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Our highly industrialized society releases waste products in the atmos­
phere, which are not all harmless. These contaminants are transported and 
dispersed by the mean wind and by the atmospheric turbulence. This is often 
a complicated process and it is difficult to predict where and in what con­
centration these waste products can be found back. It is e.g. hard to 
decide how to reduce average ground level concentrations. Only rough rules 
can be given. One of these is to use tall stacks to emit the pollution. How­
ever, in practice it turned out that tall stacks are usually effective in 
reducing ground level concentrations at night but not always during the day. 

This difference in effectiveness of a tall stack can be explained by the 
different structure of the atmospheric turbulence during the day or the night. 
The part of the atmosphere, whose structure we need to know; is the layer 
closest to the ground in which generally releases take place. In the lowest 
layer of the atmosphere also called the boundary layer the motion of the air 
is turbulent due to two different effects: friction with the surface and 
heating by the sun. 

First we consider friction. The air flow must obey the no-slip condition 
at the surface. This results in a vertical velocity gradient, which at the 
Reynolds numbers pertaining to the atmosphere is unstable. The consequence is 
turbulence which obtains its energy from the mean shear. 

Secondly we turn to heat effects. During the day the sun warms the earth 
surface by shortwave radiation. This temperature difference between surface 
and air results in vertical accelerations and consequently the hot air rises, 
which we call convective turbulence. During the night the earth only looses 
heat and becomes cooler than the atmosphere. The opposite happens, that is 
that vertical motion in the air is suppressed. 

These two effects, friction with the surface and heat effects make the 
boundary layer turbulent. The two causes of turbulence vary with time (day-
night) and the boundary layer height changes with them, which is an important 
fact for dispersion. During the day, when the sun shines and feeds the 
turbulence, the boundary layer has a typical height of 1-2 km, while during 
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the night it is much smaller, in the order of 200 m. This is of importance for 
air pollution problems, because tall stacks may emit above the boundary layer 
during the night. The contaminants stay there and at ground level no concen­
tration is measured. During the day even tall stacks emit in the boundary 
layer and the pollutant spreads to the surface. 

The relation between the turbulent state of the boundary layer, source 
height and ground level concentration is extremely complicated and still not 
well understood. Present relations to predict concentration levels e. g. the 
Gaussian model (to be discussed later) are based on assumptions that are most 
of the time incorrect. Tall stacks e.g. are not effective in minimizing the 
ground level concentration during the day; on the contrary, a little distance 
downwind the ground level concentration due to a tall stack might be larger 
than from a ground level source. In order to predict with more accuracy 
transport and dispersion of pollutants, we have to know more about the 
structure of the boundary layer and its turbulence and the way they effect 
dispersion. This thesis wants to add to this knowledge. 

Three main classes of turbulence are distinguished. The type of turbu-. 
lence occurring during a clear day caused by heating of the surface is 
called convective. During a cloudy day heat effects might play a smaller role 
and the boundary layer is called neutral, while in thé night the surface cools 
down, the turbulence is suppressed and the boundary layer stable. These types 
of turbulence have very different characteristics. However, each class of 
boundary layer has its own similarity laws in the sense that parameters exist 
of the boundary layer in question with which all variables of the turbulence 
can be scaled, such that they obey a unique relationship. Also dispersion 
measurements scale with these parameters. 

The fact that such scaling parameters exist, is of great advantage to 
understand dispersion. It was tried to express time or place evolution of the 
measured concentration distribution as function of the scaling parameters and 
of source height. This we call parameterization. An example is an expression 
found by Briggs (1983) for the maximum surface concentration as function of 
source height in convenctive boundary layers (see Ch. 4, Eq. (14)). How­
ever, it is not always possible to find parameterizations describing all 
characteristics of the concentration distribution like plume height or 
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concentration fluctuations. When the measurements cannot be caught in such 
analytical expressions, we can build physical models, like windtunnels or 
water tanks that show how the turbulence and the mean wind transport and 
disperse contaminants.' 

To understand the results of physical dispersion models in relation to 
the turbulence we have to rely on knowledge of the last, which can be gained 
from measurements. This konwledge can in turn also be obtained from models 
describing the motion of the air in a turbulent boundary layer. These tur­
bulence ór boundary layer models are based on the equations of motion, 
which are nonlinear and very complicated. Even with the large computers of 
today a solution cannot be calculated. The flow in the boundary layer cannot 
be known in all its details. We have to relax on our requirements and be 
satisfied with boundary layer models that describe mean quantities of the 
flow, like e.g. profiles of the variance of the turbulent velocities. These 
boundary layer models are satisfactory, because we are seldom interested in 
more than the statistics of the turbulence motions. 

In case the contaminants are released in an atmosphere with a mean 
horizontal wind u, the dispersion models can make use of the following fact. 
If the advection by the mean wind is dominant over the downwind dispersion 
material found at a distance x has travelled during a time t = u/x. Via this 
relation model results for 1D vertical dispersion from an instantaneous 
source (release at a specific time) in an atmosphere at rest can be used for 
similar dispersion from continuous sources in an atmosphere with a mean wind 
that does not depend on height. The concentration field at a downwind distance 
x from this continuous point source is equal to the concentration field from 
the instantaneous source measured at time u/x. Continuous single point sources 
that emit in the convective boundary layer (CBL), where the mean wind does not 
depend on height, have our main interest. 

Atmospheric dispersion measured by air pollution control agencies is 
usually observed at fixed points, the so-called Eulerian frame. The dispersion 
so measured, is called absolute dispersion in contrast with relative disper­
sion, where the dispersion relative to the center of gravity of the plume is 
observed. Relative dispersion is difficult to describe in an Eulerian frame, 
while much easier in a Langrangian frame, where the observer moves with 
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the particles released. Actually, both processes, absolute and relative 
dispersion, can be described in such a Lagrangian frame. 

The most well-known models for absolute dispersion are the Eulerian K-
models. They are based on the Eulerian conservation of mass equation. From 
this equation a time rate equation for the concentration C is derived in which 

9wc 1ï' This flux is related to the 3C 
the concentration flux wc appears: -rr- = 
concentration gradient by an eddy diffusivity K as wo = - K £ (see also 
Ch.1). In a model where the eddy diffusivity K is not a function of the 
coordinates the concentration distribution is Gaussian, the Gaussian plume 
models. In these Gaussian absolute dispersion models the mean concentration is 
described as function of downwind distance x. The spread is determined by 
spread parameters o (x) and o (x) that are, besides a function of x, also a 
function of atmospheric stability.Pasquill (1961) made plume spread functions 
for different turbulence classes (Fig. 0.1). The plume behaviour in these 
models is not dependent on source height, the plume axis is horizontal if no 
boundary effects occur and no varying mean height is taken into account. These 
models are shown to be incorrect in strongly inhomogeneous turbulence where 
the height of the plume axis is seen to change rapidly with x. The exact 
change is strongly dependent on source height. Note that the plume axis is the 
averaged height of the concentration plume and this changing of the axis 
height with distance should not be confused with meandering, which is the slow 
bodily motion of the plume. 

10" pr 

l O 3 ^ 

TTTT I l l i i i | I I I I IJ« 

' * * S 
S ' ' ' ' ' 

'IB S/// 
A /• /• / / y 

I ' Mlll l l I I l l l l l l l I M i l l 

103 

10* 

10' 

1(1° 

- ■ ' 

— — 

t 
j 

i n mil i/i IIIIMI y 

'/ / 

' * 

1 L 

A/ / ' A/ / s 
! ' ' 

1 / z' 
/ ' '' D / ' ' 

/ / ' / ' ^ ' ' S''*' 
>','' 
/ ' 

Hill 1 1 l l l l l l l 1 

1 IIIU1 / / -/ 

— 
•3 

— "™ 

-
*r= 

1 1 Mill 
10° 10' 103 

DISTANCE DOWNWIND, km 

( a ) 

DISTANCE DOWNWIND, km 

( b ) 

Fig. 0.1 Curves of a and a as reported by Pasquill (1961) for the turbulence 
types 
A: very unstable; B: moderately unstable; 
C: slightly unstable; D: neutral; E: slightly stable; 
F: moderately stable. 
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The first Lagrangian model we mention is the puff-model. We.distinguish 
material emitted at different timesteps from each other and call this a puff. 
Puff-models describe how these puffs are advected by the mean wind, while a 
relation is given for the concentration distribution evolution. These models 
assume again that the concentration distribution is Gaussian which is not 
always true. We turn therefore to more sophisticated models and refer for 
further details to a review of Eliassen (1984). 

In many Lagrangian dispersion models the velocity of each released par­
ticle is regarded to be a stochastic process. The dispersion is modelled by 
the displacement statistics of an ensemble of released particles. The tur­
bulent flow, in which the particles are released, is specified by averaged 
quantities. Many realisations of such a turbulent flow exist that all meet 
these averaged values. Each particle of the ensemble is thought to be 
released in such a different flow realisation. However, the dispersion models 
do not give flow realisations but can suffice with specifying flow properties 
at the place of the particle. Together these particles form an ensemble whose 
average values give us the dispersion characteristics. The concentration is 
e.g. known from how many particles on the average are present in a certain 
volume at a certain time. 

We will mainly be concerned with absolute Lagrangian dispersion models. 
Many different Lagrangian absolute dispersion models exist. These stochastic 
dispersion models are also called Monte Carlo models. They differ in how 
they formulate the effect of the turbulence on the motion of the particles. 
Recently, simple and powerful models have been built based on a specific 
stochastic equation, the Langevin equation. In this equation the effect of 
the turbulence is modelled as a random force that changes the velocity of 
the particles. These models are able to describe mean concentration, concen­
tration fluctuations, and if necessary more involved statistical variables 
(relative dispersion). The most recent models can describe plume behaviour 
in all turbulence situations. Even dispersion in very inhomogeneous circum­
stances is stisfactorily described (see Ch. 4). 

In this thesis we fill in the frame of ideas set up in this introduction. 
The first chapter is a discussion of the atmospheric boundary layer. Our 
interest is in dispersion of passive contaminants (that is non-buoyant) in 
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inhomogeneous boundary layers like the convective boundary layer. We discuss 
the measured dispersion characteristics in such situations and we also discuss 
preliminaries for Lagrangian models to describe these phenomena. The theoreti­
cal basis for stochastic Lagrangian models is built up in Ch. 2, where we 
name especially the theoretical investigations we made, for a large time ana­
lysis of the Langevin model. Most Langevin models describe vertical dispersion 
or vertical and lateral dispersion of non-buoyant material. After we have 
given a review and interpretation of these models in Ch. 3, we build up our 
own model. In our model the lateral dispersion is left out because the lateral 
dispersion in a convective boundary layer is well-known and easy to predict 
because it is proven to be almost Gaussian (Willis and Deardorff, 1978). 
Downwind dispersion can be neglected compared to advection, so that our 
model is 1-D describing vertical dispersion. Our model was published in an 
article in Quart. J. Roy. Met. Soc. (1986) which is integrally included 
in Ch. 4. Our study shows that the Langevin model is very powerful and can 
describe the involved dispersion characteristics in very inhomogeneous situa­
tions, like in the convective boundary layer. However, it turned out that the 
steady state of the concentration distribution in our Langevin model was not 
uniform, which made us interested in comparing our model to another Langevin 
model. This comparison is carried out in Ch. 5. 
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Introduction 

In this thesis we are concerned with dispersion in the atmospheric 
boundary layer. Three main classes of boundary layers are distinguished: 
neutral, stable and unstable (convective). The turbulence in these classes is 
quite different and depending on this, dispersion in these layers show 
different behaviour. However, the layer close to the ground, the surface layer 
shows strong similarity and will be discussed first. 

1.1 Surface layer 

A concept very often used to organise experimental turbulence data is 
scaling. Scaling parameters are sought so that turbulence variables, made 
dimensionless with these parameters, show similarity, that is they, collapse on 
to universal relationships. These parameters can generally be interpreted in 
terms of a characteristic height, velocity and temperature of the turbulence 
process. 

Near the ground there exists a surface layer where mechanical turbulence 
is dominant and in which the so-called Monin-Obukhov similarity is valid. This 
similarity theory says that all turbulence variables scale with z, 
T and we , where z is height, T = - uw , the kinematic surface o o o o 
stress and we the kinematic surface heat flux. The characteristic scaling 

O y 
parameters become for lenght L, the Monin Obukhov length, u„ = T 2 for velocity 

* o 
and T#= - we /u# for temperature. The 

length L is defined as the height where the production of turbulence by 
buoyancy effects and windshear is equal. This length can be calculated by 
equating buoyancy and mechanical production terms in the turbulent kinetic 
energy equation (Businger, 1984). The kinetic energy equation in case of 
horizontal homogeneity may be written in the form 

0 

where ^ , ^ ,, ,, is the kinetic energy per unit of mass, — the kinematic — q = — u. u. OJ f u w 2 2 l l 
Reynolds stress, ü the horizontal mean wind, 6 the potential temperature, p 
the pressure, p the density and e the viscous dissipation. This equation is 
derived from the equations of motion splitting all quantities in an average 
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value and a fluctuation (Reynolds decomposition). The first term on the 
righthand side is the shear production term, which represents the rate at 
which the mean flow contributes to the turbulent kinetic energy. The second 
term is the buoyancy production term. The third term is a combined transport 
and pressure term, which does not produce or dissipate energy. 

We assume that the wind in the lowest layer up to the height -L, the 
surface layer, is given by a logarithmic wind profile ■*— = u^/kz. Here k is 
the von Karman constant. Then, equating the buoyancy and mechanical production 
terms at the height z = -L we get 

a- kL = 1, 
g/e we n we 
_ o = g q 
- 3Ü = " 9 U* 

which yields indeed 

(1.2) " 9 < 

g we k 
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1.2 Stable boundary layer 

Above the surface layer the boundary layer might have different 
stability. In a stable boundary layer (SBL) the air is cooled at the earth 
surface due to outgoing radiation, subsequent conduction into the overlying 
air leads to a stable temperature gradient. This usually occurs during the 
night. The vertical motion of the air is suppressed and the only source of 
turbulence is wind shear (mechanical production). This mechanism can sustain 
turbulence only in a relatively thin boundary layer and that is why a stable 
boundary layer is only around 200 m deep. Profiles characteristic for the 
windspeed, wind direction and potential temperature in the SBL are depicted in 
Fig. 1.1 . 

The structure of the SBL is not only determined by turbulence, but also 
by other processes like gravity waves (see e.g. De Baas and Driedonks, 1985) 
and long wave radiation. Also due to the fact that this layer is usually non-
stationary. Generally valid expressions of profiles of the Reynolds stresses, 
heat flux and velocity variances are difficult to find. Still, to get an 
impression of these quantities we give the profiles found in a well behaved 
SBL by Nieuwstadt (1984a) (Fig. 1.2) and refer further to observations of the 
SBL structure which have been reported by e.g. Mahrt et. al. (1979) and in 
articles of Nieuwstadt (1984a, 1984b). 

In the stable boundary layer above the surface layer we can not find a 
constant characteristic velocity, temperature and height scale. However, here 
the turbulence variables scale with local values (Nieuwstadt 1984). The 
characteristic length is A, the local Monin-Obukhov length, defined as 

3/2 
A- - T _ , 

k(g/T)weQ 
4 

2 2 y 
where x = [uw + vw ] 2 , k the von Karman constant, and, g/T the buoyancy 

v 
parameter. The characteristic velocity is ux = (-uw(z)p and the 
characteristic temperature is T^ = -w6(z)/u)((z). 

In the limit \ -*• » the dimensionless combinations of turbulence variables A 
approach a constant value. This region is called the z-less stratification 
layer (Wyngaard, 1984). Here the scaling parameters are T = - uw and wF. The 
characteristic velocity is u#(z) and the temperature can be formed from these 
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scaling parameters analogous to the surface layer values. 
These scaling regions are summarized by Holtslag and Nieuwstadt (1986), 

whose graphical representation we give in Fig. 1.3. The regions are depicted 
as function of the nondimensional height z/z^ and the stability parameter 
zi/L. Here zi is the boundary layer height. 

Stacks that emit non-buoyant material into the SBL have been observed to 
have very thin plumes that do not spread over very long distances due to the 
fact that vertical motions are suppressed by the stable stratification and 
dispersion becomes a relatively slow process (Fig. 1.4). 

The characteristic timescale of turbulence T is not the only timescale 
involved. Also the buoyancy frequency N = (- T-^) 2, where p is the mean air 

p dZ 
density, plays a role. The behaviour of dispersion then depends on the 
interplay of timescales T and N . Pearson et al. (1983) report that for large 
dispersion times molecular diffusion becomes important involving a third 
timescale. Their argument is that a fluid element in a SBL which has a density 
that is different from its environment changes its density due to molecular 
processes. For large times they expect the spread of a plume to continue to 
grow due to molecular diffusion. However, data discussed by Britter et al. 
(1983) and Venkatram et al. (1984) do not show this. 

The fact that the density difference between fluid elements and their 
environment changes in time makes a Lagrangian consideration more involved 
(see section 1.5.2). An equation for the particle velocity is needed that 
include the buoyancy effects due to this density difference and in addition we 
need an equation for the density difference. In case molecular diffusion 
indeed plays a role it is even more difficult. The fluid elements then loose 
their identity. In the Lagrangian study of Pearson et al. (1983) control 
volumes are considered that might indeed loose the original fluid elements. 

For further details on dispersion in the SBL we refer to the afore 
mentioned articles and to the review of Hunt (1984). 
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nondimensionalized with i t s surface value we as a function of 
o 

z/h. The solid curve is the function (1 - z/h). 
(c) The vertical velocity variance o2, nondimensionalized with u* as 

w * 
a function of z/h. The solid curve is the function of 
1.96 (1 - z/h)3/2. 

The data are grouped in intervals of z/h. At the 
midpoint of each range the average of the nonfiltered 
observations is shown by solid circles, together with 
the standard deviation and the number of data. The solid 
triangles indicate the average of the 
filtered data. The observations of Caughey et al. (1984) 
are shown by crosses. (From Nieuwstadt, 1984a). 
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(From "Luchtverontreiniging en weer", KNMI, 1979). 
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1.3 Neutral boundary layer 

Neutral turbulence occurs when there are no buoyuancy effects. The only 
turbulence generating mechanism is then windshear. This might happen when 
there is cloudcover and strong winds. However, as already very small 
temperature differences have strong effects, the flow in the atmosphere 
seldomly occurs to be exactly neutral (unlike in windtunnels, where it is the 
most easy to realize flow). Venkatram and Paine (1985) described dispersion in 
a shear dominated boundary layer, usually called neutral, although as they say 
also it is in fact a stable boundary layer. We will not discuss this type of 
turbulence further. 
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1.4 Convective boundary layer 

1.4.1 Sublayers and scaling 

During clear periods the sun heats the surface, which in turn heats the 
air by convection. Strong upward air motions and large turbulence fluxes 
result and the atmosphere effectively mixes released material in the vertical. 
In this section we give a description of the convective boundary layer and 
characteristics of dispersion in such conditions. Dispersion models that 
describe these phenomena are extensively discussed in Chapter 2 and 4. 

We consider the horizontally homogeneous convective boundary layer (CBL), 
where no clouds occur. The turbulence extends to a certain height, which we 
call the boundary layer height z^. In the CBL convective turbulence production 
(due to buoyancy effects) is dominant over mechanical turbulence production 
(due to windshear), except close to the ground and the height, where the 
production of turbulence by the two mechanisms is equal. 

Except the surface layer below z = -L there can be distinguished two 
other small layers, the free convection layer, where the adaption of the 
surface layer to the bulk of the CBL the mixed layer takes place and the 
entrainment layer at the top where interaction with the stable layer aloft 
occurs (Caughey, 1984). Each region has its own scaling parameters. With the 
basic scaling parameters a characteristic velocity, temperature and a length 
can be formed. 

In the free- convection layer u* plays no role any more, but the scaling 
height is still z. A characteristic velocity and temperature are defined as 
function of the height z, kinematic surface flux we and the buoyancy 

0
 K 1/3 

parameter g/6. The characteristic velocity is w_ = (̂  we z) ., 
the temperature is 'ef = (T/g (we)2/z) . This free convection layer might 
reach a height of about 0.1 z^. 

At the top, from roughly 0.8 zi, till 1.2 zi in the entrainment layer 
warm air from above entrains the boundary layer. The processes in this layer 
are not yet well understood. We refer to a review of Driedonks and Tennekes 
(1984). 

We are most interested in the well mixed layer, that covers the largest 
part of the convective boundary layer. In this layer all quantities are well 
mixed (Deardorff, 1974a,b; Willis & Deardorff, 1974; Deardorff & Willis, 1985; 
Driedonks, 1981). The mean wind and potential temperature e.g. are practically 
constant with height (see Fig. 1.5). We note here that recent "top-down and 
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bottom-up" theory on mixing in the CBL states that the.profiles might differ 
from uniform depending on the ratio of the fluxes at the bottom and the top of 
the CBL (Wyngaard and Brost, 1984). 

Deardorff (1974a,b) found that the relevant scaling parameters in the mixed. 
layer are the boundary layer height z^, a characteristic velocity scale w* 
defined by 

w* = <f z i ^ ) 1 / 3 <1-3> 
and the characteristic temperature 6# = - w6 /w#. All turbulence variables 
should scale with these two variables w* and 9# to give dimensionless groups 
that are only functions of z/z^ (mixed layer scaling). Deardorff found that 
this is indeed the case for - z./L > 10 and u < 6 w#. The requirement limiting 
the windspeed is usually satisfied, as w* is often larger than 1 m/s, while a 
typical u is 5 m/s. 

The scaling regions in the CBL are summarized by Holtslag and Nieuwstadt 
(1986), whose graphical representation is given in Fig. 1.6. 

With these scaling parameters turbulence and dispersion measurements in 
the CBL can be analysed. Ground level concentrations are often measured. 
However, measurements in the atmosphere aloft are more difficult to obtain. 
The CBL has a typical height of 1-2 km, while present measuring masts have at 
most a height of about 300 m. The structure of the larger part of the CBL can 
only be measured with aircrafts or floating balloons. The first method with 
aircrafts has the disadvantage of being very expensive, while with the balloon 
method large distances- can not be covered in a short time and no instantaneous 
view on the whole CBL can be obtained. For a survey on turbulence measurements 
we refer to Caughey (1984) and for a literature survey on dispersion 
measurements we refer to Vanderborght and Kretzschmar (1984). Laboratory 
models are build to simulate turbulence and dispersion in the CBL. These 
laboratory models revealed the more detailed structure. A description of.this 
structure and of plume behaviour in the CBL follow. 
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Fig. 1.5 Profi les of wind speed, wind d i rec t ion and potent ia l temperature. 
The near-adiabatic lapse ra te and the negligible mean wind shear 
in the mixed layer are typical of strongly convective conditions. 
(From Kaimal et a l . , 1967). 

1.2 

0.8 

0.1 

0.01 

Entrapment Layer 

Near Neutral 
Upper Layer 

Mixed Layer 
w0o,h 

50 100 

Fig. 1.6 Definition of scaling regions in the unstable ABL (L < 0). Basic 
scaling parameters for the turbulence are indicated. 
(From Holtslag and Nieuwstadt, 1986). 
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1.4.2 Turbulence structure in the CBL 

The CBL can be simulated in a windtunnel or a watertank. In such a 
physical model attempts are made to duplicate the boundary layer at a reduced 
scale. But we have to be satisfied with an approximation of the atmospheric 
situation. Atmospheric flows are e.g. much more intermittent than laboratory 
flows and we can also not expect to find the full velocity probability 
distributon function of the turbulence as the higher moments of this p.d.f. 
are difficult to represent in a laboratory model (Plate, 1982). But for the 
purpose of finding the general structure of turbulence the boundary layer can 
accurately enough be simulated. In that respect the experiments in a watertank 
by Willis and Deardorff (1974) gave new insight in the vertical structure of 
the CBL. 

We may also start from the fluid dynamic equations. Solutions to the full 
equations of motion that describe the overall behaviour of turbulence are not 
known as the equations are strongly nonlinear. However, numerically they can 
be solved. Computer models are build that solve the equation of motion for the 
CBL and results are obtained, that can not analytically be derived. Computer 
models have the advantage that they can be limited to a description of only 
those dispersion characteristics that we are interested in, e.g. surface 
concentrations. We mention the numerical models of Deardorff (1974a), 
simulating the CBL, which added to the knowledge obtained in the watertank. 

We now describe the insight in the CBL we gained from both laboratory 
models and numerical models. In the CBL a highly organized structure of upward 
motions, so-called updrafts, occur. They are accompanied by regions of 
downward motion, the downdrafts. The air in updrafts moves much faster than in 
downdrafts. Continuity requires that over a flat surface the average vertical 
velocity is equal to zero. Therefore the updrafts occupy a smaller area in the 
horizontal plane. 

Due to the asymmetry in up- and downward motions the probability density 
function of the vertical velocity at a certain height is found to be skewed 
(see Fig. 1.7). The most frequent value of the velocity is not equal to the 
zero mean velocity, but is found in downdrafts and the distribution has a 
negative mode. The area under the probability curve at the positive half of 
the velocity axis is smaller than at the negative half representing that 
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rising air occupies a smaller area in a horizontal plane than sinking air. The 
probability curve has a long tail for positive velocities, which is due to the 
above discussed fact that rising air has relatively large velocities. The most 
frequent velocity (the mode) becomes smaller with height, so that the velocity 
distribution becomes more Gaussian. An example of such a distribution function 
is given in Fig. 1.7. 

Baerentsen and Berkowicz (1984) reviewed measurements that have been 
carried out in the convective boundary layer in the atmosphere or in the 
laboratory. They determined the profiles of uT and üT, the second and third 
moment of the vertical velocity fluctuations. The profiles that fitted the 
data best are given by 

-— 2/3 
u2/w* = 1.54(z/z.) exp (- 2 z/z ) 
3 i i 

(1.4) 
uVw" = 0.8 z/z (1 - z/z )(1 + 0.667 z/z )~ 

We show in Ch. 2 that these profiles are needed as input for the Langevin 
models. In the limit z/z. ■* 0 (reaching the free convection layer) these 
profiles approach u* ~ z and and u3 - z. This is consistent with free 
convection layer scaling. In the free convection layer the variables 
u* and u3 should scale with resp. w? and w3, where the characteristic 
3 3 K 1/3 

velocity wf is given by w = (̂  we z) . 
The profiles Eq. (1.4) are depicted in Fig 1.8. 

Another very important parameter of convective turbulence is T, , the 
Lagrangian timescale. The Lagrangian timescale is a measure for the lifetime 
of eddies as experienced by a particle that travels with these eddies and 
defined as the integral over the velocity autocorrelation. We.will review 
measurements that have been carried out to determine TL later, as they are 
based on theory we did not yet discuss. We will see that TT - z,/w„, which is 

L i * 
in the order of 20 min. 
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Fig. 1 .7 Probability density of vertical velocity at three levels of a 
convective mixed layer. (From Lamb, 1984) 

</< 

Fig. 1.8 a) The normalized variance of the vertical velocity fluctuations in 
the CBL. Solid line: Eq. 1.4 Squares: Minnesodata data (Izumi and 
Caughey, 1976). Circles: Aircraft measurements (Willis and 
Deardorff, 1974). Stars: Water tank data (Willis and Deardorff, 
1974). 

b) The normalized skewness of the vertical velocity in the CBL. 
Solid line: Eq. 1.4 Circles: Lenschow et al. (1980). Crosses: 
Water tank data (Willis, priv. comm.). 
From Baerentsen and Berkowicz (1984). 
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1.4.3 Dispersion characteristics 

A picture of the turbulence structure in the CBL has now become more 
clear. Our main interest is in the behaviour of particles that follow this 
turbulent motion. Insight in the dispersion characteristics was given by 
experiments, carried out by Willis and Deardorff (1976, 1978, 1981) and which 
gave quite surprising results. They performed experiments with a ground level 
source and with several elevated sources and found that the dispersion 
characteristics of a plume are strongly dependent on source height. This is 
explained by the fact that the vertical structure of the turbulence is 
strongly height dependent. The vertical spread for small times 
(t < 0.1 z,/w#) of particles released from elevated sources is larger than 
from a ground source as the turbulence velocity fluctuations (u5) increase 
with height. But for larger times the spread of the ground level source plume 
increases even such that it becomes larger than for an elevated source at 
times t - 2/3 z /w^. (see Fig. 1.9). 

Particles released from a ground level source almost all move 
horizontally untill they are swept upwards by an updraft. The lifetime of 
updrafts is very large (larger than 2 z./w#) and particles in an updraft 
remain in there for a long time. By the time most particles from the surface 
source are picked up in an updraft the few particles that started immediately 
in an updraft still move upwards. This causes the plume axis (the average 
height of the particles) to rise after a time in the order of z,/w#. Particles 
released from an elevated source have by contrast a larger probability to be 
emitted in a downdraft than in an updraft. Because the downdrafts too have a 
very long lifetime, the plume axis moves downward for small times (Fig. 1.10). 

When particles released from an elevated source approach the ground they 
begin to move horizontally and it takes a while before they get picked up by 
an updraft. This results in a accumulation of particles near the ground and a 
maximum ground level concentration occurs (Fig. 1.10). The times for which 
this occurs become larger with source height. Particles from sources above the 
middle of the CBL are already well mixed before they can reach the ground. For 
further details we refer to the review of Lamb (1984). 
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3 4 X 

Fig. 1.9 Mean pa r t i e l e height Z/z , , and mean variance o = *(Z - z ) 2 * 2 / z . , as 
1 x w* w* s i 

a function of downwind distance X = — — = t — for source heights u z, 

z3/zi = 0.067, and Zg/z^^ = 0.2M and z s / z i = 0.^9 
(From Willis and Deardorff, 1976, 1978). 

Fig. 1.10 Contours in the ve r t i ca l x, z plane of the dimensionless concen­
t ra t ion for the source heights: (a) ^s/z^ = 0.067 and (b) z g / z i = 
0.24. Source height i s indicated by arrow on ordinate . 
(From Willis and Deardorff, 1976, 1978). (See also Ch. 5 ) . 
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1.5 Numerical models for dispersion 

We now arrive at the numerical models used to describe dispersion in the 
convective boundary layer. Mathematical models vary with the point of view 
taken by the modeller. Two basically different descriptions of dispersion 
exist, the Eulerian and the Lagrangian description. A Eulerian description 
gives values at a fixed point, usually points at rest relative to the earth. 
Lagrangian models follow a particle moving with the air. Of the Eulerian 
dispersion models we will only give the underlying ideas, while the Lagrangian 
dispersion models are the subject of this thesis.. 

1.5.1 Eulerian models 

: In Eulerian models the dispersion process is formulated in terms of the 
equation of conservation of dispersed material. This is a differential 
equation for the (instantaneous) concentration c reads 

dc 3u c 

In th i s equation the instantaneous velocity u of the turbulent flow appears, 
with a l l i t s d e t a i l s about random f luc tua t ions . This f luctuat ing veloci ty 
u i s not exactly known and the equation can not be used in th i s form. From 
th is conservation equation, equations can be derived in which only averaged 
values occur (Businger, 1984). These s t a t i s t i c a l values, e .g . the mean wind, 
the averaged concentration and flux, can be measured and the equations can be 
used in appl ica t ions . We derive these equations for one dimension (the z-
direct ion) decomposing u and c according to the Reynolds convention in a mean 
value u_ resp. C and a f luctuating component w resp . c. Substi tuting 
w - u- + w and c = C + c in the conservation of mass equation and averaging 
gives us the time r a t e equation for C: 

3C — 9C 3wc ,. c x 
9t = " U 3 3 Ï " ~ 3 i ' ( K 5 ) 

Substracting th i s equation from the or iginal equation for c, we get an 
equation for c . Analogously an equation for w can be derived from the equation 
of motion. Multiplying the equation for c with w and the one for w with c, 
adding and averaging gives an equation for the flux wc. An in f in i t e s e r i e s of 
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time ra te equations for the moments w c can be generated in t h i s way..The next 
problem i s that an inf in i te ser ies of d i f fe ren t ia l equations can not be 
solved. Therefore, usually th i s ser ies is broken off af ter the f i r s t or second 
equation. The l a s t equation kept i s closed by assuming that the highest moment 
s t i l l appearing in th i s equation is simply related to lower moments. These are 
the so-called "K-models" resp . "second-order closure models" 

The K-models close Eq. (1.5) by the assumption that wc = - K — , the 
— — — — — (jz 

"gradient transfer hypothesis". A basic requirement for this hypothesis is 
that the eddies working on the plume are smaller than the plume itself. In 
case the eddy diffusivity K is assumed to be constant the resulting 
concentration distribution is Gaussian. These are the "Gaussian plume models" 
(Sutton, 1953, Monin and Yaglom, 1977, Ch. 10.3), which are often used. 

We show that dispersion of a ground source can be described with a K-
model. Generally, the eddy diffusivity should scale with the characteristic 
velocity and length scales. In the surface layer the characteristic length of 
the eddies is linear in height and the eddies that act on a ground source 
plume are of the size of, or smaller than the mean height of the plume. Thus a 
basic requirement for the gradient hypothesis is satisfied and the dispersion 
of the ground source plume in the surface layer can be described by a K-model 
(Tennekes and Lumley, 1972). The evolution of the plume might also be 
described by a time dependent eddy diffusivity. When the plume grows, the K to 
be used becomes larger and this can instead be described by K being a function 
of time. Controversy exists about whether it is physically correct that K is a 
function of time K(t-tQ) (Deardorff, 1974c, Yaglom, 1976, Pasquill and Smith, 
1974). 

For an elevated source it is not obvious what K we should use. The K-
theory can only succesfully be applied for large times when the length scales 
of the turbulence are sufficiently small compared with the width of the plume. 

More details about K-models can be found in the literature (e.g. Pasquill 
and Smith, 1974 and Wyngaard, 1984). 

The second order closure models carry along the equation describing the 
time evolution of the concentration flux. These models are more involved and 
we refer to the review of Wyngaard (1984) and Monin and Yaglom (1977, Ch. 19). 
From now on we will only be concerned with Lagrangian models. 
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1.5.2 Lagrangian models 

Lagrangian models describe the motion of particles that passively follow 
the flow. The particles are moved around by the various turbulence eddies so, 
that their trajectories are very random. To model this behaviour the particle 
velocity is subjected to a random forcing (see Ch. 2). The model,is then a 
stochastic model as opposed to Eulerian models which are usually 
deterministic. We describe concepts on which Lagrangian models are based. 

Stochastic processes like the velocity in these stochastic Lagrangian 
models are specified by their probability function. A probability distribution 
function (pdf) P(z,t|z',t») defines the probability that a particle which was 
at z' at time t' arrives at z at time t. (We consider 1-D problems). From 
Lagrangian models this pdf can be obtained by releasing an ensemble of 
particles at zs and tracing their trajectories. The number of particles that 
arrive at time t in a small interval around z, gives the 
probability P(z,t|z ,0). This ensemble must consist of a sufficiently large 

s 
number of dispersing particles to guarantee that the mean is taken over all 
possible trajectories. For an extensive discussion of ensembles we refer to 
Lamb (1984). 

This probability function for z is related to the mean concentration C by 
the fundamental theorem. This fundamental theorem for an instantaneous source 
at z = z , that emitted a mass Q at t=0 reads (Csanady, 1980,p. 23-25, Monin 
and Yaglpm,. 1977, Ch. 10.2). 

C(z,t) = Q P(z,t|z ,0). (1.6) 
s 

This ensemble averaged concentration is not equal to an instantaneously 
observable one. The last is only one realisation out of the ensemble of 
possible concentrations. Each time we measure we will find another realisation 
and the instantaneous concentration deviates from the ensemble averaged 
oncentration. This deviation from the mean is called the concentration 
fluctuation. In testing the model results against measurements we should keep 
this in mind. 

We are only concerned with Lagrangian models describing averaged 
concentration and concentration flux. In Ch. 2 we show that these quantities 
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can be calculated from stochastic Lagrangian models that describe the motion 
of particles that move independently from each other. One particle is released 
at a time. These models are called single particle models and describe 
absolute dispersion. Other Lagrangian models that, besides the mean 
concentration and flux also want to describe concentration fluctuations, 
release at least two particles at the same time. The movement of the two 
particles is made interdependent to model the fact that the turbulence is 
correlated in space. An ensemble of such pairs of particles is released. These 
more particle models are called relative dispersion models or puff-models 
(Csanady, 1980, p. 85). The last name is confusing as it is also used for a 
totally different class of models, the first Lagrangian models we discussed in 
the foreword. If even higher moments of the concentration need to be described 
more than two particles, whose motions are interdependent have to be released 
at the same time. Models that simulate an ensemble of such groups of particles 
are called multiple particle models. In Ch. 2 we will extend on the value of 
absolute and relative dispersion models. In this chapter we will restrict 
ourselves to absolute dispersion. 

The concept of an ensemble-mean used in Lagrangian models corresponds to 
a large number of measurements in a long series of similar experiments. We are 
not often able to perform so many similar experiments in practice as 
atmospheric conditions differ from hour to hour. On the contrary, 
concentrations and fluxes in the atmosphere are measured as time averages 
during one single experiment. In stationary conditions the following 
hypothesis is usually adopted. When the averaging time is made sufficiently 
large it is assumed that the time-averaged value converges to the ensemble 
mean. This highly likely hypothesis is called the ergodic theorem (Monin and 
Yaglom, Ch. 3.3). It enables usto test models describing ensemble average 
quantities against time averaged measurements. 

1 .5.3 Taylor's theorem 

An important relation for particle spread in homogeneous stationary 
turbulence is derived by G.I. Taylor (1921). In one dimension (the vertical) 
for an atmosphere at rest Taylor's theorem reads 

t 
Z2(t) = 2 W2 ƒ (t - T) R (x)dt , (1 -7) 

Li o 
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where Z2(t) is the spread of the particles, W2 the second moment of the 
Lagrangian velocities usually taken to be equal to the standard deviation of 
the vertical velocity fluctuations u2 R and is the Lagrangian velocity 

5 L 

autocorrelation. This autocorrelation is a measure of persistence of the 
Lagrangian particle velocity W defined by 

R(t,x) s w(t)W(t + T) / W2(t). (1.8) 

The ensemble averaging in this definition is carried out over velocities at 
two different times of the same particle out of the ensemble at two different 
times, so that RL gives indeed the persistence of the velocity of one 
particle. In stationary turbulence the average is independent of t and 
R.(t,x) = R,(x). Measurements of the autocorrelation function.in homogeneous 
turbulence.show that R. (t) can be approximated by an exponential, 
R(T) = exp(-x/TL), although the exponential function drops off too quickly at 
longer timelags. This can also be assumed for convective turbulence but in 
stable stratification Rw shows negative loops (Pasquill, 1984). 

