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SUMMARY

Nonlinear partial differential equations (PDEs) are generally hard to solve, but over the
past 65 years the notions of Lax integrability and nonlinear Fourier transforms (NFTs)
have been developed to solve a large class of so called Lax-integrable partial differen-
tial equations. If we are able to find a suitable pair of linear operators, consisting of a
spectral operator and a propagation operator, a so-called Lax pair, we are able to ana-
lytically solve the nonlinear PDE. If this pair of linear operators is a correct Lax pair for
the PDE, then the spectral operator can be used to define an NFT, which transforms the
signal from the physical domain to a PDE-specific spectral domain, in which all spectral
components are independent, similar to the regular Fourier transform for linear prob-
lems. In the spectral domain, the transformed signal can be propagated using the linear
propagation operator, after which the propagated signal can be transformed back into
the physical domain, hence solving the nonlinear PDE.

The presence of a Lax pair can thus be used to solve a nonlinear PDE, but it also yields
insight into the underlying dynamics of the system. Therefore, the identification of a Lax
pair for a system is of great value. However, there is no general method to find a Lax
pair given an evolution equation. Systems may also be non-integrable, and therefore a
corresponding Lax pair may not even exist. To the best of our knowledge, no practical
general methods are known in the literature to determine whether or not a system is Lax-
integrable. Since the general problem is very complex, one may focus on more specific
cases for practical purposes, in which a Lax-integrable PDE is sought using measurement
data.

In this thesis, we therefore focus on data-driven identification of Lax-integrable partial
differential equations (PDEs), specifically those of the AKNS-type. The primary objec-
tive is to find a Lax-integrable PDE that best explains given experimental measurement
data, enabling a comprehensive analysis using the nonlinear Fourier transform (NFT).
While real-world systems may not be exactly Lax-integrable due to imperfections, many
are well approximated by such equations, including scenarios such as fiber optical wave
propagation, surface wave propagation in shallow water canals, and mechanical wave
propagation in coupled pendulums.

A significant portion of the thesis is devoted to identifying parameters for several widely
applied Lax-integrable nonlinear PDEs, such as the Korteweg-de Vries equation (KdV) or
the nonlinear Schrödinger equation (NLSE). The approach involves comparing the NFT
of the waveform at various stages of evolution, and finding the parameters in the Lax
pair at which the nonlinear spectra remains constant. This approach does not require
any numerical propagation. Furthermore, no derivatives in the direction of evolution
are required. A comparative analysis with propagation-based methods highlights the
advantages and limitations of the proposed techniques.

Further contributions include the investigation of speeding up the discrete spectrum

IX



X SUMMARY

part of NLSE-NFT, crucial for the application of the method, for example in optical fiber
transmissions. The computational complexity of the discrete part of the NLSE-NFT typ-
ically scales super-linear with the time-bandwidth product of the considered signal. We
propose a method to window the full signal in time and space, resulting in multiple sig-
nals with much smaller time-bandwidth products. The low eigenvalues are affected due
to this windowing, but these can be efficiently detected and removed in our proposed
method. These low eigenvalues are usually of less interest as they only represent a frac-
tion of the total energy. The higher eigenvalues represent the largest part of the energy,
and these are preserved very well despite the windowing. Furthermore, the combined
computational cost of applying the NFT to all windowed signals is much lower than ap-
plying a single NFT to the full signal.

Finally, this thesis also explores direct parameter identification of AKNS-type Lax pairs
by comparing conserved quantities. Instead of comparing the spectra resulting from an
NFT, this method considers the global conserved quantities, related to the spectral oper-
ator of the Lax pair. Given that the spectral operator indeed fits the underlying evolution
equation well, the global quantities are also conserved well. We demonstrate that this
principle can be used to correctly identify which AKNS-type PDE fits a given measure-
ment data best. In particular, the method only requires two snapshots of data, which
allows it to be applied even when no derivatives in the direction of evolution are known.



1
INTRODUCTION

1.1. BRIEF HISTORY OF LAX-INTEGRABLE PARTIAL

DIFFERENTIAL EQUATIONS

In this thesis, we focus on identifying Lax-integrable nonlinear partial differential equa-
tions (PDEs) that describe given measurement data best. Let a PDE be given by

ut = K (u), (1.1)

where u(x, t ) is the (typically scalar) function value, also referred to as the waveform u(x)
for a snapshot at a fixed t , or the wave field for the full solution u(x, t ). When dealing with
simulated or measurement data, a waveform u(x) may also be referred to as the signal.
Next, x is the (possibly multidimensional) ‘spatial’ variable, t the variable of evolution,
and K (u) a transformation of u(x, t ) and spatial derivatives of u (possibly of higher or-
der). Here and later, subscripts denote derivatives.

Nonlinear PDEs (i.e., with a nonlinear operator K (u)) are often notoriously hard to
solve, and so far no general method has been developed to solve nonlinear PDEs. This
forms a strong contrast with linear PDEs, such as the heat equation ut = uxx , which can
be solved analytically using the Fourier transform, given suitable boundary conditions.
This method transforms a function from the physical domain to a spatial frequency (i.e.,
wavenumber) domain, in which each wavenumber is associated with a sinusoidal com-
ponent. Each sinusoidal components evolves independently, and usually follows a sim-
ple propagation relation. The solution can finally be obtained by applying the inverse
Fourier transform to the evolved sinusoidal components. This process is also illustrated
in Fig. 1.1. Unfortunately, the same method cannot be applied to nonlinear PDEs, be-
cause the sinusoidal components do not propagate independently due to the nonlin-
earity. It thus came as a huge surprise when a nonlinear PDE was solved with a novel
method that conceptually resembled Fourier’s method. This discovery would lay the
foundation for the theory of Lax-integrability.

1
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u(x,0)

û(k,0) û(k,T )

u(x,T )
linear PDE (hard to evolve)

ut = K (u)

linear
Fourier
transform

simple evolution

û(k,T ) = f (k,T )û(k,0)

inverse
Fourier

transform

Figure 1.1: Solving a linear PDE with the classic Fourier transform, by first transforming the func-
tion from the physical domain to a wavenumber domain, where each wavenumber is associated
with a sinusoidal function. The evolution of the linear PDE becomes a simple multiplication in
the wavenumber domain. Finally, the inverse Fourier transform allows the function to be recon-
structed in the physical domain.

1.1.1. THE FIRST DISCOVERED LAX-INTEGRABLE PDE: THE

KORTEWEG-DE VRIES EQUATION

In 1967 Gardner, Greene, Kruskal and Miura presented a method [1] to analytically solve
a weakly nonlinear PDE known as the Korteweg-de Vries equation (KdV), which is known
to govern free-surface water waveforms in shallow canals [2, 3]. In particular, the KdV is
known to support so-called solitons, localized particle-like wave packets that propagate
without changing shape. Solitons are the result of dispersive and nonlinear effects ex-
actly balancing out. Furthermore, solitons can overtake each other and emerge from
the interaction unchanged, except for a phase shift, which is illustrated in Fig. 1.2 for a
double-soliton solution of the KdV. The large, fast soliton overtakes the slower soliton,
and both emerge unscathed from the collision except that the faster soliton is pushed
further ahead while the slower soliton is pushed back.

Gardner et al. showed that the KdV could be solved by transforming the waveform to a
spectral domain, in which all spectral components evolved independently as if it were a
linear PDE. This spectral domain consisted of two parts: a continuous spectrum, which
corresponded to dispersive wave components; and a discrete spectrum, which consisted
of isolated points representing the solitons inside the solution.

This was a major breakthrough in the field of soliton theory and the field of completely
integrable systems, which studies the existence of explicit solutions of PDEs. Solitary
waves in shallow canals had been reported as early as 1845 by John Scot Russell [4], an-
alytic soliton solutions of the KdV were shown to exist already in 1895 [2], and several
numerical experiments halfway the 20th century also showed that KdV-governed wave-
forms could contain multiple solitonic components [5, 6]. However, thus far no sys-
tematic approach to calculate the exact soliton content had been found, also because
low-energy solitonic components can easily be hidden within the waveform.

Gardner et al. showed that the KdV could be solved by association with an auxiliary lin-
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Figure 1.2: A double-soliton solution of the KdV, in which a fast and high soliton overtakes a lower
and slower soliton.

ear equation, namely the Schrödinger eigenvalue problem, in which the KdV-governed
waveform plays the role as potential function [1]. Let the KdV with vanishing boundary
conditions by given by

ut =−uxxx −6uux , with u(x, t )
x→±∞−−−−−→ 0 sufficiently fast (KdV, vanishing BCs).

(1.2)
The KdV may then be associated with the Schrödinger eigenvalue problem, in which the
potential u(x, t ) is governed by the KdV:

φxx −uφ=−λ2φ, (Schrödinger eigenvalue problem),

with α(λ, t )e−iλx x→−∞←−−−−−φ(x, t )
x→+∞−−−−−→ e−iλx +β(λ, t )e+iλx .

(1.3)

where u(x, t ) denotes the KdV-governed wave field, φ(x, t ;λ) the eigenfunction of the
Schrödinger equation, λ the spectral parameter, while −λ2 plays the role of the energy
level in the Schrödinger equation. Finally,α(λ, t ) andβ(λ, t ) denote the scattering coeffi-
cients, which are called as such due to their connection with a classical physical scatter-
ing problem, in which a wave comes from the right (e−iλx ), which is partially transmitted
to the left (with coefficientα(λ, t )), and partially reflected back to the right (β(λ, t )e+iλx ).

The Schrödinger eigenvalue problem in Eq. 1.3 allows a finite number of finite-energy
solutions φk , k = 1, . . . ,K , where each corresponds to an eigenvalue λk on the positive
imaginary axis. Most importantly, Gardner et al. showed that these eigenvalues are time-
invariant, if the potential u(x) evolves according to the KdV equation, as well as that
each level −λ2

k = Ek > 0,Ek ∈R corresponds to a soliton amplitude when all solitons had
separated after propagating for a sufficiently long time.

Furthermore, the authors showed that for every λ ∈R,λ> 0, a bounded solution (finite
power, but not finite energy) exists for Eq. 1.3. The left side of the Schrödinger eigen-
value problem may be considered in functional analysis as the unbounded linear opera-
tor L = Ç2

x−u, where Çx is the spatial derivative operator. The eigenvaluesλk correspond-
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ing to finite-energy solutions φ may then be interpreted as the discrete spectrum, while
the continuous spectrum then consisted of all λ on the positive real axis. It was later
shown by AKNS that in the continuous spectrum, λ played a similar role as the linear
wavenumber k in the linear Fourier spectrum [7].

Finally, given that u(x, t ) is governed by the KdV equation, the scattering coefficients
α(λ, t ) and β(λ, t ) (for both the discrete and the continuous spectrum) evolve over time
according to a simple relation. When the discrete and continuous spectra are supple-
mented with the scattering coefficients, the waveform u(x) can be reconstructed using a
process of inverse scattering.

The KdV equation can thus be solved as illustrated in Fig. 1.3, similarly to the method
of Fourier. First the waveform is transformed to the nonlinear spectral domain, in which
the spectral components propagate independently, according to a simple dispersion re-
lation f (λ). Finally, the propagated spectral components are transformed back into the
propagated waveform u(x,T ).

u(x,0)

{λ1, . . . ,λN },
α(λ,0), β(λ,0)

{λ1, . . . ,λN },
α(λ,T ), β(λ,T )

u(x,T )
nonlinear PDE

ut = K (u)

Lφ=λφ
forward
scattering

simple evolution

λt = 0, αt = 0, βt = f (λ)b

inverse
scattering

Figure 1.3: Solving a nonlinear PDE using a similar technique as the Fourier transform in Fig. 1.1.
First, forward scattering is applied to the initial waveform, then the spectrum and scattering coef-
ficients are evolved linearly, and finally inverse scattering is applied to reconstruct the propagated
waveform in the physical domain.

Due to the transformations to and from scattering coefficients, this method would ini-
tially be coined the method of inverse scattering, or the forward scattering transform
and the inverse scattering transform (IST) [7]. It was also proven that this spectral trans-
formation not only resembled the linear Fourier transform, but even coincided with
it for low-amplitude waveforms (i.e., when the KdV equation effectively linearises) [7,
Eq. 4.19]. Therefore, the forward scattering transform is often referred to as the Nonlin-
ear Fourier Transform (NFT).

1.1.2. LAX PAIRS

A year after the discovery of the integrability of the KdV equation, Peter Lax formalized
the approach of solving the KdV equation as well as higher-order versions of the KdV
equation, by introducing the so called Lax-pair of linear operators [8]. Given a PDE
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ut = K (u), Lax assumed there existed some u-dependent operator L(u) mapping func-
tions from vector space X to vector space X1, of which the eigenvalues λ and the rest of
its spectrum would remain invariant as u evolves: Lφ=λφwith λt = 0. As u(x, t ) evolves
over time, so too will the operator L, as well as the eigenfunctions φ, and thus a propa-
gation operator M for the eigenfunction could be defined, such that φt = Mφ. Finally,
Lax posed that such a pair of operators (L, M) should then be compatible when taking
the time derivative:

Lφ=λφ, φt = Mφ,

λt = 0 ⇐⇒ (Lφ)t =λφt ⇐⇒ Ltφ+Lφt =λMφ

⇐⇒ Ltφ+ (LM −ML)︸ ︷︷ ︸
=[L,M ]

φ= 0, (1.4)

where the compatibility equation in Eq. 1.4 is known as the Lax equation. The pair (L, M)
is then called a Lax pair for the PDE ut = K (u).

A simple example of a PDE and a corresponding Lax pair is the advection equation
ut = ux , with Lax pair L = u (multiplication with u operator), M = Çx (the spatial differ-
entiation operator):

Ltφ= (Lφ)t −Lφt = (uφ)t −uφt = utφ

MLφ−LMφ= Çx (uφ)−uÇxφ= uxφ

⇒ (Ltφ= MLφ−LMφ) ⇐⇒ (ut = ux ).

Lax formulated the following Lax-pair for the KdV equation, for which the Lax equation
indeed is satisfied if u propagates according to the KdV equation:

L =−Ç2
x −u, M = 4Ç3

x +6uÇx +3ux , (1.5a){
Ltφ= ÇLφ

Çt −L Çφ
Çt = (−φxxt − (uφ)t

)− (−φt xx −uφt
)= utφ

[M ,L]φ= MLφ−LMφ= ·· · = (−uxxx −6uux )φ
(1.5b)

⇒ Lt = [M ,L] ⇐⇒ ut =−uxxx −6uux (1.5c)

This Lax pair indeed corresponded to the findings of Garner, Greene, Kruskal and Miura
[1]. However, Lax furthermore showed that an entire hierarchy of higher-order KdV
equations were integrable, which all shared the same spectral L-operator, but differed
in their propagation operator M .

1.1.3. AKNS-TYPE LAX PAIRS

Shortly after the discovery of the Lax-pair formalism, many more Lax pairs were found.
In 1972, Zakharov and Shabat [9] found a matrix Lax pair for the focusing nonlinear
Schrödinger equation, ut = i uxx +2i |u|2u, and therewith showed that the Lax pair for-
malism was not a mere fluke.

Shortly after the discovery of Zakharov and Shabat, a general 2×2 matrix structure for
Lax pairs was proposed by Ablowitz, Kaup, Newell and Segur (AKNS) [7], which could
capture a large range of ubiquitous PDEs, including the KdV equation, modified KdV
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equation (MKdV), the focusing and defocusing nonlinear Schrödinger equation (NLSE),
the sine-Gordon equation, and sinh-Gordon equation. The AKNS-type Lax pairs thus
covered a large variety of PDEs, while only differing in certain coefficients in their matrix
entries. Furthermore, the authors showed that all these PDEs could be solved with the
same method, which was a generalization of the earlier discovered methods to solve the
KdV equation and the NLSE. The AKNS-type Lax pair is given by

L =
[

iÇx −i q(u)
i r (u) −iÇx

]
, M =

[
A(u) B(u)
C (u) −A(u)

]
, (1.6)

where q(u) and r (u) are PDE-dependent transformations of u. The coefficients of the
M-operator were assumed to be low-order power series in the spectral coefficient λ (for
KdV, MKdV and NLSE), or negative power series inλ (for sin(h)-Gordon). Under these as-
sumptions, several combinations of q(u), r (u), and power series satisfied the Lax equa-
tion, corresponding to the mentioned PDEs. The NFT then follows from spectral analysis
of the L-operator.

After a Lax integrable PDE and its AKNS-type Lax pair were identified, the spectral L-
operator could be used to calculate the NFT of the waveform. To solve Lφ = λφ in the
AKNS case, this eigenproblem is typically rewritten to the generalized Zakharov-Shabat
eigenvalue problem form:

Ç

Çx

[
φ1(x,λ)
φ2(x,λ)

]
=

[−iλ q(u)
r (u) iλ

][
φ1(x,λ)
φ2(x,λ)

]
, (1.7a)

s.t.

[
e−iλx

0

]
t→−∞←−

[
φ1(x,λ)
φ2(x,λ)

]
t→+∞−→

[
a(λ)e−iλx

b(λ)e+iλx

]
, (1.7b)

in which φ(x,λ) is the vector eigenfunction corresponding to the complex spectral pa-
rameter λ = ξ+ iη, and a(λ) and b(λ) are the scattering coefficients. Note that the a(λ)
and b(λ) here play similar roles as α(λ) and β(λ) in Eq. 1.3 for the earlier defined scat-
tering coefficients for the KdV equation, and can in fact be transformed to each other
through b(λ).

1.1.4. MORE LAX-INTEGRABLE SYSTEMS

After the discovery of AKNS-type Lax pairs, other nonlinear PDEs were also found to
be Lax-integrable, such as the Boussinesq equation [10], the Harry Dym equation [11],
the Hirota-Satsuma equation [12], Kadomtsev-Petviashvili equation [13], the Camassa-
Holm equation [14], and many others [15].

In the study of Lax-integrable partial differential equations, also many alternative defi-
nitions of Lax-integrability were proposed that would allow more general classes of PDEs
to be solved. An alternative formulation was proposed where the spectral operator was
replaced with a scattering matrix, leading to φx = Xφ, φt = Tφ, supplemented with
the zero-curvature condition X t −Tx + [X ,T ] = 0, which is derived from the condition
φxt = φt x . The zero-curvature condition plays the role of compatibility condition sim-
ilar to the Lax equation in Eq. 1.4 for a classic lax pair (L, M). For the AKNS-type Lax
pair in Eq. 1.6, the spectral problem Lφ = λφ can indeed be reformulated as φx = Xφ,
which was in fact done in the Zakharov-Shabat eigenvalue problem in Eq. 1.7a. While
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the AKNS-type Lax pairs can be formulated similarly well in both form of Lax pairs, the
zero-curvature formulation is more general. Furthermore, the formulation φx = Xφ can
typically be solved more efficiently than an eigenvalue problem Lφ=λφwith numerical
methods.

Lax pairs do not only exist for scalar partial differential equations (1+1 dimensional, 1
spatial, 1 temporal), but also for multi-dimensional equations, (e.g., the Kadomtsev–Pet-
viashvili equation [16], 2+1 dimensional), for vector partial differential equations (e.g.,
the coupled nonlinear Schrödinger equation [17], 1+1-dimensional, 2-dimensional vec-
tor field), as well as for a system of ordinary differential equation (e.g., the Toda-lattice
[18]).

Over the years, many PDEs have been identified as Lax-integrable, although in many
different shapes and satisfying other integrability conditions. Simultaneously, many dif-
ferent test methods have been developed to identify integrable PDEs, or to test whether a
given PDE is integrable. For example, Painlevé analysis [19] can be used to test if a given
PDE is integrable, although it is not guaranteed to be always conclusive, as well as that it
relies on an unproven conjecture.

Similarly, the Hamiltonian-based CLL method [20] attempts to explicitly construct a
Lax pair for a given PDE, although this method too is not always definitive. The symme-
try approach [21] has succeeded in finding all integrable PDEs ut = K (u) given specific
structures of K . For a more complete overview of the techniques to identify integrable
PDEs or test if a given PDE is integrable, we refer to [22]. These techniques are mostly
useful when a PDE is already known and a corresponding Lax pair is required, but the
question remains if a suitable Lax integrable PDE can be found when only measurement
data is available.

In particular in engineering, the presence of loss and noise in PDEs prevent exact Lax
pairs to exist, and therefore approximations are commonly made. Such approximations
have many times allowed NFTs derived from Lax-integrable approximations to be ap-
plied in engineering, for example in fiber optics [23] and in water waveform analysis
[24].

Within this thesis, we will focus on developing identification techniques for AKNS-
type Lax pairs, as this class already contains a wide range of PDEs used in engineering.
The identification methods that we develop can thus also be tested using experimental
data, as opposed to only simulated data. To make this work as self-contained as possible,
the next section goes into more detail on AKNS-type Lax pairs, its associated scattering
transform, and its conserved quantities. All of these will be widely used throughout this
thesis for the purpose of Lax pair identification.

1.2. AKNS-TYPE LAX PAIRS
In this section we focus on the structure of AKNS-type Lax pairs, and show their associ-
ated Lax-integrable PDEs. We then elaborate on how their nonlinear Fourier transforms
can be computed, and illustrate their NFT spectra, and explain the connection to soli-
tons. This section is largely based on the 1974 paper by Ablowitz, Kaup, Newell and Segur
[7]

To derive PDEs fitting the AKNS-type Lax pair from Eq. 1.6, we rewrite the spectral
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operator as a spatial derivative operator. The Lax equation is thus rewritten as an equiv-
alent pair of ordinary differential equations with a spatial derivative operator X and the
temporal derivative operator M :

Lφ=
[

iÇx −i q
i r −iÇx

]
φ=λφ ⇒

[
φ1x

φ2x

]
=

[−iλ q
r iλ

]
︸ ︷︷ ︸

X

[
φ1

φ2

]
⇒ Çxφ= Xφ ,

φt = Mφ ⇒
[
φ1t

φ2t

]
=

[
A B
C −A

][
φ1

φ2

]
⇒ Çtφ= Mφ .

where q = q(x, t ),r = r (x, t ), A = A(x, t ,λ), B = A(x, t ,λ) and C = A(x, t ,λ). This is only
a Lax pair if the equations are compatible upon cross differentiation, Çxtφ = Çt xφ ⇐⇒
X tφ+ X Mφ= Çt Xφ= Çx Mφ= Mxφ+M Xφ. Working out this equality thus leads to the
following compatibility conditions:

Mx −X t =X M −M X (1.8a)

⇒
[

Ax Bx

Cx −Ax

]
−

[−iλt qt

rt iλt

]
=

[−iλ q
r iλ

][
A B
C −A

]
−

[
A B
C −A

][−iλ q
r iλ

]
(1.8b)

⇒
[

Ax Bx

Cx −Ax

]
−

[
0 qt

rt 0

]
=

[−iλA+C q −iλB −q A
r A+ iλC −iλA+ r B

]
−

[−iλA+Br iλB +q A
−iλC − r A qC − iλA

]
(1.8c)

⇒
[

Ax Bx −qt

Cx + rt −Ax

]
=

[
qC − r B −2iλB −2q A

2r A+2iλC r B −qC

]
. (1.8d)

We thus get the compatibility conditions

Ax =qC − r B , (1.9a)

Bx +2iλB =qt −2q A, (1.9b)

Cx −2iλC =rt +2r A. (1.9c)

These compatibility conditions will prove essential for fitting PDEs to ANKS-type Lax
pairs, as well as for deriving properties.

Next, the AKNS authors assumed that A, B and C are low-order polynomials in λ:

A =
N∑
0

A(n)(x, t )λn , B =
N∑
0

B (n)(x, t )λn , C =
N∑
0

C (n)(x, t )λn . (1.10)

We note here that the order N is directly related to the dispersion order of the AKNS-
type PDEs. A low-order of λ thus corresponds to low-order dispersion relations, which
are often of greater interest for engineering purposes.

To solve the A(n), B (n), and C (n), we first assume that A(N ) = an(t ), and B (N ) =C (N ) = 0.
Next, by considering only the terms of order λn , we can find B (n−1) and C (n−1) from A(n),
B (n) and C (n). Then A(n−1) may be found from B (n−1) and C (n−1). This recursion thus
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becomes:

B (n−1) = i

2

(
2A(n)q +B (n)

x

)
,

C (n−1) = i

2

(
2A(n)r −C (n)

x

)
,

A(n−1) =
∫

qC (n−1) − r B (n−1) dx +an−1(t ),

in which an−1(t ) is an integration constant. While the integral over x for A(n−1) may seem
problematic, it turns out that it can be explicitly solved in every step. When we arrive at
order λ0, we obtain the compatibility condition for qt and rt , namely

qt =B (0)
x +2A(0)q,

rt =C (0)
x −2A(0)r.

To illustrate this process, we will work out the results for N = 3:

A(3) = a3(t ), B (3) =C (3) = 0

⇒


B (2) = i

2

(
2a3q

)= i a3q

C (2) = i
2 (2a3r ) = i a3r

A(2) = a2 + i a3
∫
��qr −��r q dx = a2

⇒


B (1) = i

2

(
2a2q + i a3qx

)= i a2q − 1
2 a3qx ,

C (1) = i
2 (2a2r − i a3rx ) = i a2r + 1

2 a3rx ,

A(n−1) = a1 +
∫

q(i��a2r + 1
2 a3rx )− r (i��a2q − 1

2 a3qx )dx = a1 + 1
2 a3qr

⇒


B (0) = i

2

(
2(a1 + 1

2 a3qr )q + i a2qx − 1
2 a3qxx

)= i a1q + i
4 a3r q2 − 1

2 a2qx − i
4 a3qxx ,

C (0) = i
2

(
2(a1 + 1

2 a3qr )r − i a2rx − 1
2 a3rxx

)= i a1r + i
4 a3qr 2 + 1

2 a2rx − i
4 a3rxx ,

A(0) = a0 +
∫

q(i��a1r + i
4���a3qr 2 + 1

2 a2rx − i
4 a3rxx )

−r (i��a1q + i
4���a3r q2 − 1

2 a2qx − i
4 a3qxx )dx = a0 + 1

2 a2qr − i
4 a3(qrx − r qx ).

We thus obtain the following for A, B and C :

A =a3λ
3 +

(
1

2
a3qr +a1

)
λ+ 1

2
a2qr − 1

4
a1(qrx −qx r )+a0, (1.11a)

B = i a3qλ2 +
(
i a2q − 1

2
a3qx

)
λ+

(
i a1q + i

2
a3q2r − 1

2
a2qx − i

4
a3qxx

)
, (1.11b)

C = i a3rλ2 +
(
i a2r + 1

2
a3rx

)
λ+

(
i a1r + i

2
a3r 2q + 1

2
a2rx − i

4
a3rxx

)
, (1.11c)
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which lead to compatibility conditions for qt and rt :

qt = i a1qx + i

2
a3(q2r )x − 1

2
a2qxx − i

4
a3qxxx +2q

(
a0 + 1

2
a2qr − i

4
a3(qrx − r qx )

)
= i

4
a3

(−qxxx +6r qqx
)+ 1

2
a2

(−qxx +2q2r
)+a1i qx +2a0q (1.12a)

rt = i a1rx + i

2
a3(r 2q)x + 1

2
a2rxx − i

4
a3rxxx −2r

(
a0 + 1

2
a2qr − i

4
a3(qrx − r qx )

)
= i

4
a3

(−rxxx +6qr rx
)+ 1

2
a2

(
rxx −2r 2q

)+a1i rx −2a0r. (1.12b)

To make the final connection between this AKNS-type Lax pair and a PDE ut = K (u),
the relations q(u) and r (u) must be established in such away that the equations for qt

and rt are compatible. The AKNS authors found the following special cases:

1. a0 = a1 = a2 = 0, a3 =−4i

r = −1 ⇒ qt =−qxxx −6qqx (KdV)
(1.13)

r = ∓q ⇒ qt =−qxxx ±6qqx (focussing(−q)/defocussing(+q) MKdV)
(1.14)

2. a0 = a1 = a3 = 0, a2 =−2i

r =∓q∗ ⇒ qt = i qxx ±2i q2q∗ (focussing(−q)/defocussing(+q) NLSE)
(1.15)

In a similar fashion, the AKNS authors also considered an expansion of A, B and C in
negative powers. Taking the lowest order expansion,

A(x, t ,λ) = a(x, t )

λ
, B(x, t ,λ) = b(x, t )

λ
, C (x, t ,λ) = c(x, t )

λ
, (1.16)

this resulted in the following equations:

ax = i

2
(qr )t , b =− i

2
qt , c = i

2
rt ,

qxt =−4i aq, rxt =−4i ar.

Two important cases are

1. r =−q = 1
2 ux , a = i

4 cosu, b = c = i
4 sinu,

⇒ uxt = sinu (sine-Gordon equation), (1.17)

2. r = q = 1
2 ux , a = i

4 coshu, b = c = i
4 sinhu

⇒ uxt = sinhu (sinh-Gordon equation). (1.18)
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Many important PDEs can thus be captured by AKNS-type Lax pairs, and this method in-
cludes many more PDEs (in fact infinitely many). The shown ones are the most common
examples, and we will therefore focus in particular on the shown equations.

When considering Eq. 1.13 through Eq. 1.18, we first note that transformations (such as
scalings) of the presented PDEs are also Lax-integrable, simply by changing the relation
q(u) and r (u). We will often apply this throughout this thesis, and this will be one of our
main instruments of identifying scaling parameters in a PDE.

Next, we note that the relation for q(u) and r (u) do not allow any arbitrary functions
q(u) and r (u). For the two shown power-series assumptions for A, B and C , we list the
following as special cases:

1. r =−1 (KdV),

2. r =−q (focussing MKdV, sine-Gordon),

3. r =+q (defocussing MKdV, sinh-Gordon),

4. r =−q∗ (fNLSE),

5. r =+q∗ (dNLSE).

In particular linear combination of relations, such as r = q − 1, do not generally lead
to feasible compatibility conditions, and thus the shown AKNS-type PDEs are not con-
nected in a continuous way.

Interestingly, the focussing MKdV equation and sine-Gordon equation share the same
structure r =+q , and so do the defocussing MKdV equation and the sinh-Gordon equa-
tion with r =−q . This implies that within each relation r (q), the resulting spectral oper-
ators L are the same as well up to the transformation of the waveform q(u). In particular,
an initial waveform u would yield the same (de)focussing MKdV spectrum as the wave-
form (−)ux for the sin(h)-Gordon equation, and these spectra remain constant during
propagation. The only difference between them thus lies in the propagation relation
due to the M-operator.

A more common example of two Lax-integrable PDEs that share the same spectral
L-operator is the hierarchy of (higher-order) KdV equations. While the shown KdV equa-
tion (of third order: uxxx ) is the most common one, there also exist the (trivial) "first-
order KdV equation" (i.e., ut = ux ), the fifth-order KdV equation (ut = uxxxxx + . . . ), the
seventh-order KdV equation, etc., that all share the same spectral operator [8], and are
all of AKNS-type. The AKNS-type Lax pairs for higher-order KdV equations follow from
taking a polynomial assumption of the same order in Eq. 1.10.

1.2.1. NONLINEAR FOURIER TRANSFORM FOR AKNS-TYPE LAX PAIRS

After finding an AKNS-type Lax pair consisting of a spectral operator L (or equivalently
X ) and propagation operator M , the waveform u may be transformed into the spec-
tral domain using the spectral operator. In the spectral domain, the propagation of the
transformed waveform becomes linear, and is fully determined by the M operator.
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Before stating the NFT, we first note here that the boundary conditions of a waveform
are of great influence on its NFT. The most common two boundary condition are van-

ishing boundary condition on q(x)
|x|→∞−−−−→ 0 (sufficiently fast) [7], and periodic boundary

condition q(x) = q(x +L) (see e.g., [25]). While the NFT may be defined and computed
for both of these types (as well as for other types such as non-vanishing boundary con-
ditions, see e.g., [26]), in many practical problems in engineering, it suffices to consider
vanishing boundary conditions. Vanishing boundary conditions have been studied thor-
oughly in the literature, and are in several ways easier to explain and interpret than pe-
riodic or non-vanishing boundary conditions. Furthermore, many practical waveforms
can be well approximated by means of truncation, so that vanishing boundary condi-
tions are still appropriate. We thus will only focus on waveforms u, that lead to a q(u)
with vanishing boundary conditions in the spatial direction. We also assume that q(u)
is bounded. For this thesis the mentioned conditions are sufficient, but the exact math-
ematical conditions for which the NFT exists require more nuance. For more formal
conditions, we refer to [17].

THE NONLINEAR FOURIER TRANSFORM

Next, we define the nonlinear Fourier transform, by means of the AKNS forward scatter-
ing problem. Let q(x) and r (x) be the appropriate transformations of the waveform u(x)
at t = t0 (or t0 = 0 without loss of generality). We then first solve the scattering functions
φ(x,λ), with λ ∈ C in the upper half plane (ℑλ≥ 0), from the spectral problem Lφ= λφ,
or equivalently φx = Xφ:

d

dx

[
φ1(x,λ)
φ2(x,λ)

]
=

[−iλ q(x)
r (x) iλ

][
φ1(x,λ)
φ2(x,λ)

]
, (1.19a)

s.t.

[
e−iλx

0

]
x→−∞←−

[
φ1(x,λ)
φ2(x,λ)

]
x→+∞−→

[
a(λ)e−iλx

b(λ)e+iλx

]
. (1.19b)

Note that Eq. 1.19b denotes the boundary condition, which are required for the unique-
ness of the scattering functions. Intuitively, this scattering equation may be interpreted
as a complex exponential e−iλx coming in from the left, that keeps on undisturbed so
long as q(x) ≈ 0. Indeed, if both q(x) = 0 and r (x) = 0, then we find the solutions
φ1(x,λ) = e−iλx and φ2(x,λ) = e+iλx . As φ(x,λ) evolves over x, it encounters the po-
tentials q and r that "scatter" φ over two components, which stabilize again as ae−iλx

and be+iλx after the interaction with q(x) and r (x) is over. This process is also illustrated
in Fig. 1.4. When ℑλ> 0, the two components of the scattering field would also have an
increasing/decreasing component.

After φ(x,λ) has been determined, a(λ) and b(λ) can be extracted from the limit of
φ on the right, x →+∞. The coefficients a and b are called the scattering coefficients,
and all information included in φ(x,λ) is fully represented by a(λ) and b(λ). It can be
shown that a(λ) and b(λ) can be represented just by their values on the real axis, and
by their values in the upper half plane where a(λ) = 0 [17]. The real line corresponds
to the continuous spectrum of the L-operator, and the simple zeros of a(λ) of the L-
operator (in this thesis we ignore the cases with multiple roots) are the discrete spectrum
(eigenvalues).
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Figure 1.4: The scattering functionφ(x,λ) of the fNLSE (−r∗ = q = u) for the waveform u(x) = e−x2

at λ= 1 (left) and at λ= 1+0.1i (right).

The NFT spectrum can be defined through these two sets by adding certain values
of the scattering coefficients to the spectra, resulting in a complete NFT spectrum con-
sisting of a continuous NFT spectrum and a discrete NFT spectrum. More specifically,
the continuous NFT spectrum can be defined as the value of b(λ) (or alternatively b/a)
on the real line, λ ∈ R, and the discrete NFT spectrum as {λk ,bk }K

k=1 (or alternatively by

b/aλ = b
Ça/Çλ ), in which the eigenvalues λk are the zeros of a(λ) in the complex upper

half plane, and bk = b (λk ).
We note here that many numerical methods have been developed to calculate the NFT

[27, 28]. Much work has been to speed up the NFT, in particular for the NLSE (see e.g.,
[29–31]) and the KdV equation (see e.g., [32–34]). In particular, the software library FNFT
(Fast Nonlinear Fourier Transform) [35] is widely used for the computation of the KdV-
NFT and the NLSE-NFT in this thesis.

INTERPRETATION OF THE NFT SPECTRUM

An example of the NFT of KdV type (r = −1; q = u) is shown in Fig. 1.5. The spectrum
consists of the continuous line, and several points in the discrete spectrum in the up-
per half plane. For the KdV equation, all eigenvalues lie on the imaginary axis, which is
also observed here. For the continuous spectrum, we also showed b/a = b(λ)/a(λ) (the
variations are better visible than just b(λ) for the KdV), and for the discrete spectrum we
also show ln(|b|). For the KdV, each eigenvalue in the discrete spectrum corresponds to a
soliton, a localized waveform that retains it shape, even after interaction with other soli-
tons or wave components. The eigenvalue is directly related to the energy of the soliton.
The continuous spectrum of the KdV corresponds to dispersive wave components, and
may be roughly compared to the linear Fourier spectrum. In the low-energy limit, the
continuous spectrum of the NFT even coincides with the linear Fourier spectrum under
appropriate scaling [7, p. 270]

While the NFT for other AKNS-type PDEs may appear different, they all share the prop-
erties that they consist of a continuous spectrum covering the real axis, and a discrete
spectrum of eigenvalues that correspond to solitons. For example, the discrete spec-
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trum of the fNLSE can contain eigenvalues anywhere on the upper half-plane (not just
on the imaginary axis). The dNLSE on the other hand always has an empty discrete
spectrum for waveforms with vanishing boundary conditions, and indeed this equation
cannot support solitons in this case (eigenvalues and so-called "dark" solitons are how-
ever possible for the dNLSE for non-vanishing boundary conditions) [36]. The NFT for
the sine-Gordon equation can contain eigenvalues, which also correspond to solitons.
For all these equation, the continuous spectrum is also associated with dispersive wave
components.

