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To the immense courage that sometimes provides us the strength to get
back and fight against all odds.





System-Level Design Space Exploration
of Reconfigurable Architectures

Abstract

R econfigurable architectures are becoming increasingly popular as
they bear a promise of combining the flexibility of software with
the performance of hardware. Nevertheless, such architectures are

subject to numerous constraints, such as performance, memory requirements,
chip area, and power consumption. To create an efficient design, performing
Design Space Exploration (DSE) at various stages is essential in order to
effectively appraise several design alternatives. DSE at early design stages
facilitates designers in rapid performance evaluation of different parameters,
such as architectural characteristics, application-to-architecture mappings,
scheduling policies, and hardware-software partitionings. DSE methodologies
help traversing (typically) huge design spaces efficiently, thus performing
DSE at a high level of abstraction facilitates design decisions to be made at
very early design stages, which can significantly reduce the overall design
time of a system.

Towards this goal, in this dissertation, we develop a generic system-level
framework, called rSesame, in order to perform modeling and simulation
of dynamically reconfigurable architectures at early design stages. The
framework can be deployed as a standard modeling and simulation framework
for performing system-level DSE to explore several design parameters, while
designing dynamically reconfigurable architectures. Performing runtime
evaluations together with static explorations, enables reconfigurable archi-
tectures to be more efficient in terms of several design constraints. As a
result, the rSesame framework combines both static and runtime explorations
in order to facilitate system-level DSE of reconfigurable architectures with
respect to architectural exploration, hardware-software partitioning and task
mapping/scheduling.

We deployed the rSesame framework to evaluate the Molen reconfig-
urable architecture by assessing and evaluating a wide range of application-
to-architecture-mappings. These mappings are evaluated based on different
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system attributes, such as execution time, number of reconfigurations, time-
weighted area usage, percentage of hardware/software execution, percentage
of reconfiguration, and hardware reusability efficiency, under different re-
source conditions. The case study shows that the rSesame framework can be
efficiently deployed to facilitate system-level DSE of reconfigurable architec-
tures by effectively appraising several alternatives, both statically and at run-
time. The study also shows that the framework can be deployed, not only to
evaluate and compare different architecture-to-application-mappings, but also
to efficiently evaluate different architectural conditions at runtime.
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Preface

It has all started six years back. It may sound so far, but for my memory it is
all very clear and vivid. I still remember that fine afternoon when I received
an admission letter from TUDelft. This journey for me has started right
there, that particular moment, from the top of the world to the bottom of the
world. When I say it, it is all true. Indeed my journey from the Himalayas to
the country below sea level has always been unique on its own way. People
always ask me one question. “How do you survive here? Don’t you miss
mountains?” I do, I always do.

I left home in the search of my own dreams, some old, some newly
formed, on my own terms, to the completely new world, to the completely
new people. “Small eyes big dreams”, my mom always says it, and perhaps
it is true in my case. I still remember my first weeks in Delft, I cried a lot.
I called my mom and told her that I would go back home. Then, one day I
woke up, and suddenly realized that I had this immense courage to get things
done. Then, it just felt like a blink of eyes, and those two years were over very
soon. I remember the day, I again called home and told my dad “I finished my
masters, I am an ingenieur (Ir.) now”. The feeling was amazing; the joy was
spellbinding, some sort of contentment for getting things done, for not giving
up, and making my family proud. The first episode ended in a happy note.

Then, I started another journey - a journey of PhD, the more challenging
one, the more demanding one. This time the feeling was different. Same
people, same group and same place, but still it was still different. Full of mixed
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feelings, exciting and stimulating, and at the same time full of confusions,
perplexities and dilemma. Soon I realized, things were not happening the
way it should have been, clocks were counting, the mental gymnastic was
in its extreme pace, uncertainties took over, and I was lost again. Charlie
Chaplin had said it and I had read it in one of the PhD propositions “Nothing
is permanent in this wicked world - not even our troubles”. And, I am starting
to believe it now. Before long, my problems were sorted out, things started to
fall in its place. I started seeing hope, publications started popping up, and I
was on a right track. Then, it didn’t take long to reach where I am today.