For small lag-times x the velocity has not yet changed much, the 
persistence is still maximal, expressed by an autocorrelation 
R (T) equal to 1 and Taylor's theorem gives for the small time behaviour of 
L 
the spread: 

Z2(t) = u2 t2 for t -»■ 0 . (1 ,9a) 

For large lag-times the two velocities W(t) and W(t + T) in Eq. (1.8) of a 
specific particle out of the ensemble become uncorrelated and the 
autocorrelation R^ goes to zero. Taylor's theorem gives for large time 
behaviour of the spread: 

Z2(t) = 2 u2 T (t - t ) for t -»•' - , (1.9b) 
3 L 1 

where TL and t.| are Lagrangian timescales defined by 

CO 00 

TL = ƒ RL(x)dx and t'1 = \- ƒ T R'L(T)<1T . (1.10) 
o L o 

In a convective boundary layer TL is in the order of 20 min. Consistent with 
the restriction of vertical dispersion the integral timescale T^ in stable 
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boundary l a y e r s i s very small or z e r o . Because TL i s a lmost zero i t may be 
convenient t o use other i n t e g r a l t i m e s c a l e s more c h a r a c t e r i s t i c of d i spe r s ion 
in the SBL l i k e the„one based on the f i r s t moment of R, t h a t i s 
T = | ƒ T R . C T M T I (Pearson e t a l . , 1983 and Venkatram e t - a l . , 1984). For 
i n t e rmed ia t e t imes the spread depends on t h e shape of R T ( T ) . Tay lo r ' s theorem 
for the exponen t i a l a u t o c o r r e l a t i o n in homogeneous tu rbu lence reads 

Z 2 ( t ) = 2 u2 Ct T - T2 (1 - exp ( - t / T )] . (1.11) 
5 L L L 

Taylor's theorem is only valid in stationary homogeneous turbulence. For 
inhomogeneous turbulence no analytical results exist against which the models 
can be tested. Lagrangian models can be tested against both time asymptotes in 
stationary homogeneous turbulence. In Ch. 2 we will describe the Lagrangian 
Langevin equation which shows the correct behaviour for small and large time. 
Eulerian K-models have the disadvantage that they only describe dispersion 
accurately when the length scales of the turbulence are small compared to the 
width of the plume. They only give the large time asymptote. 

1.5.4 Lagrangian timescale TL 

We see that the Lagrangian timescale TL is an important turbulence 
parameter appearing in the description of dispersion. This Lagrangian 
characteristic was not yet discussed. In stationary, homogeneous turbulence TL 

can be derived from Taylor's theorem using Eulerian measurements for the 
particle spread and the turbulence quantity üT. (Note that this is based on 
the usual assumption that the Eulerian spread u2 is equal to the Lagrangian 
spread W2" appearing in the Taylor's theorem). This is an advantage as Eulerian 
measurements, which are taken at a fixed point are much easier to perform than 
Lagrangian ones. For inhomogeneous turbulence a considerable number of 
theoretical and practical investigations have tried to relate Eulerian and 
Lagrangian timescales. Once such a relation is established, no Lagrangian 
measurements are required for application of e.g. the Lagrangian Langevin 
models (see Ch. 2 and 4). These investigations and the resulting 
parameterization of TL will be discussed. 
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Taylor's theorem can be used to deduce.the autocorrelation RL from 
Eulerian spread measurements in stationary, homogeneous situations. 
Integrating this autocorrelation gives TL, without having to make Lagrangian 
measurements. Unfortunately turbulence in the atmospheric boundary layer can 
be considered only horizontally homogeneous. Taylor's theorem can only be used 
to derive the horizontal integral timescale (defined as the integral over the 
horizontal velocity autocorrelation). Li and Meroney (1982) give an review of 
different studies, measuring the, horizontal T^ based on this method. These 
studies postulate that the observed Eulerian spread can also be described by a 
universal non-dimensional function f such that 

o (t) = 2 ̂  J (t - T)R (OdT - v ^ t f(t/T.) , (1.12) 
y o 1 

where v2 i s the variance of the cross-wind horizontal velocity f luc tua t ions . 

The function f i s f i t t ed to the data of a and the time scale T.- i s a 
y L 

(stability dependent) timescale, determined by f(t/T. = 1) = 0.5. Different 
functional forms for f were found that all fit the lateral spread data. From 
this function R (T) and then TL can be derived. Results of these experiments 
gave values of TL as function of stability and it turned out that TL's derived 
from different functions f, varied as much as a factor 5. This method is 
therefore very inaccurate. In addition, the vertical integral time scale 
(defined as the integral over the vertical velocity autocorrelation) can not 
be deduced this way, because the atmosphere is not homogeneous in the 
vertical. 

For horizontal timescales in inhomogeneous conditions and for vertical 
integral timescales a theoretical relation between TL and the Eulerian 
integral timescale Tg was sought. In Eulerian measurements the fluctuations 
appear to be faster, because turbulent eddies are advected along a fixed point 
by the mean wind. This is expressed by TE being smaller than TL. The lifetime 
of an eddy T^ is equal to the ratio of the integral length L and its velocity, 
statistically represented by a so that T = L/a. We assume Taylor's frozen 

Li 

turbulence hypothesis to be valid i . e . that the mean wind u i s suff ic ient ly 
strong to blow eddies along the measuring point in such a small time that the 
eddies do not change. This can be assumed if the turbulence 
intensi ty i = 0 /Ü i s much smaller than 1 . Then the Eulerian timescale i s 

Li 

represented by L/u and the ra t io of the two timescale T /T i s proportional to 
L hi 
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the inverse of the turbulence intensity 

T. /T„ = 3 = B / i . (1.13) 
Li CJ 

The turbulence intensity i is a measure for the stability and B is a 
proportionality coefficient. 

Corrsin (1963) derived Eq. (1.13) differently, relating TL and T E by 
considering spectra. He assumed that the peak frequency ng and n^ in the 
inertial subranges of the Eulerian and Lagrangian spectra are proportional to 
the timescales TE resp. TL. Gryning in his thesis (1981) extended on this by 
not only considering the inertial subrange. Het assumed that for n < n E resp. 
n < nr the spectra are constant and equal to the peak value. Corssin's 
assumption about a relation between peak frequencies and timescales is not 
needed, now we can use the fact that the spectrum at zero frequency is 
proportional to the integral of the autocorrelation which in turn is equal to 
the timescale: 

SE,L(0) " 4 °E,L J RE,L(T)dT * * TE,L °E,L' (1'14) 

The spectra, as function of the frequency n, are described by 

- , s „ -2/3 2/3 -5/3 SE(n) = C u e n 

„ -2/3 2/3 „-5/3 = C u e nr E 
-2 
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(1.15) 

where e is the diss ipat ion and A and C constants. 
The timescales follow as 

-2 /3 2/3 -5/3 -2 
'E - '* " U £ "E °E 
T„ = X C ÏÏ*'3 e"° n 7 ° oZ' and 

-2 - 2 
'L "» " - "L °L T, = I J A e n , ' o , ' . 
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Assuming that in homogeneous, stationary turbulence the total turbulent energy 
T S (n)dn = a2 is equal to T S (n)dn = a2 and eliminating N and N„ leads to 6 E E • 6 L L o/2

 L E 
Eq. (1.13) with for B the expression B = 2.5 C° /A. 

Now a theoretical, relation between TL and TE is established, we will 
discuss methods to measure g or B. The first method makes use of the fact that 
TL and TE are the integrals of RL resp. RE and 6 can therefore be obtained by 
measuring both autocorrelations at the same time. We will give examples after 
discussing the ideas behind a second method. This second method assumes that 
the Lagrangian and Eulerian autocorrelations are similar in shape but 
displaced over a scale factor T . /7„ = B: 

L E 

, n S (n) = M SE($n) and RjBt) = Rg(x). (1.16) 

Slowing down the fluctuation rate in Eulerian measurements by an appropriate 
factor B should give the Lagrangian values. This implies that the spectra 
should also have the same shape but Eqs. (1.15) shows, however, that that is 
not the case. Empirically, a certain resemblance is noted though (Snyder and 
Lumley, 1971). The insensitivity of TL for the exact shape of the 
autocorrelation implies that this method can give reasonable results. We 
discuss examples of methods to find the relation between TL and T£. The first 
example is a.laboratory experiment for (neutral or stable) grid turbulence and 
not based on either of the above methods. The second example is an experiment 
in the convective boundary layer where both methods were compared. 

The first example a laboratory study by Snijder and Lumley (1971) was 
made to derive autocorrelations in grid turbulence. It was essentially a study 
where particles with different terminal velocities were used. For each kind of 
particle T^ was measured via the autocorrelation function R.(t). Extrapolating 
the results to particles that are identical to fluid elements (no terminal 
velocity) one value for the turbulence TL was obtained. Snijder and Lumley 
also measured L/a where L is the integral length scale and a2 is the variance 
of the turbulence velocities. They found that TL is exactly equal to 
L/a. Unfortunately they did not measure Tg directly at the same time and a 
value for B is not derived. Only if we assume that TE is exactly equal 
to L/u, we find B = 1 (as used by Hunt, 1984). Assuming that the lighter 
particles represent Lagrangian measurements and the velocities of the heavy 
particles can be interpreted as Eulerian, Snijder and Lumley calculate 
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that T./T„ = 6 = 3. These results are very indirectly derived and are based on L E 
broad assumptions. 

The second example an experiment in the atmosphere to calculate 
8 and B was done by Hanna (1981). He released neutral balloons in the daytime 
boundary layer with which he made Lagrangian measurements. At the same time 
Eulerian measurements were made at a tower and by aircraft. Deriving TL and TE 

directly from measured autocorrelations he finds an average 8 ■ 1.6. Assuming 
that the peak frequencies T in the Eulerian and Lagrangian spectra are 
related to TL resp. T£ by TM = 6T£ L he finds that 8 - 1.8. Plotting 

it» i Li 

the 6 measured from the spectra against turbulence stability given by the 
turbulence intensity i he finds that here is a large scatter (for vertical 
measurements i = o /u and for horizontal measurements i = a /u). In neutral 

W V | U 
conditions with strong winds (large 1/i) the relation is best represented 
by 8 = O.U/i. For convective conditions with low winds (small 1/i) the 
relation is 8 » 0.7/i. (Fig. 1.11) 

The conclusion is that the value TL is not easy to specify. In trying to 
parameterize T^ as a function of more easily measurable variables we meet the 
following difficulties. The factor 8 between TL and TE depends on the 
turbulence intensity i, a measure for stability. But also the proportionality 
coefficient B in the relation 8 = B/i varies with stability. Pasquill and 
Smith (1984) quote a variation in B from 0.35 till 0.8. 

Once the relation between T^ and TE is established we encounter the 
problem of parameterizing Tg. Different parameterizations for different 
stabilities exist. Hanna (1981) states that the Eulerian timescale for 
horizontal fluctuations can be given by 

T£ =0.25 z /u. (1.17) 

w Mixed layer scaling gives that the vertical timescale T- is proportional to 
z /w# expressed as T = c z./w#. In our model applied to a CBL (Ch. 4) we will 
use 

TL = zj/w* (1.18) 

corresponding to c = 1 and 8 = 1 . This in turn corresponds to B = 0.7 and i 
1.4, which are values for strongly convective circumstances. For further 
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details about measurements in the atmosphere we refer to Hanna (1984), 

LETTER INDICATES COMPONENT OF WIND. 
_ CIRCLED POINTS ARE TETROONS. ALL 

OTHER POINTS ARE NEUTRAL PILOT 
BALLOONS. 

12.5 

Fig. 1.11 Observed ratios g = T,/Tu plotted versus inverse turbulence in-
u/o or u/o . Lagrangian timescales were obtained from w u tensity 1/i 

the autocorrelations. The letter at each point represents the 
velocity component. A circled letter indicates a tetroon. 
(From Hanna, 1981) 
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1.5.5 Discussion of Eulerian and Lagrangian models 

As a conclusion we want to summarize the advantages of Lagrangian 
dispersion models over Eulerian models. In the simplest Eulerian models 
vertical dispersion of contaminants is characterised by an eddy diffusivity K, 
usually modelled as K = a2!^; These models assume that the turbulence is 
Gaussian. Lagrangian models are numerically easier and can take into account 
more aspects of the turbulence (e.g. skewness) without becoming more com­
plicated. In Ch. 2 we describe how this is done in our Lagrangian model 
based on the Langevin equation. An advantage of this Lagrangian model is 
that it combines the numerical advantages of Lagrangian models with the 
advantage of an Eulerian input. The only Lagrangian parameter that is 
needed, is the Lagrangian time scale of the turbulence T^. Another advantage 
of Lagrangian models is that, with the position of the velocity of each par­
ticle known at all times, it is possible to alter parameters at every time-
step. In doing so, dispersion in complex situations can be modeled without 
significantly increasing the sophistication of the model. The effect of 
windshear on the vertical dispersion can easily be included in Langevin 
models as a height-dependent advection term with further possibilities of 
extension to 3-D dispersion. Although it is still debated whether buoyant 
plumes (releases that are hotter than the air) can also be described, we 
will show that Langevin models are very successful for non-buoyant plumes even 
in very inhomogeneous turbulence. 

i 
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Introduction 

The dispersion models we are concerned with are all Lagrangian models. In 
this chapter we discuss both old and new theory useful in analysing these 
Lagrangian dispersion models. 

These Lagrangian models describe dispersion by following particles as 
they wander around in the atmosphere. Most of these models describe the 
velocity of the particles and well as a random or stochastic process. In the 
models dispersion statistics are calculated by releasing many particles and 
averaging over the stochastic values. The concentration distribution is 
calculated from the trajectories of a large number of particles. The first two 
sections 2.1 and 2.2 are a general introduction to the theory of stochastic 
process. We discuss the notations used in the models and we also give an 
extensive explanation on what is understood by the concepts "particle" and-
"concentration". 

We make a distinction between instantaneous concentrations as occur in 
the real atmosphere, specified in single particle models or in multiple 
particle models. We show that these instantaneous concentrations contain 
progressively more information on dispersion when "more particle" models are 
used. Based on the explanation of what we understand by instantaneous 
concentration we give a different and more elaborate derivation of a relation 
between Lagrangian and Eulerian quantities involving concentration values 
derived by van Dop et al (1985). 

Lagrangian dispersion models describe the velocity of released particles 
by equations which are autoregressive. Different autoregressive models are 
used. For one of those we use the word diffusion as this Lagrangian 
autoregressive process can also be described by the Eulerian diffusion 
equation. The general dispersion process need not be equivalent to diffusion. 
Brownian motion e.g. looked upon at coarse timesteps is real diffusion, while 
dispersion in turbulence is only in the far time limit a process which can be 
described by the diffusion equation. 

Recently there is much interest in Lagrangian dispersion models based on 
the Langevin equation. This equation describes the velocity history by a 
damping term and a term for the effect of turbulence eddies, the random 
forcing term. The third section 2.3 is a discussion of two recent theoretical 



2.5 

researches into modelling t h i s random forcing function. We wil l show that 
although these researches seemed di f ferent , they use the same techniques: one 
research i s done in phase space, the other in fourier space. The requirements 
put on the dispersion process in the models are d i f ferent , however, in 
stat ionary turbulence they give the same prescript ion of the random forcing. 

The fourth section is a paragraph on a rule how to integrate and 
d i f fe ren t ia te s tochast ic processes, the so-called ft6 ca lcu lus . This we need 
in the f i f th section which deals with large time behaviour of Langevin models. 
Large time l imits existed for homogeneous s i tua t ions . We expand their 
derivation to weakly inhomogeneous Gaussian turbulence and show how t h i s can 
be done by rescaling the turbulence. We discuss the implications of t h i s large 
time behaviour. 
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2.1 Lagrangian models for dispersion 

2.1.1 Lagrangian concepts 

Notations 

In a Lagrangian dispersion description particles are followed starting 
from a source. The desired insight in the dispersion process is obtained from 
the statistics of a large number of such particles. Before we describe the 
theory of these Lagrangian models we first explain some of our notations to 
avoid confusion. 

We use capitals for Lagrangian variables and lower case symbols for 
Eulerian variables. The Lagrangian variable Z(t) denotes a trajectory of a 
particle. The lower case z is used for the spatial coordinate, which is an 
independent variable. The ID-models, in which we consider the motion of a 
particle only along one coordinate direction, say the vertical, describe the 
Lagrangian vertical velocity W(t) and the Lagrangian displacement (height) 
Z(t) of a marked particle wandering through a turbulent flow . 

The probability, that a particle is found in the Eulerian height 
interval E[Z,Z + dz] and that its velocity W at the same time ranges between 
the Eulerian values w and w + dw is defined as P(z,w;t)dzdw, where P(z,w;t) is 
the joint probability density function (pdf) of the two stochastic variables Z 
and W at time t. The bivariate pdf P(z,w;t) is related to the monovariate pdf 
P(z;t) by 

ƒ P(z,w;t)dw = P(z;t) (2.1) 
all w 

The average over an ensemble of released particles at time t will be 
denoted by an overbar. This is an average regardless of the position of the 
particles in space. We have for instance 

JJ w P(z,w;t)dzdw 
W(t) = — . (2.2a) 

JJ P(z,w;t)dzdw 

The number of particles this ensemble is taken over might be described by a 
N 

superscript e .g . W(t) . On the other hand the average denoted by brackets i s a 
conditional average over a l l released p a r t i c l e s , which are located in a 
interval [z,z + dz] a t time t . We have 
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J W P(z,W;t)dW 
<W> - . (2.2b) 

ƒ P(z,w;t)dw 
Close to the source these two averages are about equal, because all particles 
can still be found in the same small height interval. As we will see they 
become very different in inhomogeneous turbulence when time proceeds. 

The average (time average or average over relaisations) of Eulerian 
variables, e.g. the fluctuating turbulence vertical velocity Ug(z,t) will be 
denoted by an overbar. The average of the n-th power of u-j is u?(z,t). Note 
that this average is, like the bracketed average over Lagrangian variables a 
local average. 

Particles and concentration 

Lagrangian descriptions make use of the concept of particles. Because 
different views on particles exist, we specify what we mean by a particle. 

We consider particles that are small enough to follow all turbulent 
eddies. In the atmosphere the-smallest turbulence length scale, the Kolmogorov 
scale, is in the order of 1mm. At these small scales velocity gradients still 
exist, but we assume that the particle does not get distorted by them. The 
motion of the particle can than be described as that of a single point. On the 
other hand we assume that the particle is so large that it contains many 
molecules. The particle can then be said to have a concentration and as we 
neglect molecular processes this particle concentration is conserved. 

Compared to the dimensions of the flow the particles are still infinitely 
small and the concentration due to a particle must be described in terms of a 
delta function. However we would like the concentration to be a smooth 
function. To obtain such a description and to remain consistent at the same 
time with this delta function description we could define the instantaneous 
concentration c as the total mass of particles in a height interval Az 
divided by Az. This interval should be small compared to the dimensions of the 
flow, but still so large that it can contain many particles. If the i-th 
particle contains a mass ĝ  of the contaminant the definition of c reads 

_ . 1 z+Az 
c(z,Az,t) = — ƒ I g. 6(Z,(t)-z')dz' . (2.3) Az ' . l i z l 
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This concept gives smooth functions of z for the concentration. However, 
the fact that we should consider length intervals Az to define concentrations 
makes the notation rather involved and does not lead to new insights. We 
therefore simply write 

c(z,t) = I g 6(Z (t)-z) (2.4) 
i 

and remember that instead of a point z we should consider a small interval 
around it. The dispersion of contaminants in the atmosphere is then described 
by the motion of fluid particles containing a certain mass of contaminants. We 
will call these marked particles. It is assumed that the marked particles have 
the same dynamics as surrounding fluid elements. 

"Instanta.neous concentration" 

Consider a dispersion problem in the atmosphere. Concentration 
measurements made at a certain time are called instantaneous concentrations 
c. From a time series of these concentrations and of turbulence velocity u_, 
quantities like the average concentration, the flux u_c and fluctuation 
correlations can be calculated. The last quantity, the spatial fluctuation 
correlations c(z)c(z') measured in such an air dispersion problem, are non­
zero, as the turbulence is correlated in space. 

Two kind of dispersion descriptions exist, single and multiple particle 
models, which are both able to describe averaged concentrations and fluxes, 
but only the latter can describe the nonzero concentration fluctuations. This 
is because the instantaneous concentrations in the single particle model do 
not contain information on correlations in space (as we will show in the next 
section). Atmospheric dispersion can not fully be described by single particle 
models. A single particle model can only fully describe an experiment in the 
atmosphere, where one particle at the time is emitted, with such time inter­
vals that their initial velocities are uncorrelated. Then instantaneous 
concentrations of the single particle model contain the same information as 
the measured ones. However, single particle models are very useful when we are 
only interested in the averaged concentration and flux, because they are 
simpler than multiple particle models. We elaborate this in the next sections 
by first discussing single and multiple particle models and then comparing 
them. 
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2.1.2 Single particle models versus multiple particle models 

In single particle models one particle at a time is released. An ensemble 
is build up by repeating this process over many different realisations of the 
same flow, while the initial velocities of the particles are independent of 
each other. The random forcings different particles experience due to the 
turbulence eddies, are also uncorrelated resulting in the fact that the motion 
of different particles is completely uncorrelated. 

Multiple particle models take into account that the turbulence is 
correlated in space. M particles are released at the same time with initial 
velocities and the random forcings that are interdependent in order to model 
this aspect of the turbulence. An ensemble is build up of a large number of 
such groups of particles. This latter model is usually also and therefore 
confusingly, referred to as a puff model (see General introduction where the 
first Lagrangian model we discuss is the puff model). 

In the following we will explain the difference between instantaneous 
concentrations in single and multiple particle models and the restrictions 
this puts on the use of these models. 

Single particle releases 

First consider a 1D experiment where N particles are released at one 
point all marked with the same mass g. The particles are released one by one, 
setting time equal to zero for each particle when it starts. The path of 
particle i is given by Zi(t) and we define an instantaneous particle 
"concentration" due to (only) one particle by 

c(z,t) = gS(Zi(t)-z) , (2.5) 

where 6 denotes Dirac's delta function. The sub- and superscript s stands the 
realisation in the single particle model and is used to distinguish it later 
from a realisation (release) in multiple particle model values. We write 
concentration between quotes as this variable has the dimensions of mass. (As 
stated earlier we should consider mass per interval). 

A definition of an ensemble average consistent with this particle and 
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concentration concept is simply the sum over all particles. The ensemble 
average of the discrete quantity c , the concentration C„, is e.g. defined by 

-N N 
C (z,t) ■ c(z,t) = I g6(Z1(t)-z) . (2.6) 
3 S i=1 

This is consistent with the fact that the integral of the ensemble average 
concentration over height is equal to the total amount of mass released Q: 
Jc(z,t)dz = Ng = Q. 

The fundamental theorem Eq. (1.2) links Eq. (2.6.) to the probability 
function P(z;t) by C(z,t) = Q P(z;t) . We then get 

N 
C (z,t) = I g6(Z1(t)-z) = Q P(z;t) = Q ƒ P(z,w;t)dw . (2.7a) 
3 i=1 

We see that in discre te notation the pdf P(z ; t ) i s given by 

1 N i P(z,t) = -jj I 6(Z1(t)-z), 
i = 1 

where N should be large. 

We also want to discuss the flux in a single particle model. Therefore we 
need the bracketed moment of the particle velocity W. Moments of W in 
continuous notation are given by Eq. (2.2b). Using the above discrete rotation 
of the pdf P(z;t) the conditional average reads 

. N 
1 I (W1(t))n6(Z1(t)-z) 

.... <w"> - - ^ - r : — . 
s N 

1 l 6(Zi(t)-z) 
N i = 1 

The concentration flux is defined as u c, where u is the Eulerian 
3 3 

turbulence velocity that transport the particle. The flux in the single 
particle model is given by 

N . 
Ü c = l ü (ZX,t) 6(ZX(t)-z)g = <W>gNP(z,t) = (<W>C) , (2.7b) 
* i=1 5 3 

where the one before last equality uses that the particles are passive: the 
"Lagrangian" particle velocity W(t) is identical to the value of the 
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"Eulerian" velocity field u-(z,t) at the location of the partiele. 

For products that involve higher powers of velocity we get by the same method 

N 
ujc = I a"(Z1,t)6(Z1(t)-z)g = (<Wn>C) (2.7c) 
3 i=1 3 S 

Splitting the instantaneous concentration c in an ensemble mean C and a 
fluctuation c and using u_ = u_ we get 

G§5 = «W n>C) 3 = u^C + û c (2.8) 

This formula, a relation between Lagrangian en Eulerian quantities involving 
concentration values, was also given by v. Dop et al. (1985) in.their appendix 
A. Here we have shown that it is valid when concentration values are used that 
result from a single particle model. To avoid confusion about when this 
relation is valid we have been very careful in our derivation about what 
information the concentration values carry. We will show that concentration 
values resulting from multiple particle models contain more information e.g.• 
about concentration fluctuations and carrying out the same analysis we show 
that Eq. (2.8) is also valid in multiple particle models. 
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Multiple particle releases 

Now consider an experiment where at each time M particles are 
simultaneously released (M = 2,3...). In total an ensemble of N particles is 
used. In these models the initial velocities of the particles in one release 

N j (j = 1 » •••» r:) are correlated and also the random forcing different 
particles experience in one release are interdependent. The path of particle i 
in the j-th multiple particle release is given by Z":(t). The instantaneous 
concentration for each release is defined as 

M . 
c(z,t) = I g6(Z-J(t)-z) , (2.9) 

i = 1 

This instantaneous concentration c Eq. (2.9) contains more information about 
m 

concentrations in the atmosphere than the one c in a single particle release 
(Eq. (2.5.)). We will show that apart from being able to derive the average 
concentration and the flux from this quantity c we can also use it to derive 
the concentration fluctuations. This information is contained in c because 

m 
concentration fluctuations originate from the relative movement of particles 
with respect to each other. This relative movement occurs because of the fact 
that the turbulence velocities are correlated in space and is modeled in 
multiple particle models as the paths of particles released at the same time 
are dependent. 

We will show that averages of values linear in instantaneous 
concentration in both single and multiple particle models are the same, while 
averaged values of quantities nonlinear in instantaneous concentration are 
not. 

The average concentration in a multiple particle release is given by 
considering the ensemble of N/M releases: 

N/M N/M N/M M 
C = c (z,t) = I c (z,t) = I l gó(zJ(t)-z) (2.10) 

j = 1 J j = 1 i=1 1 

Let us investigate the RHS of this equation. The fact that the displacements 
Z^ of the M particles in one release j are correlated does not affect the 
ensemble averages of quantities that only involve values of one single 
particle i. The ensemble average of such a quantity is the same as it would be 
in a single particle release. This means that we can drop the index j and 
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write the RHS of Eq. (2.10) 

N - N 
as T g6(Z (t)-z) = c . Eq. (2.10) becomes s i=1 

N/M — N 
Cm(z,t) = cm(z,t) = cs = Q P(z;t) . (2.11a) 

The conclusion is that both single and multiple particle models give the 
averaged concentration. Other quantities linear in c can also both be 
expressed in values obtained both in a single or in a multiple particle 
experiment. E.g. the fluxes \xlc are given by 

N/M N 
Ü̂ c = ti*c)m = (ü^c) = <Wn>C(z,t) (2.11b) 

3 

and Van Dop et a l . ' s re la t ion i s proven to be also valid for multiple p a r t i c l e 
re leases . 

Quantities nonlinear in instantaneous concentration can only be expressed 
in multiple par t ic le r e s u l t s . For example the instantaneous concentration 
fluctuations in the m-th release can be defined as 

M M . 
c ( z , t ) c ( z ' . t ) = 1 I g 6(Z^( t ) -z)6(Z 'J , ( t ) -z ' ) , (2.11c) 

i=1 i ' * i 

which contains a l l cross products of the M par t ic les in the j - t h r e l ease . The 
ensemble averaged concentration fluctuation i s defined as 

_ N/M N / M 
c ( z , t ) c ( z ' , t ) = I c ( z , t ) c ( z ' , t ) - P_(z,z»;t) . m m . , m m 2 

J = 1 

As the variables Ẑ  and Ẑ  are dependent, P ? ( z , z ' ; t ) cannot be s p l i t in to two 
single probabil i ty d i s t r ibu t ions . This is equivalent to s ta t ing that 
quanti t ies that are products of properties of different par t ic les can not be 
obtained from single par t ic le r e l ea ses . Quantities that involve products of 
two par t ic le values, l ike concentration f luctuat ions, can be described in a 
two-particle model. To obtain higher order products more information i s needed 
than the instantaneous concentrations in single and two par t i c le models 
contain. 

We conclude that the number of par t i c les to be released simultaneously 
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depends on how detailed we want to describe dispersion. If only the mean 
concentration is required a single particle model is sufficient. Concentration 
fluctuations follow from a two particle model and if higher products (of order 
M) of different particles are needed, a M-particle release model should be 
used. 

We are interested in the quantities such as mean concentration C, the 
mean height Z, width of the plume 1? and fluxes QPc which are all quantities 
that can be given by a single particle model. In the following we will only 
deal with single particle models. 
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2.1.3 Autoregressive models 

The displacement and velocity of particles released into a turbulent 
atmosphere is a stochastic process. In an unbounded area the average distance 
to the source will grow in time and the displacement process is a non-
stationary stochastic process. 

In a bounded area the dispersion always reaches a steady state, where the 
velocity moments of the particles are equal to those of the turbulence at that 
height. These turbulence moments are constant in time and the velocity process 
is stationary. 

This is also true for the velocity of particles dispersing in an 
unbounded volume, if the turbulence is stationary and homogeneous. In 
stationary homogeneous turbulence the particles will on the average experience 
the same velocity changes, irrespective of where the particles are. The 
moments of the velocity of the particles will remain equal to those of the 
turbulence (which do not change in time) and the velocity process is 
stationary. 

In inhomogeneous turbulence the velocity process is not stationary, 
because the velocity changes depend on the position of the particles. While 
the particles spread more and more the ensemble of particles will see a larger 
part of the inhomogeneous turbulence and averaged quantities like the velocity 
moments become a function of time. These averaged quantities are not 
stationary anymore. However, the velocity process in an unbounded atmosphere 
with inhomogeneous turbulence may still be considered approximately 
stationary, when the dispersion process is considered over timesteps for which 
the average particle displacement is much smaller than the lengthscale 
associated with the turbulence inhomogeneity. 

The class of models we want to use are applicable to stationary processes 
(Box and Jenkins, 1971, Ch. 4). The fact that the velocity of particles 
dispersing in an unbounded inhomogeneous turbulent atmosphere is a (weakly in-
stationary process, whereas the displacement is not, implies that dispersion 
can easiest be modelled by a model for the velocity). We will therefore be 
concerned with dispersion models describing the velocity. 

The velocity process of particles dispersing in a turbulent medium can be 
modelled by the class of autoregressive models. An autoregressive model is a 
discrete stochastic model that describes the value of the process at a certain 
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time as a l inear combination of values of the process at previous times 
together with a random forcing. So if the velocity at a time t n is denoted by 
Wn and the random forcing at t h i s time by u then 

Wn " °1 Wn-1 + a 2 W n-2 + " " + a p Wn-p + ^n < 2 ' 1 2 > 

is called an autoregressive process of order p (AR(p)). The rationale behind 
this name is that Wn is expressed as a function of other variables, or in 
other words Wn is said to regress on these other variables. When Wn is 
regressed on previous values of itself, the model is said to be 
autoregressive. 

The order of the AR, that we use to model dispersion problems with, is 
dependent on the properties of the dispersion process. The autoregressive 
process that we use should e.g. exhibit the same autocorrelation function and 
spectrum as the dispersion process. In the next sections we will show that 
each order of AR(p) exhibits a different class of auto correlations and 
spectra, where the exact shape depends on the coefficients a of the AR(p)'. 
Zero order models, the well known random walks, are e.g. used to describe 
Brownian motion seen on coarse timesteps. The Langevin equation, a first order 
process, was originally used to describe Brownian motion seen at finer 
timesteps. Later this equation was also used for homogeneous turbulence 
dispersion and recently it is applied to inhomogeneous turbulence. Second 
order AR process have certain disadvantages, that make that they are not used 
for dispersion modelling. The theory of all these models is discussed in the 
next subsections. 
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2.1 .M Zero-order autoregressive model 

The first type of dispersion we want to discuss is dispersion of 
particles due to collisions of molecules, which is called Brownian motion. 
This type of dispersion, seen at coarse timesteps, can be described by a zero-
order autoregressive model. 

The physical picture of this dispersion process is as follows. The 
particles are considered to be so small, that collisions with the surrounding 
molecules result in random changes of the particles velocity. On the other 
hand the particles are considered to be much larger than the molecules and the 
particles feel a friction in the fluid, due to which their velocity gets 
damped. The time scale, at which the particle velocity has become totally 
independent of its initial velocity due to this friction, is called B~ • This 
Brownian motion is sometimes also called molecular diffusion. However, it does 
not describe the mixing of two chemically different compounds, nor does it 
describe the diffusion of molecules just like turbulence dispersion does not 
describe the dispersion of turbulence. On the contrary, the particles 
considered here, are much larger than the molecules and experience collisioné 
with many molecules in one timestep. The total effect of these collisions is 
modelled as one random velocity change (random forcing). 

The equation used to describe Brownian motion depends on the coarseness 
-1 of our description. The timescale 3 of this molecular process is very small 

(order of a second) and when this process is described by a model in 
which At >> B , the velocity changes with uhcorrelated jumps so that it' can 
be modeled by a zero-order autoregressive process. In this subsection we will 
analyse this coarser description of Brownian motion and leave the discussion 
of descriptions on a finer time scale to the next subsection. 

We describe Brownian motion in one direction, say the z-direction. The 
zero-order AR model we use describes the velocity W of the particle at each 
timestep At. The time passed after release is t = nAt and the velocity at 
this timestep is given by the equation 

WnAt = Y r n A f (2'13a) 

Here r is a white noise process with normalised variance 
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nAt nAt n'At 
where 6nn' i s the Kronecker del ta defined by 

ónn' = 0 . for n * n ' (2.13b) 
= 1 for n = n' . 

In the following this interpretation will be given to all <S's unless otherwise 
y specified. The factor Y is the variance of the velocity <W2(t)>2 and a measure 

for the intensity of the collisions. In homogeneous situations Y is a 
constant, while in inhomogeneous situations Y is a function of height z. 

We discussed before that each type of dispersion should be modelled by an 
autoregressive process, that has the same auto correlation and spectra. We 
investigate how these functions look for a zero-order AR model. By showing 
that they are the same as the measured autocorrelation and spectra in Brownian 
motion an coarse timestep we show that zero-order AR models are good 
descriptions of Brownian motion. 

The autocorrelation function R for a process W is defined by 

R(kAt,nAt) s ( k+" ) A t k A t (2.1H) 

kAt 
and is a measure of "persistence" of the velocity. If the velocity is very 
persistent, it has the same value at the next time step and the 
autocorrelation is equal to unity. A process, where the velocity is completely 
independent on the former value, has an autocorrelation which is equal to 
zero. If W is a stationary process, Ry is independent of the time kAt and only 
depends on the time lag nAt. For the zero-order process Eq. (2.13) in 
stationary homogeneous conditions (Y = constant) Rw becomes 

Y2 r, N r (k+n)At kAt R (nAt) = - = 6 , (2.15) w , — - — no Y2 r2 kAt 
where k i s a rb i t r a ry . 
We see, as expected for a zero-order model, that the corre la t ion between 
ve loc i t ies a t different times (n * 0) i s zero, which means that persistency of 
the velocity i s absent. 

The spectrum of a stochastic process is defined as the Fourier transform 
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ofjthe autocorrelation. In discrete form the definition reads % 

» i6 nAt 
; S(9n) = I R(nAt)e n . 

n=o, 

The spectrum for the zero-order process W Eq. (2.13) reads 

» i6 nAt 
S (0 )= I R (nAt)e n = 1 . (2 .16) w n L

n w n=0 

We conclude that any s tat ionary dispersion process with a del tafunct ion-l ike 
autocorrelation (Eq. (2.15)) and (thus) a constant spectrum (Eq. (2.16)) can 
be modelled by a zero-order AR process. 

We now should show, that the zero-order AR process for the velocity has 
the same velocity autocorrelat ion and spectrum as the one in Brownian motion, 
measured a t coarse timesteps. This can indeed be shown. However, we wil l 
instead invest igate the displacement charac te r i s t i cs of t h i s zero-order model, 
because they give us the concentration in which we are mainly in te res ted . We 
show that the displacement cha rac t e r i s t i c s of the zero-order AR-model are a 
good description of Brownian motion measurements. 

The displacement can be investigated as follows. Each timestep At the 
par t ic le makes a displacement step AZ equal to W A1.At. The sum of these 
displacements gives the t ra jectory of a pa r t i c l e as function of time. The 
result ing process Z = / AZ is called the discrete random walk and i s a 

NAt ö nAt 
standard problem in textbooks on probability theory (e.g. Chandrasekhar, 
1943). We will discuss how we can calculate the pdf of this randomwalk Z. Once 
we have this pdf P(z,t) we can calculate variables that can be tested against 
measurements, to se whether the zero-order AR is a good description of 
Brownian motion. 

The displacement Z follows from the difference equation Eq. (2.13) 

AZ k. = Z, , w . - Z A. = W .. At = 2D^ td A. . (2.17) 
nAt (n+1)At nAt nAt nAt 

with w ,. = 0, u ..<*> ,A4.=6 , At and 2D = Y2At. , nAt nAt n'At nn' 
We see that the fact that the velocity changes with uncorrelated jumps (Eq. 
(2.13)), results in displacement steps AZ that are also uncorrelated, 
AZ is a white noise process with variance 2DAt. Why we use the factor 2D 
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will be explained in subsection 2 . 2 . 2 . 
To calculate the t rajectory Z . of the pa r t i c l e s we should be more 

specific about the random term r . Textbooks deal with two special white . 
noise processes. The f i r s t assumes a Gaussian white noise (Durbin, 1983, p . 6, 
Eq. ( 1 .4 ) ) , the other a dichotome process (Chandrasekhar, 1943). in the second 
white noise process, the dichotome process, u . has an equal probabili ty of \ 
to be posit ive or negative. The displacement i s a constant step length I (note 
lower case) to the r ight or to the le f t AZ „. = +/- JUln the f i r s t case 

nAt AZ . could have all possible lengths, as the probability of these lengths was nüu ________ Gaussian). As (AZ . , ) 2 = 2 DAt Eq. (2.17) we see that I and At are related nAt 

by I2 = 2 DAt. The pdf of AZ reads v 

P(AZ_At) = X 6(AZnAt-£) + y2 «<AZnAt+l>. (2.18) 

(Chandrasekhar, 1943). 
From the Central Limit Theorem we know that both processes lead to a 

Gaussian distribution of the sum Z because this theorem states that the sum of 
independent random variables, regardless of their distribution function, is 
Gaussian. In other words this theorem it follows that the probability of the 
trajectories Z is rather unsensitive to the exact description of the white 
noise u. . So these two cases of zero-order models, one with a Gaussian white 
noise process and the other with a dichotome white noise process, both give 
the same random walk process Z. We derive the exact randomwalk pdf in the 
first case. 