Figure 1.5: An exemplary waveform and its KdV-NFT. Left: the waveform was created by taking a
two-soliton solution of the KdV equation (one soliton of height 8 with λ = 2i , and one of height
2 with λ = 1), and adding some noise. Outside the shown range, the waveform amplitude is 0.
Middle: the NFT spectrum consists of the real positive line, and eigenvalues (red stars) in the
upper-half plane, where the highest two corresponds to the two solitons, and the lower two with
low-energy solitons that result from the addition of the noise. Right: the NFT spectrum, now
complemented with information from the scattering coefficients. Note that different quantities
are shown for the discrete spectrum (DS) and for the continuous spectrum (CS).

PROPAGATION IN THE NFT DOMAIN

After determining the spectrum of a signal, we now consider the propagation. First we
note that the discrete spectrum remains constant due to the assumption that λt = 0.
However, the scattering coefficients a(λ) and b(λ) will evolve over time. Recall that
a(λ) and b(λ) resulted from the behavior in the right far-field of φ, which propagates
according to φt = Mφ. In the right far-field, we assumed that q(x) → 0, and therefore
the M-operator greatly simplifies. In particular, all solutions in Eq. 1.13-Eq. 1.18 satisfy

B(x, t ,λ)
x→∞−−−−→ 0, C (x, t ,λ)

x→∞−−−−→ 0, and A(x, t ,λ)
x→∞−−−−→ A0(λ) (we note here that KdV

forms an exception due to r =−1, but this can be overcome by a simple transformation
[37, p. 122917]). The propagation operator M thus becomes diagonal, thus leading to
linear and independent evolution equations for a(λ) and b(λ). The NFT thus converts a
the nonlinear propagation in the physical domain to be transformed to a linear transfor-
mation in the spectral domain.

We evaluate the propagation relations for the a(λ) and b(λ) for a few of the earlier
considered PDEs, by evaluation A(λ) with the appropriate assumptions for r (u), q(u),
and the coefficients in the power expansion of A from Eq. 1.11 and Eq. 1.16. We obtain:
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1. KdV, MKdV (a3 =−4i , a0 = a1 = a2 = 0) ⇒ A0(λ) =−4iλ3

2. f/dNLSE, (a2 =−2i , a0 = a1 = a3 = 0) ⇒ A0(λ) =−2iλ2

3. sine/sinh-Gordon,
(
a

u→0(mod 2π for sine-Gordon)−−−−−−−−−−−−−−−−−−−−−→ i
4

)
⇒ A0(λ) = i

4λ .

We thus get that φ1t = A0(λ)φ1t and φ2t =−A0(λ)φ2t , at both the left and right end of φ,
resulting in φ1(t ) =φ1(0)e A0(λ)t and φ2(t ) =φ2(0)e−A0(λ)t . However, due to the imposed
boundary conditions in Eq. 1.19b, the left hand side of φ1 must remain constant over
time, which can be done by a simple multiplication of φ by e−A0(λ)t . This re-scaling also
affects the right hand side, which thus results in the following propagation equations for
the scattering coefficients:

a(λ) = 0, b(λ) = e−2A0(λ)t . (1.20)

In this thesis, we are interested in the identification and parameterization of Lax-inte-
grable PDEs. One of the methods we will apply widely is comparing the NFT spectra of
a waveform at different states of its evolution. If we found a suitable Lax-pair (or at least
suitable spectral operator L), then their discrete spectra should be equivalent. We can
then also consider the change in scattering coefficients to determine the M-operator.

INVERSE NFT

After determining the NFT of a waveform, and propagating its scattering coefficient in
the NFT domain, the propagated waveform in the physical domain can be reconstructed
using the inverse nonlinear Fourier transform, or inverse scattering transform. This was
demonstrated early on [7, 38], and numerical methods are now widely available to deter-
mine the inverse NFT (see e.g., [35] for KdV and NLSE). The focus of this thesis however
lies not on the inverse transformation, but rather on the comparison of various wave-
forms in the NFT domain, or the comparison of the conserved quantities of the wave-
forms. The inverse Fourier transform therefore lies outside the scope of this thesis.

1.2.2. CONSERVED QUANTITIES OF AKNS-TYPE PDES

In this section, we focus on conserved quantities of AKNS-type PDEs. So far, we have
explained that the NFT-spectrum of waveforms governed by an AKNS-type PDEs re-
main constant, which may be used for identification of a suitable Lax pair. However,
Lax-integrable PDEs are also associated with an infinite number of conserved quanti-
ties, which may also be used for identification. For example, to check if a PDE is of KdV
type, we may consider the conserved quantities of the KdV, and check if these indeed
remain constant during evolution.

Conserved quantities are in general of the following form:

C =
∫

D
f (u)dx, with

ÇC

Çt
= 0. (1.21)

Already before the discovery of the method of inverse scattering, it was known that sev-
eral equations possessed an infinite number of conserved quantities. For example, the
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KdV ut = −uxxx −6uux was known to possess an infinite number of conserved quanti-
ties, of which the first three are given by [39]

C1 =
∫

D
u dx, C2 =

∫
D

u2 dx, C3 =
∫

D
−2u3 +q2

x dx, (1.22)

where D is the full domain for x. While we assume D to be (−∞,∞), similar results also
hold when e.g., periodic boundary conditions are used on a finite domain.

Indeed, when evaluating the time derivative of the first two, we find that both con-
served quantities are time invariant. Note that we use integration by parts, and apply
the vanishing boundary conditions to cancel out

∫ ∞
−∞(·)x dx:

C1t =
∫ ∞

−∞
ut dx =

∫ ∞

−∞
(−uxx −3u2)

x dx = 0,

C2t =
∫ ∞

−∞
2uut dx =

∫ ∞

−∞
−2uuxxx −4(u3)x dx = [−2uuxx ]∞−∞+

∫ ∞

−∞
(u2

x )x dx = 0.

For an L-operator of AKNS-type, the existence of an infinite number of conserved
quantities may also directly be shown. To do so, we again consider Eqs. 1.9c. Starting
from Eq. 1.9a and substituting B by (1.9b) and C by (1.9c), and applying partial integra-
tion on the terms qCx + r Bx , we get

Ax =qC − r B , B = 1

iλ
(qt −Bx −2q A), C = 1

iλ
(−rt +Cx −2r A)

⇒ Ax = 1

iλ

[
q(−rt +Cx −2r A)− r (qt −Bx −2q A)

]
= 1

iλ

−qrt − r qt︸ ︷︷ ︸
=−(qr )t

−2Ar q +2Aqr + (qC )x + (r B)x︸ ︷︷ ︸
drops out (when integrating)

−qxC + rx B︸ ︷︷ ︸
O (1/λ2)

 . (1.23)

Note that in the final expression, B and C arise again, so these can again be substituted,
which adds terms of one order higher in 1/iλ. This process can be repeated indefi-
nitely [17], and iteration n will yield another term in the form

(
cn(q,r )

)
t , associated with

1/(iλ)n .
Upon integrating over x over the full domain, we find that the left hand side in Eq. 1.23

drops out as A(∞) = A(−∞), and thus the right hand side of Eq. 1.23 must also be equal
to 0. The right hand side can thus be expanded as a polynomial in 1/iλ:

0 = Ç

Çt

∫ ∞

−∞

∞∑
n=1

cn(q,r )
1

(iλ)n dx. (1.24)

This polynomial in 1/iλ can only equal 0 if and only if every term Ç
Çt

∫ ∞
−∞ cn dx = Ç

Çt Cn is
zero, and thus this gives rise to an infinite number of conserved quantities Cn of AKNS
type.

I would like to note here that the iterative substitution of B and C and the subsequent
partial integrations may be performed manually, but the process is tedious. For my re-
search, I worked out the first five conserved quantities by hand, using repeated integra-
tion by parts, which already proved a challenge upon its own. I wrote a symbolic math-
ematics script that could automatically generate the conserved quantities, which can be
made available to the reader upon reasonable request.
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The first five conserved quantities of AKNS-type are given by

C1 =
∫

D
qr dx, C2 =

∫
D

r qx − rx q dx, (1.25a)

C3 =
∫

D
q2r 2 +qx rx dx, C4 =

∫
D
−rxx qx +qxx rx + 3

2

(
r 2(q2)x −q2(r 2)x

)
dx,

(1.25b)

C5 =
∫

D
2q3r 3 +qxx rxx +

(
q2

x r 2 + r 2
x q2)+8qqx r rx dx. (1.25c)

From these first five terms, we can already note certain patterns. Higher conserved
quantities become increasingly complex, involving higher orders of q , r and higher spa-
tial derivatives. When considering noisy data, the higher-order terms are typically in-
creasingly sensitive to noise, so for the purpose in this paper, we will only consider a few
lower-order terms. We also note here that not all conserved quantities are non-trivial
for certain choices of r (q). For example, for r =−1, we observe that C2 =

∫ ∞
−∞−qx dx = 0.

However, the odd quantities are nontrivial for the discussed choices r (q) ∈ {−1,±q,±q∗}.
We thus observe that only a small number of the conserved quantities will be useful

when analyzing experimental data, but we will show in this thesis that this can already
lead to fast and reliable parameter identification, and distinguishing of integrable PDEs.

1.3. RESEARCH GOAL
Several fields in engineering have been able to harness the powerful analysis that comes
along with the existence of a Lax-integrable description of a system. The question re-
mains what other practical systems can be described by a Lax-integrable PDE. In partic-
ular the question arises whether a Lax-integrable PDE can be found given a set of (noisy)
measurement data.

This problem could in theory be addressed by first attempting to identify a PDE using
conventional data-driven methods (e.g., [40, 41]), and then finding a corresponding Lax-
pair. However, since the data set is often noisy, the identified PDE will rarely be exactly
Lax-integrable, which leaves the question which – if any – Lax integrable PDE is ‘closest’
to the identified (non-integrable) PDE. Even when the data set is noiseless and a perfectly
fitting PDE is found, it is still likely that this PDE is not exactly integrable, while it could
be approximated by a Lax-integrable variant and NFT analysis could be applied.

An alternative method would be to attempt to directly find a Lax pair from measure-
ment data. However, to the best of our knowledge only a single data-driven method has
been proposed to directly identify Lax pairs [42]. However, also this methods requires
derivatives with respect to the evolution variable and is therefore also very sensitive to
noise, as well as that the measurement data may also be sparse in the direction of evolu-
tion, and that derivatives may therefore not be determined. There thus remains a large
challenge in determining whether given measurement data can be well described by a
Lax-integrable PDE, and if so, what its Lax pair is.

In this thesis, we propose several data-driven approaches to directly identify a suitable
ANKS-type Lax pair and a corresponding Lax-integrable PDE, and demonstrate the fea-
sibility of various approaches. The approaches proposed in this thesis are application
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driven. The main focus in this thesis is on AKNS-type Lax-pairs, as this class of problems
already captures a large class of ubiquitous PDEs. The restriction to AKNS-type PDEs
allows us to exploit their overarching structure in the identification. As the set of Lax-
integrable PDEs is very diverse, we envision that the task of finding a suitable integrable
PDE to a dataset is split up into multiple classes, where for each class a specialized iden-
tification method is performed. Due to the structure of the AKNS-type PDEs, we chose
to first dedicate our attention to this class.

AKNS-type Lax pairs are often recognized in engineering problems for which the me-
thod of inverse scattering is of practical use, which is not necessarily true for all Lax
integrable systems. AKNS-type Lax pairs also cover a wide range of Lax pairs, using a
single structure, and can therefore be parameterized up to a certain extend. Finally, the
PDEs associated with AKNS-type Lax pairs contain many PDEs without very high-order
derivatives (in particular up to third derivatives). PDEs with very high-order derivatives
can become very sensitive to noise, and these are thus very hard to identify from mea-
surement data, as well as that the underlying model can become too complex to describe
an experimental system accurately. For these engineering reasons, we are thus mainly
interested in (relatively) low-order PDEs, many of which are already provided by AKNS-
type PDEs.

1.3.1. MAIN RESEARCH QUESTION

The goal of this thesis is to develop novel data-driven methods that identify a Lax-inte-
grable system that explain given measured data as well as possible, even when the true
system is not Lax-integrable. As the space of all Lax-pairs is still vast, we only focus on
AKNS-type Lax pairs in this thesis. The main research question may thus be formulated
as follows:

What AKNS-type Lax pair fits best to given data?

Within this thesis, we consider two main approaches for Lax pair identification. Our
first approach assumes a known Lax integrable PDE and corresponding Lax pair, except
for one or two parameters. The difficulty lies in that waveform data is only sparsely avail-
able throughout the evolution, and thus temporal derivatives cannot be used. We com-
pare the NFT-spectrum at multiple stages of evolution, for different parameter values.
For the correct parameter values, the NFT spectra are identical up to the linear evolution
of the scattering coefficients. We demonstrate this approach for both the KdV equation,
and the NLSE equation, using simulated data as well as experimental data.

Our second approach relies on comparison of conserved quantities. We make the as-
sumption that the underlying system is governed by an AKNS-type PDE, and parame-
terize the corresponding Lax pairs. This parametrization generalizes the parametriza-
tions from the first method, and relies on the fact that many AKNS-type PDEs share the
same structure of conserved quantities. For the correct parameter values, the conserved
quantities indeed remain constant during propagation. This method is demonstrated
for a various types of simulated data with noise.
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1.4. OUTLINE OF THE DISSERTATION
In Chapter 2, we focus on identifying coefficients of the Korteweg-de Vries equation and
its Lax pair, that best explain experimentally measured shallow-water waveforms. We
propose and validate two novel identification methods. First, we compare eigenvalues
corresponding to solitonic components, using the nonlinear Fourier transform. Second,
we compare the conserved quantities of the KdV at different snapshots of the developing
waveforms, and identify the system parameters such that the conserved quantities are
indeed conserved.

In Chapter 3, we demonstrate similar methods as in Chapter 2, but now for simulated
waveforms in an optical single-mode fiber, modeled by the focussing nonlinear Schrö-
dinger equation. We demonstrate that both the discrete spectrum (solitonic compo-
nents) and the continuous spectrum (dispersive components) may be used to identify a
suitable Lax pair, as well as extract relevant coefficients of the PDE, such as the disper-
sion and nonlinearity coefficient of the single-mode fibers, as well as the fiber length.

In Chapter 4, we apply the method from Chapter 3 on experimental data. It is shown
that in particular the discrete spectrum is useful for the identification of the parameters
of the NLSE. Furthermore, we also compare the nonlinear spectrum-based method to a
conventional propagation-based method in terms of accuracy and speed, and demon-
strate that the speed of the NFT-based identification methods is mostly independent of
the fiber length.

In Chapter 5, we propose a method to efficiently calculate the soliton content of an
NLSE-governed waveform, by means of windowing the considered waveform in both
the frequency and time domain. In Chapter 4 we observed that Lax pair identification by
comparing solitonic components is a powerful tool, but that the calculation of the soli-
tonic components for very rich waveform becomes computationally challenging. The
proposed method overcomes this limitation for the NLSE-based NFTs.

Finally in Chapter 6, we develop a general conserved quantities-based method to quickly
identify AKNS-type Lax pairs and identify their parameters. We already developed PDE-
specific conserved quantity-based identification methods for KdV in Chapter 2 and for
NLSE in Chapter 3, but in this chapter we do so for a wide class of AKNS-type systems.
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WATER-DEPTH IDENTIFICATION

FROM FREE-SURFACE DATA USING

THE KDV-BASED NONLINEAR

FOURIER TRANSFORM

We propose a novel method to determine the average water depth from shallow, weakly
nonlinear water waves that are approximated by the Korteweg-de Vries equation. Our
identification method only requires free-surface measurements from two wave gauges aligned
in the direction of wave propagation. The method we propose is based on comparing
solitonic components in wave packets, which are computed using the nonlinear Fourier
transform (NFT) (typical time-series data often contains at least some solitonic compo-
nents, even when these components are not directly visible). When the correct water depth
is used for the normalization of the wave, the solitonic components found by the NFT re-
main constant as the wave packet propagates, whereas any other water depth will result
in solitonic components that do not remain constant. The basic idea is thus to iteratively
determine the water depth that leads to a best fit between the solitonic components of
time series measurements at two different gauge positions. We present a proof-of-concept
on experimental bore data generated in a wave flume, where the identified water depth is
within 5% of the measured value.
This chapter is an adaptation of [43]. ©2022 ASME. Reprinted, with permission.

2.1. INTRODUCTION
The Korteweg-de Vries (KdV) equation closely models the propagation of progressive
free-surface waves in shallow water with depth-to-wavelength ratio h/L < 0.22 [44, 45],
and finds many applications in coastal engineering [46]. The water depth is the essential
governing parameter in the KdV equation. However, the water depth may not always be
known, as it may be hard to measure, or is slowly changing over time. This is for example
the case in wave flumes with moving-bed experiments, where the average water depth
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may change due to sediment transportation [47, p.108-111], or water losses due to over-
topping [48, p.4]. Another example occurs for arrays of buoys in front of the coast, where
the average water depth can slowly vary due to drifting of the buoys over an uneven bot-
tom, sediment transportation, or the changing tidal elevation [49, 50].

Existing methods for water depth measurement at the coast, in waterways, and in
flumes usually rely on direct measurement of water depths, using sound or light [51].
Alternatively, statistical properties such as wavelength and period may be derived from
aerial photographs, which may be related to water depth as well [52]. However, the men-
tioned examples use very specialized devices to determine the depth, whereas these are
not always present or accessible. In contrast, buoys at the coast and in waterways mea-
suring the free surface amplitude are often already installed for more general purposes,
and wave flumes are often already equipped with wave gauges, providing plentiful free
surface measurements at certain fixed locations in both cases. We investigate the pos-
sibility to identify the average water depth from this type of data. It has already been
shown that the bathymetry can be roughly estimated from space-time series free-surface
data, given that the average water depth is approximately known [53]. However, this
method used space-time data (two-dimensional data), as opposed to just time series at
two locations, and would therefore not be applicable on buoy or gauge data. A final ap-
proach for identifying the water depth is through the constants of motion of the KdV
equation, analogous to a method discussed in [54]. The water depth can directly be ex-
tracted as the ratio of certain global quantities of the wave at two different positions,
as shown in Appendix D. However, this method strongly depends on the pre-processing
method, and is sensitive to noise and distortion.

In this study, we propose a simple method to use the free-surface elevation data at just
two locations aligned in the direction of wave propagation to determine the water depth,
under the assumption that the wave propagates in constant depth and is approximately
governed by the Korteweg-de Vries equation. Neither the exact distance between the
gauges (e.g., in the case of buoy data) nor precisely time-synchronized measurements
are required in our proposed method, as long as the measurements are of the same pro-
gressive free-surface waves. The method we propose is based on the nonlinear Fourier
transform (NFT) for the KdV equation (KdV-NFT) [24]. In this study, we will demon-
strate a proof-of-concept by focussing on wave packets, so that the NFT with vanishing
boundary conditions can be applied.

The NFT decomposes a wave packet into a discrete spectrum and a continuous spec-
trum, representing two types of waves. The discrete spectrum represents translatory
stable waves (solitons), while the continuous spectrum represents dispersive oscillatory
wave components (radiation). If a free-surface wave in constant depth evolves perfectly
according to the KdV equation, both the solitonic components and the amplitudes of
the continuous spectrum remain constant during propagation. As the water depth gov-
erns the propagation of a wave packet, the water depth is also the governing parameter
in the NFT and its resulting spectra. Therefore, the basic idea is to iteratively determine
the water depth that leads to a best fit between the nonlinear Fourier spectra of time
series measurements at two different gauge positions. For our measurements, most of
the energy was contained in the solitonic components, and we will therefore focus on
matching the discrete spectra in this study. The value at which the NFT spectra fit best is
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then identified as the optimal water depth, under the assumption that the water depth
between the gauges is constant.

Although NFT-based identification has not been applied for water depth identification
as of yet to the best of our knowledge, we already showed in earlier work that NFT-based
parameter identification is possible for optical fiber systems [54, 55]. Light propagation
through optical fibers is governed by the nonlinear Schrödinger equation (NLSE), which
also allows for an (NLSE-based) nonlinear Fourier transform. Similar to the KdV-NFT, the
NLSE-NFT decomposes a signal into solitonic components and dispersive components,
allowing us to use similar approaches from [54] in this research.

The structure of this chapter is as follows. First, we present the KdV model and its
nonlinear Fourier transform. Second, we propose our novel water-depth identification
algorithm, based on comparing solitonic components. Third, we validate the identifica-
tion method on simulated and experimental data. Finally, we conclude the chapter.

2.2. THE KDV EQUATION AND THE NONLINEAR FOURIER

TRANSFORM
The development of long unidirectional progressive free-surface waves in shallow water
is modeled by the time-like Korteweg-de Vries equation [2],

ηl + c ′0ητ+α′ηητ+β′ητττ = 0, (2.1)

where η(t , s) [m] denotes the free-surface elevation compared to the still-water level, l
[m] the position, τ [s] the time, c ′0 [s/m] the inverse wave celerity, α′ [s/m2] the non-
linearity coefficient and β′ [s3/m] the dispersion coefficient. Subscripts denote partial
derivatives. For progressive free-surface waves, the governing coefficients depend only
on the water depth [56]:

c0 =
√

g h, α′ =− 3

2hc0
=− 3

2h
√

g h
,

c ′0 =
1

c0
= 1√

g h
, β′ = − h2

6c3
0

=− h2

6(
√

g h)3
,

(2.2)

where c0 [m/s] is the shallow water wave celerity, c ′0 [s/m] the inverse wave celerity, g
[m/s2] the gravitational acceleration, and h [m] the still-water depth.

The idea of this study is to identify the still-water depth at which the KdV equation best
relates free surface measurements at consecutive wave gauges. One option would be to
numerically propagate the signal at the first gauge to the second gauge using Eq. (2.1) for
different water depths, and keep the water depth at which the simulated and measured
signal at the second gauge fit best. However, we instead consider the nonlinear spectrum
of the signals, which has the advantage that it does not depend on the distance traveled
by the wave or the time synchronization of the signals. This property is especially useful
when the distance between measurement devices is not known. Finally, this method has
the advantage that the equation does not have to be solved with time-stepping methods,
which increase in computation time as the distance increases.
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2.2.1. NORMALIZATION

The nonlinear Fourier transform is often determined from the normalized and dimen-
sionless KdV equation:

qx +6qqt +qt t t = 0, (2.3)

in which q(t , x) is the normalized free-surface elevation, t the normalized time and x the
normalized location. To obtain the normalized KdV in Eq. (2.3) from the dimensional
one in Eq. (2.1), we apply the following change of variables:

t = 1

T0
(τ− c ′0l ), x = 1

T 3
0

cx l , q(t , x) = T 2
0 cqη(τ, l ), (2.4a)

with cx =β′ =−
p

h

6g 3/2
, cq = α′

6β′ =
3g

2h2 . (2.4b)

The amplitude-normalization coefficient cq and space-normalization coefficient cx both
only depend on the water depth. Note that the amplitude normalization coefficient cq

represents the ratio of the nonlinearity α′ versus the dispersion β′. The time normal-
ization T0 [s] is entirely free to choose, and will only linearly scale the signal, its linear
Fourier spectrum and its NFT spectrum. For simplicity, we will use T0 = 1. We also note
here that the value of c ′0 is not strictly necessary for the normalization: using a wrong
c ′0 only translates the signal without influencing its shape, and therefore does not influ-
ence the solitonic components or amplitudes of the continuous spectrum of the NFT
(see Property 3 in Appendix B). Throughout this study, we will therefore use c ′0 = 0 for the
normalization step. In this study, we will first identify the amplitude normalization co-
efficient cq (i.e., the ratio between nonlinear and linear effects), and then extract h from
cq :

h =
√

3g

2cq
. (2.5)

2.2.2. SOLITONS AND THE NONLINEAR FOURIER TRANSFORM

It is well known that the KdV equation supports both dispersive waves and waves of
translation, so called solitons. The energy of dispersive wave components will spread
out more and more over time, but each soliton remains localized, and will be visible in-
definitely. More specifically, any normalized wave packet q(t ) will evolve into a train of
N ≥ 0 solitons after sufficiently long time [57, p. 83]:

q(t , x) ≈
N∑

n=1
2k2

nsech2 (
kn(t −4k2

n x − t 0
n)

)
, (2.6)

in which t 0
n is a time shift depending on the initial conditions. Most importantly, the

height (2k2
n), the width (1/kn) and the celerity (4k2

n) of a soliton are all determined by a
generalized wave number kn .

Although the detection of solitons and their kn is straightforward when all solitons
have separated, it is not clear which solitons will come out of some arbitrary wave packet.
However, the NFT is able to precisely determine which solitons are present in any wave
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packet. If we normalized the KdV equation correctly, the same solitonic components
will remain present in a wave packet during propagation. All solitons present in a signal
are represented by the discrete spectrum of the NFT, which is a set of pairs of purely
imaginary eigenvalues λn = i kn (directly related to the generalized wave number of each
soliton in Eq. 2.6) and residues rn (indirectly related to the location of each soliton):

Λds = {(λn ,rn),n = 1, . . . , N } . (2.7)

Assuming propagation according to Eq. (2.3), the eigenvalues remain constant, and the
residues grow exponentially with the traveled distance

λn(x = X ) =λn(x = 0), rn(x = X ) = rn(x = 0)e8iλ3
n X . (2.8)

We used the FNFT-software library [35] to determine the eigenvalues and residues from
the normalized signal. Further details on the exact definition and calculations of the
NFT may be found in Appendix A. Some relevant properties of the NFT are discussed in
Appendix B.

The NFT can also extract the oscillatory wave components from a wave packet, repre-
sented by a continuous spectrum. However, we will only focus on the discrete spectrum,
as we find that the experimental signals considered in this study are strongly soliton-
dominated.

2.3. SPECTRAL MATCHING ALGORITHM
As stated in the previous section, the eigenvalues in the nonlinear Fourier spectrum of
a KdV-governed signal remain constant, given that the correct amplitude normalization
constant cq was applied. As cq relates directly to the water depth h, our strategy is to con-
sider a wave packet at two consecutive wave gauges (an ‘input’ and an ‘output’ gauge),
normalize both signals with a certain cq (h) and compare the eigenvalues of their NFT
spectrum. The value of cq is iteratively adapted until one is found at which the NFT
eigenvalues at the two wave gauges match optimally. This identified normalization con-
stant cID

q is then converted to the identified water depth hID using Eq. (2.4b).
To quantify the error between the NFT eigenvalues of the two signals, we first sort the

eigenvalues in each spectrum from largest to smallest imaginary part, k1 > k2 > ·· · >
kN > 0. We then match the highest input eigenvalue λin

1 to the highest output eigenvalue
λout

1 , the second highest to the second highest, and so on. If either spectrum contains
more eigenvalues than the other (N in ̸= N out), the remaining (lowest) eigenvalues are
matched to artificial ‘0-eigenvalues’ at the origin. We finally considered two possibilities
for the error-norm: p = 1, corresponding to the absolute difference between input and
output eigenvalues; or p = 3, proportional to the absolute difference between the energy
En of input and output eigenvalues (En ∝ k3

n , see Eq. (2.23b) in Appendix B). Precisely,
we define the error as

E p =
∑

n

∣∣∣(k in
n

)p − (
kout

n

)p
∣∣∣∑

n
(
k in

n
)p +∑

m
(
kout

m
)p , p ∈ {1,3} . (2.9)
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The error is normalized, such that the maximum possible error is 1. Due to the ob-
served continuity of the eigenvalues as cq is varied, and the fact that eigenvalues can
only (dis)appear at the origin (see Appendix B), the error is also continuous in cq .

We finally identify the optimal cID
q and corresponding water depth hID by applying

local minimization over cq using Eq. (2.9) as cost function. To obtain an initial starting
position, we perform a rough grid search over realistic values of h, and take the one with
lowest error.

This concludes the spectral matching algorithm that we will apply in this study. We
note that the spectral matching algorithm is somewhat similar to the identification method
from global conserved quantities in Appendix D, as the eigenvalues can also be consid-
ered as conserved quantities. As shown in Appendix D, the method of conserved quan-
tities can give good results, while being easy to implement. However, it should be kept
in mind that the estimate of the method is not complemented by an error, so it cannot
be deduced how reliable the estimate is. The method may also be sensitive to noise and
pre-processing, and can give biased results in some cases [54]. The NFT-based algorithm
is therefore often the more reliable choice.

Finally, we mention here that other parts of the NFT spectrum can also be taken into
account for identifying the water depth, namely the continuous spectrum and the residues
of the discrete spectrum. The moduli of the continuous spectrum of the NFT (represent-
ing oscillatory wave components) also remain constant during propagation, and could
therefore be compared as well. As mentioned before however, the continuous spectrum
of our experimental data contained too little energy to test continuous-spectrum-based
identification. On the other hand, the residues of the discrete spectrum can be of use, as
discussed below.

2.3.1. EXTENSION USING RESIDUES

Although the proposed spectral-matching algorithm only uses the eigenvalues, each
eigenvalue is complemented by a residue containing information relating to its position.
As each soliton moves with its own speeds, so too do the residues grow with different
speeds as the wave packet propagates, as shown in Eq. (2.8). We may thus check how
well the solitons match by checking if their residues indeed grew proportionally to the
distance between the wave gauges (if known). Alternatively, after the water depth was
identified using only the eigenvalues, we may estimate the distance between the input
and output gauges using the residues, and compare how well this matches the measured
distance.

Instead of considering the residues directly, we will convert each residue to a ‘soliton
(time-)location’, tn , which we define as the position of the soliton peak in the case the
wave packet was a pure single-soliton (the presence of multiple solitons and continuous
spectrum cause shifts, as well as that no clear peak may be distinguishable when multi-
ple solitons are close [37, 58]). The propagation speed of this soliton location is equal to
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the soliton celerity cn = 4k2
n :

tn(x) = 1

2kn
ln

(
rn(x)

2i kn

)
, (2.10)

tn(x +X ) = tn(x)+ 4k2
n︸︷︷︸

=cn

X . (propagation relation) (2.11)

Recall that the normalized position is given by x = 1
T 3

0
cx l , thus the normalized traveled

distance is given by X = 1
T 3

0
cx L, with L the physical distance between the wave gauges.

Finally, the normalized frames of the wave packets at input and output will experience
some (unknown) time shift t0 due to the wave celerity c ′0 and due to a possible synchro-
nization mismatch. The influence of this t0 is the same for all soliton locations, and may
thus be taken into account with one t0 for all pairs (kn , tn):

t out
n − t in

n = 4(k in
n )2 cx

T 3
0

L+ t0. (2.12)

The propagated distance L may thus be identified by fitting both L and t0 simultaneously
in a least-squares approach to the shifts in soliton locations of all solitons, when there
are at least two solitons present.

2.4. RESULTS
Within this section, we demonstrate the proposed water-depth identification algorithm
using free-surface measurements from a wave flume at two different wave gauges. Fur-
thermore, we also test the identification algorithm on simulation data, where the wave
packet at one wave gauge was taken as input, and then numerically propagated with the
KdV equation to the position of a consecutive wave gauge.

2.4.1. EXPERIMENTAL SETUP

The experimental data used in this study was measured at the Hydraulic Engineering
Laboratory at the National University of Singapore (NUS). The data was originally gen-
erated for a different study [58], and shared with us for the analysis in this study. The ex-
perimental setup is shown in Fig. 2.1. The flume is 0.9m wide, 0.9m deep, and 36m long.
At the left-end side is a movable piston-type wave maker. After 28.7 m, the flume bot-
tom slopes upward. Four wave gauges marked CG1 to CG4 (Capacity Gauge) are present,
with respective positions x1 = 5.193 m, x2 = 9.886 m, x3 = 14.882 m, and x4 = 18.869 m.
The wave gauges consist of two thin metal wires, which measure the water-height de-
pendent voltage difference. The voltage is then linearly converted to the wave height.
Measurements were taken every 0.05 s, for a duration of 90 s. Initially, the water was at
rest with measured depth h = 9.80 cm. Then, the wave maker was moved from x = 0 m
to x = 4.0 m in approximately 3s to generate a trapezoidal-shaped wave with a relative
height of 2.0 cm. Note that the wave maker remained at x = 4.0 m, so the filled part of the
flume became shorter, and the still water level would increase after all waves have died
out. This takes a very long time, and for the course of the experiment, we took the initial
still water level href = 9.80 cm as reference level.
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The measurements of the free-surface elevation are shown in Fig. 2.1. Initially, we
observe the initial trapezoidal-shaped wave at CG1, right behind the wave maker. As the
wave travels, its fastest solitons start to separate from the bore, and reach the next gauges
first. Traveling at approximately c0 = 1m/s, the front of the wave reaches the right end
of the flume around t = 28 s, reflects imperfectly from the sloped end, and propagates
to the left, reaching the gauges in opposite order. Around t = 51s, the (now left-going)
wave reflects nearly perfectly at the piston at the left side of the flume, and starts moving
to the right again. The second reflection and first reflection interfere at most of the wave
gauges, contradicting the assumption of unidirectional waves in the KdV approximation.

We will compare only the incoming waves at the wave gauges to identify the water
depth, as these measurements are not affected by interference. We compare several
combinations to investigate the influence of the traveled distance on the identified wa-
ter depth: if two gauges are very close, the waves are very similar, and thus the influence
of the water depth will be small, making it harder to identify; for longer distances, the
accumulated effect of the water depth will be greater, and thus the water depth should
be easier to identify.

2.4.2. PRE-PROCESSING

For the pre-processing of the data, we extracted a time window as large as possible with-
out being distorted by the reflected wave. We truncated the signals measured at CG1 to
CG4 to the time interval t ∈ [0,34]. We note here that the NFT assumes zero-boundary
conditions at the left and right of the signals. Although the signal smoothly goes to zero
at t = 0, this is not the case at t = 34, where the new steady water level was measured to
be −0.40cm. The block signal is followed by a trough, which does not seem to go back to
the initial still-water level within the time frame of the experiment (in fact the water level
seems to decrease further down to −0.72cm after the reflected wave has passed over).
Fortunately, it was observed in [58] that the presence or absence of a trough mainly influ-
ences the continuous spectrum, while leaving the discrete spectrum nearly unchanged.
We confirmed that this is indeed the case, by comparing the discrete spectra of the signal
at CG1 with and without trough (see Appendix C).

As the trough influences the discrete spectrum only marginally, we cut off the right
part of the signal at the time that the tail of the wave packet reaches zero for the first
time, and replace the trough with zeros, following the method of [58]. This ensures that
the vanishing boundary conditions are satisfied without a jump in water level at the right
hand side.

Finally, we perform a small rescaling of the data, similar to the pre-processing in [58].
We rescale the data by comparing the first moment

∫ ∞
−∞ηdt and the second moment∫ ∞

−∞η2dt of the wave packets. These two integrals are conserved quantities of the KdV
equation [39], and thus should be equal at all four wave gauges. Cutting off the trough
is important for this recalibration, as both moments would otherwise have depended on
the considered length of the trough. We rescaled the data such that the second moment
(proportional to the wave energy) of all signals are equal to the one at the first wave
gauge, resulting in the following rescaling factors for the free-surface elevation for CG1
to CG4: [1, 0.990, 0.989, 1.013]. Although these changes are small, we found that they
significantly improve the matching of the discrete spectra and the estimation of h.
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Figure 2.1: Top: a side view of the experimental setup, with the positions of the four wave gauges.
Bottom: the measured wave height with respect to initial still-water level at the four wave gauges.
The vertical dashed line marks the time up to which the wave gauges are not affected by the re-
flected wave. Re-made after [58].

After the pre-processing of the data, we calculated the energy in the discrete and the
continuous NFT spectrum for the signal at CG1, to check our assumption that the signal
is soliton dominated. Using href = 9.80cm for the normalization in the NFT, we found
from Eq. (2.23b) in Appendix B that the discrete spectrum contained 99.9% of the signal
energy, satisfying our assumption.

2.4.3. NUMERICAL VALIDATION OF THE ALGORITHM

Before considering the experimental data, we first validate the spectral matching algo-
rithm on simulated data, generated using the KdV equation. We took the pre-processed
data at wave gauges CG1, CG2 and CG3 as input data, and numerically propagated each
input signal to the position CG4, using the dimensional KdV equation in Eq. (2.1) with
href for all coefficients. For this numerical case, the eigenvalues should remain constant
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when normalizing the signal with href, and the spectral matching error should be zero
up to numerical errors. Fig. 2.2 shows from top to bottom the input-output data (the
blue and black lines), the corresponding eigenvalues as function of h, and the spectral
matching error as function of h. From the normalized eigenvalues we observe that as
h decreases (i.e., higher nonlinearity), the number of detected solitons increases, while
the eigenvalues all drift upwards. We observe consistently that eigenvalues of the in-
put signal (blue) and the eigenvalues of the simulated output (black) exactly coincide
at h = href, while drifting apart for other values of h. As a result, the spectral match-
ing errors E 1 and E 3 show a clear minimum at href for the simulated data set, while the
errors increase as h is further from the reference value. This validates that the spectral-
matching algorithm performs well when the considered data is exactly governed by the
KdV equation.

