundary conditions are imposed

on the particle motion.

At t = 0 the particles released at z = 24 are assigned initial velocities
W such that
W(t = 0) =0, Wi(t = 0) = u_32'(zs) and W(t =0 = a—§(zs) . (4.10)
The number of particles released was set at 2 x 10“ and the timestep at
At/TL = 0.05. This choice was made to avoid inaccuracies in the generation of
the random forcing funtion as will be discussed later. Computertime for a

simulation of 2 x 10”

trajectories up to t = 14 TL on the CRAY XMP computer at
ECMWF, Reading, U.K. was 13 seconds CPU time. The amount of particles was

generally sufficient tq obtain stable statistics.

The resulting concentration profiles are measured as the number of

particles in an interval Az/zi = 0.05. They are nondimensionalised with the

distributed in height. The concentration profiles are given as function of
nondimensional time t/TL. This is equivalent to a nondimensional
distance X = (wy/U)(x/z;), vhere x is the distance over which particles are

advected by the uniform mean wind U in a time t.

Contour plots were made of the concentration as function of height and
time or downwind distance (Fig. 4.2) until the distribution reaches a steady
state. They are compared with the results of the watertank experiments also
given in Fig. 4.2. We see that the simulations describe the significant
features found in the experiments remarkably well, Particles released at

ground level first remain at the ground, then rise above mid-level before

Valﬁ§‘Q72;U:_WHiéh“lgﬂfﬁénéﬁﬁﬁ§ﬁfféﬁi6h”Wﬁéﬁ“th§”§éfffCIé§“é?é“hbmégéhééﬁély'“"“"
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Contours in the vertical x,z plane of the dimensionless concentration
presenting the results of our Langevin model (I) and of the cross wind
integrated measurements of Willis and Deardorff (II) for the source heights
a) zg/z; = 0.067

b) z4/zy = 0.24

c) zg/zy = 0.49

Source height is indicated by arrow on ordinate.
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reaching the equilibrium state. Particles released at a quarter of the
boundary layer height and at mid-level are first swept downward, remain a
small time at the surface and then rise to mid-level. Furthermore the observed
concentration pattern is simulated not only qualitatively but also very
satisfactorily quantitatively.

The maximum value in the center of the particle cloud, released at
groundlevel, during lift off of the particles (Fig. 4.2) was slightly smaller
than the experimental value of Willis and Deardorff during lift-off. It also
appeared that our concentration profiles during lift-off are more peaked for
z/zi < 0.2. This is probably due to the fact that a point source is hard to

simulate in experiments leading to less peaked concentration profiles,

In their windtunnel experiments Poreh and Cermak (1984) measured
centerline concentrations for particle releases at zs/zi =0
and zs/zi = 0.133 at s8ix distances smaller than X = 1.,2. We converted the
centerline concentrations C(x,0,z) to cross wind averaged values
E(x,z), assuming that the crosswind spread is Gaussian (Willis and Deardorff,
1976) .

[ ] «©

Ey(x,z) = f c(x,y,2) %X = f C(X,O,z)exp(-yz/Zo;)gl = /(2n)(oy/zi)C(x,0,z)

- i - i

(4,11)

where we used Poreh and Cermak's measurements of oy(X)/zi.
The results of our model for zs/zi = 0.067 and zs/zi = 0.133
compare very well with the calculated values of Poreh and Cermak
(Fig N 3) It seems though as if there is an inconsistency for the results at
X = 1 06 Our results imply a 1arger value of o (X = 1.06) than the one given -
by Poreh and Cermak.

The mean height of the plume and its spread are calculated as a function
of time until the distribution reaches a steady state (Fig. 4.4 - Fig. 4.5).
These results were compared with cross-wind integrated results of the water
tank experiments of Deardorff and Willis (1975) and Willis and Deardorff
(1976, 1978, 1981) and the numerical results of Baerentsen and Berkowicz
(1984). . ‘

The time at which the maximum height is reached agrees very well with the
tank experiments, although the maximum height itself for groundlevel release

is slightly less in our experiments (Fig. 4.4), In equilibrium the
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Mean particle height E/zi as a function of downward distance X for source
heights 25/z; = 0.067, 2g4/2y = 0.24 and z24/z; = 0.49. The results of our
Langevin model are denoted by a solid line, the measurements of Willis and
Deardorff by circles and the numerical experiments of Baerentsen and
Berkowicz by (-.-). The short time Taylor series expansions (Eq. 13) are
indicated by dashed lines.
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%
Mean variance (z - zs)2 /zi as a function of downwind distance X for source

heights 2g/2y = 0.067, zs/zi = 0,24 and Zs/zi = 0.49. The results of our
Langevin model are denoted by a solid line, the measurements of Willis and
Deardorff by circles, and the numerical experiments of Baerentsen and
Berkowicz by (—.—). The short time Taylor series expansions (Eq. 13) are

indicated by dashed lines.
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concentration should be homogeneous (C(z) = 1) and then the mean height is 0.5
Z;. ‘
In our experiment, as well as in the experiments of Baerentsen and
Berkowicz, the mean height is lower because the concentration

distribution does not become homogeneous, as will be discussed later. Willis
and Deardorff did find an equilibrium mean height of 0.5 z;, although their
equilibrium concentration is not homogeneous either. In their experiments the
inversion height is not constant. At some places the particles reach beyond

the average value leading to a larger mean height of the particles.

Qur particle spread {(z - zs)z}z/zi, results agree very well with the
tahk experiments for all time although for the groundlevel release the maximum
spread is again slightly less, Our equilibrium values are fair compared to the

theoretical equilibrium value

z.
i
{(z - zs)z}}é/zi = {(1/zi) i (z/zi-zs/zi)2C(z)dz}Z={% - zs/zi+(zs/zi)2}z
(4,12)

which is equally true for the equilibrium values of Baerentsen and Berkowicz.

The dip in the spread between X = 1 and X = 2 for the case Zs/zi = (0,49
is a feature that we were also able to simulate. This dip is due to the fact
that the particles lift off the ground between X = 1 and X = 2. This results
in a concentration distribution with such first and second moments, that the

spread relative to z_, is smaller than the equilibrium value.

S

—~ -—-——-----The small time exact Taylor series expansions for mean height and spread

of the particles derived for an infinite boundary layer are (Hunt 198”5

7 2 5 = 2 2 3
Z -z };(au3/8z)Z t? + o(t?)

S (4.13)

- Y2 . (,;2 2 o3 3 "
(Z -2z) (u3)z t2 + Vz(au3/az)Z t® + o(t*) .
s s
- The results in Fig. 4.4 show indeed that the mean height increases the
fastest the closer the source is to the surface. This is because

aﬁg/az decreases with height.
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Willis and Deardorff measured the mean height and spread for releases at
z4/2z;{ = 0.05 and zg/z; = 0.067. Our model run with a
GgTET profile that is equal to Eq. (4.5) leads to good agreement with the
short time results of zs/zi = 0.067. The results of Willis and Deardorff in
case z24/z; = 0.05 are best simulated with<E§T27 = 1.8(z/zi)2/3. This profile
is also used by Van Dop et al. (1984), following Wyngaard et al. (1971). This
might be explained by the fact, that maybe in each water tank experiment, the
convective boundary layer established, should have been described by a

different coefficient in the i,1§(z) profile.

0) are presented in Fig. 4.6 where

Groundlevel concentrations C(x,z
also the results of a source at z /z; = 0.75 are given. These values are based
on the average number of particles in the lowest interval
Az/zi = 0,05, except for thé ground level source at height zs/zi = 0.067,
where the results of two layers were averaged to include the source height

itself.

Particles released at the surface immediately lift off the ground,
reducing the groundlevel concentration. Only after distances larger than X =
0.5 the groundlevel concentration increases again untill the particles get
homogeneously distributed. The groundlevel concentration due to the phenomena

shows a minimum between X = 0.6 and X = 1.5.

Particles from elevated sources are first transported downward with a
nondimensional velocity of order 0.5 wg/U. The higher the source, the longer
it takes before the plume hits the ground and the more effective the diffusion
already does its work. Therefore the maximum groundlevel concentration

decreases with source height.