" I n the first" case --_-_-— is Gaussian and the-probability- for AZ -is 
nAt 

consequently also Gaussian. A Gaussian pdf is specified by its first and 
second moment. The first and second moment of AZ read 

AZ = 0 and (AZ ) 2 = 2DAt. 
nAt 

The pdf for AZ reads 

_y (AznAt)2 
P (AznAt) = (4irDAt) y*exp{- ^ffi }. (2.19) 

Note that we notate the probability of a stochastic variable Z to be equal to 
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z as P(z). 
Our goal is to specify the characteristics of the particles trajectory, so we 
ask for the probability that the trajectory Z . = £ AZ

nAt r e a c n e s a certain 
point z. The steps AZ are Gaussian distributed and uncorrelated in time and it 
follows that the sum of these steps Z.... is also Gaussian distributed (This 

NAt 
can bé explicitly proven, see v. Kampen, 1983, p. 27). Its pdf is specified by 
the first and second moment that read 

ZHA. = 0 and (Z ) 2 = 2DNAt NAt NAt 

and the probability function of the random walk we looked for reads 

(z ) 2 

P(zNAt) = (ihrDNAtf* exp - * ^ - * . (2.20) 

Chandrasekhar proved that P(z Ai) in the dichotome case is also given by 
nAt 

Eq. (2.20) by considering a l l possible random walks of N s teps and 
determining how many of these end in point Z (path integral method). We 
will not repeat th i s lengthy derivat ion here, but use the cent ra l l imi t 
theorem as discussed above, that s t a tes that also in t h i s case the pdf of the 
t ra jec tor ies ZM is given by Eq. (2.20). 

Continuous form 

Autoregressive processes are defined as discrete process, while we want 
to t e s t the zero-order AR for Brownian motion against the continuous Taylor 
formula Eq. (1 . ) . To do th is the discrete random walk i s replaced by a 
continuous random process. We can construct th i s continuous process by putt ing 
t = NAt and Z = NAZ and l e t t i ng N -»■ * while At -» 0. At the same time the steps 
must become infini tesimal AZ ■+■ dZ. The probability function of the continuous 
random or drunkard's walk Z(t) = J dZ becomes the continuous equivalent of Eq. 
(2.19) 

P(z , t ) = (UirDt) * exp(-z*MDt) . (2.21) 

From this probability function it follows that the particle spread is given by 
Z-2" = 2Dt. It is clear that Z as discussed in section 2.1 .3 is indeed a non-
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s ta t ionary process, because the spread of the pa r t i c l e s i s a function of time. 
We see that t h i s zero-order model gives the large time limit as predicted by 
Taylor 's theorem Eq (1 .7) . 

We proved that zero-order processes are sa t i s fac tory descriptions of 
-1 

Brownian motion seen a t coarse t imesteps. For t < $ , t h i s zero-order model 
is not an adequate description since we expect from Taylors theorem for small 
times that 1? - t 2 . Besides to Brownian motion at coarse timesteps this model 
also applies to turbulence dispersion seen at timesteps which are much larger 
than the Lagrangian timescale TL. 

In the next paragraph we discuss f i r s t -o rde r models, which will turn out 
to be a good description of Brownian motion and turbulence dispersion for both 
small and large times. 
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2.1 .5 F i r s t - order autoregressive models 

We described the Brownian motion on a coarse time scale , where 
-1 -1 • 

At > 6 . This i s a natural descript ion as the timescale g in th i s process 
is small. In turbulence the timescale at which veloci t ies become uncorrelated 
(the Lagrangian timescale TL) i s of order of 100s. Here a zero-order model 
would be res t r i c t ed to coarse timesteps, which are larger than 100s. In such a 
description a l l small time de ta i l s would be l o s t . If we look at f iner 
timesteps, turbulence dispersion and a l so Brownian motion has to be described 
by a different model. At such finer timesteps the ve loc i t ies of the p a r t i c l e s 
are correlated in time, the par t i c les remember their previous ve loc i ty . That 
the next velocity depends on the current value, means that we have to describe 
the velocity process by an AR process of higher order . Here we invest igate thé 
f i r s t -order process. 

Brownian motion and turbulent dispersion 

For the descript ion of Brownian motion at small t imescale, we return to 
the physical descript ion we gave of t h i s process. Due to the f r i c t ion , exerted 
by the fluid on the pa r t i c l e the par t ic le looses i t s veloci ty . This can be 
modelled by including a damping term in the governing equation. In continuous 
form the equation governing for Brownian motion becomes 

^ = - BW + n and ^ | = w, (2.22) 

where y is the random forcing due to collisions. This equation is called the 
Langevin equation and for the description of turbulent dispersion in 
homogeneous stituations the same equation is used, substituting the Lagrangian 
timescale T^ for f} . However, in turbulent dispersion we don't consider hard 
particles but particles as described in section 2.1.1. 

We investigate this first-order dispersion model. This Langevin model 
involves a white noise process for n assuming that accelerations of the 
particles happen in an infinitely small time and are uncorrelated in time. In 
Brownian motion but also in turbulence this is a fair assumption; the 
accelerations in turbulence occur at the Kolmogorov timescale tk, which is in 
the order of a second. We also know that t /T - (Re) 2. This means that in 

K Li 
highly turbulent flow (Re >> 1) t and T. are wide apart, so that a range of 
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times t ex is t s t << t < T , for which the accelerat ions of fluid par t ic les 
can be indeed be considered to take place in an in f in i t e ly small time and can 
be considered to be uncorrelated. The moments of t h i s white noise can be 
argued for as follows. 

When the temperature and composition of the medium are constant 
throughout the volume considered, Brownian motion i s a homogeneous process. 
The random forcing and the timescale f$ do not depend on z. This process can 
then be modelled by a random force with zero mean n = 0 and variance 
n ( t ' )n(t") = 2o2B(dt) ó f |?. Here o2 i s the variance of the par t ic le 
ve loci ty , when the par t ic le is in thermal equilibrium with the surrounding 

kT molecules: a2 = —, with k the Bolzmann constant, T temperature and M the 
molecular mass. This expression for n2 r e f l ec t s tha t the variance of a white 
noise process goes to infini ty for dt ■*■ 0. Because of t h i s we prefer to write 
the Langevin equation in incremental form, using ndt = dp 

dW = - j - d t + dp and dZ = Wdt. (2.23) 
L 

Here dp is a Gaussian white noise process with dp = 0 and 
dp(t*)dp(t") = 2 a23 dt 6 t i tn« For turbulent dispersion we subst i tute TL for 
(3 and then a2 is the second moment of the turbulence veloci t ies o2 = u | . 

To interprete t h i s a l l the d i scre te form 

W n + 1 * (1 " ff )Wn + ^ 
Li 

is probably the most clear. This in connection with defining integrals of 
stochastic variables, as will be discussed in section 2 .k . Although we prefer 
this last discrete notation, we will not rigorously avoid the continuous 
incremental form Eq. (2.23). 

We will show that by the above specifications of dp it is ensured that in 
Brownian motion the particles are continuously in thermal equilibrium if the 
initial velocities are in thermal equilibrium. In turbulence dispersion we 
consider particles that have the same mass as an equally large fluid element. 
"Thermal equilibrium" here means simply that the variance of the particle 
velocities is equal to that of the turbulence velocities (W(t) = 0 and W2(t) = o2 = u 2). Before we show that this is ensured, we 
discuss the first-order model and its autocorrelation and spectrum. Then we 
will show that the models are fair descriptions for both small and large time 
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behaviour. This can be shown for both the velocity and the displacement 
characteristics. 

We investigate the first-order dispersion model Eq. (2.23) in discrete 
form, the form in which autoregressive processes are usually modelled. In 
discrete form the Langevin equation reads 

(2.24) 
W/ J.i x ... = a W .. + Au »t and (n+1)At nAt nAt 

Z, ..At = Z A. + W ..At , (n+1) nAt nAt 

with o = 1 - At/T . We investigate its autocorrelation and spectrum. 

The autocorrelation R (kAt) of a first order velocity process Eq. (2.24) 
can be calculated by multiplying the equation by W, + 1 _ k ) A < . and ensemble 
averaging. We obtain, if the correlation between the velocity and the random 
forcing is zero, which we will show later (section 2.4): 

W(n+1)AtW((n+1)-k)At = a WnAtW(n-(k-1)At. 

If the velocity process is stationary then we can divide this equation on both 
sides by W2 = W2. Then from the autocorrelation function definition . n + 1 n ■ 
Eq. (2.14) we see that Rw satisfies the relation 
R(kAt) = a R((k-1)At) for k > 1. With R(0) = 1 we get R(kAt) = ak. For a 
general first-order process Eq. (2.24) to be stationary we have to require 
that -1 < a < 1 . The negative a's correspond to an autocorrelation function 
that for large k's decays exponentially to zero and oscillates in sign. This 
case is not of our interest as we have 0 < a = 1 - — < 1 . For positive 

L •- ■ 
a's and for large k's the velocity autocorrelation becomes 

k ~ T" R(T) - lim (1 - At) = e L , (2.25) 
k-x» lL . kAt = constant 

where T = kAt. Note that the requirement that k is large or the requirement 
At is small give both the same x. So the shape of the autocorrelation function 
of our first order process Eq. (2.24) is exponential and scales with TL. This 
is consistent with the definition of TL Eq. (1.10) as the integral over the 
autocorrelation from x = 0 till x = <*>. Analogously the velocity 
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autocorrelation of the Brownian motion process is an exponential function that 
scales with 3 

From measurements it is indeed found that turbulent dispersion and also 
molecular diffusion at a finer timescale can be described by exponential 
autocorrelations. However, other autocorrelations like 

-2 
R(T) = (1+T/T ) describe the measurements equally well and it is concluded 
that dispersion does not depend very strongly on the exact shape of R 
(Pasquill, 1983, pp. 123-125). 

A shortcoming of our Langevin model is that the autocorrelation 
Eq. (2.15) has an undefined tangent at the origin. Near the origin the shape 
of the autocorrelation function of turbulence dispersion should be determined 
by the microscale tm, where tm is defined as 

-2 d2RL(-r) 
fcm = " * dx2 ~ 3 ' t=o 

and the expansion of R(t) near the origin should read 

R(T) = 1 - p- + ... 
m 

Our Langevin model for turbulence dispersion does not show this behaviour for 
times in the order of tm (order of second). However, this shortcoming is not 
serious. 

The spectrum of the Langevin equation can be calculated as follows. 
Decompose the velocity and the random forcing function in a Fourier series 
A(6) resp. B(9) defined by 

WnAt - Ï A(8) e i 8 n A t and 

v ™/n\ iönAt Apn = I B(6)e 
o 

As Ap is a white noise process B is not a function of the frequency 9; dp has 
a constant spectrum. 
Substitution of Eq. (2.26) in Eq. (2.2H) gives 
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A(6> ■ ~uk- ■ 
e -a 

Multiplying with its complex conjugate gives 

lA(e)f2 = -,% a2 - 2a cos 9At " 
■' i 

Then expanding this in At neglecting terms of order 0(At3) results in 

i ,. ! B | 2 

iA(e)|2 = 1 + ai _ 2a + a (eAt)i , 
which by substituting a = 1 - Â - and IB|2 S (Ap)2 = 2 —■ At gives 

TL
 TL 

a2 T 1 
■S(6) ■ lA (9 ) | 2 = 2 ( 1 + ^ 2 Q 2 ) j - . (2.27) 

LJ 

-2 This v e l o c i t y spectrum has a 0 behaviour a t f requencies l a r g e compared 

to T . Monin and Yaglom (1977, Ch. 5 .8) show t h a t a Lagrangian spectrum of 
turbulence v e l o c i t i e s should have a minus-two power law in the i n e r t i a l 
subrange. Therefore the f i r s t - o r d e r process known as the Langevin equa t ion i s 

a good d e s c r i p t i o n for homogeneous t u r b u l e n t d i spe r s ion on a f i n e r time s c a l e . 

We showed t h a t the Langevin model i s a good d e s c r i p t i o n of t u rbu lence 
d i spe r s ion and of Brownian motion on coarse t i m e s t e p s . Now we i n v e s t i g a t e t he 
v e l o c i t y va r i ance and spread of the p a r t i c l e s as given by t h i s model t o show 
t h a t t h e random fo rc ing funct ion in t h i s homogeneous model ensures t h a t t h e 
p a r t i c l e s a r e always in thermal equi l ibr ium with the environment i f they a r e 
re leased in thermal e q u i l i b r i u m . The Langevin equat ions in continuous 
incremental form Eq. (2 .23) has cons t an t c o e f f i c i e n t s in a homogeneous medium 
and can be solved to g ive 

- t / T - t / T y ( t ) t ' / T 
W(t) = W e + e | e d u ( t ' ) and 

u ( o ) ( 2 .28 ) 

Z( t ) - WQT (1 - e L) - TL e " t / T L ƒ e f c ' / T L d p ( t ' ) + T ƒ d u ( f ) , 
o o 

where TL may be interchanged with B (Lin and Reid, 1962, Ch. 4 ) . 

I t follows immediately with the above spec i f ied random forcing funct ion and 

i n i t i a l c o n d i t i o n s , t h a t W(t) = 0 and 1{t) = 0 . This conclus ion i s only v a l i d 
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in homogeneous conditions. In nonhomogeneous conditions dy becomes a function 
of displacement. Then we have to know the place of the particle from t'=0 till 
t to calculate the integrals in which dp is involved. 

Squaring Eq. (2.28) and ensemble averaging we get 

- t /T - t /T t t ( t '+ t " ) /T 
W^TtT = Wj e L

+ e I je L d p ( t ' ) d u ( t " ) 
o o 

-2t/T t t ' / T 
+ 2e f e W d y ( t ' ) . ' o o 

The initial velocity WQ is uncorrelated with dy(t) and 
dp(t')dy(t") = 2o2e dt <St,t„. So we get 

W2(t) = a2 (2.29a) 

We showed that the particles are always in thermal equilibrium with the 
environment: W(t) = 0 and W2(t) = a2. Analogously we find 

-t/T 
"FTtT = 2o2 [t TL - T2 (1 - e ) (2.29b) 

We see that the velocity process is indeed a s tat ionary process, whereas the 
displacement is not . 

Eq. (2.29b) is for both short and large times ident ical to Taylor's 
c l a s s i ca l formula (Eq. 1.10) 

2F(t) = o 2 t 2 for t « TT and 

= 2o2t T. for t » T. . 
L Li 

This f i r s t -o rder model (Eq. 2.22) or Eq. (2.23) with the proper i n i t i a l 
conditons appears to be par t icular ly suited for the description of Brownian 
and turbulent dispersion in homogeneous and stat ionary s i t ua t ions . This 
homogeneous Langevin equation i s not d i rec t ly applicable to turbulent 
dispersion in inhomogeneous condit ions. In that case the random forcing 
function has to be modelled di f ferent ly . This analysis will be pursued l a t e r 
in section 2 . 3 , af ter we have prepared the necessary theory in section 2 . 2 . 



2 . 2 9 

2.1..6 Higher o rder a u t o r e g r e s s i v e models 

The measured a u t o c o r r e l a t i o n and spectrum of d i s p e r s i o n p rocesses t h a t we 
want to model, may be more complex than the ones desc r ibed in the p rev ious 
paragraphs . This might lead to. the idea of de sc r ib ing t he v e l o c i t y p rocess by 
a h igher o rder AR p r o c e s s , which has more degrees of freedom. However, we show 
t h a t these p rocesses lack an important p roper ty . 

We in t roduce the concept Markov p rocess . A Markov process i s a s t o c h a s t i c 

process in which t h e next va lue only depends on t he c u r r e n t va lue and n o t on 

the previous v a l u e s . Only ze ro -order and f i r s t - o r d e r AR processes possess t h i s 

Markov proper ty by d e f i n i t i o n . In t h e zero-order model Eq. (2.13) W 

does not even depend on the c u r r e n t v e l o c i t y W, l S , t . The v e l o c i t y i s 
(n-1;At 

the re fo re a Markov p r o c e s s . The displacement Z in t h i s model Eq. ( 2 . 1 7 ) , a l s o 
a zero-order AR p r o c e s s , i s t h e r e f o r e a lso a Markov p r o c e s s . In the Langevin 
model for W (Eq. 2 . 2 4 ) , a f i r s t - o r d e r model for the v e l o c i t y , the c u r r e n t 
ve loc i t y depends on the v e l o c i t y one t imestep back and t h e v e l o c i t y i s t hus 
a l s o a Markov p r o c e s s . From t h i s Langevin equat ion an equat ion for the 
displacement can be de r ived , which can be shown not to possess t he Markov 
p roper ty , the i n d i v i d u a l displacement s teps depend on former v a l u e s . The 
equation for Z from Eq. (2.24) 

Z, , v.*. = Z _ + W ..At (n+1)At nAt nAt 

= ZnAt + ( a W ( n - 1 ) A t + A % - 1 ) A t ) A t 

= Z n A t (1 + a > - « Z ( n _ D A t + d ^ ( n - 1 ) A t A t ' 

This Z process i s no t a Markov process as values two t imes teps back are 
involved. I t i s a second-order AR p r o c e s s . 

If a process i s not Markovian, l i k e our process for Z, we can change to a 
d e s c r i p t i o n in which we include more v a r i a b l e s and i t can be shown tha t such a 
m u l t i v a r i a t e p rocess might be Markovian. In tu rbulence d i s p e r s i o n e . g . t h e 
process (Z,W) i s Markovian as (Zn,Wn) determines (Z ,W + 1 ) i Sometimes, 
reasons o ther than possess ing the Markov proper ty or n o t , make i t even 
necessary to inc lude more v a r i a b l e s . E.g. in case of s p a t i a l inhomogeneity, we 
cannot descr ibe i t s e f f e c t on d i s p e r s i o n by only looking a t the Markovian 
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velocity process. We have to know where the particles are, to know the effect 
of the inhomogeneity. In other words we have to consider the bivariate process 
(W,Z). 

Higher order AR processes do not possess the Markov property. In the next 
chapter we will show that this is a serious disadvantage as we can no longer 
derive its Eulerian equivalent the Kramers Moyal Expansion, that describes the 
time evolution of the probability distribution. A second order model for the 
velocity can be written as a Markov process for the acceleration and velocity. 
However, little measurements exist for the acceleration and for these reasons 
we think the Langevin model is the best AR process to describe dispersion 
with. 
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2.2 Kramers Moyal expansions 

2.2.1 Derivation of Kramers Moyal expansions 

The Langevin equation in homogeneous s i tuat ions can analyt ica l ly be 
solved. Expressions for the mean and variance of displacement and velocity can 
be derived (see Eq. (2.28) and (2 .29)) . From these equations i t followed that 
in homogeneous turbulence the pa r t i c l e s are always in thermal equilibrium. In 
inhomogeneous turbulence t h i s i s not t rue , except for the release time ( i f the 
i n i t i a l conditions are so specified) and the steady s t a t e . In inhomogeneous 
s i tua t ions the resul t ing (nonlinear) Langevin equation cannot be integrated 
and no analy t ica l r e su l t s can be obtained. To prepare for an analysis of the 
Langevin model in inhomogeneous conditions we derive an Eulerian equivalent of 
the Lagrangian Langevin equation. With these Eulerian equivalents we show that 
except for the zero-order model the dispersion models are not equivalent with 
the diffusion equation. The higher-order processes can not be called 
diffusion. 

In inhomogeneous turbulence we distinguish ensemble averages over a l l 
par t ic les from averages over pa r t i c l e s at a cer ta in height z, because only in 
homogeneous turbulence these two averages are equal. 

Dispersion in inhomogeneous turbulence i s described in the ve r t i ca l by an 
equation for the velocity W and the place Z of a p a r t i c l e . We consider a' 
general bivariate Markov process (Z,W) in continuous notat ion, where Z and W 
are related by dZ = Wdt. By defini t ion the evolution of a Markov process i s 
determined by i t s present s t a t e only. This is expressed in the general 
Markov property for the probabi l i ty density function P(z ,wjt) : 

00 00 

P(z,w;t) = ƒ ƒ P(z-#,w-*;t-dt)P (»|i|(|2-#,w-i|»)d#dt|» , (2.30) 
— 00 —00 

where P (*,^|z-*,w-ijj) i s the stat ionary t rans i t ion probabil i ty that a t r 
par t ic le at (Z-*,W-ijO makes a jump (<&,\|>) to (Z,W) in a time dt . Note that 
* = dZ and i\> = dW are Lagrangian var iables , denoted by c a p i t a l s , while z and w 
are Eulerian coordinates. Since W and Z are related through dZ(t) = W(t)dt we 
have 

P. (*,*|z-*,w-ip) = P.v,(i(j|z-$,wi-ijj)ö($-wdt). t r ' t r " 

Subsituted in Eq. (2.30) th i s gives 
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P(z,w;t) = ƒ ƒ P(z-*,w-i|);t-dt)P. (\|>fz-*,w-i|>)ó(*-wdt)d*di|> 
— 00 —CO 

<*> 
= ƒ P(z-wdt,w-^;t-dt)Pu,(iplz-wdt,w-i|))d*. (2.3D 

—00 

Expansion of the integrand of Eq. (2.3D in a Taylor s e r i e s , while 
neglecting terms of higher order in d t , gives 

P(z-wdt,w-^;t-dt)P. U|z-wdt,w-iji) = 

P (z ,w; t )P t r ( , I z ,w) - wdt f j (PP ) + I — ~f- - dt P | f 
n=1 3w 

(2.32) 

In the following we wil l use 

ƒ P U|z,w)diJ> = 1 , (2.33a) 
a l l ty 

ƒ *" P t r (*|z.w)d* = <*n>w , (2.33b) 

3nP, an 
ƒ i|»n $r (*|z,w)d* = *— <*n> , (2.33c) 

3wn 3wn w 

where the subscript w means that the conditional average is taken over 
pa r t i c l e s with velocity W. The ident i ty (2.33a) i s a general property of pdf. 
The second ident i ty (2.33b) can be rewrit ten as 

ƒ (dW)n P (dW|z,w)d(dW) = <(dW)n> , 
t r 

that is Eq. (2.33b) is equivalent to the average of (dW)n over all marked 
particles at height Z = z and with velocity W = w. It calculates the average 
velocity change of particles at a certain point (z,w) in phase space. Eq. 
(2.33c) estimates the change of this average when the Eulerian velocity w 
change. As the velocity changes dW (integration variable) are not dependent on 
the Eulerian velocity w (with respect to which we make the derivation) we can 
take the derivation outside the integral sign. 



2.33 

Substituting Eq. (2.33) into Eq. (2.32) we get 

3(PPt ) 
P ( z , w ; t ) = ƒ P (z ,w ; t )P (* |z ,w)d* - dt ƒ w — g j d* 

n anfpp -) (2.3*0 

n=1 3w 

Using the Eq. (2.33) we get for the first term on the RHS of Eq. (2.3*0: 

J P(z,w;t)Ptr(i|j[z,w)di|i = P(z,w;t) J P d̂  = P(z,w;t) . 

Analogously, the last term of Eq. (2.3*0 gives 

1 Ptr at d* = 3t ' 

In the second term we use, that we only consider particles with Z=z and W=w. 
It becomes 

The third term yields 

, n 9n(PPfr.) a
n , n ~ f / tr_ 3_ ƒ n 

J 3wn 3wn J tr 

= ^ — P ƒ ipn P\ di|« = — P<*n> . . n j r t r v . n v w 3w 3w 

Substitution of the above equations in Eq. (2.3*0 gives 

PU.w. t ) = P(z,w,t) - w dt | £ + I £ £ L i-j j (P<A W ) - dt | £ . 
n=1 ' 3w 

Thus, we get the general KME for a bivariate Markov process (van Kampen, 1983, 
p . 215) 

IFJiiïit) + w E _ y M ^ 3 ^ P < < \ (2<35) 
at 3z nf1 nl awn dt ' * 
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Analogously, we can derive the KME for a monovariate process Z. This KME 
for P(z ; t ) reads 

9t ( z ; t ) =
 nf1 "nT" ^ïï { P d T } • ( 2*3 6 ) 

where <<|>n> i s the average of (dZ)n taken over pa r t i c l e s at the height z. 

We derived KME's, a tool to invest igate Langevin models in inhomogenous 
turbulence. In the next section we apply the general KME to the zero-order and 
f i r s t -o rde r autoregressive processes derived before for homogeneous 
turbulence. This will show us that only the zero-order model is equivalent 
with the diffusion equation. The treatment of dispersion for inhomogeneous 
models based on the here derived general KME is presented in section 2 . 3 . 
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2.2.2 KME for zero order process in a homogeneous medium 

We apply the KME derived in the proceeding section to the simple random 
walk model, Eq. (2.17). This continous homogeneous random walk is the 

y monovariate Markov process dZ = 2D2w , where w is a (e.g. Gaussian) white 
noise process with Ü7" = 0 and wF = dt. From this equation the 
moments <(dZ) > can be derived. We have 
<dZ> = dZ = 0 and <(dZ)2> = (dZ)2 = 2Ddt, while all higher moments are zero in 
order dt. The KME for a general monovariate process Eq. (2.36) applied to this 
random walk is a diffusion equation: 

9P(z;t) _ D UP (2 37) 

This is the reason why this special dispersion process is called a diffusion 
process. 

Here we also see why we choose the constant in the random walk process 
Eq. (2.13) equal to 2D. It turns out that this gives the classical formulation 
of a diffusion equation with diffusivity D. The pdf describing the probability 
of the random walk trajectory P(z,t) = (4ITD1 
indeed the solution of this KME Eq. (2.37). 
of the random walk trajectory P(z,t) = (4irDt) 2exp(-z2/4Dt) (Eq. (2.2.1)), is 
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2.2.3 KME for first-order process in a homogeneous medium 

Brownian motion on a finer timescale and also homogeneous turbulence 
dispersion is described by a bivariate Markov Process (Z,W). The displacement 
Z and the velocity W is described by Eq. (2.23) 

dW = - ïjp + dp and dZ = Wdt , 
L 

with for dp a Gaussian distribution specified by 
<dp> = dp = 0 and <(dp)2> = (dp)2 = 2o2/T dt. From this equation we derive 

Li 
the moments of dW needed in the general KME: 

<dw> = - "dt + 0 ( d t 2 ) t w TL 

<(dW)2> - |2- dt + 0(dt2) and w TL 

<(dW)n> = 0(dt2) for n > 3. w = 

Substituting this in the general KME Eq. (2.35) we see that the bivariate 
Markov process for (Z,W) corresponds with the KME 

L» 

In th is f i r s t order AR model a timescale TL i s involved which causes i t s KME 
not to be equal to the diffusion equation; we reserve with the general name 
dispersion for these processes. We limited the discussion to homogeneous 
f i rs t -order processes; inhomogeneous Langevin models will be discussed in 
section 2 .3 . They wil l be shown to have KME's which are d i f fe ren t ia l equations 
of inf in i te order . Only in Gaussian inhomogeneous turbulence they reduce to a 
third-order d i f fe ren t i a l equation. 
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2.2.4 KME for second order processes 

A second order process for W is not a Markov process anymore. The 
probability density function does not obey the Eq. (2.35) and no KME can be 
derived. Our theoretical analyses break down as the derivation of the moments 
of the random forcing is based on the KME's of our Lagrangian model. 

Another idea would be to make a model for the acceleration. This 
procedure of describing a higher derivative is useful in case the variable is 
not stationary. Differences of the variable might turn out to be stationary 
(Box & Jenkins, Ch. 4). Such a model would imply very small timesteps while 
little knowledge of accelerations at this scale in the atmosphere exists. We 
leave this idea therefore. 
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2.3 Random forcing function in an inhomogeneous Langevin model 

2.3.1 Introduction of two studies paper I and II 

Until recently dispersion in inhomogeneous circumstances was still 
problematic to model. Applying the homogeneous Langevin equation to these 
circumstances lead to erroneous results. This equation could not for example 
describe the complicated behaviour of plumes in the convective boundary layer 
as discussed in Ch. 1. Recently two theoretical studies have been performed on 
how to model the random forcing function in a Langevin model, so that we can 
apply it to inhomogeneous turbulence. These studies resulted in formulas for 
the moments of the random forcing function. In Ch. H we apply these formulas 
to the convective boundary layer and herewith show the success of these 
studies. The first research was done by Thomson (1984) to which we further 
will refer as paper I. The second research by v. Dop et al. (1985) (paper II) 
is an approach which for stationary circumstances leads to the same results 
found in I. 

We found that both papers use the same mathematics. They do not directly 
analyse the Langevin equation, but analyse its KME (paper II) or the fourier 
transform of the KME (paper I). We will show that the result of both 
mathematical exercises is a set of moment rate equations for the velocity W of 
the particle. Paper II gives them in real space, while paper I gives them in 
fourier space. 

The physics involved in the analyses is different though. The physics 
differ in that paper I requires certain properties of the model for large 
times whereas paper II specifies requirements for all times. Paper I's 
requirements lead to the moments of dp in stationary turbulence, while the 
advantage of paper II is that it results in expressions for the moments 
of dy that include instationary turbulence. 

In the next three subsections the mathematics used in both researches is 
given and intercompared to show that they are identical. Subsection 2.3.5 and 
2.3.6 give the physics of both models and the resulting equations for the 
moments <(dp) >. The last chapter is a discussion of the physics used in both 
papers and of the expressions for <(dy.)n>. 
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2 . 3 . 2 Mathematics used in paper I I : the KME and i t s moment r a t e equa t ions ; 

The mathematical a n a l y s i s of the Langevin equat ion i s made to i n v e s t i g a t e 
what the moments of dp should b e , i n . o r d e r t h a t the Langevin equat ion can 
descr ibe d i spe r s ion in inhomogeneous c i r cums tances . In t h i s chap te r we d i s c u s s 

the mathematics used in paper I I . The Langevin equat ion cons ide red , has the 
W form dW = Tjr- dt + dp . The moments of du a re formally put equal to 

L 

<(dy)n> - a dt . (2 .39) 

We start the analysis from the KME of the Langevin equation. The general KME 
for a bivariate Markov process is given in Eq. (2.35): 

3P(z,w;t) + H 3P * MJ^ 9̂_ ,P_^\, 
dt 3 2 " ^ n! 9wn dt J' 

where the average <i|>n(z)> = <(dW)n> i s a c o n d i t i o n a l average over p a r t i c l e s 

with a v e l o c i t y W(t) = w, pass ing through z a t time t . 
We can c a l c u l a t e <ijj > from the Langevin e q u a t i o n . The Langevin model g ives in 

w 
f i r s t order of d t 

<*> , = <dW> = C- ^ - v - r + a . ( z ) ] d t and 
L (2 .40) 

< / > = <(dW)"> = a ( z )d t for n > 2 . y w w n 

S u b s t i t u t i n g Eq. (2.40) in Eq. (2.35) we get t h e KME of t he Langevin equa t ion 

l P % W i t ) + | P = | _ w P } + I Mi! a ( z ) £ l . (2 .41) 
at 3z 3w l T L ( z ) vJ;1 v! v 3 wv 

From t h i s KME we can de r ive moment r a t e equa t ions for <W > by mul t ip ly ing 
Eq. (2.41) with wn and i n t e g r a t i n g over w. They read 

I - - *g*. 
9<W>C m _ 3<W2>C _ <W> ( 2 > i | 2 b ) 

at az ^ai TL
)L' 
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9<W1>£ = _ 9<W»>C _ 2 <Wl>C + ( + 2 a < w > ) c . ( 2 . „ 2 c ) 
d t oZ T. c. \ 

These are the moment ra te equations used in paper I I . 
In the next paragraph we turn to the mathematics of paper I and in subsection 
2.3.3 we will compare them. 
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2.3.3 Mathematics used in paper I, the equation for characteristic function 

In this section we discuss the mathematics used in paper I to arrive at 
an expression for the random forcing function in the Langevin model applicable 
to. dispersion in inhomogeneous turbulence. Paper I made use of moment 
generating functions (mgf) g of the probability function P(z,w;t). We will 
first explain this concept. The mgf g(g) of a multivariate stochastic . 
process X = (X ,X2,..,X.) is defined as a transform of P(X): 

6.x 
g(6) = ƒ e~ P(x)dx . ' 

Expanding the integrand in a Taylor series we get 

ml m2 mk 01 6p .... 6. m1 m_ m. 
g(0) = I — —, ; \ X, ' X, X, . (2.43) 

m =0 m1!m2l....mkl 1 2 k i 

with j = 1 , 2, ... k. 
We see that the coefficients in the Taylor expansions of g(fi) are the 
moments of P(x). From this fact g gets its name of moment generating 
function. 

We will only make use of a slightly different concept namely the 
characteristic function also denoted by g. This is the fourier transform 
of P(x). This function has the advantage that it converges for all pdf's. It 
is defined by 

ie.x 
g(9) 2 ƒ e P(x)dx . 

Expanding t he in tegrand in a Taylor s e r i e s we get 

m i „ „ sm2 , _ A • ( i 8 , ) ( i 9 0 ) . . . . ( i 8 . ) m. m0 m. 
5 ( 0 ) - 1 1 , , 2 : X , 1 X 0

2 . . . . . . X ^ . L _ m ' . m _ l . . . .m. ! 1 2 k m . = o \ d. k 
J 

with j = 1 , 2 , . . . , k. 

In our first-order dispersion models we are concerned with a bivariate 
process (Z,W). We will not consider its general characteristic function, but 
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we will make use of the marginal characteristic function (mcf) of P(z,w;t), 
which is defined as the Fourier transform in only one variable, here a 
transform of the velocity: 

iw6 g(z,6;t) ■ ƒ e 1 W 9 P(z,w;t)dw 

Expanding the integral in a Taylor series yields 

,n (19)' 
n! 

Wë have to be c a r e f u l , as two kind of moments are in use (see Eq. 2.2) 

g ( Z , 9 ; t ) = I ■iiSi- ƒ w" P(z,w;t)dw . 
n=0 n ' 

— r n 
n w P(z,w;t)dwdz 

W s -S ; —: and 
J P(z,w;t)dwdz 

n f w P(w,z; t)dw [ w P ( z , w ; t ) j f w P ( z , w ; t ) d w 
• u s s ' i = « dW = —* 

j P(z,w;t)dw P ( z ; t ) C ( z , t ) 

We see tha t the mcf g ives us the bracketed moments <w > t imes the averaged 

concen t r a t i on C ( z , t ) : 

oo n 

g ( z , 8 ; t ) - I ^ - <Wn>C(z,t) . (2.44) 
n=0 

For the mathematical a n a l y s i s of the Langevin model we a l s o need the 

c h a r a c t e r i s t i c funct ion of the random forcing funct ion a t a he igh t z . I t 

- reads , - using-<(-dy-)n->-= a1 d-t-for.-.n->_1 Eq... 12...3.9)..and aQ = J : 

00 n n °° . n n 
f (9) = ƒ e i e d v i P(du)dy = I ~ - a ( z ) d t = 1 + I ±-£- a n ( z ) d t , (2.45) 

n=0 n=1 

Paper I derived from the Langevin equation a time rate equation for the mfg of 
W. After a slight modification we get a time rate equation for mcf of W, which 
reads 

If * life - - f If+'» 'i 4 f %<*> * "<«'>• <2-"6' 
L n=l 

For the exact derivation of this equation we refer to paper I. For future 
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discussions we note that subsituting the mcf of W (Eq. ■ (2.44)) into the time 
rate equation for this function Eq. (2.46) and equating powers of e, gives us 
moment rate equations for the moments of W. This we will use in the next 
subsection in the comparison of the mathematics used in paper I with the 
mathematics used in paper II. 
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2.3.4 Comparison of the mathematics used in paper I and II 

Paper I and II derived moment rate equations for the moments of W. It can 
easily be shown that the equations derived in paper I given by Eq. (2.46) are 
equal to those derived in paper II (Eq. (2.42)). They are equal because the 
mathematical analysis in both papers is the same although one analysis is made 
in fase space and the other in fourier space. Altough this can easily be seen, 
we will explain it. 

The mcf used in paper I is the fourier transform of the pdf P(z,w;t). 
From this we expect that the time rate equation for the mcf Eq. (2.46) is the 
fourier transform of the time rate equation for P(z,w;t) the KME Eq. (2.41). 
This can indeed easily be proven by multiplying the KME Eq. (2.41) by e and 
integrating over w. This fourier transform is then exactly equal to Eq. 
(2.46). 

It can also be put in different words, by saying that paper II also 
derived the time rate equation for the cf Eq. (2.46), although not explicitly. 
They multiplied the KME with wn and integrated over w to get the time rate 
equations for <W >. These operations for each single n can be combined. 
Instead of multiplying the KME by w11 we can multiply KME by I * ? = e i w 6 

n=0 n# 
and then integrate over w. This is the same as fourier transforming the KME. 

We showed that both papers use the same mathematics and arrive at the 
same moment rate equations for the velocity W. 
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2 . 3 . 5 Paper i ' s d e r i v a t i o n of the moments of the random forcing funct ion 

We discussed t he mathematics t h a t r e s u l t e d in Eqs. (2.42) for the moments 
of W in both s t u d i e s . We-now t u r n to the physics of the a n a l y s e s . These 
c o n s i s t of requi rements on the v e l o c i t y s t a t i s t i c s . o f t he p a r t i c l e s . The 
physica l requirements d i f f e r in both pape r s . Paper I proceeded by cons ide r ing 
the steady s t a t e 4 ê = 0 . I t was argued, t ha t in t h i s c i rcumstance the r e l e a s e d 
p a r t i c l e s must have the same v e l o c i t y c h a r a c t e r i s t i c s a s the surrounding f l u i d 
p a r t i c l e s ; so g = ê a where § a i s the mcf of the turbulence v e l o c i t y 
f l u c t u a t i o n s u? : 

oo n — 

r (18) n , t , ga = * -TT-U3 p ( z , t ) ' ■ ■ ■ ■ ' n=0 

where p(z) i s the dens i ty of t h e a i r p(z) = ƒ P(z,Uo)dUo. 