However, we observe from the pre-processed signals in Fig. 2.2 that the numerical
output signals (black) differ somewhat from the experimental signals (red). The KdV
only models the wave propagation approximately, and the model mismatch becomes
apparent here. In particular, the KdV seems to develops the shape of the input wave too
fast, which can also be visually deduced from the fact that the highest numerical soli-
ton arrives earlier than the experimental soliton, and the distance between the solitons
is larger than in the measured wave. Also the right tail of the numerical wave packet
flattens faster than the tail the measured output.

Although the KdV does not perfectly describe the wave propagation of our experimen-
tal data, it was shown in [58] that the solitonic components predicted by the KdV-NFT
were indeed present. Therefore, our proposed method of comparing solitonic compo-
nents at different gauges may still perform well despite the observed model mismatch.

2.4.4. EXPERIMENTAL RESULTS OF NFT-BASED WATER-DEPTH

IDENTIFICATION

We now consider the spectral matching algorithm for the pre-processed experimental
data. First, we determined the E 1-error and E 3-error over a grid, as shown in Fig. 2.2. We
observe that the E 3-error seems to be much smoother than the E 1-error. This is due to
the appearance of new eigenvalues, that can quickly grow in amplitude and contribute
significantly to the error. The energy-based error E 3 overcomes this drawback, as the
energy of these new eigenvalues is only very small. Due to the smoothness of E 3, we
will use this error norm for determining our final estimation of the water depth for each
of the data sets. After the grid search, we apply local minimization of E 3 to identify the
water depth hID at which E 3 is minimized.

For the experimental data, the optimal matching with the input eigenvalue is close to
the reference value for all considered cases. In particular, the minimum error for the
CG2-CG4 case was extremely low, and corresponds very well to the reference value. The
largest error observed (for the CG1-CG4 case, hID = 9.34cm) was less than 5% off the
reference value. When using the reference water depth, we found that for all signals the
highest eigenvalues matched well, except for CG1-CG4. Our hypothesis is that the wave
at CG1 is still influenced by the deceleration of the piston, as it is only 119 cm behind
the piston. This deceleration may have caused a larger mismatch with the KdV equation
during the first few meters of propagation, causing the spectra at the first gauge to be
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different from the other gauges.
Next, we also observe that the identified water depth for the CG3-CG4 case (hID =

10.10cm) is also relatively far off (3%). This is probably due to the fact that these gauges
are very close, so the total influence of the water depth on the propagation becomes
harder to measure. This may also be observed from the fact that the error well for the
CG3-CG4 case is less steep than in the other cases.

The CG2-CG4 case provides the best setup: it features a sufficiently long distance,
while not being influenced (too much) by the start-up interference due to the piston.
As a result, we observe that the minimum observed E 3 is very close to 0, indicating
an excellent match between input and output eigenvalues. The identified water depth
(hID = 9.70cm) is only 1% off the reference depth. This validates that the water depth
can be identified very accurately when using suitable data. However, even when our
data contained more distortion or was measured at close gauges, we still managed to get
estimates with less than 5% error.

2.4.5. VALIDATION OF NFT-BASED IDENTIFICATION USING NUMERICAL

PROPAGATION

To further validate the NFT-based water depth identification method, we compare it to
an approach based on numerically forward propagating the input wave to the position of
the output gauge, using the dimensional tKdV from Eq. (2.1) for various values of h. Al-
though this method lacks the benefits from NFT-based identification (solution depends
on numerical space-step size, propagation distance must be known or has to be identi-
fied as well, time synchronization is often required), it is one of the most straightforward
approaches to find the governing water depth in the KdV equation.

This method propagates the input signal for a distance L (space step size ∆l = 0.02m)
to the position of the output wave gauge using the dimensional KdV in Eq. (2.1), for
different values of h. We then identify the water depth as the h at which the forward-
propagated input signal ηin, prop(t ;h,L) matches ηout(t ) as well as possible. As it may
often occur that the time measurements at wave gauges are not properly synchronized,
we will only consider the shapes of the wave packets, and allow for a horizontal time-
translation t0. Our error-norm for this propagation-based matching is

E prop(h,L) = min
t0

∫ ∞
−∞

∣∣ηin, prop(t ;h,L)−ηout(t − t0)
∣∣ dt∫ ∞

−∞
∣∣ηout(t )

∣∣ dt
. (2.13)

From Fig. 2.2, we have already observed that the simulated output using href is already
quite different form the measured output. We observed that this was caused by a model
mismatch, where the KdV equation would develop the shape of the wave faster than the
measured wave. Therefore, we will optimize over both the water depth and the trav-
eled distance L. We consider the case with CG2-CG4, as this gave the best fit for the
eigenvalue-matching, and we thus expect that this dataset fits KdV-propagation best,
although probably for a different propagation distance.

The result is shown in Fig. 2.3. As observed before, the measured signal and the sig-
nal propagated with href = 9.8cm and L = 9m do not fit well, as the solitons have al-
ready separated too much, indicating that the simulated wave has indeed developed too
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CG1 vs CG4 (L = 13.7m) CG2 vs CG4 (L = 9.0m) CG3 vs CG4 (L = 4.0m)
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Figure 2.2: The used data for the identification algorithm. Top: the pre-processed data at various
wave gauges, and the theoretical output when the input signal was propagated according to the
KdV at the reference water depth. Middle: the normalized eigenvalue energies (∼ k3

n ) for various
water depths. Bottom: the error between the input and output eigenvalues, and the identified
water depth using local minimization of E 3.

much. The third line was optimized only for the traveled distance, and shows a good fit,
but an effective propagation distance of only L = 5m. Optimizing over both the depth
and the propagation distance results in the fourth line, and we identify h = 9.57cm and
L = 5.68m. This identified water depth is only 2% off the measured value, and in close
correspondence with the identified value of NFT-based matching (h = 9.70cm). For
CG1-CG4 we identified h = 9.33cm, which is also in close correspondence with the value
from NFT-based identification (h = 9.34cm), which shows that NFT-based matching in-
deed gives similar results as the propagation-based method. Only for the CG3-CG4 case,
the identified values were further apart, h = 9.20cm for the propagation-based method,
and h = 10.10cm for the NFT-based method. This difference may be explained due to
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Figure 2.3: The bore front of the measured output at CG4, compared to the KdV-propagated signal
from CG2 for various combinations of distance l and water depth h, while time-synchronizing as
well as possible. The second curve uses the reference values for h and l , the third curve is the result
of local optimization for the traveled distance, and the fourth curve for simultaneously optimizing
for both the distance and the water depth.

the short distance between the wave gauges, so the effects of the underlying mechanics
are hard to measure.

All together, KdV-propagation-based water depth identification indeed gives similar
results as NFT-based water-depth identification, when also allowing the distance and
the time-offset as parameters in the propagation-based matching. However, we did ob-
serve that the NFT-based estimates were all slightly closer to the measured water depth,
as well that the propagation-based method required careful considerations regarding the
numerical instabilities and the space-step size. Although we did not pay special atten-
tion to computation time, we do mention here that the NFT-based method was some-
what faster than the propagation-based method using the KdV-solver from the software
Chebfun [59].

2.4.6. VALIDATION OF NFT-BASED IDENTIFICATION USING DISCRETE

SPECTRUM RESIDUES

The NFT-based method managed to identify the water depth with at most 5% error by
only using the eigenvalues. However, it did not take the soliton location into account.
In this section, we show that the soliton locations can be used for validation purposes
as well, for example to identify the traveled distance with the propagation relation in
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Eq. (2.12). During the propagation-based identification, we observed that the identified
propagation distance was about 30% lower than expected when only considering the
wave shape. We show here that the soliton locations indicate a similar result.

We consider here only the case CG2-CG4, as this data showed the closest agreement
with the KdV model. Fig. 2.4 shows the calculated soliton locations at the input (CG2)
and at the output (CG4). As expected, the solitons arrived later at the output gauge than
at the input gauge, and thus their tn are higher. The right figure shows the difference in
soliton locations between the input and output gauge. We observe that the solitons with
higher kn moved faster in general, as their soliton locations required less time to cover
the distance between CG2 and CG4 (the fastest required only 7.8s, the slowest 9.1s).
Against expectation however, we observe that the theoretically fastest (with the largest
kn) has not moved faster than some other solitons. This could be due to random effects
or a slight model mismatch. However, the general trend looks in correspondence with
Eq. (2.12): each soliton location should have moved ahead of the wave packet quadrati-
cally in its generalized wave number kn .

We fitted the difference in soliton location for L and t0 according to Eq. (2.12), using
all soliton locations except for those of the lowest three solitons, as these contain little
energy and are prone to noise. We identified a propagation distance of L = 6.4m, which
is significantly lower than the actual wave gauge distance of 9.0m for the CG2-CG4 case.
We emphasize that this distance takes only takes into account how much the shape of
the packet has developed, which is unrelated to the wave speed c0 or inverse wave speed
c ′0. We note that the identified value of L = 6.4m is close to value identified by the prop-
agation based method (L = 5.68m). Also, upon performing a similar analysis for CG1-
CG4, and for CG3-CG4, we find that the identified propagation distance is systematically
about 30% lower than the measured gauge distance. Apparently, the KdV equation does
provide the correct solitons, but overestimates the wave development speed.

2.5. CONCLUSION

We proposed a method to identify the water depth from wave packets approximately
governed by the KdV equation, based on the nonlinear Fourier transform of free-surface
measurements. By comparing the solitonic wave components in a wave packet in a wave
flume at two consecutive locations, we were able to determine the water depth with at
most 5% error, and only a 1% error under the most suitable circumstances. Furthermore,
when using simulated data, the identified water depth matched the reference value al-
most exactly for all considered cases, and outperformed a method based on numerical
propagation of the KdV equation. We finally demonstrated that the residues of the NFT
spectrum could also be used to extend the identification method. Further research could
focus on validation and application of the method outside a lab environment, such as
water-depth identification from coastal buoy data.
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Figure 2.4: The soliton locations tn according to Eq. 2.10, and the quadratic fit between the differ-
ence (zoomed in at the right).

APPENDIX A: DEFINITION AND CALCULATION OF THE NFT
SPECTRUM
Given a system governed by the normalized KdV equation from Eq. (2.3), we may de-
termine the NFT while assuming vanishing boundary conditions for the wave packet,
q(t ) → 0 as t → ±∞ fast enough. The NFT is defined through the Schrödinger eigen-
value problem, which uses the wave packet as potential [1, 7, 8]:

φt t +q(t )φ= (iλ)2φ, (2.14)

where φ is the eigenfunction and λ ∈ C the spectral parameter. For a real signal q(t ),
the Schrödinger eigenfunction problem only allows two types of solutions such that the
eigenfunctions φ do not blow up. The first type of solutions φ correspond to λ ∈ R \
{0}, which result in oscillatory eigenfunctions of infinite energy, but finite power. These
solutions relate to the so-called continuous spectrum, and represent dispersive wave
components in the signal q(t ). The second type of solutions consist of a finite number
of discrete, purely-imaginary eigenvalues in the upper-half planeλn = i kn , 0 < k ∈R, n =
1, . . . , N . The corresponding eigenfunctions φn decay exponentially in both tails and are
finite-energy. It is well known that these discrete eigenvalues correspond to the solitonic
wave components present in the signal q(t ), which remain stable during propagation of
q(t ) [1, 7], and eventually separate into the train of solitons from Eq. (2.6).

One of the most convenient ways of solving the Schrödinger eigenvalue problem is
by rewriting Eq. (2.14) as a system of two first order differential equations. We do so by
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switching to the basis from [37], in which the Schrödinger scattering problem is given as
follows: [

v1

v2

]
= 1

2iλ

[
iλ− Ç

Çx
iλ+ Ç

Çx

]
φ, (change of basis) (2.15a)

d

dt

[
v1(t ,λ)
v2(t ,λ)

]
=

[
−iλ+ q(t )

2iλ
q(t )
2iλ

− q(t )
2iλ iλ− q(t )

2iλ

][
v1(t ,λ)
v2(t ,λ)

]
, (2.15b)[

e−iλt

0

]
t→−∞←−−−−−

q→0

[
v1(t ,λ)
v2(t ,λ)

]
t→+∞−−−−−→

q→0

[
a(λ)e−iλt

b(λ)e+iλt

]
. (BCs) (2.15c)

Here, Eq. (2.15b) corresponds with the Schrödinger eigenvalue problem, and Eq. (2.15c)
are the boundary conditions (BCs) that we impose to obtain the so-called scattering co-
efficients a(λ) and b(λ).

The full nonlinear Fourier transform spectrum consists of a discrete spectrum and
a continuous spectrum. The discrete spectrum (ds) Λds, contains all purely imaginary
eigenvalues λn = i kn in the upper-half plane such that the eigenfunction [v1, v2]T is fi-
nite energy. This can only occur if a(λn) = 0. To complete the discrete spectrum, the
eigenvalues are supplemented by their residues rn , which relate to the locations of the
solitons:

Λds :=
{(
λn = i kn ,rn = b

aλ
(λn)

)
: a(i kn) = 0, and

0 < kn ∈R
}

, with aλ(λn) = Ça(λ)

Çλ

∣∣∣∣
λ=λn

. (2.16)

The continuous spectrum (cs),Λcs, consists of the so-called reflection coefficient b/a on
the real line:

Λcs :=
{

b

a
(ξ),ξ ∈R\ 0

}
. (2.17)

As the wave packet evolves over x according to the normalized KdV equation, the
eigenvalues remain constant, and the scattering coefficients a and b evolve trivially [7,
56]:

λn(x) =λn(0), (2.18a)

a(λ, x) =a(λ,0), (2.18b)

b(λ, x) =b(λ,0)e8iλ3x . (2.18c)

As the λn remain constant, so do the kn .

APPENDIX B: PROPERTIES OF THE NFT
Property 1 (Scattering coefficients codomain) The scattering coefficients a(λ) and b(λ)
satisfy [7]:

|a(λ)| ∈ [1,∞), |b(λ)| ∈ [0,∞),
∣∣∣ b

a (λ)
∣∣∣ ∈ [0,1), (2.19a)

|a(λ)|2 −|b(λ)|2 = 1. (2.19b)
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Property 2 (Linear Fourier transform as q → 0 ) In the small amplitude limit, q(t ) → 0,
the Fourier transform degenerates to the linear Fourier transform. No eigenvalues will be
present, and the continuous spectrum and linear Fourier spectrum relate as follows [56,
Eq. (4.7)]:

lim
q(t )→0, |b/a|→0

2iξ
b

a
(ξ) =−F {q}(ω= 2ξ), (2.20)

with F {q}(ω) =
∫ ∞

−∞
q(t )e−iωt dt the Fourier transform,

in which ω denotes the linear angular frequency.

Property 3 (Time translation) Let {a(λ),b(λ)} = NFT
{

q(t )
}

be the scattering coefficients
of the NFT corresponding to the signal q(t ). Then a time translation t → t−t0 in the signal
results only in an exponential term in the b-coefficient [7]:{

a(λ),b(λ)e−2iλt0
}
= NFT

{
q(t − t0)

}
. (2.21)

Note that, the eigenvalues λn (i.e., the zeros of a(λ)) remain unchanged, as a(λ) remains
unchanged.

Property 4 (Energy in the KdV-NFT) Let the energy of a normalized KdV-governed signal
be defined as

E q =
∫ ∞

−∞
q(t )2 dt = 1

2π

∫ ∞

−∞

∣∣F {q}(ω)
∣∣2 dω, (2.22)

then the energy of the discrete spectrum E ds and of the continuous spectrum E cs are given
as follows [60, p.286], [61, 1.6.21b]:

E q :=E cs +E ds, (2.23a)

E ds =
N∑

n=1

16

3
k3

n︸ ︷︷ ︸
En

, (2.23b)

E cs = 1

π

∫ ∞

−∞
−4ξ2 ln

(
1−

∣∣∣ b
a (ξ)

∣∣∣2
)

dξ, (2.23c)

where En is the energy of solitonic component λn = i kn . We note here that for the low
signal-amplitude case, the continuous-spectrum energy reduces to the energy in the linear

Fourier spectrum: E cs |b/a|→0−−−−−→ 1
π

∫ ∞
−∞ 4ξ2

∣∣∣ b
a (ξ)

∣∣∣2
dξ= 1

2π

∫ ∞
−∞

∣∣F {q}(ω= 2ξ)
∣∣2 dω, aligning

with Property 2

Conjecture 5 (Continuity of NFT in cq (unproven)) Let q(t ;cq ) := cqη(t ), and {λn(cq ), n =
1. . . N (cq )} = NFT{cqη(t )} denote the eigenvalues of a signal η(t ) as a function of the nor-
malization coefficient cq . Then the position of each eigenvalue λn(cq ) is a continuous
function of cq over the imaginary axis. Moreover, eigenvalues can only (dis)appear at the
real axis. Increasing cq increases the signal energy, and most often causes existing eigen-
values to drift upwards, while new eigenvalues appear from the real axis.
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APPENDIX C: THE INFLUENCE OF A TROUGH ON THE

DISCRETE SPECTRUM

We validate that the presence or absence of a trough after a signal has little influence on
the discrete spectrum, which was also mentioned (although not shown) in [58]. We show
here that indeed the trough has little influence on the eigenvalues for the incoming sig-
nal at wave gauge 1. We consider three different cut-off points: 1) at 18 s, when the bore
reaches the still-water level for the first time again; 2) at 34 s, the time frame considered
in all experiments; 3) at 48 s, the largest time possible before the reflected wave reaches
wave gauge 1 again. The three signals with different cut-off point are shown in Fig. 2.5.
The eigenvalues were determined for the reference water depth href = 9.80cm. All eigen-
values are visually identical, except for the lowest eigenvalue (which has very little signal
energy). This confirms that the trough indeed has very little influence on which solitons
are present in the discrete spectrum.

c
u
to

ff
 3

c
u
to

ff
 2

c
u
to

ff
 1

Figure 2.5: Signals with different cut-off points for their troughs, and their corresponding eigenval-
ues for the reference water depth. the effect of the trough is only visible for the last (lowest-energy)
soliton.

APPENDIX D: IDENTIFICATION USING CONSERVED

QUANTITIES

It is well known that the normalized KdV equation in Eq. (2.3) has an infinite number
of conserved quantities or constants of motion. These quantities are conserved during
propagation for tKdV-governed experimental data, given that the correct amplitude nor-
malization coefficient cq was used. It is thus possible to identify cq as the value for which
these quantities are indeed equal at input signal and output. A similar method has also
been demonstrated for NLSE-governed signals in [54].

The first two constants of motion of the KdV are related to conservation of mass and
conservation of energy. The consecutive constants are less intuitive, and will be referred
to as the third moment, fourth moment, etc. The first conservation laws for KdV in
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Eq. 2.3 are given as follows [25, 39]:

C1 =
∫

q dt , C3 =
∫ (−2q3 +q2

t

)
dt ,

C2 =
∫

q2 dt , C4 =
∫ (

9q4 −18qq2
t + 9

5 q2
t t

)
dt .

(2.24)

When we equate C in
n = C out

n , and substitute q in(t ) = T 2
0 cqη

in((τ− c0l )/T0), and qout(t ) =
T 2

0 cqη
out((τ− c0l )/T0), we will find that T0 always drops out. However, cq also drops out

if only a single power of q is present, as is the case for C 1 and C 2. Therefore, C 3 is the
first quantity for which cq does not drop out upon equating C in

3 =C out
3 (we set T0 = 1 to

simplify the demonstration):∫ ∞

−∞
−2

(
cqη

in(τ)
)3 + (

cqη
in
τ (τ)

)2
dτ

=
∫ ∞

−∞
−2

(
cqη

out(τ)
)3 + (

cqη
out
τ (τ)

)2
dτ,

⇒c2
q

∫ ∞

−∞
(
ηin
τ (τ)

)2 − (
ηout
τ (τ)

)2
dτ

= 2c3
q

∫ ∞

−∞
(
ηin(τ)

)3 − (
ηout(τ)

)3
dτ,

⇒cq =
∫ ∞
−∞

(
ηin
τ (τ)

)2 − (
ηout
τ (τ)

)2 dτ

2
∫ ∞
−∞

(
ηin(τ)

)3 − (
ηout(τ)

)3 dτ
. (2.25)

This relation provides a fast and easy method to obtain estimates for cq . Although all
conserved quantities except for C1 and C2 can be used to find cq in a similar fashion, the
higher conserved quantities contain higher derivatives and powers, which are increas-
ingly sensitive to noise. Furthermore, we can see that in C4 three different orders of cq

will pop up (order 4, 3 and 2), which will lead to an underdetermined system if we only
have measurements at two wave gauges. Even when three gauges are considered, a sys-
tem of equations will have to be solved, which is probably more prone to noise. We will
therefore only use C3.

Using this method on the simulated data from CG2-CG4, and converting cq to h, we
successfully recovered the correct water of h = 9.8cm, validating the method for ideal
KdV-governed data. Also when applying this method to the pre-processed experimental
data, we identified depths close to the measured water depth, as shown in Table. 2.1.
Although this method is very fast and can yield good results, it can be sensitive to noise
and offsets due to its dependence on derivatives and high powers in q . Also due to the
fact that only a single number is given as output, it is unknown how reliable this number
is. By itself, this method is therefore often not suitable for application in practice, but
may in many cases provide initial estimates or additional validation.
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Table 2.1: The identified water depths from the pre-processed wave gauge data.

Data set Measured CG1-CG4 CG2-CG4 CG3-CG4
h 9.80cm 9.40cm 9.59cm 9.90cm



3
DISPERSION AND NONLINEARITY

IDENTIFICATION FOR

SINGLE-MODE FIBERS USING THE

NONLINEAR FOURIER TRANSFORM

Efficient fiber-optic communication requires precise knowledge of the fiber coefficients,
but these often change over time due to factors such as aging or bending. We propose a
novel algorithm that identifies the average second-order dispersion and Kerr nonlinearity
coefficient of a fiber, without employing any special training signals. Instead, ordinary in-
put and output data recorded during normal operation is used. To the best of our knowl-
edge, this is the first such algorithm. The algorithm is based on the nonlinear Fourier
spectrum of the signal, which is known to evolve trivially as the signal propagates through
an idealized model of the fiber. The algorithm varies the values of the fiber coefficients un-
til the corresponding nonlinear Fourier spectrum at transmitter and receiver match op-
timally. We test the algorithm on simulated transmission data over a 1600 km link, and
accurately identify the fiber coefficients. The identification algorithm is in particular well
suited for providing a fiber model for nonlinear Fourier transform-based communication.
This chapter is an adaptation of [54]. ©2020 IEEE. Reprinted, with permission.

3.1. INTRODUCTION
Digital signal processing has become increasingly more important in fiber-optic com-
munication systems with high data rates, as it allows to compensate for transmission
impairments such as chromatic dispersion and the Kerr nonlinear effect [62–64]. In or-
der to digitally compensate such effects, the fiber is often modelled with a lossy and
noisy nonlinear Schödinger equation, in which the second-order dispersion coefficient
β2 and the Kerr nonlinearity coefficient γ are assumed to be known. The values of these
two coefficients are usually supplied by the manufacturer of the fiber link, but it often
occurs that the supplied values do not exactly fit the fiber anymore after installation of

41



3

42
3. DISPERSION AND NONLINEARITY IDENTIFICATION FOR SINGLE-MODE FIBERS USING

THE NONLINEAR FOURIER TRANSFORM

the fiber due to bending, aging, and splicing [62]. It may also occur that the fiber coef-
ficients are not readily available, or lost, as may be the case in small scale experimental
setups. For such scenarios, we present a novel nonlinear Fourier transform (NFT)-based
fiber identification algorithm to determine the values of β2 and γ, using input-output
transmission data only. This study improves and extends our earlier NFT-based fiber
identification algorithm [65] in terms of robustness, versatility and accuracy.

Several fiber identification algorithms have already been developed, but these either
identify onlyβ2 (e.g., [66, 67]), or identify γ using digital back-propagation (e.g., [68–71]).
However, these algorithms using digital back-propagation suffer from at least one of the
following shortcomings: β2 has to be known; a specific modulation format has to be
used; the quality of the estimates depends on the chosen spatial numerical step. Other
methods determine γ by measuring self-phase modulation, cross-phase modulation, or
four-wave mixing using training signals [72–74], but these require that normal operation
of the fiber is interrupted, which can be undesirable in scenarios where the system is
in constant operation, or when the training signals are not straight-forward to generate
or analyze. Furthermore, several of these identification algorithms were demonstrated
for short fibers, and may therefore be less suitable for identifying long links. Finally, we
remark that applying standard black-box machine learning techniques for fiber parame-
ter identification is not straight-forward. Due to their black-box nature, known physical
models are not exploited. Instead, one has to provide large representative data sets that
cover a wide range of real-world scenarios, which is a challenging problem in itself.

To overcome these drawbacks of current identification methods, we present a novel
algorithm that identifies average values for both β2 and γ, by comparing the nonlin-
ear Fourier spectrum of transmitted and received signals. Theory predicts that the NFT
spectrum at the transmitter and the NFT spectrum at the receiver are linearly related for
a noiseless lossless link [9]. Since additional loss and noise effects occurring in realistic
links can be taken into account using proper transformations, it is possible to use the
NFT spectrum for identification.

The NFT is typically computed with respect to a normalized nonlinear Schrödinger
equation (NLSE), which requires the provided input-output data to be normalized. Our
algorithm uses the fact that the NFT spectrum at input and output only match if the
input and output signal are normalized with the correct amplitude normalization con-
stant cq and normalized fiber length Z , which both depend on β2 and γ. First, an initial
estimate for cq is determined by comparing the third conserved quantities of the NLSE
of the input and output signals [7]. Starting from this initial guess, cq is varied first and
then Z until we find the normalization at which the NFT spectrum at input and output
match optimally. Assuming that the attenuation, fiber length, and amplifier spacing are
known, we can derive β2 and γ from the identified normalization cq and Z .

Another application of our proposed algorithm is the identification of a suitable model
for NFT-based communication systems [23], without any prior knowledge of the fiber.
NFT-based transmission systems typically only require the correct normalization con-
stant cq and normalized length Z , and can therefore be calibrated, even if no informa-
tion of the fiber link is available at all.

This chapter is structured as follows. Sec. 3.2 gives an overview of the fiber model and
the nonlinear Fourier transform. Sec. 3.3 provides two identification algorithms, based
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on the continuous NFT spectrum and the discrete NFT spectrum, respectively. Sec. 3.4
combines both algorithms into one final robust algorithm. Sec. 3.5 evaluates the final
algorithm with simulated test cases and Sec. 3.6 concludes the chapter.

3.2. FIBER MODEL AND NONLINEAR FOURIER TRANSFORM
The propagation of light through an optical single-mode fiber under the influence of
anomalous dispersion, self-focusing, attenuation, lumped amplification, and noise can
be modeled by the focusing nonlinear Schrödinger equation [62, Ch. 9.1.1]:

Al =−i
β2

2
Aττ+ iγ|A|2 A− α

2
A

+
N∑

n=1
(r A+G(r,n))δ(l −nLspan), (3.1)

in which τ denotes retarded time, l the position in the fiber, A (τ, l ) the complex field
envelope, β2 < 0 the dispersion coefficient, γ the Kerr nonlinearity coefficient, α the
attenuation coefficient, i the unit imaginary number, and δ the Dirac delta function.
Subscripts indicate partial derivatives. The link of length L consists of N equidistant
fiber spans, each with length Lspan = L/N . At the end of each span, l = nLspan, an Erbium
Doped Fiber Amplifier (EDFA) is used to amplify the signal with a factor r = eαLspan/2

(lumped amplification) to compensate the loss. Additive white Gaussian noise G(r,n)
enters the system through Amplified Spontaneous Emission (ASE) during amplification,
with noise power dependent on the noise figure of the EDFA and the amplification factor
r .

Within each fiber span, the amplifiers can be ignored, and we may change to the vari-
able Q(τ, l ) = eαl/2 A(τ, l ), which yields a lossless NLSE with varying Kerr effect:

Ql =−i
β2

2
Qττ+ iγe−αl |Q|2Q. (3.2)

Assuming that the wave envelope does not change much within each fiber span, we may
approximate Eq. 3.2 with a lossless path-averaged (LPA) NLSE [75], in which the varying
nonlinearity coefficient is approximated with its path average, γ1. This leads to the LPA-
NLSE:

γ1 = 1

Lspan

∫ Lspan

0
γe−αl dl = γ1−e−αLspan

αLspan
, (3.3)

Ql ≈−i
β2

2
Qττ+ iγ1|Q|2Q. (3.4)

When distributed Raman amplification is applied instead of lumped amplification, path
averaging can also be applied using an integral with l -dependent attenuation. A link
with distributed Raman amplification is typically approximated better by the LPA-NLSE
than a similar link with lumped amplification [76]. In this study, we therefore focus on
the more challenging case of lumped amplification.
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The proposed fiber identification algorithm in this study is based on comparing the
NFT of input and output signals, for which the NLSE is required in normalized form. Let
T0 be a free time scaling parameter. We will only consider T0 = 1s for the identification
algorithm, as increasing T0 only linearly scales the nonlinear frequency λ in the NFT. We
then switch to the normalized variables [28]

t = 1

T0
τ, q = T0

√
γ1

−β2︸ ︷︷ ︸
cq

Q, z = 1

T 2
0

−β2

2︸ ︷︷ ︸
cz

l , (3.5)

This results in the normalized NLSE:

qz = i qt t +2i |q |2q. (3.6)

Note that β2 appears in the denominator of cq . Small mismatches in β2 might there-
fore result in large changes in the normalized signal q . Hence, the proposed NFT-based
identification algorithm may be less suited for dispersion managed links with near-zero
average dispersion.

The normalized NLSE may be solved exactly in the nonlinear Fourier domain, in which
the NFT spectrum of the signal evolves trivially. The NFT of a signal q(t ) can be deter-
mined by solving the Zhakarov-Shabat scattering problem [7, 9]:

d

d t

[
φ1(t ,λ)
φ2(t ,λ)

]
=

[ −iλ q(t )
−q∗(t ) iλ

][
φ1(t ,λ)
φ2(t ,λ)

]
,[

φ1(t ,λ)
φ2(t ,λ)

]
t→−∞−→

[
e−iλt

0

]
, (3.7)

where (·)∗ denotes the complex conjugate. We then define the scattering coefficients
a(λ) and b(λ) as the normalized limits of φ1 and φ2 for t →+∞:

a(λ) := lim
t→∞e iλtφ1(t ,λ), b(λ) := lim

t→∞e−iλtφ2(t ,λ). (3.8)

The NFT of q(t ) consists of a continuous and a discrete spectrum. We define the con-
tinuous spectrum as b(λ), λ ∈R, and the discrete spectrum as {λm ,bm}M

m=1, in which the
eigenvalues λm are the zeros of a(λ) in the complex upper half plane, and bm = b (λm).
Each eigenvalueλm in the discrete spectrum corresponds to a solitonic component in the
signal, a shape-retaining, localized wave. The continuous spectrum represents disper-
sive components. As the signal q(t , z) propagates in the z-direction according to the nor-
malized NLSE (3.6), the eigenvalues remain invariant, while the scattering coefficients
evolve trivially [9]:

a(λ, z) = a(λ,0), b(λ, z) = b(λ,0)e4iλ2z . (3.9)

3.3. IDENTIFICATION USING ONLY CONTINUOUS OR

DISCRETE SPECTRUM
In this section, we present two separately executable algorithms to estimate the fiber co-
efficients, which are combined into one robust, final algorithm in Section 3.4. Both algo-
rithms are based on the simple evolution of the scattering coefficients in Eq. 3.9. The first
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algorithm takes only the continuous spectrum into account; the second algorithm con-
siders only the discrete spectrum. Both algorithms can be split into two separate single-
parameter identification problems: first, the amplitude normalization cq = √

γ1/(−β2)

is identified, and second, the normalized link length Z := cz L = −β2
2 L. The amplitude

normalization will be determined using a local optimization technique, starting from an
intitial guess. The third integral of motion of the normalized NLSE can be used to obtain
an initial estimate, c0

q , as described in the Appendix. If other prior knowledge is available
of the fiber, this may also be taken into account for the initialization.

For the proposed algorithm, we have chosen to define the NFT spectrum as b(λ), al-
though it is also common to define the continuous spectrum as q̂(λ) := b/a, λ ∈ R, and

the discrete spectrum as
{
λm , q̃m

}M
m=1, with q̃m := b/aλ(λm) (i.e., the residue of q̂ in λm).

We have chosen to use only b(λ), as it is usually less noisy than b(λ)/a(λ), (see e.g., [77]).

3.3.1. IDENTIFICATION FROM THE CONTINUOUS NFT SPECTRUM

The first identification algorithm considers only the continuous part of the NFT, b(λ), λ ∈
R. Note that the nonlinear Fourier transform of a signal depends on the applied ampli-
tude normalization, cq , in Eq. 3.5. We denote the b-coefficient in (3.8) that corresponds
to the signal q(t ) = T0cqQ(T0t ) in (3.7) by b(λ, z;cq ), where z denotes the normalized
position of Q in the fiber.

We observe from Eq. 3.9 that the correct value cq = c⋆q leads to a constant absolute
value of |b| throughout an ideal fiber, and in particular, the absolute value at input (z = 0)
and at output (z = Z /T 2

0 ) are equal:

|b(λ, Z /T 2
0 ;c⋆q )| = |b(λ,0;c⋆q )|, λ ∈R. (3.10)

We may substitute bin(λ;cq ) = b(λ,0;cq ) and bout(λ;cq ) = b(λ, Z /T 2
0 ;cq ), which are de-

termined from the NFT of the normalized transmitted signal q in(t ) and received signal
qout(t ) respectively. Our strategy will be to vary cq , and identify the normalization for
which the |b| of the transmitted and received signal match as well as possible. As shown
in Fig. 3.1, the absolute continuous spectrum at input and output are indeed nearly iden-
tical for the optimal amplitude normalization, c⋆q , whereas a sub-optimal cq may cause
a significant mismatch.

To quantify the mismatch, we measure the normalized absolute error over a range of
nonlinear frequencies [λmin,λmax]:

E|cs|(cq ) =
∫ λmax
λmin

∣∣|bout(λ;cq )|− |bin(λ;cq )|∣∣dλ∫ λmax
λmin

|bin(λ;cq )|dλ
, (3.11)

in which E|cs| denotes the relative error in the absolute value of the continuous spec-
trum. The error is normalized with the b-coefficient of the transmitted signal, as it does
not contain any ASE-noise, in contrast to the received signal. The range [λmin,λmax] is
determined by considering the occupied bandwidth, i.e., the smallest linear frequency
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range containing at least (e.g.) 90% of the signal energy:

[λmin,λmax] = [−ωmax/2,−ωmin/2], such that∫ ωmax

ωmin

∣∣F (q)(ω)
∣∣2 dω≥ 0.9

∫ +∞

−∞

∣∣F (q)(ω)
∣∣2 dω, (3.12)

with F (q)(ω) the linear Fourier transform of q(t ) at angular frequencyω. The reason for
this choice is that the NFT of an infinitesimal-energy signal q(t ) and the linear Fourier
transform of q(t ) relate through [28]

b(λ) =−(
F (q)(−2λ)

)∗ . (3.13)

Also for higher-energy signals, (i.e., when the linear and nonlinear Fourier transform
differ significantly), we observed that the frequency range [λmin,λmax] still contains a
significant amount of the energy, leading to a good signal-to-noise ratio for the identifi-
cation algorithm.

We minimize (3.11) with respect to cq by first performing a coarse line search around
the initial guess, c0

q . The grid point with minimal error is then used as initial guess for the
local minimization scheme from [78] (i.e., the standard fminsearch function in Matlab)
to obtain an estimate ĉq .

COMPARING PHASE SHIFTS TO FIND Z

After identifying cq from |b(λ)|, we may extract the normalized length Z by comparing
the phase shift between the continuous spectrum at receiver and transmitter. From this
point on, we consider only b(λ, z) = b(λ, z; ĉq ) with ĉq identified in the previous step.
Assuming propagation through an ideal fiber with ĉq = c⋆q and the correct normalized
length, Z⋆, the phase shift in b(λ, z) according to (3.9) is given by

∠b(λ, Z⋆/T 2
0 ) =∠b(λ,0)+4λ2Z⋆/T 2

0 mod 2π, λ ∈R. (3.14)

By replacing b(λ,0) with the determined bin(λ), and b(λ,0) with bout(λ), Eq. 3.14 will
hold approximately if ĉq ≈ c⋆q and Z ≈ Z⋆. Note that Eq. 3.14 corresponds to fitting a

parabola λ2 to the phase shift in b, in a 2π-periodic space. When identifying Z , we will
also allow an offset ψ0 in the parabola.

We first estimate Z and ψ0 by fitting 4λ2Z /T 2
0 +ψ0 with linear least squares to the un-

wrapped phase difference, ∆ψ(λ) := unwrap(∠bout −∠bin), with ∆ψ(0) ∈ [−π,π), and
λ ∈ [λmin,λmax]. Although the resulting estimates are usually accurate, it may occur
that the phase difference is unwrapped to the wrong side, causing 2π jumps in the un-
wrapped phase difference (see Fig. 3.2, left). Therefore, we define an error norm that is
not affected by these 2π jumps:

E∠cs(Z ,ψ0) = 1

λmax −λmin

∫ λmax

λmin

∣∣∣[∠bout(λ)−∠bin(λ)

− (
4λ2Z /T 2

0 +ψ0
)+π]

mod 2π−π
∣∣∣dλ, (3.15)

in which E∠cs denotes the average error in the phase of the continuous spectrum. Note
that we add π before the modulo operation, and subtract π afterwards to ensure the
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Figure 3.1: The absolute continuous spectrum at input and output at optimal cq (left), and at sub-
optimal cq (right).