Briggs (1983) analysed a large number of dispersion field experiments.
These are data for source heights in the lower'half of the boundary layer. He
came to the conclusion that groundlevel concentrations from elevated releases
have a peak at X = a Zs/zi with 1.8 < a < 2,2, due to a downward non-
dimensionalised mean particle velocity of wyg/U. He also found that the maximum

surface concentration can be described by
-1 i
Cmax(x,z—o) = 0,48(1 + 2zs/zi)(zs/zi) . A (4.14)

The values we found for the distances X at which the groundlevel concentration

peaks agree very well with his formula (Fig. 4.6). But our maximum
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Figure 6. Ground level concentrations as a function of downwind distance X for the source heights 2,/2;,=0-067, z,/z; = 0-24, z,/2; = 0-49 and z2,/2; = 0-75.

These concentrations are averaged values over the interval z/z; < 0-05 except for the source height z,/z; = 0-067 where the average is over z/2;<0-1. The

results of our Langevin model are indicated by a solid line, the measurements of Willis and Deardorff by stars, and the maximum ground level concentration
" according to Briggs (Eq. 14) is indicated by A.
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concentrations are smaller than those predicted by Briggs. This might be also
due to the fact that the concentration gradient at the lower side of the
particle cloud during lift off is very large in our experiment, resulting in

lower groundlevel concentrations,

Simulations for longer times up to t/T; = 200 show that the concentration
distribution reached after t/TL = 3 is approximately the equilibrium '
distribution. This concentration is homogeneous in the bulk of the boundary
layer but reducés to 0.7 times the homogeneous concentration in two thin
layers along the bottom and top with a thickness respectively of one tenth and

one fifth of the boundary layer height, independent of source height.

These phenomena, although also quite accidentally measured by Willis and
Deardorff, shoﬁld be investigated further, It might be due to inconsistencies
in the Lagrangian modeling and deserves our attention, because most

applications will focus on a correct prediction of surface concentrations.
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4,5 Discussion

In this section we will discuss some details of our simulation. First we
consider the choice for TL and for the turbulence velocity distribution. Next
we consider the sensitivity of our model for the parameter At and for the
modelling of the random forcing function. We conclude with a discussion of the

results in comparison with observations.

The Lagrangian timescale was argued to be TL = czi/w* (Eq.(4.4)). In this
section 2 it is discussed that ¢ lies between ¢ = 0.24 and ¢ = 0,55 based on
one experiment by Hanna (1981). The choice of the constant ¢ is critical. Each
choice leads to different behaviour of the particles and therefore the choice
for ¢ can not be considered to be a scaling of the Langevin equation. This is
because the equationg for the moments of du depend both on At/TL and
on At, leading to a nonscalable velocity and consequently to a nonscalable

displacement.

The choice of ¢ is restricted by the fact that the variance TEETf
has to remain positive, For instance if we use the profiles of Baerentsen and
Berkowicz in Eq. (4.8) we find that for ¢ < 0.87 the requirement (dup)2 > O.is
satisfied at all heights. However, these values of result in a too slow lift-
off of the particles, suggesting that ¢ should be larger. We chose ¢ = 1 and
in that case the profile of E;TET has to be changed slightly at the top to Eq.
(M.?),_which has a less negative gradient in this region.

Another small adjustment of the profiles was required. Near the

ground (z + 0) 3u§/az tends to infinity (ef Eq. 4.5) so that dp may take

arbitrary large values (Eq. 4.8). This, however, causes difficulties in the

“numerical proéedure, which was chosen to determine- P(du).-These difficulties. .

could be avoided by taking u§/w§ to be constant in a small layer & above the
ground. Here 6§ is put equal to 0.0025. A larger § causes the concentration in
the layer z < § to spread out more.

At the top and at the bottom reflection boundary conditions are imposed.

This means that for some small quantity € we get

u3(—e) = - u3(e) and u3(zi +g) = —u3(zi -€) . (4,15)

This implies that u3(z) and u%(z) should be zero at the boundaries,

while u§(z) should be constant near the boundaries. At the ground the profiles
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given by Eq. (4.5) and Eq (4.7) are consistent with the boundary conditions.

At the top the requirements ﬁ§

profiles. We did not adjust the profiles, because this would imply a too large

/w? = constant and Eg/w; = 0 are not met by the

gradient in u%/wj, which would lead to violation of the requirement
(du)2 > 0.

The accuracy of the statisticsbof ﬁhe constructed skew forcing function
is a function of the number of particles and of the time step. This can be
expiained as follows. The skewness of the random forcing function is defined
as S = (du)a/{(du)2}3/2

steb S ~ (At)-z. A small timestep implies a large value of S. A large skewness

. This skewness is a function of the numerical time

means that the probability density function has a tail. These large values
of u have a very small probability. If the generation is done with a limited
number of particles, these large values of u might be left out, causing the
genérated distribution to have a very inaccurate skewness. We choose

At/TL = 0,05 and the number of particles to be 20.000.

- As we have seen we must prescribe the first three moments of the random
forcing term in the Langevin equation. Let us now consider how sensitive our
model results are for the exact prescription of those moments. The description
of dispersion in non-homogeneous turbulence, when only GgTET, but not its
derivative, is taken into account, leads to accumulation of the particles in
regions with a small variance (Janicke, 1981). Janicke (1981) and Thomson
(1984) in their run 2 and 3 also took into account the derivative 3u2/dz.

3
They applied the full Egs. (8a, b) with u® = 0. The higher moments are still

assumed to be zero. This results in a congentration distribution for large
times that is sometimes'slightly the opposite, particles accumulate in begions
with a large variance. This also happened in simulations with our model.
Introducing a third moment of random forcing function Eg?ET, in Eqs. (4.8b,c)
improves the simulations very much. '
Of the fourth moment, Eg, no measurements are available. Therefore, we ;
assumed a relationship between the fourth and the second
moment, Eg = a(ﬁg)z, Wwith a between 2 and 5. Comparing the results with the !
watertank experiments it appears that the convective boundary layer is best {
|

modelled with the Gaussian assumption

E§= 3(u?)z? . (4.16)
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4.6 Conclusions

Dispersion of particles into inhomogeneous turbulence in a convective boundary
layer is modeled by a Langevin equation. The Langevin model is capable of
simulating all the experimentally known features of dispersion in convective'
turbulence. The agreement with observations may be characterised as good. The
theory for the Langevin model in inhomogeneous conditions requires that the
third moment of the random forcing function should be nonzero. We have found
that this requirement is essential for the behaviour of the model near the
source, where it is responsible for the downward movement of an elevated
plume. The requirement also holds for the behaviour for large time, where a
much better uniform concentration is found in comparison with the case where

the third moment is taken to be zero.
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Appendix

This skew distribution function P(du) can be constructed out of two Gaussian
distributions: with a chance a, we choose du from the first Gaussian
distribution function P1(x1), and with a chance (1 - a1) we choose dy from thé
second Gaussian distribution function P2(x2). These Pi(xi) have mean m; and

variance o;. Four requirements

t=ay [ Pi(xax, +a, [ Py(x,)ax, . (A1)
n n v n _ '
(du) = a f x1P1(x1)dx1 *+a, f x2P2(x2)dx2 n=1, 2, 3

lead to the equations

am, +a = du (A2)

1™ 2"

a1(mf + of) + a2(m§ + og) = (du)?

3 2 3 2y - (duy?
a1(m1 + 3m1c1) + a2(m2 + 3m202) (dw)?® .

These equations still have two degrees of freedom. Because we're not
interested in the specific form of P(du) but only in its first three moments

the two other requirements were chosen to simplify the arithmatics. We chose

2

my

= o;(i =1,2).
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5.3

5.1 Introduction

Dispersion in a turbulent atmosphere can be described by a Langevin
model.Such a model describes the velocity of released particles. The changes
of the velocity in time are modelled by a damping term and a random forcing |
term. The last term specifies the effect of turbulence eddies on the particle
and can be formulated such, that the Langevin equation is able to describe
dispersion in inhomogeneous turbulence. These facts were shown to be true in
the former chapter, where we applied the Langevin equation to a convective
boundary layer. The complicated behaviour of dispersion from a point source
was satisfactorily described. Only in the equilibrium state the model results
showed shortcomings: the particles were uniformly distributed, except near the
ground and the top of the boundary layer. Another model, a Langevin model for
the variable W/g, shows a better homogeneous concentration distribution in the
above mentioned application. This difference was the background of our

theoretical investigation of both models.

To be able to make a comparison between the two models we inVestigate
several of their characteristics. In particular we will consider short and
large time behaviour. In addition we compare both Langevin models to the exact
Eulerian conservation of mass equations. When we investigate the -large time
behaviour we do not only investigate the steady state of the Lahgevin models,
but also their large time behaviour leading to this state, which is described
by Markov limits previocusly discussed in Ch. 2. There the new large time
analysis for inhomogeneous turbulence was applied to the Langevin model for W.
In this chapter we extend the derivation to the W/o¢-model .and compare the two,
to see whether the above described undesirable effect of a non-uniform

concentration distribution in the W-model is inherent to this model.