We no te tha t paper I r equ i r ed t ha t the mgf of the p a r t i c l e v e l o c i t i e s g 
and the mgf of t he tu rbu lence v e l o c i t i e s g are e q u a l . From the equa t ions for 
these mgf's Eq. (2 .44) and (2.47) i t follows t h a t t h i s i s equ iva len t t o 
r e q u i r i n g t h a t <w >C(z) = u p ( z ) . This i s not e q u i v a l e n t as paper I c la ims 
to <w > = u- because C(z) * p ( z ) , but only p r o p o r t i o n a l to p ( z ) , because the 
abso lu te value of the c o n c e n t r a t i o n C(z) v a r i e s of course with the t o t a l mass 
r e l e a s e d . The p r o p o r t i o n a l i t y cons tan t in C(z) = const p(z) i s determined by 
t h i s t o t a l mass and the volume in which t h i s mass i s d i s p e r s e d . From now on we 
only consider s i t u a t i o n s where p does not vary in he igh t so t ha t p d i v i d e s out 
in Eq. (2 .46) and t h i s s l i g h t inaccuracy becomes un impor tan t . 

S u b s t i t u t i n g t he requi rement <W> = u_ in the s teady s t a t e of Eq. (2 .46) 

we get 

- - i V 3 2 g a e 9ga 
ga \ TT an ( z ) * 809̂  + TT 96~ ^ t - - . n=1 L 

We can wr i t e t h i s equa t ion , us ing the d e f i n i t i o n of the mcf for dy 

(Eq. ( 2 . 4 5 ) ) , as 

d t fl 9 g a d t 8 2 g a 

L g a g a 
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This analysis was made to derive equations for the function an(z) in the 
moments of dp. By substituting g and f (Eq. (2.15)) in Eq. (2.17) and 

ct Z 

equating powers of 9, there follow equations for a n(z) that we summarize by 

. n+1 n , 
du ^ u., n-1 an ( z ) - ^dlT" + nTL' ^ O u?"k ak (2) • ( 2 ' 4 8 ) 

With these moments of the random forcing function <(dp) > the Langevin model 
should give a good description of dispersion in inhomogeneous circumstances. 
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2 .3 .6 Paper I I ' s d e r i v a t i o n of the moments of the random forcing func t ion 

Paper I I der ived t he Langevin model for inhomogeneous tu rbu lence by 
comparing the Langevin model t o the Euler ian conserva t ion of mass. This 
comparison i s no t made d i r e c t l y between t h e Langevin equat ion and the 
conserva t ion of mass, but made between the moment r a t e . e q u a t i o n s for the 
v e l o c i t y der ived from e i t h e r o n e . The moment r a t e equa t ions for the v e l o c i t y 
as implied by the Langevin model were der ived from i t s KME and a r e given in 
Eqs. ( 2 . 4 2 ) . We w i l l a l s o d e r i v e the moment r a t e equat ions for the v e l o c i t y 
from the Eule r ian e q u a t i o n s . 

The Eule r ian moment r a t e e q u a t i o n s , for t h e v e l o c i t y are deduced from the 
Euler ian equat ion of conse rva t ion of motion and of mass. They can ,be der ived 
by decomposing t h e i n s t a n t a n e o u s concen t ra t ion c in to a mean and f l u c t u a t i n g 
par t c = C + c and analogous f o r o the r q u a n t i t i e s involved (see e . g . Bus ihger , 
1984). These moment r a t e equa t ion form an i n f i n i t e h i e r a r c h y . The f i r s t t h r e e 
Euler ian moment r a t e equat ions in a h o r i z o n t a l l y homogeneous c a s e , and with no 
mean flow read 

9C ^ £ 
3t 3z (2 .49a) 

3u_c 3u*c a r du_ 
- r f - = - - r f - - u* £ + c -r~ and (2 .49b) 

3t 3z 3 dZ d t 

3u*c 3u*c _„ 3u_c 3u* du0 » 
w\ ~ + \x% -TT- + 2 u 0c -r^ + 2(u 0 c) ( - r f ) . (2 .49c) 3t 3z 3 3z 3 3z 3 3z v 3 d t 

(The n o t a t i o n ( ) ' = ( ) - ( ) i s u sed . ) 

Paper I I der ived t he moments of dy by comparing t h e Langevin moment r a t e 
equat ions Eqs. (2.42) to these Euler ian moment r a t e equa t ions Eqs. (2 .49) in a 
comparison for a l l t ime . In t h i s comparison Eq. (2.8) i s used, the equa t ion 
t h a t r e l a t e s Lagrangian moments to Eu le r i an moments. This a n a l y s i s r e s u l t e d in 
the f i r s t three moments t ha t a r e summarized by 

duo UQ n-1 n „_,, 
«n<*> =- ï ï f + n l f " kl, < k > ^ k a k ( z ) . (2.50). 
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These are the general equations as derived in paper II for the moments of the 
random forcing in the Langevin model that make it applicable to inhomogeneous 
turbulence. 

To compare Eq. (2.50) with paper I's formula we deduce paper II's formula 
in stationary turbulence. In stationary turbulence 

. n . n . n+1 du_ 3u_ 9u~ 
5 = u, —--- - -—-dt i 3x 3x ' 

3u. 
where in the last equality the continuity equation ^—i- = 0 is used. We want to 

ox. 
emphasize that even in a 1-D description of dispersion we still have to take 
into account that the turbulence is 3-D. Also using that in horizontally 
homogeneous turbulence u, only depends on the vertical coordinate we have 

_■ n ,. n+1 
du3 dU3 
dt dz * 

Using this in Eq. (2.50) we find that they are identical to Eq. (2.48). 
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2.3.7 Discussion 

Closure relations 

In paper II expressions are derived for an(z) by comparing the Langevin 
equation the Eulerian conservation equations. Correspondence of the Langevin 
equation with the Eulerian conservation equations is not guaranteed by these 
formulas for the moments alone, in addition closure relations are needed. 
The Langevin equation is equivalent to the Eulerian conservation equations for 
the first three velocity moments in case the moments of dp are described by 
Eq. (2.50), with as extra requirement that the following closure relations 
must be satisfied: 

du_ u_c 
c -rf = - -J- and (2.51a) 

dt TL 

du ' û c 
(u3c) (-jl) = - -f- . (2.51b) 

L 

In paper II the validity of these equations is discussed and though 
Eq. (2.51a) has some justification, Eq. (2.51b) is generally not true. It is 
found that Eq. (2.51a) is valid in case the following three assumptions are 
satisfied: (i) The turbulence should be stationary, (ii) The concentration 
distribution should not vary too much with height, so that the concentration 
distribution can be assumed to be locally linear and (iii) The velocity-
autocorrelation is assumed to be exponential. This last assumption is also 
made in the Langevin model and is often validated by experiments. 

We want to compare the closure relations Eq. (2.51) with those applied in 
the often used first order (K-) or higher order closure models and see whether 
that gives us an idea of their validity. These Eulerian models break off the 
infinite series of moment rate equations and close the last equation kept (see 
Ch. 1). We briefly review the closures of these Eulerian equations where we 
follow Deardorff (1978) for the case of homogeneous turbulence. In homogeneous 
turbulence the concentration distribution is approximately Gaussian. Deardorff 
stated that when the first equation for üLP. Eq. (2.49a) is closed 

3C
 3 t 

with u_c = - K T—, the Gaussian solution with the correct spreading is 
j oZ 
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reproduced for a s i n g l e sou rce , when the d i f f u s i v i t y K i s given by 

K( t* t ) - ÜJ T {1 - e x p ( - ( t - t )/T ) } , (2.52) 
o 3 L o L 

where tQ is the release time. 
To obtain the Gaussian solution for a single source in the second order 
closure models the closures should read 

ü^c = - K — ü~c , . (2.53a) 
3 3z 3 

u„c 1 c |§ = 4~ (2.53b) P 3z T 

and K given by the above formula Eq. (2.52). 
The same Gaussian solution will result in third order closure models when the 
closure relations read 

3 
u 3 c = 3 u2 u c - K — u2c , (2 .54a) 

3 3 3 3z 3 

u2c 
1 u c | £ - - ~ (2.54b) p 3 3z T 

Li 

and K again given by Eq. ( 2 . 5 2 ) . 

Problems with these Eule r ian model c l o s u r e s do a r i s e though, because when 
the model i s thus closed K should be a funct ion of t ime , whereas K i s an 
i n t r i n s i c funct ion-of the- - f lu id . In t h e gene ra l case of m u l t i p l e , non-
s imul taneous sources ( d i f f e r e n t t 0 ' s ) K i s d i f f e r e n t for each source and K can 
no longer be spec i f ied a s one o v e r a l l funct ion of time t . Deardorff then 
p o i n t s out t h a t depending on what approximation i s ass igned to K, o t h e r 
c l o su re r e l a t i o n s for t h e p ressure terms might give b e t t e r r e s u l t s . 

Although, the c losu re r e l a t i o n s can not be exac t , they g ive us an idea of 
how wel l t h e Langevin equat ion desc r ibes a d i spe r s ion p r o c e s s . In a s i t u a t i o n 
where buoyancy, v i s c o s i t y and the c o r i o l i s force can be neg lec ted the c lo su re s 
Eq. (2.53b) and (2.54b) become equal to t h e c l o s u r e s t h a t guarantee t h a t the 
Langevin model i s equal' to the Euler ian conserva t ion equat ion Eqs. (2 .51 ) . 
This f a c t w i l l l a t e r be used in Ch. 4 where we intercompare d i f f e r e n t Langevin 
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models. 

The question a r i s e s why in paper II closure equations occur, while in 
paper I not . We show that t h i s i s so because the closure re la t ions of paper I I 
are always sa t i s f ied in the steady s t a t e . Analogously to the general 
derivation of the closure equations in section 2.3.6 we derive the f i r s t three 
Lagrangian moment r a t e equations for the steady s t a t e using <Wn> = u" 
(paper I ' s requirement). We get a f i r s t equation which i s identical ly zero and 
then 

(2 .55) 

2ïï| 3ÏÏI 
(a2 " T7 - 3F)C = ° 

The first three Eulerian moment rate equation are identically zero in the 
steady state so that if the Langevin model has to correspond to this Eulerian 
description, the first and second Lagrangian moment rate equations should also 
be identically zero. From this, the steady state equations for <(dy)n> follow 
without the need for. closure relations and that is the reason why they do not 
occur in paper I. Or in other words the closure relations found in paper II 
are always satisfied in the steady state. 

As a consequence the approach in paper I is not able to deal with 
nonstationary turbulence, where no steady state exist. Furthermore this 
approach does not give us an idea of how good a description a certain Langevin 
model is in the course of time, as no comparison with the Eulerian 
conservation equations is made. In Ch. 5 we will use Paper II's method to make 
an intercómparison for different Langevin models. 
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Moments of random forcing 

We discussed the mathematics and physics of the analysis of the Langevin 
equation in paper I and I I which in both cases lead to the same formulation of 
the random forcing applicable in inhomogeneous turbulence. We want to discuss 
the r e su l t , the re la t ions Eq. (2.50) found for the moments of the random 
forcing function du. In stationary inhomogeneous but horizontally homogeneous 
turbulence the f i r s t three moments are given by Eq. (2.48) 

duf 

u | du» a 2 ( z ) = 2 T f + üfand 
Li 

u» du* du* 
a , ( z ) - 3 ir + - r | - 3 u* - j | . 3 Tf dz 3 dz 

In Ch. 5 we show t h a t the Langevin model where the random forcing 
function is modelled by Eq. (2.48) is indeed a good description of dispersion 
in inhomogeneous circumstances. 

We want to discuss the form of the f i r s t moment <dp>/dt = du*/dz. This 
f i r s t moment models the "drif t accelerat ion" par t i c les experience in 
inhomogeneous circumstances. Par t ic les that move into a region with a 
larger uT tend to obtain larger ve loc i t ies f luctuat ions (not ve loc i t i es ! ) and 
disperse therefore more quickly. A mean accelerat ion into the regions with 
larger üT is generated. This is modelled in the f i r s t moment of dy as can be 
seen by averaging the Langevin equation: 

<dW> ^ 3 
dt = dz ' 

We see a mean acceleration occuring. 
(The fact that the mean acceleration appears in the increment notation of the 
Langevin equation multiplied by dt nl <du> = du*/dz should not be 
misinterpreted, i t i s not a dr i f t veloci ty!) 

The papers I and II modelled the Langevin equation such that i t i s 
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applicable to inhomogeneous turbulence. In such circumstances not only the 
velocity uo but also TL might vary with height. The effect of TL varying with 
height is, that the velocity of particles that move into a region where TL is 
larger, becomes more persistent. A mean acceleration into these regions with 
larger TL appears (Durbin and Hunt, 1980). The effect of height variances, in 
TL does not appear in the random forcing but is automatically incorporated in 

W the friction term - -,-■,->,. This will be shown more explicitly in section 
L 2.5.4» where we derive a large time limit of the Langevin equation and where 

this drift term will appear. 

Let us consider the special case of Gaussian turbulence. The uneven 
moments of uo are then zero, while the even moments are related by 

2n, . (2n-1)l , 2, > >n u- (z) = —-— (u;(z)) . 
3 2n_1(n-1)! 3 

The first three moments of dp given by Eq. (2.48) reduce to: 

düj 
a 1 ( z ) = ~dz ' (2.56a) 

a (z) = 2 ̂  and (2.56b) 
L 

düT 
a3(z) = 3 ü|-^| . (2.56c) 

We will prove that in Gaussian turbulence all higher moments of dp 
are zero. We depart from the equation for the characteristic 
function f (6) of dp in Gaussian turbulence. The general equation is Eq. 
(2.H7): 

L g g 

where ê is the mcf of u,. In stationary Gaussian turbulence the mcf reads 

g = exp(-£ e2 ïï|(z))p (2.57) 
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If we substitute this in Eq. (2.47) we find 

du! _ du* 
f (e) = 1 + e At -r-1 + e2 ̂  u| + \ e3 At u2 -rj + o(At2). 
z dz T 3 dz (2.58) 

Since <(dp) > = - — f(9) ] and f(9) is a cubic polynomial in 9, all 
39n 9=0 

moments higher than the third are identically zero, which completes our prove. 
This concludes our investigation of the moments of the random forcing in the 
Langevin model, as applied to inhomogeneous Gaussian turbulence. 
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2.H I t6 calculus 

Irl t h i s chapter we discuss how to d i f ferent ia te and integrate s tochast ic 
var iables . For instance in the formal solution of the Langevin equation 

t t 
W(t) = W(o) - J y - d t ' + ƒ du ( t ' ) (2.59) 

o L o 

an in tegral over a s tochast ic variable appears. This s tochast ic variable is 
not d i f ferent lable and the integral i s therefore not a well-defined function, 
u n t i l l we have given an in te rp re ta t ion . An integral over a deterministic 
variable a i s defined in the Riemann-Stieltjes sense 

lim * 
j-»-» I a ( t )At . 

At+0 j J J ■ 

It can be shown (Durbin, 1983, p . 8; 0ksendahl, 1980, Ch, 3) that unlike in 
the Riemann-Stieltjes integral i t makes a difference which point t . In the 
interval At. » t . . - t . i s chosen, when we apply th i s def ini t ion to an in tegra l 

J J I J £ 

over a s tochast ic var iab le . The choice t = t . (the le f t end point) i s cal led 
the nonanticipating def ini t ion of the integral and the integral i s ca l led the 
Ito in t eg ra l . This feature of not using "future" values gives the ItS in tegra l 
an advantage over other in te rp re ta t ions . For instance an integral 
Z 
j T (z)dy(z) is in the non-anticipating way defined as 
^ Li * z s 

m-1 

where z = z and z = Z. The function T,(z.) i s independent of the increment o s m L j 
)i(z. + 1) - u(z . ) and only depends on the "past", no "future" values are 
involved. Here we r eca l l that in section 2.1.5 we stated that the d iscre te 
form of the Langevin equation i s preferable because of the d iscre te definiton 
needed to Interprete in tegrals of stochastic var iables . 

We have to give a d i f fe rent ia t ion rule that i s consistent with the chosen 
integration ru le . With the ' I t6 in tegral comes an ItS dif ferent ia t ion r u l e , 
together called It6 ca lcu lus . (0ksendahl, 1980, Ch. 3 ) . 
The ItS di f ferent ia t ion rule s t a t e s tha t if Z i s a stochastic variable and 
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i f ip(Z*t) i s a funct ion of Z and t , the d i f f e r e n t i a l \\) i s given by the f u l l 

Taylor s e r i e s 

d* = ! £ d t ♦ l 1-2ÜJ (dZ)n . (2.60) 
3 t n-1 n ! 3Zn 

In t h i s s e r i e s we may have to r e t a i n higher o rde r terms of dZ. In case dZ i s a 
random v a r i a b l e with h igher moments of o rde r d t . 

F i r s t we give an example of t h e d i f f e r e n t i a t i o n r u l e , which we w i l l use 
in the next s e c t i o n . This i s the c a l c u l a t i o n of the d i f f e r e n t i a l 

Z 
t dZ' 

d I — : — r 1 T ( Z ' ) , z s 
where Z is a stochastic variable. 
We put 

Z 
♦ - ƒ dZ' 

T(z') z 
3 

I t 6 c a l cu lu s s t a t e s t h a t because ty i s a funct ion of the s t o c h a s t i c va r i ab l e Z 
we have 

dii> d 2 * 
dip =dZ — + % ( d Z ) 2 — 7 + . . . ( 2 . 6 1 ) 

z dZ dZ 2 

z z 

We c a l c u l a t e the terms on the RHS: 

d* d_ ? dZ' 1 , 6 . 
dZ = dZ J T ( Z ' ) " T ( Z ) 

z 
d2\b d S 1 1 dT . . . 
1-1 = _ ( _ ! _ ) = - — L — — (2.62b) 
dZ2 dZ T(Z) T2(Z) dZ 

S u b s t i t u t i n g Eq. (2.62) in to Eq. (2 .61) we get 

H ? d z ' Y (dZ)n d n . , 1 , ■ . , , - . d J T T F T - ^ - n T - - ï ï (TTZ7). ( 2 ' 6 3 ) . z n=o dZ s 
This was the c a l c u l a t i o n of the d i f f e r e n t i a l we need in the next s e c t i o n . 

We i l l u s t r a t e t h i s r u l e fu r the r by an a l t e r n a t i v e d e r i v a t i o n of the Eq. 
(2 .50) for the moments of dp We apply t h e I t 6 d i f f e r e n t a t i o n ru l e to 
\l> = w". I t g ives 
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c ^ - l f « - i t fSE <*)■♦.. 

= n Wn_1 dW + X n(n-1)Wn_2(dW)2 + .. 

Taking the conditional average using that <Wm(dW) > = <Wm><(dW) > and 
substituting the moments <(dW) >, derived from the Langevin equation, we get 

d<Wn> „ <Wn> 
ST" = " T, n ~= n< W

n~1>al + % n(n-1) <Wn_2>a2 + . . . 

Note that the moments <W> are per def ini t ion no s tochas t ic functions and 
their derivatives with respect to t do e x i s t . If we require that in a steady 
s t a t e <w > = u_, then the above equation gives us the same expressions for an 

as expressed by Eq. (2.50). 

Last but not l ea s t we give an example to show the consistency of I t o 
differentation and integrat ion while i l l u s t r a t i n g that "normal" 
di f ferent ia t ion and integrat ion rules do not apply. We consider the s tochas t ic 
function 

f(w , t ) = C exp(u t - t / 2 ) , (2.64) 

where m is Gaussian white noise with pdf 

P(wt,t) = (2irt)~* exp(-wj/2t). 

(see also Durbin, 1983). 
It6 differentiation applied to Eq. (2.64) gives 

df = ^ - du + % -H- (do). ) 2 + |f dt = f duv + X f dt - % f dt 
dü). t z 3u' t dt t z * 

and we find the equation 

df = f dmt . (2.65) 

This i s a surprising resu l t as from integrat ion rules for non-stochastic 
variables we would have expected that the solution of Eq. (2.65) would be 

f - C exp(u ) . (2.66) 
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However, to prove that Eq. (2.64) and (2.66) are not consistent , we I t 6 -
d i f ferent ia te the l a s t to give 

df - | £ - So), + X | ^ dt + | f dt 
dU>, t ' duif. d t 

= f 3u + X f dt 

and the inconsistency i s proven. 
We showed that we have to be careful in d i f ferent ia t ing s tochast ic variables. 
The same goes for in tegra t ion. We will show that I t 6 integrat ion of Eq. (2.65) 
gives Eq. (2 .64) . 

I t6 integrat ion of Eq. (2.65) gives 

m=1 
ƒ df = I' f(u). , t ) [u>, -a), ] . 

j - 0 Cj J V l Zj 

To prove our f i r s t point we average t h i s equation, where averages of a 
function g(w, , t ) are defined as 

00 

g(u) . , t ) = J g(ü>t,t)P(ü> ,t)dü) . 
— 00 

This gives zero on the RHS, because of the non-anticipation and we get 
f = C, where C = constant. 
Executing the averaging of Eq. (2.64) we get 

7 = <L_e£Ei^/2) ƒ exp(u) 2 / 2 t ) d . c 
- .- - . .(2»t)V . . . . . . _ 

and we proved that Eq. (2.64) and (2.65) are consistent in Itö calculus, 
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2.5 Markov limits 

2.5.1 Introduction 

We are interested in the behaviour of the marked particles at large 
travel times. This behaviour can be decribed with the concept Markov limits. 
These limits are Lagrangian equations that describe the time history of the 
trajectories Z(t) for large times. However, we have to be careful in 
specifying what we mean by large times. 

In homogeneous turbulence the only relevant timescale is T^ and by large 
times we mean times large compared to TL that is the limit t/T ■*• °°. 
In inhomogeneous turbulence TL is not a well defined integral timescale 
anymore as the velocity is not stationary. (Durbin and Hunt, 1980). However, 
in practice TL is defined as described in Ch. 1 . In addition TL is no longer 
the only relevant timescale. There is also another timescale T^ which is 
indicative for the effect of the inhomogeneity. How in detail this timescale 
Tj depends on the turbulence properties, will be kept open here. When the 
inhomogeneity timescale Tĵ  is much larger than the Lagrangian timescale TL the 
turbulence is called weakly inhomogeneous. By large times we will refer to 
times, that are large compared to T^, but still small compared to T^. Strongly 
inhomogeneous turbulence means that T^ is of the same order as T^ and both 
timescales play an equally important role. 

Originally the concept "Markov limit" was used in homogeneous turbulence 
for the limit T -»• 0 and t fixed. Under certain constraints the 

Li 

l imit T -»■ 0 (t fixed) i s equivalent to the l imi t t ■+• » (TL) fixed and the 
large time analysis of the Langevin equation in homogeneous turbulence was 
therefore made before by taking the l imi t T ->• 0 without however exp l i c i t ly 

Li 

naming the contraints. (Durbin, 1983). In inhomogeneous turbulence it appears 
that the limits t •*• °° and T -*■ 0 are no longer equivalent. TL is not the only 
timescale involved, but also the inhomogeneity timescale Tj_ is introduced and 
it can not be expected that the above limit T -*■ 0 will give the desired large 
time behaviour. We show that in both homogeneous and weakly inhomogeneous 
turbulence extra constraints are necessary to guarantee the equivalence 
between the two limits. A Markov limit derived without these contraints would 
give wrong results, because in the process of letting T -*■ 0 the turbulence is 

Li 

modified. What we need to do is to replace the limit t -*• » by another limit in 
which the turbulence retains its characteristics. This will be the 
limit T -» o under the following constraint. We rescale the turbulence by 

Li 
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l e t t i ng T -»• 0 while ü~* -► », in such a way that i t s dispersive property, 
L> 3 

specified by the diffusivi ty K = u* TL, remains the same function of height. 
We see that in such a l imi t the charac te r i s t i c length of the turbulence 
I = \H T. a l so goes to zero . This shows that in such a l imit we rescale the 
turbulence process to bring out the large time behaviour. The constraint on K 
will appear to be of major importance. 
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2.5.2 Markov Limit of homogeneous Langevin equation for W 

In homogeneous turbulence the velocity distribution is taken to be 
Gaussian. The turbulence is fully determined by TL and a2 = ü~f which are both 
independent of height. We have already seen in section 2.3.7 that dispersion 
in such circumstances can be described by a Langevin equation with all moments 
of the random forcing function <(du) > equal to zero, except the second, which 

y 
reads <(dy)2 = 2 o2/T dt. We can write dp = (2a2/T )2d<D where dm is the so-
called Wiener process with dü = Ó and dto2 = dt. The Langevin equation reads 

dW = !jr- dt + (^rOW and 

dZ = Wdt 
(2.67a) 

) 
Here we will summarise the derivation of the Markov limit in homogeneous 

situations. In homogeneous cases new dimensionless variables 
.. _y 

T = t/T , W = W/o, Z = Z/aT and dm = T 2 du>. can be introduced. The 
Langevin equation scaled with these variables reads 

dW = - W dt + /2 dut and 
(2.67b) 

dZ = W dT . 

We are interested in the limit t -»• «. As x is the only timescale, the 
limit t ■*■ "> (TL) fixed is equivalent to T + 0 (t fixed). We want to stress 
that letting T. ■* 0, while keeping all other parameters fixed, means that the 
turbulence properties are basically modified, because the eddy diffusivity 
K = a2T. goes to zero. We have to look for a way of replacing t + » by a 
limit equivalent with a rescaling of the relevant turbulence quantities (in 
this case the timescale TL and the energy scale a2) such that the dispersive 
character of the turbulence remains unchanged. This means, that in the limit 
T •* 0 we have to change a2 such that the eddy diffusivity K = o2T. remains 
L L 

unchanged. We wil l show that th i s constraint ensures that the Markov l imi t 
model becomes equivalent with the diffusion equation 
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F i r s t we i l l u s t r a t e the effects of the above defined l imit on the 
spectrum. The l imi t T + 0 in the Langevin equation implies that the velocity 
process W looses i t s memory so that the ve loc i t i e s become uncorrelated. The 
velocity W becomes a white noise process. We have derived in Eq. (2.29) that 
the spectrum of the Langevin equation for W in s ta t ionary homogeneous 
conditions reads 

3 W U ) = 2 [1 + (ü)T. ) 2 ] At 
Li 

For T ■* 0, while o2T remains constant the spectrum becomes indeed the 
Li Ll 

spectrum of a white noise process: Sw = constant, whereas without the 
constraint it would not (Sy would go to zero). 

After this illustration we show how the limit T •+ 0 is taken in the 
Lj 

Langevin equation to arr ive at the Markov l imi t . Integrating the Langevin 
2o2 V equation Eq. (2.6^a) , resubst i tut ing (-=—) 'dco. = du, gives 
rL Z 

t 
ƒ (Wdt - TL dp) = - TL[W(t)-W(o)] (2.69) 
o 

Durbin (1983) showed that W(t)-W(o) remains bounded in "mean square sense". 
Therefore the RHS of Eq. (2.69) goes to zero when T ■» 0. On the LHS of Eq. 

Lt 

(2.69) we also find a term in which TL is involved namely 
TL J dp = J (2o2TL)'2dü>t. This term is constant according to our constraint 
that a2T. remains constant. We therefore keep this term so that 

t t 
J W dt = TL J dp. (2.70) 
o o 

Differentiation and the relation W dt = dZ give the Markov limit of the 
Langevin for homogeneous turbulence 

dZ - TL dp = (2o2TL)^dü)t . (2.71) 

This derivation can also be found in Schuss (1980, Ch. 6) , where the Markov 
l imit i s cal led the Smoluchowski-Kramers approximation to the Langevin 
equation. 
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2.5.3 Kramers Moyal Expansion of the homogeneous Markov l imit for the W-model 

We derived the large time Lagrangian equation for Z ( t ) , the Markov l imi t 
Eq. (2.71). From th i s equation we can build up P(z; t ) .by releasing an ensemble 
of par t i c les and taking the ensemble average of thei r height. The time 
evolution of P(z ; t ) for large times i s described by a d i f fe ren t ia l equation 
which i s the KME of the Markov l im i t . 

Langevin Equation 

\ ' 

Kramers-Moyal Expansion > 

v 
Kramers-Moyal Expansion 

of Markov Limit 

Fig. 2.1 Scheme of derivation of the equations used. 

We derive th i s equation. In subsection 2.2.1 we derived the KME for a 
monovariate process Z Eq. (2.36): 

3P(z;t) 
3t 

. M ) n 3(<^2-^) 
- I dt 

n! n=1 * 3z 

The moments <(dZ)n> can be calculated from the Markov limit Eq. (2.71). 
Substituting them into Eq. (2.36) leads to the equation 

3P(z;t) 
at " fe* (° 2 TL P ) 3z U TL 3z; * (2.72) 

This is the well-known diffusion equation which as a solution has a Gaussian 
distribution. This is also what we expect for large times from the Central 
Limit Theorem. For large times the displacement process looses its memory of 
the past and the increments dZ become (weakly) uncorrelated. The Central Limit 
Theorem states that the sum of (weakly) uncorrelated stochastic variables 
approaches a Gaussian probability distribution. 

This Kramers Moyal Expansion of the Markov limit for homogeneous Gaussian 
turbulence can also directly be derived from the KME of the Langevin equation 
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for P(z,w;t) Eq. (2.38) (Van Kampen, 1984, p. 234-236). This is done by 
expanding P(z,w;t) in powers of TL. This equation can be integrated over w to 
give the large time limit for P(z,t) Eq. (2.72). Different derivations are 
summarized in Schuss (1980, Ch. 6), where also is shown that the velocity 
distribution also becomes Gaussian. This derivation is based on the fact that 
in homogeneous turbulence the expansion of P(z,w;t) in powers of TL converges. 
This direct derivation can not be applied in inhomogeneous turbulence where 
more timescales play a role. For this reason we do not discuss this derivation 
further. 
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2.5.4 Markov Limit of inhomogeneous Langevin equation for W 

Now we consider the Langevin equation in inhomogeneous turbulence, where 
Ti but also T. plays a role.The Langevin equation can no longer be made 
nondimensional with either T^ or T^ because the moments of the random forcing 
function are involved functions of T^ and the inhomogeneous turbulence 
properties (see Eq. (2.48) or (2.50)). We can no longer express dp as a 
function of the turbulence variables Tr and o, like in homogeneous turbulence 

V n we had dp = (2o2/T ) 2dio. , but we know only its moments <(dp) >. 
Li Xf 

The Langevin equation can not be scaled because no nondimensionalized time can 
be found and the l imit t •*■ » is no longer equivalent to the l imit T ->• 0. We 

Li 

have to be careful in specifying what we mean by a Markov limit. 

The case we will treat is the weakly inhomogeneous case where T L is 
smaller than Tj. We consider a Markov Limit that describes the behaviour of 
the Langevin equation for times larger than T L but still small compared to T^. 

We will deal with inhomogeneous Gaussian turbulence, specified by the 
Lagrangian timescale TL(z) and relevant velocity scale a(z). We will formally 
deal with the inhomogeneity by splitting T^ and o in a shape factor T(z) resp. 
S(z) and an amplitude a resp. (5 so that T (z) = a T(z) and o(z) = & S(z). We 
replace the limit t' ■*■ » by a rescaling of the turbulence. This means that we 
rescale T^ and a2 such that the shape of T^ and o2 remains the same (which 
means that the gradients are invariant), while we change their amplitudes 
a and B» We take the limit a ->• 0 and &2 ■+ » while aB2 = constant. This is 
done to guarantee that the eddy diffusivity K(z) = T (z)o2(z) remains an 
invariant function of z. 

We proceed to find this Markov limit. The Langevin equation reads 

dW = - YJÏ) dt + d^z) • 
LJ 

Multiplying by a gives 

adW = - YJJJ dt t a dy(Z) . (2.73) 
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Integrating this Langevin equation over time leads to 

t Z 
ƒ T ( z ( t » ) dt "a d p t ' } = / { ^ l ' a dp(z,)) ■ - <*rw(t)-w(o)], 
° Zs (2.74) 

where z„ is the release point. We take the limit a ■*• 0, while a$2 is kept 
constant. The factor [W(t)-W(0)] on the RHS remains bounded for all time in 
"mean square" sense. This can be seen from the physical insight that because 
the velocity is an almost stationary process, the velocity remains bounded in 
statistical sense. The RHS goes to zero when a ■+ 0. The term on the LHS that 
contains a might also contain terms that involve a32 which remain constant in 
the limit and we keep this term therefore. We get 

Z , z 
J ^rfry = ƒ « <U»(Z') • (2-75) 
z z„ 
s s 

To differentiate this Eq. (2.75) we have to apply Ito calculus. (See section 
2.4). Application of the Ito differentiation.rule to the RHS of Eq. (2.75) 
gives 

Z • 
d / a dp(Z') = a dp(Z) . 
z 
s 

Differentiation of the LHS gives (see examples of It6 calculus in section 2.4) 

. Zf d Z ' dZ , V T ' 1 IA7\Z + 1 (Uil T ' \ 1 Ï H 7 Ï 3 * 

z z z z 
s 

where a prime on the RHS denotes derivat ion with respect to z. 
Thé higher moments "of dZ in t h i s e"quatio"ri"can hot* automatically "be neglected 
not even in order dt , because they are no longer given by <(dZ) > = <W^dt . 
In the integrated Langevin equation Eq. (2.74) we l e f t out the RHS and so 
changed the or iginal Langevin equation to a different (large time) equation. 
This means that the displacement Z of the large time equation i s no longer so 
simply related to the velocity in the or iginal Langevin equation. 

Equating the LHS and RHS of Eq. (2.75) we have 

i « z ) - * i : ( d Z > , ^ ( f ^ . i ; ) ( d 2 ) , . . . . . a d „ . <2.76) 
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For turbulence with an integral timescale TL independent of height, the Eq. 
(2.76) becomes much simpler. This equation will be treated as an intermezzo in 
the next section as an illustration. The general case with T^ a function of z 
will be treated afterwards. 

Intermezzo: The Markov limit for turbulence with constant TL 

In this chapter we illustrate the concept Markov Limit by discussing the 
one for turbulence with constant TL. Substituting dT/dz = 0 in Eq. (2.76) 
gives the Markov Limit 

dZ = TL dp(z) . (2.77) 

The behaviour of this equation for large times can easiest be shown from the 
KME of this Markov limit. The moments <(dZ)n> that we need in the general KME 
Eq. (2.36) can be derived as follows. We have <(dZ)n> = T"<(dp)n>. 

Li 

In turbulence where the v e l o c i t y f l u c t u a t i o n s a r e Gaussianly d i s t r i b u t e d the 

moments of dp a re given by Eq. ( 2 . 5 6 ) , where <(dy) > = a d t . Imposing 

tha t o 2 (z)T. should be kept a cons t an t funct ion of z , while taking T ■*■ 0 we 
Li Li 

get • ■ 
d (o 2 T. ) . . . 

T a . ( z ) - . L = ^ - , (2 .78a) 
L 1 dz dz 

T£a2(z) = 2 TLo2 = 2 K(z) , (2 .78b) 

• T'aAz) = 3 TT
3 o2 ^ = 3'T. K(z) $£$■ + 0 (2 .78c) 

L 3 L dz L dz 

and we have t h a t the funct ion a n ( z ) are always equal to zero for n > 4 

a (z) = 0 for n > 4 . (2 .78d) 
n = 

I t fol lows t h a t only t he f i r s t two moments of dZ are nonzero and we can 
wr i te 

(dZ)2 fc d ( o 2 T ) ' V ' 
dZ = <dZ> +■ (<i5£i_>)* düJ =

 L
 d t + (2a2 T. Y2 du. , d t t dz L t 
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which is the Markov limit Durbin (1980) and Durbin and Hunt (1980) used, 
although they did not give a (correct) derivation (see Ch. 3). 

Substitution of Eq. (2.78) in the general KME Eq. (2.36) shows that the 
KME in this case becomes the diffusion equation Eq. (2.72): 

3P(z;t) a_ , 3P 
3t " 9z ^a L dz' 

Monin and Yaglom (1977, Ch. 10.3) state that this equation indeed describes 
dispersion correctly in inhomogeneous turbulence for diffusion times larger 
than TL. 

Markov limit for general inhomogeneous turbulence 

We start with multiplying the general Eq. (2.76) by T/2 to get 

dZ " * T~~d7 ( d Z ) 2 + Z ( 2 ^ " F " ) ( d Z ) 3 + ••• " T
L

 dlJ • ( 2*7 9 ) 

Li 

For inhomogeneous Gaussian turbulence we can proceed as follows. We take Eq. 
(2.79) to higher powers and take the conditional average. On the RHS then 

appears the term <T (du) >. This quantity is defined in the non-anticipating 

sense so that TL and dp are independent (see section 2 .4) . The RHS becomes 
T"(z)<(du)n> = Tf a (z)dt and are given in order dt (see Eq. (2.56) for an) 

L Li n ** 

by 

T' aAz) = T.:(z) —- = a62 T(z) — j - + invariant function of z, L 1 L dz dz 

T^ a2(z) = 2 TLo2 = 2 K(z) ■*■ invariant function of z, 

T,3 a_(z) = 3 T» o2 ^ - = 3 a aHH T3 S2 ~ + 0 L 3 L dz dz 
and 

T" a (z) = 0 for n > 1 as a (z) = 0 for n > H. 
L n = n = (2.80) 

The third and higher powers of Eq. (2.79) form an infinite series of equations 
for the moments <(dZ)n> each with zero RHS. Generally the equations are 
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independent and the solution is that all moments <(dZ) > for n > 3 are zero. 
From this statistical reasoning we conclude that Eq. (2.79) becomes 

1 dTL dZ - \ ~ —£ (dZ)2 = T. dp . (2.81) 
TL d Z L 

Note that dispersion in non-Gaussian inhomogeneous turbulence i s described in 
Langevin models by a dp whose higher moments are a l l of order d t . This 
character is t ic of the model leads to the fact that we cannot derive a Markov 
Limit for these cases . 

Solving the quadratic equation Eq. (2.81) we get for one root 

1 d Ti ~1 dTr V 
dZ = (~ -~) {1 - (1 - 2 - ^ dp)*} . (2.82) 

Li 

y 
Any root (1 + x ) 2 can be expressed as an infinite polynome in x. It is 
allowed to break this expansion off for an approximation in case the terms in 

y the polynome converge to zero. To prove this for the root (1-2 T' dp) 2 in 
Eq. (2.82) we use the fact that the third moment of T'dp goes to zero in the 
limit a -* 0, while a$2 is constant analogously to the third moment T dp. All 

Li 
higher moments of T'dp are always zero in order dt. Reasoning with statistical 

y arguments we break off the expansion of the root (1-2 T' dp)2 after the second 
term. This expansion then reads 

dT dT 2 1 - "5Ï dp - O (du)2 and 

Eq. (2.82) becomes 

dTT 
dZ = TL dp + X TL ~ (dp)2 , (2.83) 

the Markov limit for Gaussian inhomogeneous turbulence. 