Figure 3.2: Left: the initial least squares quadratic fit to the unwrapped phase difference. Right: the
quadratic fit to the unwrapped phase difference resulting from (3.15), which allows for 2π phase
shifts.

phase mismatch at every λ is in the region [−π,π) instead of [0,2π). Similar to the op-
timization of E|cs| (3.11), we first perform a coarse line search around the linear least
squares estimate for Z , and then the iterative minimization scheme from [78] to obtain
final estimates Ẑ and φ̂0.

3.3.2. IDENTIFICATION FROM THE DISCRETE NFT SPECTRUM

In this subsection, we propose a method to identify the normalization cq and normal-
ized length Z by comparing the discrete spectra of the transmitted and received signal.
Similar to the continuous spectrum algorithm, we will first identify cq , and Z afterwards.

We start by writing the discrete spectrum with an explicit dependence on cq . We de-
note the discrete spectrum that corresponds to the signal q(t ) = T0cqQ(T0t ) by{
λm(cq ),bm(z;cq )

}M(cq )
m=1 , with z the normalized position of Q in the fiber. We note here

that the energy Em of the solitonic component corresponding to the eigenvalue λm in-
creases with its imaginary part, Em = 4ℑ (λm) [28]. Increasing cq increases the normal-
ized signal energy, which usually increases energy in the discrete spectrum as well. As a
result, on average the eigenvalues meander upwards in the complex plane in continuous
trajectories, and new eigenvalues may appear from the real axis [79],[80, p. 12]. For small
values of cq however, the normalized energy will be too low, and the discrete spectrum
will contain no eigenvalues at all [81].

If the correct normalization c⋆q is applied, the eigenvalues λm remain constant, and
each b(λm) evolves according to (3.9), assuming a lossless, noiseless fiber. Also for a
non-ideal fiber, the solitonic components of the eigenvalues are still preserved relatively
well, as long as both the span length is much shorter than the corresponding soliton
period [82] and the signal-to-noise ratio is sufficiently high. We will use this property,
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and identify the normalization cq for which the discrete spectrum at transmitter and
at receiver correspond at well as possible. To illustrate the effect of the normalization
cq on the discrete eigenvalues, Fig. 3.3 shows the spectrum of a 7-soliton signal [83] at
both transmitter and receiver. The left eigenvalues were determined with the optimal
c⋆q . The right spectra were determined with a 22% larger cq , which caused a larger dif-
ference between the spectra compared to the optimal cq . We also note that the increase
in cq resulted in more normalized energy, and accordingly, the eigenvalues have shifted
upwards, and a new, unmatched output eigenvalue has spawned from the real axis.

Figure 3.3: The eigenvalues of a transmitted 7-soliton signal, evaluated with the optimal normal-
ization cq (left), and with a sub-optimal cq (right). Connections indicate the least-cost perfect
matching.

To quantify the error between the input and output spectrum for a given cq , we pro-
pose an error norm based on creating pairs of eigenvalues at input and output, and sum
the error in each pair. Note that the number of input eigenvalues, M in, and the number
of output eigenvalues, M out, may be unequal, M in ̸= M out. To allow for a perfect match-
ing, we keep adding ‘auxiliary eigenvalues’ at zero, λaux = 0, to the smaller set until the
sets are equally large (see also Fig. 3.3, right). Next, we create a complete bipartite graph
as shown in Fig. 3.4. Each input eigenvalue λin

k connects to each output eigenvalue λout
l

with edges (λin
k ,λout

l ), with associated cost Ekl . The cost of the edges represents the mis-

match between eigenvalue λin
k and λout

l , and will be specified later in this section, but we

already mention that each edge cost Ekl is always at most ℑ(
λin

k

)+ℑ(
λout

l

)
, i.e., propor-

tional to their combined energy.

We define the total error by finding a least-cost perfect matching of the bipartite graph
with edge costs Ekl . Let l (k) denote a perfect matching, which assigns each input eigen-
valueλin

k to the output eigenvalueλout
l (k) (see Fig. 3.3 and Fig. 3.4). The least-cost matching

may be found in O (M 3) time, M = max(M in, M out), for example with fast versions of the
Hungarian algorithm [84]. The final error is the cost of the least-cost perfect matching,
normalized by the sum of imaginary parts of all eigenvalues at input and output:

Eds(cq ) = minl (k)
∑M

k=1 Ekl (k)∑M
k=1ℑ

(
λin

k

)+∑M
l=1ℑ

(
λout

l

) , (3.16)

in which M , Ekl , and λm depend implicitly on cq . In case no eigenvalues were found for
both the input and output, we set Eds to its maximum value, 1. We find an estimate c̃q as
the value minimizing Eds(cq ).
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λin
1

λin
2

λin
3

λin
4

λout
1

λout
2

λout
3 = 0

λout
4 = 0

λin
k , M in = 4

λout
l , M out = 2

λaux

E12

E23

E34
E41

Figure 3.4: The complete bipartite graph corresponding to 4 input eigenvalues, and 2 output eigen-
values. 2 auxiliary eigenvalues have been added to the set of output eigenvalues to ensure that the
output and input eigenvalue sets are equally large. A possible perfect matching l (k) is marked:
{l (1) = 2, l (2) = 3, l (3) = 4, l (4) = 1}. The cost of this matching is E12 +E23 +E34 +E41.

EDGE COST Ekl

Next, we consider the edge cost Ekl to represent the mismatch Ekl between λin
k and λout

l .
A straightforward, but effective edge cost Ekl is the Euclidean distance between input
and output eigenvalue. However, with this norm, eigenvalue pairs with with small imag-
inary part, but large difference in real part may dominate the error, whereas their energy
(∝ imaginary part) can be arbitrarily small. To ensure that eigenvalue pairs with low en-
ergy cannot dominate the total error, we put an upper bound on Ekl , equal to the sum of
the imaginary parts of the eigenvalue pair:

Ekl = min
(∣∣λin

k −λout
l

∣∣ ,ℑ(
λin

k

)+ℑ(
λout

l

))
. (3.17)

This way, ifλin
k andλout

l contain little energy, they can also contribute little to the total er-
ror. A mathematical motivation for this upper bound for Ekl is that new eigenvalues may
appear at the real axis as cq is varied. Therefore, we can argue that instead of connecting
an input and output eigenvalue to each other, it may also be the case that each connects
to a hypothetical eigenvalue which is about to appear on the real axis right beneath it, re-
sulting in an error of ℑ(

λin
k

)+ℑ(
λout

l

)
. Note that the connection between an eigenvalue

λm and an auxiliary eigenvalues λaux = 0 always assumes its maximum bound, ℑ (λm).
Although the edge cost in Eq. 3.17 suffices in most circumstances, an alternative def-

inition for Ekl may be used when we already have a reliable estimate for Z available. Z
may be available when β2 and L are already known, and only γ1 is to be identified, or
when Z was reliably estimated by the continuous spectrum algorithm. If Z is available,
we may define the error Ekl using both a mismatch in eigenvalue, Eλ

kl , as well as a mis-

match in spectral function, E b
kl , (opposed to only using the mismatch in λ as in (3.17)).

Let the mismatch in eigenvalue be given by the Euclidean distance between the paired
eigenvalues,

Eλ
kl := |λin

k −λout
l |. (3.18)
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Second, we consider the mismatch in the spectral function b. According to Eq. 3.9,

b(λ, Z /T 2
0 ) = b(λ,0)e4iλ2 Z /T 2

0 . Let λkl := λin
k +λout

l
2 be the average of the input and out-

put eigenvalue. We may express the difference between bin
k and bout

l e−4iλ2
kl Z /T 2

0 as the
result of a difference ∆λ in λkl :

bin
k = bout

l e−4i (λkl+∆λ)2 Z /T 2
0 ,

⇒ bin
k = bout

l e−4iλkl Z /T 2
0 −8iλkl∆λZ /T 2

0 +O (∆λ2).

By dropping the quadratic term O (∆λ2), we get a simple expression for the mismatch∆λ
in the spectral data:

|∆λ| ≈ E b
kl :=

∣∣∣∣∣∣
log

(
bout

l e−4iλkl Z /T 2
0 /bin

k

)
8iλkl Z /T 2

0

∣∣∣∣∣∣ , (3.19)

and note that this relationship requires knowledge of Z . We finally define the total mis-
match as the average of both errors, and bound it by the imaginary value of the eigen-
value pair:

Ekl := min

(
Eλ

kl +E b
kl

2
,ℑ(

λin
k

)+ℑ(
λout

l

))
. (3.20)

When a reliable estimate for Z is available, using edge cost (3.20) generally results in
better estimates c̃q compared to using (3.17).

DETERMINE Z FROM |b(λm)|
We can (re-)estimate Z by comparing the |bin(λk )| with |bout(λl (k))| using the identified
c̃q and assignment l (k). The spectral function at input and output for λm are related
through Eq. 3.9, from which estimates Z̃k may be obtained as

|b(λm , Z /T 2
0 )| = |b(λm ,0)|eℜ(4iλ2

m)Z /T 2
0

⇒ Z̃k = T 2
0

log
∣∣bout

(
λl (k)

)∣∣− log
∣∣bin (λk )

∣∣
ℜ(

4iλ2
kl

) , (3.21)

where Z̃k is an estimate for Z from the kth eigenvalue pair, and λkl := λin
k +λout

l (k)
2 is the

average of the paired input and output eigenvalue. To use the available data as well as
possible, we consider all Z̃k for a final estimate Z̃ . First, all pairs with maximal distance,
Ekl = ℑ(

λin
k

)+ℑ(
λout

l

)
, are discarded, as these eigenvalues are very distant from each

other and are unlikely to be related. Second, we discard outliers, i.e., estimations more
than two standard deviations away from the mean. Outliers are common, as almost
purely imaginary eigenvalues lead to a small denominator in (3.21), yielding unstable
estimations for Z . Third, as eigenvalues with large imaginary part contain more energy,
we assign their associated estimates a larger weight, wk = ℑ (λkl ). The final Z̃ is the
weighted average of the remaining estimates, Z̃ =∑

k wk Z̃k /
∑

k wk .
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E∠cs(Ẑ , φ̂0)
≤ π

8 ?

Discrete spectrum:
take Ekl from

(3.20), find c̃q s.t.
Eds(c̃q ) is minimal.

Eds(c̃q )
≤ 0.2?

Discrete spectrum:
take Ekl from (3.17),
find c̃q s.t. Eds(c̃q )
is minimal. Find
Z̃ by averaging
Zk from (3.21).

Eds(c̃q )
≤ 0.2?

Return c̃q

and Ẑ .
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Figure 3.5: Overview of the final algorithm.

3.4. FINAL IDENTIFICATION ALGORITHM

In this section, we combine all previously described algorithms to create one final robust
algorithm. From our experience with the continuous and discrete spectrum, we have
found that the continuous spectrum algorithm usually yields better results for Z , while
the discrete spectrum algorithm yields more reliable results for cq . Therefore, we will first
attempt to use the continuous spectrum to identify Z , and then the discrete spectrum to
identify cq . If Z is identified reliably from the continuous spectrum, this Z may also be
used for the discrete spectrum identification through Eq. 3.18-3.20.

In general, it holds that if the continuous or discrete spectrum contains too little en-
ergy, or the signal-to-noise ratio is too low, no good resemblance between input and
output spectrum exists, and thus the estimates of the corresponding algorithm should
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be discarded. We therefore reject estimates for the continuous spectrum when E∠cs > π
8

(average absolute phase mismatch) for the continuous spectrum algorithm, and Eds >
0.2 (relative error) for the discrete spectrum.

We propose a final algorithm as summarized in Fig. 3.5. First we find estimates ĉq and
Ẑ using the continuous spectrum algorithm. If these estimates are accepted, we apply
the discrete spectrum algorithm using the identified Ẑ to re-estimate cq , and accept this
estimate c̃q if Eds < 0.2. Otherwise, it is discarded. If the continuous spectrum algo-
rithm estimates were rejected, we fully rely on the discrete spectrum algorithm. If the
discrete spectrum error is sufficiently small, Eds < 0.2, we accept the resulting estimates
c̃q and Z̃ . In case both the continuous and discrete algorithm did not provide reliable
results, we can enlarge our search range for the initial guess c0

q . If this does not yield any
reliable results either, the algorithm cannot identify a fitting normalization, most likely
because the LPA-NLSE does not model the fiber well enough, or because the considered
signal is too noisy. A more reliable estimate can be obtained by running the identifica-
tion algorithm for multiple signals, discarding outlier estimates, and averaging over the
remaining ones.

3.5. RESULTS: IDENTIFICATION ON SIMULATED DATA

In this section, we demonstrate the capabilities of the identification algorithm on noisy
transmission data simulated with Eq. 3.1. We have considered two applications: first, we
identified the second-order dispersionβ2, and the Kerr nonlinearity coefficient γ using a
conventional transceiver; second, without any prior knowledge, the algorithm was used
to calibrate a nonlinear Fourier transform-based transmission system.

We applied the algorithm on input-output data from a fiber-optic transmission sys-
tem, simulated with the software NFDMlab [85]. For both applications, we considered
the same NZ-DSF fiber link, with 20 spans of Lspan = 80km each, resulting in a total
transmission length of 1600 km. The second-order dispersion of the fiber was β2 =
−5.00 ·10−27 s2m−1, the Kerr nonlinearity coefficient was γ= 1.20 ·10−3 (Wm)−1, and the
attenuation coefficient was α= 0.2 ·10−3 dB/m. After each span, an EDFA compensated
the accumulated loss through lumped amplification, and added white Gaussian noise
with a noise figure of fn = 6 dB. We used the LPA-NLSE (3.4) as reference solution, which
predicted a path-averaged (PA) model with path-averaged Kerr nonlinearity coefficient
γ1 = 0.318·10−3 (Wm)−1, normalization coefficient cq = 2.52·1011 W−1/2s−1, and normal-
ized length Z = 4.00 · 10−23 s2. At the link input and output, ideal low-pass filters were
applied to account for transceiver bandwidth limitations [85]. We assume that all other
real-world effects not included in the model are either zero-mean and can be included
in the noise term, or that they have been removed by appropriate post-processing. For
example, a carrier frequency offset can be detected and compensated with a simple
nonlinear-frequency shift [28]. We finally assume a coherent receiver since both phase
and amplitude information are required. To compute the NFT in the identification algo-
rithm, we used the Fast Nonlinear Fourier Transform (FNFT) software library [30].
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Figure 3.6: The identified path-averaged Kerr nonlinearity and second-order dispersion from con-
ventional transceiver data. Left: high launch power (2.9 dBm) and unadapted algorithm. Middle:
medium launch power (-4.5 dBm) and the unadapted algorithm (middle). Right: medium launch
power (-4.5 dBm), increased acceptance rate from Ed s < 0.2 to Ed s < 0.2 for the discrete algorithm
part.

3.5.1. IDENTIFYING FIBER COEFFICIENTS FROM A CONVENTIONAL

TRANSCEIVER

In this benchmark, we simulated data transmission using a conventional time domain
transceiver, and show that the fiber coefficientsβ2 andγ can be accurately recovered. We
assume that the fiber length, amplifier spacing, and attenuation coefficient are known.
The transmitted signal consists of a linear sum of time-shifted raised cosine pulses, mod-
ulated with Quadrature Phase Shift Keying (QPSK). The roll-off factor was 0.5 and symbol
duration T = 0.04 ns. The time shift between two subsequent pulses is also T = 0.04 ns,
to ensure zero intersymbol interference (ISI) in the transmitted signal. The transmitted
signal consisted of burst of 128 pulses. In between two bursts, a guard interval of 16T
was added. We considered two cases: one with optimal launch power, −4.5 dBm, and
one with high launch power, 2.9 dBm. The optimal launch power was found by optimiz-
ing detection performance after applying digital (linear) dispersion compensation and
average rotation compensation of the symbols. Note that the NFT spectrum of this sig-
nal was not specially tailored, we only spaced the bursts sufficiently far apart with guard
intervals such that the bursts did not significantly interfere at output, and could be anal-
ysed separately.

For both cases, we transmitted a signal with 100 bursts, and applied our algorithm
to each burst at transmitter and receiver. The identified coefficients were determined
by first discarding outliers (more than two standard deviations away from the mean),
and then averaging over the remaining estimations. The path averaged coefficients were
used as reference solution. First, we consider the result for the high power signal, which
are shown on the left in Fig. 3.6. The identified coefficients were β2 =−4.99 ·10−27 s2m−1

(PA: −5.00 ·10−27) and γ1 = 3.16 ·10−4 (Wm)−1 (PA: 3.18 ·10−4). The corresponding Kerr
nonlinearity coefficient was γ = 1.19 · 10−3 (Wm)−1 (true: 1.20 · 10−3). Both coefficients
were less than 1% off the true values, showing that the fiber coefficients can be accurately
identified using our algorithm if the launch power is sufficiently high.

Next, we consider the case with optimal launch power. The algorithm still reliably
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identifies β2, but the estimate of γ is poor. See the middle of Fig. 3.6. The poor perfor-
mance of the algorithm with respect to γ is due to the fact that at optimal launch power
(for a linear transceiver), nonlinear effects are insignificant compared to the dispersive
effect over the considered fiber length. During further analysis, we observed that while
the signals were actually dominated by solitonic components (about 80% of the total sig-
nal energy), the discrete spectrum was consistently rejected due to significant mismatch
in b(λ j ) in Eq. 3.19. (Similar observations in which conventional OFDM signals were
found to be soliton-dominated have been reported in [86]. Note that the solitons do not
disentangle since the fiber is too short.) The current estimates were thus solely based
on the continuous spectrum. In order to get a good estimate of the nonlinearity pa-
rameter γ at optimal transmit power (for a linear transceiver), we should not discard the
discrete spectrum. Hence, we increased the acceptance rates for the discrete estimates
from 0.2 to 0.6 (this corresponds to accepting the discrete estimates in almost all cases).
The result is shown on the right in Fig. 3.6. The new estimate is much better than before,
although is it still biased and and the individual data points show a large variance. Thus,
we were eventually able to obtain a reasonable estimate of the nonlinearity coefficient.
However, the benchmark also shows that for highly accurate estimates of the nonlinear-
ity parameter, the launch power has to be high enough such that nonlinear effects are
not negligible.

3.5.2. CALIBRATING AN NFT-BASED TRANSCEIVER

In our second benchmark, we considered a scenario in which we modulated data in
the discrete NFT-spectrum. If the correct normalization was used for the modulation,
the transmitted signal would consist of bursts of multi-solitons with 7 eigenvalues λm

and zero continuous spectrum. Bits were modulated into the phase of the residues,
q̃m = b/aλ(λm), of each eigenvalue using QPSK, identically following the modulation
format of Bülow et al. [83]: ∠

(
q̃(λin

m)
) ∈ {− 3π

4 ,−π
4 , π4 , 3π

4

}
. The time normalization con-

stant was T0 = 2ns/(14π), which transformed the bursts with normalized duration 14π
to bursts of physical duration 2ns. We emphasize that it is no problem if the identifica-
tion algorithm uses a different value for T0 when normalizing the input and output data.
(When data is modulated in the normalized nonlinear Fourier domain and then trans-
formed into the physical time-domain, the choice of the normalization parameter influ-
ences the physical duration and amplitude of the fiber input and thus has to be chosen
correctly. In contrast, for the identification algorithm, physical data is the starting point
and the time normalization constant only influences in which normalized domain the
nonlinear spectra are compared. The only important point is that the input and output
data have to be normalized using the same constant.)

Only the correct normalization cq and the normalized length Z are required for suc-
cessful transmission, but these were guessed poorly as cq = 3.00·1011 W−1/2s−1 (PA: 2.52·
1011) and Z = 8.00 · 10−23 s2 (PA: 4.00 · 10−23). As a result, the error vector magnitude
(EVM) in the received symbols was 35 dB, and communication was unsuccessful. Al-
though the symbols could not be recovered, we could use the transmitted and received
signals to identify a new model. We applied the combined algorithm to each of 100
bursts of presumed 7-soliton signals, discarded outlier estimates (more that 2 standard
deviations away from the mean), and averaged the remaining estimates to obtain cq =
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2.54·1011 W−1/2s−1 and Z = 3.85·10−21 s2, as shown in Fig. 3.7. Using this new normaliza-
tion, we generated a signal modulated with new symbols, and the symbols were success-
fully received. The transmission with the identified model resulted in an EVM of −8.2 dB
in the symbols, whereas the path-averaged model resulted in −8.6 dB. Thus the identi-
fied model performed comparable to the path-averaged model, only showing a minor
increase in EVM.

Figure 3.7: The identified normalization from multi-soliton transceiver data. No prior knowledge
of the fiber was used.

3.6. CONCLUSION
We have proposed an algorithm to identify the second-order dispersionβ2 and Kerr non-
linearity coefficient γ of an optical fiber, based on the nonlinear Fourier transform (NFT)
of transmitted and received signals. The algorithm models the fiber with a lossless, path-
averaged nonlinear Schrödinger equation, and identifies a normalization for the NFT
such that the corresponding NFT spectrum of the transmitted and received signal match
optimally to each other. β2 and γ are finally derived from the identified normalization,
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using the known fiber length, amplifier spacing, and attenuation coefficient. Although
β2 and γ cannot be found without prior knowledge of the fiber, the normalization can
nonetheless be identified, which already suffices to calibrate an NFT-based transceiver.
The entire algorithm can be applied on any sufficiently high energy signal, and does not
require special training signals.

We have demonstrated the capabilities of the algorithm with two benchmarks, in which
the fiber coefficients were accurately identified. Due to its versatility and accuracy, the
proposed identification algorithm may prove an attractive alternative to currently exist-
ing fiber identification methods.

APPENDIX: IDENTIFICATION FROM CONSERVED QUANTITIES
The normalized focusing NLSE (3.6) has an infinite number of conserved quantities [7],
the first three of which are

C1 =−
∫ ∞

−∞
|q |2 dt , (3.22)

C2 = 1

2

∫ ∞

−∞
qq∗

t −q∗qt dt , (3.23)

C3 =
∫ ∞

−∞
|q |4 −|qt |2 dt . (3.24)

The value of these constants does not depend on the location in the fiber as long as
the signal propagates according to the NLSE. Given an arbitrary input signal q in(t ) =
T0cqQ in(T0t ) and its corresponding output signal qout(t ) = T0cqQout(T0t ), we may de-
termine cq by comparing C3 at input and output:

C in
3 (cq ) =C out

3 (cq ), ⇒∫ ∞

−∞
|cqQ in|4 −|cqQ in

τ |2 dτ=
∫ ∞

−∞
|cqQout|4 −|cqQout

τ |2 dτ,

⇒ c2
q =

∫ ∞
−∞ |Q in

τ (τ)|2 −|Qout
τ (τ)|2 dτ∫ ∞

−∞ |Q in(τ)|4 −|Qout(τ)|4 dτ
. (3.25)

This relation provides a fast and easy method to obtain estimates for cq > 0. We note that
the first and second conserved quantities cannot be used in a similar fashion because cq

drops out when equating them. On the other hand, higher conserved quantities can
be used, but contain higher derivatives and powers, which are increasingly sensitive to
noise. Using C3 through Eq. 3.25 is thus the most suitable to estimate cq . Using optimal
linear launch power (-4.5 dBm) and high-power (2.9 dBm) signals from the conventional
transceiver, described in Sec. 3.6, we have determined c2

q from 100 bursts. The results
are shown in Fig. 3.8. At −4.5 dBm launch power, the estimates are highly biased, and
the resulting cq is a factor 2.5 too high (i.e., c2

q about 6 times too high). At higher launch
power, the estimates for cq improve, but still contain a bias of about 5%. In general, we
observed that changing the modulation format or the fiber itself can drastically influ-
ence the bias. Furthermore, the estimates are very sensitive to noise, considered band-
width and interference with neighboring bursts. The estimates are unfortunately too
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biased and unstable to immediately use as final estimates for cq , but they still provide an
order-of-magnitude indication, and can be used as initial estimates for our NFT-based
identification algorithm.

Figure 3.8: The distribution of c2
q , estimated from the conserved quantity C3 of a transmitted raised

cosines signal at launch powers of −4.5 dBm and 2.9 dBm. Note the difference in scale between
the plots.
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FAST SINGLE-MODE FIBER

NONLINEARITY MONITORING: AN

EXPERIMENTAL COMPARISON

BETWEEN SPLIT-STEP AND

NONLINEAR FOURIER

TRANSFORM-BASED METHODS

We experimentally investigate the problem of monitoring the Kerr-nonlinearity coefficient
γ from transmitted and received data for a single-mode fiber link of 1600 km length. We
compare the accuracy and speed of three different approaches. First, a standard split-step
Fourier method is used to predict the output at various γ values, which are then com-
pared to the measured output. Second, a recently proposed nonlinear Fourier transform
(NFT)-based method, which matches solitonic eigenvalues in the transmitted and received
signals for various γ values. Third, a novel fast version of the NFT-based method, which
only matches the highest few eigenvalues. Although the NFT-based methods do not scale
with link length, we demonstrate that the SSFM-based method is significantly faster than
the basic NFT-based method for the considered link of 1600 km, and outperforms even the
faster version. However, for a simulated link of 8000 km, the fast NFT-based method is
shown to be faster than the SSMF-based method, although at the cost of a small loss in
accuracy. This chapter is an adaptation of [87].
©2023 IEEE. Reprinted, with permission.

4.1. INTRODUCTION

The characterization of the Kerr nonlinearity coefficient of an installed optical fiber link
is fundamental for fiber optical communications when employing higher launch powers,
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for example for digital back-propagation (DBP) [62, 88–90], nonlinear frequency division
multiplexing (NFDM) [23], or for performance estimation [91]. However, the nonlinear-
ity coefficient is often not well known by the operator, so it is critical to measure the non-
linearity coefficient to optimally choose the transmission system parameters afterwards.
Even when estimates of the nonlinearity coefficients are provided by the manufacturer,
the coefficients may vary slightly between fibers, or change after installation due to ag-
ing, bending or splicing [62]. The re-characterization or even continuous monitoring of
installed fibers is therefore often beneficial or even necessary. Monitoring of the nonlin-
earity coefficient can furthermore reveal changes of the link.

Practical communication systems today often avoid high powers at which the Kerr-
nonlinear effect starts to distort the signal significantly. Therefore, the exact value of
the Kerr-nonlinearity coefficient received little attention so far. However, as optical net-
works are being pushed towards higher bit-rates - often employing higher launch powers
- estimating the Kerr-nonlinearity coefficient becomes increasingly important.

We are thus interested in methods to accurately and quickly determine the value of the
Kerr-nonlinearity coefficient. Many links are in constant use. Furthermore, the trans-
mission format is often difficult to change. Hence, it would be desirable to use already
available regular transmission data to identify the Kerr-nonlinearity coefficient. This im-
plies that the usual identification methods relying on specific training signals (e.g., using
four-wave mixing [74], cross-phase modulation [92] or self-phase modulation [73]) are
not well-suited for characterization of operational links. Instead, the Kerr-nonlinearity
coefficient is typically identified by numerically simulating the propagation through the
link with a split-step Fourier method (SSFM), for various nonlinearity coefficients. The
nonlinearity coefficient at which the numerically forward-propagated input matches the
measured output best is kept [68, 69, 71, 93]. However, the time required by such meth-
ods increases with the fiber length. They are therefore more time consuming for long
links.

In earlier work, we proposed an alternative identification method which does not di-
rectly depend on the link length. This method compares solitonic components found
using the nonlinear Fourier transform (NFT) of the transmitted and received signals [54,
55]. Solitons are stable waves that arise from a balance between dispersive and nonlinear
effects. In an idealized lossless and noise-free link, the eigenvalues associated with the
solitons are conserved exactly during propagation. Nevertheless, even in the presence
of loss and noise the solitonic eigenvalues are still very stable [62]. As hidden solitons
are present in many kinds of typical fiber-optical transmission data [55, 86], the NFT-
based identification method is in principle widely applicable. The Kerr-nonlinearity co-
efficient is required to normalize the data before computing the NFT, and thus affects the
detected solitons. The NFT-based identification method compares the solitonic compo-
nents at the transmitter and receiver for different values of the Kerr-nonlinearity coeffi-
cient, and keeps the one at which the solitonic components match best. No numerical
propagation is necessary. Thus the method does not depend on the link length, in con-
trast to propagation based-methods. We thus investigate if a speed-up can be achieved
with respect to SSFM-based methods by instead comparing the signals in the NFT do-
main.

The NFT-based method has been investigated in simulations [54] and experiments [55,
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94], where it has been found to provide similar estimates to split-step methods. However,
it has not yet been tuned and assessed in terms of computational complexity, which is
the goal of this study. We propose and investigate a faster version of the NFT-based non-
linearity characterization from [55], which only considers a few high-energy solitons.
(While all nonlinear Fourier components are required to reconstruct a signal, one com-
ponent in general is already sufficient to estimate the fiber parameters under ideal cir-
cumstances.) The solitonic eigenvalues are computed faster by using the old eigenvalues
at an earlier γ estimate as initial guesses for the eigenvalues at the new γ estimate. This
drastically speeds up the NFT-based matching, at the cost of some accuracy.

Finally, we quantitatively compare the SSFM-based identification method, the NFT-
based method from [55] and the faster NFT-based method in terms of speed and accu-
racy. We first compare these three methods on well-separated pulses, such that neigh-
boring pulses do not distort each other due to channel memory. Next, we compare the
three methods on signal segments, that have been cut out from a full burst. As the chan-
nel memory distorts the received signal segment, we adapt the SSFM-based method
slightly to take this into account. The NFT-based methods were less affected by the dis-
tortion due to channel memory and were therefore not adjusted.

The main contributions in this study are thus as follows:

• The proposal of a novel fast version of the NFT-based nonlinearity identification
algorithm.

• An experimental investigation of the accuracy of the SSFM-based method, the
original NFT-based method and the novel NFT-based method.

• A run-time comparison of these three algorithms.

This chapter is organized as follows. Section 4.2 describes the nonlinearity identifica-
tion algorithm through the split-step Fourier method. Section 4.3 recapitulates how the
NFT can be used to identify solitonic components in a signal, and to identify the non-
linearity coefficient. Section 4.4 describes the proposed faster NFT-based method which
only compares the highest few eigenvalues. Section 4.5 compares the three identification
methods on experimental measurement data for a 1600 km link. Section 4.6 compares
the three identification methods on simulated data for an 8000 km link. Finally, Sec. 4.7
concludes the chapter.

4.2. SPLIT-STEP FOURIER METHOD FOR FIBER NONLINEARITY

IDENTIFICATION
The propagation of an optical signal through a span of single-mode fiber (SMF) can be
modeled by the lossy nonlinear Schrödinger equation (NLSE),

Al =−i
β2

2
Aττ+ iγ|A|2 A− α

2
A, (4.1)

in which A (in
p

W) is the complex signal amplitude, l (in m) the distance, τ (in s) the

time, β2 (in s2

m ) the second-order dispersion coefficient, α (in 1
m ) the loss coefficient,
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and finally γ (in 1
Wm ) the Kerr-nonlinearity coefficient to be identified in this study. Sub-

scripts denote partial derivatives. At the end of each span an Erbium-doped fiber ampli-
fier (EDFA) boosts the signal to a fixed launch power, resulting in a sawtooth-like power
profile over the entire link.

In the first method considered in this study, the nonlinear coefficient γ is determined
by numerically propagating the transmitted signal for variousγ values, and keeping theγ
value at which the forward propagated input and measured output match best. Here, we
use the split-step Fourier method (SSFM) for the digital propagation. This method sim-
ulates the evolution of an optical signal by propagating the signal numerically in spatial
steps of size ∆l [95]. Each step is split up in a linear part and a nonlinear part. The linear
part solves the effects of the linear terms in the NLSE analytically in the Fourier domain.
Let Ã(ω, l ) =F {A(τ, l )} be the Fourier transform of A, then the linear part of the NLSE is
solved in the Fourier domain through

Ãlin(ω, l +∆l ) = Ã(ω, l )e

(
i
β2
2 ω2−α2

)
∆l

. (4.2)

Next, the nonlinear contribution is added by assuming that |A(τ, l )|2 is approximately
constant during the spatial step, and the contribution is again added in the Fourier do-
main:

Ã(ω, l +∆l ) = Ãlin(ω, l +∆l )e iγF {|Alin(ω,l+∆l )|2}∆l . (4.3)

At the end of each fiber span, the signal is numerically amplified to model the EDFA loss
compensation. However, no amplified spontaneous emission (ASE) noise is added in the
simulation, since we consider an idealized propagation.

In order to determine the best value of γ, we consider the relative L1-error between
the measured output and the numerically propagated input:

E(γ) =
∫

T (|Aout(τ)− Aout, SSFM(τ;γ)|)dτ∫
T |Aout(τ)|dτ , (4.4)

in which Aout(τ) is the measured received signal, Aout, SSFM(τ;γ) the transmitted signal
after numerical propagation with γ, and T = [T0,T1] the time window of the considered
signal. This error is evaluated for every γ in a grid, and the γ with the smallest error
is kept. For the numerical propagation, the transmitted signal is first re-sampled using
Fourier interpolation at sampling frequency equal to four times the 99%-energy band-
width of the transmitted signal. We found that this sampling rate was required to obtain
accurate results.

We note here that the identified γ implicitly depends on the assumed values of β2 and
α using the SSFM-method (this will also hold for the NFT-based methods). Using wrong
values here implies that the value of γ does not correspond to the actual value of the
fiber. However, the identified value will still correspond to the γ describing the system
best given the assumed α and β, and would therefore still be ‘optimal’ for the purpose of
signal processing.

The spatial step ∆l is chosen as large as possible, but small enough that the identi-
fied value for γ has converged. The propagation part of the SSFM-based method is per-
formed using a fast C version of the software ssprop [96], while the error is calculated
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in MATLAB. This SSFM-based method requires O (N log(N )L) floating point operations
(FLOPs), where L is the total link length, and N log(N ) is the computational cost of the
fast Fourier transforms.

4.2.1. SSFM-BASED IDENTIFICATION FROM WINDOWED SIGNALS

The SSFM-based algorithm processes a burst of a finite duration. The boundaries of the
burst should contain sufficient guard intervals in order to account for signal broadening
and the periodicity of the discrete Fourier transform. When only a cut-out part of the
burst is processed, the guard intervals are missing and these effects have to be taken
into account.

We formally define a ‘windowed’ signal as a segment (i.e., window) q(τ), τ ∈ [T0,T1],
cut-out from a full signal. The windowed signal is identical to the full signal for the du-
ration of the window. The numerical SSFM propagation implicitly assumes that outside
the window, the signal repeats periodically, and thus the numerical propagation will dif-
fer from the physical propagation. However, this difference is only limited to a boundary
region at the edges of the window. We approximate the size of the affected boundary
region using the formula for pulse broadening (pb) [62, Eq. 2.3.3]:

∆T pb = |Lβ2∆Ω|, (4.5)

where∆T pb is the amount that a Gaussian-shaped signal with radial bandwidth∆Ω gets
broader as it travels through a fiber of length L with dispersion coefficient β2. For the
purpose in this study, it sufficed to estimate the pulse broadening using only the dis-
persion, as we noticed that the contribution of nonlinearity to pulse broadening was
insignificant in comparison to the dispersion for the considered links.

We found that we only need to cut away a quarter of the pulse broadening at both
window boundaries to sufficiently prevent the influence of the pulse broadening. We
can thus define an interior region of the window, that is barely affected by the windowing
of the signal. We define the interior of the window as

T int = [T int
left,T int

right] = [T0 + 1
4∆T pb, T1 − 1

4∆T pb]. (4.6)

When the SSFM-based method is applied to windowed signals, we will simulate the
propagation of the windowed signal in the whole window T , but only consider the er-
ror on the interior T int:

E(γ) =
∫

T int (|Aout(τ)− Ain, SSFM(τ;γ)|)dτ∫
T int |Aout(τ)|dτ . (4.7)

4.3. NONLINEAR FOURIER TRANSFORM-BASED FIBER

NONLINEARITY IDENTIFICATION USING SOLITONS
An alternative method for fiber-nonlinearity identification considers the solitonic con-
tent in transmitted signals. Solitons are stable, particle-like waves resulting from a bal-
ance between the dispersive and the nonlinear effects. Due to their stability, solitons
existing in the transmitted signal are normally also present at the receiver, while only
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moderately affected by noise. Although solitons are often not directly recognizable from
the signal shape, earlier research has already shown that many conventional fiber-optic
transmission signals contain significant amounts of solitons [54, 86, 97]. The nonlinear
Fourier transform (NFT) can be used to determine the solitonic spectrum of a signal, in
which the nonlinearity coefficient γ plays the role of a parameter that is used to normal-
ize the signal. When the correct γ value is assumed in the normalization, the solitons
at the transmitter are identical to the solitons at the receiver for a noiseless and lossless
fiber, while a wrong γ value will result in a mismatch between transmitted and received
solitons. We may thus identify γ by determining the value at which the transmitted soli-
tons and received solitons match best. The greatest advantage of NFT-based identifica-
tion is that no signal propagation is required. The required time of the method there-
fore does not directly scale with the link length, as opposed to the SSFM-based method.
In the following, we recapitulate the most important aspects of NFT-based nonlinearity
identification.