5.2 Introduction of Langevin models for W and for W/g

Two Langevin models have been used in the literature to describe
dispersion in a turbulent atmosphere. The first model is a Langevin model for
the vertical particle velocity W, which is already extensively discussed in A
Ch. 2. The second model describes W/g, where o%(z) 1s the variance of the

vertical turbulence velocity fluctuations ¢2(z) = ;g(z).

This alternative model, first used by Wilson et al. (1983), is based on

the Langevin equation for W/o. It reads
W W dt
d= = - ——c =——=c .
o~ o) T (zy * x(8) and
(5.1a)

]

dZ = Wdt ,
where dy is a random process describing the random forcing of the particles

consistent with this model. Eq. (5.1a) is equivalent to the equation

2
at + W? = 392 4t + dn(t) and

W
dw = TL(Z) 202 dz

(5.1b)
dZ = wdt ,

2 2
where we substituted dn = ¢ dy and used that do? = %g- dz = ggz W dt.
For stationary turbulence the formula for the moments <(dm)™> = bn(z)dt were
also déerived by Thomson (1984) -analogously to-the derivation -for- the _-model for.

W. They can also be given in one general formula, which reads

n+1 n 2
du. (z) u,(z) duZ(z) n-1
3 3 n 3 n+1 n, n-k
b (z) = +n - u, (2) = § (Ddu b, (2)
n dz TL 235 dz 3 k=1 k 3 k

(5.2)

From Eq. (2.50) and (5.2) we evaluate the first three moments of both models.



For the W-model they read

du?
a (z) = ——2
1 dz ’
Jg d;; .
a2(z) =2 r + e and (5.3a)
L
3 d"f d‘_
u3 u3 — u3
af(z)=3-=+-—"-3y* — .,
3 TL dz 3 dz

b1(z)=’£'d—z—:
Eoal o a
b (z) =2 —2 + ——§ - *é -—§ and (5.3b)
2 T dz — dz
L u
3
u; dhg 3 u% dug du?
= — —— R e s = - 2—‘_—.
e = 3Tt T2 T 2% e
L u3

From the characteristic function f of the random forcing function in the W-

model we argued that in Gaussian turbulence the fourth and higher moments \

of du are zero in order dt, while

\
_do?
a,(z) = ==, |
\
_ o, 0
a2(Z) = 2 T 1 (50’")
L
L3 g2 402
a3(2) =30 3 -

(see Eq. (2.56)).
Thomson (1984) derived the moment generating function of the random forcing
function dn of the W/o-model in Gaussian turbulence. From this we may find the

characteristic function, which reads
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o0

Y - v dat . .2 2
£(8) =1 +dt o —5- 0+ T, of 6% + o(dt?) . (5.5)
n n Bn;
The moments <(dn)n> are given by <(dn) > = (- 1) —= ] . Because the

n
=0
characteristic function Eq. (5.5) is a second ordegepolgnominal it follows

that the third and higher moments of dn are zero in order dt, while

[}
NY

b1(z)
(5.6)

62
2 T

b2(z)

e

In homogeneous turbulence the models for W and W/¢ are equivalent.
However, in general turbulence conditions the models are not equivalent due to

the nonlinear term in Eq. (5.1b). We will investigate this difference.




5.3 Short. time behaviour .of the models

5.3.1 Introduction

To compare the Langevin model for W and W/g we investigate several

aspects of them. The aspect of the Langevin models we consider here is the

short time behaviour of particles released in stationary turbulence. We derive

shorttimé expansions of the mean particle height Z(tFZE; and variance
(Z=2 )7 as given by the models (zg is the source height) and compare these

expressions to the exact Taylor expansions,

The exact Taylor expansions of the statistics of particle trajectories

for the case of stationary turbulence are (Hunt, 1984)

dug , 4@ u% dfg -
- = - —_ 3 = —_— 2 — — 4
(z-z_) zdzit+6dzzt+'” zdzt(1+3T1)+o<t)
S .
(5.7a)
, du?
B2 LIl B I R i N RS 1 0
) 3z dz z 3 T
s ) 2
(5.7b)

where the dummy timescales T and T, are given by Eq. (5.135).

In the shorttime expansions of Langevin model result terms appear, that
apart from T, also involve (still to be defined) timescales T4» an artifact
of the models. These terms specify the deviation from the exact Taylor
expénsions. The usual restriction on model shorttime expansions that they are
valid for times smaller than TL is therefore not necessarily correct. The
model shorttime expansions deviate from the exact ones for times larger than

either TL or Td and the Tq's might be smaller than Ty,

We will derive the shorttime expansions of the Langevin model and write

them in such'a form that similarities are easily noted. This will be done with

the aid of dummy timescales. From them we define T4 and investigate the
deviation of the models from the exact Taylor expansions in an application to

convective turbulence.




5.8

5.3.2 General shorttime expansions of quaqpities in the Langevin models

The short time behaviour of mean height and variance as given by the
Langevin models in stationary turbulence can be derived from the general

formula for the particle displacement relative to the source Zg:

Z(t) t w(t)
} az = [ wW(t')at' = tw(t) - [ traw(t')

Z(t)-z =
s zg o .W(O)
W(t) W(t)
=Wo)t +t [ dw(t') - [ €' aW(t")
W(o) W(o)

R

W(t)
W(o)t + } (t-t') dw(t') .
W(o)

Per definition we have that W(o) = u3(zs), so that

W(t)
1t + } (t-t') dw(t') . (5.8)

zg W(o)

Z(t)-zS = ug

This general equation can be used in both models.

Langevin model for W

To get expressions for the shorttime expansions in the first model we

substitute the Langevin equation for W into Eq. (5.8). We get

& L W(EY) & |
z(t)-z_ = u3i t - £ (t-t') T_(2(E7) dt' + (f) (t-t")du(t") (5.9)
S

Note that in inhomogeneous conditions dpy and T, are implicit functions of t.

L
To get a short time expansion we expand the terms on the RHS.
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We can expand H%E) using W(t) = u3(§(t)). Our Langevin model is a 1-D model

for the verticalLvelocity W. However, the turbulence velocity is a 3-D

quantity and sﬁould be expanded accordingly (Van Dop et al., 1985). In this

expansion we use the continuity equation dgi/QXi = 0, which leads to the use

du d(uguy)
of u; 3;3 = -afgdl‘ . This gives

J Xy J
du dT
W(t) { 3 1 1 L
e =1{u ] + (x_x )—_] +'ooo} '-'-{1-(Z—Z ) - 3= J+ ..a}
TL 3Z s dxj X TL(Zs) s TL dz >
. s ~9 S
du dT
1 1 L
= {u ] (u~ —_3')] t +cooo} byl {1"(“ '_—_--)J t + ooo},
3Z J dxj o TL(ZS) 3 TL dz -
s ~s s
d ;
=,E§‘]' (- s uz s EEE) 1 ot o+ ...
TL TL dxj 3 TL dz X
Z ~s
<)
We expand du(z(t)) as
du(Z(t)) = du(t = o) + e
: W(t)
Substituting the expansions of - and du in Eq. (5.9a) we get
L
t u du,u dT
3 2 1,1 373 2 1 L 3
- = -t ! = - ——— - o cm—— . T—t, - e tt—
2(t)-z = ug) t+[(t=t dult=o)rh 21 2 = ple= === - ul mr =11 £ ¢+ L.
zS o L zS L J L zs

(5.9v)

To derive the shorttime expansion of the mean height we ensemble average Eq.

du EE duz
(5.9b) and use the horizontal homogeneity to give = —ag:
J

R 11 dug — dTL .
t)-z = [ du(t= ) = o(———= - p? — 2 L
z(t)-z_ [ du(t=0)(t-t" Al R NI
o L L Z
S
t du? dT
11 3 —1 L
= - '\dt' - —\m— m— - 2 A mhm—— 3 LI BEY ]
a1(zs) f (t-t') 6(T % u3 Ti o l t? + (5.10a)