In the large time limit we have that the third and higher moments of T.dp are 
Li 

zero and the f i r s t two moments are given by Eq. (2.80). We then can write 

T. dp = T, ^ dt + (2 T T o 2 ) W . (2.84) 
L L dz L t 

Substituting this in Eq. (2.83) this Markov Limit reads 
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y d(T o2) 
dZ - (2 T. o 2)* du. + — ^ ~ — dt , (2.85) 

L t dz 
which is the Markov Limit used by Durbin (1980) and Durbin and Hunt (1980) 
(see Ch. 3). who however did not give a derivation for this equation. Durbin 
(1980) noted that the last term in Eq. (2.85) contains a drift velocity 
V = d(T o2)dz. Tracing back this term we find that both the damping term 
G Li 

-W/TL as well as the first moment of dp in the Langevin equation contribute to 
this drift velocity. We keep in mind that drift velocities in the Markov 
limit, an equation for dZ, are consistent with drift accelerations in the 
Langevin model, an equation for dW. This can be understood by investigating 
how e.g. <dp> appears in both equations. With these two ways to write the 
Markov limit for Gaussian inhomogeneous' turbulence Eq. (2.83) and (2.85) we 
conclude this analysis. In the next section we derive their KME's. 
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2.5.5 KME of the Markov Limit in case TL and o are functions of z 

We could derive the KME of the Markov l imit in Gaussian inhomogeneous 
turbulence from Eq. (2.83) . But i t i s much easier to s t a r t from Eq. (2 .85) . 
From Eq. (2.85) we can derive the moments needed in the KME: 

d(o2T ) 
<dZ> = — 3 — — dt , dz 

<(dZ)2> = 2 o2T.dt and' (2.86) 
Li 

<(dZ)n> = 0 for n > 3 . 

Substituting these equations in the KME for a monovariate process Eq. (2 .36) , 
we see that th i s der ivat ion resu l t s in the fact that the KME of the Markov 
l imit of the Langevin model for W is also equal to the second order 
d i f fe ren t ia l equation (Fokker Planck equation), the diffusion Eq. (2.72): 

3P(z;t) 9_ , a_ 3P. 
9t " 9z ^° lL 3z ; ' 

j u s t l ike in homogeneous turbulence. We s t ress again that the cons t ra in ts on K 
are necessary to obtain th i s r e s u l t . 

Intermezzo 

Just for fun we also derive the KME of the Markov limit from Eq. (2.83) . 
The moments <(dZ) > we need are as follows. The f i r s t moment reads 

dTL <dZ> = TL(z)a1(z)dt + \ TL -~ a£(z)dt 

H 2 d T r d ( ° Z T i > 
= (T. (z) ~- * a2 ~ ) dt = —r-— dt , L dz dz dz 

which i s constant in the l imit T, ■»• 0 while o2T, = constant. 
The second moment in order dt i s derived by squaring Eq. (2.8M and 
conditional averaging: 

dTL <(dZ)2> - T? a . (z )d t + T? —r- a (z)dt . L 2 L dz 3 
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The second term on the RHS of th i s equation can be written as 

Tï TÏ a 3 < 2 ) " • 3IL T i '* T Ï dt " 3a(0,82)2 I !<z ,s2(z» I f « • 

This term goes to zero for a ■»• 0 while aB2 is constant. 
Thus <(dZ)2> = T£ a2(z)dt = 2 oTL dt. 
The third moment <(dZ)3>, which is derived by taking Eq. (2.83) to the third 
power, contains a term T3a~(z)dt. This term goes to zero in the limit 
according to Eq. (2.80). The other terms in the expression for <(dZ)3> contain 
higher moments of dp and are always zero in order dt. This also goes for all 
terms in the expressions for higher moments of dZ and summarizing we have 
again found the Eq. (2.86) and the rest of the derivation of the KME goes 
analogously. 
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2.5.6 Conclusions 

The Langevin model for W "is shown to give the correct large time 
behaviour in inhomogeneous Gaussian turbulence where TL- is either constant or 
a function of height. This behaviour is described by the ordinary diffusion 
equation and leads to a homogeneous steady state concentration distribution. 

The Markov limit describing this behaviour is derived by putting 
constraints on the eddy diffusivity K = o2T,, while letting T, ■*■ 0. If we had 
not taken into account the constraints on K then in the case where o2 and T^ 
are function of height a Markov limit would have resulted, that is not 
equivalent with the diffusion equation. With these conclusions we end our 
chapter on theory of the Langevin equation for W. 
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3.4 

3.1 Introduction 

Lagrangian dispersion models have been used to describe dispersion in a 
wide variety of atmospheric circumstances. The models differ in how the 
velocity of released particles is described. The first four models we discuss 
are partly determinsitic, partly stochastic models. Almost all other 
Lagrangian models are fully stochastic and based on one particular stochastic 
equation, the Langevin equation. The review of these models is based on the 
theory of the Langevin equation described in Ch. 2. Much of this theory will 
be used in this chapter. 

First we discuss the relatively simple Langevin models for homogeneous 
turbulence. After this we turn to models for inhomogeneous conditions. The 
applicability of these models depends on the way the random forcing is 
prescribed. We show to which atmospheric situations certain models apply and 
indicate the errors if the models are applied outside their range of validity. 
Models were created that are successful in the neutral and stable surface 
layer, while the step to convective surface layers was more involved. This is 
because the still Gaussian turbulence intensity becomes height dependent. 
Langevin models for non-Gaussian turbulence velocity distributions (like in 
the convective boundary layer) are only recently made. 

In Fig. 3.1 a schematic summary is given of the authors whose study we 
discuss. The order of the studies is given by their random forcing modelling. 
Also is indicated the situation the authors applied their model to. These 
situations are not necessarily identical to the atmospheric conditions the 
model can be applied to, as we will show in this chapter. 
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Partly Deterministic and Stochastic Models 
Lamb 
Weil and Furth 
Venkatram 
Misra 

1978 1981 1982 1982 
convective boundary layer 

ch 3.2 

Langevin Models for W 
Gifford 
Reid 
Ley 

Durbin 
Hall 
Durbin and Hunt 
Legg and Raupach 
Davis 
Ley and Thomson 

1982 homogeneous 
1979 neutral surface layer 
1982 neutral surface layer 
1982 neutral boundary layer 
1980 neutral boundary layer 
1975 neutral and convective surface layer 
1980 neutral boundary layer 
1982 neutral, within and above crop 
1983 neutral boundary layer 
1983 stable and unstable surface layer 

ch 3.3 
ch 3.4 

ch 3.5 

Langevin Model for W/cr 
Wilson, Thurtell and Kidd 1981 homogeneous turbulence and 

neutral boundary layer 
1983 inhomogeneous Gaussian turbulence 

ch 3.6 

Markov Limit for W/cr 
Durbin 1984 inhomogeneous Gaussian turbulence ch 3.6 

Theoretical Investigations 
Janicke 1981 
Thomson 1984 
van Pop, Nieuwstadt and Hunt 1985 

ch 3.7 

Langevin Model for W/cr 
Beerentsen and Berkowicz 1984 convective boundary layer ch 3.8 

Langevin Model for W 
de Baas, van Pop and Nieuwstadt 1986 convective boundary layer ch 3.8 

Fig. 3.1 Summary of models to be discussed. 
The models are ordered according to their random forcing modelling, 



3.6 

3.2 Partly determinist ic Lagrangian models 

3.2.1 Lamb's model 

Lamb (1978, 1981) made a 3D-Lagrangian model to simulate dispersion in 
the convective boundary layer (CBL). He calculated t r a j ec to r i e s X.(t) of 
released p a r t i c l e s . The velocity i s s p l i t into a determinist ic and a 
stochast ic par t . Lamb's model equation reads 

j j ^ X ^ t ) - UjOC^tJ. t) + U ^ t ) . (3.1) 

Here u . ( x , t ) i s the determinist ic Eulerian velocity obtained from grid ce l l 
averages of a numerical model for turbulence in the CBL of Deardorff (197*0 
and U± i s a subgrid velocity due to scales of motion smaller than gridsize in 
Deardorff's model. Lamb considered l^ to be a Lagrangian random veloci ty, 
whose s t a t i s t i c a l propert ies a re determined by the local subgrid scale 
turbulence. He described th i s Lagrangian part of the velocity by the following 
Langevin equation 

Ujtt) = a U^t-At) + y E(X.)r i , (3.2) 

where r± is a random variable with zero mean and variance one. Note that Lamb 
did not use a Langevin equation for the total velocity. The variable E is 

2 V proportional to the mean subgrid scale kinetic energy e nl. E = (̂  e) 2. The 
data for e are given by Deardorff's model. The constants a and Y are chosen 
such, that the form of the spectrum of the subgrid velocities and their 
integral timescale are.represented. This subgrid velocity,spectrum is a 
bandwidth limited spectrum (only subgrid scales are included) and its 
timescale is therefore very small. 

With this model he simulated dispersion in the CBL from a continuous 
point source at several heights. The behaviour of plumes in the CBL was 
investigated before in a laboratory by the watertank épxeriments of Willis and 
Deardorff (1976, 1978, 1981). (see Ch. 1). Lamb compared his results with 
these watertank experiments of Willis and Deardorff and the surface data of 
the Prairie Grass experiment. He found that the results of his numerical model 
were in excellent agreement with these experiments. Both the laboratory and 
numerical plume showed the same involved behaviour (3ee Fig. 3.2). However, 
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the maximum ground concentrations due to elevated sources were somewhat l ess 
in Lamb's model than in the tank experiments. 

Fig. 3.2 Comparison of crosswind integrated concentration d i s t r ibu t ions 
(a) predicted by the numerical model of Lamb (1978, 1984) with 
(b) the corresponding field measured in the laboratory by Will is and 
Deardorff, (1978, 1981) 
(From Lamb, 1984) 
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3.2.2 Weil and Fur th ' s , Venkatram's and Misra's model 

Three models were proposed in which the i n i t i a l velocity of the pa r t i c l e s 
i s a s tochast ic process determined by the wind s t a t i s t i c s a t release time at 
the source. The velocity evolution of the pa r t i c l e s is determinis t ical ly 
prescribed. 

Weil and Furth (1981), Venkatram (1982) and Misra (1982) each proposed 
such a 1D-Lagrangian dispersion model to predict the ground level mean 
concentration in the CBL. These models were designed to be simple and to 
require short computer time. 

We f i r s t discuss Venkatram's model, which is the simplest. Venkatram 
released pa r t i c l e s with vert ical ve loc i t i e s that adapt immediately to the 
turbulence. The pa r t i c l e ve loci t ies have the same skewed probability 
d i s t r ibu t ion as the ve r t i ca l turbulence velocity in a CBL (see Fig. 1.7). The 
pa r t i c l e s keep t h i s i n i t i a l velocity and a t the boundaries they only invert 
d i rect ion (Fig. 3 .3) . This implies that the Lagrangian timescale of the 
velocity process cannot be calculated from the velocity autocorrelation (Eq. 
(1 .10)) . Venkatram derived analyt ica l expressions for the ground level 
concentration. 

c - ^ — • * *» 
Inversion 

s J ■> V B 
Ground 

Fig. 3.3 Geometry of dispersion along s t ra igh t l ines in Venkatram's model. 
(From Venkatram, 1982). 

Weil and Furth also released par t i c les with ve loc i t ies that adapt 

immediately to the turbulence. The skewed v e r t i c a l velocity dis t r ibut ion was 
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built up by making a distinction between upgoing and downgoing particles, 
which is based on the concepts of downdrafts and updrafts. At release ^0% of 
the particles were situated in an updraft. These particles had a velocity 
probability distribution function (pdf) that is exponential with a mean 
upwards velocity w = 0.6 w„, where w* is the characteristic vertical velocity u * 
defined by Eq. (1.3). The 60? that move downwards after release also have an 
exponential velocity pdf with a mean downwards velocity w. = -0.H w#. These 
numerical values are based on the studies of Lamb (1978, 1982). The particle 
velocity is constant untill the particle reaches a boundary, where 
"reflection" was imposed, given by wd = -2/3 wu or wu = -3/2 wd. The 
particles remember their initial velocities at all time and again the 
Lagrangian timescale in this model cannot be calculated from Eq. (1.10). 

In Misra's model particles are also released in up- or downdrafts, but 
the particles do not fully adapt to the turbulence. Their initial velocity 
distribution is Gaussian instead of skewed. The evolution of the velocity is 
specified by supposing that the downdrafts do not spread out. The particle 
velocity in such a downdraft wd varies with height in a deterministic way. The 
initial downdraft velocity wd is simply multiplied by a function of height. Of 
the updrafts less is specified. They are supposed to be well mixed before they 
reach the ground and only their impact on the ground level concentration is 
specified. 

Despite their limitations these simple models reproduce most features of 
the ground level concentration in the CBL for sources at several heights (Fig. 
3 . 1 » ) . "■ .'■ • 

Venkatram (1982) 
I C(e=0) 

t 
,S Willis &Deardorff( 1978) 

' "L Misra(1982) 

Weil and FurthC 1981) 

v Lamb (1978) 

Fig. 3.M Comparison of model r e su l t s for a source a t zQ = 0.26 z , . 
o 1 

C(z=0) is the nondimensional (crosswind integrated) 
groundlevel concentration. 
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3.3 Homogeneous Langevin models 

We discussed dispersion models that describe the velocity of the released 
particles in a partly determinsitic, partly stochastic way. We now turn to 
models in which the velocity of the particle is fully described as a 
stochastic process (Monte Carlo simulation). The motion of the particles is 
simulated by a stochastic differential equation. In analogy with the 
description of Brownian diffusion these models are based on one special 
stochastic equation, the Langevin equation which models the effect of the 
turbulence on the particles as a random force. This equation reads 

dW = - -jr- dt + dp , (3.3) 
L 

where W is the par t ic le velocity, TL the Lagrangian time scale and dp are the 
random velocity increments (random forcing). 

In homogeneous turbulence the random forcing function is modelled by 
y 

dp = (2o2/T ) 2 dw. , where dco. i s a white noise process with zero mean and 
u Xf Xt 

variance d t . The Langevin equation then reads 

dW = - Ï - dt + t ^ - ) ' 2 dio. . (3.4) 
!L lL C 

We call this equation the homogeneous Langevin equation. 
With this equation analytical expressions can be derived for the mean 

velocity W(t), displacement Z(t), their spreads W^tt), ^ ( t ) , autocorrelation 
and spectra. Much of this theoretical work (of which we gave a description in 
Ch. 2) was done by Lin and Reid (1962). 

3.3.1 Gifford's model 

We discuss an application of the Langevin equation to homogeneous 
conditions by Gifford (1982). The input parameters are the initial velocity of 
the particles at the source, the (constant) Lagrangian timescale TL and the 
(constant) turbulent energy o2. Gifford assigned values to these parameters by 
fitting the results of the Langevin model to atmospheric dispersion data for 
small and large time. He showed that the horizontal spread in tropospheric 
diffusion experiments, can very well be represented by this Langevin model. 
Not only tropospheric, but also stratospheric data are represented excellently 
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over a verywide range of atmospheric diffusion scales which.range from 
seconds to days, corresponding to distances from the source from several 
meters to several hundred kilometers (see f i g . 3 .5 ) . 

I h*vr ( tai 

Traval tim« 

Fig. 3.5 Summary of data on horizontal atmospheric diffusion, from Hage 
and Church (1967). The solid curve illustrates Eq. (3.3.) 
(From Gifford, 1982a) 
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3.M Langevin models for situations with a Gaussian height independent 
turbulence velocity distribution, where only TL varies with height 

In this section we study Langevin models, made for neutral surface 
layers. In neutral surface layer the turbulence is no longer homogeneous, 
because the timescale TL varies proportionally with height. However, the 
intensity of the turbulence velocities a2 can be taken as constant and the 
velocity probability distribution as Gaussian. We investigate whether the 
homogeneous Langevin equation can also be used in neutral surface layers and 
we will show that this is indeed the case. Later we show this Langevin the 
formulation is erroneous when applied to a stable or convective surface layer. 

) 
3.4.1 Reid's model 

Reid (1979) proposed a 1D-Langevin model for ve r t i c a l dispersion in a 
neutral surface layer . He used the following d i sc re te Langevin equation for 
the ve r t i ca l velocity of the pa r t i c l e 

(3.5) Wi + 1 = exp(- ^ ) " ) W i + a r . (1-exp)- ^))V* , 

which is in f i r s t order At a d iscre te form of the equation 

The random variable r^ and du> are white noise processes with zero mean and 
variance resp. 1 and dt and a2 i s the ve r t i ca l turbulence velocity variance 
"equal to a2=~uT. We see that his equation is formally, equal to the 
homogeneous Langevin equation Eq. (3.4) only fL has been substi tuted by TL(z). 

Reid did not give a derivation for the formulation of th i s random forcing 
function, but assumed that the homogeneous formulation could be extended to 
dispersion in a neutral surface layer . I t follows e .g . from Thomson's study 

(1981) that th i s is only t rue , i f the Reynolds s t resses u..u? and u_u_ can be 
neglected. Thomson discussed the theory of 3-D dispersion, modelled by three 
Langevin equations. According to th i s study the correct random force in a 
neutral surface layer would be <(dp)2> = 2 {ïïTüT + uf}dt/T . In a neutral 

1 3 5 L 
surface layer the wind varies with height resul t ing in a Reynolds 
s t ress u..u_ which is nonzero. Thus even a 1D Langevin model should include 
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more dimensional quan t i t i es , l ike u..u_, in the random forcing dp. 
Deriving the KME of.such a 1-D model we see that i t has large time behaviour, 
which can not be described by a diffusion equation. The conclusion is tha t a 
1-D formulation in a neutral surface layer i s erroneous. We should go for a 
more dimensional Langevin model where we appropriately include the s t r esses in 
the random forcing formulation. Then we get a model with a large time 
behaviour described by a more dimensional diffusion equation, with d i f fus iv i ty 
tensor u . u . . 

Model resu l t s 

Reid discussed the r e s u l t s of h is model applied for surface and elevated 
sources. The r e su l t s of the surface sources were compared to the Porton data 
described by Pasquil l (1961). To describe such a specific dataset , var iables 
in the model were tuned to the measurements. Reid assumed that Z and varied 
the constant c from 0.3 to 0 .5 . This causes the mean par t ic le height ~Z to vary 
by as much as 20$ a t a distance of x = 500 m. The formulation 
T. = 0.4 z/u# gave the best agreement with the Porton data (Fig. 3 .6) . Reid 
also compared h is surface source r e s u l t s to s imi la r i ty laws for the 
concentration p rof i l es of Nieuwstadt and Van Ulden (1978) derived from the 
same Porton data and the Prair ie Grass experiments and he found good 
agreement. 
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100 200 300 400 500 
downwind distance (in m) 

Fig. 3.6 Downwind variat ion of mean par t i c le height z" for a surface source. 
The solid l ine represented the Porton da ta , further denotes a 
. Reid's model, 
x Ley's model (to be discussed in section 3.^.2) and 
A Hall ' s model (to be discussed in section 3 . ^ .3 ) . 

Reid compared his r e su l t s for elevated sources to the Gaussian plume 
formula and Taylor 's theorem although both formula's are in principle not 
valid in inhomogeneous turbulence. He allegedly finds discrepancies such as 
that in h is model the mean height of the p a r t i c l e s decreases jus t af ter their 
point of re lease , whereas in a Gaussian plume model Z/z increases 
monotonically. We can show from formula's derived by Hunt (1984) that h i s 
model shows the correct -behaviour in contrast with the Gaussian plume model. 
Hunt derived an expression for the shorttime behaviour of the mean pa r t i c l e 
height Z not only as function of time but also an expressionas a function of 
downwind distance x. The l a s t one reads 

dZ 
dx 

uw 
(u) : (u) : <■'£ - X ÏÏ *£) 

dz 
(3 .11) 

Generally the behaviour of Z depends on both -r^, uw and ~-, Depending on 
these variables Z might become larger or smaller. 
In a s i tua t ion with üw = o and a

2 constant (as in Reid's model) the shorttime 
w 

behaviour reads 
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g - - - £ L g 3 x . (3.12) 
d x (u)3 az zQ s 

We see that ~Z decreases with distance in case ü increases with height. This 
can be understood by considering particles at a distance x. We know that 
particles above source height zg were transported by a larger horizontal wind 
and reached the point x therefore in a shorter time than particles under 
source height zg. This means that particles above zs had generally less time 
to disperse than particles under zg. The averaged height ~Z becomes less. Reid 
finds indeed that Z decreases for short times. 

Interesting is Reid's examination of the physics involved in dispersion. 
Reid discusses the effect of TL varying with height. In comparing a case where 
TL is constant with a case where TL increases linear with z he comes to the 
conclusion that in the constant T^ case the mean height case Z is far less 
than in the varying case (Fig. 3.7a). This fact can be explained by the fact 
that drift terms up gradients in TL occur as discussed in section 2.3.7 
(second part). 

The influence of the effect of varying T^ on the spread of the plume is 
not important for small downwind distances as can be xseen in Fig. 3.7b, while 
for large distances T^ being a function of z causes the plume to spread more 
rapidly. It is then empirically concluded that for the spread of the particles 
at short distances the windshear effect dominates TL-varlation effects, while 
for large distances they might be equally important or the TL~effect might be 
larger. 
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40 SO 60 70 

DOWNWIND DISTANCE (METRESI 

DOWNWIND DISTANCE (METRESI 

Fig. 3.7 Comparison of the height and standard deviation for a source at 2.5 m 
-for TL a function of height, T (z) = O.H z/u^. denoted by § and for 

T, = TL(z = 2.5 m) denoted by s 
(From Reid, 1979) 

TL(2.5)# 
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3.4.2 Ley's model 

Ley (1982) proposed a 2̂ -D dispersion model for the neutral surface layer . 
The ve r t i ca l dispersion i s described by the homogeneous Langevin equation Eq. 
(3.4). The downwind dispersion i s not described by a Langevin equaxion, but an 
a l ternat ive s tochast ic equation 

dU = ü + aU + BW + dn . (3.13) 

We f i r s t discuss the arguments (which we think are incorrect) leading to 
the formulation of the random forcing du in the ve r t i ca l Langevin equation. We 
will see that the formulation of dy i s however correct in case the s t r e s s 
uTüT can be neglected (as discussed in the former sec t ion) . 

Ley and l a t e r a l so Legg (1983, see section 3.4.3) s tar ted with the 
Langevin equation Eq. (3.3) in d i sc re te form 

w i+ i - (1 " T T Z 7 ) W I + ^i • < 3 - U ) . 

She squared th i s equation and took the ensemble average. Then she used the not 
always correct equation that 

"ï+i v<wi*i> = wl = <wi> = ïïf= < • ( 3-1 5 ) 

In inhomogeneous circumstances th i s i s only valid in the steady s^tate. Then 

W.2 . ~ W2 and the pa r t i c l e velocity s t a t i s t i c s are equal to those of the 
turbulence ve loc i t i e s so that <W2 > = <W2> = u 2 ( z ) . In th i s neutral case 
u2 is not a function of z and W2 = <W2> from which the above equation 
follows. From Eq. (3.15) she reached the equation 

°w - <1 " T")2< + < (du) 2 > + <2(1 - ^)W.Ay> . ( 3 . 1 6 ) 
w L L 

In th is equation she neglected the l a s t term on the RHS. This can indeed be 
j u s t i f i ed , because the Lagrangian timescale TL and the random forcing 
function Ap are uncorrelated with the velocity W. (Note that TL and Au are 
also uncorrelated, i f we specify stochastic quant i t ies occurring in the 
Langevin equation in the non-anticipating way (section 2 .4 ) . This non-
ant ic ipat ing specif icat ion implies that TL(z) i s taken at the l e f t end point 
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z = Zj of the interval [Z.,Z. ,] over which Ay is taken). 

After neglecting the last term in Eq. (3.16) this equation gives 

2o2 
<(Ap)2> = ~ At + 0(At2) . 

L 

As all other moments of dp are zero this leads to the fact that the continuous 
y random forcing function can be formulated as dp = (2o2/TT )2dw . 

W L t 

We discussed the Langevin modelling of the vertical velocity of the 
particles. We now discuss the modelling of the horizontal velocity of the 
particles Eq. (3.13). We denote the horizontal turbulence velocity in the 
downwind direction by u-|. The additional turbulence description needed to 
determine a, 3 and dn is u2 = a2 = constant, R (dt) = exp (-dt/T ) and 
u.u_ = - u£. The determination of a, 3 and dn is again based on equalities 
that are only valid in the steady state. The resulting formulation can not be 
compared with the theoretical results of Thomson (1984) as Thomson's results 
are for models, where both velocity components are modelled by a Langevin 
equation, while Ley's equation for the horizontal particle velocity is not a 
Langevin equation. The correlation between the two directions of motion should 
according to Thomson only be modelled in a joint moment of the random forcing 
functions dn and dp. The difference with Ley's model is that there the 
correlation is also incorporated in a term proportional to W in the equation 
for U. 
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Model results 

Ley discussed the results of surface sources, which were compared to the 
Porton data. Variables in the model were tuned to this dataset. Ley got the 
right results for Z by varying the von Karman constant k and the friction 
velocity u* keeping u*/k equal to 0.62. Varying k from 0.33 till 0.^3 caused . 
"z to vary as much as 20% at a distance of 500 m. The values k = 0.4 and u# = 
0.25 turned out to be the best for the Porton data (Fig. 3.6). We may conclude 
that both Reid's and Ley's model, although different, can be tuned to this 
dataset. 

Ley also compared surface source results to the similarity laws derived 
from the Prairie Grass and Porton data, by Nieuwstadt and Van Ulden (1978) and 
finds good agreement with the similarity shape of the concentration profiles 
just like Reid with his 1-D model. 

Ley's examination of her 2-D formulation is interesting, although we can 
not directly apply her results to a 2D Langevin model. If no downwind 
dispersion is assumed (which reduces her 2-D model to a 1-D model) or when 
the downwind dispersion is uncorrelated with the vertical dispersion 
(3 = 0, uw = 0) the average height 1(x) of the particles becomes 8% lower. 
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3.M.3 Legg's model 

Legg (1983) made a 2-D Langevin model for the neutral boundary layer in 
> — 

which the correlation between the two directions of motion is only modelled 
via the random forcing function. His equation for W is in first order At equal 
to Eq. (3.*0 and for U he proposes 

Un + 1 = T « + (1 - f^Un + ("f-)2 TIT K + (--r)2(1- "aM-^ K n+1 l. TT n T. a a t lr a a t 
L L L u w L u w 

(3.15) 

where a2 = u2, a2 = u2 and Aw* and Au" are white noise processes with zero w j u i t t 
mean and variance At. Legg realised that in the derivation of the random 
forcing function it had to be argued that correlations between TL, W and 
du pr dn are neglected. As noted before this is exactly so because T^ and 
dp or dn are not correlated with W. 

Thomson's (1984) theoretical investigation can be used to investigate 
this 2-D Langevin model of Legg. Thomson argued that in Gaussian turbulence, 
with o2 independent of height, the 2-D Langevin model should be 

dW = - 2± w + du and 
L (3.16a) 

dU = - ̂  U + dn , 
L 

where the t imesca les in_both_.equations a re taken t o be equal to Tt and 

<dy> = 0 , <dri> = Y" u ' dt -
rL 

<(du)2> = 2 Q ( U l u 3 + S | ) , <(dn)2> = 2 f- ( U l u 3 + u 2 ) , 
L *L 

dt 
rL 

<dridu> = TjT (u2 + 2 U l u 3 + u 2 ) . (3.16b) 

We see t h a t Legg's formulat ion of the random fo rc ing d i f f e r s cons iderab ly from 
Thomson's t h e o r e t i c a l r e s u l t s . 
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Model results 

Legg applied his model to an elevated source and compared the results to 
a heat dispersion experiment in a windtunnel. To reproduce the measurements 
Legg tried different descriptions of the windtunnel flow. One of these is a 
horizontally inhomogeneous boundary layer formulation. We note that in such 
cases the random forcing modelling becomes more involved than the ones in Eq. 
(3.1) and (3.16) and we refer for further details to Thomson (1984). Tuning 
the value of the timescale in the Langevin equation Legg could reproduce the 
results (Fig. 3.8). Legg also compared the 1-D formulation (line (a) and (b)) 
with the 2-D formulation (line (c)). He concluded that the inclusion in the 
dispersion model of streamwise velocity fluctuations and their correlation 
with vertical fluctuations increases the depth and rate of rise of the plume 
from an elevated source. It should be investigated, whether Thomson's 
formulation for a 2D model would show the same feature. Legg also modified his 
2-D formulation to include the effect of skewness of the turbulence velocity. 
As the skewness in the windtunnel flow is small only little difference in the 
results appeared (line d). 
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Fig. 3.8 Mean particle height Z and vertical plume spread o against 

downstream distance in a neutral surface layer. Symbols (o) show 
experimental results and the lines show Markov chain similations 
with: 
(a) long/short dashes: 
(b) long dashes : 
(c) short dashes : 

(d) continuous 

-i -i 
o = 0.63 ms o - 0.00 ms 
u -1 u -1 

a = (0.68-0.05x)ms o = 0.00 ms u -1 U 
o = (0.68-0.05x)ms o = (1 .21-0.0Mx)ms u u 
uw = -(0.28-0.033x)m2s~2 TL = 0.15 

-1 

As previous line but with a jointly skewed 
distribution of u' and w'. 

(d, is zero plane displacement) (From Legg, 1983) 
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3-^-2 Durbin's model 

We further want to mention Durbin (1980), who studied open channel flow. 
He introduced an equation to describe the large time behaviour of dispersion. 
This equation is 

d TL V 
dZ - o2 -£ dt + (2 o2TLr2da)t . (3.17) 

We have shown in section 2.5 that this equation, the Markov.limit of the 
Langevin equation Eq. (3.1*)» indeed describes the large time behaviour in 
turbulence with constant a2 and where T, may be a function of z. 
The KME of Eq. (3.17) is the diffusion equation 

3P(z;t) _ 3_ , a_ £F\ 
3t ~ 3z Ka l L 3 z J * 

The Markov limit is only applicable to dispersion for times large 
compared to T^. However Durbin noted that in case of a surface source, the 
Markov limit is valid for all times. This is so if we accept like Durbin 
claims that the value of TL to be used in the comparison of t with TL is 
Tt (z ), which for a ground source is zero. However, for a surface source 
L S 

Durbin only shows large time results (Fig. 3.9) and his statement is not 
proved. On the other hand he does show that the Markov limit is not valid for 
small times for an elevated source where T. (z ) is larger than t. 

L s 
Note that the results of the Langevin equation (Eq. (3.1*)) show many 

fluctuations as only a 100 particles are used to obtain ensemble averages, 
while the Markov limit results are obtained from an analytical solution of its 

-KME* - - - - - . . - . . - . • . „ . . . . . . 
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t 

20 30 40 
t(inTz(Z=0.5)) 

Fig. 3.9 Comparison of the Langevin equation Eq. (3.M), the Markov limit 
Eq. (3.17) and experimental data in an open channel flow with 
T. = 0.8 z(1-z) and o = 1.0, for a surface source. L w . ' 
Hatched lines: experimental data 
Dashed line : Langevin equation 
Solid line : Markov Limit 
(From Durbin (1980),.rescaled with the bottom of the channel at 
z = 0, the top at z = 1). 
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3.4.3 Hall's model 

Hall (1975) made a 2-D model for the surface layer. It is a Langevin 
equation for the vertical velocity W and a zero order process for the 
horizontal velocity U 

Vi = (1 T ) w i + ( ^ r ) Aa)t ' ( 3 , 1 8 ) 

Li L 

Ui+1 = ü + Anl+1 and 

Zi+1 = W i At . 

This model does not take into account that the horizontal velocity process has 
a non-zero time scale. The random forcing formulation in the W-equation is 
only valid in Gaussian turbulence with a constant a2 and zero Reynolds 
stresses and as discussed in section 3.4.1, neglecting the Reynolds stress in 
d\i is also erroneus. 
The moments of the random forcing function dn are again derived assuming 
equalities between particle characteristics and turbulence velocity 
characteristics that are only valid in the steady state. 

Model results 

Hall did not only apply this model to a neutral-, but also to a 
convective surface layer. In the neutral surface layer only T^ and u are 
functions of height, while a2, a2 and u,u. are constant. His results were 

w u 13 
"compared to the Porton~data and after tuning -TL they fit-the measurements 
(Fig. 3.6). In the convective surface layer T, and u but also a2 and a2 are 

L u w 
functions of height, while u..u_ is still constant. Applying the homogeneous 
Langevin model to situations where the turbulence velocity characteristics are 
inhomogeneous is certainly not correct. This is apparent in his results 
compared to Porton data given by Pasquill (1961) for a surface source in a 
convective surface layer (L = - 5m). His model resulted in an underestimation 
of the measured cloud height at all distances (Fig. 3.10). This can be 
explained by the fact that his model does not incorporate the drift 
acceleration of particles in inhomogeneous turbulence due to gradients in a2. As we have seen in section 2.3.5 and 2.3.6 this should be modelled by a w 
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mean value óf the random forcing in the z-direct ion equal to dt do2 /dz. Not 
w 

including t h i s d r i f t velocity causes the pa r t i c l e s to col lec t in regions of 
low turbulence variance, which in the convective surface layer is close to the 
ground. The mean height of the par t i c les i s then too low, as Hall indeed found 
in his simulations. We conclude that Hal l ' s Langevin model i s not applicable 
to a convective surface layer . Models that are applicable to such 
circumstances are discussed in the following sect ion. 

100 300 
downwind distance (in m) 

Fig. 3.10 Comparison of Hal l ' s model (1975) with Porton data for a 
surface source in a convective surface layer (L = -5m). 
Solid l ine : Hal l ' s Langevin model Eq. (3.18) 
Dashed l ine : Porton data. 
(From Hall, 1975) 
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3.5 Langevin models for situation with height dependent Gaussian turbulence 

In the previous section we discussed that the homogeneous Langevin 
equation is a correct formulation for dispersion in the surface layer 
where o2 is constant and where TL can be constant or a function of z. The next 
group of models we want to discuss are models that take into account the 
effect of inhomogeneity in o2. The first attempt to model this was made by 
incorporating a mean drift acceleration in the homogeneous Langevin equation, 
or equivalently a drift velocity in its large time equation, the Markov Limit. 

To avoid confusion about the concept drift velocity versus drift 
acceleration we note again that the effect of inhomogeneity described as a 
drift velocity d(o2T )/dz in the Markov limit is consistent with a drift 
acceleration do2/dz in the Langevin equation. This is shown in section 2.5.H. 

3.5.1 Durbln and Hunt's model 

Durbin and Hunt (1980) described dispersion in the neutral boundary layer 
in a windtunnel experiment of Shlien and Corrsin (1976). Near the surface the 
boundary layer is described by a constant o2 = ü"2 and TL a function of height. 
In the larger part of the boundary layer o2 is on the contrary a function of 
height, while T^ is constant. To describe dispersion in this neutral boundary 
layer Durbin and Hunt used the homogeneous Langevin equation. Because they 
only show results in the surface layer where a2 is constant no inconsistencies 
between model results and measurements appear. 

Besides this homogeneous Langevin model they also use a large time 
equation, the Markov limit, which incorporates the effect of inhomogeneity 
in o2 by a mean drift velocity d(o2T. )/dz: 

d(a2T ) y 
dZ = d z

L dt + (2o2TLr2dü>t . (3.19a) 

This is a generalisation to height dependent o2-cases of Durbin's homogeneous 
Markov limit Eq. (3.17). According to the theory discussed in section 2.5 this 
Markov limit is the correct formulation for regions where o2 is a function of 
z. Durbin and Hunt based the incorporation of a drift velocity on arguments of 
Monin and Yaglom, who state that in horizontally homogeneous turbulence whose 
mean vertical velocity ~ = o, the pdf P(z;t) should obey (1977, Ch. 10.3, Eq. 
10.49). 
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2£i|Ül - |j (K f ) . (3. 19b) 

Any dispersion model should result in large time behaviour described by this 
diffusion equation. The KME of the Markov limit Eq. (3.19) is indeed equal to 
Monin and Yaglom's formulation in case K = a2T and we conclude that this 
Markov limit model gives the correct large time behaviour in turbulence with 
height dependent Gaussian velocity distributions. 

The homogeneous Langevin equation Durbin and Hunt used has a Markov v limit dZ = (2o2T. )ado) . Comparing this Markov limit with the Markov limit Eq. 
L X* 

(3.19) we see that the homogeneous Langevin equation and the Markov limit Eq. 
(3.19) are only consistent in homogeneous situations. The reason why no large 
discrepencies for large time between both models occur is that they only show 
results in the surface layer, where a2 is constant. 

They apply their models to a surface source. As stated earlier by Durbin 
(section 3.1*.1*) the Markov limit should describe dispersion from surface 
sources at all times. To prove this statement they check whether the Langevin 
equation and the Markov limit describe the measurements equally well. They 
show direct simulations of the Langevin model while they however only derive 
an approximation for I(x) from the KME of the Markov limit Eq. (3.19b) as 
follows. The mean height can be defined as M../M0 where VL = ƒ znP(x,z)dz. 
This equation can not analytically be solved in this neutral surface layer 
where K and u are functions of height and is therefore approximated. In 
comparing this result with the Langevin model we have to be careful. Both 
models start with Z(o) = z = 0 and if differences with respect to each other 

s 
exist, they only slowly accumulate. Within the restrictions of this Markov 
limit results it is hard to judge whether the Markov limit and the Langevin 
equation are indeed equivalent (see Fig. 3.11). 