4.3.1. NORMALIZED NONLINEAR SCHRÖDINGER EQUATION

The soliton content of a signal may be determined using the nonlinear Fourier trans-
form. The NFT is typically computed from the lossless normalized and dimensionless
NLSE. To obtain a lossless NLSE, we apply path-averaging to the lossy NLSE from Eq. 4.1:

Q = Aeαl/2, γ1 = 1

Ls

∫ Ls

0
γe−αl dl = γ1−e−αLs

αLs
, (4.8)

⇒ Ql ≈−i
β2

2
Qττ+ iγ1|Q|2Q, (4.9)

whereγ1 is the path-averaged nonlinearity coefficient, and Ls is the uniform span-length.
Finally, the equation is normalized [28]:

t = 1

T0
τ, q = T0

√∣∣γ1/β2
∣∣︸ ︷︷ ︸

cq

Q, z = 1

T 2
0

(−β2/2)︸ ︷︷ ︸
cz

l , (4.10)

⇒ qz = i qt t +2i |q |2q, (4.11)

where cq is the amplitude normalization constant (c2
q is the effective nonlinearity-dispersion

ratio of the fiber link), and cz the space normalization constant. The time normaliza-
tion T0 ̸= 0 is a free parameter. Similar to the linear Fourier transform, it simply re-
scales the NFT spectrum. Throughout this study, we use the receiver sampling time
T0 =∆t = 0.0125ns = 1/(80GHz).

4.3.2. NONLINEAR FOURIER TRANSFORM

After normalizing the signal according to the fiber parameters β2, γ, α, and Ls, the soli-
tons can be extracted by computing the NFT of q(t ). The NFT is found by solving the
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Zakharov-Shabat scattering problem [9],

d

dt

[
φ1(t ,λ)
φ2(t ,λ)

]
=

[ −iλ q(t )
−q∗(t ) iλ

][
φ1(t ,λ)
φ2(t ,λ)

]
, (4.12a)

s.t.

[
e−iλt

0

]
t→−∞←−

[
φ1(t ,λ)
φ2(t ,λ)

]
t→+∞−→

[
a(λ)e−iλt

b(λ)e+iλt

]
, (4.12b)

in which φ(t ,λ) is the eigenfunction corresponding to the complex spectral parameter
λ= ξ+iη, and a(λ) and b(λ) are the scattering coefficients indicated by the right bound-
ary conditions in Eq. 4.12b. The full NFT spectrum finally consists of a discrete (solitonic)
spectrum, and a continuous spectrum. We define the continuous spectrum as the value
of b(λ) over the real axis, Λc := {b(ξ) : ξ ∈ R}, and the discrete spectrum using the zeros
of a(λ) in the upper half plane, Λd := {(λk ,b(λk )) : ℑ(λk ) > 0, a(λk ) = 0}. Each eigenvalue
λk = ξk + iηk corresponds to a soliton. The eigenvalue λk defines the shape and speed
of the soliton, while the b-coefficient bk = b(λk ) provides information about the soliton
location and phase [7]. Throughout the rest of this study, we are only interested in the
eigenvalues.

4.3.3. NONLINEARITY IDENTIFICATION FROM EIGENVALUE MATCHING

The Kerr-nonlinearity coefficient may be determined by comparing the NFT spectra of
a transmitted signal and its corresponding received signal for various values of γ, which
influence the NFT spectra through the normalization in Eqs. 4.8–4.11. As the value of
γ is varied, there is an optimal value at which the NFT spectra at the transmitter and
the receiver match best. While both the continuous spectrum and discrete spectrum
may be used for spectral matching, the continuous spectrum often contains little power.
We observed that the power in the continuous spectrum of the considered signals was
only 2% at 2 dBm, 6% at -1 dBm, 10% at -4 dBm and 15% at -7 dBm signal power. The
power in the continuous spectrum thus seems to be low, which, for some NFT-based
transmitters, can even be proven mathematically [98]. In general many signals close to
the linear regime still have a significant portion of their energy in the discrete spectrum,
and can contain many solitons [54, 86]. There are also specifically designed nonlinear
frequency division multiplexed (NFDM) signals that only use the continuous spectrum
[99]. In such situations, the discrete spectrum version of the algorithm from [54] cannot
be utilized, but instead the version for the continuous spectrum given there should be
used. Finally, it was also observed in [54] that using the continuous spectrum of low-
energy signals to determine γ also causes significant bias. We therefore chose not to use
the continuous spectrum for identification.

We thus only consider the discrete spectrum, and follow the discrete spectrum match-
ing method used in [54] and [55], which is summarized below:

1. A γ value is selected from a grid, and its corresponding cq value is used for the
normalization.

2. The eigenvalues of the transmitted and received signals are determined from the
normalized signals.
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3. The matching error E is determined as follows:

E = min
m(k)

∑
k Ekm(k)∑

k ℑ
(
λin

k

)+∑
m ℑ(

λout
m

) , with (4.13a)

Ekm = min
(|λout

m −λin
k |,ℑ(λin

k +λout
m )

)
, (4.13b)

where m(k) denotes the perfect matching which connects the input eigenvalue
λin

k to the output eigenvalue λout
m , and Ekm is the cost of connecting these eigen-

values. In case the input and output spectra have different numbers of eigenval-
ues, unmatched eigenvalues of the larger spectrum are assigned a maximum cost:
Ek− = ℑ(

λin
k

)
, E−m = ℑ(

λout
m

)
. By assigning a maximum cost to eigenvalue pairs

and to unmatched eigenvalues, each eigenvalue cannot contribute more to the er-
ror than its associated energy (∝ℑλk ). This ensures that random low eigenvalues
with very little energy do not dominate the error, but the high (energetic) eigenval-
ues are most important. After assigning each matching a cost, the minimum-cost
matching may be efficiently determined (e.g., using the Hungarian algorithm [84]).

The steps 1)-3) are repeated for every γ value in the grid. The γ value with the lowest
error is kept. This procedure is performed for each signal block, and all estimates for γ
are averaged for a final estimate.

For this method, we found accurate results when using a sampling rate of two times
the bandwidth of the transmitted signal, so only half the number of samples compared to
the SSFM-based method. The full discrete spectrum was determined using the software
library FNFT (branch add_bsloc_methods2, commit 9756b3) [35]. We used the default
sub-sample and refine method with the 4split4B discretization. The desired number of
samples after sub-sampling was chosen using the Nyquist rate. In this configuration
finding the eigenvalues requires O (N 2) FLOPs, where N is the number of samples.

4.3.4. NFT-BASED IDENTIFICATION FROM WINDOWED SIGNALS

When considering a windowed signal, the NFT implicitly assumes it to be zero outside
the window while in reality it is not. The unaccounted interactions with the outside lead
to distortions in the soliton spectra. We investigated the option of deriving the location of
each soliton based on its b-coefficient, and only accept the eigenvalues that were inside
the interior for the matching. However, we found that doing so did not significantly
improve the NFT-based identification. We therefore decided to omit it.

We investigated why accepting and discarding solitons based on their location did not
significantly improve the identification algorithm. We found that windowing mostly in-
fluences the low eigenvalues, but their contribution to the full error is very limited. Fur-
thermore, we observed that most of the medium and high eigenvalues appear inside the
interior by default, and also stay there during propagation. We believe there are two
reasons for this.

First, any potentially high eigenvalue close to the edge has part of its soliton cut off,
and its eigenvalue is thus lowered in the process. Most of the detected high eigenval-
ues are thus already inside the interior. Second, all large solitons (corresponding to
high eigenvalues) have a short duration, and thus large bandwidth. This large band-
width should fit entirely within the signal bandwidth, and thus their center frequency
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lies closer to the center (i.e., zero). The drift speed of each soliton is proportional its
center frequency [28], which is therefore also relatively low. The highest solitons there-
fore have relatively low drift speeds, and thus usually stay within the window during the
transmission.

As accepting and rejecting eigenvalues due to the windowing does not seem to influ-
ence the highest eigenvalues too much, we will use the same NFT-based algorithm for
both full signals and windowed signals.

4.4. FAST NFT-BASED NONLINEARITY IDENTIFICATION

THROUGH LOCAL REFINEMENT OF HIGH EIGENVALUES
In this section, we adapt the NFT-based algorithm from the previous section to speed it
up, and create a fast NFT-based algorithm. To do so, we only consider the highest few
eigenvalues of the signal. The highest eigenvalues contain most of the signal energy,
and are also more robust to noise and model mismatch compared to lower eigenvalues.
As we consider less information from the signal, the accuracy of the identified γ could
slightly worsen. However, this loss in accuracy should be limited. It may even be benefi-
cial to disregard the lower eigenvalues when they are known to be unreliable, as we will
observe in some of the results.

The eigenvalues are a continuous function of γ. Therefore, as we sweep the value for γ
in small steps, the eigenvalues at the new γ value will be close to the previous eigenval-
ues. We may thus refine the eigenvalues at the previous γ value to find the eigenvalues
at the current γ value. Local refinement of the K highest eigenvalues only takes O (K N )
FLOPs, as opposed to the O (N 2) FLOPs when the full spectrum has to be determined
from scratch.

Our new strategy will be thus to compute a full spectrum only once, and then use
the highest K eigenvalues as initialization for local refinement as the γ value is being
varied. After the eigenvalues have been determined for the initial γ value, sweeping γ
takes significantly less time than computing a full NFT at every γ.

The fast NFT-based identification algorithm proposed here is similar to the original
NFT-based algorithm from Sec. 4.3.3 in the main lines. In both cases, we sweep over a
grid of values for γ, and measure the error by how well the input- and output-eigenvalues
match. The main difference is that we will now only match the highest few eigenvalues,
and use a fast refinement method to update the eigenvalues when proceeding from one
γ value to the next.

The full algorithm is summarized in Alg. 1, and has the following steps: 1)-2) Re-scale
the time, the received signal and the transmitted signal using T0. Normalize the trans-
mitted and received signals using the cq (γ) (Eq. 4.10) corresponding to the highest value
of γ in the grid, resulting in normalized signals q0,in and q0,out. 3)-4) Calculate the full
discrete spectrum of q0,in and q0,out using the NFT in Sec. 4.3.2. 5) Store the highest K high

input eigenvalues, and the highest 3K high output eigenvalues. These will be used as ini-
tial guesses. More output eigenvalues than input eigenvalues are kept, as we will only
focus on matching all the highest input eigenvalues. When we took the same number
of output eigenvalues as input eigenvalues, we found that the highest K input eigenval-
ues and highest K output eigenvalues found at the initial guess cq (1) would often not



4

68
4. FAST SINGLE-MODE FIBER NONLINEARITY MONITORING: AN EXPERIMENTAL

COMPARISON BETWEEN SPLIT-STEP AND NONLINEAR FOURIER TRANSFORM-BASED

METHODS

Algorithm 1: Identifying cq by matching high eigenvalues

Input:

• Transmitted signal, Ain(τ),

• Received signal, Aout(τ),

• Grid of decreasing normalization constants
cq (1) > cq (2) > ·· · > cq (J ),

• Number of high eigenvalues to compare, K high,

• Time normalization, T0.

Output:

• cID
q .

Algorithm:
- t = τ/T0, Q in(t ) = T0 Ain(τ), Qout(t ) = T0 Aout(τ);

- q0,in(t ) = cq (1)Q in(t ), q0,out(t ) = cq (1)Qout(t );

- {(λ0,in
k ,b0,in

k ),k = 1, . . . ,K all } ← NFT(q0,in(t ));

- {(λ0,out
m ,b0,out

m ),m = 1, . . . , M all} ← NFT(q0,out(t ));

- Keep the highest K high input eigenvalues, and highest 3K high output eigenvalues;
for j = 1, . . . , J do

- q j ,in(t ) = cq ( j )Qout(t ), q j ,out(t ) = cq ( j )Qout(t );

- {(λ j ,in
k ,b j ,in

k ),k ≤ K high } ← NFT(q j ,in)
∣∣λ j−1,in

k ;

- {(λ j ,out
m ,b j ,out

m ),m ≤ 3K high } ← NFT(q j ,out)
∣∣λ j−1,out

m ;

- E( j ) ←
(
{λ j ,in

k }, {λ j ,out
m }

)
from Eq. 4.14;

end
-Return cq ( j ), at which E( j ) is minimal.
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correspond to the highest K eigenvalues at the correct cq as initially high eigenvalues
often drift downwards as cq is varied. To ensure that at the correct cq all input eigen-
values have their correct counterpart present in the output eigenvalues, we thus need to
consider more initial output eigenvalues than input eigenvalues. For the purpose in this
study we observed that considering three times as many output eigenvalues usually suf-
ficed to include the correct counterparts of all the considered input eigenvalues, while
still keeping the computation time low by considering only a small set of eigenvalues.
This step concludes the initialization of the input and output eigenvalues. 6) Loop over
all values of cq (γ), starting with the highest value. Perform steps 7)-10) in every loop.
7) Normalize the transmitted and received signals corresponding to the current value
cq (γ). 8)-9) Determine the K high highest input eigenvalues, and the 3K high highest out-
put eigenvalues, by locally refining (using Newton’s method, bsloc_newton in FNFT) the

eigenvalues found with previous normalization c j-1
q . 10) From the current set of K high

input and 3K high output eigenvalues, calculate the matching error E as follows:

E =
∑K high

k=1 Ekm(k)∑K high

k=1 ℑ(
λin

k

) , with (4.14a)

Ekm = min
(|λout

m −λin
k |,ℑ(λin

k )
)
, (4.14b)

where m(k) is the minimum-cost matching [84], which assigns each input eigenvalue k
to output eigenvalue m at the cost Ekm . 11) After the error was determined for every cq ,
return the value cq at which the error is minimized. This concludes the algorithm.

We finally note that the same algorithm is used for full signals and for windowed sig-
nals, for the same reasons as in Sec. 4.3.4.
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4.5. EXPERIMENTAL RESULTS
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Figure 4.1: The experimental setup with exact fiber lengths, positions of optical filters, and applied
signal-processing. Acronyms: AWG = arbitrary waveform generator; AOM = acousto-optic modu-
lator; CFO = carrier frequency offset.

In this section, we compare the SSFM-based algorithm, the original NFT-based algo-
rithm and the fast NFT-based algorithm with only high eigenvalues on experimental
data. First, we compare the speed and accuracy of these three methods on full bursts
separated by guard intervals. This ensures the signal is not influenced by neighboring
pulses, which is implicitly assumed in both the SSFM-, and in the NFT-based methods.
Second, we compare the three methods on windowed signals that are cut out from the
same bursts. Windowing signals provides control over the signal length, and thus the
computation time. However, this does imply that the edges of the windowed signals are
affected by their surrounding, which is not the case for the complete bursts with guard
intervals.

4.5.1. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 4.1. All digital signals were pre-compensated
for the measured frequency response of the back-to-back transceiver setup. Digital-to-
analogue conversion was done using an 88 GSa/s arbitrary waveform generator (AWG).
The analogue signal was converted into the optical domain at 1550 nm carrier wave-
length using an I/Q modulator and a laser with <100 kHz linewidth. The optical signal
was amplified to 2 dBm launch power before every fiber span, and circulated 8 times
through a loop of 4 spans of 50 km OFS AllWave SMF for a total of 1600 km. Although
higher launch powers are desirable for both nonlinear communication and identifying
the nonlinearity coefficient, 2 dBm was the highest launch power we could use due to
limitations in the experimental setup. The used launch power was well above the levels
typically used in linear transmission, so the nonlinearity should still be sufficiently large
to demonstrate and qualitatively compare all identification methods.

The reference fiber coefficients for α and β2 were taken from the data sheet: βref
2 =

−21.2 fs2

km (D = 16.6 ps
nm·km ),αref = 0.19 dB

km . The value for γ was not provided by the data

sheet, so we used a typical value from the literature [100, p.157] as initial guess: γref =
1.26 1

Wkm . After polarization de-rotation, the optical signal was received using a coherent
receiver using a local laser with <10 kHz linewidth, and an oscilloscope with 80 GSa/s.
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The signal was post-processed as indicated in Fig. 4.1. Finally, we used the SSFM-based
method with a space-step size of ∆l = 1000m, and the NFT-based methods to estimate
the nonlinearity coefficient γ. Both the SSFM-based method and NFT-based methods
were run on the same computer to ensure that the computation times shown in Tab. 4.1
can be fairly compared.

4.5.2. IDENTIFICATION FROM COMPLETE BURSTS

We first compare the identification algorithms on bursts with sufficient guard intervals,
such that neighboring bursts do not interfere during the propagation. Therefore, the
SSFM- and NFT-based methods can both be applied individually to each burst, without
paying additional attention to interactions with neighboring bursts. Each burst consists
of a summation of time-shifted raised cosine shaped carriers (roll-off factor 0.5), each
multiplied with a symbol. More precisely, the transmitted signal q in(τ) was given by

Ain(τ) =
Ns∑
s

as Ac(τ− sT c), with (4.15a)

Ac(τ) =
{

π
4T c sinc

(
τ

T c

)
, τ=±T c,

1
T sinc

(
τ

T c

) cos(πτ/2T c)
1−(τ/T c)2)

, otherwise,
(4.15b)

in which as is the QPSK-symbol with index s, Ns = 128 the number of symbols in a single
burst, T c = 0.1ns the carrier spacing, and Ac the raised cosine carrier. The full burst
duration with guard intervals was 16ns. This signal-type was transmitted 100 times with
random QPSK symbols over 1600 km at 2 dBm launch power. We observed that this type
of signal contains about 70 solitons when normalized using γ = 1.261/(W·km) (small
variations occur depending due to the randomness of the symbols). The transmitted
signals and corresponding received signals were used for the identification of γ. For a
fair comparison, we consider the same grid of γ values for each of the three methods,
and determine the error for every γ in the grid. The considered grid for the γ values
ranged from 0.8γref to 1.2γref, in 21 equidistant steps. We chose this grid as typical values
of γ in data sheets include about 2% uncertainty [101]. A few percent difference in the
used γ only marginally affect the received signal (and present solitons), and is typically
acceptable for signal processing. The range of the grid was chosen large enough such
that the distribution of estimated γ could be observed, as well as that we expect the
correct γ to be within 20% of the reference value for the considered fiber.

For each of the methods, γ was identified for each of the 100 bursts, and a final esti-
mate was calculated by averaging all estimates that were not at the edge of the grid. Esti-
mates at the edge were discarded, as this implies that the error failed to converge within
reasonable values for γ, and were thus considered outliers. The resulting γ distributions
are shown in Fig. 4.2, and the final estimated γ values are shown in Tab. 4.1.

We note that the distribution of the full NFT and SSFM-based methods are similar, and
peak at approximately the same position of γ= 1.201/W·km. We will consider this iden-
tified coefficient as the ‘correct’ coefficient to compare later results with. Although the
full NFT-based method and SSFM-based method yield the same final estimate, the stan-
dard deviation of the distribution for the NFT-based method is larger than the variance
for the SSFM-based method, which was also observed in an earlier study on simulation
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data [54]. We believe this is mostly due to the mismatch in the path-average approxi-
mation. In [102], it was shown that the stability of path-average second-order solitons
in specific signals start to degrade significantly for signals around 2 dBm launch power,
potentially explaining the large variance in the estimates for γ.

Next, we observe that the identified γ of the fast NFT-based method with 10 eigenval-
ues contains a 7% bias towards higher values of γ. We already observed that the input
and output eigenvalues do not perfectly match due to the path-average approximation
and noise, and that this causes a larger standard deviation for the identified γ. We sus-
pect that the bias occurs because higher γ values generally create denser clouds of high
eigenvalues, as more high eigenvalues are present due to more nonlinearity. The high
input eigenvalues may then randomly find a closer output eigenvalue than at the correct
γ, causing a bias towards slightly higher γ.

The computation times for the three identification algorithms are shown in Tab. 4.1.
We observe a speed-up of a factor 5 when considering only 10 eigenvalues in the fast
NFT-based method compared to considering the full spectrum for every γ value. The
SSFM-based method was still slightly faster than the fast NFT-based method.

We thus conclude that the SSFM-based method resulted in the most accurately iden-
tified γ values, while also being the fastest method for this signal. However, with N = 358
samples, this signal was rather long. The original NFT-based method requires two full
NFTs per γ value in the grid, so 42 NFTs in total for this grid. The fast NFT-based method
also requires two full NFTs for initialization before the eigenvalue refinement. As both
NFT-based methods calculate full NFTs, both require O (N 2) FLOPs, while the SSFM-
based method only requires O (N log N ) FLOPs given that the number of spatial steps
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Figure 4.2: The distribution of the identified γ from raised cosine bursts with vanishing tails.
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is kept constant. Considering shorter signals could thus allow NFT-based methods to
perform faster. In the next section we therefore window the bursts to control the signal
length, and compare the NFT- and SSFM-based methods on these signals.

4.5.3. IDENTIFICATION FROM WINDOWED SIGNALS
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(a) 3.2 ns window
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(b) 5.6 ns window
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(c) 8.0 ns window

Figure 4.3: Distributions of identified γ from a windowed raised-cosine signal for various window
durations.

In this section, we consider the identification of the nonlinearity coefficient from win-
dowed signals (see Sec. 4.2.1), short segments cut out from the bursts. In practical com-
munication systems, bursts are often made as long as possible to minimize the impact
of the guard interval on the spectral efficiency. Therefore, it will often occur that only
long signals are available for the identification, so that windowing might significantly re-
duce the complexity. As opposed to the complete bursts from the previous subsection,
the edges of the windowed signals will be affected by the signal outside the window, and
thus this has an impact on the identification. On the other hand, windowing the signal
has the benefit that the length of the considered signal can be controlled, and thus the
identification may be sped up by considering shorter windows.

The SSFM-based method was slightly adapted to deal with the cut-off part of the bursts
as described in Sec. 4.2.1. For both NFT-based methods, we used the same algorithms as
before, as explained in Sec. 4.3.4.

For the identification in this section, we consider the raised cosine signals as in the
previous section, but now consider only a small window centered around the middle of
each raised cosine burst. A single block of the raised cosine signals had a duration of
16 ns, of which 3.2 ns was guard interval and the block of symbols was 12.8 ns. We are
interested in the case where the considered window is a piece from a continuous stream
of symbols, and thus we consider a center piece from the block which is sufficiently far
away from the guard intervals. The pulse broadening (Eq. 4.5) was approximately 1.2 ns.
The smallest window we could theoretically consider would be 1.2 ns, but this entire win-
dow would then be influenced by the outside of the window. To ensure that we have a
sufficiently large interior of the window, we chose the smallest window size as 3.2 ns.

The largest possible window size was 11.6 ns. Considering larger windows also be-
comes less efficient due to the superlinear scaling of the computation time as a function
of signal duration. Instead of considering a long signal, it would be much faster to con-
sider two signals with half the duration at some point. We thus chose the largest window



4

74
4. FAST SINGLE-MODE FIBER NONLINEARITY MONITORING: AN EXPERIMENTAL

COMPARISON BETWEEN SPLIT-STEP AND NONLINEAR FOURIER TRANSFORM-BASED

METHODS

to be 8.0 ns.

We also considered an intermediate window size of 5.6 ns. For these three different
window sizes, we compared the algorithms in terms of accuracy and speed.

The distributions of the identified γ value from 100 windowed signals are shown in
Fig. 4.3 for three different windows, and the identified γ can also be found in Tab. 4.1. For
the shortest window of 3.2 ns, we observe a large standard deviation in the distribution of
the γ values for the NFT-based methods, while many of the identified γ are on the edge of
the grid. The SSFM-based method also shows a large standard deviation, but close to the
expected value of γ= 1.20 1/(W·km) identified from the full bursts. This window is barely
large enough to effectively identify the value of γ using the SSFM-based method, while
both NFT-based methods contain too many outliers to be reliable. Upon inspection, it
indeed turned out that there were only about 15 eigenvalues within this windowed signal
type, of which only a few were high enough to be unaffected by the windowing.

The window of 5.6 ns duration shows clearly distinguishable peaks around the ex-
pected value for γ. For this window size, the SSFM-based method becomes reliable, and
the fast NFT-based method with 10 eigenvalues is closer to the expected γ value than the
full NFT. This is likely because the full NFT contains many low eigenvalues that become
unreliable when the signal is windowed. Although the low eigenvalues have a limited
influence on the error in Eq. 4.13a, they can still bias the estimate. The bias towards
higher values of γ is again attributed to random good matchings that are more likely due
to the denser cloud of eigenvalues at higher nonlinearities. Next, the 8 ns window shows
clear peaks in all distributions, and the full NFT and refined NFT show similar distribu-
tions. However, both NFT-based estimates show a clear deviation from the SSFM-based
method, and are about 5% higher. The windowing thus seems to structurally bias both
NFT-based methods. We also investigated other intermediate window durations, but
these results were very similar to the shown results (or simply interpolations) and were
therefore omitted from this study.

Finally, we also investigated the influence of the considered number of high eigen-
values K high for the fast NFT-based method on the identified γ. We compared khigh ∈
{5,8,10,12,15}, with the result shown in Fig. 4.4. Overall, the distributions of the iden-
tified γ depend marginally on the chosen K high, although for K high = 15 we found that
the bias towards higher γ increases, probably due to considering several low eigenvalues
that are influenced by the windowing of the signal. While considering only 5 eigenvalues
may put too much weight on single good or bad matchings of eigenvalues, we find that
considering between 5-10 eigenvalues leads to results closest to the correct γ. Neverthe-
less, the influence of K high is still rather limited.

The computation times for the windowed signals are indicated in Tab. 4.1. We observe
that the computation time for the SSFM-based method scales approximately linearly
with the number of signal samples. As expected, both NFT-based methods scale worse
with the number of signal samples than the SSFM based method. Reducing the window
to the minimum required length therefore in particular speeds up the NFT-based meth-
ods. However, we observed that this can cause a structural deviation in the identified
γ value, or causes the methods to fail entirely due to a lack of high eigenvalues. Fur-
thermore, the NFT-based methods required 180 samples before the distribution for the
identified γ value stabilized, and at this point the SSFM-based method is already faster.
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Figure 4.4: The identified γ from windowed signals using a varying number of high eigenvalues
K high.

We thus conclude that the SSFM-based method yields more accurate and faster results
than both NFT-based methods for the considered 1600 km SSFM link.

4.5.4. DISCUSSION

In this section, we discuss several possible improvements to SSFM- and NFT-based iden-
tification methods, and share our view on the feasibility for each option.
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Accuracy and consistency. In the shown examples, the SSFM-based method consis-
tently identified γ≈ 1.201/(W·km), whereas the NFT-based estimates were often biased,
as well as that the estimates had a larger standard deviation. In particular the bias of
up to 7% for the NFT-based methods can be too large to be acceptable in some cases.
To investigate the reason for the larger standard deviation, the error-curves of the full
bursts from Sec. 4.5.2 are shown in Fig. 4.5. When considering the average error in
Fig. 4.5b, we observe that the NFT- and SSFM-based errors show a clear optimum. How-
ever, we observe that for a single burst the SSFM-based method has a much smoother
error-curve than the full NFT-based method. This is caused by sudden changes in the
eigenvalue matching as γ is varied. The NFT-based method with only 10 eigenvalues
is much smoother, as the high input- and output-eigenvalues usually stay matched in
the same pairs, while the error only changes because the eigenvalues drift away/closer
as γ is varied. However, as discussed before, the NFT-based matching using only high
eigenvalues seems to be biased towards high γ values. We note here that the NFT-based
method could be biased as it is optimizing a different criterion: it attempts to only match
the eigenvalues as well as possible, instead of the full signals. It may therefore be possible
that the NFT-based γ value is optimal in this sense. However, our observations suggest
that this is not the case. We believe the bias is introduced due to the denser clouds of
eigenvalues at higher γ values that allow for random good matchings. While it might be
possible to account for this effect, it seems challenging to do so.

Computation time. We observed that the NFT-based methods can be faster than the
SSFM-based method when the fiber length is long and the signal is short, but for the
1600 km link the SSFM-based method is usually faster. However, both the NFT-based
methods and SSFM-based methods can be further sped up in various ways. For the NFT-
based methods, the most important constraint is the calculation of the discrete spec-
trum, which takes O (N 2) FLOPs for the method used in this study, which may also be
observed in Table 4.1. When comparing the computation time per signal as a function
of the number of signal samples, we indeed observe this relation for the full NFT-based
method. The fast NFT-based method uses only two full NFTs for the first grid point, but
the refinement-based NFTs for all other grid points require only O (N ) time, so the O (N 2)
scaling is much less visible there. Especially signals with large bandwidths will require
more samples to capture, and thus take longer computation times for NFT-based meth-
ods (see e.g. the 42 GB scenario). This drawback would pose a problem as the current
trend in optical communication is towards high data rates, which are associated with
large bandwidths.

Fortunately, recent research has shown that the higher eigenvalues of a signal may be
determined quickly using both time windowing and frequency windowing [103]. While
we were already using some form of time-windowing in this study, the paper [103] showed
that frequency windowing (i.e., partitioning the full signal into band-limited signals, cal-
culating the eigenvalues of each frequency-windowed partition, and then recombining
the discrete spectra) could drastically reduce the computation time for calculating the
higher eigenvalues from signals with large bandwidth. This would largely overcome the
drawback of computational scaling in the signal bandwidth associated with NFT-based
identification methods. In scenarios with higher bandwidths than in our experiments,
an additional frequency windowing step as in [103] is thus recommended to reduce com-
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putation times.

The SSFM-based method could be sped up further, for example by using Volterra se-
ries for the digital propagation (see e.g., [104]), which require less steps per span for sim-
ilar accuracy. Furthermore, due to the observed smoothness in the error-curves for the
SSFM-based method, the grid search could be replaced by a local-descend method, al-
lowing for even faster identification. We shortly investigated this possibility, and found
that the SSFM-based error already converged in approximately four steps to the optimal
γ value using Newton’s method due to its smooth error-curves.

Dependence on power spectral density. In order to identify the nonlinearity coeffi-
cient, the signal needs to have a sufficiently high power spectral density such that the
nonlinear effects become observable. We shortly consider two cases here with lower
power spectral density, and compare how the identification methods perform. The re-
sults are shown in Fig. 4.6. The left case considers the same windowed raised cosine
signal as from Fig. 4.3c, but with only −4dBm launch power (four times lower). The right
case considers a raised cosine signal at 2 dBm launch power, but with symbol time T
four times shorter. This also increases the bandwidth by a factor four, and hence the
power spectral density is also four times lower. We observe that the SSFM-based method
can still yield reliable estimates, whereas the NFT-based method fails entirely in most
of the cases. For smaller power spectral densities, there are much fewer high eigenval-
ues. As a result the NFT-based methods become very biased towards higher γ values, for
which there are more eigenvalues to be matched. We thus observe that the SSFM-based
method is also more robust for identification on signals with low power spectral densi-
ties. We note here that for low-power signals, the continuous spectrum contains a larger
portion of the signal energy and might be used to identify γ.

(a) Error from three different vanishing pulses.
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(b) The error, averaged over 100 vanishing pulses.

Figure 4.5: The error-curves of the SSFM-based method and the NFT-based methods for the raised
cosine pulse with vanishing tails, from Sec. 4.5.2 and Fig. 4.2.
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(a) 8 ns, 13 GHz, -4 dBm
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(b) 11 ns, 42 GHz, 2 dBm

Figure 4.6: The identified γ values for two signal types (duration, bandwidth and power as indi-
cated) where the NFT-based method fails. The left signal type was a raised cosine with too little
power for high eigenvalues. The right signal had a broader spectrum, with the same power, and
therefore less power per Hz, also resulting in too low eigenvalues. As a result, most of the NFT-
based estimates do not converge within the grid. However, the SSFM-based method still shows a
peak near the expected value for the right case.

4.6. SIMULATION RESULTS FOR LINKS UP TO 8000 KM, WITH

IDEAL RAMAN AMPLIFICATION

In this section, we investigate a scenario in which NFT-based identification should out-
perform the SSFM-based identification. We will consider simulation data of an 8000 km
fiber link, with ideal Raman amplification to ensure a uniform signal energy profile through-
out the propagation. This scenario with long link lengths and ideal Raman amplification
should be especially suitable for NFT-based identification, as the path-average approx-
imation (Eq. 4.8) is no longer required due to the ideal Raman amplification. Further-
more, the computation time of the SSFM-based method will be about 5 times as long as
compared to the 1600 km link due to the increased link length, whereas the NFT-based
methods are not directly influenced. Due to practical limitations, we were not able to
demonstrate this example experimentally, and we present here results from simulated
data instead. Finally, we estimate at which distance NFT-based methods are faster than
the SSFM-based method, by also considering simulated links of 1600 km and 4800 km.

4.6.1. SIMULATION CHANNEL

The considered link in the simulations had a total length of 8000 km, while the propa-

gation was simulated with the NLSE from Eq. 4.1, with βref
2 = −21.2 fs2

km (D = 16.6 ps
nm·km ),

γref = 1.201/(W·km), such that the simulated fiber corresponded to the experimental
fiber. The loss parameter was set to αref = 0 dB

km in the simulation due to the ideal Ra-
man amplification. The propagation was performed by a split-step method, with steps
of 2 km. At the end of every step, realistic Raman noise was added to the signal, with
spontaneous emission factor of nsp = 3.5, corresponding to a pump wavelength at ap-
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(a) 7-eigenvalue signal, z = 0km.
(b) 7-eigenvalue signal,
z = 4000km.

(c) 7-eigenvalue signal,
z = 8000km.

Figure 4.7: Example of a realization of a 7-eigenvalue signal traveling through an ideally Raman
amplified single mode fiber of 8000 km length, at transmitter (z = 0), halfway (z = 4000km), and at
the receiver (z = 8000km).

proximately 1450 nm and a carrier wavelength of 1550 nm [105, Eq. 7.3.9].

4.6.2. SIGNAL TYPES

For the simulation, we considered two types of signals: a raised cosine-signal, similar
to the one in the previous section, and a 7-eigenvalue signal, tailored to the fiber and
designed to mitigate signal broadening, inspired by [83].

First, we considered a 7-eigenvalue signal. The signal was generated by initializing the
NFT spectrum with 7 eigenvalues in the discrete spectrum, and b(λ) = 0,∀λ ∈ R for the
continuous spectrum. In a normalized domain (using cq = 2.38 ·1011 1/(s

p
W), T0 = 1s

and Eq. 4.10), we set the eigenvalues as λ = 109[−7.5+ 5.7i ,−5.0+ 3.8i ,−2.5+ 5.7i ,0+
3.8i ,2.5+5.7i ,5.0+3.8i ,7.5+5.6i ], respectively with absolute b-coefficients log |b| =
[−18.7,−9.12,−10.38,−2.62,1.14,6.24,15.86]. The phases of the b-coefficients were ran-
domly assigned to ±π/4 or ±3π/4. The bandwidth of this type of signal was approxi-
mately 9 GHz. This type of signal corresponds to eigenvalue communication, in which
the bits are modulated with QPSK on the phase of the b-coefficient of each eigenvalue.
The signal was designed such that the left-most soliton travels to the right and vice versa
during the propagation over 8000 km. The effective duration of the signal thus first gets
shorter, before getting wider again, and reaching the receiver at the approximate same
duration as the transmitted signal. This type of eigenvalue communication signal is il-
lustrated in Fig. 4.7. The launch power of this signal was -3.7 dBm.

Second, we considered the same raised-cosine signal as in the previous section with
Nc = 128 symbols per block, and T c = 0.1ns, but adding an 11.2 ns guard interval (in-
stead of 3.2 ns), resulting in blocks of 24 ns. The additional guard interval is required
to prevent interference between two blocks, as the additional link length causes each
block to spread out much further. We set the average launch power to -4 dBm. This
launch power with Raman amplification roughly leads to the same path-average power
as +2 dBm launch power for the previous link with lumped amplification. The exact same
transmitted 7-eigenvalue signals and raised cosine signals were also used for propaga-
tion over 1600 km and 4800 km. We note here that the long guard intervals required for
the 8000 km transmission were excessive for the 1600 km and 4800 km transmission, but
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we chose to still include the long guard intervals to make the comparison fair.

4.6.3. IDENTIFICATION FROM SIMULATED SIGNALS
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(a) 7-eigenvalue type signal, full
block
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(b) Raised-cosine type signal, full
block
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(c) Raised-cosine type signal, half
block

Figure 4.8: Identified γ for the SSFM with ideal Raman amplification from 8000 km transmission
data. The distributions for 4800 km and 1600 km were similar, and are therefore omitted.

We identified γ from both mentioned types of signals, using both NFT-based methods,
and the SSFM-based method. First we considered the full blocks of the 7-eigenvalue type
signals, second the full blocks of the raised-cosine type signals, and third the windowed
raised-cosine type signals, where each window contained only the middle 50% of each
block.