0




dug 11 du; 1 dTL
= — 20 e L - 2 — e t3 + .
4 dz ] t 6(T dz 3 T? dz)]
oz L zS
s
duZ
3 1t 1t
=Y J1t2 (1 -5 +35=—)] + .. ,
dz z 3 TL 3 3,
s s

where T3 is given by Eq. (5.13a) and the moments <(du(t))n> = an(z(t))dt in
stationary turbulence by Eq. (2.50). To derive the shorttime expansion of the
spread we square and ensemble average Eq. (5.9b). Using the fact that u3(zs)
and

du(zs) are uncorrelated we get

2

tt
(z(t):Z;YE - Egj t2 - ?é 1t2 +f [ (t=t") (t-tm)du(t'=0)du(t'=0) + ....
L 2z 0 0
s s
u?
= a?] t2 + l a (z )t® - —é ]t + ...
3 3 2
Z L z
s s
_ ;943 143
= 2 2 —_— ——— . 3 . o = 3
u3 1t2 + 3 dz 1t 3T 1 €3+,
Z z L z
s s s
_F]tz (1—1L+l£—)] + ,
3z 3 TL 3 T, o
s s (5.10b)

where 1, is given by Eq. (5.13a). Note that 1., also appears in the exact

2 2
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Langevin model for W/¢

The short time expansions of Z-zs and G-zs)2 for the Langevin model for W/¢
can analogously be derived by substituting the Langevin Eq. (5.1b) into
Eq. (5.8):
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t

t
w t

Z(t)—zs = u3] t+ f A(Z(t'))wz(t')(t t')dt' f(t tr)- ( ) t'+f(t-t')dn(t')

2 o] . L o)

s .

(5.11a)
2

with A(z) = 5%7 dgz. To get a shorttime expansion we expand the terms on the

RHS. We expand W, T and dn like above and the square of the velocity
W2 and the quantity A(z) as

du3uj u3du3uJ
@ =y ) g e a1z g e
z Jj x z J x
S 2 ~S S ~S
] u3 .
w2 ] o+ —=2d g, and
3 X,
zg J
dA
A(z) = A(zs) + u3 re) ]t +
Zg
Then Eq. (5.11a) becomes
du3uJ 1 t
2 -~ 3 3 ? ______ 2
2(t)-z =u ] t+}uZ A ] t +(6 et AUl dz) ] £® +[(t-t")dn(t") y 1t
z J o] L 2
s 23 %3 3
2 (5011b)
B e R B P
6 TL dz 3 TL z’

s
Ensemble averaging Eq. (5.11b) using horizontal homogeneity the short time

expresgion for the mean height becomes:

du2 du? dT d(u?® a)
————— 1.1 3 1 L 1 3
I 2 - (. S R 34 — e 3
(z(t)- 2 )= Z ] t +Zb ( 6(T pEa dz); LA ]
s L L A
S
duZ
oy 3 S I R U N U
- Z dZ i t2(1 3 TL + 3 T3 + 3 Tu)g + » L
s s (5.12a)

where 13 and T, are given by Eq. (5.13b) and the moments <(dn>n> = bndt in

stationary turbulence by Eq. (5.2). The term with t is kept separate to

3
compare the W- and W/g-model. Squaring and ensemble averaging Eq.(5.11b) we

get the expression for the spread:

S
LI N

7 t2+ud A t? -
Z

t
g £ +f } (t=t") (t-tm)dn(tT)dn(t") + ...
o 0

ﬂl




. u3 do? , Gg
= u? 2 3 — ——=+ - b - = e
u3 ; th et Ly g2 dz v 3 2 T ]z *
] L s
TR u
3 13 3 13
= 2 2 —_—— e D 3L - = 3
u3] t (3 5 + r— dz)]t 37 Jt3 + ...
u Z L z
8 3 s s
=u7]t2(1-13—+1--t-—+1—vt——)]+..., (5.12b)
3 2 3 TL 3-12 6 Tg z

where 5 is given by Eq. (5.13b). The term with T,

compare the W- to the W/o-model. In the next section we derive the deviation

is kept seperate to

timescales Td from the dummy timescales 11—15.



Summary

The exact Taylor expansions Eq. (5.7) for mean height and spread are

- dug b
Z(t)'ZS = Z‘—a; t2 (1 + -?:;'—) + 0o(t") and

1

T g2 (1 4§ o) 4 0(EY)
3 12

t
=t

Z(t)-z )2 =
S

The shorttime expansion of mean height and spread in . the Langevin models are

for the model for W Eq. (5.10):

du?
- 3., 1Tt 1t
Z(t)-z =) —t2(1~==—+-=-—) 1 + ... for £t << (T, 1) and
] dz 37T 31 L 1
L 3 zS
(Z(t)-z )2 = u? g2 @ —1—t—-+»1— ti—) 1] + oo for t << )T, 1)
] 3 37T 31 L’ 2
L 2 z
s
for the model for W/o Eq. (5.12):
du?
——— 1t 1t 1t
Z(t)-z =};——§t2 (1 = c=—+ =—=—+ =) ] +,..,for t << (T ,7_,1_) and
s dz 3T 31 31 L1 3
: L 3 y zS ‘
e 1t 1t 1t :
Z(E)=2 )2 = u2t?2 (1 = = — + = =— + = — + ... for t << (T
(()s) 3 ( 3,1, 37 61)] (L.TZ;Tu)
5 z
s
where the dummy timescales are defined by
a2 ud du? du?
-1 3 3 L
NPT / e ] s T, = = Tdz ] | (5.13a)
z u z
s 3 s
dT.  du? d(u®a) du
-1 -1 L 3 -1 3 3
= (U2 — —=-)/ —= ’ = -f— 5.13b !
13 ( T2 dz) iz ] 'l’u ( o 9z 1 ( 3b)
z z
s s |
u?® du? : :
ST (5.13c) ‘
5 '—2‘2 dz ' . |
u z |
3 ]
: dug
with A = —— —= ] the factor appearing in the non-linear term of the W/¢
—  dz
2u? pA
3 s

Langevin equation.




5.3.3 Definition of deviation timescales T,

In homogeneous turbulence the W- and W/o-models are equal. In that case

all mean height expansions are

The exact spread expansion resp. model expansion read

T72"773F _ TEy2 .
(Z zs) u3t + 0(t"*) and

——— 1
T y2¢0q - L
= u3 t2(1 3

~
N
|
N
w
~
N
1

t
—_') + O(t“)o
TL

In this homogeneous case the models deviate from the exact Taylor expansions
in the spread for times that are no longer small compared to TL’ the only
timescale appearing. For times t smaller than the only timescale TL both
models give the exact Taylor expansions. In homogeneous turbulence no
deviation timescale Td appears. However, it is interesting to investigate the
model spread expansions with earlier derived expressions to show that the
shorttime expansions are correct. The model spread equation is equal to the
one derived from Taylor's theorem for an exponential autocorrelation Eq.
(1.11) by Tennekes (1979). Tennekes gave the following interpretation of the
last term. For small times the particle spread goes quadratic in

time TZ:E;TT = ﬁ§ tz. For larger time the dispersion slows down as small scale
eddies are no longer effective in mixing the particles with the air. The

correction term on the spread must therefore be negative and relate to the

'small-scale parameters e, the energy dissipation rate per-unit mass-and- time

t. Dimensional analysis shows that

(Z-z_)% = u2

2 2 3
s 3 t const et”.

Comparing this equation with the one derived from Taylor's theorem shows that
€ ~ UZ/T » SO that ¢, a small parameter, is determined by the large scale

3L

dynamics.,
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The deviation of the model shorttime expansions from the exact Taylor

expansions in inhomogeneous turbulence is given by terms involving TL and a

(to be defined) deviation timescale Td. We write the Taylor expansions

generically as

(Z-zs)n - g (t) + 0(t*)

and the model expansions as 4 _ A (5.14)

——

- e 1t
(Z zs) = gn(t)(1 3 TL + 3 Td ) + 0(t")

n
Mean height

In the mean height expressions Eqs. (5.10a) and (5.12a) for the model for
W and for W/¢ the deviation timescales Td can be derived as follows.