The statement that the Markov limit should describe dispersion from 
surface soruces of all times is based on the assumption that the relevant T, 
is small compared to t (section 3.4.1*). But if we argue for instance instead 
that the value of TL that sould be taken in the comparison of t with T, is Ti 
at mean plume height T (Z) we find that the Markov limit is not equivalent to 
the Langevin equation for x < 20 Zj. 
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Fig. 3.11 Comparison of the Langevin Eq. (3.1*) (solid line) and an 
approximation to the Markov limit Eq. (3.19) (dashed line) with 
windtunnel data (triangles) in a neutral surface layer. 
(From Durbin and Hunt, 1980). 
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3.5.2 Legg and Raupach's model 

We now discuss a model proposed by Legg and Raupach (1982) for 
inhomogeneous turbulence. Legg and Raupach simulated dispersion within and 
above a crop canopy by means of the vertical 1-D Langevin equation 

dW = (exp(- |^)-1)W + (1-exp(- ™))\r * (1-exp(- lp))TL -& . 
Li L L 

which in first order dt is equal to 
2o 2 X d<r* 

dW = - \- dt + (-==) du + — J dt . (3.20a) 
T. T t dz 

This study incorporates the by now well familiar drift acceleration da2/dz 
in the Langevin equation to model the effect of inhomogeneity in the 
turbulence fluctuations a2 = \i\. They base their arguments for the drift 

w 3 
acceleration on the mean momentum equation that for stationary horizontally 
homogeneous flow reads do2 ' .-w = _ 1 l£ dz " p 3z * ' 
This equation states that when there is a gradient in the vertical velocity 
variance daVdz there is a mean force on the particle due to the mean pressure 
gradient. This force should be included in the Langevin model as a mean 
acceleration. The Langevin model with this term included Eq. (3.20a) can be 
written as 

dW = - ~- dt + dy , 
L 

da2 

with <du> = ~ dt , (3.21) 
2a2 

<(dp)2> = -—■ dt and 
L 

<(dy)n> = 0 for n > 3 . 
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Model results 

Legg and Raupach applied this model to dispersion in and above a crop. The 
flow field in the crop and in the first meter above it is described by 

ü(z) = ü(h) exp T(^ -1) z < h 

u * = — In (—) z > h K Z O 
Z U * 

a (z) = 0.125 u„ + 1.125 -r- z < h 
w * h = 

= 1.25 u» z > h 

V " - ̂ ^ »<.h 

(3.22) 

0.32(z-d) 
aw 

z > h 

where h is the crop height, d the zero plane displacement, zQ the roughness 
length and Y an extinction coefficient within the crop. Total reflection at 
the ground and at 1.5 h were assumed. An initially uniform distribution 
remained uniform in this model although the scatter near the ground becomes 
large. We can speculate on the reason why this model does preserve an 
initially uniform concentration distribution, while ours in its application to 
a convective boundary layer (Ch. 4) did not. Our speculation is that the 
boundaries might be a problem in case the characteristic length of the 
turbulence £ = T. o is large compared to the height of the layer (resp. h and 

Lt 

"zj). "Calculating I by putting % = T (£) a (D gives -in. Legg and Raupach's case 
i/h = 0.05 while in our model &/z =1.4. 

Let us investigate the random forcing in this model. In section 2.3.5 and 
2.3.6 we showed that the first two moments of dy are correctly modelled in 
case of inhomogeneous Gaussian turbulence. This model neglects the third 
moment of dp for z < h, whereas the theory for the Langevin model in 
inhomogeneous conditions told us that the third moment of the random forcing 
function should be equal to 3 o2 do2/dz. We discuss the effect of omitting a 

w w 
nonzero third moment of the random forcing in inhomogeneous Gaussian 
turbulence. This can eas ies t be shown by considering the shorttime expansions 
around z s , the point of release, of mean height, spread and third moment of 
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the particle height. These expansions for height and spread will be derived in 
the coming section 5.3 and the expression for the third moment can be derived 
analogously. They read 

Z-z = % a,(z)t2 + ... V 4£l t2 + 
* dz c •*• 

(Z-z ) 2 = ÏÏ* t2 + \ a„(z) t3 . s 3 3 2 

(Z-z ) 3 = % a (z)t" + ... 
S j 

= „2 f 2 a2 t2 + ... 

3 , da: 
dz = T O 

(3.23) 

t" + ... 

This first formula is consistent with Hunt's (1984) general expression for the 
mean height as function of x (Eq. (3.11)) which include effects of Reynolds 
stresses, windshéar and skewness of the turbulence. Let us consider a source 
in the region where a2 increases with height. From Eq. (3.23) it follows that 
in the region near the ground, where —— > 0 the mean height of the cloud 
increases. At the same time the particle cloud becomes more and more skew with 
time because the third moment is non zero. The skewness is positive which 
means that the height at which the concentration is maximum decreases. This is 
schematically shown in Fig. 3.12. In a model where the third moment of du is 
zero no distinction is made between the mean height of the plume and the 
height where the concentration is maximum, boundary effects excluded. As Legg 
and Raupach start with a uniform concentration distribution errors due to this 
fact do not show in their results. 
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C(e) t/TL(zS) 

Fig. 3.12 (a) Concentration distribution of the vertical velocity close to 
the source. 

(b) Mean plume or cloud height *Z (solid l ine) and height of the 
maximum mean concentration Zm in convective conditions 
da2/dz > 0, w3 > 0 (z / z . - 0 .1) . w s i 

(From Hunt (1984) 
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3.5.3 Davis' model 

PiA. Davis (1983) made a 2D-model for the neutra l boundary layer, in 
which a l l parameters ïï, ïïw, o„, 'o,,, T, and Tr depend on height . The ver t i ca l 

w u uw u 
velocity i s given by Legg and Raupach's Langevin Eq. (3.20a). The horizontal 
velocity f luctuation is modelled by 

U(t + At) = S(t + At) + BW(t + At) and 
(3 .24) 

S ( t + A t ) = a ' S ( t ) + Yn , 

where S is a dummy variable. This equation is different from Ley's (1982) as 
the horizontal particle velocity does not depend on the history of the 
vertical velocity but only on its actual value. It is also different from 
Legg's (1983) model, as the horizontal particle velocity is not modelled by a 
Langevin equation. The derivation of the coefficients a, B and "Y is again 
based imposing that the particles have the same velocity characteristics as; : 
the turbulence velocity, a requirement only valid in stationary turbulence. 

Davis found that the effect of making a 2-D-model by taking the 
correlation between horizontal and vertical fluctuations into account did 
increase Z and a at all downwind distances for elevated sources. The amount z 
he found is less than found by Ley with her (different) 2-D-model in the 
surface layer. He also derives an analytical expression for the spread of the 
plume resulting from his model given as function of dimensiohless parameters. 
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3.5.4 Ley and Thomson's model 

Ley and Thomson (1983) made a 2-D model for diabatic (stable and 
unstable) conditions. They used Langevin formulations for the vertical 
velocity of the particles (Eq. (3.20a)) and for the horizontal velocity. The 
horizontal Langevin equation is a version of the one used by Legg (1983): 

dU = (exp(- ̂ ) - 1)U + dn . (3.25) 
L 

The derivation of the first two moments of dp is analogous to the theory 
discussed in Ch. 2. The random forcing dn is modeled by imposing that the 
particles mean horizontal velocity, horizontal velocity variance and 
covariance between vertical and horizontal fluctuations in the steady state 
should equal those of the air (u, a2, u.u-). In this study the equality is 
explicitly only required in the steady state but still their formulation 
of du and dn is not consistent with the theory discussed in Ch. 2. In this 
Langevin model the random forcing function dn and du are assumed to be 
Gaussian so that only the first two moments are specified. The fact that the 
third moment, which should be there from a theoretical point of view, is not 
taken into account, leads to errors as discussed in section 3.5.2. 

Model results 

Legg and Thomson applied their model to stable and unstable surface 
layers both with Gaussian velocity distributions. The turbulence is 
characterised by a2(z) = u2, o2(z) H U 2, T. (Z) and u,u_(z). The profiles in 
"the stable "surface layer are given by profiles valid for the whole boundary 
layer 

a2/u2 = 2.25(1-z/zi)2 , 

o2/u2 = 5.29(1-z/z.)2 and (3.26) 

u^./u2 = (1-z/zl)2 , 

where zi is the boundary layer height. These profiles give almost constant 
values for o2, o2 and u.u- in the surface layer (z << z.). 

w u i $ i 
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The uns t ab l e su r face l aye r i s given by 

,2/3 o 2 /u 2 = 1 .69( + 3 | z /L) 

a 2 /u5 - (12 + 0 . 5 | z . / L | ) 2 / 3 and (3.22) 
u K i 

U ! U 3 / U J " 1 

where L i s t he Monin Obukhov l e n g t h . Thus in the u n s t a b l e sur face l aye r 

only o2 i s a func t ion of h e i g h t . w 

For u(z) and T L (z ) the s i m i l a r i t y express ions of the su r face l a y e r a r e 

used: 

ri~ U* 
T- (1 + 5 z/L) L > 0 ( s t a b l e ) dz kz 
u 
kz 

* -V 
= 7 - (1 - 16 z/L) * L < 0 (uns t ab l e ) 

(3.28) 
T. = ku„z/(1 + 5z /L)o 2 L > 0 ( s t a b l e ) 

L " W 

= ku#z(1 - 16 z/L) Vo 2 L < 0. (uns t ab l e ) 

In t h i s s tudy t h e values for T^ a re determined from equat ing the eddy 

d i f f u s i v i t y K_aQQ t o T. c2 where K = ku„z/d> (z/L) with d> (z/L) the non-
maas L W mass * m m 

dimensional p r o f i l e of mass t r a n s f e r . Note t h a t t h i s d e s c r i p t i o n l eads to the 

fac t t h a t T^ i s u# dependent even in unstable c o n d i t i o n s , whereas f ree 

convection s ca l i ng s t a t e s tha t T^ should depend on w* ins tead of u*. 

I t turned out t h a t t h e i r model r e s u l t s could be tuned to measurements by 
varying the c o n s t a n t s in the modelling of the t u r b u l e n c e . They compared t h e i r 
model with the P r a i r i e Grass d a t a , Porton data and Lagrangian s i m i l a r i t y 
theory and f ind reasonable agreement within the l i m i t s of accuracy of the 
v a r i a b l e cons tan t s (F ig . 3 .13 ) . 

With t h i s s tudy we end our d i scuss ion of models for d i spe r s ion in 

s i t u a t i o n s where both TL an (* t h e Gaussian turbulence v e l o c i t y d i s t r i b u t i o n 

vary with h e i g h t . Next we note s t u d i e s with another Langevin model for W/o. In 

Ch. 5 we wi l l t h e o r e t i c a l l y compare both Langevin models. 
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Fig. 3."13 Comparison of project^ Prairie-Grass -(P.P-.-G-.-)—profiles-with, the „ 
Langevin model Eq. (3.20) and (3.25) The horizontal axis , C, 
represents cross-wind-integrated concentration per unit source 
strength for the P.P.G. data, and concentration per unit source 
strength for the model output. Continuous l i n e : the model p rof i le . 
Broken l i n e : model p rof i le . Dots: P.P.G. values. 
(From Ley and Thomson, 1983) 

Model: L = 100m 
P.P.G.: Runs 37. *6. 

l ( m ) 

0-04 0-06 

Model: l = - 7 7 m 
•P.P.G.: Runs IS. 48S 
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3• 6 Langevin model for W/o and i t s Markov l imi t 

3.6.1a.Wilson et a l ' s Langevin model for W (1981a) 

Wilson et a l . (1981a). introduced a handy numerical method for. the 
homogeneous Langevin model by scaling both time and pa r t i c l e height . Later.he 
extended th i s idea to also transforming the pa r t i c l e velocity W by dividing i t 
by o. This led to a different Langevin model and well a Langevin model for the 
quantity W/o. Fi rs t we discuss their a r t i c l e (1981a) on simulation of 
dispersion in a neutral surface layer with o2 = u* constant and T, a function 
of height . 

In t h i s paper they only scale time and height . They showed that the 
homogeneous Langevin equation Eq. (3.4) can be scaled by introducing 

T (H) T (H) 
d t ' = dt ^-£J and dz ' = dz -~JJ , (3.29) 

Li LI 

where H is a reference height. This gives 

L L (3.30) 
dZ(t') = W(t')dt' 

This transformation leads to an equation with constant coefficients and is 
therefore more easy to handle. This equation can be solved analytically and 
the height of a particle at any time can be transformed back by the inverse of 
Eq. (3.29). 

3.6.1.b Wilson et al. (1981b) 

In a following article Wilson et al. (1981b) added an extra term to the 
homogeneous Langevin equation for W to model the effect of o being a function 
of height. They assumed that the variation of a in the turbulence considered. 
is so slow that the gradient can be considered constant. They proposed the 
equation 
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, „ „ d t ' x / 2 a 2 ( H ) , L . „ / H N T / . o d q ( z ' ) ,_ - , . 
dW = " w TTÖÖ + (T7Tïïr) dü)t + Ö ( H ) T L ( Z ) - I P " • ( 3*3 l ) • 

L L 
We discuss several aspects of th is extra term. 

In th i s l a s t term TL(z) occurs, but we assume that i s meant TL(H) as that 
i s consistent with the i r l a t e r statements. The extra term implies then a 
height independent d r i f t acceleration {a(H)T (H)da/dz}/dt that however goes to 

Li 

inf ini ty in case dt ■* 0, which is u n r e a l i s t i c . I t can also be shown that t h i s 
term i s incorrect by transforming Eq. (3-31) back and comparing i t to the 
theory of section 2 .3 .7 . * 
The transformation in th i s a r t i c l e (1981b) i s given by 

T. (H) T (H) . . , . 
d t . - . d t L , „ , . , Az faSffi and e - C $§} . (3.32) 

L L 

Executing the back transformation this gives the equation 

HU W dt , 2 q 2 ( H ) X , . , . da , - „ . 
dW " " TU) ( T 7 T Z T ) dwt + a ( z ) T L ( Z ) di ' ( 3 '3 3 ) 

L L 
which has a dr i f t acceleration a(z)TT (z) -r^ dt . Note that both the second 

L dz 
term and the last term on the RHS of this-Langevin equation are different from 
what they should be according to the theory discussed in Ch. 2. Based on this 
theory we showed in section 3.5.2 that the Langevin model in height dependent 
Gaussian turbulence should read (see Eq. (3.20)) 

W .. ,2o2(z).)' v . . da .. - -dW--=---__dt..+ _ ( j - j ^ y ) ^ ±X a(z) ̂ d t . __ ____ 

We see that in the second term on the RHS of Eq. (3.33) o2(H) enters 
instead of o 2 (z) . The difference in the l a s t term, the dr i f t acceleration term 
is discussed in a l a t e r paper by Wilson et a l . (1983). There i t i s wrongly 
assumed that Legg and Raupach (1982) used dW = TT

 d 4 - instead of 
da2 L d z 

dW = dt —jr. This might be explained by the fact that in the other studies the 
dr i f t acceleration is expressed as 

dW = (1 - exp(-dt/T r )T. %~ . 
L L dz 
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— do" The drift acceleration is then not given by dW = T —r- but in first order dt 
. 2 " ^ ^ 

by the correct expression dW = —-r- d t . 
We must conclude that Wilson et a l . ' s Langevin model (1981b) for W i s not 
correct and therefore leave the discussion of th is model. In the next chapter 
we will consider their W/o Langevin model. 
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3.6.2 Wilsons' Langevin model for W/q 

In the paper (1983) Wilson et al. introduced a Langevin equation 
for W/a. They were led to this model by their idea of scaling particle 
variables with relevant turbulence parameters. The Langevin equation for W/a 
which they introduce reads in discrete form, in order At, 

{-) - (1 - |̂ )(ï) + (f-)V + At % , (3.34a) 
a i+1 TL a . TL t dz 

where Aoo. is a white noise process with zero mean and variance At. t . 
Writing this in terms of W using a = o. + w — At gives 

1 "*" I 1 1 QZ 

»i-i ■ <1 " r»i * 51, * * ' ¥ » S ♦ « " Hs • (3-3W 
Li 1 Li 

Wilson et al. state that this equation is negligibly different from their 
Langevin equation for W Eq. (3.33) in case T — does not vary much with 

Li QZ 

height. This claim is not correct as Eq. (3.34b) is a nonlinear equation due 
to the extra second term on the RHS and the drift term is different from the 
one in Eq. (3.33). In Ch. 5 we will show that the Langevin model for W and 
for W/a are essentially different. Dividing the Langevin equation (3.30) for W 
by o is not a scaling when o is not constant, but it changes properties of the 
model essentially with respect to the original Langevin equation for W. There 
is an essential difference between the models which, become clear in Ch. 5. In 
that chapter we will show that Wilson et al.'s Langevin equation for W/o Eq. 
(3.34) is correct in case of Gaussian turbulence. 

Wilson et al. applied their model for W/a and Legg and Raupach's correct 
Langevin model for W to a case of Gaussian turbulence with 
ü(z) = 0.50(z/z.)0,15;TT(z) = (z/z.)0,15 and a (z) = 0.30(z/z.)0,15. 

1 L 1 W 1 
They only show resu l t s a t a downwind distance of 100 m. This corresponds to a 
t ravel time hundreds are more T^. For such large times both the 
W/a-model and the W-model resu l t s can be described by the diffusion equation 
(see Ch. 5) and th i s is indeed what Wilson finds (Fig. 3.14). We s t ress that 
th i s does not mean that the W/a and W model are identical for a l l time with 
the diffusion equation. 
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3 4 5 6 7 
concentration [m"̂ l 

Fig. 3.14 The concentration prof i le for large times of a ground-level source 
in turbulence with power-law pro! 
- diffusion equation with K =a2T 
in turbulence with power-law profiles of windspeed u, o2 and T. . 

L 

. Langevin equation for W Eq. (3.20) 
Langevin equation for W/o Eq. (3.34) 

(From Wilson et al., 1983) 
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3.6.3 Durbin's Markov limit model for W/g model 

Durbin (1984) wrote a paper in which he initiated the large time analysis 
of Langevin models. Note that already in an earlier study (1980) he used a 
large time equation, the Markov limit. In that study he did not base this 
Markov limit on large time analysis but on analogies with the diffusion 
equation. The large time an analysis is a strong tool when we want to 
investigate the random forcing function in the Langevin models. The modelling 
of the random forcing function should be such that the large time behaviour of 
the Langevin equation is described by a diffusion equation. 

Durbin derives a Markov limit, which describes the large time behaviour 
of the Langevin model for W/o in inhomogeneous Gaussian turbulence. He showed 
that the incorporation of a drift term % -~- dt ensures that the Markov limit 

* dz 
of th i s Langevin equation i s equal to the diffusion equation. 

He wrote t h i s paper as a comment on Wilson's e t a l . (1983) and Legg and 
Raupach's papers (1983) because h i s analysis shows the necessity of 
incorporating a dr i f t term in the Langevin model for W/a applied to 
inhomogeneous turbulence. We have to keep in mind though, that Durbin (1984) 
and Wilson et a l . (1983) considered the Langevin model for W/o, while Legg and 
Raupach (1983) considered the Langevin model for W. In Ch. 2 we showed 
however, that also in the Langevin model for W a d r i f t term needs to be 
incorporated. Again only then the Markov l imit for the W-model becomes equal 
to the diffusion equation. 
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3.7 Theoretical invest igat ions into inhomogeneous Langevin models 

The studies discussed above dealt exclusively with the f i r s t two moments 
of the random forcing in Langevin models. Janicke (1981) s tar ted a new path of 
development, by indicating a way to derive a l l moments of the random forcing. 
He himself however, s t i l l only considered the f i r s t two moments of the random 
forcing function, but his ideas were l a t e r generalised by other authors. 
Janicke assumed the random forcing function in the W-equation to be Gaussian. 
The KME of the W-model is then in inhomogeneous Gaussian turbulence a second 
order d i f fe ren t i a l equation, the well-known Fokker Planck equation (Eq. 2 .80) . 
From th i s KME moment ra te equations for W were derived (see also section 
3 .3 .2) . Janicke argued that in the steady s t a t e the moments of the pa r t i c l e 
velocity W should be equal to those of the turbulence velocity Uo. Using t h i s 
in his comparison of the KME moment ra te equations to the Eulerian equations, 

d o 2 
he finds that the f i r s t moment should be <du> = dt —7-. This is the same d r i f t ^ dz 
term as was argued for by Legg and Raupach (1983) and Ley and Thomson (1983) 
on physical grounds. Janicke illustrates that this drift term indeed prevents 
particles from collecting in regions with low variance. 

This idea is later generalised by Thomson (1984) and Van Dop et al. 
(1985) (see section 2.3). They do not restrict their analyses to Gaussian 
velocity and random forcing distributions but consider general pdf's with an 
infinite series of arbitrary moments. Thomson considered only the steady state 
requiring that then <Wn> = u",. Van Dop et al. (1985) continued along this line 
carrying the idea further by considering an analysis of the moment rate 
equation for all time. Here we will not go into these last two theoretical 
studies but refer to the extensive discussion made in section 2.3. 
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3.8 Langevin models for situations with skewed turbulence velocity 
distributions 

In the papers discussed above papers the Langevin equation was adapted to 
the dispersion in the neutral boundary layer and also to the convective and 
stable surface layer. The first and second moment of the random forcing in the 
model were modelled, while any higher (also nonzero) moments were neglected. 
These models are only applied to situations where the turbulence velocity 
distribution P(ug) was allowed to be height dependent but still Gaussian. 

We now describe studies that deal with dispersion in boundary layers, 
where the turbulence P(uo) is no longer Gaussian but skew, which e.g. occurs 
in the convective boundary layer (CBL). The first model we discuss is the 
model of Baerentsen and Berkowicz. This model is not based on the theory of 
Langevin models, described in Ch. 2, in contrast our own next model we shortly 
review. For a full description of our model and its application we refer to 
Ch. 4. 

3.8.1 Baerentsen and Berkowicz's model 

The first Langevin model, that deals with a skewed turbulence velocity 
distribution P(uo)f was proposed by Baerentsen and Berkowicz (1984). They 
considered the convective boundary. Their model is based on the fact that the 
motion in the CBL consists of strong updrafts and weak downdrafts. The total 
turbulence velocity Ug is modelled as the weighted sum of the velocities in 
the up- and downdrafts, whose distributions are assumed to be Gaussian. Both 
these distributions are characterised by the mean velocities w+ and w_ and 
variance o+ and o~ for resp. the up- and-downdrafts. A-weighted.sum of_these 
two Gaussian distributions is made to represent the skewed distribution P(ug). 
This can be done by requiring that the weighted sum of these moments of the 
up- and downdrafts distributions is equal to the corresponding moment of the 
turbulence. The three equations for the first, second and third moment yield 
values for w+, w_, o+ and a_ and the weight factor if an extra assumption 
(here w+ = a+ and w_ = a) is assumed. 

Once these turbulence values are calculated, they are used in determining 
the particle velocity. The particles either move with an up- or downdraft. The 
motion of the particles within down- or updrafts is separately modelled, each 
by a Langevin model for W/o: 
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W(t+dt) = ïï■+ 4 f z r J ) T ^ e X p ( ~ r ) W ( t ) + ö ( z ) ^ - e x p ( - ^ ) V z d V % ^ d t , 

(3 .35a) 

which in f i r s t order dt i s equ iva l en t to 

- d t w ( t ) + W l d a 2 o l ^ y d a : 
T a dz T t 2 dz dW = w - 2 1 w ( t ) + « - §2 d t + (£f-)*du>, * X 2 °_ d t . (3 .35b) 

The d r i f t term in t h i s equa t ion i s c o r r e c t in a Langevin model 

for W/a (Thomson, 1984), a l though Bae ren t sen ' s and Berkowics 's argument 

leading to i t i s not c o r r e c t . Their argument i s based on a Taylor expansion of 

the p a r t i c l e v e l o c i t y W(t ) . This expansion should be made v ia W(t) = u o ( Z ( t ) ) . 

In making a Taylor expansion of u , i t should be taken in to account t h a t t h e 

turbulence i s t h r e e d imens iona l . The expansion around a po in t z p should be 

(Hunt, 1984) 

du 
W(t) = U 3 ( V "dx7 ] ( * ' V + '•• 

j *p 

du_ 
= u 0 ( z ) + t u . -—2 ] + . . . (3 .36) 

3 P J dx, 
J *P 

du 
u3( V + fc dlT ] 

J *p 

where in the l a s t e q u a l i t y t h e t h r e e dimensional con t inu i ty equation i s used . 
(see a l so Ch. 5 ) . I t follows with h o r i z o n t a l homogeneity t h a t 
d<W> = d t duT/dz. Baerentsen and Berkowicz 's did not take a l l these a s p e c t s 
i n t o account and found thus a d r i f t term with a f ac to r \ in f r o n t . 

A d r i f t term can s t r a i g h t f o r w a r d l y be included in the l i n e a r Langevin 
model for W. But the W/a-model non l inea r in W and inc lud ing a d r i f t term such 
t h a t d<W> = d t dülVdz i s more invo lved . Pardoxica l ly enough, t h e d r i f t term 
t h a t g ives the des i red r e s u l t in t h i s W/o-model i s t h e one used by Baerentsen 
and Berkowicz. For c o r r e c t arguments leading to the d r i f t t e r m in the 
W/a-model we again r e f e r to the d i scuss ion of t h e model for W/a by Thomson 
(1984). 
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In Baerentsen and Berkowicz's model an exponential jump probability i s 
further assumed that gives the probabil i ty to jump from an up- into a 
downdraft and vice versa. The four timescales involved, two in the Langevin 
equations and two in the jump probabil i ty functions, are in not-obvious-
formulas re la ted to the diss ipat ion r a t e e . By varying th i s E they could 
tune their models to the watertank r e s u l t s of Willis and Deardorff (1976, 1978 
and 1981). 

An advantage of Baerentsen en Berkowicz's model is that only Guassian 
pdf 's are used, which can be generated with high accuracy on a computer. 
However the i r model is specific for the CBL and i s not applicable to other 
atmospheric turbulence s i t ua t i ons . 
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3.8.2 Our model 

For completeness we shortly review our own work. For a more detailed 
discussion we refer to the next chapter. The Langevin model we build is a 
Langevin model for W with the first three moments of the random forcing 
specified according to Thomson and van Dop et al.'s results discussed in 
section 2.3. The model is applicable to all atmospheric stabilities. To show 
the strength of the model we simulated dispersion in the strongly 
inhomogeneous convective boundary layer. The only parameters needed are 
profiles of T , uf and ÜT. The agreement between model results and 

L 3 ■ 3 
observations may be characterized as good, (see Figs. 4.2). 

The theory for Langevin models requires that the third moment of the 
random forcing function should be nonzero in skew turbulence, 

3ÜT dïïT 
<(dy)3> = (-f- + 3u2 -^)dt 

Li 

in case'the fourth moment of the turbulence velocity is modelled by a Gaussian 
assumption ÜT = 3ui •■In our model we have found that this requirement is 
essential for the behaviour of dispersion near the source and also for large 
times. For short times this can theoretically be shown. The short time 
behaviour of height and spread in a Langevin model will be derived in Ch. 5.3 
Eq. (5.10) and the third moment can be derived analogously. They read 

(Z-z s ) 

(Z-z s)> 

= 

= u | t 2 

+ X a^ 2 

♦ (1 a 2 -
U3 — ) t 3 

V _ u3 

(Z-zs)3 = u3 t3 + (X a3 - | ̂ )t- + ... 

Leaving the third moment of dy out means that the skewness of the plume is not 
correctly represented leading to wrong concentration levels. For larger times 
the third moment of dy is also important as we show in the next chapter. It is 
responsible for the fact that a much better uniform concentration is found in 
comparison with the case where the third moment is taken to be zero. The 
article in our model published in Quart. J. Met. Soc. (1986), is integrally 
included in Ch. 4 and redundancies might occur. 
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3.9 Discussion and conclusion 

We discussed several dispersion models based on the Langevin equation. 
These models describe the ve r t i ca l velocity of the dispersing pa r t i c l e s by . 

W dW = - • = - + dy. In these models the parameters TL and dp are prescribed in 
such a way that the Langevin equation can be applied to different atmospheric 
s i t ua t i ons . 

Dispersion in the homogeneous conditions can be described by a Langevin 
equation in which only the second moment of the random forcing i s nonzero. 
Dispersion in neutral surface layers where only T^ depends on height can be 
described by the same formulation of the random forcing. I t i s shown that t h i s 
formulation is seriously in error when applied to more complex s i tuat ions 
where turbulence intensi ty var ies with he ight . Dispersion in such layers , l i ke 
the s table and unstable layers , has to be described by a Langevin model for W 
in which more moments of the random forcing dp are nonzero. The f i r s t attempts 
for such layers included a d r i f t accelerat ion in the Langevin model by putting 
the f i r s t moment of du equal to —— dt This is done to prevent that pa r t i c l e s 

dz 
collect in regions of low turbulence intensity. This formulation is still not 
entirely correct because, even in Gaussian inhomogeneous turbulence, the third 
moment of dy is nonzero. Neglecting this term means that the skewness of the 
plume is not represented, and as a result no distinction is made between the 
mean height and the height of maximum concentration. Results of the Langevin 
model for dispersion in skewed turbulence, like in the convective boundary 
layer, are also discussed. It will be shown in Ch. 4 that both short and large 
time behaviour improve considerably if the third moment of dy is correctly 
modelled. Our Langevin model with the random forcing based on theoretical 
results of Thomson and Van Dop et al. will be shown to be a powerful model. It 
should be applicable to all atmospheric conditions. 

In the above it is discussed that vertical dispersion is strongly 
influenced by the profiles of T^ and the turbulence velocities. But it also is 
by height variation of the mean horizontal wind. This effect can easily be 
modelled in a 1-D Langevin model by an advection term in the horizontal. The 
model results are then usually described as function of downwind distance x 
instead of time. 

Another dispersion model the Langevin model for W/o is introduced. 
In Ch. 5 we will investigate this model theoretically to show that the model 
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for W is essentially different from and more correct than the model 
for W/o The conclusion is that the Langevin equation for W is a powerful 
dispersion model, if the random forcing is specified by its-first, second and 
third moment. 
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4 .1 Introduction 

The dispersion in convective conditions has been f i r s t studied by Will is 
and Deardorff by means of a watertank (1976, 1978, 1981). The cha rac te r i s t i c s 
of the dispersion were quite unexpected a t the time of i t s discovery. Material 
emitted a t ground level f i r s t remains a t the surface but then r i s e s quickly to 
midlevel of the boundary,layer, whereas pa r t i c l e s released from elevated 
stacks f i r s t descend and then move to midlevel. These charac te r i s t i c s have 
since been confirmed by other observations of Poreh and Cermak (1984) in a 
wind tunnel and of Briggs (1983) in f ie ld experiments. Eulerian K-theory is 
unable to describe these phenomena, i t does not give the proper v e r t i c a l 
dispersion for small t imes. The r i s ing of the plume would require negative K 
values, and in rea l i ty material emitted from elevated sources reaches the 
ground sooner and closer to the source than these models p red ic t . An 
al ternat ive is to use Lagrangian models in which the motion of individual 
f luid pa r t i c l e s i s considered. In these models the dispersion for times 
smaller than the Lagrangian timescale i s bet ter described. Besides that the 
conservation of mass i s ensured and no problems occur with numerical s t a b i l i t y 
of the equations used. 

A Lagrangian model of Lamb (1978) simulated the above described 
dispersion phenomena by ascribing to par t i c les a velocity that consis ts of two 
parts W = Wd + Ws. The f i r s t part Wd is the velocity determined by Deardorff's 
numerical model (1974): Ws is a s tochast ic velocity describing the subgrid 
par t . Overall the agreement with the watertank experiment of Willis and 
Deardorff i s very good. 

Misra (1982), Weil and Furth (1981) and Venkatram (1982), arguing that 
the par t ic le is e i ther moved by an updraft or by a downdraft, set up two 
simple stochastic d i f fe ren t ia l equations. By choosing the correct s t a t i s t i c s 
for the updraft and downdraft they were able to simulate several aspects of 
convective diffusion. 

Other models describe the movement of the par t ic les by the Langevin 
equation in analogy with the descr ipt ion of Brownian diffusion. 

The models based on the Langevin equation simulate dispersion in terms of 
a stochastic d i f fe ren t ia l equation (random walk or Monte Carlo s imulat ion) . 
The stochastic term in the Langevin equation describes the forces exerted on 
the par t ic les by the turbulence (Lin and Reid, 1962) and is expressed in terms 
of turbulence s t a t i s t i c s 
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dW = -(W/T )dt + dy (4.1) 

where W is the par t ie le veloci ty, T^ the Lagrangian time scale and dp are the 
random velocity increments. 

The Langevin equation was f i r s t applied to describe dispersion in 
homogeneous turbulence (Lin and Reid, 1962; Gifford, 1982 a and b) . This can 
be described by dy = 0, "TdyT5- = 2ÏÏfdt/T and (dy) r = 0 where ü* is the 

5 L J 
variance of the turbulence velocities. In this case analytical expressions for 
the velocity of a particle and its position may be obtained by successive 
integration of Eq. (4.1). The result is an exponential velocity 
autocorrelation, which is well known to be able to describe homogeneous 
dispersion adequately (Tennekes, 1979). 

The Langevin equation has been furthermore applied to the surface layer, 
where the turbulence was taken to be homogeneous but the timescale varied with 
height. The.resulting equation was solved numerically by Hall (1975), Reid 
(1979) and Ley (1982). Their results were tested against the known analytical 
solution of the diffusion equation valid for large times and against data like 
those of the Prairie Grass experiments. 

However, the Langevin Eq. (4.1) derived for homogeneous turbulence can 
not be applied unmodified to a non-homogeneous boundary layer. For instance, 
particles have a tendency to become trapped in regions with small variances. 
To avoid this phenomenon Legg and Raupach (1982) and Ley and Thomson (1983) 
added an extra term to the Langevin equation. This adding an extra term is 
equivalent to a nonzero mean random forcing du = dt 8u.?/8z, but they still 
take (d y ) 2 ~~= ~2uT™dt7tT~.7~thëy""base "their" arguments"on"the ~Navier""Stokes "~ 3 L 
equations and they state, that a gradient in the velocity variance induces a 
mean pressure force, which has to be added to the Langevin equation. Janicke 
(1981) derived the same expression for dy. He required that the Fokker-Planck 
equation (the Eulerian equivalent of the Langevin equation) should yield 
particle velocity moments, that for large times are equal to the turbulent 
velocity moments in equilibrium. Thomson (1984) extended these arguments, 
taking higher background velocity moments into account. By using moment-
generating functions, he derived the moments of the random-forcing function by 
demanding that the probability density of the particles leads to a 
distribution of particles, that for large times has the same density 
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dis t r ibu t ion as!the a i r . 

indifferent approach is used by Van Dop e t a l . (1984) who deal with the 
general case of 'honistat ionary and non-homogeneous turbulence. They consider 
the Langevin equation of the following form 

dW = {-(W/TL) + a ^ d t + a | doo, (4.2) 

with 

du)fc - 0, ( d ü )
t ) 2 " d t • ( i ,-3) 

This set of equations i s equivalent to Eq. (1 ) if we take 
d~Ü = a .d t , (dy)2 = a_dt. By means of Taylor expansion for small times of the 
ra te equations fo W and W2, Van Dop et a l . obtain expressions for a1 and a 2 . 
These expressions turn out to be equivalent to formulas for the moments 
of dy found by Thomson. They also prove the va l id i ty of thei r resu l t s for a l l 
time by showing, that the moments obtained from Eq. ,(4.2) and (4.3) are 
consistent with the moments obtained from the Eulerian conservation equations. 

Baerentsen and Berkowicz (1984) s p l i t the par t ic le velocity into two 
parts on the same pr inc ip le , the up- and downdrafts, as Misra, Weil and Furth 
and Venkatram did before, but Baerentsen and Berkowicz use two separate 
Langevin equations to describe them. They also allow a par t ic le to jump from 
an updraft into a downdraft and vice versa with a given probabi l i ty . These 
four processes involve separate t imescales, which were tuned by tes t ing the 
resul t s against the watertank experiments of Willis and Deardorff. With t h i s 
tuning the i r model compared very well with the water tank r e s u l t s . 

Our approach d i f fe rs from the study of Baerentsen and Berkowicz in that 
we do not s p l i t the par t ic le velocity into two par t s , but we use only one 
single Langevin equation to describe a l l par t i c le ve loc i t i e s . The purpose of 
this paper is to consider, whether th i s s ingle equation, with the moments of 
the random velocity increments as defined by Thomson, is able to describe 
dispersion in the horizontal ly homogeneous steady convective boundary l ayer . 
Moreover we wil l consider the influence of the moments of dy on the so lu t ion . 
The r e su l t s are compared with the water tank experiments of Willis and 
Deardorff (1976, 1978, 1981), the numerical experiments of Lamb (1978), the 
field experiments of Briggs (1983) and the windtunnel experiments of Poreh and 
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Cermak (1984). 
The modelling of the Convective Boundary Layer (CBL) is described in the 

next section. The Langevin model we used to describe the dispersion in the CBL 
is explained, whereafter the results are given and discussed. In the last but 
one section we discuss some details of our simulation. The last section 
contains our conlusions. 
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4.2 Convective boundary layer 

Usually during daytime the air is heated at the surface and the boundary 
layer becomes unstable. The vertical turbulence structure becomes organised in 
a pattern of updrafts and downdrafts, where on the average the updrafts move 
faster than the downdrafts. Because the vertical speed, averaged over a large 
horizontal area, should be zero, the downdrafts occupy a larger area than the 
updrafts at each level of the boundary layer. If the turbulence is 
inhomogeneous, the vertical velocity distribution is height dependent. 
Furthermore the vertical velocity distribution is skew. The Eulerian 
properties of the convection (outside the surface layer, where the stresses 

1 /■* 

are constant) can be scaled with the convective velocity w„ = (z.we g/T) 
* 1 0 

and the height z^ of the boundary layer i f -z^/L > 10 (L i s Obukhov 
length, we is the surface heat f lux) . Below th i s value the turbulence begins 
to be affected by shear s t r e s s (Willis and Deardorff, 1976, 1978 and 1981). 
This type of scaling is called mixed layer scaling. I t i s assumed that the , 
Lagrangian and Eulerian correla t ion functions p. (t) and p„ ( t ) , are similar in 

L hi 

shape but displaced by a scale factor g: p. (0t) = pc,(t) (Hanna, 1982). From 
the definit ion of TL follows g = T /TF . The Lagrangian propert ies then also 
scale with w# and z^. The various theoret ica l estimates of B a l l lead to the 
form 0i = constant, where i i s the turbulence intensi ty defined as a / u . The 

u ' ■'• 
numerical values of the constant range from 0.35 to 0.8 (Pasquill and Smith, 
1983). Hanna (1981) found for a convective boundary layer T„ = 0.25 z./u = 0.69 iz/w„, where o = 0.36w„ is subst i tuted (Hanna, 1982). t, l i * u K 

Then we get 

0.24 z./w# < TL < 0.55 z i /w, , (4.4) 

but we have to keep in mind tha t there i s a large uncertainty in the 
constants, 

Many measurements have been carried out to determine the prof i les of the 
second and third moments of the ve r t i ca l turbulence veloci ty . Baerentsen and 
Berkowicz used the following prof i les expressed in terms of mixed layer 
scaling: 

ïï*/w? = 1 . 5 4 ( z / z J 2 / 3 exp(- 2z/z. ) <4-5) 
j . i i 
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ïï*/w' = 0 . 8 ( z / z . ) ( 1 - z / z . ) ( 1 + 0 . 6 6 7 z / z . ) 
o 1 1 i 

-1 ( 4 .6 ) 

In order to avoid d i f f i cu l t i e s , as wi l l be discussed l a t e r , we use for the 
third moment a s l ight ly modified expression: 

ïïf/w! = 1 . 4 ( z / z . ) e x p ( - 2.5 z / z . ) ( 4 . 7 ) 

(see F i g . 4 . 1 ) . 

t < 
I z/z 

Fig 4.1 
Second and third moments of turbulence vertical velocities as described by Eqs. (5) and (7) (solid 

line). Stars: water-tank data (Willis and Deardorff 1976); circles: aircraft measurements (Willis and Deardorff 
1974); squares: Minnesota data (Izumi and Caughey 1976^; crosses: water-tank data (Willis, published by 
Baerentsen and Berkowicz, 1984). Dashed line denotes u[ profiles of Baerentsen and Berkowicz (1984) 

(Eq. (6)). 
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4.3 The Langevin model 

Next wë consider the Langevin Eq. (4.1) for inhomogeneous conditions. The 
theory has been developed by Thomson (1984) and Van Dop et a l . (1984). Their,, 
r e su l t s lead to the following expressions for the moments of the random 
forcing function dy. 

dp = At{3ÜÏ(z)/3z} 

TdHF = At{2uJTzT/TL + 3Ü|7I7/3z} (4.8) 

TdlTP" = At{3ü|Tzj"/TL + aü^üT/az - 3üJTz73ü^Tz7/3z} . 