The identified γ value for each signal type, each method and each fiber length are
shown in Tab. 4.1. As the γ distributions were very similar for the three considered
link lengths, we only show the result for 8000 km in Fig. 4.8. We observe that for the
7-eigenvalue type signal, all three methods yield very accurate results, although the fast
NFT-based method shows a slightly larger variance in the identified γ than the other two
methods. For both the full and the 50% windows of the raised cosine-type signals, the full
NFT-based method as well as the SSFM-based methods again yield highly accurate re-
sults with low variance, but the fast NFT-based method again shows a small bias towards
higher γ values, and has larger variance. In all scenarios the SSFM-based method yields
accurate results with the lowest variance, and is therefore the most accurate method.

However, when comparing the computation times in Tab 4.1 for the 8000 km link,
we observe that the full NFT-based method is significantly faster than the SSFM-based
method except for the longest signal, and the fast NFT-based method is consistently 4
times as fast as the SSFM-based method for all types of signals. We thus conclude that the
NFT-based methods can indeed provide a significant speed up for very long links, at the
cost of a small loss in accuracy and increase in uncertainty. Figure 4.9 also shows that the
full NFT-based method is faster than the SSFM-based method for the 7-eigenvalue (7-
EV) signal already at 2000 km, and for the other two signals comparably fast at 8000 km.
The fast NFT-based method using only the 10 highest eigenvalues is already faster for all
considered signals for links longer than 2000 km, and much faster at 8000 km.
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Figure 4.9: The mean computation time per signal for each simulated signal as a function of fiber
length, also shown in Tab. 4.1). The computation times for the NFT-based methods remain ap-
proximately constant, whereas the SSFM-based method increases linearly with distance.

4.7. CONCLUSION

We compared three different methods for identifying the Kerr-nonlinearity coefficient
for an installed optical single-mode fiber link from available transmission data. The first
method was based on numerical split-step propagation of the transmitted signal and
comparing input and output. The second method compared all solitonic eigenvalues at
input and output using the nonlinear Fourier transform (NFT). The third method only
compared the highest few eigenvalues, and calculated these faster using local refine-
ment of previous eigenvalues. The third method was first proposed in this study. We
compared these three methods on complete bursts, and on cut-out parts of bursts, for
which we adapted the SSFM-based method to deal with interference due to the channel
memory.

We showed that the SSFM-based method was faster and more accurate than both
NFT-based identification methods for an experimental 1600 km link. The NFT-based
method with few eigenvalues was significantly faster than the full NFT-based method,
but showed some bias when compared using complete bursts with vanishing tails. When
applied on a windowed signal without vanishing tails, both NFT-based methods showed
some bias, but the method with few eigenvalues was more accurate in this case. Never-
theless, the SSFM-based method was more accurate in all aspects for both the vanish-
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ing pulse, and the windowed signal. We thus consider the SSFM-based method to be
the method of choice for the identification of the nonlinearity coefficient in operational
single-mode fibers at equivalent transmission distances.

Finally, we investigated whether NFT-based identification could outperform SSFM-
based identification for a very long link of 8000 km. Indeed the NFT-based methods
did not scale with the link length, and showed similar or lower computation times than
the SSFM-based method when applied to signals for a simulated ideal-Raman ampli-
fied link, although the SSFM-based method was still slightly more accurate. In case
that a small loss in accuracy is acceptable, the NFT-based method could therefore be
the method of choice for long links.
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Table 4.1: The mean computation time to compute the γ value from a single burst, for the 6 differ-
ent signal types (details specified per row), using the full NFT-based method, the fast NFT-based
method using only 10 eigenvalues, and the SSFM-based method. For each signal type, the compu-
tation time for the identification was averaged over 100 bursts. The correct γ was 1.20 1/(W·km).
The standard deviation in the distribution of the identified γ are also mentioned after the mean
identified value.
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5
FAST AND RELIABLE DETECTION OF

SIGNIFICANT SOLITONS IN SIGNALS

WITH LARGE TIME-BANDWIDTH

PRODUCTS

We present a fast method to calculate the significantly large solitonic components of sig-
nals with large time-bandwidth products governed by the nonlinear Schrödinger equa-
tion, for which the computation typically becomes prohibitively expensive and/or numer-
ically unstable. We partition the full signal in both frequency and time to obtain short sig-
nals with a constant number of samples, independent of the size of the full signal. The soli-
tons within each short signal are computed using a conventional nonlinear Fourier trans-
form (NFT) algorithm. The partitioning in general leads to spurious solitons not present
in the full signal. We therefore design an acceptance scheme that removes spurious soli-
tons. The remaining solitons are attributed to the full signal. Solitons that are too wide to
fit into the short signals cannot be detected by this approach, but since wide solitons must
be of low amplitude, the significant solitons will be found. This approach only requires
O (N ) floating point operations, with N the number of signal samples. It can further-
more be applied to signals with large time-bandwidth products for which conventional
NFT algorithms become unreliable or even fail. When applying our proposed method to
a signal of 15,000 samples, the significant solitonic components were computed 14 times
faster than when considering the whole signal, for which the conventional algorithm fur-
thermore provided wrong results. We found that time-partitioning yields accurate results,
while frequency-partitioning causes a small loss in accuracy. Combined frequency-time
partitioning leads to the fastest computation, but also suffers from the same loss in accu-
racy as with frequency-partitioning. As time-partitioning yields a significant speed-up at
nearly no loss in accuracy, we regard this as the method of choice in most practical scenar-
ios. This chapter is an adaptation of [103].
©2023 IEEE. Reprinted, with permission.
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5.1. INTRODUCTION

The nonlinear Schrödinger equation (NLSE) describes wave propagation in optical fibers
[62]. The lossless NLSE is known for the existence of so-called solitons, which are local-
ized particle-like waves [106, 107]. Even though individual solitons have a distinctive
hyperbolic secant shape for the NLSE, they often cannot be determined by visual in-
spection of a wave packet because nonlinear interactions with other signal components
temporarily change their form. In such cases, the nonlinear Fourier transform (NFT)
is nevertheless able to detect them [7, 108]. Due to their stability, solitons have found
many applications in fiber optics, such as fiber-optical communication [23, 28, 76, 83,
109–115], fiber parameter estimation [54, 55], the analysis of laser radiation [116–119],
optical resonators [120, 121] and optical combs [122]. It is well known that the number
of hidden solitons in a rectangular pulse grows with both its amplitude and duration,
see e.g., [28]. This suggests that especially long and/or high power signals are typically
rich in solitons. Accordingly, conventional orthogonal frequency division multiplexing
(OFDM) and Nyquist-shaped communication signals with long durations and/or pow-
ers have surprisingly been observed to contain large numbers of hidden solitons [54, 86].

The numerical computation of the NFT is however a nontrivial problem due its non-
linear nature. Even though many different algorithms to compute the discrete part of
the NFT that corresponds to solitons have been proposed in the literature (e.g., search
methods [27, 29, 31, 123, 124], matrix methods [29, 123, 125], subdivision methods [31,
126], machine learning methods [127], phase tracking [128] and all-pass filter synthe-
sis [129]), a wave packet with 32 solitons is still considered a challenging example [128].
For more complicated signals, the numerical algorithms often become computation-
ally expensive and/or unreliable when using standard double precision floating point
arithmetic. The efficient detection of the potentially hidden solitons in signals with
large time-bandwidth products would be directly relevant for example in fiber parame-
ter identification [54, 55], soliton-based communication systems [76, 109, 110, 115, 130–
132], analysis of optical soliton gases [133, 134], optical rogue wave analysis [135], as well
as in areas outside fiber optics (e.g., ocean waves [136–138]).

Since solitons are localized in both the physical and the frequency domain, it should
however be possible to accurately calculate the significantly large solitons using only a
limited part of the full signal. This would result in a faster and more reliable calculation.
Several previous studies have indeed already observed that solitons are not influenced by
other signal components that are sufficiently separated in the time or frequency domain
[137, 139, 140]. If we thus take a sufficiently large frequency-time window, the significant
solitons in the center of the window are expected not to be influenced by the solitons
outside the window.

In this study, we propose a novel method based on these findings to quickly calculate
the significant solitons within a signal. Our idea is to partition the full signal into shorter
signals, and/or band-pass filtered signals. The center frequencies of the band-pass fil-
tered signals are temporarily shifted to zero such that they can be captured with less
samples. The signals with less samples are then evaluated separately. We define rect-
angular frequency-time windows of fixed bandwidth ∆Ωwindow and duration ∆T window,
and cover the full rectangular frequency-time domain of the original signal with such
windows. The windows are allowed to overlap. The signal content in each window can
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then be captured with only M ≤ N samples, where N is the number of samples of the
full signal (proportional to the time-bandwidth product of the full signal), and M the
number of samples of the windowed signal (proportional to the smaller time-bandwidth
product of the frequency-time windows). The computation time for a single windowed
signal will thus only depend on M and the chosen NFT method, but does not scale with
the full signal length N . As we require O ( N

M ) windows to cover the entire frequency-
time domain, the computation of the significant eigenvalues in the discrete spectrum
can thus be performed with only O (N ) floating point operations (FLOPs). The proposed
method does not suffer from numerical reliability issues that normally arise for signals
with large time-bandwidth products due to the nonlinear nature of the NFT. Spurious
solitons, which can occur as a result of the partitioning, are avoided by rejecting solitons
whose support is not sufficiently contained within the window. The impact of the par-
titioning on the estimated soliton parameters is controlled by taking sufficiently large
sub-domains of the signal. This allows us to quickly and reliably find the significant soli-
tons of the full signal. Here, solitons are considered significant if their amplitudes are
above a threshold that only depends on the chosen window sizes.

Our main contributions are as follows. We formalize the above ideas of partitioning the
signal and calculating the eigenvalues associated to the significant solitons from small
frequency-time windows. We derive a heuristic for the minimal required window size to
be able to capture all significant solitons. By letting the windows overlap, we can ensure
that all significant eigenvalues are captured, although some eigenvalues may be dou-
bly captured. We then introduce an acceptance scheme, to keep only the most reliable
version of eigenvalues that were captured in multiple windows due to their overlap, and
to reject unreliable or spurious eigenvalues. Finally, we demonstrate the accuracy and
speed of this frequency- and time-windowing method on several signals with large time-
bandwidth products.

This chapter is organized as follows. Sec. 5.2 will recapitulate the nonlinear Fourier
transform to define the eigenvalues associated with the solitonic components. Sec. 5.3
will define the window size based on the required support to capture the expected soli-
ton content and describes an algorithm to reject spurious or inaccurate eigenvalues.
Sec. 5.4 summarizes the final algorithm. Sec. 5.5 tests the described frequency- and time-
windowing algorithm on signals with large time-bandwidth products. Finally, Sec. 5.6
concludes the chapter.

5.2. SOLITONS, THE NONLINEAR FOURIER TRANSFORM, AND

SOLITON LOCATION
We consider the focusing nonlinear Schrödinger equation (NLSE) for signals with van-
ishing tails [62],

qz = i qt t +2i |q |2q, q
t→±∞−−−−−→ 0 sufficiently fast, (5.1)

with q(t , z) the complex signal amplitude and i the imaginary unit. Subscripts denote
partial derivatives. We consider the normalized and unitless NLSE, but for the sake of
clarity we will refer to t as time and z as position, which is often the case in fiber optics



5

88
5. FAST AND RELIABLE DETECTION OF SIGNIFICANT SOLITONS IN SIGNALS WITH LARGE

TIME-BANDWIDTH PRODUCTS

[62]. The normalization procedure itself depends on the application, but can be found
in the corresponding literature. For fiber optics, see e.g. [28, Eq. 3] or [54, Eq. 5].

The focusing NLSE has soliton solutions, which are particle-like waves that retain their
shape even after interacting with other solitons or dispersive waves. The defocusing
NLSE, which differs from Eq. 5.1 by a sign in front of the nonlinear term, in contrast
has no soliton solutions. A pure 1-soliton solution of the NLSE may be associated with a
complex eigenvalue λk = ξk + iηk (ξk ∈ R, ηk > 0), where k is an index that is used later
for signals containing multiple solitons. We refer to λk as an eigenvalue because it arises
as such from a spectral problem, as explained in the next section. The 1-soliton solution
is given by [7]

qk (t , z;λk , t 0
k ,ψ0

k ) =
envelope︷ ︸︸ ︷

2ηk sech
(
2ηk (t − t 0

k − (−4ξk︸ ︷︷ ︸
ck

)z)
)

×exp
(−2iξk (t − t 0

k )−ψ0
k −4i (ξ2

k −η2
k )z

)︸ ︷︷ ︸
carrier

, (5.2)

in which t 0
k andψ0

k are, respectively, the time and phase offset of the soliton at z = 0. The
envelope wave speed is ck =−4ξk . For the rest of this study we will assume z = 0, as we
are not interested in the propagation of solitons. We note some important properties of
the 1-soliton.

• The envelope shape is only determined by the eigenvalue height ηk = ℑ(λk ): the
soliton amplitude scales linearly with ηk , but the soliton also becomes narrower,
as illustrated in Fig. 5.1.

• The carrier is only determined by the real part ξk = ℜ(λk ). The linear center fre-
quency of this soliton is given byωk =−2ξk . Shifting the real part of the eigenvalue
by ∆ξ thus causes a linear frequency shift of ∆ω=−∆ξ/2 and vice versa.

• The energy of the 1-soliton is given by

Ek =
∫ ∞

−∞

∣∣qk (t , z;λk )
∣∣2 dt = 4ηk , (5.3)

so the highest eigenvalues (i.e., with the largest imaginary part ηk ) contain the
most energy.

If we consider an arbitrary signal with K solitonic components with different speeds
(i.e., ξk ̸= ξ j if k ̸= j ), the solitons will eventually separate, and evolve into a train of K
1-solitons [141, 142]:

q(t , z) ≈
K∑

k=1
qk (t , z;λk , t±k ,ψ±

k ), as z →±∞. (5.4)

When considering an arbitrary signal, this separation will probably not have happened
for practically relevant values of z. Instead, the solitons may be packed close together,
and interact with one another as well as with the dispersive part of the signal. In this
case, the solitons typically cannot be distinguished visually. To identify which solitons
are present, the nonlinear Fourier transform is often employed.
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Figure 5.1: The envelope of three solitons with different η in the time- and frequency-domain, and
the 99%-energy support of the unit soliton with η= 1 (vertical lines).

5.2.1. THE NONLINEAR FOURIER TRANSFORM

The soliton content of a signal q(t ) governed by the NLSE can be determined by the NFT.
The NFT is defined through the Zakharov-Shabat scattering problem [108],

Ç

Çt

[
φ(1)(t ,λ)
φ(2)(t ,λ)

]
=

[ −iλ q(t )
−q∗(t ) iλ

][
φ(1)(t ,λ)
φ(2)(t ,λ)

]
, (5.5a)

s.t.

[
e−iλt

0

]
t→−∞←−

[
φ(1)(t ,λ)
φ(2)(t ,λ)

]
t→+∞−→

[
a(λ)e−iλt

b(λ)e+iλt

]
, (5.5b)

in which φ(t ,λ) is the vector eigenfunction corresponding to the complex spectral pa-
rameter λ= ξ+ iη, and a(λ) and b(λ) are the scattering coefficients that characterize the
behavior at the right boundary conditions in Eq. 5.5b. The naming convention of ‘eigen-
function’, ‘spectral parameter’ and ‘eigenvalue’ are because the Zakharov-Shabat scatter-
ing problem may be rewritten as Lφ= λφ, with L a linear operator. Each λk related to a
solitonic component in Eq. 5.4 turns out to be an eigenvalue of L, with eigenfunctionφk .

The full NFT of q(t ) consists of a continuous spectrum and a discrete spectrum. We
define the continuous spectrum over the real axis, Λc := {b(ξ) : ξ ∈ R}. This spectrum
corresponds to the dispersive wave content of the signal. The continuous spectrum is
mentioned here for completeness, but we are not further interested in it throughout this
study.

We define the discrete (solitonic) spectrum using the zeros of a(λ) in the upper half
plane, Λd := {(λk ,b(λk )) : a(λk ) = 0, ℑ(λk ) > 0}, where bk = b(λk ) denotes the solution of
Eq. 5.5 at λk . Methods for the computation of a(λ) and b(λ) can e.g. be found in [27, 29,
123, 143]. Such methods can be utilized to find the λk in various ways, as was pointed
out in the introduction. The computation of bk is known to yield numerical issues with-
out special precautions, but we overcome this by computing bk with the NLSE-version of
the adapted bidirectional algorithm from [37]. The eigenvalues λk = ξk +iηk correspond
to those in the previously mentioned 1-soliton solutions. The eigenvalue λk defines the
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shape and speed of the soliton, while the b-coefficient bk = b(λk ) provides information
about the soliton location and phase [7]. As a signal propagates according to the nor-
malized NLSE in Eq. 5.1, all eigenvalues remain constant, and the b-coefficients evolve
in a simple manner:

b(λ; z) = b(λ;0)e4iλ2z ⇒|bk (z)| = |bk (0)|e−8ξηz . (5.6)

5.2.2. SOLITON LOCATION

Shifts due to soliton interaction

(a) 1-soliton vs. refined soliton lo-
cation.

(b) Propagation of an exact 2-
soliton.

(c) Soliton location, overlaid on the
2-soliton.

Figure 5.2: Illustration of the soliton location, by comparing a 2-soliton with two 1-solitons with
the same spectrum. The spectral data of the two solitons are

(
λ1 =−0.1+1i ,b1 = exp(2i )

)
and(

λ2 = 0.2+1.5i ,b2 = exp(0)
)

at z = 0. Left: the 2-soliton at z = −3 compared to the two 1-solitons
with the same spectral data (λk ,bk ). The corresponding 1-soliton locations t̂k and soliton loca-
tions tk are indicated, as well as the shift due to the soliton interaction. Middle: the propagation
of the 2-soliton. Soliton 1 overtakes solitons 2 at z = 0. Right: the 1-soliton locations and final
soliton locations, overlaid on the propagating 2-soliton. Note the jump in t1 and t2 as result of the
overtaking at z = 0.

At the start of this section, we noted that every 1-soliton is localized at t 0
k (at z = 0),

where the peak of its envelope is located. For the further analysis in this study, we assume
that hidden solitons in a general signal are also localized around some soliton location
tk , similar to a 1-soliton. If we take a sufficiently large section of the full signal around
that soliton location, it should be possible to detect the associated soliton accurately
by computing the NFT of that section. The soliton location can usually only be observed
visually in the far field, where all solitons have separated and the dispersive part becomes
negligible. Therefore, we define a novel soliton location tk for the near field when the
solitons have not separated yet, suitable for the purpose in this study. The idea for tk is
to find an initial soliton location from bk , assuming that the soliton is isolated. Then we
refine that initial soliton location by taking all soliton interactions into account.

First, we assign each soliton a ‘1-soliton location’ t̂k , which corresponds with the loca-
tion of the soliton derived from bk if the signal had been a 1-soliton with eigenvalue λk

as given in Eq. 5.2 [141], [142, Eq. 1.7],

t̂k = ln |bk |
2ηk

. (5.7)
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Next, we refine the 1-soliton locations by taking all the pairwise soliton interactions
into account. Let two solitons be represented by (λ1,b1) and (λ2,b2). Fig. 5.2a compares
the corresponding individual 1-solitons, and the 2-soliton with this discrete spectrum
(i.e., a signal with exactly two eigenvalues, and zero continuous spectrum). Clearly, the
locations of the peaks have shifted away from each other in the 2-soliton, despite the fact
that the same b-coefficients were used. The result of the soliton interaction is that the
solitons are pushed apart: the left one further to the left, and the right one further to the
right.

To approximate the size of this shift, we consider the total shift between the soliton
peaks as one overtakes the other, as is illustrated in Fig. 5.2b and Fig. 5.2c. When the
interaction is fully completed, the total time shift for soliton k as result of the interaction
with soliton j is given by [142, Eq. 1.18]:

∆tk, j =
1

ηk

∣∣∣∣∣ln
∣∣∣∣∣λk −λ j

λk −λ∗
j

∣∣∣∣∣
∣∣∣∣∣ . (5.8)

For the soliton location, we assume that the interaction is instantaneous, and add (resp.
subtract) half the total time shift to (from) the 1-soliton location if the soliton k is right
(left) of soliton j . We add half the time shift, as the interaction is symmetric, and when
the right- and left-most solitons switch place (as if one overtook the other), the result
would indeed be the full time shift. Fig. 5.2c shows the result of the soliton location for
a 2-soliton before, during and after the interaction. Indeed the soliton locations corre-
sponds very well to the peak locations, even close to the interaction.

For a multi-soliton signal, it is well known that the total time shift is simply the sum-
mation of all pair-wise time shifts [141]. We thus define the refined soliton location as
the 1-soliton location, compensated for every soliton-pair interaction:

tk = t̂k +
K∑

j=1, j ̸=k
sign

(
t̂k − t̂ j

) 1

2ηk

∣∣∣∣ln ∣∣∣∣ λk−λ j

λk−λ∗j

∣∣∣∣∣∣∣∣ . (5.9)

Note that we disregard the interaction with the continuous spectrum. This choice is
deliberate, as it is hard to determine which dispersive components are ‘left’ or ‘right’
of the soliton, while it is only significant when much of the energy is in the continuous
spectrum. We obtained good results without it, although we only considered signals with
most of the energy in the discrete spectrum.

It has been observed empirically that various pulse shaping methods commonly em-
ployed for fiber-optical communications can be dominated by solitons at practically rel-
evant transmit powers [54, 86]. For a specific class of NFT-based fiber-optic transmitters,
it has even been proven that without using solitons, the signal power must approach zero
as the signal duration increases [98]. Ignoring the continuous spectrum in the soliton lo-
cation is therefore often a reasonable approximation.

5.3. PARTITIONING THE FREQUENCY-TIME DOMAIN INTO

WINDOWS, AND ACCEPTING EIGENVALUES
In this section, we define heuristics to choose the frequency-time window size to capture
the significant solitons accurately. We will find, consistently with Eq. 5.2, that the signif-
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icant (i.e., higher amplitude and ηk , respectively) solitons occupy a broad bandwidth
but short duration, while solitons with lower eigenvalues occupy longer durations, but
shorter bandwidths. To ensure that the windows can capture all of the significant soli-
tons, we first estimate the mean eigenvalue height using the mean energy density, and
adjust the window size accordingly. Next, we allow the windows to overlap to ensure that
all higher solitons are captured. Finally, we filter out unreliable and/or doubly-detected
solitons with an eigenvalue acceptance scheme.

5.3.1. ESTIMATION OF THE MEAN EIGENVALUE HEIGHT

We wish to choose a window size such that all significant solitons can be captured. To do
so, we start by estimating a ‘mean’ eigenvalue height ηmean of the solitons in the signal,
as the eigenvalue height will be the decisive factor for the required bandwidth and dura-
tion of the windows. To estimate the mean eigenvalue height, we define a mean energy
density ρmean over the considered frequency-time domain, and then estimate the mean
eigenvalue height of the signal by comparing the mean energy density of the signal to
the mean energy density of a 1-soliton.

First, we define the mean energy density ρmean of a 1-soliton as the total energy, di-
vided by the time-bandwidth product that captures most of the energy. Let the 99%-
energy (p = 0.99) bandwidth (resp. duration) be defined as the smallest bandwidth (resp.
duration) required to capture a fraction p of the total signal energy. For a 1-soliton qk

with ξk = 0 and tk = 0 as shown in Fig. 5.1, the support bandwidth and duration are∫ ∆Tk
2

−∆Tk
2

∣∣qk (t )
∣∣2 dt = pEk︸︷︷︸

0.99(4ηk )

⇒∆Tk = 2.64

ηk
, (5.10a)

1

2π

∫ ∆Ωk
2

−∆Ωk
2

|Qk (ω)|2 dω= pEk ⇒∆Ωk = 6.75ηk , (5.10b)

where Qk (ω) = ∫ ∞
−∞ qk (t )e−iωt dt , i.e., the Fourier transform of qk (t ). The time-bandwidth

product ∆Ωk∆Tk = 17.82rad of a 1-soliton does not depend on ηk because they are re-
lated to each other through time- and amplitude scalings, which leave the time-bandwidth
product invariant. We then define the mean energy density of a 1-soliton with eigenvalue
height ηk as its total energy (Ek = 4ηk ), divided by its time-bandwidth product:

ρmean
k = Ek

∆Tk∆Ωk
= 4ηk

17.82
= 0.224ηk . (5.11)

Next, we calculate the mean energy density of the signal too as the total energy divided
by its 99%-energy bandwidth ∆Ω and 99%-energy duration ∆T . Finally we estimate that
the ‘mean’ soliton has the same mean energy density as the signal ρmean

q ,

ρmean
q = 0.224ηmean ⇒ ηmean =

ρmean
q

0.224
= Eq

0.244∆Ω∆T
, (5.12)

with ηmean the ‘mean’ eigenvalue height. Note that the mean eigenvalue height only
roughly indicates a center for the final eigenvalue cloud. It does not correspond with the
actual mean height, as low eigenvalues usually appear more frequently than high ones.
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5.3.2. CHOOSING THE WINDOW FREQUENCY-TIME SIZE

After establishing the estimated mean eigenvalue height, we will choose the frequency-
time window sufficiently large to capture all eigenvalues which have ηk around the es-
timated eigenvalue height. We will first define a significant frequency-time support of
a soliton with eigenvalue λ, and then design the frequency-time window large enough
such that it can contain the significant support of all significant solitons of interest. We
finally create the window size based on the expected mean eigenvalue height defined in
Eq. 5.12, and the height range of eigenvalues that we want to capture.

We assume that a soliton with the mean eigenvalue height ηmean occupies a rectangu-
lar frequency-time support of ∆Ω×∆T , with ∆Ω= 6.74ηmean and ∆T = 2.64/ηmean, cen-
tered around its soliton location tk and center frequency (ωk =−2ξk ). To capture higher
eigenvalues we require a larger bandwidth ∆Ω, and for lower eigenvalues a longer dura-
tion∆T . To capture a wide range of solitons, we chose the window bandwidth as cΩ = 16
times the mean-eigenvalue bandwidth, and the window duration as cT = 4 times the
mean-eigenvalue duration:

∆Ωwindow ×∆T window = cΩ︸︷︷︸
=16

(
6.74ηmean)× cT︸︷︷︸

=4

(
2.64/ηmean)

. (5.13)

We made the bandwidth 16 times larger to ensure that all high eigenvalues are captured.
We made the duration only four times larger because this mainly allowed us to capture
more low eigenvalues, in which we are less interested. This window size gave us accu-
rate results for signals with approximate uniform energy distribution of the occupied
frequency-time domain, but of course the window size may be tailored to specific ap-
plications. When only time-windowing is desired, simply set the frequency-window size
equal to the full occupied bandwidth ∆Ωwindow =∞, and vice versa for only frequency-
windowing.

5.3.3. DIVIDING THE DOMAIN AND WINDOW OVERLAP

After deciding on the window size, we will cover the entire occupied frequency-time do-
main with windows of this size. The most straightforward method would be to use as
few windows as possible while still covering the entire domain. However, we could then
miss several high eigenvalues with soliton location tk or center frequencyωk close to the
window edges. Part of the soliton support would then fall outside the window, and the
detected eigenvalue could be significantly distorted as a result.

To ensure that all higher eigenvalues are captured well by at least one window, we let all
neighboring windows overlap for a fraction of at least 0 ≤ R < 1 for both frequency- and
time-windowing. After creating the equispaced windows with this minimum overlap
fraction, the actual time overlap fraction RT ≥ R and frequency overlap fraction RΩ ≥ R
are often slightly larger because the number of windows is an integer number. In the
worst-case scenario for time-windowing (resp. frequency-windowing), a soliton has its
tk (resp. ωk ) exactly in the middle of the overlapping region, such that the largest soliton
support fully contained in either window is RT∆T window (resp. RΩ∆Ω

window) units. Fol-
lowing Eq. 5.10 and Eq. 5.13, the lowest ηk thus captured within this time support and
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the highest ηk captured within this frequency support are

ηk ∈ [ηmin,ηmax] = [ 1
RcT

ηmean,RcΩη
mean]. (5.14)

Note that when using only time-windowing (resp. frequency-windowing), only the lower
(resp. upper) limit is relevant. Lower values of R will narrow down the range of solitons
in Eq. 5.14 we can capture reliably. Choosing higher values of R causes windows to over-
lap more, requiring more windows and thus more computation time. A well-balanced
overlap fraction is thus around R = 0.5. Instead of choosing even higher R > 0.5 and thus
increasing the number of required windows, cΩ or cT (i.e., the window size) can also be
increased to capture a wider range, which is often computationally faster.

The full domain is thus covered as follows:

1. Choose a window size ∆Ωwindow ×∆T window and overlap fraction 0 ≤ R < 1.

2. Cover the full frequency domain Ω with equispaced frequency sections of size
∆Ωwindow such that consecutive sections overlap for a fraction of at least R. This re-
sults in NΩ frequency sections Ω(n), 1 ≤ n ≤ NΩ. If ∆Ωwindow >∆Ω, set ∆Ωwindow =
∞, and NΩ = 1.

3. Do the same for the time domain T with equispaced sections of size ∆T window,
resulting in MT time sections T (m), 1 ≤ m ≤ MT .

4. Define NΩ×MT frequency-time windows Ω(n) ×T (m) as the cross product of the
frequency section and time sections.

This process is illustrated on the left in Fig. 5.4 with slight offsets to improve visibility.
We note here that we only cover the 99%-energy bandwidth and 99%-energy duration

of the full signal ∆Ω×∆T , and thus cut away parts of the signal. We do so to be able
to assign any signal a finite bandwidth and duration to avoid wasting computation time
analyzing any slowly decaying tails of the signal (either in frequency or time domain),
which generally do not contain high solitons. However, Ω and T may also be be set
manually if clear bounds for the signal are known.

5.3.4. CREATING WINDOWED SIGNALS

After defining the frequency-time windows, we extract a short signal for each window.
First, we apply an ideal band-pass filter to the full signal to remove all frequency con-
tent outside of Ω(n) by calculating the Fourier transform of the full signal, and setting
all frequencies components outside Ω(n) to zero. Next, we temporarily shift the cen-
ter frequency ωn (middle of Ω(n)) to zero for the filtered signal, q(t ) → q(t )e−iωn t (i.e.,
Q(ω) → Q(ω−ωn)), such that the filtered frequency content can be captured without
aliasing with much fewer samples than before the center shift, namely using sampling
time ∆t < 2π

∆Ωwindow . The center frequency is added back later to the detected eigenval-
ues, where we will use that linear frequency shifting a signal results in a linear shift in
the real part ξk of each eigenvalue: q(t ) → q(t )e−iωn t ⇒ ξk → ξk +ωn/2 [28, p. 4319, D6,
frequency shift property].

After frequency-windowing, the filtered signal is time-windowed by only keeping those
samples within the time-window T (m), resulting in a short signal containing the signal
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content within the frequency-time windowΩ(n)×T (m). We used rectangular filters/time-
windows in our implementation as the impact of general linear filters and time-windows
on the nonlinear Fourier spectrum is not well-understood.

5.3.5. EIGENVALUE ACCEPTANCE

After all the frequency- and time-windowed signals have been created, the eigenvalues
of each windowed signal are computed using the NFT and the center frequency is added
back to the real part of the eigenvalues again, λk →λk −ωn/2. The eigenvalues from the
windowed signal are estimations for the eigenvalues of the full signal. However, many
of the eigenvalues from the full signal will have been affected by the windowing process,
and we wish to only keep the eigenvalues that are also present in the full signal. We
therefore introduce an acceptance criterion for the eigenvalues of the windowed signal.

The idea for the eigenvalue acceptance is that the soliton support (see Eq. 5.10) should
lie entirely within the window. The required time-support of an eigenvalue grows with
1/ηk , so the lowest eigenvalues will require a broader time-support than the window du-
ration. We should therefore discard the too-low eigenvalues by default. Similarly, the
highest eigenvalues require a large frequency-support. We set the acceptance height
range for the detected eigenvalue height equal to the earlier defined eigenvalue capture
region from Eq. 5.14, and reject all eigenvalues outside this height range. The frequency-
windows should be chosen spaciously, so that it is nearly guaranteed that the high-
est eigenvalues are captured. An additional rough measure for the highest eigenvalue
present (based on the 1-soliton in Eq. 5.2) is the maximum absolute wave height maxk ηk ∝
|q |/2. Choosing the frequency-window size such that ηmax ≫ maxt |q(t )|/2 ensured that
the highest solitons were captured for our data.

After rejecting all eigenvalues below the acceptance height range, it may still occur that
several of the remaining eigenvalues are too close to the window edge, such that their
significant support still lies partially outside the considered window. These eigenvalues
should thus be rejected. To do so, we first determine the soliton location tk from Eq. 5.9
using the (λk ,bk ) of every soliton above the acceptance height of the considered window.
Next, we assign each window an associated acceptance region as defined below, which
corresponds to the window minus a narrow strip near the window edges. The idea is that
we only keep those eigenvalues from the windowed signal that also have their frequency-
time location (ωk =−ξk /2, tk ) within the acceptance region of that window.

We initially define the acceptance region Ω(n)
+ ×T (m)

+ of a window as the part of the
full frequency-time domain closer to the center of the window than to any other window
center, as shown in Fig. 5.4. The result is that all overlapping regions are exactly split into
half and divided equally over the two overlapping windows. For the overlap fraction RΩ

(resp. RT ), the initial frequency (resp. time) acceptance region Ω(n)
+ = [Ω(n)

+,l ,Ω(n)
+,r] (resp.

T (m)
+ = [T (m)

+,l ,T (m)
+,r ]) is thus a fraction RΩ/2 (resp. RT /2) smaller on both sides than the

frequency-window [Ω(n)
l ,Ω(n)

r ] (resp. time-window [T (m))l,T (m)
r ]). Here, the subscript l is

short for ‘left’ and r is short for ‘right’. We thus get [Ω(n)
+,l ,Ω(n)

+,r] = [Ω(n)
l + RΩ∆Ω

window

2 ,Ω(n)
r −

RΩ∆Ω
window

2 ] and [T (m)
+,l ,T (m)

+,r ] = [T (m)
l + RT∆T window

2 ,T (m)
r − RT∆T window

2 ]. The left edge of the
leftmost frequency-windows and time-windows and right edge of the rightmost win-
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dows are not shortened, as those regions are not captured better by any other window.
We thus partition the full domain into disjoint acceptance regions, which usually pre-
vents eigenvalues from being detected twice by two neighboring overlapping windows.

However, we found that it may sometimes occur that eigenvalues are entirely missed
this way. If a soliton has true soliton frequency-time location (ωk = −ξk /2, tk ), its ob-
served time or frequency location can slightly vary depending on the used window. If
may therefore occur that tk is on the boundary between two acceptance regions, and
that the detected soliton location from the left window is tk + ϵ, and for the right win-
dow tk −ϵ. It would then fall outside both windows, and be rejected by both acceptance
regions.

To avoid doubly-rejecting eigenvalues that are on the boundaries of the initial accep-
tance regions, we slightly extend the acceptance regions in both the time and frequency
domain by a small fraction ε of the window size, as illustrated in Fig. 5.3. The final ac-
ceptance regions Ω(n)

+ ×T (m)
+ thus become

[Ω(n)
+,l ,Ω(n)

+,r] = [Ω(n)
l + ( RΩ

2 −ε)∆Ωwindow,

Ω(n)
r − ( RΩ

2 −ε)∆Ωwindow], (5.15a)

[T (m)
+,l ,T (m)

+,r ] = [T (m)
l + ( RT

2 −ε)∆T window,

T (m)
r − ( RT

2 −ε)∆T window], (5.15b)

using Ω(1)
l = T (1)

l =−∞, Ω(N )
r = T (M)

r =+∞.

A typical value for the acceptance region extension fraction is ε = 0.05, but should be
much smaller than R/2, else the acceptance region will become larger than the window
itself. While the overlap fraction R itself does not play an active role in the acceptance,
we emphasize that it should be chosen sufficiently large to facilitate the capturing of
eigenvalues close to window boundaries.

Higher extension fractions ε increase the chance that all eigenvalues are captured, but
also increase the chance that some eigenvalues are captured twice. In choosing the ex-
tension fraction, we prioritized ensuring that all high eigenvalues were detected, which
caused some eigenvalues to be detected doubly. Higher eigenvalues that are detected
twice can often be easily distinguished from the case with two different solitons, as for
twice-detected solitons both their λk and their tk are near-identical. Had those λk be-
longed to two different solitons, then they would have had very different tk as it is very
hard for the peaks of two different solitons with near-identical λk to get close (see Eq. 5.9
and Fig. 5.2). However, solitons with lower eigenvalues that were captured twice are cap-
tured less accurately, and thus it is harder to filter low twice-captured solitons with cer-
tainty. The focus in this study is on capturing all solitons, so we simply accept it when
some solitons are captured twice.