1
For the W-model we have using Egs. (5.7), (5.10)and (5.14)

(1 - 1/3 /T + 1/3 t/1,)
(1 %7173 77, h

(Z-zs) = g1(t)

= 81(t)(1 - 1/3 t/TL + 1/3(t/1

- 4
3 t/Tl) + 0(t*)
if t Tqe So that
LA R
(- b
, 3 M
Analogously we get for the W/g-model
(1 - 1/3 /T, + /3 t/1, + ¥ /1))
o L 3 ]
Z-z = 81(t) --

(1 +1/3 t/T1)

31(t) (1 - 1/3 t/TL + 1/3 t/

3 + 1/3 tltu - 1/3 t/T1)

for t << t,. So that

7 M R
g ‘[3 Tu T,l
d1

The timescales Td are thus given by
1

T




W
Td1 = T1T3/(T1’T3) and (5.15a)
w)c - _
Td 11 3 u/(r + 37y T3Tu) (5.15b)

1

We note that in case TL is constant no dummy timescale t ap?ears in the model

can be said to be -1, and TW/ = _l_ﬂ_
1 1 d1 T1—Tu

The deviation of the models from the exact Taylor expansions are equal in

shorttime expressions. Tg

case Tg1 = quO. We see that this is the case when Ty + o, This it does (see

d(ud A)

Eq.
inhomogeneity of the turbulence. In homogeneous turbulence we have

d(ula)
3.
iz = 0.

Spread

The difference between the exact Taylor expansions for the spread and
those of the models can be expressed as follows. In the exact expansions a
term t/T2 appears with a factor ¥, while in the model results a factor 1/3

appears. Using Egqs. (5.7), (5.10) and (5.14) we get for the W-model

1-1/3 t/T, + 1/3 t/t
——s7 _ , L 2y_ Sle 1 .
(Z-2 )% = g,(t)( T+ s, )= 8,(8)(1 - 3 4= - )+ 0(tY)
L 2

if ft/21,] << 1. We also defined
Z-z_)* = (1 - 15 v 1) 5o that

» —n 3T 3W LTS

L T - - - -
d
™ - -21 | (5.15¢)
d, 2

Analogously we get for the W/o-model

o1 1
1 == ¢t/T, + = t/1, + =t/1
gz(t) ( 3 f 3 2 -

—_
N
]
N
~
N
#

1
32(t)(‘ -3 LT -t/ b g t/rs) + 0(t")

ir jt/2v, << 1.



So that
2 1,1,
W 2
Td/o - ?_:._1_5_._ . (5.15d)
2 2 5

The deviation of the models from the exact Taylor expansions are equal in

+ ®», which happens when the turbulence

case TN = ™W/ O, This is the case if 1
da ~ dp 5
d uz
becomes homogeneous ﬁ§ + 0 or T + 0. We summarize these timescales in Fig.

5.1 and investigate in the next section what these deviation timescales mean.
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_1_ d*ul du?
1 _ 3
o= dz /E?:l
2
-1 1 Z_]
T,l= =
ug?za 2
— 1 dT,
deviation W-model W /o-model 31 = ( z ___L_) /d
. ' TL dz
time scale
. W T Wio _ TLTaT. _1_ d(u3A) ,du?
mean height | Ty = 27592 | Ty = i d—0re il = 380 /708
d ™ — ) TW/U_ 2757 ._1_.1I§d;;§
sprea 4y = —27; e = —Lsz—Ts ol = —;_;I 7;1 ]
8

Fig. 5.1. Deviation time scales Eq. (5.15) occurring in the short-time expansion.
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5.3.4 Comparison Langevin model expressions to Taylor expansions

The expansions in both Langevin models are equal to the exact Taylor
expansions for times smaller than all.timescales involved (TL and Td). Which
timescale plays a dominant role in the deviation from the exact expansions for
larger times depends on the ratio of TL and Tq» where T,y in turn dépends '
strongly on the turbulence the-models are applied to.

If the deviation timescale T4 is larger than the Lagrangian timescale Ty,
the term with'TL will be dominant over the term with Td. In this case
sufficient requirements for the model expansions to be valid is that t is
smaller than Ty

If the deviation timescale Td is smaller than TL’ the term with Td will
be dominant over the term with TL' In this case the shorttime expansions are
certainly not valid for times smaller than TL that are however larger than Ty-
In the next section we illustrate these two cases in convective turbulence

described by Eqs. (1.4) and (1.18).

We first concentrate on the mean height expressions. The mean height

TW/° are strong functions of source height zs/zi

deviation timescales Td1 and
(see Fig. 5.2a). We have T4 <K TL for the W and W/o-model in case of a source
around zs/zi = 0.3. We investigate the mean height expressions for a source at
Zs/zi = 0.36. The deviation of the mean height from the exact expansions is
dictated by the T,y-term. The difference in T4 for both models is small and the
resultlng difference in mean helght is relatively small due to the factor

¥ —33 t2 in front of the term — t/T In Fig. (5.3a) we see indeed that for

3
t < T, the W- and W/¢-model results remain close to the exact expansions.

We then focus on the §ggg§g expressions. In Fig. (5.2b) we see that in
both models sz is much larger than Ty, except close to the ground. TL is
therefore the dominant timescale and both models remain close to the exact
expansions for t <K TL and deviate equally much for larger times dictated by
the term 1/3 t/T; (Fig. (5.3.p)).

This explains why we have been very careful in deriving shorttime
expansions. We cannot throw terms away before we know to what turbulence the
models are applied, because the relative importance of terms containing TL or

T4 depends on the turbulence considered. We stress here that the requirement




of times being small compared to T; is not always sufficient for the validity
of shorttime eXpansions. Even in cases where T, is small the deviation caused
by this term -is not large in either of the models.

We conclude that the shorttime expaqsions for times smaller than TL do
not force us to conclude that either the model for W or for W/g¢ is a more

correct description of dispersion in inhomogeneous circumstances.

We have discussed the shorttime behaviour of mean particle height and
spread. These shorttime expansions only depend on the first two moments of the
random forcing in the Langevin model. In the next section we discuss their
large time behaviour and show that in this analysis all random forcing moments

are involved.
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Fig. 5.3 Shorttime expansions mean height Z-zs (Fig. 5.3a) and of

0% = ?E—:_;;TZ (Fig. 5.3.b) in a convective boundary layer

described by qu (1.4) and (1.18) for zs/zi = 0.36f The exact Taylor
expansion Eq. (5.7) is denoted by a solid thick line, the

expansions for the models for W and for W/¢ Eqs. (5.10) and (5.12)
are denoted by resp. a dotted line and a dot-dash line. The inhomo-

geneity timescales are marked on the time axis or given.



5.4 Large time behaviour of the models

5.4.1 Introduction

A noted difference between the W~ and W/¢-models was that, implemented in
a computer code, the model for W does not give a uniform concentration
. distribution in the 1limit to t + », whereas the model for W/g does. We want to

investigate this large time behavior in this section. .

The large time behaviour depends'on all moments of the random forecing. In
geheral}inhomogeneous turbulence these higher moments are non-zero and this
complicates the analysis. Theréfore we restrict ourselves to the asymptotic
behavioub in Gaussian inhomogeneous turbulence. We must note, however, that
turbulence in an inhomogeneous case is usually not Gaussian. In the convective
boundary layer e.g. the turbulence velocity is positively skewed. So our

treatment must be considered as a first approximation.

In section 5.4.2 we show that both Langevin models for both W
and W/o yield the correct steady state; their KME's have a concentration
distribution as solution which is uniform in the steady state. The question
remains, however, whether the models also show the correct behéviour leading
to this steady state. This large time behaviour is desdribed by Markov limits,
which will be discussed in section 5.4.3. The new techﬁique of deriving the
Markov limit in inhomogeneous tufbulence was introduced in section 2.5, where
we derived the Markov Limit for the W-model. We shortly review this derivation
and then discuss the derivation for the W/o-model. Once these Markov limits
are derived we investigate whether they describe the above difference between

the models in concentration distribution results.



5.4.2 Steady state in inhomogeneous Gaussian_ turbulence

We start our large time analysis with an investigation of the steady
state of the Langevin models for W and W/¢. In inhomogeneous turbulence the
Langevin equation can not analytically be solved and a large time expansion of
mean particle height and spread can not directly be derived. We therefore
start the investigation from the Eulerian equivalents of the Langevin models,
the KME's. We show that the restriction to inhomogeneous turbulence which is
still Gaussian simplifies the analysis considerably, because in Gaussian
turbulence the KME's reduce to a second and third order differential equation.

In Gaussian inhomogeneous turbulence the vertical turbulence velocity uj
has a Gaussian distribution specified by ¢2 = u§. In section 2.3.7 we showed
that in such Gaussian turbulence the random forcing function du in the
Langevin model for W has a fourth and higher moments that are zero in order
dt, while the Langevin model for W/0 has a random forecing dn, whose third and
higher moments are zero in order dt (section 5.2). The moments
<dun> = an(z)dt in Gaussian turbulence are given by Egs. (5.4) while the
moments <(dn)™> = bn(z)dt in Gaussian turbulence are given by Eq. (5.6).