We solve the Langevin equation in a f in i te difference form. We use the 
following expl ic i t scheme: 

W(t + At) = W(t)(1 - £At/TL)(1 + £At /T L r 1 + du(1 + ^At/T^" 1 } 

Z(t + At) = Z(t) + ^At|w(t + At) + W(t)} 
(4.9) 

with At the timestep used in the integration procedure. This scheme is 
unconditionally stable and doesn't cause computer time problems. 

Finally to assign a value to the random forcing at each time step for 
each particle we construct the distribution density function P(dp). This can 
be constructed from the Eq. (4.8) in the same mathematical way Baerentsen and 
Berkowicz (1984) constructed their distribution function for the velocity of 
the updrafts and downdrafts P(u_) (See appendix I). 
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4.4 Results 

The Langevin model described above is applied to dispersion in a 
convective boundary layer, neglecting streamwise and cross-wind diffusion. The 
profiles used in Eq. (4.8) are Eq. (4.5) and Eq. (4.7) together with 
T. = z./w„, which relation will be discussed later. A slight adjustment is 
L l * _ ^ 

applied to the a? profile near the ground. There we took u~/w£ constant in a 
shallow layer of depth 6, where 6/z. = 0.0025. The velocity variance in this 
layer was put equal to ïïf(ó/z, )/w*. The reason for this will be discussed 

j i * 
later. 

At the top and at the bottom reflection boundary conditions are imposed 
on the particle motion. 

At t = 0 the particles released at z = zs are assigned initial velocities 
W such that 

W(t = 0) = 0, W*(t = 0) = u*(z ) and Wit = 0 = u»(z ) . (4.10) 
j S 0 S 

The number of particles released was set at 2 x 10 and the timestep at 
At/T, = 0.05. This choice was made to avoid inaccuracies in the generation of 

Li 
the random forcing funtion as will be discussed later. Computertime for a 

4 i 

simulation of 2 x 10 trajectories up to t = 4 T^ on the CRAY XMP computer at 
ECMWF, Reading, U.K. was 13 seconds CPU time. The amount of particles was 
generally sufficient to obtain stable statistics. 

The resulting concentration profiles are measured as the number of 
particles in an interval Az/z. = 0.05. They are nondimensionalised with the ~viriüë_Q7^U^^hi^h~i^thè"^öhcë"htratl5h^ when thé" "par~ticlè~s~ are "homogeneously 
distributed in height. The concentration profiles are given as function of 
nondimensional time t/TL. This is equivalent to a nondimensional 
distance X = (w#/U)(x/z.), where x is the distance over which particles are 
advected by the uniform mean wind U in a time t. 

Contour plots were made of the concentration as function of height and 
time or downwind distance (Fig. 4.2) until the distribution reaches a steady 
state. They are compared with the results of the watertank experiments also 
given in Fig. 4.2. We see that the simulations describe the significant 
features found in the experiments remarkably well. Particles released at 
ground level first remain at the ground, then rise above mid-level before 
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H/2; 

LANGEVINMODEL 

0.75-

*/*. 

0.25 

Fig 4.2 EXPERIMENT WILLIS & DEARDORFF 

Contours in the vertical x,z plane of the dimensionless concentration 
presenting the results of our Langevin model (I) and of the cross wind 
integrated measurements of Willis and Deardorff (II) for the source heights 
a) Zg/Zj = 0.067 
b) Zg/zj = 0.24 
c) Zg/zj = 0.49 
Source height is indicated by arrow on ordinate. 
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Fig 4.2 continued 
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Fig 4.2 continued 
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reaching the equilibrium state. Particles released at a quarter of the 
boundary layer height and at mid-level are first swept downward, remain a 
small time at the surface and then rise to mid-level. Furthermore the observed 
concentration pattern is simulated not only qualitatively but also very 
satisfactorily quantitatively. 

The maximum value in the center of the particle cloud, released at 
groundlevel, during lift off of the particles (Fig. 4.2) was slightly smaller 
than the experimental value of Willis and Deardorff during lift-off. It also 
appeared that our concentration profiles during lift-off are more peaked for 
z/zi < 0.2. This is probably due to the fact that a point source is hard to 
simulate in experiments leading to less peaked concentration profiles. 

In their windtunnel experiments Poreh and Cermak (1984) measured 
centerline concentrations for particle releases at z /z. = 0 

s i and z / z . = 0.133 a t s i x d i s t a n c e s smal le r than X = 1.2. We converted the s i 
c e n t e r l i n e c o n c e n t r a t i o n s C(x ,o ,z ) to c ro s s wind averaged va lues 

C ( x , z ) , assuming t h a t the crosswind spread i s Gaussian ( W i l l i s and Deardorff, 

1976). 

y z. y 
C y (x ,z) = ƒ C(x ,y ,z ) ^ = ƒ C ( x , 0 , z ) e x p ( - y 2 / 2 a * ) ^ - = / (2 i r ) (o / z ^ C U . O . z ) 

(4.11) 

where we used Poreh and Cermak's measurements of o ( X ) / z . . 
y i 

The r e s u l t s of our model for z / z . = 0.067 and z / z . = 0.133 
s i s i 

compare very well with the c a l c u l a t e d va lues of Poreh and Cermak 
(Fig 4 . 3 ) . I t seems though as i f t he re i s an incons is tency for the r e s u l t s a t 
X = 1.06. Our r e s u l t s imply a l a r g e r value of o (X = 1.Ö6')~'than the one given 
by Poreh and Cermak. 

The mean he igh t of the plume and i t s spread a re c a l c u l a t e d as a funct ion 
of time u n t i l the d i s t r i b u t i o n reaches a s teady s t a t e (F ig . 4.4 - F ig . 4 . 5 ) . 
These r e s u l t s were compared with cross-wind i n t e g r a t e d r e s u l t s of the water 
tank experiments of Deardorff and Wi l l i s (1975) and W i l l i s and Deardorff 
(1976, 1978, 1981) and the numerical r e s u l t s of Baerentsen and Berkowicz 
(1984). 

The time a t which the maximum height i s reached agrees very well with t h e 
tank exper iments , a l though the maximum he igh t i t s e l f for groundlevel r e l e a s e 
i s s l i g h t l y l e s s in our experiments (F ig . 4 . 4 ) . In equi l ib r ium the 
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f ig 4.3 Concentration profi les measured by Poreh and Cermak for z /z = 0 
s i 

and z s / z i = 0.133 (squares), and our concentration profi les for 
z g / z i = 0.067 and z s / z i = 0.133 (crosses). 
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Mean partiele height ̂ /z as a function of downward distance X for source 
heights Zg/Zi = 0.067, Zg/zj = 0.24 and Zg/^ = 0.49. The results of our 
Langevin model are denoted by a solid line, the measurements of Willis and 
Deardorff by circles and the numerical experiments of Baerentsen and 
Berkowicz by (-.-). The short time Taylor series expansions (Eq. 13) are 
indicated by dashed lines. 
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1/2 

■,/».-0.24 

Fiq 4.5 
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a=(a-«a)2/ai 
*,/«, = 0.49 

Mean variance (z - z ) /z. as a function of downwind distance X for source 
s l 

heights Zg/z^L = 0.067, z3/Zi = 0.2H and z s/z i = 0.49. The results of our 
Langevin model are denoted by a solid line, the measurements of Willis and 
Deardorff by circles, and the numerical experiments of Baerentsen and 
Berkowicz by (-.—). The short time Taylor series expansions (Eq. 13) are 
indicated by dashed lines. 
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concentration should be homogeneous (C(z) = 1) and then the mean height is 0.5 
zi-

In our experiment, as well as in the experiments of Baerentsen and 
Berkowicz, the mean height is lower because the concentration 
distribution does not become homogeneous, as will be discussed later. Willis 
and Deardorff did find an equilibrium mean height of 0.5 Zj: , although their 
equilibrium concentration is not homogeneous either. In their experiments the 
inversion height is not constant. At some places the particles reach beyond 
the average value leading to a larger mean height of the particles. 

Our particle spread {(Z - z )2}2/z., results agree very well with the 
5 JL 

tank experiments for a l l time although for the groundlevel release the maximum 
spread is again s l igh t ly l e s s . Our equilibrium values are f a i r compared to the 
theoret ica l equilibrium value 

1 X r1 _ ,_ . ,_ ,_ x*ifc 2 {(Z - z )2}Vz. = { ( 1 / z . ) ƒ ( z / z . - z / z . ) 2 C ( z ) d z P = U ~ z / z . + (z / z . ) 2 } 
o 

(1.12) 

which i s equally true for the equilibrium values of Baerentsen and Berkowicz. 
The dip in the spread between X = 1 and X = 2 for the case Zg/z^ = 0.49 

i s a feature that we were also able to simulate. This dip i s due to the fact 
that the pa r t i c l e s l i f t off the ground between X = 1 and X = 2. This r e su l t s 
in a concentration d is t r ibu t ion with such f i r s t and second moments, that the 
spread re la t ive to z s i s smaller than the equilibrium value. 

The sma-1-1 time exact-Taylor ser.ies expansions for mean height and spread 
of the par t ic les derived for an inf in i te boundary layer are (Hunt 1984) 

z3 - £(9u2 /3z) z t 2 + 0( t 3 ) 
S (4.13) 

(Z - z ) 2 = (u2) t 2 + VJdui/dz) t 3 + 0 ( f ) . s 3 z 2 3 z s s 

• The re su l t s in Fig. 4.4 show indeed that the mean height increases the 
fas tes t the closer the source i s to the surface. This i s because 
Su^/Sz decreases with height. 
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Willis and Deardorff measured the mean height and spread for releases at 
Zg/Zĵ  = 0.05 and Zg/^ = 0.067. Our model run with a 
u*(z) profile that is equal to Eq. (4.5) leads to good agreement with the 
short time results of zs/zi = 0.067. The results of Willis and Deardorff in 
case z0/z.- = 0.05 are best simulated with u^(z) = 1.8(z/z.) . This profile s i j i * 
is also used by Van Dop et al. (1984), following Wyngaard et al. (1971). This 
might be explained by the fact, that maybe in each water tank experiment, the 
convective boundary layer established, should have been described by a 
different coefficient in the uTTzJ profile. 

Groundlevel concentrations C(x,z = 0) are presented in Fig. 4.6 where 
also the results of a source at zg/zi = 0.75 are given. These values are based 
on the average number of particles in the lowest interval 
Az/z. = 0.05, except for the ground level source at height Zg/Zĵ  = 0.067, 
where the results of two layers were averaged to include the source height 
itself. 

Particles released at the surface immediately lift off the ground, 
reducing the groundlevel concentration. Only after distances larger than X = 
0.5 the groundlevel concentration increases again untill the particles get 
homogeneously distributed. The groundlevel concentration due to the phenomena 
shows a minimum between X = 0.6 and X = 1.5. 

Particles from elevated sources are first transported downward with a 
nondimensional velocity of order 0.5 w*/U. The higher the source, the longer 
it takes before the plume hits the ground and the more effective the diffusion 
already does its work. Therefore the maximum groundlevel concentration 
decreases with source height. 

Briggs (1983) analysed a large number of dispersion field experiments. 
These are data for source heights in the lower half of the boundary layer. He 
came to the conclusion that groundlevel concentrations from elevated releases 
have a peak at X = a zg/zi with 1.8 < a < 2.2, due to a downward non-
dimensionalised mean particle velocity of w*/U. He also found that the maximum 
surface concentration can be described by 

C (X,z=0) - 0.48(1 + 2z /z.)(z /z.)"1 . (4.14) 
max s i s l 

The values we found for the distances X at which the groundlevel concentration 
peaks agree very well with his formula (Fig. 4.6). But our maximum 
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Figure 6. Ground level concentrations as a function of downwind distance X for the source heights zjz, = 0-067, zjz, = 0-24, zjz, = 0-49 and zjz, = 0-75. 
These concentrations are averaged values over the interval zjz,<0-05 except for the source height zjz, = 0067 where the average is over z/z-, < 0 1 . The 
results of our Langevin model are indicated by a solid line, the measurements of Willis and Deardorff by stars, and the maximum ground level concentration 

according to Briggs (Eq. 14) is indicated by A. 
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concentrations are smaller than those predicted by Briggs. This might be a lso 
due to the fact that the concentration gradient at the lower side of the 
par t ic le cloud during l i f t off i s very large in our experiment, r esu l t ing in 
lower groundlevel concentrations. 

Simulations for longer times up to t /TL = 200 show that the concentration 
d is t r ibut ion reached af ter t /T L = 3 i s approximately the equilibrium 
d is t r ibu t ion . This concentration is homogeneous in the bulk of the boundary 
layer but reduces to 0.7 times the homogeneous concentration in two thin 
layers along the bottom and top with a thickness respectively of one tenth and 
one f i f th of the boundary layer height , independent of source height. 

These phenomena, although also quite accidentally measured by Will is and 
Deardorff, should be investigated fur ther . I t might be due to inconsistencies 
in the Lagrangian modeling and deserves our a t tent ion , because most 
applications will focus on a correct predict ion of surface concentrat ions. 
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4.5 Discussion 

In this section we will discuss some details of our simulation. First we 
consider the choice for T and for the turbulence velocity distribution. Next 

Li 

we consider the sensitivity of our model for the parameter At and for the 
modelling of the random forcing function. We conclude with a discussion of the 
results in comparison with observations. 

The Lagrangian timescale was argued to be T. = cz./w^ (Eq.(4.4)). In this 
section 2 it is discussed that c lies between c = 0.24 and c = 0.55 based on 
one experiment by Hanna (1981). The choice of the constant c is critical. Each 
choice leads to different behaviour of the particles and therefore the choice 
for c can not be considered to be a scaling of the Langevin equation. This is 
because the equations for the moments of dy depend both on At/TT and 

Li 

on At, leading to a nonscalable velocity and consequently to a nonscalable 
displacement. 

The choice of c is restricted by the fact that the variance (dp)2 
has to remain positive. For instance if we use the profiles of Baerentsen and 
Berkowicz in Eq. (4.8) we find that for c < 0.87 the requirement (dy)2 > 0 is 
satisfied at all heights. However, these values of result in a too slow lift­
off of the particles, suggesting that c should be larger. We chose c = 1 and 
in that case the profile of uTTzT has to be changed slightly at the top to Eq. 
(4.7), which has a less negative gradient in this region. 

Another small adjustment of the profiles was required. Near the 
ground (z -»■ 0) 3u2/9z tends to infinity (cf Eq. 4.5) so that dp may take 
arbitrary large values (Eq. 4.8). This, however, causes difficulties in the 
numerical procedure, which was chosen to determine P(dp). These difficulties 
could be avoided by taking u2/w2 to be constant in a small layer 6 above the 
ground. Here 6 is put equal to 0.0025. A larger 6 causes the concentration in 
the layer z < 6 to spread out more. 

At the top and at the bottom reflection boundary conditions are imposed. 
This means that for some small quantity e we get 

u (-e) = - u (e) and u-(z. + e) = -u (z. - e) . (4.15) 

This implies that u (z) anCj u3 (z) should be zero at the boundaries, 
while u2(z) should be constant near the boundaries. At the ground the profiles 
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given by Eq. (M.5) and Eq (M.7) are consistent with the boundary conditions. 
At the top the requirements ïïï/w2. = constant and u?/w£ = 0 are not met by the 
profiles. We did not adjust the profiles, because this would imply a too large 
gradient in u.?/w»» which would lead to violation of the requirement 

5 * 
(dp)2 > 0. 

The accuracy of the statistics of the constructed skew forcing function 
is a function of the number of particles and of the time step. This can be 
explained as follows. The skewness of the random forcing function is defined 
as S = (dy)3/{(dp)2J . This skewness is a function óf the numerical time 

-Y step S - (At) 2. A small timestep implies a large value of S. A large skewness 
means that the probability density function has a tail. These large values 
of p have a very small probability. If the generation is done with a limited 
number of particles, these large values of p might be left out, causing the 
generated distribution to have a very inaccurate skewness. We choose 
At/T, = 0.05 and the number of particles to be 20.000. 

As we have seen we must prescribe the first three moments of the random 
forcing term in the Langevin equation. Let us now consider how sensitive our 
model results are for the exact prescription of those moments. The description 
of dispersion in non-homogeneous turbulence, when only u2(z), but not its 
derivative, is taken into account, leads to accumulation of the particles in 
regions with a small variance (Janicke, 1981). Janicke (1981) and Thomson 
(1984) in their run 2 and 3 also took into account the derivative düï/dz. 
They applied the full Eqs. (8a, b) with ü^ = 0. The higher moments are still 
assumed to be zero. This results in a concentration distribution for large 
times that is sometimes slightly the opposite, particles accumulate in regions 
with a large variance. This also happened in simulations with our model. 
Introducing a third moment of random forcing function u*(z), in Eqs. (4.8b,c) 
improves the simulations very much. 

Of the fourth moment, ÜY, no measurements are available. Therefore, we 
assumed a relationship between the fourth and the second 
moment, u* = aüT2)2, with a between 2 and 5. Comparing the results with the 
watertank experiments it appears that the convective boundary layer is best 
modelled with the Gaussian assumption 

^3 = 3(üp2 . 0».16) 
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1.6 Conclusions 

Dispersion of particles into inhomogeneous turbulence in a convective boundary 
layer is modeled by a Langevin equation. The Langevin model is capable of 
simulating all the experimentally known features of dispersion in convective 
turbulence. The agreement with observations may be characterised as good. The 
theory for the Langevin model in inhomogeneous conditions requires that the 
third moment of the random forcing function should be nonzero. We have found 
that this requirement is essential for the behaviour of the model near the 
source, where it is responsible for the downward movement of an elevated 
plume. The requirement also holds for the behaviour for large time, where a 
much better uniform concentration is found in comparison with the case where 
the third moment is taken to be zero. 
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Appendix 

This skew distribution function P(dy) can be constructed out of two Gaussian 
distributions: with a chance a1 we choose dp from the first Gaussian 
distribution function P (x.), and with a chance (1 - a.) we choose dy from the 
second Gaussian distribution function Pp(x2). These P^x*) have mean m* and 
variance a2. Four requirements 

1 - a1 ƒ Pl(x1)dx1 + a2 ƒ P2(x2)dx2 (A1) 

(dy)n - a1 ƒ x"p i(x1)dx1 + a 2 ƒ x2P2(x2)dx2 n = 1 , 2, 3 

lead to the equations 

a1 + a 2 " 1 

a.m. + a„m2 = dy (A2) 

a^m 2 + a2) + a2(m| + o2) = (dy)2 

a^m3 + 3m1 a*) + a2(m3 + 3m2o|) = (dy)3 . 

These equations s t i l l have two degrees of freedom. Because we're not 
interested in the specific form of P(dy) but only in i t s f i r s t three moments 
the two other requirements were chosen to simplify the a r i thmat ics . We chose 

m2 - oJ(i = 1 ,2) . 
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5.1 Introduction 

Dispersion in a turbulent atmosphere can be described by a Langevin 
model.Such a model describes the velocity of released particles. The changes 
of the velocity in time are modelled by a damping term and a random forcing 
term. The last term specifies the effect of turbulence eddies on the particle 
and can be formulated such, that the Langevin equation is able to describe 
dispersion in inhomogeneous turbulence. These facts were shown to be true in 
the former chapter, where we applied the Langevin equation to a convective 
boundary layer. The complicated behaviour of dispersion from a point source 
was satisfactorily described. Only in the equilibrium state the model results 
showed shortcomings: the particles were uniformly distributed, except near the 
ground and the top of the boundary layer. Another model, a Langevin model for 
the variable W/o, shows a better homogeneous concentration distribution in the 
above mentioned application. This difference was the background of our 
theoretical investigation of both models. 

To be able to make a comparison between the two models we investigate 
several of their characteristics. In particular we will consider short and 
large time behaviour. In addition we compare both Langevin models to the exact 
Eulerian conservation of mass equations. When we investigate the large time 
behaviour we do not only investigate the steady state of the Langevin models, 
but also their large time behaviour leading to this state, which is described 
by Markov limits previously discussed in Ch. 2. There the new large time 
analysis for inhomogeneous turbulence was applied to the Langevin model for W. 
In this chapter we extend the derivation to the W/o-model and compare the two, 
to see whether the above described undesirable effect of a non-uniform 
concentration distribution in the W-model is inherent to this model. 
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5.2 Introduction of Langevin models for W and fo_r_W/o_ 

Two Langevin models have been used in the literature to describe 
dispersion in a turbulent atmosphere. The first model is a Langevin model for 
the vertical particle velocity W, which is already extensively discussed in 
Ch. 2. The second model describes W/a, where c2(z) is the variance of the 
vertical turbulence velocity fluctuations o2(z) = u2(z). 

This alternative model, first used by Wilson et al. (1983), is based on 
the Langevin equation for W/a. It reads 

dö " " lïz) Vz7 + dx(t) and 

(5.1a) 
dZ = Wdt , 

where dx is a random process describing the random forcing of the particles 
consistent with this model. Eq. (5.1a) is equivalent to the equation 

dW - " T-fz7 dt + W2 2^ Hl dt + dri(t) and 
(5.1b) 

dZ = Wdt , 

where we substituted dn = a dx and used that da2 = §£- dZ = ^jr=- w dt-
For stationary turbulence the formula for the moments <(dn)"> = b (z)dt were 
also derived by" Thomson"(1984) analogously to the derivation -for- the model for-
W. They can also be given in one general formula, which reads 

du_ (z) u_(z) ^ du.(z) — — n-1 -
K r~\ 3 3 n 3 n+1 , . v ^n, n-k . , N 
bn(z) - Tz + n T-— ~ -=i " d z — u3 (Z) " * V U3 bk(2) 

J-J t U - K — I 
(5.2) 

From Eq. (2.50) and (5.2) we evaluate the first three moments of both models. 
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For the W-model they read 

du2 
a (z) = — — , 
1 dz 

u 7 du7 • 
a (z) = 2 — + — and (5.3a) 2 T dz 

Li 

a (z) = 3 -- + — - 3 u2 — . 3 T dz 3 dz 
Li 

The first three moments in the W/a-model read 

du2 

u2 du3 u3 du2 
b (z) = 2 — + — --- ~ and (5.3b) 
2 T dz —- dz 1 "L _ 

u3 du*7 u" du2 du2 
b (z) 3 e 3 3 3 3 3 ̂  3 
3 Z T dz 2 — 'dz 2 U3 dz *' 

"3 . 
From the characteristic function f of the random forcing function in the W-
model we argued that in Gaussian turbulence the fourth and higher moments 
of dp are zero in order dt, while 

, v da2 
a

1
(z) - - a z • 

a2(z) = 2 ̂  , (5.4) 

i \ -i 2 d o 2 a_(z) = 3 o2 
L 
d 
dz * 

(see Eq. (2.56)). 
Thomson (1984) derived the moment generating function of the random forcing 
function dn of the W/a-model in Gaussian turbulence. From this we may find the 
characteristic function, which reads 
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9o 
f(e) = 1 + dt o -^- e + ~ 02 e2 + o(dt2) . (5.5) W dZ I W 

Li 

n 9nf The moments <(dn)"> are given by <(dn) > = (- i) — - ] . Because the 
96 6 = 0 characteristic function Eq. (5.5) is a second order polynominal it follows 

that the third and higher moments of dn are zero in order dt, while 

V » ^ * ^ ' 
b„(z) = 2 f-

L 

(5.6) 

In homogeneous turbulence the models for W and W/o are equivalent. 
However, in general turbulence conditions the models are not equivalent due to 
the nonlinear term in Eq. (5.1b). We will investigate this difference. 
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5.3 Short time behaviour,of the models 

5.3.1 Introduction 

To compare the Langevin model for W and W/o we investigate several 
aspects of them. The aspect of the Langevin models we consider here is the 
short time behaviour of particles released in stationary turbulence. We derive 
shorttime expansions of the mean particle height Z(t5"-z~ and variance s Tz-z ) 2 as given by the models (zs is the source height) and compare these -*_ / ao 51 veil uj one Mi^uej.o \ "3 
express ions t o the exact Taylor expans ions . 

The exact Taylor expansions of the s t a t i s t i c s of p a r t i c l e t r a j e c t o r i e s 

for the case of s t a t i o n a r y turbulence are (Hunt, 1984) 

du2 d2 u3 du2 

3 . 2 1 3 . , „ 3 . , , . 1 t ( Z - z ) - f c — - ] t + - —--"- t 3 + . . . = % - p t 2 ( 1 + - —) + 0 ( f ) 
s dz 6 dz2 dz . 3 T z 1 s 

(5 .7a) 

du3 

2 „ 3 , J (Z-z ) 2 = u2 ] t + % — - 3 t + . . . = u2 t 2 (1 + X — ) + 0 ( f ) 
s 3 z dz z 3 T 

s s 2 

(5 .7b) 

where the dummy t imesca les T. and x a re given by Eq. ( 5 . 1 3 a ) . 

In t he sho r t t ime expansions of Langevin model r e s u l t terms appear , t h a t 
apar t from TL , a l s o involve ( s t i l l t o be defined) t imesca les T d , an a r t i f a c t 
of the models. These terms spec i fy the dev ia t ion from the exact Taylor 
expansions . The usual r e s t r i c t i o n on model shor t t ime expansions t ha t they a r e 
va l id for t imes smal le r than TL i s t h e r e f o r e not n e c e s s a r i l y c o r r e c t . The 
model shor t t ime expansions dev i a t e from the exact ones for t imes l a r g e r than 
e i t he r TL or Td and t he T d ' s might be smal ler than TL . 

We w i l l de r ive the sho r t t ime expansions of the Langevin. model and wr i t e 
them in such a form tha t s i m i l a r i t i e s a re e a s i l y noted . This w i l l be done with 
the aid of dummy t i m e s c a l e s . From them we define Td and i n v e s t i g a t e the 
devia t ion of the models from the exact Taylor expansions i n an a p p l i c a t i o n t o 
convective t u r b u l e n c e . 
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5.3.2 General shorttime expansions of quantitjLes__in_the_Langevin models 

The short time behaviour of mean height and variance as given by the 
Langevin models in stationary turbulence can be derived from the general 
formula for the particle displacement relative to the source zQ: 

Z(t) t W(t) 
Z(t)-z = J dZ = ƒ W(t')dt' = tW(t) - J t'dW(t') 

s z o W(o) 
s 

W(t) W(t) 
= W(o)t + t ƒ dW(t') - J t' dW(t') 

W(o) W(o) 

W(t) 
= W(o)t + J (t-t') dW(t') . 

W(o) 

Per definition we have that W(o) s u.(z ), so that 
3 s 

W(t) 
Z(t)-z = u_] t + J (t-t') dW(t') . (5.8) 

S óz W(o) s 

This general equation can be used in both models. 

Langevin model for W 

To get expressions for the shorttime expansions in the first model we 
substitute the Langevin equation for W into Eq. (5.8). We get 

Z(t)-zs = u ] t - J (t-t') YJzTtT)) dt' + / (t-t')dn(f) (5.9) 
z o L o 
s 

Note that in inhomogeneous conditions dp and T are implicit functions of t. 
Lt 

To get a short time expansion we expand the terms on the RHS. 
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We can expand ^p- using W(t) = u,(X(t)). Our Langevin model is a 1-D model 
L for the vertical velocity W. However, the turbulence velocity is a 3-D 

quantity and should be expanded accordingly (Van Dop et al., 1985). In this 
expansion we use the continuity equation du./dx. = 0, which leads to the use 

du^ d(uoU.j) of uj ÏÏ5J = ~ 3 x J ^ • This 8 i v e s 

du dT. 

L Z J X L S L Z 
S ~S S 

d U * 1 1 d T l 
= S ] + ( u j ^ ) ] t + - ' - - J T - T z - ) { l - ( u 3 T " - d z - ) ] t + '••f z ° j x L s L z s ° -s s 

U- , du_u. , dT. 

T. J (TT dx. U3 T,2 dz ) J t •*• 
L z L J L x s 

s 

We expand d u ( Z ( t ) ) a s 

d y ( Z ( t ) ) = dp ( t = o) + . . . 

Substituting the expansions of -~- and dy in Eq. (5.9a) we get 
L 

t u du u . dT 
Z(t)-2 = U ] t + / ( t - t ' )d U ( t -0) r%^] t2 - 1(1- ™U- - U2 f2-£)l t3 + . . . 

z o Lz L j L z 
s s J s 

(5.9b) 

To derive the shorttime expansion of the mean height we ensemble average Eq. dUoUi 3u? (5.9b) and use the horizontal homogeneity to give ~g[y. = "~g£: 

t ■ du1 dT 
Z(t)-z~ = ƒ dy(t=o)(t-f) - U ~ ~ ~ u2 ™ —-)] t3 + ... s ' 6 T dz 3 T2 dz o L L z s 

t duf _ dT 
■ W / <t- t '>dt ' - 6 ( r - s " u3 ï f - s " '" * - <5- ,0a) 

o L L z 



5 . 1 0 

du2 du2 dT 
. £ _ 3 ] t

2 - l ( - 3- - ^ i I — - ) ] t3 + . . . 
* dz J 6 T dz 3 T* dz J 

z L L z 
s s 

d ï ï 3 1 t 1 t 
d Z z 3 T L 3 T3 z 

s s 

where T- i s given by Eq. (5 .13a) and the moments < ( d p ( t ) ) > = a ( z ( t ) ) d t in 
s t a t i o n a r y tu rbu lence by Eq. ( 2 . 5 0 ) . To der ive the sho r t t ime expansion of the 
spread we square and ensemble average Eq. ( 5 . 9 b ) . Using the f a c t tha t u (z ) 

D S 
and 
du(z ) are unco r r e l a t ed we get s 

__ u2 t t 
( Z ( t ) - z ) 2 = u 2 ] t 2 ] t 3 +ƒ ƒ ( t - t , ) ( t - t " ) d p ( t r = 0 ) " d p ( t ' = d ) + 

s 3 T J J 

z L z o o 
s s 

— "* 
= u 2 ] t 2 + - a (z ) t 3 - — ] t 3 + . . . . 

3 3 2 s T 
z L z 

s s 
du 7 u2 

— 1 3 1 3 
„ U 2 ] t 2 + _ ^ - ] - t S ^ -, t S + 3 3 dz 3 T 

z z L z 
s s s 

= ÏÏI] t2 (1 - 1 £ - + 1^-) ] + . . . , 
z L 3 T2 z 

s s (5.10b) 

where T ? i s given by Eq. ( 5 . 1 3 a ) . Note tha t T „ a l so appears in the exact 
"Taylor;" expansions: "for" the "spread. — — - - - ■ - - • - - - - ._ 

Langevin model for W/a 

The s h o r t t ime expansions of Z-z and (Z-z ) 2 for the Langevin model for W/a 
s s 

can analogously be derived by substituting the Langevin Eq. (5.1b) into 
Eq. (5.8): 
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Z(t)-z = u ] t+ J A(Z(t'))w2(t')(t-t')dt,-J(t-t,)--L-;dt' + f(t-t,)dn(t') 
s z o o L o 

s 
(5.11a) 

with A(z) = ^-rr —^7. To get a shorttime expansion we expand the terms on the J_ da2 
2o2 dz 

RHS. We expand W, TL and dn like above and the square of the velocity 
W2 and the quantity A(z) as 

du u. u du u. 
W2(t) = {u ] +-^- J-l t + ...} 2 - u2 ] + 2 — d~- J- 3 f- ... 

ZS . 2
J ï8

 ZS J Ï8 
9 u2u. 

= u2 ] + —-rJ-J- t + ... and 

A(z) = A(z ) + u H ] t + ... 
z 
S 

Then Eq. (5.11a) becomes 

du2u. t u_ 
z(t)-z -u ] t+^u2 A ] t**d-£lk * 5 U ? ^ > ] t 3 +J(t-f )dn(f) -fe3 ] t2 

zs zs J zs ° L zs 

du2 dT ( 5 ' 1 1 b ) 

" 6^T7 ~dz " u3 Tf ~dz~; J t + • ' ' 
L L Z 

S 

Ensemble averaging Eq. (5.11b) us ing h o r i z o n t a l homogeneity the shor t t ime 

express ion for the mean height becomes: 

<K ! , K , dT
L ! d K A> 

( Z ( t ) - z ) - * — i ] t2+%b (z ) t 2 - r ( - - — u 2 - — - ) ] t 3 + - • - ] t 3 

s dz z 1 s 6 T dz 3 T2 dz z 6 dz 
s L L s z 

s 

d ï ï ^ 1 t 1 t 1 t 
d z z 3 TL 3 T3 3 T4 z 

Zs L 6 H Z s (5 .12a) 

where t and T . are given by Eq. (5.13b) and the moments <(dn> > = b dt in 
s t a t i o n a r y tu rbu lence by Eq. ( 5 . 2 ) . The term with T , i s kept s e p a r a t e t o 
compare the W- and W/o-model. Squaring and ensemble averaging Eq.(5 .11b) we 
get the express ion fo r the spread: 

_ u | t t __ 
( z ( t h )2 = u2] t2+u3 A t3 - 7T ] t3 +ƒ J (t-t,)(t-t")dn(tr)"dn(t11)" + . . . s 3 3 T. ' ' z L z o o 

s s 



5.12 

_ u3 do2 u2 

u2 ] t2 + t3 [fc 4 -7- + ö bo " ̂  + ••• 3 z 2 a2 dz 3 2 T z s L s 

du3 u3 du2 u2 

— 1 3 1 3 3 1 3 u»] t2 + (- — - + 7 — -)]t3- - — ] t: 3 3 dz 6 — dz 3 T z u' z L z s 3 s s 

ïïl ] t2 (1 - 1 £- + 1 £- + 1 - ) ] + ... , (5.12b) 
3 z 3 TL 3 T2 6 T5 z s s 

where x,- is given by Eq. (5.13b). The term with x„ is kept seperate to 5 ^ 
compare the W- to the W/o-model. In the next section we derive the deviation 
timescales Td from the dummy timescales T.-T,.. 
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Summary 

T h e exact Taylor expansions Eq. (5.7) for mean height and spread are 
dul 

Z(t)-z = % — t2 (1 + - — ) + 0(f) and s dz 3 T 

(Z(t)-z ) 2 = u2 t2 (1 + % — ) + 0(f) s 3 T, 
t_ 

The shorttime expansion of mean height and spread in the Langevin models are 
for the model for W Eq. (5.10): 

du2 
Z(t)-z~ = X t2 (1 - - — + - — ) ] + ... for t « (T , T ) and s 2 dz 3 T 3 T L 1 L 3 z 

g 
(Z(t)-z~ = ̂ ï t2 (1 - \ %r + \ — ) ] + ... for t. « )T , T ) s 3 3 T 3 T„ L 2 L d. z s 

for the model for W/q Eq. (5.12): 
dul 
3 , , 1 t 1 t 1 t Z(t)-z = )£ — - t2 (1 - - — + - — + - — ) ] +...for t « (T ,T .T ) and s dz 3 T 3 T 3 T., L 1 3 L 3 4 z s 

TzTt)-z")"2 = ÏÏ? t2 (1 - li- + 1 — + 1 - ) ] + ... for t « (T , T ,T ) s 3 3 T 3 T„ D T L 2 4 L 2 5 z 
S 

where the dummy timescales are defined by 
d2 u] du^ dïïj 

T, = - ^ / -T7 3 , x„ = — -.4 ] (5.13a) 
1 dz dz 2 —■*■ dz z u2 z s 3 s 

dT du2 d(üTA) dül 
Tö = K ri -TL-)/ " ^ ] • ^ " (—T—'-T 3 (5.13b) 3 3 T2 dz dz 4 dz dz L z z s s 

"Ü3 du2 

uz z 3 _ s 
1 d U 3 \ with A = J the factor appearing in the non-linear term of the W/o 
2u2 z 3 s 

Langevin equation. 
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5.3.3 Definition of deviation tigiesca_les__T/1 

In homogeneous turbulence the W- and W/a-models are equal. In that case 
all mean height expansions are 

Z - z = 0. s 

The exact spread expansion resp. model expansion read 

(Z - z ) 2 = u 2f + 0(f) and s 3 

1 t (Z - z ) 2 = u2 t2(1 - ^~) + 0(f). s 3 3 TL 

In this homogeneous case the models deviate from the exact Taylor expansions 
in the spread for times that are no longer small compared to TL, the only 
timescale appearing. For times t smaller than the only timescale TL both 
models give the exact Taylor expansions. In homogeneous turbulence no 
deviation timescale T^ appears. However, it is interesting to investigate the 
model spread expansions with earlier derived expressions to show that the 
shorttime expansions are correct. The model spread equation is equal to the 
one derived from Taylor's theorem for an exponential autocorrelation Eq. 
(1.11) by Tennekes (1979). Tennekes gave the following interpretation of the 
last term. For small times the particle spread goes quadratic in 
time (Z-z ) 2 = ïïf t2 For larger time the dispersion slows down as small scale s 5 . 
eddies are no longer effective in mixing the particles with the air. The 
correction term on the spread must therefore be negative and relate to the 
small-scale parameters e, the energy dissipation rate per unit mass and-time 
t. Dimensional analysis shows that 

(Z-z ) 2 - u? f - const ef. 3 3 

Comparing this equation with the one derived from Taylor's theorem shows that 
e - ÜT/TT » s o t n a t e» a small parameter, is determined by the large scale 
dynamics. 
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The deviation of the model shorttime expansions from the exact Taylor 
expansions in inhomogeneous turbulence is given by terms involving TL and a 
(to be defined) deviation timescale Td. We write the Taylor expansions 
generically as 

(Z-z ) n = g (t) + 0(t") 
3 II 

and the model expansions as (5.1*0 

L d 
n 

Mean he ight 

In t h e mean he ight express ions Eqs. (5 .10a) and (5.12a) for the model for 

W and for W/a the d e v i a t i o n t imesca les TH can be der ived as fo l l ows . a1 
For the W-model we have using Eqs. ( 5 . 7 ) , (5.10)and (5.1M) 

( 1 - 1 / 3 t / T L + 1/3 t / O 
(Z -z s ) = g l ( t ) Ö T - 1 / 3 t / T l ) 

g . , ( t ) (1 - 1/3 t /T + 1/3(t /T - t / t . , ) + CXf) 

if t « T1. So that 

1 1 
Td? ' (i- - L.) ' 

Analogously we get for the W/a-model 

Z-z_ = g , ( t ) 
(1 - 1/3 t / T L + 1/3 t / t + X t / x ^ ) 

's ~ B 1 v l " ~ (1""+" 1/3 t / T l ) 

g^t) (1 - 1/3 t/TL + 1/3 t/t3 + 1/3 t/T^ - 1/3 t/T.,) 

for t << T-. So that 

1 1/(1_+1_-1_) . 
Tw/a " vx3 T^ xy 
d1 

The timescales T are thus given by 
1 
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Td = T 1 T 3 / ( x r T 3 ) a n d (5.15a) 

Td ° = T i T 3 T 4 / ( x i | T i + T3T1 " T3Ti( ) (5.15b) 

We note t h a t in case T^ i s cons tant no dummy t imesca le x~ appears i n the model 
W W/o 1Tit shor t t ime e x p r e s s i o n s . T , can be sa id to be - T , and T. = 
d 1 1 d 1 T 1 - T l | 

The dev ia t ion of the models from the exac t Taylor expansions a r e equal in 
case TJj[ = TJ3[/a. We see t h a t t h i s i s the case when Xj. * » . Th is i t does (see 

d(ülA) 
Eq. 5.13) in case —-r ~~ "*" °* T n i s quant i ty i s in tu rn a measure for the 
inhomogeneity of the t u r b u l e n c e . In homogeneous tu rbu lence we have 

d(ïïÏA) 
—-r~- = o. dz 

Spread 

The d i f f e rence between the exact Taylor expansions for t h e spread and 

those of the models can be expressed as fo l lows. In the exact expansions a 

term t / x ? appears with a fac to r \ , while in the model r e s u l t s a fac to r 1/3 

appea r s . Using Eqs. ( 5 . 7 ) , (5.10) and (5.11) we get for the W-model 

1 - 1/3 t / T L + 1 / 3 t / x 2 1 t 1 t 

<z-z8)» = g 2 ( t ) ( — T-r-ftTT- ->- g2(t)d - \ ̂  - if-) * o(t") 

i f | t / 2x„J << 1. We a l so defined 

1 t 1 t 
_<z.:V-a-..Ü..- I T : +-J..jr\?° t h a t 

T d 2 

T J = - 2 T , ( 5 . 1 5 C ) 
d 2 2 

Analogously we get for the W/a-model 

1 - -j t /T . + I t / x„ + )■ t / x c 

T z - r ^ , g 2 < t ) (_J_L_|._|_^_„i) 

= g2(t)(1 - ~ t/TL - \ t/x2 + 1 t/T5) + 0(f) 

if |t/2x2|<< 1. 
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So that 

TW/° . 1?I5._ % (5.15d) 
d2 x2 - x5 

The deviation of the models from the exact Taylor expansions are equal in 
case TÏ = T^ 0. This is the case if TC -*■ <», which happens when the turbulence d2 d2 5 

d u*' 
becomes homogeneous üT ■*■ 0 or —-~ + 0. We summarize these timescales in Fig. 
5.1 and investigate in the next section what these deviation timescales mean. 
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r _i _ d2u% jdu\ 
dfldz 

- ï - l du\ 
'2 = u | «* JZ. 

deviation 

time scale 

mean height 

spread 

W-model 

dl TI-T3 

T% = -2r 2 

W/a-model 

rpW/ff _ TlTsU 
-*<" T4T1 + r3ri - T3TA 

rpW/o _ 2r2T5 
* T2 - T6 

i_ foJL*!^ /**! r 3 = 

.ja.-MÖA 2 

dz 1 dz 

_i uf dul 
5 = $ * 

with A = U - * £ 
2u| dz 

Fig. 5.1. Deviation time scales Eq. (5.15) occurring in the short-time expansion. 
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5.3• 1 Comparison Langevin model expressions to Tjiylor_expansions 

The expansions in both Langevin models are equal to the exact Taylor 
expansions for times smaller than a l l . t imescales involved (TL and T d ) . Which 
timescale plays a dominant role in the deviation from the exact expansions for 
larger times depends on the r a t i o of TL and Td, where Td in turn depends 
strongly on the turbulence the models are applied t o . 