5.4. SUMMARY OF THE FREQUENCY- AND TIME-WINDOWING

NFT ALGORITHM
For completeness, we summarize the steps of the full algorithm. The partitioning of
the frequency-time domain into windows is described in Alg. 2, while the windowing of
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Figure 5.3: An exemplary signal of duration ∆T = 300, with its associated time windows (shown
below the signal) using R = 0.5 (neighboring windows overlap at least 50%), and the corresponding
acceptance regions using ε= 0.05. For ε= 0, the acceptance regions would not overlap, and would
exactly partition the time domain.

the full signal and the calculation of the higher eigenvalues from the windowed signals
is described in Alg. 3. For the full estimation of the higher eigenvalues, we first apply
Alg. 2, followed by Alg. 3. Alg. 2 first estimates a representative ‘mean’ soliton height, and
chooses the window size accordingly. Next, the occupied domain of the signal is covered
with overlapping windows of this size. After defining the windows, Alg. 3 calculates the
higher eigenvalue content in each window. For every window, the full signal is band-pass
filtered to the window frequency domain, the center frequency is shifted to zero, and the
resulting signal is finally truncated to the window time domain. The eigenvalues of the
resulting windowed signal are calculated with the NFT. Eigenvalues are accepted if the
eigenvalue height is within the reliable height range, and if the soliton frequency-time
location (ωk , tk ) is within the acceptance region. Finally, all accepted eigenvalues are
combined for an approximation of the higher eigenvalues of the full signal.

5.5. RESULTS
In this section, we investigate the accuracy and speed for the proposed combined frequency-
and time-windowing NFT algorithm, as well as for only time-windowing and only frequency-
windowing. First, we test the performance of the algorithm on a bandwidth-limited ran-
dom signal, sampled at oversampling rate s = 3, resulting in 3000 samples. This is the
signal with the largest time-bandwidth product that we could produce such that the
full NFT could still be reliably calculated with the software library FNFT [35] (commit
9756b3, default settings with 4split4B, with sub-sampling disabled as the considered
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signals are already sampled close to Nyquist frequency). This method requires O (N 2)
FLOPs to calculate the discrete spectrum of a signal with N samples. Second, we investi-
gate the accuracy for a very long signal. For this long signal, the NFT of the full signal can

Algorithm 2: Creating frequency-time windows

Input:

• Signal q(t ) with finite time domain D .

• Window time-broadening factor cT and window frequency-broadening factor cΩ
(suggested: cT = 4, cΩ = 16). Set cT =∞ if not time-windowing, and cΩ =∞ if not
frequency-windowing.

• Window overlap fraction R (suggested: R = 0.5).

• Acceptance region extension fraction ε (suggested: ε= 0.05).

Output:

• A set of frequency-time windows Ω(n) ×T (m), that cover the significant
frequency-time domain of q(t ), and their associated acceptance regions
Ω(n)

+ ×T (m)
+ .

- Set Ωq = [Ωl,Ωr], Tq = [Tl,Tr] as the smallest frequency and time domain
containing 99% of the signal energy Eq =∫

D |q(t )|2 dt = 1
2π

∫ ∞
−∞ |Q(ω)|2 dω;

- Set ∆Ω=Ωr −Ωl, ∆T = Tr −Tl;

- Set ηmean = Eq

0.224∆Ω∆T , (see Eq. 5.12);

- Set ∆Ωwindow = min(cΩ2.64/ηmean,∆Ω), and ∆T window = min(cT 6.74ηmean,∆T ),
(See Eq. 5.13);

- Set NΩ = 1+⌈ ∆T−∆T window

(1−R)∆T window ⌉, MT = 1+⌈ ∆Ω−∆Ωwindow

(1−R)∆Ωwindow ⌉, (the number of required

frequency- and time-windows respectively);

- Create NΩ×MT frequency-time windows Ω(n) ×T (m),
n = 1, . . . , NΩ, m = 1, . . . , MT , where
Ω(n) = [Ωn ,Ωn +∆Ωwindow] (or Ω(1)=R, if NΩ= 1),

with Ωn =Ωl + (n −1)∆Ω−∆Ωwindow

max(NΩ−1,1) , and

T (m) = [Tm ,Tm +∆T window] (or T (1)=R if MT = 1),

with Tm = Tl + (m −1)∆T−∆T window

max(MT −1,1) ;

- Set RT = T (1)
r −T (2)

l

∆T window , RΩ = Ω(1)
r −Ω(2)

l

∆Ωwindow (actual overlap)

- Create NΩ×MT acceptance regions Ω(m)
+ ×T (n)

+ :=
[Ω(n)

l + ( RΩ
2 −ε)∆Ωwindow,Ω(n)

r − ( RΩ
2 −ε)∆Ωwindow]×

[T (m)
l + ( RT

2 −ε)∆T window,T (m)
r − ( RT

2 −ε)∆T window], but with Ω(1)
l = T (1)

l =−∞,

Ω(N )
r = T (M)

r =+∞;
- Return the windows Ω(n) ×T (m) and associated acceptance regions Ω(n)

+ ×T (m)
+ .
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no longer be computed with the mentioned settings of FNFT. To validate the accuracy of
the windowing NFT, we instead calculate the reference eigenvalues from the full signal by
Newton-refining (using the method in [27]) for a dense grid of initial guesses with high
precision arithmetic. Third, we quantitatively measure the computation times for the
frequency- and/or time-windowing NFT. As combined frequency- and time-windowing
uses windows with the smallest time-bandwidth product, this method should yield the
largest speed-up.

Algorithm 3: NFT on windowed signals

Input:

• Signal q(t ).

• Desired oversampling rate s (suggested: s = 3).

• NΩ×MT frequency-time windows Ω(n) ×T (m)

and associated acceptance regions Ω(n)
+ ×T (m)

+ .

Output:

• An approximate set of higher eigenvalues Λd,high

- Set Q(ω) =F {q(t )};

- Initialize the set of high eigenvalues Λd,high =;;
for n = 1, . . . , NΩ do

- Set Q(n)(ω) =Q(ω) for ω ∈Ω(n), and Q(n)(ω) = 0 otherwise (ideal band-pass
filtering);

- Set ωn = Ω(n)
r +Ω(n)

l
2 (center frequency), and ξn =−ωn/2 (nonlinear center

frequency);

- Set q (n)(t ) =F−1{Q(n)(ω−ωn)} (center shift, inverse Fourier transform);
for m = 1, . . . , MT do

- Set qn,m(t ) = q (n)(t ), qn,m(t ∉ T (m)) = 0;

- Set {λk ,bk }K n,m

k=1
Sec. 5.2←−−−−− NFT{qn,m(t )} (sample qn,m(t ) at s times the

Nyquist frequency, sample time∆t= 1
s

2π
min(∆Ω,∆Ωwindow)

);

- Set {tk }K n,m

k=1

Eq. 5.9←−−−− {bk }K n,m

k=1 ;

- Accept only the eigenvalues with both ηk ∈ [ 1
RT cT

ηmean,RΩcΩηmean]

(Eq. 5.14), and (ωk =−2ξk , tk ) within the acceptance region Ω(n)
+ ×T (m)

+ ;

- Add the accepted eigenvalues λk to Λd,high;
end

end

- Return Λd,high.
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Figure 5.4: A comparison between the eigenvalues found by the NFT of a full 3000 sample signal
and the corresponding windowed signals using Alg. 2 and Alg. 3. Three cases were considered
for windowing: only time-windowing (top), only frequency-windowing (middle), and combined
frequency- and time-windowing (bottom). The left column shows the used windows (windows are
slightly offset for visibility). The bandwidth limited noise signal |q(t )| is shown in blue at the left
of the domain and |Q(ω)| below in red for illustration purposes (not to scale). Both q(t ) and Q(ω)
quickly decay outside the shown domainΩ×T = [−10.47,10.47]rad×[−150,150]. The right column
shows the full eigenvalue spectrum and the accepted eigenvalues from the windowed signals.

5.5.1. RESULTS FOR A RANDOM 3000-SAMPLE SIGNAL

We first validate the frequency- and time-windowing NFT on a signal with 3000 samples,
generated from ideally low-pass filtered, complex, circularly symmetric, zero-mean, white
Gaussian noise. This signal has the following properties: time domain T = [−150,150],
sample time ∆t = 0.1, a maximum bandwidth of [−10π,+10π]rad, and occupied band-
width = [−10π/3,+10π/3] = [−10.5,10.5]rad (ideal low-pass filtered, oversampling rate
s = 3). While FNFT in general works well for at this oversampling rate, we found that
it occasionally still missed some eigenvalues in both the full NFT and in the window-
ing NFT. To ensure that we only study the effect of the windowing, we also redid the full
and windowing NFTs after upsampling the signal by a factor two using band-limited in-
terpolation, and used those results for Fig. 5.4. The amplitude of the signal was scaled
such that the mean energy density was 0.0224, which corresponds to an expected mean
eigenvalue height of ηmean = 0.1 according to Eq. 5.12. The corresponding 1-soliton has
a frequency-time support of 0.68rad×26.

To be able to capture the largest solitons with broad bandwidths, we choose the win-
dow bandwidth 16 times the mean eigenvalue bandwidth (cΩ = 16), and the duration
as four times the mean eigenvalue duration (cT = 4). The resulting window size was
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11.3rad × 101. Imposing an overlap fraction of R = 0.5, we require three frequency-
windows Ω(n) and five time-windows T (m). We thus obtain 15 windows Ω(n) ×T (m), with
Ω(n) ∈ {[−10.5,0.8], [−5.4,5.4], [−0.8,10.5]}, and T (m) ∈ {

[−150,−49], [−100,1],
[−50,50], [−1,100], [49,150]

}
. The acceptance region extension fraction was chosen as

ε= 0.05. The time windows and acceptance regions are also shown in Fig. 5.3.
We first consider the cases with only time-windowing and only frequency-windowing

to observe the individual effects on the detected eigenvalues. Then, we apply both frequency-
and time-windowing, which will yield the largest speed-up. The resulting time-windowing,
frequency-windowing and combined frequency- and time-windowing are shown on the
left in Fig. 5.4 (windows are slightly offset for visibility).

RESULTS USING ONLY TIME-WINDOWING

In the top row of Fig. 5.4, the eigenvalues resulting from only time-windowing are shown.
We observe that the higher eigenvalues above ηmean correspond very well to the eigen-
values from the full signal. Even the lower eigenvalues between ηmean and ηmin seem to
be rather accurate.

Upon closer inspection, it turns out that some eigenvalues have been captured doubly
by neighboring windows. However, both eigenvalues are so close that they are not visibly
distinguishable. As explained, this is due to the acceptance region extension fraction
ε = 0.05. We also investigated ε = 0, and ε = 0.02, which respectively resulted in eight
and three missing high eigenvalues above ηmean.

We thus find that time-windowing yields very accurate results for the high eigenvalues
above ηmean, and fairly good results for the eigenvalues between ηmin and ηmean. The
acceptance region extension fraction allows a trade-off between increasing the chance
to capture all eigenvalues versus capturing some eigenvalues doubly.

RESULTS USING ONLY FREQUENCY-WINDOWING

The windows and detected eigenvalues using only frequency-windowing are shown in
the second row of Fig. 5.4. We observe that the eigenvalues are detected rather ac-
curately, but not as accurately as with time-windowing. The high eigenvalues above
ηmean are within 2% of their correct eigenvalue from the full signal. Although frequency-
windowing may cut away a part of the frequency support of in particular the highest
eigenvalues, this effect seems to be limited. This is likely due to the large frequency-
broadening factor cΩ = 16. This hypothesis is supported by the fact that ηmax = 1.20 is
several times larger than the highest eigenvalue. We also observe that a few eigenvalues
are also captured twice due to the overlapping acceptance regions. The doubly captured
eigenvalues can in several cases be distinguished visually, indicating that the eigenvalues
are less accurately captured than for only time-windowing.

Below ηmean, many of the lower eigenvalues seem to be captured with similar accuracy
as the higher ones. However, we also observe that many of the lower eigenvalues are
missed, but we found that many of these were missed because the oversampling factor s
was too low for the used FNFT method, and not due to the frequency windowing itself:
upon upsampling the signal using band-limited Fourier interpolation to twice as many
samples, many of the missing low eigenvalues were found again. Despite the fact that
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Figure 5.5: The eigenvalues of a signal with 15,000 samples (at oversampling s = 3), detected from
windowed signals, and the higher eigenvalues detected from the full signal by Newton refining
a dense grid of initial guesses. For both the top and bottom case, we used five time-windows.
However, the top case used only one frequency-window (i.e., the full bandwidth), whereas the
lower figure used seven frequency-windows.

there is no lower bound ηmin, it seems that frequency-windowing thus also affects the
lower eigenvalues.

RESULTS USING COMBINED FREQUENCY- AND TIME-WINDOWING

Finally, we combined frequency- and time-windowing, as described in Alg. 3. The results
are shown in the bottom of Fig. 5.4. We observe that the eigenvalues from combined
frequency- and time-windowed signals are very similar to those from the only frequency-
windowed signals. It thus seems that the time-windowing does not incur a significant
additional error on top of the inaccuracies that the frequency-windowing is incurring.

In conclusion, the combined frequency- and time-windowing method yields quite
accurate estimates with less than 2% error for the higher eigenvalues for the chosen
example. Most of the error was caused by the frequency-windowing, while the time-
windowing did not cause a visible error at all in the higher detected eigenvalues above
ηmean.

In conclusion, we observe that time-windowing hardly infers any loss in accuracy, and
may thus be used to speed up the calculation of the higher solitons. Furthermore, if a
slight loss of accuracy in the eigenvalues is acceptable, the combined frequency- and
time-windowing NFT can be used to obtain an even greater speed-up.
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5.5.2. RESULTS FOR A RANDOM 15,000 SAMPLE SIGNAL

After considering the 3000 sample signal, we are interested how the windowing algo-
rithm performs for signals with very large time-bandwidth products. We therefore con-
sider a signal with an occupied frequency-time domain five times as large as the 3000
sample signal, resulting in a signal of 15,000 samples. This long signal again consists of
ideally low-pass filtered, complex, circularly symmetric, white Gaussian noise with zero
mean, sampled at oversampling rate s = 3 with respect to the Nyquist frequency corre-
sponding to the occupied signal bandwidth. The time domain of this signal was T =
[−375,375], sample time ∆t = 0.05, and occupied bandwidth Ω = [−20π/3,+20π/3] =
[−20.9,20.9] . The signal amplitude was scaled such that the mean energy density cor-
responded to ηmean = 0.1, equal to the 3000 sample signal. The mean eigenvalue height
of the 15,000 sample signal should therefore be equal to the 3000 sample signal, only
approximately five times as many solitons should be present.

The 15,000 sample signal was too long to directly compute the eigenvalues with the
used version of FNFT, as only spurious eigenvalues were detected that were far too high
or far too low. We believe this is due to the rational approximation of the function a(λ),
which requires high precision arithmetic at some point for signals with very long dura-
tions. To obtain a ground truth, we instead used conventional Newton refinement to
refine a dense grid of initial guesses. To verify that the found eigenvalues were indeed
correct, the refinement was repeated using high-precision arithmetic.

We performed the combined frequency- and time-windowing NFT algorithm by run-
ning Alg. 2 and then Alg. 3 on the 15,000 sample signal, with the suggested parameters
cT = 4, cΩ = 16, R = 0.5 and ε = 0.05. This resulted in NΩ = 7 frequency-windows and
MT = 14 time-windows.

The eigenvalues from the windowed signals are compared to the correct eigenvalues
in Fig. 5.5. The top figure shows the result of only time-windowing, and the bottom of
combined frequency- and time-windowing. When using only frequency-windowing, all
detected eigenvalues were spurious. Even when we used 28 narrow frequency-windows
(instead of 7) all eigenvalues were still spurious. This is likely again due to the rational
approximation of a(λ), that yields numerical issues for signals with long durations.

We observe that time-windowing yields very accurate results for the majority of the
eigenvalues above ηmean, while only a few of the high eigenvalues are visually different
from the correct eigenvalues. A few eigenvalues are still missing (one example is around
λ = 9.2+ 0.16i ), despite the extension of the acceptance region with ε = 0.05. We at-
tempted to further enlarge the acceptance regions, but this resulted in several spurious
eigenvalues being accepted, while still not capturing all missing eigenvalues. Apparently,
a small number of high eigenvalues are still missed altogether. However, this issue could
be overcome by redoing the calculation with an upsampled version of the signal (e.g.,
using band-limited interpolation). Upon upsampling the signal to s = 4.5 (from s = 3, i.e.
50% more samples) and increasing the acceptance region to ε= 0.10, all missing eigen-
values above ηmean were recovered, although several poorer copies of eigenvalues with
errors up to 5% were also accepted (figure omitted).

The results of the combined frequency- and time-windowing NFT are shown in the
bottom of Fig. 5.5. We observe clear visual differences between the eigenvalues from the
frequency- and time-windowed signals and the eigenvalues from the full signal. As for
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the 3000 sample signal, this is mostly the results of the frequency-windowing. Although
some eigenvalues show an error of up to 10%, most eigenvalues are still within 1% of the
correct value. The resulting eigenvalues are therefore still useful as rough estimates of
the eigenvalues. They may also be used as initial points for local refinement using the
full signal to find the correct eigenvalues.

In summary, we observe from the random 15,000 sample signal that time-windowing
provides highly accurate results for the higher eigenvalues. Only frequency-windowing
did not suffice to analyze the signal due to failures of the used NFT method. Finally, com-
bined frequency- and time-windowing causes significant errors due to the frequency-
windowing. We thus suggest to apply time-windowing to reduce the computation time
for finding the higher eigenvalues, and only additionally use frequency-windowing when
time-windowing alone does not provide sufficient speed up, or when a rough estimate
of the discrete spectrum is sufficient.

5.5.3. SPEED UP DUE TO WINDOWING

In this section, we consider the speed-up achieved through frequency- and/or time-
windowing. Note that the time-bandwidth product of the window in Eq. 5.13 only de-
pends on the choice for the frequency- and time-broadening factors cΩ and cT , but not
on the signal itself. Independent of the occupied time-bandwidth product of the full
signal, we may thus window the full signal into pieces with small and constant time-
bandwidth product. The complexity of computing the NFT for each window is therefore
approximately constant. As the time-bandwidth product per window is constant, the
number of required windows increases linearly with the time-bandwidth product of the
full signal. Therefore, a windowing NFT only requires O (N ) FLOPs, as opposed to a full
NFT, which typically requires O (N 2) or O (K N ) (with K the total number of solitons) for
the considered configuration.

To demonstrate the speed-up, we considered a variety of low-pass filtered Gaussian
white noise signals, with various bandwidths and durations. All signals were generated
to have a mean energy density of approximately 0.026 1/rad, corresponding to ηmean =
0.1, and had oversampling rate of s = 3. For all signals we used FNFT to calculate the high
eigenvalues from the full signal directly, and using the windowing NFT method with the
suggested parameters. The correctness of the detected eigenvalues was not validated,
only the computation times were recorded for the speed analysis.

The computation times are shown in Tab. 5.1. The first three rows show the compu-
tation times of the 3000-sample signal when applying only frequency-windowing, only
time-windowing, and combined frequency- and time-windowing NFT. Between rows
3-8, we gradually increased the number of samples in the signal, mostly by increas-
ing the duration of the signal. We doubled the bandwidth of the signal for the signals
of 6000 samples and longer, but we observe that this only affects the configuration of
the windowing, while the computation time required for the windowing NFT hardly
changes. We observe that the windowing NFT determines the higher eigenvalues faster
than the full NFT in all considered cases, although the speed-up is most apparent for
the longest signal of 15,000 samples, where a speed-up of 623s

44.7s ≈ 14 times was observed

for combined frequency-and time-windowing, and a speed-up of 623s
111s ≈ 6 for only time-

windowing. We observe that the full NFT indeed requires O (N 2) computation time (e.g.,
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15000
3000 = 5 times more samples results in about 623s

26.1s ≈ 25 times the computation time),

while the windowing NFT only requires O (N ) time (e.g.: 15000
3000 =5 times more samples

results in about 44.7
9.61 ≈ 5 times the computation time).

We thus conclude that the windowing NFT is much faster than the full NFT for signals
with large time-bandwidth products. While the demonstrated window size works well in
most applications, the windows size can be further shrunk to allow faster computations,
or increased for higher accuracy of the eigenvalues.

5.6. CONCLUSION
We have proposed and validated a method to compute the significantly large solitonic
components in the discrete part of the nonlinear Fourier transform for the nonlinear
Schrödinger equation quickly and accurately, by partitioning the signal in the frequency
and time domain. We divide the full occupied frequency-time domain into smaller over-
lapping windows, determine the higher eigenvalues within each individual window, re-
ject the unreliable eigenvalues, and finally combine all accepted higher eigenvalues to
obtain the full spectrum of higher eigenvalues associated with the larger solitons. The
computation time of the NFT of a signal scales superlinearly in the occupied time-bandwidth
product, so it is thus computationally faster to divide the full signal in many small frequency-
time domains than to compute the NFT of the full signal. Our proposed frequency- and
time-partitioning NFT uses a pre-defined time-bandwidth product for the windows, and
thus only scales linearly in the number of used windows. It can therefore also be applied
to very complicated signals for which other methods either fail or require very long com-
putation times.

We tested the accuracy of the method on several signals and configurations, first by
partitioning only the time domain, then by partitioning only the frequency domain, and
finally by partitioning both the frequency and time domain. When only partitioning the
time domain, the results are very good, and the higher solitons are captured with high ac-
curacy. Only partitioning the frequency domain resulted in some loss of accuracy of the
higher eigenvalues. Combined frequency- and time-partitioning resulted in the fastest
result, but with a small loss in accuracy, mostly due to the frequency-partitioning.

To the best of our knowledge, we have thus presented the first method that can cal-
culate the higher eigenvalues of signals with arbitrarily large time-bandwidth product,
while the computation time depends only linearly on the occupied time-bandwidth prod-
uct.
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Table 5.1: The computation times for the full NFT and windowing NFT of various signals (the
resulting eigenvalues were not validated). All signals were generated as bandwidth-limited white
noise signals, with approximate mean energy density corresponding to ηmean = 0.1. All signals
had the same oversampling rate of s = 3.
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6
DATA-DRIVEN IDENTIFICATION OF

THE SPECTRAL OPERATOR IN

AKNS LAX PAIRS USING

CONSERVED QUANTITIES

Lax-integrable partial differential equations (PDEs) can by definition be described through
a compatibility condition between two linear operators. These operators are said to form
a Lax pair for the PDE, which itself is usually nonlinear. Lax pairs are a very useful tool,
but unfortunately finding them is a difficult problem in practice. In this study, we propose
a method that determines the spectral operator of an AKNS-type Lax pair such that the
corresponding PDE fits given measurement data as well as possible. The spectral opera-
tor then enables practitioners to solve or analyze the underlying PDE using the induced
nonlinear Fourier transform. The underlying PDE only has to be approximately Lax-
integrable; the method will find the spectral operator that explains the data best. Together
with the dispersion relation, the spectral operator of AKNS type completely determines an
integrable PDE that approximates the true underlying PDE. We identify the most suitable
spectral operator by matching PDE-dependent quantities that should be conserved dur-
ing evolution. The method is automatic and only requires recordings of solutions at two
different values of the evolution variable, which do not have to be close.
This chapter is an adaptation of [144]. ©2024 Pascal de Koster and Sander Wahls. Pub-
lished by Elsevier B.V.

6.1. INTRODUCTION
Many nonlinear partial differential equations (PDEs) can be solved with the help of Lax
pairs, which consist of a linear spectral operator L and a linear propagation operator
A, and the inverse scattering method (ISM) [7, 8]. Well-known examples include the
Korteweg-de Vries equation (KdV) [1], the modified Korteweg-de Vries equation (MKdV)
[145] and the nonlinear Schrödinger equation (NLSE) [9]. The ISM for the solution of
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such so-called Lax-integrable systems proceeds as follows. First, the initial condition is
used as a potential function for the linear spectral operator L. The spectrum of this oper-
ator together with the corresponding (generalized) eigenfunctions leads to an equivalent
spectral representation of the initial condition. The evolution of this spectral represen-
tation can then be performed in closed form with the help of the linear propagation
operator A. Finally, a suitable spectral theorem is used to recover the solution in the
original domain from the evolved spectral representation. The spectral representation
can be interpreted as a nonlinear Fourier transform (NFT; a.k.a. forward scattering trans-
form) that moves a signal from its original domain to a PDE-specific spectral domain in
which the propagation becomes trivial [7]. The spectral representation furthermore has
physical interpretations. Most importantly, it is able to reveal hidden solitons, which are
localized particle-like waveforms [61]. NFTs have therefore found practical applications
in areas such as ocean wave data analysis (e.g. [135, 146–150]) and fiber-optical com-
munication (e.g. [23, 28, 83, 99, 111, 112, 151–154]). In these areas, many dynamics are
known to be well-approximated by the most common Lax-integrable PDEs.

However, the situation is different in areas where the notion of Lax-integrability is not
yet well-known. When a system is suspected to be Lax-integrable, e.g. because it admits
soliton solutions, the question arises if the system can be described by a Lax-integrable
PDE, and if so, which PDE. In practice, it is often very difficult to determine which Lax-
integrable PDE approximates a given system best. From a practical point of view, it is
often preferable to approach this question in a data-driven way as the analytical deriva-
tion of Lax-integrable approximations requires very specific human expertise, time and
sometimes also some luck. Data-driven approaches instead try to identify the system
directly from measurements of the system. Of course, they come with their own chal-
lenges. For the identification of PDEs, one of the biggest practical problems is that the
data can typically only be measured for a few sparse values of the evolution variable, and
thus the derivative in the direction of propagation cannot be determined. The sparse-
ness of measurement points occurs naturally e.g. in wave flume experiments [43, 150],
where wave gauges record time series at a limited number of locations, or in optical fiber
experiments [54, 87], where time series can only be recorded at the ends of the fiber link.
In contrast, many popular generic PDE identification methods such as [155] assume that
the data contains derivatives w.r.t. the evolution variable, which is not possible with
sparse measurement points. To the best of our knowledge, so far only a single method
for the data-driven identification of Lax pairs has been proposed in the literature [42].
However, also this methods requires derivatives w.r.t. the evolution variable. The lack of
a practical system identification method for Lax-integrable systems hinders the applica-
tion of the strong mathematical theory behind Lax-integrable systems in practice.

In this study, we therefore propose a novel approach to identify a Lax pair from given
measurement data that does not require derivatives in the direction of propagation. In-
stead, we exploit that the spectral operator of any Lax pair produces infinitely many con-
served quantities that should not change during propagation. The parameters of the
spectral operator are chosen such that the variation in the (ideally) conserved quantities
in minimal. Our method is data-driven and identifies the PDE using only measurements
space series (snapshots) of solutions, taken at different time points (assuming from here
on, without loss of generality, that the time t is the evolution variable of the PDE, and the
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location x the other variable).
In earlier work, we have already demonstrated for the NLSE [55, 87] and the KdV equa-

tion [43] that parameters of specific integrable PDEs can be identified based on con-
served quantities. Furthermore, conserved quantities have also successfully been ap-
plied for other applications such as training neural networks for solving Lax-integrable
PDEs [156]. However, so far conserved quantities have not been exploited for the data-
driven identification of Lax pairs.

In the literature, there already is a large variety of non-data-driven techniques that
determine Lax pairs for a given Lax-integrable PDE (e.g., [19–21, 155, 157–162]). One
might thus be tempted to first identify a PDE using conventional data-driven methods
(e.g. [40, 41]), and then find a Lax pair for it. However, this approach has several major
problems. First of all, existing methods for finding Lax pairs assume that the given PDE
is exactly Lax-integrable. However, in practice this will only be the case approximately.
Even if the true underlying PDE is exactly Lax-integrable, the model identified by a con-
ventional method still will not have this property due to measurement noise. Second,
existing techniques to find Lax pairs from a given Lax-integrable PDE are not guaran-
teed to succeed, to the best of our knowledge. Third, as mentioned above, conventional
PDE identification methods require measurements of the solution at closely spaced time
points, which, as already pointed out earlier, is often unpractical.

In our approach, we will assume that the Lax-pair is of the AKNS-type, which is named
after Ablowitz, Kaup, Newell and Segur [7]. The AKNS class captures a large class of ubiq-
uitous Lax-integrable PDEs, such as, e.g., the (modified) Korteweg-de Vries equation
(MKdV/KdV), the (de)focussing nonlinear Schrödinger equation (dNLSE/fNLSE), and
the sine/sinh-Gordon equation [7], as well as transformations and higher-order variants
of these equations. While the restriction to the AKNS class of course means a loss of
generality,1 we point out that on the other hand it allows us to design a more efficient
method. Most importantly, we can exploit that the conservation laws of AKNS Lax pairs
all have the same structure. We envision that in the future, more specialized algorithms
for other classes of Lax pairs will be developed. The user can then choose the right class
either using physical insight, or by simply checking which class provides the best fit. This
would be similar to conventional nonlinear system identification, where specialized al-
gorithms exist for various system classes such as Wiener-Hammerstein systems, finite
Volterra series, or nonlinear ARMA models [164].

In our method, we focus on identifying the spectral L operator of the AKNS-type Lax-
pair, as the Lax propagation operator A can be found by combining the spectral operator
and the linearised dispersion relation [7, p. 253]. Given suitable measurement data, the
dispersion relation can be found easily by comparing phase shifts in the linear Fourier
domain. To identify the L operator that fits the given data best, we will exploit the explic-
itly known conserved global quantities associated with AKNS-type Lax pairs. Our strat-

1The “integrability ex machina” (IeM) method in [42] employs neural networks to represent the Lax pair and
therefore, at first sight, appears to cover a much larger class of systems than our approach. However, this
is not the case. The neural network in the IeM method implements a conventional polynomial approach
[42, p. 4]. The advantage of the neural network formulation is that advanced algorithms to find the optimal
weights can be employed. In [163, p. 65], it is clarified that the IeM method cannot use arbitrary neural
networks (specifically, multi-layer perceptrons). The IeM method also requires physical intuition to select
dictionaries [42, p. 6].
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egy is to identify the L operator, parameterized by two potential functions, for which the
global quantities vary as little as possible over time.

Our method has the advantage that it is fully automatic and data driven. Its main
advantage is thus that it only requires measurements at two different points in time,
which do not have to be close. (The use of more time points is possible.) We finally
remark that the proposed method may of course also be used for data in the form of time
series that are measured at different locations if the roles of space and time are switched
in the PDE so that the location is the evolution variable. This is a common scenario in
applications. See, e.g., [23, 43, 150].

This Chapter is organized as follows. Sec. 6.2 recapitulates the AKNS-type Lax pair
and the associated conserved quantities. Sec. 6.3 describes the method to identify the
most suitable AKNS-type PDE from measurement data by comparing global quantities.
Sec. 6.4 demonstrates the method on various data sets. Finally, Sec. 6.5 concludes the
study.

6.2. THEORY: AKNS LAX PAIRS AND CONSERVED QUANTITIES
Let a nonlinear partial differential equations (PDE) be given by

ut (x, t ) = F (u,ux ,uxx , . . . ), (6.1)

where u denotes the (possibly complex) signal amplitude, x the position, t the time (or
more generally, the evolution variable), F the nonlinear evolution function, and sub-
scripts denote partial derivatives. A nonlinear PDE has a Lax pair (L(t ), A(t )), where L(t )
and A(t ) are linear operators that depend on u(x, t ), such that the following Lax equation
is equivalent to the PDE [8, Eq. 1.4]:

Lt = AL−L A. (6.2)

We will refer to L as the spectral operator, and to A as the propagation operator. If the Lax
pair (L, A) fits the PDE of interest, then the spectrum of L(t ) is constant over time [8]. We
say that the PDE is Lax-integrable if the Lax pair enables the solution of the PDE using
the inverse scattering method [165]. A simple example of a PDE and a corresponding Lax
pair is the advection equation ut = ux , where the Lax pair consists of the multiplication
operator L = u and the derivative operator A = Çx . For any suitable φ(x, t ), we have

Ltφ= (Lφ)t −Lφt = (uφ)t −uφt = utφ and ALφ−L Aφ= Çx (uφ)−uÇxφ= uxφ

⇒ Lt = AL−L A ⇐⇒ ut = ux .

Many Lax-integrable PDEs exist, and the form of the associated Lax pairs can widely
vary. However, the AKNS-type Lax pairs all possess the same structure, but still capture
many ubiquitous PDEs. The AKNS-type Lax pairs are of the form [7]

L =
[

iÇx −i q(u)
i r (q) −iÇx

]
, A =

[
A11(u) A12(u)
A21(u) −A11(u)

]
(6.3)

in which q(u) and r (q) = r
(
q(u)

)
are potential functions depending on the x.
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Not every choice of q(u) and r (q) is allowed, as the Lax equation in Eq. 6.2 imposes a
compatibility condition (see [7, Eq. 2.2-2.7]). Many of the known Lax-integrable system
can be obtained using only a small number of r (q) relations [7]:

r =−1 (KdV), r =−q∗ (focussing NLSE), r = q∗ (defocussing NLSE),

r =−q (sine-Gordon, focusing MKdV), r = q (sinh-Gordon, defocusing MKdV). (6.4)

We will therefore consider only these relations for r (q). Of course, more choices can be
integrated into the method, although it should be checked beforehand if those relations
r (q) can lead to a compatible Lax pair. For most equations, such as KdV, MKdV and
NLSE, q(u) simply takes the form of q = cu (i.e., a scaling of the signal amplitude, with c
the scaling coefficient). The sine-Gordon and sinh-Gordon equations on the other hand
require q = cux . Furthermore, we may also be dealing with the case that the measure-
ment process does not directly provide u, but a transformed version of it. For example,
q(u) = u3,r (q) =−1 would still result in a feasible spectral operator of the KdV-type, but
the associated PDE would correspond to a transformed version of the KdV (the exact
PDE would depend on the linearised dispersion relation).

6.2.1. CONSERVED QUANTITIES OF AKNS-TYPE PDES

AKNS-type PDEs possess an infinite number of conserved quantities, that are fully de-
termined by q(u) and r (q). The conserved quantities can be iteratively derived using a
relation from AKNS [7, Eq. 7.33]. The first five conserved quantities are

C1 =
∫

D
qr dx, C2 =

∫
D

r qx − rx q dx, (6.5a)

C3 =
∫

D
q2r 2 +qx rx dx, C4 =

∫
D
−rxx qx +qxx rx + 3

2

(
r 2(q2)x −q2(r 2)x

)
dx, (6.5b)

C5 =
∫

D
2q3r 3 +qxx rxx +

(
q2

x r 2 + r 2
x q2)+8qqx r rx dx, (6.5c)

where D denotes the spatial domain. Both periodic and vanishing boundary conditions
are allowed.

The choices r = −1 and r = ±q lead to trivial conserved quantities C2 = 0 and C4 = 0,
but the odd quantities are non-trivial for all considered choices of r (q). Therefore, we
only consider the odd global quantities C1, C3 and C5 throughout the rest of this chapter.
These three conserved quantities turn out to be sufficient in our numerical experiments.
Higher ones could of course be integrated, and with large libraries for the expansion of q
(see Sec. 6.3), this may even become necessary for a successful identification. Unfortu-
nately, determining the higher conserved quantities analytically is a difficult task, even
with the help of symbolic computer algebra systems. Higher order conserved quantities
furthermore contain derivatives of high orders, which are very sensitive to measurement
noise. We therefore believe that the exploitation of higher order conserved quantities for
large libraries will require a numerical method for their computation from noisy data.

We finally note that it is necessary to consider C5, as only C1 and C3 are not sufficient
to distinguish most PDEs. Many PDEs conserve both

∫
D u dx and

∫
D u2 dx, thus if q = u

then r ∈ {1,±u} all lead to a conserved C1. Furthermore, if only C1 is used, and we found
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some relation q = f (u) such that C1(t ) is constant, then any scaling q = c f (u) will also
lead to a constant C1(t ). To extract the scaling constant, at least C3 is required for r ∈
{±q,±q∗}, as C3 then has two terms with different scaling in q . For r = −1, C3 still only
has a single term (

∫
D q2 dx), and therefore C5 is required.

6.3. METHOD: IDENTIFYING THE SPECTRAL OPERATOR USING

CONSERVED QUANTITIES
In this section, we present our novel method to identify the spectral operator L of the
AKNS Lax pair that fits a given data set best. The methods checks which q(u) results in
the least variation in the conserved quantities, for each of the choices of r (u) in Eq. 6.4.
The combination

(
r (q), q(u)

)
that results in the least variation of the conserved quanti-

ties is then considered the best candidate for the spectral operator explaining the data.

6.3.1. EXPANDING q(u) IN FUNCTIONS FROM A LIBRARY

Our approach starts with choosing a library of D operators of u, i.e., g1(u), g2(u), . . . , gD (u).
We will allow q(u) to be any linear combination of the operators in a library G , which we
chose for this study as the lowest-order polynomials and derivatives of u:

q(u) =
D∑

d=1
cd gd (u), with D = 5,

G = {
g1 = u, g2 = ux , g3 = uxx , g4 = u2, g5 = uux

}
. (6.6)

Here, cd are the coefficients which are optimized during the identification. We chose
the shown library to include at least u and ux , such that standard versions of the KdV,
MKdV and NLSE (q = u) and sine-Gordon and sinh-Gordon (q = ux ) are in the current
library space. If more information of the PDE is available, the library can be expanded
or shrunk accordingly. For example, if the underlying system is known to be either KdV
or MKdV, the library can be shrunk to G = {g1 = u}, and the problem then simplifies to
a simple identification of the scaling constant c1, and a choice between r = −1, r = −q
and r =+q .