The fact that for both models the higher order moments are zero in order dt
has some implications, because a distribution function with only the first
moments being non zero does not exist. It can easily be shown that a correct
(therefore positive) pdf has nonzero even moments, from which follows that the

requirements Eqs. (5.4) and (5.6) can not be satisfied by a pdf.

We note that in an application of the models, like we did in Ch. 4 for
the W-model, it is usually only required that the first few (e.g. three)

"~ "moments of the random forcing are-modelled-correctly. -In-such-an-application .

the generated random forcing has noniero higher moments which do not satisfy
the general equation for the moments. The deviation of the higher moments

causes anomalies in the higher moments of particle characteristics (velocity,
height). This fact, that the Langevin models cannot meet requirements on the

higher moments of the random forcing in inhomogeneous Gaussian turbulence, is

_ considered to be of minor importance when we are only interested in the lower

moments of the particle statistics, the mean height, spread and skewness of

the concentration distribution.



Accepting these deficiencies of Langevin models we proceed to find.their.
large time -behaviour. We derive the KME's of both models by substituting the
moments of the random forcing Eqs. (5.4) and (5.6) into the general KME for a
bivariéte process (Eq. (2.35)).

For the model for W the KME in Gaussian inhomogeneous turbulence reads:

3 P dg? 32 ,o?%p 3° (02 do?

P 3 v ; 2
av 2w W s g P g ) e e P
(5.16)
For the models for W/g¢ if reads:
oP : 9P _ 3 _ (W 30% (w2 2 o2
T (z,w;t) + w 52 - 52 {[TL + ¥ % (02 + 1)IP} + T {TL P} . (5.17)

We see that the general KME for the model for W and W/o break off after the
third and second term respectively. A real probability distribution, has a KME
which is either a Fokker-Planck equation or a differential equation of
infinite order (v. Kampen, 1983, p. 280). The model for W does not give either

one as a consequence of the formulation of its random foreing function dyu.

In the steady state (in a bounded area) the models should yield a uniform
concentration distribution and the probability density of the particle
velocities should become equal to that of the turbulence velocities. In
Gaussian turbulence the turbulence velocity distribution can be characterized
?y its moment generating function earlier given in Eq. (2.57)

; and p = f P(z,u3)du3. The requirements

imply that for steady state conditions the pdf of the bivariate process Z, W

g (8) = exp(-¥% 0%62)p where % = u
of the particles should read
P(z,w) = (2102(2)) % exp (- 5——) ; (5.18)

then the concentration distribution defined by C(z,t) = f P(z,w;t)dw is
uniform in the steady state and ¢y™> = ug(Z)‘ This pdf Eq. (5.18) has to be

the steady state of the KME's, By substitution it can be shown that Eq. (5.18)




is a solution of both the KME Egs. (5.16) and (5.17). We conclude that both
Langevin models have a KME with a uniform concentration distribution as steady
state solution, so that both Langevin models are correct in.this respect. In

the next section we discuss the large time behaviour leading to this steady

state.



5.4.3 Markov 1limit of the Langevin models and their KME

We are interested in the concentration distribution determined by the

Langevin equations for W and for W/o. This concentration distribution can be

determined from the Eulerian equivalent of the Langevin equations, the KME's,
which are differential equations describing the time evolution of P(z,w;t).
Once we know P(z,w;t), we know P(z;t) via the relation

P(z;t) f P(z,w,;t)dW. Via the fundamental theorem-.Eq. (1.6) which reads
C(z,t)
the KME's Eqs. (5.16) and (5.17) shows, that we cannot simply integrate its

terms over dw to get an expression for the whole time evolution of P(z;t).

QP(z;t) we can derive the concentration distribution. Inspection of

However, the large time behaviour of P(z;t) can be deduced, as we showed in

section 2.5 for the W-model. In that section a Lagrangian equation, the Markov

limit was derived, describing the large time behaviour of Z(t). Its KME is a
large time equation for P(z;t) or the concentration C(z,t). The Markov limit
of the W-model was derived for both homogeneous and inhomogeneous turbulence.

We shortly review the results for the W-model and in this section we

analogously derive the Markov limit for the W/c-model. We also calculate the ‘

Eulerian equivalent of this Markov limit, its KME and compare the large time

behaviour of the concentration in both Langevin models.
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Model for W

Here we summarize the large time behaviour of the Langevin model for W as

derived in section 2.5. For details we refer to this section.

In homogeneous turbulence the limit T, » 0 is equivalent to the 1limit

L
t » o, The so-derived Markov limit for the model of W in homogeneous

turbulence is then given by Eq. (2.71):
A
dZ = (20 TL) dwt s

where with large times are meant times large compared to TL'

In inhomogeneous turbulence more timescales than only Ty, play a role.

However, the limit T, =+ 0 still describes the behaviour for large times in

L
weakly inhomogeneous Gaussian turbulence under the restriction that

while TL + 0 we let 02 » « such that the eddy diffusivity K remains the same

function of height. The Markov limit is given by Egs. (2.83) or (2.85):

dTL d(ozTL) y
= — 2 & 2 2
dz = T, du + A TL 37 (du)? or dzZ i dt + (2¢ TL) dwt.

With large times in this case is meant times large compared to‘TL but still

small compared to the inhomogeneity timescale.

‘The Markov limit has a KME which-is-given by -Eq.-(2.72): — — - . __.. _._ ..
3 ity o A (gep 2P
m (z;t) = 5z (o TL 5z

As expected from arguments of Monin & Yaglom (1977, Ch. 10.3) for large times
dispersion should be described by a ordinary diffusion equation for its pdf
like Eq. (2.80). A schematic summary of the relation between the Langevin

equation, the Markov limit and their. KME is given in Fig. 2.1 (section 2.5.3).




Model for W/g

- Introduction

We want to derive the large time behaviour of the Langevin equation for
W/o and compare this behaviour with that of the Langevin model for W. The
model for W was discussed in section 2.5, where first the large time behaviour
for homogeneous turbulence and subsequently for inhomogeneous turbulence was
derived. Here we follow the same line in the derivation for the W/o model.

In inhomogeneous turbulence other timescales than TL play a role, namely
timescales Ti due to the inhomogeneity. We only consider'weakly inhomogeneous
Gaussian turbulence, where Ti is much larger than TL' By large times we then
mean times large compared to TL but still small compared to Ti' We can not
investigate this large time behaviour by only letting TL + 0, because this
would mean a change in the dispersive character of the turbulence given by the
eddy diffusivity K = ozTL. We replace the limit t + « by letting the relevant
timescale TL go to zero, modifying ¢2 such that the dispersive character of
the turbqlence given by the eddy diffusivity K = ozTL remains unchanged (see
also section 2.5.1). In this limit goes the turbulence lengthscale { = 02TL
also to zero. We basically follow Durbin's (1983) derivation for
the W/g-model, but we add the above constraint on the replacement of the
limit t » « by the limit TL

the large time behaviour of Z(t), again a Markov limit.

+ 0. We call the resulting equation, describing
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Markov limit and KME of homogeneous Langevin equation for W/g

We derive the large time behaviour of the Langevin equation for

W/o. The W/o-model reads (Eq. 5.1a)

W W dt
d(;) = - T; + dy and
(5.19)
dZ = W(t)dt.

In homogenous turbulence the Langevin model for W/¢ is equal to the Langevin
model for W. The Markov Limit for Gaussian turbulence is thus Eq. (2.71) (See

section 2.5.2).

%
= 2 2
daz = (2 ¢ TL) dwt ’

and its KMML is equal to Eq. (2.72)

9P
ot

oP

£y = 8 (,2p OF
(z;t) = "2 (o TL 52)

Markov Limit of inhomogeneous Langevin equation for W/o

In inhomogeneous turbulence the analysis becomes more complicated by the
fact that TL and ¢ are functions of height. We formally deal with the

inhomogeneity by splitting T; and o in a shape factor T(z) resp. $(z) and an

amplitude o resp. B so that TL(Z) a T(z) and o(z) = B8 S(z). We replace the
-—--———--1imit-t-» = by-a rescaling of the turbulence. We rescale the turbulence such
that the eddy diffusivity K(z) = TL(z)oz(z) remains the same function of z,

that is we let o + 0 and R? + «» while af? = constant.

Putting W/o = U and multiplying the Langevin equation with o gives

U(Z;- dt + o dy(t) . (5.20)

adU:_'—I‘TZ

Integration of this equation gives

(-‘T’—g-)) dt' - o dy(t")) = - alU(t)-U0)] . (5.21)

O St
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The factor U(t)-U(o) is bounded (Durbin, 1983) and the RHS of Eq. (5.21) goes
to zero in the limit a » 0. We keep the term on the LHS that contains a, as
this term might contain terms that involve aB?. These terms remain constant in
our limit process.