If the deviation timescale Td i s larger than the Lagrangian timescale TL 

the term with TL wi l l be dominant over the term with Td . In t h i s case 
suff icient requirements for the model expansions to be valid i s that t i s 
smaller than TL. 

If the deviation timescale Td i s smaller than TL, the term with Td wi l l 
be dominant over the term with T^. In th is case the shorttime expansions are 
cer ta inly not valid for times smaller than T, that are however larger than Td . 
In the next section we i l l u s t r a t e these two cases in convective turbulence 
described by Eqs. (1.M) and (1.18). 

We f i r s t concentrate on the mean height expressions. The mean height 
deviation timescales Td and Td are strong functions of source height z s / z i 

(see Fig. 5.2a) . We have Td << TL for the W and W/a-model in case of a source 
around z s /z^ = 0 .3 . We invest igate the mean height expressions for a source at 
z g /z , = 0.36. The deviation of the mean height from the exact expansions i s 
dictated by the Td-term. The difference in Td for both models i s small and the 
resul t ing difference in mean height i s re la t ive ly small due to the factor 
% —32 t 2 in front of the term -r t / T . . In Fig. (5.3a) we see indeed that for 
t < TT the W- and W/a-model resul t s remain close to the exact expansions. 

We then focus on the spread expressions. In Fig. (5.2b) we see that in 
both models Td i s much larger than TL except close to the ground. TL i s 
therefore the dominant timescale and both models remain close to the exact 
expansions for t << TL and deviate equally much for larger times dictated by 
the term 1/3 t /T L (Fig. ( 5 .3 .b ) ) . 

This explains why we have been very careful in deriving shorttime 
expansions. We cannot throw terms away before we know to what turbulence the 
models are applied, because the re la t ive importance of terms containing TL or 
Td depends on the turbulence considered. We s t r e s s here that the requirement 
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of times being small compared to TL is not always sufficient for the validity 
of shorttime expansions. Even in cases where T^ is small the deviation caused 
by this term is not large in either of the models. 

We conclude that the shorttime expansions for times smaller than TT do 
not force us to conclude that either the model for W or for W/a is a more 
correct description of dispersion in inhomogeneous circumstances. 

We have discussed the shorttime behaviour of mean particle height and 
spread. These shorttime expansions only depend on the first two moments of the 
random forcing in the Langevin model. In the next section we discuss their 
large time behaviour and show that in this analysis all random forcing moments 
are involved. 
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20 30 

Abs(Td1/TL) 

w — W L 
T£/TL 

20 30 
Abs(Td2/TL) 

Fig. 5.2a Fig. 5.2b 

Fig. 5.2 Ratio of timescales Td/TL Eqs. (5.15) involved in shorttime 
expansions (SE) in convective boundary layer described by (1.4) 
and (1.18). 

a) 

b) 

Td/ TL 

TW/o 
d1 L 

W 
TJ /T, 
d2 L 
_W/a/T 
d2 L 

ratio of timescales involved in SE of mean height 
given by model for W 
ratio of timescales involved in SE of mean height 
given by model for W/o 
ratio of timescales involved in SE of spread given 
by model for W, 
ratio of timescales involved in SE of spread given 
by model for W/a 
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0.5 

0.0 

Fig . 5.3a F ig . 5.3b 

CONVECTIVE-BOUNDARY LAYER 

F ig . 5.3 Short t ime expansions mean height Z-z (F ig . 5.3a) and of 
a2 = (Z - z ) 2 (F ig . 5 .3 .b ) in a convective boundary layer 

s 
descr ibed by Eq. (1 .4) and (1.18) for z / z = 0 .36 . The exact Taylor 
expansion Eq. (5 .7 ) i s denoted by a s o l i d t h i ck l i n e , the 
expansions for the models for W and for W/o Eqs. (5 .10) and (5.12) 
are denoted by r e s p . a do t ted l i n e and a dot -dash l i n e . The inhomo-
genei ty t imesca le s a r e marked on the time ax i s or g iven . 
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5.4 Large time behayiour of the models 

5.̂ .1 Introduction ; 

A noted difference between the W- and W/a-models was that, implemented in 
a computer code, the model for W does not give a uniform concentration 
distribution in the limit to t ■*■ », whereas the model for W/a does. We want to 
investigate this large time behavior in this section. 

The large time behaviour depends on all moments of the random forcing. In 
general inhomogeneous turbulence these higher moments are non-zero and this 
complicates the analysis. Therefore we restrict ourselves to the asymptotic 
behaviour in Gaussian inhomogeneous turbulence. We must note, however, that 
turbulence in an inhomogeneous case is usually not Gaussian. In the convective 
boundary layer e.g. the turbulence velocity is positively skewed. So our 
treatment must be considered as a first approximation. 

In section 5.4.2 we show that both Langevin models for both W 
and W/a yield the correct steady state; their KME's have a concentration 
distribution as solution which is uniform in the steady state. The question 
remains, however, whether the models also show the correct behaviour leading 
to this steady state. This large time behaviour is described by Markov limits, 
which will be discussed in section 5.4.3. The new technique of deriving the 
Markov limit in inhomogeneous turbulence was introduced in section 2.5, where 
we derived the Markov Limit for the W-model. We shortly review this derivation 
and then discuss the derivation for the W/a-model. Once these Markov limits 
are derived we investigate whether they describe the above difference between 
the.models in concentration distribution results. 
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5.4.2 Steady state in inhomogeneous Gaussian turbulence 

We start our large time analysis with an investigation of the steady 
state of the Langevin models for W and W/o. In inhomogeneous turbulence the 
Langevin equation can not analytically be solved and a large time expansion of 
mean particle height and spread can not directly be derived. We therefore 
start the investigation from the Eulerian equivalents of the Langevin models, 
the KME's. We show that the restriction to inhomogeneous turbulence which is 
still Gaussian simplifies the analysis considerably, because in Gaussian 
turbulence the KME's reduce to a second and third order differential equation. 

In Gaussian inhomogeneous turbulence the vertical turbulence velocity uo 
has a Gaussian distribution specified by o2 = u*. In section 2.3.7 we showed 
that in such Gaussian turbulence the random forcing function dp in the 
Langevin model for W has a fourth and higher moments that are zero in order 
dt, while the Langevin model for W/o has a random forcing dri, whose third and 
higher moments are zero in order dt (section 5.2). The moments 
<du > = a (z)dt in Gaussian turbulence are given by Eqs. (5.4) while the 
moments <(dri) > = b (z)dt in Gaussian turbulence are given by Eq. (5.6). 
The fact that for both models the higher order moments are zero in order dt 
has some implications, because a distribution function with only the first 
moments being non zero does not exist. It can easily be shown that a correct 
(therefore positive) pdf has nonzero even moments, from which follows that the 
requirements Eqs. (5.4) and (5.6) can not be satisfied by a pdf. 

We note that in an application of the models, like we did in Ch. 4 for 
the W-model, it is usually only required that the first few (e.g. three) 
"moments"of" the "random forcing are modelled correctly. In-such-an-application . 
the generated random forcing has nonzero higher moments which do not satisfy 
the general equation for the moments. The deviation of the higher moments 
causes anomalies in the higher moments of particle characteristics (velocity, 
height). This fact, that the Langevin models cannot meet requirements on the 
higher moments of the random forcing in inhomogeneous Gaussian turbulence, is 
considered to be of minor importance when we are only interested in the lower 
moments of the particle statistics, the mean height, spread and skewness of 
the concentration distribution. 
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Accepting these deficiencies of Langevin models we proceed to f ind . the i r 

large time behaviour. We derive the KME's of both models by subst i tu t ing the 

moments of the random forcing Eqs. (5.4) and (5.6) into the general KME for a 

bivar ia te process (Eq. (2.35)) . 

For the model for W the KME in Gaussian inhomogeneous turbulence reads: 

3P , . . 3P 9 ,,w x do* . 32 ,a2P, 33 ,a 2 da2 

9t ( z ' W ; t ) + W 3Ï " aw" { ( T 7 + d T ) P } + 3w^ { T T } ' 3ÏF {~2 ~dï 
(5.16) 

For the models for W/a i t reads: 

3P / *.\ ^ 3 p 3 r r w . 1/ 3o 2 ; w M I D I ^ 3 r<J „ i , c , - , N 
- ( z , w ; t ) + w _ = _ { [ _ + y2 _ ( p + 1 ) ] P 1 + _ , { - P} . ( 5 . 1 7 ) 

Li LI 

We see that the general KME for the taodel for W and W/a break off after the 
third and second term respectively. A real probability distribution, has a KME 
which is either a Fokker-Planck equation or a differential equation of 
infinite order (v. Kampen, 1983, p. 280). The model for W does not give either 
one as a consequence of the formulation of its random forcing function dp. 

In the steady state (in a bounded area) the models should yield a uniform 
concentration distribution and the probability density of the particle 
velocities should become equal to that of the turbulence velocities. In 
Gaussian turbulence the turbulence velocity distribution can be characterized 
by its moment generating function earlier given in Eq. (2.57) 
g (6) = exp(-y2 a262)p where a2 = ü"| and p = ƒ P(z,u_)du_. The requirements 
imply that for steady state conditions the pdf of the bivariate process Z, W 
of the particles should read 

P(z,w) = (2Tro2(z)fy2 exp (- 2^7y) ; (5.18) 

then the concentration distribution defined by C(z,t) = ƒ P(z,w;t)dw is 
uniform in the steady state and <wn> = un(z). This pdf Eq. (5.18) has to be 
the steady state of the KME's. By substitution it can be shown that Eq. (5.18) 
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is a solution of both the KME Eqs. (5.16) and (5.17). We conclude that both 
Langevin models have a KME with a uniform concentration distribution as steady 
state solution, so that both Langevin models are correct in this respect. In 
the next section we discuss the large time behaviour leading to this steady 
state. 
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5.H.3 Markov limit of thê  Langevin models and their KME 

We are interested in the concentration distribution determined by the 
Langevin equations for W and for W/o. This concentration distribution can be 
determined from the Eulerian equivalent of the Langevin equations, the KME's, 
which are differential equations describing the time evolution of P(z,w;t). 
Once we know P(z,w;t), we know P(z;t) via the relation 
P(z;t) = ƒ P(z,w,;t)dW. Via the fundamental theorem Eq. (1.6) which reads 
C(z,t) = QP(z;t) we can derive the concentration distribution. Inspection of 
the KME's Eqs. (5.16) and (5.17) shows, that we cannot simply integrate its 
terms over dw to get an expression for the whole time evolution of P(z;t). 
However, the large time behaviour of P(z;t) can be deduced, as we showed in 
section 2.5 for the W-model. In that section a Lagrangian equation, the Markov 
limit was derived, describing the large time behaviour of Z(t). Its KME is a 
large time equation for P(z;t) or the concentration, C(z,t). The Markov limit 
of the W-model was derived for both homogeneous and inhomogeneous turbulence. 
We shortly review the results for the W-model and in this section we 
analogously derive the Markov limit for the W/a-model. We also calculate the 
Eulerian equivalent of this Markov limit, its KME and compare the large time 
behaviour of the concentration in both Langevin models. 
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Model for W 

Here we summarize the large time behaviour of the Langevin model for W as 
derived in section 2.5. For details we refer to this section. 

In homogeneous turbulence the limit T, + 0 is equivalent to the limit 
t -*■ <». The so-derived Markov limit for the model of W in homogeneous 
turbulence is then given by Eq. (2.71): 

dZ = (2a2TL)^du)t , 
where with large times are meant times large compared to T^. 

In inhomogeneous turbulence more timescales than only T^ play a role. 
However, the limit T ■*■ 0 still describes the behaviour for large times in 
weakly inhomogeneous Gaussian turbulence under the restriction that 
while Tj * 0 we let a2 ■+ °° such that the eddy diffusivity K remains the same 
function of height. The Markov limit is given by Eqs. (2.83) or (2.85): 

dT d(o2T ) 
dZ - \ ^ + Y> TL "Hz (dp)2 °r dZ = " d z — dt + ( 2° 2 TL } d V 

With large times in this case is meant times large compared to TL but still 
small compared to the inhomogeneity timescale. 

The Markov" limit^has a" KME which-is~gi ven- by Eq. (2.72): - _... 

As expected from arguments of Monin & Yaglom (1977, Ch. 10.3) for large times 
dispersion should be described by a ordinary diffusion equation for its pdf 
like Eq. (2.80). A schematic summary of the relation between the Langevin 
equation, the Markov limit and their. KME is given in Fig. 2.1 (section 2.5.3). 
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Model for W/o 

Introduction 

We want to derive the large time behaviour of the Langevin equation for 
W/a and compare this behaviour with that of the Langevin model for W. The 
model for W was discussed in section 2.5, where first the large time behaviour 
for homogeneous turbulence and subsequently for inhomogeneous turbulence was 
derived. Here we follow the same line in the derivation for the W/o model. 

In inhomogeneous turbulence other timescales than TL play a role, namely 
timescales T^ due to the inhomogeneity. We only consider weakly inhomogeneous 
Gaussian turbulence, where T^ is much larger than TL. By large times we then 
mean times large compared to TL but still small compared to Ti# We can not 
investigate this large time behaviour by only letting T. ■» 0, because this 
would mean a change in the dispersive character of the turbulence given by the 
eddy diffusivity K = a2T. . We replace the limit t •» ~ by letting the relevant 
timescale T L go to zero, modifying o2 such that the dispersive character of 
the turbulence given by the eddy diffusivity K = azT. remains unchanged (see 
also section 2.5.1). In this limit goes the turbulence lengthscale I = o2T 

Li 

also to zero. We basically follow Durbin's (1983) derivation for 
the W/o-model, but we add the above constraint on the replacement of the 
limit t -»■ » by the limit T ■*■ 0. We call the resulting equation, describing 

J-j 

the large time behaviour of Z(t), again a Markov limit. 
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Markov l i m i t and KME of homogeneous Langevin^equation for W/q 

We der ive the l a r g e time behaviour of the Langevin equa t ion for 

W/a. The W/a-model reads (Eq. 5.1a) 

.,Wx W dt . d ( - ) = - - =r- + dx o o TL 

dZ = W( t )d t . 

In homogenous turbulence the Langevin model for W/a is equal to the Langevin 
model for W. The Markov Limit for Gaussian turbulence is thus Eq. (2.71) (see 
section 2.5.2). 

dZ = (2 a2TL)^ dü)t , 

and i t s KMML i s equal t o Eq. (2 .72) 

Markov Limit of inhomogeneous Langevin equat ion for W/q 

In inhomogeneous tu rbu lence the a n a l y s i s becomes more complicated by the 
fac t t h a t TL and a a re func t ions of he igh t . We formal ly deal with the 
inhomogeneity by s p l i t t i n g T^ and o in a shape f a c t o r T(z) r e s p . S(z) and an 
ampli tude a r e s p . 6 so t h a t T (z ) = a T(z) and a (z ) = 6 S ( z ) . We rep lace the 
-limit- t -»• •■■»■ by a r e s c a l i n g of the t u rbu lence . We r e s c a l e the turbulence_such 
tha t the eddy d i f f u s i v i t y K(z) = T ( z ) a 2 ( z ) remains the same function of z , 
t h a t i s we l e t a ■* 0 and B2 -*■ °° while aB2 = c o n s t a n t . 

Pu t t ing W/a = U and mul t ip ly ing the Langevin equat ion with a gives 

a dU = - H | j - dt + a dx(t) . (5.20) 

Integration of this equation gives 

J (iflfj- dt' - a dx(t')) = - a[U(t)-U(o)] . (5.21) 
o 

and 
(5.19) 



5.31 

The factor U(t)-U(o) is bounded (Durbin, 1983) and the RHS of Eq. (5.21) goes 
to zero in the limit a ■* 0. We keep the term on the LHS that contains a, as 
this term might contain terms that involve aB2. These terms remain constant in 
our limit process. 
Subsituting U(z)dt = -z cr-\ in Eq. (5.21) it becomes in the limit: 

Z Z 

/ T T Z ? 7 S T Z M = f a 6 d X ( Z ( f ) . (5.22) 
Z Zt 

s s 
To differentiate Eq. (5.22) we have to use Ito calculus (see section 2.4). 
Applying this rule to a general integral 

? dZ' 
z 
s 

we get 

d*- IT!) - ^ i ^ ^ ^ - p ) (dZ)3 + ••• • (5-23) 

where a prime denotes derivation with respect to z. 
Using this in differentiating Eq. (5.22) by putting A(z) = S(z)T(z) we get 

ITzT ~ * F Hi (dZ)2 + \ CA"A"2 " 2 A " 3 ( A ' ) 2 ^ d Z ) 3 +-- = <*edx . (5.24) 

This is a differential equation for dZ whose solution, the Markov limit, we 
want.to derive. As an illustration we will first solve it for homogeneous 
turbulence to show that Eq. (5.24). gives indeed the results as discussed above 
for homogeneous turbulence. 

Intermezzo: homogeneous turbulence 

In homogeneous turbulence o and TL are constant with height and 
Eq. (5.24) becomes 

jz = aB dx or dZ = TL<> dx. (5.25a) 

In homogeneous Gaussian turbulence the random forcing function can be written 
as d x . (i_)V2 d ( F r o m E q. (5. 6 ) w i t n < ( d x )n > = <(dn)n>/(jn = b dt/(j2)< 

:L t n 
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The Markov Limit we so derive from the differential equation Eq. (5.25a) reads 

dZ = TL o dX = (2a2TL)^2 di^, (5.25b) 

which is indeed equivalent to the Markov limit for the W-model given by 
Eq. (2.71) as expected from the fact that in homogeneous turbulence the W 
and W/a-model are equivalent. 

We already showed in section 2.5.3 that this Markov limit has a KME that 
is equal to the diffusion equation Eq. (2.72). For future use we show how the 
diffusion equation can also be derived from Eq. (5.25a). The moments 
<(dZ)n>, that we need in the KME of this Markov limit, are by Eq. (5.25) equal 
to the averages of powers of T o dx = T dn. The moments of dn in order dt are 

U Li 

given in Eq. (5 .6 ) . In homogeneous Gaussian turbulence only the second moment 
of dn is nonzero. 
We have 

<dZ> = T.c«dx> = T.<dn> = T. b. dt = 0 
L L L I 

<(dZ)2> = T£a2<(dx)2> = T2 <(dn)2> = T2 b2 dt - 2TLo2dt (5.26) 

<(dZ)3> = T"an<(dx)n> = T" <(dn)n> = T" b dt = 0 for n > 3 . 
Li L LI n — 

We subsitute these moments of dZ in the general KME for a monovariate process 
Eq. (2.35) and get a KME that is equal to the diffusion equation Eq. (2.72): 

9 P (z_; t)__ _-_ 2- .9- P _ ._3-_. /__.2T—■ %P\ re oi> 
"It = T L ° 9 ^ " 3l (a T L 3Ï 5 ' (-5,-2-7-)-— 

We see that the preliminary equation Eq. (5.2*1) gives us the correct Markov 
limit and KME for the W/a-model in homogeneous circumstances. So far our 
intermezzo. 
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Inhomogeneous turbulence 

In case TL and/or a are a function of z Eq. (5.24) does not always reduce 
to a simple form which can generally be solved for dZ to give the Markov 
Limit. However, in Gaussian turbulence it does reduce to a solvable equation 
In case of Gaussian turbulence we have in order dt from Eq. (5.6) that 

d_o_2 

dz <odx> = <dn> = X -^7 dt = oo' dt ■*■ <dx> = o' dt , 

<(adx)2> = <(dn)2> = Yfjj a2 dt - <(dx)2> = j ^ ) d t » ( 5 ' 2 8 ) 

Li LI 

f(adx)"> = <(dn)n> = 0 -»• <(dx)n> = 0 for n > 3 • 

We use the fact that the higher moments of dx are zero (in order dt) as 
follows. Taking Eq. (5.24) to the third and higher power and ensemble 
averaging, we see tha t th is resu l t s in a in f in i t e ser ies of equations for the 
moments <(dZ) > with n > 3. with in the RHS the third and higher moments of 
dx which are equal to zero. Generally t h i s se r ies consist of independent 
equations and the only solution is that a l l moments <(dZ)n> with n > 3 are 
zero. From th is s t a t i s t i c a l reasoning we conclude that Eq. (5.24) becomes 

' 7 1 d(cT.(z)) 
S- "OTzT —£ (dZ)2 = d* (5'29) 

U Li 

Solving this quadratic equation for dZ we get 

oT (z) aT v 

Li LI 

where a prime denotes derivation with respect to z. 
We can expand the square root in Eq. (5.30) as 
(1 + x / 2 = 1 + 1 x - L x2 + . . . 
If we can show that the higher order terms in this infinite sum converge to 
zero, we can approximate the root by breaking off this sum. To prove that the 
terms indeed converge to zero we use the fact that the third and higher 
moments of dx are zero in order dt (see Eq. 5.28). 
(Note that in the derivation for the W-model we had that the third moment of 
dy is nonzero; only in the limit a ->• 0 does the third moment of T dy 

Li 
disappear, which is a weaker statement). 
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The fact that the third and higher moments of dx are zero implies that the 
third and higher moments of x = 2(oT )'dx are zero. From these statistical 

V 
arguments we reason that we can break the expansion of the root (1 + x ) 2 off 
after the quadratic term. The last term in Eq. (5.30) becomes 

^ ~ (1 - 2<oTL)'dx>* = - ^ r - <°TL)dX " *(aTL)'(aTL)(dX)2 . 

Equation (5.30) becomes 

d(oT 
dZ = oTLdx + % - ~ - aTL(dx)2 . (5.3D 

d(aTL) 

In inhomogeneous Gaussian turbulence dx has only two non-zero moments and we 
can write dx as 

dx = ff dt + ( f - ) ^ . . (5.32) 
Li 

Substituting this into Eq. (5.31) we get the Markov limit of the W/o-model 
in inhomogeneous Gaussian turbulence 

d(o2T ) y 
dZ = . dt + (2a2T. r2dü>. . (5.33) 

dZ L t 

Comparing this with Eq. (2.85) we see that also in inhomogeneous Gaussian 
turbulence the Markov limit of the W/o-model is equal to the Markov limit of 
the W-model. It then follows that its KME is also given by the diffusion 
equation Eq. (2.72). 
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Conclusions 

After investigating the Markov limit of the Langevin models for W and 
for W/o, we conclude that they show a large time behaviour which can be 
described by the diffusion equation. This diffusive behaviour is what we 
require on physical ground for any dispersion process in both homogeneous and 
inhomogeneous Gaussian turbulence. The large time behaviour leads to the 
correct steady state solution, a uniform concentration distribution. 

We showed that the constraint on the eddy diffusivity while taking the 
limit T. ■* 0 is necessary to obtain these physically correct results. Only 

Li 

when this constraint is taken into account the analysis yields a large time 
behaviour, which can be described by the diffusion equation. 

Here we come back to the reason why we started the investigation, nl. 
differences between the two models implemented in computer codes. We found 
that the difference in large time behaviour (inhomogeneous concentration 
distributions for the W-model, homogeneous for the W/a-model) are not due to a 
theoretical deficiency of the W-model but must be due to differences inherent 
to the implementation. 
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5.5 Comparison Langevin models with Eulerian conservation laws 

In this section we compare the Lagrangian models for W and W/a with the 
Eulerian motion equations to investigate whether differences occur between the 
two models. Van Dop et al. (1985) made this analysis for the model for W, 
which study is discussed in section 2.3.6. We make a similar derivation for 
the model for W/a. 

5.5.1 Model for W/a 

We first derive the KME of the Langevin equation Eq. (5.1b) 

dW W dt 
a a TL 

where T and <(dri) > = b dt are not yet specified. These variables should be Li n 

modelled such that the correspondence of the KME with the Eulerian 
conservation equations is optimal. In the KME we need the moments of dW. These 
can be derived from this Langevin equation: 

w2 duT(z) 
<dW> = C ~- + — + b (z)]dt and w T (z) 0 — , dz 1 L 2u z (z) 3 

(5.34) 
<(dW)n> = b (z)dt for n > 2. w n 

Substituting Eq. (5.3*0 in the general equation for a KME Eq. (2.35) we get 
"the KME oT the model for W/a - - ---■-— - . - ~. 

d U 2 oo \i u 
8PU,w;t) 3P 3 ,. w «' 3 . (-1) )"p 

L 2u2 v=1 3w 
(5.35) 

From this equation we can derive a series of rate equations for the 
moments <W > by multiplying the KME with w and integrating over w. We use 
Eq. (2.8) again to obtain the first three moment equations: 
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H - - T £ • < 5 - 3 6 a > 
9u c 9u2c 3u2 u c , 9u; 

3 3 — 9C . r_ „ 3 , „ 3 . 1 3 , 

L 2u2 
+ [b - \ — - ] C - - — + u2c and (5 .36b) 

9t 9z "3 9z " "1 2 3zJ " Tr o — 9z "3 
_ ll __ 

au^c aü^c 9u"c 9u2 9u2 

3 3 - T 9C - - 3 0 3 0 , 3 . . 
—■■— = u3 — + u 2 + 2u c — 2u c (— b , ) 

9t 9z 3 3z 3 9z 3 3z 3 9z 1 

2u2 9u3 9u2 u3 9u2 2u2C 9u2 

3 3 3 3 3,„ 3 1 3 + [ b i i ± + _ i _ . i ] C ±- + i U 3 C > (5 .36c) 
2 T 9z 9t — 3z Tr - 3z 3 

L u2 L u2 

3 3 
To get the t h i r d term on the RHS of Eq. (5.36c) use i s made of Eq. ( 5 . 3 6 a ) . 

The f i r s t moment equat ion Eq. (5 .36a) i s equ iva len t t o t he f i r s t E u l e r i a n 
conservat ion equat ion Eq. (2 .49a ) . The h igher order Eqs. (5.36b) and (5 .36c) 
are in s t a t i o n a r y tu rbu lence only equ iva len t to the Eu le r ian conse rva t ion Eqs. 
(2.49b) and (2.49c) when b1 and b 2 a r e descr ibed by Eqs. (5 .6) and when in 
addi t ion i t i s assumed t h a t 

cdu u c du 2 

3 3 . 1 3 2 + U 2 C a n d (5 .37a) 
d t T — dz 3 

L 2u2 

3_ __ 
u 2c du2 u 3 c 

L u | 

Note, t ha t in assuming b1 to be descr ibed by Eq. ( 5 . 6 ) , t he 5th term on the 

RHS of Eq. (5 .37c) does not c a n c e l . This term c o n t r i b u t e s to Eq. ( 5 . 3 7 b ) . 

The Langevin model for W and for W/o give d i f f e r e n t c l o s u r e s expressed in 
the assumptions Eqs. (2 .51) and ( 5 . 3 7 ) . These r e l a t i o n s w i l l now be examined. 
From the equa t ions of motion we can ob ta in an exact express ion for these 
c o r r e l a t i o n s . Neglect ing buoyancy, molecular and C o r i o l i s fo rces t he e q u a t i o n s 
of motion y i e l d 
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du ' . r_-
' V 0 ^ = " i u 3 c i - (5-38b) 

Deardorff (1978) presented closures for the Eulerian equation of motion for 
dispersion from a single source in homogeneous turbulence (see section 2.3.7), 
which read 

1 c3p 
— — = p 3z 

u c 
3 

= T 
L 

and 
1 3p 
- u c — = p c 3z 

i r e 
3 
1 — T 

L 

These equations imply that the assumptions Eqs. (2.51) for the Langevin model 
for W are consistent with Deardorff*s closure relations, whereas, the 
assumptions Eqs. (5.37) for the Langevin model for W/o are more involved. Even 
with a Gaussian assumption on the third and fourth order correlations, that is 
u2c = 0 and u3c = 3u2 u c, the W/a-closures still read 3 3 3 3 

CdU r- U C 
- ~ =-;of = - 4 and (5.39a) 
dt p dZ Tj 

du ' u2c 3u2 
u-,°(-^) = - - u c ^ = - — ^ M ^ . (5.39b) 
3 dt p 3 3z T " 3 3z 

"Extra terms appear with respect to Deardorff -'s- closure relations ̂-whieh have 
no obvious interpretation. 
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5.5.2 Discussion 

From the comparison of the Langevin models with the exact Eulerian 
equations we conclude, that the model for W corresponds better with the 
Eulerian conservation equations. We base this ,on the fact that the closures in 
the W-model Eqs. (2.51) have some justification as discussed by Van Dop et al. 
(1985). This is supported by Deardorff, who stated that these relations are 
exactly valid in Eulerian models in the restricted case of particles released 
at a particular time in homogeneous turbulence. On the contrary, do the 
closures of the W/a-model not have an obvious interpretation. 
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5.6 Conclusions from the comparison of the W- and. W/_07model__ 

Dispersion models based on the Langevin equation are simple in use and 
can easily be adapted to different atmospheric conditions. Two Langevin models 
are often used in the literature, the model for W and the model for W/a. 

The short time behaviour of mean height and variance of the particles in 
the model for both W and W/a are investigated and shown to be equal to the 
exact Taylor expansions in a first approximation valid for times smaller than 
all timescales involved. In homogeneous turbulence the only timescale involved 
is TL but in inhomogeneous turbulence these timescales are T^ and Td, a 
timescale imposed by the turbulence. Usually the shorttime analysis interest 
only exists for times smaller than T^. In case TL is smaller than the 
timescale Td imposed by the turbulence further investigation into the validity 
of the shorttime expansion is not necessary. In that case is the shorttime 
expansion always valid for the times of interest t small compared to T^. In 
situations where Td is smaller than TL on the other hand, we have to be 
careful because times smaller than T^ can be larger than Td. For these times 
the models start to deviate from the exact Taylor expansions in a rate, 
depending strongly on the turbulence values of T^, u2 and u3 and their 
derivatives at source height. The conclusion is that shorttime expansions in 
the Langevin models can only be said to be valid for t < T^ in case TL is the 
smallest timescale involved. If Td is the smallest timescale the 
expansions for both models are different from each other and from the exact 
Taylor expansions for t < TL. However, in an application to the convective 
boundary layer these deviations are shown not to be so large that a 
"distinction'irr~the performance of the models can-be made-based on the short .._. 
time expansions. 

The large time behaviour of both Langevin models, in homogeneous as well 
as in inhomogeneous Gaussian turbulence, is shown to be physically correct. 
They both yield a large time behaviour described by the ordinary diffusion 
equation. This is indeed confirmed by the study of Wilson et al. (1983) who 
show large time results of the correct W- and W/a-Langevin equation for 
inhomogeneous Gaussian turbulence and results of the diffusion equation with 
K = o2T (see section 3.6.2) and both' models lead to a uniform steady state 

Li 

concentration in a bounded area. The fact that our computer model for the 
Langevin model for W gave a steady s t a t e concentration d is t r ibu t ion which 
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decreased near the boundaries must be due to other (numerical) facts. 

Comparing the Langevin models for W and for W/a with the Eulerian 
conservation laws shows that the model for W corresponds best. This leads to 
the final conclusion that the Langevin model for W is theoretical superior to 
the Langevin model for W/q and its practical application should be 
investigated further. 
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EIGENSCHAPPEN VAN HET LANGEVINMODEL VOOR VERSPREIDING 

Anne F. de Baas 

Samenvatting: 
De Langevin-vergelijking wordt gebruikt voor het beschrijven van 
verontreinigingverspreiding in de atmosfeer. De teoretische achter­
grond voor de vergelijking wordt uitgebreid bediscussieerd en een 
overzicht over eerdere verhandelingen en toepassingen gegeven. 
We tonen aan dat de Langevin-vergelijking verspreiding in 
complexe omstandigheden kan beschrijven. In het bijzonder verspreiding 
in een convectieve atmosferische grenslaag, waar het de metingen 
nauwkeurig reproduceert. 
Twee vormen van de Langevin-vergelijking, die beide worden 

gebruikt in praktische toepassingen, worden vergeleken en de 
conclusie is dat, in termen van hun teoretische eigenschappen, ze 
niet erg verschillend zijn, ondanks belangrijke verschillen in praktische 
toepassingen. 
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1 

Variance measurements can lead to large overestimates of dispersion because 
such transporting and nontransporting mechanisms as turbulence and waves 
contribute to the variance. 

Anne F. de Baas and A.G.M. Driedonks (1985) 
Internal gravity waves in a stably stratified boundary layer, 
BLM, 31 , p. 303. 

2 

For the mean flow in complex terrain the spectral methods are extremely 
powerful because they allow simple scale-dependent closures that are easy 
to understand. 

lb Troen and Anne F. de Baas (1986) 
A spectral diagnostic model for wind flow simulation in 
complex terrain. Proceedings of E WEC'86 European Wind 
Energy Association, Conference and Exhibition, Rome. 

3 

The turbulence quantities in flow over hills cannot be modeled unless ani-
sotropy is taken into account. 

Otto Zeman and Niels Otto Jensen (1987) 
Modification of turbulence characteristic in flow over hills. 
Quart. J. Roy. Met. Soc, 113, 55-80. 

4 

Some simple equations are hard to analyze without powerful computers (e.g. 
the Langevin equation and the Lorentz equation). 



5 

Even if a model adequately describes the empirical data, ^ve still may not 
regard the problem as solved until we have established a complete theory 
correctly argued from basic principles. 

6 

Geophysical years sometimes harvest their fruits around thirty years after. 

7 

Fuzzy transform: what is fuzzy in clear space is clear in fuzzy space and 
vice versa. 

8 

The average result of a random differential equation differs at random from 
the result of the average differential equation. 

9 

It it scandalous that 250 years after women first entered universities the 
need is still felt to make statements on feminism. Here is my own: the little 
chance for promotion for women often leads to the result that women excel 
men in the same organizational position. 
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Anne F. de Baas 