6.3.2. ERROR FUNCTION BASED ON CONSERVED QUANTITIES

To identify the most suitable potential function r (q) as in (6.4) and q as in (6.6) for the L
operator in (6.3), we will minimize an error based on the conserved quantities (6.5). We
assume that our available data set consists of N independent trajectories

u(n) =
(
u(n)(·, t1),u(n)(·, t2), . . . ,u(n)(·, tM )

)
, n = 1, . . . , N ,

where the first “snapshot” u(n)(x, t1) of the nth trajectory is assumed to be a measure-
ment of the initial condition of the PDE, and the later snapshots at one or multiple
later times t2, . . . , tM are measurements of the correspondingly evolved initial condi-
tions. Given a single trajectory u(n), each choice of

(
q(u),r (q)

)
results in three time-

dependent values C1(t ), C3(t ) and C5(t ) for the conserved quantities in (6.5). If the rela-
tions

(
q(u),r (q)

)
are chosen correctly and the data set was noiseless and obtained from
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an exactly Lax-integrable system, the conserved quantities will indeed be conserved, i.e.,
constant. We thus create an error that penalizes fluctuations in the conserved quantities
over time.

We formally define the error as the standard deviation in time in the conserved quan-
tities C1, C3 and C5, relative to the average absolute conserved quantities:

E(c,r ;u) := ∑
k∈{1,3,5}

(
N∑

n=1

σ[Ck (t ;c,r,u(n))]

µ
[∣∣Ck (t ;c,r,u(n))

∣∣]
)

, with

µ[Ck (t )] = 1

M

M∑
m=1

Ck (tm), and σ[Ck (t )] =
√√√√ 1

M

M∑
m=1

(
Ck (tm)−µ[Ck (t )]

)2, (6.7)

where Ck (t ;c,r,u(n)) denotes the corresponding conserved quantity in Eq. 6.5 computed
at time t , which furthermore depends on the choices for the coefficient vector c, r , and
the currently considered trajectory through Eqs. 6.4- 6.6. The algorithm thus identifies r
and q =∑

d cd gd by minimizing over the error in Eq. 6.7:

(r (ID),c(ID)) = argminr∈{−1,±q,±q∗}argminc∈C w(c)E(c,r ;u), C ⊆Rd , (6.8)

with w(c) denoting the weight of coefficient c. For each choice of r , the error is mini-
mized over c using a local minimization method. We used the fminsearch method from
Matlab (a simplex search method), starting at multiple initial starting positions. The
search space C for the coefficient vectors can in principle be chosen as the wholeRd , but
in our numerical examples we made a different choice. Similarly to conventional identi-
fication methods for PDEs (e.g. [41]), we prefer Lax pairs that are “simple” and therefore
prioritize sparse coefficient vectors c. This will also prevent over-fitting, and can help to
reduce the computation time. To find a sparse solution c we do not search the full space
spanned by the library G at once, but rather search only its low-dimensional sub-spaces
one-by-one as explained in the next section.

6.3.3. SPARSE SOLUTIONS AND CHOICE OF THE STARTING POINTS

For large libraries G , it can be very hard to find a globally optimal q(u) in the corre-
sponding function space. However, for many of the well-known AKNS-type PDEs, the
corresponding q(u) = ∑

d cd fd (u) has only a few nonzero cd . We exploit this by only
searching the low-dimensional sub-spaces of functions in G that have at most D (sub)

non-zero coefficients. In our numerical examples, we investigate all 1D, 2D and 3D sub-
spaces. While the 1D and 2D sub-spaces are also contained within the 3D sub-space, it
often occurs that a one- or two-dimensional solution performs nearly as good as a three
dimensional solution, and should thus be preferred. Furthermore, the optimization pro-
cess in lower-dimensional sub-spaces is more likely to find the global optimum in that
sub-space. We thus also take the lower sub-spaces into account.

Given D basis functions, there are
(D(sub)

D

)
sub-spaces of dimension D (sub). In each of

these sub-spaces, we minimize the error in Eq. 6.7, and keep the optimal 1D-, 2D- and
3D-solutions. Finally, we penalize higher-dimensional solutions by multiplying each er-
ror with a heuristically chosen factor. The search space and weight for (6.8) are thus

C = {c ∈RD : #c ≤ D (sub),D (sub) ≤ 3}, w(c) = p#c , (6.9)
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with #c the number of non-zero coefficients in c. We found that p = 1.2 resulted in a
good balance for finding a suitable but sparse coefficient vector.

We assume that the data set evokes both the linear and the nonlinear terms of the
PDE, at comparable levels, so that all terms can be identified. If this is not the case, a
richer data set must be considered, as many PDEs can otherwise not be distinguished.
To define initial starting points, we determine a central estimate vector c0, for which the
terms c0

d gd (u) are all of the same order of magnitude, such that each gd is relevant. We

start with the first coefficient c0
1 , as c0

1 u is often part of the solution for q . We cannot
use the conserved quantity C1 for this purpose, as it contains only a single term; C3 has
two different terms, so we can find a c0

1 such that
∫

D q2r 2 dx and
∫

D qx rx dx are of similar
order. Only for r = −1 we have that rx = 0, so in this case we consider C5 instead. This
leads to the following initial r -dependent guesses for c0

1 :

r =−1, q = c1u, C5 =
∫

D
2c3

1 u3 + c2
1 u2

x dx ⇒ c0
1 ≈ |∫D u2

x (x,t )dx|
|∫D u3(x,t )dx| (6.10a)

r =∓q, q = c1u, C3 =
∫

D
c4

1 u4 + c2
1 u2

x dx ⇒ c0
1 ≈

√
|∫D u2

x (x,t )dx|
|∫D u4(x,t )dx| (6.10b)

r =∓q∗, q = c1u, C3 =
∫

D
c4

1 |u|4 + c2
1 |ux |2 dx ⇒ c0

1 ≈
√

|∫D |ux |2(x,t )dx|
|∫D |u|4(x,t )dx| , (6.10c)

where (·) denotes the mean over all t and trajectories.
Next, we wish to ensure that all functions c0

d gd are of similar size for our initial guess

c0, as this will allow a change in every term to be significant. We thus choose

c0
d = c1|g1|

|gd |
. (6.11)

This defines our central initial guess.
Next, for each of the sub-spaces, we choose the first initial starting point as the pro-

jection of c0 onto the corresponding subspace (i.e., we set c0
d = 0 if gd is not in the sub-

space). Next, we create a hypercube around the projected c0
d by multiplying or dividing

each term by a scale factor s > 1. For example, for the subspace containing the first
two basis functions, the five resulting initial starting points are the projected estimate
(c0

1 ,c0
2 ,0,0,0) and the four vertices (s±1c0

1 , s±1c0
2 ,0,0,0). Throughout this study, we chose

s = 10. This distribution of initial starting points sufficed for the examples considered
in this study. More initial starting points can of course be added to increase the chance
of finding the global optimum when necessary, at the expense of longer computation
times. We also note that all coefficients of our initial starting points were positive, as this
sufficed for the considered examples. However, starting points with negative coefficients
can of also be taken into account.

6.4. RESULTS
In this section, we evaluate the proposed method in numerical examples for several
PDEs. We first demonstrate it for noisy data obtained from the MKdV. Then, a lossy
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NLSE, which is only approximately integrable, is considered with noise. Next, we con-
sider the sine-Gordon equation with noise, which requires a non-standard choice for the
first potential function, namely q = ux . Finally, we consider a transformed KdV, where
q(u) = u +u2 is a linear combination of two of the library functions. In all examples,
the library of functions for q(u) from Eq. 6.6 is used, in combination with the described
low-dimensional sub-space search and the described initial starting points for c from
Sec. 6.3.3.

6.4.1. CASE 1: NOISY DATA OBTAINED FROM THE EXACTLY INTEGRABLE

MKDV
In this subsection, we consider noisy data obtained from the focusing MKdV ut =−uxxx−
6u2ux , consisting of multiple periodic signals measured at two different times. This ex-
ample illustrates that the algorithm can distinguish between the r (q) relations for the
focusing MKdV (r =−q), the defocusing MKdV (r =+q) and the (standard) KdV (r =−1),
and also find the correct relation q(u) = u from the full library function space.

The considered data set consist of N = 21 trajectories, where each trajectory consists
of space series at only two time points, which are too far apart to determine ut . The
measurement locations and times were respectively x =−4,−3.98,−3.96, . . . ,4 (periodic
boundary conditions), and t ∈ {0,0.5} . The input signals (t = 0) were generated as zero-
mean Gaussian distributed random numbers with variance one, ideally low-pass filtered
to maximum wavenumber 1 cycle/spatial unit. Every input signal was scaled such that
the mean squared amplitude of each trajectory varied between 0 and 2.5, to ensure
that the dataset was rich enough. Next, all input signals were propagated for 0.1 tem-
poral units. Finally, low-pass filtered white Gaussian noise (maximum wavenumber 1
cycle/spatial unit) with 1% of each considered signal’s root-mean-squared (RMS) ampli-

tude was added, i.e, the signal to noise ratio was SNR =
∫

D |u(signal)|2 dx∫
D |u(noise)|2 dx

= 104. We note here

that the amount of noise was chosen such that the correct PDE could still be identified.
This is often around 1% due to the use of higher derivatives and polynomials, which is
typical for PDE identification methods (see e.g., [41]).

The results of the algorithm are shown in Fig. 6.1. One of the 21 input-output pairs
is shown in the top left. For each choice of r (q), we optimized c. The corresponding
global quantities are shown at the bottom. The choice r (q) =−q (indeed corresponding
to focusing MKdV) shows the least variation between input and output, and thus the
system is identified as r (q) =−q . Note that even for the correct choice of r (q) =−q , the
global quantities are not entirely conserved due to the noise.

From Fig. 6.1b we find that the identified c corresponded to the correct c (up to a small
error due to noise), which was identified from the 1D sub-space spanned by {u}. A near-
correct c was also identified as (1.06,0,0,6 · 10−3,0) in the 2D sub-spaces spanned by
{u,uxx }, but the corresponding error was only marginally smaller. Therefore, the 1D so-
lution was accepted. The correct solution was not found at all in any of the 3D sub-
spaces from the specified starting points, and the resulting error was therefore around
20 times larger. While it would in principle be possible to address this by just using more
starting points, this example also shows that searching all lower-dimensional sub-spaces
can be more effective if the reference solution can be assumed to be low-dimensional.
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(a) Noisy MKdV data, signal 1 of 21.

(b) Identified coefficients, assuming r (q) = −q . This
solution was found in the 1D-subspace spanned by
{u}.

(c) The global quantities at the identified choice for c, under the assumption of the each r (q).

Figure 6.1: Focusing MKdV generated dataset and the results of the identification algorithm. (a)
One of the trajectories at first and last measuring time. (b) The initial, identified, and correct coef-
ficients when assuming the relation r =−q , i.e., the correct relation for the focusing MKdV. (c) The
conserved quantities at the identified coefficients for each of the three considered relations r (q).
The choice r (q) =−q shows the least variation and is therefore accepted.

6.4.2. CASE 2: NOISY DATA FROM A LOSSY, AND THUS ONLY

APPROXIMATELY INTEGRABLE, NLSE

In this section, we consider complex-valued noisy data set obtained from the lossy fo-
cusing NLSE (fNLSE) qt = i qxx +2i q|q |2 −0.5αq with α= 4. The data is instantaneously
amplified just before each measurement point to compensate the loss, and is therefore
energy conserving (up to noise) between measuring points. This type of system is widely
used – with reversed roles for time and space – in fiber-optical communication systems
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with lumped amplification [62, 166]. The path-average approximation of the lossy fNLSE
with amplification is obtained by averaging the decaying energy during over t , and then
considering a lossless NLSE with rescaled amplitude q [62, Ch. 9]:

E avg =
∫

D
[q(x, t = 0)]2 dx

∫ T

0
e−αt dt =

∫
D

[q(x, t = 0)]2 dx
1−e−αT

αT

⇒ q(x, t ) =
√

1−e−αT

αT q(x, t = 0), (6.12)

with E avg the signal energy averaged over t , q(x, t ) the path-average amplitude, and T
the duration between two amplifications (and thus measurement times). The measure-
ment time points were at t ∈ {0, 1

3 , 2
3 ,1} , so with T = 1

3 and α = 4, we expect an ampli-

tude normalization constant of c1 =
√

1−e−αT

αT = 0.74, and thus the relation u = c1q , and
r = −q∗. Note that while the path-average approximation (6.12) is Lax-integrable, the
true underlying lossy NLSE with amplification is not. This example thus demonstrates
that the method is able to identify an integrable approximation to a non-integrable sys-
tem from data.

We generated the input signals under periodic boundary conditions from complex,
circularly symmetric, zero-mean Gaussian distributed random samples, and ideally low-
pass filtered these to maximum wave number 0.5 cycles/spatial unit. The measurement
points were x =−4,−3.95,−3.9, . . . ,4. Next, we propagated each signal numerically, boost-
ing the signal just before every measurement. Finally, low-pass filtered radially symmet-
ric white Gaussian noise (maximum wavenumber 0.5 cycles/spatial unit) with root mean
squared amplitude equal to 1% of the signal amplitude was added to the input and out-
put signals (SNR = 104). We generated N = 21 input signals in total, with mean squared
amplitudes varying between 0.2 and 0.6, to ensure that the data was rich enough. The
initial starting points were chosen as described in Sec. 6.3.3.

The results of the algorithm are shown in Fig. 6.2. From Fig. 6.2c we note that only the
focusing and defocusing NLSE approximately conserve the first global quantity. We then
observe that the fNLSE (r =−q∗) and dNLSE (r =+q∗) can be distinguished by the fact
that C3 and C5 are not conserved very well for r =+q∗, whereas r =−q∗ conserves these
much better. From Fig. 6.2b, we observe that the guess based on Eq. 6.10 is indeed rea-
sonably close to the reference value for the scaling constant c1, despite the path-average
approximation and the noise. However, we found that the identified c1 was structurally
lower than the reference value by 3%, even when the data was noiseless. This may indi-
cate that the global quantities become slightly biased with respect to the path-averaged
approximation.
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(a) Noisy fNLSE data at t = 0 (input) and at t = 1 (out-
put), signal 1 of 21. The signals at t = 1/3 and at t = 2/3
are omitted here.

(b) Identified coefficients, assuming r (q) =−q∗. This
solution was found in the 1D-subspace spanned by
{u}.

(c) Global quantities at optimal choice for c1 for various hierarchies r (q).

Figure 6.2: Focusing NLSE generated dataset, t ∈ {0,0.33,0.67,1}, N = 21, x =−4,−3.95,−3.9, . . . ,4,
signal bandwidth = 1 Hz. (a) One of the 21 signals from the dataset, shown at t = 0 and t = 1. (b)
The initial, identified, and correct coefficients when assuming the relation r = q∗, i.e., the correct
relation for the fNLSE. (c) The conserved quantities at the identified coefficients for each of the
five considered relation q(r ). The choice r (q) = −q∗ shows the least variation and is therefore
accepted.
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6.4.3. CASE 3: NOISY DATA FROM THE INTEGRABLE SINE-GORDON DATA

(NON-TRIVIAL q(u))
In this subsection, we consider data obtained from the sine-Gordon equation ut x =
sin(u) in light-cone coordinates. This equation has correct choice q = 0.5ux , which is
different from the more common relation q = c1u used for the KdV and the NLSE. The
data set was generated by simulating a kink-antikink collision of the sine-Gordon equa-
tion in physical coordinates (α,β), i.e. uββ = uαα−sin(u), and then transforming the data

through t = α+β
2 , x = α−β

2 . The initial data was taken as a linear summation of a kink- and
an antikink solution [167] that were sufficiently far apart to closely approximate an exact
double soliton:

u(α,0) = 4atan
(
eγ1(α−α1))︸ ︷︷ ︸
kink

+−4atan
(
eγ2(α−α2))︸ ︷︷ ︸

anti-kink

, (6.13a)

uβ(α,0) =−2γ1v1sech
(−γ1(α−α1)

)︸ ︷︷ ︸
kink

+−2γ2v2sech
(−γ2(α−α2)

)︸ ︷︷ ︸
anti-kink

, (6.13b)

with
(
v1 =0.2,γ1 =

√
1

1−v2
1

,α1 =−2
)

and
(
v2 =−0.1,γ2 =

√
1

1−v2
2

,α2 = 3
)
, (6.13c)

where α1 (resp. α2) is the initial positions of the (anti-)kink, and v1 (resp. v2) the ve-
locity. The initial signal was then numerically propagated until after the collision, Mea-
surements in physical coordinates were taken in the region α = −20,−19.96, . . . ,20, and
β= 0,0.04, . . .20, which were transformed to light-cone coordinates. The resulting light-
cone domain becomes diamond-shaped, and we considered only a square domain from
it, resulting in the final measurement locations x =−16,−15.92,−15.84, . . . ,16,
t = −3,−2.8,−2.6, . . . ,0. Only a single (N = 1) trajectory was used, which measured the
developing wave nearly continuously, instead of at only a few moments in time. This
example thus illustrates that it is also possible to use continuous fields. Finally, we
measured the smallest bandwidth containing 99% of the power of the initial condition
u(x, t = −3), and added white Gaussian noise, ideally low-pass filtered to this band-
width, to all space-series measurements leading to SNR = 104. The full signal is shown in
Fig. 6.3a.

The results are shown in Fig. 6.3. From Fig. 6.3c we observe that the conserved quan-
tities are best conserved by the choice r (q) = −q . The correct choice q(u) = 0.5ux was
indeed identified up to noise as shown in Fig. 6.3b.
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(a) Kink-anti-Kink collision in light-cone coordinates. (b) Identified coefficients, assuming r (q) =−q

(c) The global quantities, at the optimal q(u) given the shown relation for r (q).

Figure 6.3: Noisy Sine-Gordon data. (a) The full dataset consisting of a kink-antikink soliton in
light-cone coordinates, shown between t = −3 and t = 0. (b) The initial, identified, and correct
coefficients when assuming the relation r = q∗, i.e., the correct relation for the fNLSE. (c) The
conserved quantities at the identified coefficients for each of the considered relations q(r ).



6.4. RESULTS

6

121

6.4.4. CASE 4: NOISELESS AND NOISY TRANSFORMED DATA FROM THE

INTEGRABLE KDV (MORE COMPLICATED q(u))
In this subsection, we again consider only two measurement time points, but this time
for a transformed KdV. The data was generated by initializing a random, Gaussian dis-
tributed random signal with periodic boundary conditions, and ideally low-pass filter-
ing it a maximum wave number of 1 cycles/spatial unit, with x = −4,−3.95,−3.9, . . . ,4.
The generated input signal was propagated according to the KdV vt = −vxxx − 6v vx

for T = 1 time unit. Finally, all signals were mapped to the measurement variable u,

given by u =− 1
2 +

√
v + 1

4 : [− 1
4 ,+∞) → [− 1

2 ,+∞), such that the correct mapping back is

v = q(u) = u+u2. We carefully respected the domain for v to ensure that the mapping is
a bijection on the given domains. We generated N = 41 input signals in total, with power

u2 varying between 1 and 20 after the transformation, to ensure that the data was rich
enough. Since we found that the method fails for the SNR used in the previous exam-
ples, we first consider the case of no noise. We then investigate other SNRs and discuss
a potential explanation.

The results for the noiseless case are shown in Fig. 6.5. We observe from the con-
served quantities in Fig. 6.5c that the conserved quantities do not vary much for all three
choices of r (q), but only the KdV conserved them perfectly (due to the lack of noise
in the signal). From Fig. 6.5b we observe that a nearly perfect solution was identified:
q ID(u) = 1.0000u − 0.0009ux + 0.9999u2. Although the term ux was negligible, it de-
creased the error by 30% with respect to the reference solution qref = u +u2, and was
thus accepted over the 2D solution.

Upon redoing the experiment with noise, we found that a near-correct solution was
still identified at SNR=107. However, when increasing the noise to the level of previ-
ous examples, SNR=104, we found that the identified solution cID = (9.62,0,−1.29,0,0)
was completely different from the reference solution (1,0,0,1,0), although the conserved
quantities were still varying very little. Upon inspection, we found that the error at this c
was about twice as low as at the reference solution.

We have the hypothesis that the significantly lower error in the identified solution than
in the reference solution is due to the different noise amplification properties of the li-
brary functions. For example, consider the influence of noise in the library functions
g1(u) = u and g3(u) = u2. Let u = u0 + ε denote the noiseless signal plus noise ε, with
|ε| ≪ |u|. The relative noise in the library function u = u0 +ε is then given by u−u0

u0
= ε

u0
.

However, in the quadratic library function u2 = (u0 + ε)2, the relative noise is given by

u2−u2
0

u2
0

= (�u0
2+2u0ε+���

∼0

ε2)−��u
2
0

u2
0

≈ 2 ε
u0

. We thus observe that the relative noise in library func-

tion g3(u) = u2 is twice as large as in library function g1(u) = u. We thus expect the error
to consist of a contribution due to the model mismatch, and a part due to the noise:
E = Emismatch +Enoise. For the reference solution, there is no contribution due to model
mismatch, but the error due to noise will be approximately twice as large than for incor-
rect solutions of the form q = c1u. If the mismatch is small, a wrong q might thus be
identified even for quite high SNRs. To test this hypothesis, we compared the errors at
the reference solution q = u +u2 and at u = c1u (such that c1 minimized the error) for
various noise levels. As is shown in Fig. 6.4, it indeed turns out that the error contribu-
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tion due to noise is approximately twice as large in q = u +u2 as in u = c1u, and that the
reference solution leads to a higher error already at SNR= 106.

Figure 6.4: The error for the reference solution q = u+u2 and for q = c1u at optimal c1, for various
levels of the SNR. At high SNR, the reference solution is near-perfect, while the error for q = c1u
consists only of a model mismatch error. However, at lower SNR, the error in the reference solution
grows approximately twice as fast as for q = c1u.

As it should, the proposed method identifies the correct solution if the SNR is large
enough. However, it seems likely that the range of sufficiently large SNRs could be ex-
panded by equalizing the impact of noise for the different library functions. For example,
one could try to select the library functions for u more carefully. When we removed the
library functions u and u2, and replaced those with the single library function u+u2, the
reference solution was identified at SNR = 104. We also attempted to replace the library
functions u and u2 with u + 1

2 u2 and u2, such that the library still spans the same space
as before, but these two library functions are affected in similar amounts by the noise
due to their quadratic term. However, the identified solution still converged to approxi-
mately c1u = c1

[
(u + 1

2 u2)− 1
2 (u2)

]
, as the higher noise in the quadratic terms of the two

library functions still cancel out for this solution. Nevertheless, there might be better,
systematic ways to design the library. Alternatively, one could also try to weight the con-
tributions from the different library functions in the error to compensate for differences
in their noise-sensitivity. Choosing these weights however is a non-trivial problem that
is beyond the scope of this study.
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(a) Noiseless transformed KdV data, signal 1 of 21. (b) Identified coefficients, assuming r (q) =−1

(c) Global quantities at optimal choice for c1 for various hierarchies r (q).

Figure 6.5: Noiseless KdV data v(x, t ), transformed as u = − 1
2 +

√
v + 1

4 . The signal domains and
parameters were t ∈ {0,1}, N = 21, x = −4,−3.95,−3.9, . . . ,4, signal bandwidth = 1 Hz. (a) One
consisting of a kink-antikink soliton in light-cone coordinates, shown between t = −3 and t = 0.
(b) The initial, identified, and correct coefficients when assuming the relation r = q∗, i.e., the
correct relation for the fNLSE. (c) The conserved quantities at the identified coefficients for each
of the considered relations q(r ).
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6.4.5. CASE 5: NOISELESS VISCOUS BURGERS’ EQUATION WITH COMPLEX

VISCOSITY COEFFICIENT

Finally, we would like to illustrate the behavior of our algorithm for an equation that does
not seem to fit into our AKNS-ansatz. The equation is a viscous Burgers’ equation with a
complex viscosity coefficient:

ut +uux = νuxx , ν=−i . (6.14)

A single realization of the signal is shown in Fig. 6.6a, which was propagated from t = 0
to t = 1. In total, we generated 41 sets of input-output signals. No noise was added to the
signals.

As we apply our algorithm on this data set, we observe in Fig. 6.6b that none of the
considered choices for r (q) result in well-conserved quantities. This suggests that this
dataset may not fit any of the considered integrable AKNS-type PDEs.

However, the poor conservation of the quantities (6.5) can also arise for other reasons.
It could be due to noise, or because the considered space of functions for q and r is not
large enough. It could also arise when the starting points in the space for q(u) were not
close enough to the correct solution. A large error alone therefore does not necessarily
imply that the data does not originate from an AKNS-type system (or a system close to
one) in the considered search space, and further investigations are required to eliminate
the alternative causes discussed above.

We finally remark that on the other hand, even a perfect conservation of the quantities
(6.5) does not guarantee that the system is from the considered class of AKNS systems
because only a finite number of conserved quantities is considered for the computation
of the error. In such cases, the identified r (q) and q(u) should be further tested w.r.t.
other criteria. For example, one could check numerically if the spectrum of the iden-
tified L-operator stays constant during propagation. Another possibility would be to
determine the PDE that corresponds to the identified Lax pair, and use it to numerically
propagate the inputs in the data set. The result should match the corresponding outputs
in the data set.
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(a) A single realization of an input (t = 0) and output (t = 1) signal.

(b) Global quantities at the optimal q(u) for various hierarchies r (q).

Figure 6.6: Results for the viscous Burgers equation ut +uux = νuxx with complex viscosity coef-
ficient ν=−i

.
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6.5. CONCLUSION
We proposed and demonstrated an automatic, data-driven identification method for the
spectral operator of AKNS-type Lax pairs. Given measured data from an unknown, not
necessarily Lax-integrable PDE, it finds the spectral operator L of the Lax pair that ex-
plains the given data best by matching conserved quantities. To the best of our knowl-
edge, it is the first such method. It enables non-specialists to discover Lax-integrable
systems “in the wild”, and paves the way to exploiting the strong theoretical properties
of Lax-integrable PDEs in new application areas. In contrast to conventional PDE iden-
tification methods, the measurements can be taken at time points that are far apart (as-
suming time is the evolution variable), which is an important practical advantage. Only
two different time points are required. We focused on finding the L operator of the Lax
pair because together with the easily measurable linear dispersion relation of the un-
derlying PDE, it already completely specifies the Lax-integrable PDE that belongs to the
Lax pair, and therefore also the propagation operator A, which is the second part of the
Lax pair. The spectral operator is furthermore already sufficient to perform nonlinear
Fourier analysis.

The method was demonstrated on noisy measurements from the MKdV, the NLSE and
the sine-Gordon equation, as well as on noise-free and noisy data from a transformed
KdV. By choosing initial guesses for the coefficient vectors that evoke different parts
of the conservation laws with similar strength, and then performing searches in low-
dimensional spaces of k-sparse vectors, we were able to identify the correct spectral op-
erator for a variety of (nearly) Lax-integrable systems. We found that the algorithm gen-
erally works well if the amount of noise in the data is less than 1% of the signal amplitude,
although one case required less noise. We remark that PDE identification methods in
general require relatively high signal-to-noise ratios so that e.g. higher-order derivatives
of the data can be computed. As a next step, the method should be investigated with
real-world data. If the noises in such scenarios turn out to be too strong, approaches
such as filtering and/or weak formulations should be incorporated to reduce the impact
of the noise on the identification process. Additionally, as discussed in the last example,
methods for taking the different noise amplification properties of the library functions
into account should be investigated.
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CONCLUSIONS AND

RECOMMENDATIONS

Within this thesis, we investigated data-driven parameter identification of Lax-integrable
partial differential equations, with the goal to find a Lax-integrable partial differential
equation that explains given experimental measurement data best. Being able to asso-
ciate a Lax-integrable system to given measurement data allows the underlying system to
be thoroughly analyzed using the nonlinear Fourier transform (NFT), a.k.a. the method
of forward scattering. While many practical systems will not be exactly Lax-integrable
due to the presence of noise, loss or other imperfections, many systems are often still
approximated well by Lax-integrable equations. Practical examples of systems that are
well approximated by Lax-integrable partial differential equations include fiber optical
wave propagation modeled by the nonlinear Schrödinger equation (NLSE), surface wave
propagation in shallow water canals modeled by the Korteweg-de Vries equation (KdV)
and mechanical wave propagation in a chain of couples pendulums modeled by the
sine-Gordon equation. It is thus often possible and beneficial if a Lax-integrable de-
scription can be found for an experimental system, but few data-driven Lax-pair identi-
fication methods existed before the methods presented within this thesis. Due to the vast
space of integrable models, as well as the complexity of many of these models, this thesis
is limited to the parameter identification for Lax-integrable partial differential equations
of the AKNS-type, which already cover a large class of practically relevant systems.

The first part of this thesis is dedicated to the identification of coefficients for individ-
ual Lax-integrable PDEs. The proposed new method focused on the nonlinear Fourier
spectrum, of which the eigenvalues remain constant over time, while the scattering co-
efficients evolve linearly, given that the right parametrization was selected. We validated
this method for the KdV equation and the NLSE in both simulations and experiments, in
particular by comparing the solitons present at two snapshots.

Chapter 2 considered an approximately KdV-governed system with unknown param-
eters, and showed that it is indeed possible to determine the normalization constant -
directly related to the ratio between linear and nonlinear terms - from just two distant
snapshots of wave data. From the normalization constant, the depth of the canal can be
directly derived. One of the main strengths of the method is that numerical propagation
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is not necessary. Furthermore, the normalization constant and propagation distance
can be identified separately, which reduces the complexity with respect to propagation-
based methods that must identify these coefficients simultaneously. Finally, we also
showed that the normalization constant may also be roughly identified by comparing
the first few conserved quantities of the KdV.

Chapter 3 and Chapter 4 considered a similar problem, but for the NLSE applied to op-
tical single-mode fibers. The main parameter of interest is the normalization coefficient
- again the ratio between the linear and nonlinear effects. The normalization coefficient
can be translated into a nonlinearity coefficient, which has become increasingly relevant
for digital signal processing. Similar to the KdV, we showed that the normalization con-
stant can be determined by comparing the soliton content from two snapshots, using
the NFT. We showed that the continuous spectrum could also be used, but for focussing
single-mode fibers (often used in practice) the discrete spectrum (solitons) was shown
to be more reliable in the considered cases. As with KdV, no numerical signal propaga-
tion is required, as well as that the normalization and the dispersion coefficient can be
determined separately. We also quantitatively compared the proposed NFT-based iden-
tification method to a propagation-based method in terms of both accuracy and speed.
It turned out that the NFT-based identification method could indeed be faster than the
propagation based method for long propagation distances, at which numerical propa-
gation requires more time, whereas the calculation of the solitons does not scale with the
optical fiber length. However, the propagation based method in general showed better
accuracy, which was also due to the fact that the loss and amplification could be taken
into account in the propagation, while this can only be approximated in the NFT-based
method.

After comparing the speed of the NFT-based propagation to split-step method prop-
agation in 4, we further investigated methods to speed up the discrete spectrum part
of the NLSE-NFT in Chapter 5. Faster calculation of the highest eigenvalues in the dis-
crete spectrum would be of great benefit to the identification method in Chapter 4, but
also for many other applications where NLSE-type solitons are analyzed. In Chapter 5,
we started by noting that the calculation of the discrete spectrum of the NLSE scaled
superlinearly (typically quadratic for most fast methods) in the time-bandwidth prod-
uct of a signal. It was then shown that the highest eigenvalues of the full signal could
be calculated by windowing the full signal in time and frequency, and inspecting the
highest eigenvalues of each window. The lower eigenvalues are typically affected due to
the windowing, but the resulting spurious eigenvalues could efficiently be removed by
thresholding the lower eigenvalues based on the window size. While the lowest eigen-
values could thus not be detected, these only contain a small fraction of the total en-
ergy. For longer signals, we can simply use more windows (without changing the time-
bandwidth product of each window), and thus this windowing method is linear in the
time-bandwidth product of the full signal. The windowing process does distort the lower
eigenvalues, so this method is best suited for the higher eigenvalues.

In Chapter 6, we focused again on parameter identification, but now for the Lax pairs
directly instead of in the PDE by considering conserved quantities. This allowed to con-
sider a wide range of AKNS-type PDEs simultaneously instead of a single AKNS-type PDE
as in the earlier chapters, and efficiently distinguish between all PDEs in the considered
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class, and find the most suitable Lax pair. We already demonstrated that the normaliza-
tion parameter of the KdV (in Chapter 2) and the NLSE (in Chapter 3) could be quickly
determined by comparing conserved quantities. We showed that these ideas could be
further extended to a variety of AKNS-type PDEs, as well as that many PDEs could be
distinguished in this way. We compared five of the most ubiquitous choices for the spec-
tral Lax operator of AKNS-type, and compared which choice would best conserve the
AKNS-type conserved quantities. For sufficiently high signal-to-noise ratios, indeed this
method could accurately identify the spectral operator, including the correct normaliza-
tion. One of the main benefits was that only two snapshots were required at two distant
locations. The derivative in the direction of propagation was thus not required at all, as
opposed to many other identification methods.

In conclusion, we have proposed two new methods of identifying Lax-integrable PDEs
of AKNS type: one for finding PDE coefficients by comparing the NFT spectra, and an-
other one for finding Lax pairs by comparing the conserved quantities. The spectral
method can use all information of the signal, and can therefore be more accurate, es-
pecially in the presence of noise. However, the computational cost of the calculating the
NFT spectrum is often the limiting factor. In many cases, split-step propagation may
yield a similar or more accurate answer with less computational effort. Spectral based
identification methods typically do not scale with propagation distance as opposed to
split-step methods, and thus spectral methods may be the method of choice when an-
alyzing signals that have propagated relatively far. NFT-based methods and split-step
methods can both be used for propagation and identification, and it is often beneficial
to consider which method is more suitable for a given problem. On the other hand, our
proposed method comparing conserved quantities does not rely at all on spectral trans-
formations, but condenses the information of a full signal into only a few conserved
quantities. Consequently, this method is very fast, but discards much information. As a
result these type of methods are typically less accurate and more noise sensitive. Both
of our proposed identification methods thus have their advantages and drawbacks, but
can also be combined to exploit the advantages of both as demonstrated in this thesis.

7.1. RECOMMENDATIONS

Within this thesis we have mainly focused on developing methods for PDEs for AKNS-
type hierarchies, due to the relevance of these PDEs in engineering, but also due to their
shared structure, allowing for overarching approaches for PDEs within this hierarchy. For
future research, we mainly recommend applying the developed techniques to a PDEs of
other Lax-integrable PDEs or PDE hierarchies. We will give several option below.

The coupled nonlinear Schrödinger equation. The coupled nonlinear Schrödinger
equation [166] is a generalization of the nonlinear Schrödinger equations, which, among
others, describes the propagation of light pulses through an optical fiber when the light
inside has not been polarized. In comparison, the normal NLSE assumes polarized light,
such that the field has only a single polarization. In fiber optical communication, both
polarizations can be used for data transmission, so in practice the coupled NLSE is often
of great interest. Fortunately, the coupled NLSE is also a Lax-integrable PDE, although
it falls outside of the class of AKNS-type PDEs. However, a Lax-pair is known for the



7

130 7. CONCLUSIONS AND RECOMMENDATIONS

coupled NLSE, which results in the Manakov system, and we therefore expect many of
the techniques developed throughout this thesis to be applicable to the coupled NLSE.

The Boussinesq equation. The Boussinesq equation is a nonlinear PDE that gener-
alizes the KdV equation, and can be used to model waves in shallow water canals, with
waves traveling in opposite direction, as opposed to the KdV in which all waves travel
in one direction. The Boussinesq equation is also Lax-integrable, but also falls outside
the class of AKNS-type PDEs [10]. It would be interesting to investigate whether the
techniques developed in this paper could also be applied to identify parameters of the
Boussinesq equation. Furthermore, this could also lead to interesting questions such as
that whether we are able to distinguish left-going waves from right-going waves, just by
considering time-series from just a few distant wave gauges.

Higher-dimensional PDEs Another possible research topic is the application of our
developed to higher-dimensional systems, such as the Kadomtsev–Petviashvili (KP) equa-
tion (two space dimensions). While the coupled NLSE and Boussinesq are significantly
harder to analyze than AKNS-type systems due to their two-dimensional fields, the space
they propagate in is still one-dimensional (i.e., a channel). It would be interesting to in-
vestigate whether parameter identification by use of the NFT or conserved quantities is
also possible for Lax-integrable PDEs on higher-dimensional spaces.

Generalization of Lax-pair identification based on conserved quantities Finally, one
of the most interesting questions is whether it is possible to systematically identify Lax-
integrable PDEs by a more general method than fitting every known Lax-integrable PDE
to measurement data. We already made an attempt at this by using the same method to
identify Lax-pairs of AKNS type by considering their conserved quantities, but it would
be interesting to investigate if this method can be generalized or applied to other hierar-
chies of integrable PDEs. We envision an identification method in which a large class of
Lax-integrable PDEs can be identified by comparing the conserved quantities for each
of several sub-class, of which the AKNS-hierarchy is the first. Each sub-class could then
have its own method to calculate and compare the conserved quantities associated with
it. While an individual Lax-integrable PDE could be its own sub-class, it would be bene-
ficial if multiple integrable PDEs could be generalized under the same sub-class.
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