Subsituting U(z)dt = §2§T27 in Eq. (5.21) it becomes in the limit:

Z

[ o8 ax(z(tr). (5.22)

Z
S

f __dz
. T(Z')S(Z")
3

To differentiate Eq. (5.22) we have to use It8 calculus (see section 2.4).

Applying this rule to a general integral

_ Z dz!
'1’ - 2 A(Z’) ’
3
we get
. = dZ - -—19..& 2 _1_ 2A'2 - M 3
=gy T hET g WO g (e - p) (@ ., (5.23)

where a prime denotes derivation with respect to z.
Using this in differentiating Eq. (5.22) by putting A(z) = S(z)T(z) we get

az

o

-5 2 e T - 23 %)0 vl = asay . (5.28)

This is a differential equation for dZ whose solution, the Markov limit, we
want to derive. As an illustration we will first solve it for homogeneous
turbulence to show that Eq. (5.2U4) gives indeed the results as discussed above

for homogeneous turbulence.

Intermezzo: homogeneous turbulence

In homogeneous turbulence ¢ and T are constant with height and
Eq. (5.24) becomes

%é = g dy or dZ =T o dy. (5.25a)

In homogeneous Gaussian turbulence the random forcing function can be written

2 \% .
as dX = (T_)2 dwt. (From Eq. (5-6) with <(dx)n> = <(dn)n>/on = bndt/02>.

L
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The Markov Limit we so derive from the differential equation Eq. {(5.25a) reads

dZ = T ¢ dyx = (202TL)Z dw

L t?

(5.25b)

which is indeed equivalent to the Markov limit for the W-model given by

Eq. (2.71) as expected from the fact that in homogeneous turbulence the W

and W/o-model are equivalent.

We already showed in section 2.5.3

that this Markov limit has a KME that

is equal to the diffusion equation Eq. (2.72). For future use we show how the

diffusion equation can also be derived from Eq. (5.25a). The moments

<(dz)n>, that we need in the KME of this Markov limit, are by Eq. (5.25) equal

to the averages of powers of TL° dy = TL

dn. The moments of dn in order dt are

given in Eq. (5.6). In homogeneous Gaussian turbulence only the second moment

of dn is nonzero.

We have
<d2} = T o<dy> = T, <dw>
<(dZ)®> = Tlo?<(dy)*> = T2 <(dn)?>
<(dz)®> = Tlo"<(dx)™> = T, <(am)™

We subsitute these moments of dZ in the

=T b, dt =0
= T2 - 2
TL b, dt 2TL0 dt (5.26)
=T b dt =0 for n> 3
L "n = )

general KME. for a monovariate process

Eq. (2.35) and 'get a KME that is equal to the diffusion equation Eq. (2.72):

. 3P(z3t) ., 3%P
5t - TL9 327

e B g2 Oy (5.om
= &= (T 22 (5227~

We see that the preliminary equation Eq. (5.24) gives us the correct Markov

limit and KME for the W/o-model in homogeneous circumstances. So far our

intermezzo,
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Inhomogeneoug turbulence

In case T and/or ¢ are a function of z Eq. (5.24) does not always reduce

to a simple form which can generally be solved for dZ to give the Markov
Limit. However, in Gaussian turbulence it does reduce to a solvable equation

In case of Gaussian turbulence we have in order dt from Eq. (5.6) that

<ogdy> = <dn> =% Ty dt = go' dt > dy> = g' dt ,
2 2 2 2 | 2 2
<(ody) 2> = <(dn)?> = - g2 dt > <(dyx)2> = =—5~— dt , (5.28)
TL(Z) TL(z)
£lod)™ = <(dn)™ = 0 > @)™ =0 forn 3.

We use the fact that the higher moments of dy are zero (in order dt) as
follows. Taking Eq. (5.24) to the third and higher power and ensemble
averaging, we see that this results in a infinite series of equations for the
moments <(dZ)n> with n 2 3, with in the RHS the third and higher moments of
dy which are equai to zero. Generally this series consist of independent
equatioﬁs and the only solution is that all moments <(dz)™> with n Z 3 are
zero. From this statistical reaéoning we conclude that Eq. (5.24) becomes

d(eT, (2))

az_ 1 L2 .
o, ~ 2a7Ti(z) |z (dz)® = dy (5.29)

Solving this quadratic equation for dZ we get

UTL(Z) aTL

dZ = v v
(oTL) (oTL)

(1 - 2(eT)) Ay (5.30)

where a prime denotes derivation with respect to z.
We can expand the square root in Eq. (5.30) as

A 1
(1 + x)2 =1 + >
If we can show that the higher order terms in this infinite sum converge to

X - %-xz + ..

Zero, we can approximate the root by breaking off this sum. To prove that the
terms indeed converge to zero we use the fact that the third and higher
moments of dy are zero in order dt (see Eq. 5.28).

(Note that in the derivation for the W-model we had that the third moment ‘of

du is nonzero; only in the limit a » 0 does the third moment of T du

L
disappear, which is a weaker statement).
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The fact that the third and higher moments of dy are zero implies that the
third and higher moments of X = 2(oT )'dy are zero. From these statistlcal
arguments we reason that we can break the -expansion of the root (1 + x) off

after the quadratic term. The last term in Eq. (5.30) becomes

oTL y ; oTL
- 1] - t 2
T;TZTT (1 2(0T )tdy)® = ot T =57 (oTL)dx Z(oTL) (oTL)(dx) .
Equation (5.30) becomes
d(cTL)
dZ = oT dx *+ % - Tz oTL(dx)z . (5.31)

In inhomogeneous Gaussian turbulence dy has only two non-zero moments and we

can write dy as

%
ay = 39 gt + (?—) dw

iz y (5.32)

£

Substituting this into Eq. (5.31) we get the Markov limit of the W/¢g-model

in inhomogeneous Gaussian turbulence

d(ozTL) y
= 2 23, -
dz 52 dt + (20°T) do, "« (5.33)
Comparing this with Eq. (2.85) we see that also in inhomogeneous Gaussian
turbulence the Markov limit of the W/o-model is equal to the Markov limit of
the W-model. It then follows that its KME is also given by the diffusion

equation Eq. (2.72).
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Conclusions

After investigating the Markov limit of the Langevin models for W and
for‘W/o, we conclude that they show a large time behaviour which can be
described by the diffusion equation. This diffusive behaviour is what we
require on physical ground for any dispersion process in both homogeneous and
inhomogeneous Gaussian turbulence. The large time behaviour leads to the

correct steady state solution, a uniform concentration distribution,

We showed that the constraint on the eddy diffusivity while taking the
limit TL + 0 is necessary to obtain these physically correct results. Only
when this constraint is taken into account the‘analysis_yields a large time

behaviour, which can be described by the diffusion equation.

Here we come back to the reason why we started the investigation, nl.
differences between the two models'implemented in computer codes. We found.
that the difference in large time behaviour (inhomogeneous concentration
distributions for the W-model, homogeneous for the W/¢-model) are not due to a
theoretical deficiency of the W-model but must be due to differences inherent

to the implementation.
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5.5 Comparison Langevin models with Eulerian conservation laws

In this section we compare the Lagrangian models for W and W/o with the
Eulerian motion equations to investigate whether differences occur between the
two models. Van Dop et al. (1985) made this analysis for the model for W,
which study is discussed in section 2.3.6. We make a similar derivation for
the model for W/o.

5.5.1 Model for W/o

We first derive the KME of the Langevin equation Eq. (5.1b)

where TL and <(dn)n> = bndt are not yet specified. These variables should be

modelled such that the correspondence of the KME with the Eulerian

conservation equations is optimal. In the KME we need the moments of dW. These

can.be derived from this Langevin equation:

y 2 au_gkz)
aw> = [- -+ -~ + b (2)1dt  and
W T (z) — 1
L 2u2(z)
3
(5.34)
<«an)™ = b (2)dt for n > 2.

Substituting Eq. (5.34) in the general equation for a KME Eq. (2.35) we get

~the KME Of the model for W/o~ ~ - = = == oo L

aP(Z.wigl . oP 2 { W w? 3

ot 9z oW

@ v
-1 p

1 Dy z) &L .

=1 Voo

(5.35)

From this equation we can derive a series of rate equations for the
moments <w"> by multiplying the KME with w" and integrating over w. We use

Eq. (2.8) again to obtain the first three moment equations:
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au
ac _ _ 37
5_‘{ = Z s (5-36a)
Ju_c Ju’c Ju? uc u?
3 — oC 3 3 1 3 =
= - ~u?—+[b-%—]C- + ulc and (5.36b)
ot 9z 33 1 3z TL o 9z 3 :
T2 -5~ A 5‘? a;?
3930 - au30 = ac = au3c s _22 i i D
ot 9z 3 9z 3 2z 3 2z 3 o 1
202 3u®  3u?  u® au’ 2uzC du?
1 ———
+[b_ - 3,33, _2,__210 313 ulc . (5.36¢)
T 9z ot — 9z T — 9z 3
L u3 L u3

To get the third term on the RHS of Eq. (5.36c) use is made of Eq. (5.36a).

The first moment equation Eq. (5.36a) is equivalent to the first Eulerian
conservation equation Eq. (2.49a)., The higher order Eqs. (5.36b) and (5.36c)
are in‘stationary turbulence only equivalent to the Eulefian conservation Egs.
(2.49p) and (2.49c) when by and b, are described by Egs. (5.6) and when in

addition it is assumed that

cdu3 u3c , du;
= = 2 2 .
rri TL + 25_ i u3c and (5.37a)
3 _
du3 ! u;c du§ u;c L
(u3c)(—3€) = - *?; + % 42 [fg: -u3c]. (5.37b)

Note, that in assuming b, to be described by Eq. (5.6), the 5th term on the
RHS of Eq. (5.37c) does not cancel. This term contributes to Eq. (5.37b).

The Langevin model for W and for W/o¢ give different closures expressed in
the assumptions Eqs. (2.51) and (5.37). These relations will now be examined.
From the equations of motion we can obtain an exact expression for these

correlations. Neglecting buoyancy, molecular and Coriolis forces the equations

of motion yield

3_-1co (5.38a)
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-ym-]u3'
(u3c) _EE) = -

Eé
use = . (5.38b)

1
p 3

Deardorff (1978) presented closures for the Eulerian equation of motion for

dispersion from a single source in homogeneous turbulence (see section 2.3.7),

which read
— s —
1 cdp 3 1 ap 3
o e T M guCTTOC
o L L

These equations imply that the assumptions Eqs. (2.51) for the Langevin model
for W are consistent with Deardorff's closure relations, whereas, the '
assumptions Eqs. (5.37) for the Langevin model for W/¢ are more involved. Even

with a Gaussian assumption on the third and fourth order correlations, that is

e S,

u;c = 0 and u;c = 3E§ u3c, the W/¢g-closures still read
cdu., — u.c
3__Y,98 _ _ 3
T vl - and (5.39a)
-cTu3' 1 ” Egé au_g
=.._uc__—_-—.—_+y — 5- 9b
u3o(—a€) 3 32 TL A u3c " (5.39b)

" Extra terms appear with respect to Deardorff's--closure relations;--which-have - -

no obvious interpretation,
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5.5.2 Discussion

From the comparison of the Langevin models with the exact Eulerian
equations we conclude, that the model for W corresponds better with the
Eulerian conservation equations. We base this .on the fact that the closures in
the W-model Eqs. (2.51) have some justification as discussed by Van Dop et al.
(1985). This is supported by Deardorff, who stated that these relations are
exactly valid in Eulerian models in the restricted case of particles released
at-a particular time in homogeneous turbulence. On the contrary, do the

closures of the W/o¢-model not have an obvious interpretation,
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.

5.6 Conclusions from the comparison of the W- and W/g¢g-model

Dispersion models based on the Langevin equation are simple in use and
can easily be adapted to different atmospheric conditions. Two Langevin models

are often used in the literature, the model for W and the model for W/g.

The short time behaviour of mean height and variance of the particles in
the model for both W and W/¢ are investigated and shown to be equal to the
exact Taylor expansions in a first approximation valid for times smaller than )
all timescales involved. In homogeneous turbulence the only timescale involved
is T;, but in inhomogeneous turbulence these timescales are TL and Td, a
timescale imposed by the turbulence. Usually the shorttime analysis interest
only exists for times smaller than T;. In case T[ is smaller than the
timescale Ty imposed by the turbulence further investigation into the validity
of the shorttime expansion is not necessary. In that case is the shorttime
expansion always valid for the times of interest t small compared to TL' In
situations where Td is smaller than TL on the other hand, we have to be
careful because times smaller than TL can be larger than Td‘ For these times
the models start to deviate from the exact Taylor expansions in a rate,
depending strongly on the turbulence values of TL’ E? and ;? and their
derivatives at source height. The conclusion is that shorttime expansions in
the Langevin models can only be said to be valid for t < TL in case Ty is the
smallest timescale involved. If T4 is the smallest timescale the
expansions for both models are different from each other and from the exact
Taylor expansions for t < TL' However, in an application to the convective

boundary layer these deviations are shown not to be so large that a

T Tdistinction inthe performance of the models-can-be-made-based on-the short .

time expansions.

The large time behaviour of both Langevin models, in homogeneous as well
as in inhomogeneous Gaussian turbulence, is shown to be physically correct.
They both yield a large time behaviour described by the ordinary diffusion
equation. This is indeed confirmed by the study of Wilson et al. (1983) who
show large time results of the correct W~ and W/¢-Langevin equation for
inhomogeneous Gaussian turbulence and results of the diffusion equation with
K =A°2TL (see section 3.6.2) and both models lead to a uniform steady state
concentration in a bounded area. The fact that our computer model for the

Langevin model for W gave a steady state concentration distribution which
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décreased near the boundaries must be due to other (numerical) facts.

Comparing the ‘Langevin models for W and for W/¢ with the Eulerian
conservation laws shows that the model for W corresponds best. This leads to

the final conclusion that the Langevin model for W is theoretical superior to

the Langevin model for W/¢o and its practical application should be

investigated further.
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EIGENSCHAPPEN VAN HET LANGEVINMODEL VOOR VERSPREIDING

Anne F. de Baas

Samenvatting:
De Langevin-vergelijking wordt gebruikt voor het beschrijven van
verontreinigingverspreiding in de atmosfeer. De teoretische achter-
grond voor de vergelijking wordt uitgebreid bediscussieerd en een
overzicht over eerdere verhandelingen en toepassingen gegeven.
We tonen aan dat de Langevin-vergelijking verspreiding in
complexe omstandigheden kan beschrijven. In het bijzonder verspreiding
in een convectieve atmosferische grenslaag, waar het de metingen
nauwkeurig reproduceert.

Twee vormen van de Langevin-vergelijking, die beide worden
gebruikt in praktische toepassingen, worden vergeleken en de
conclusie is dat, in termen van hun teoretische eigenschappen, ze
niet erg verschillend zijn, ondanks belangrijke verschillen in praktische

toepassingen.
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1

Variance measurements can lead to large overestimates of dispersion because
such transporting and nontransporting mechanisms as turbulence and waves
contribute to the variance.

Anne F. de Baas and A.G.M. Driedonks (1985)

Internal gravity waves in a stably stratified boundary layer,

BLM, 31, p. 303.

2

Fc?r the mean flow in complex terrain the spectral methods are extremely
powerful because they allow simple scale-dependent closures that are easy
to understand. '

Ib Troen and Anne F. de Baas (1986)

A spectral diagnostic model for wind flow simulation in

complez terrain. Proceedings of EWEC’86 European Wind

Energy Association, Conference and Ezhibition, Rome.

3

The turbulence quantities in flow over hills cannot be modeled unless ani-
sotropy 1s taken into account.

Otto Zeman and Niels Otto Jensen (1987)

Modification of turbulence characteristic in flow over hills.

Quart. J. Roy. Met. Soc., 113, 55-80.

4

Some simple equations are hard to analyze without powerful computers (e g.
the Langevin equation and the Lorentz equation).



5

Even if a model adequately describes the empirical data, we still may not
regard the problem as solved until we have established a complete theory
correctly argued from basic principles.

6

Geophysical years sometimes harvest their fruits around thirty years after.

7

Fuzzy transform: what is fuzzy in clear space is clear in fuzzy space and
vice versa.

8

The average result of a random differential equation differs at random from
the result of the average differential equation.

9

It it scandalous that 250 years after women first entered universities the
need is still felt to make statements on feminism. Here is my own: the little
chance for promotion for women often leads to the result that women excel
men in the same organizational position.

19 January 1988
Anne F. de Baus