During this course, many people constantly helped me through. This
work would not have been possible without them. I would like to take this
opportunity to express my gratitude to all of them for their constant support
and encouragement. Firstly, I am heartily grateful to Koen Bertels, Andy D.
Pimentel, Mark Thompson and Carlo Galuzzi for their advice, guidance and
support. I am equally indebted to many of my colleagues and friends for their
help and care during all these years including Dimitris Theodoropoulos, Roel
Meeuws, Faisal Nadeem, Arash Ostadzadeh, Ozana Dragomir, Vlad Sima,
Lu Yi, Mojtaba Sabeghi, Zubair Nawaz, Sebastian Isaza, Lotfi Mhamdi, Piotr
Lopatka and Ruchi Khetan. My special thanks to Behnaz and Ghazaleh for
caring and counseling whenever I feel down. I would also like to express
my sincere gratitude to Lidwina, Monique, Bert and Eric for their assistance.
People I meet at AVS, and many of my other Iranian, Dutch, Indian, Nepalese
friends will always have a special place in my heart. I will always owe my
deepest gratitude to all of them. Without them life in Delft would have been
unimaginable. Last but not the least, my greatest share of thanks goes to my
whole family, without you, I would have been left all alone, and would have
given up long time back. My journey would have been certainly incomplete
without any of these people in my life. What I am now is because of what I
have been through. These people have always influenced me to be a better
person every day, and I am very grateful for them for being a part of my ride.

The second episode is also ending successfully. I know, it is just a begin-
ning, and I still have to go through many more episodes of my life. I certainly
am a better person now, a little more accomplished and a little more expe-
rienced. PhD is just not about getting a degree done or publishing papers or
about scientific contributions. It is also about discovering yourself, understand-
ing your capabilities, learning to have patience, being persistent, fighting back
and not giving up. It is the whole process that counts, not only the end results.
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Confucius has truly said “our greatest glory is not in never falling, but in rising
every time we fall”. I have fallen many times, badly got hurt with every fall,
and have cried my heart out for each hurt. I also know I will still fall, will hurt,
and will cry again. Nevertheless, what matters is that I have stood up from
each fall, and have survived against all the odds. I dare to fall and I dare to
fight back. That is what PhD teaches you. That is what I am proud of. And,
that is what every PhD is proud of.

Kamana Sigdel Delft, The Netherlands, February 2011
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Chapter 1
Introduction

I n today’s world, embedded systems are ubiquitous. Ranging from the
simple, such as smart phones and printers, to the very sophisticated,
such as wafer steppers and medical imaging equipments, all devices are

equipped with a certain kind of embedded system. The design goal of such sys-
tems comes with rather contradicting requirements. For instance, on one hand,
since these systems targets mass producing consumer goods, they should be
cost efficient, small size and have low power. On the other hand, they need to
execute a wide range of functionalities, and therefore must have high perfor-
mance and flexibility. To support such a wide spectrum of functional demands,
the construction of heterogeneous system, which consists of different types of
processing cores, customizable hardware components, and memories, is often
necessary.

The increasing complexity of contemporary embedded systems with their
heterogeneous architecture, and at the same time their conflicting design re-
quirements, complicates the design of such systems. There is a wide range
of design parameters that have to be tweaked and tuned to find the “best”
tradeoff in terms of several design requirements. Thus, the system optimiza-
tion in these systems becomes a challenging task. In order to create an ef-
fective design, performing Design Space Exploration (DSE) to efficiently ap-
praise design requirements, at different stages, is crucial [1–3]. The DSE can

1
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be defined as a process of investigating several “functionally equivalent” im-
plementation alternatives, in order to identify an “optimal” solution [1]. The
state-of-the-art shows many research efforts to tackle challenges while design-
ing embedded systems, by providing a range of DSE approaches to explore
and evaluate extremely large set of design choices [1, 4, 5]. Either analyti-
cal [6], simulation [2,7] or based on optimization algorithms [8–10], targeting
various platforms [11], or fitting diverse application domains, the key require-
ment of such DSE methodologies is to have a systematic approach to effi-
ciently explore a large design space. The DSE at early design stages helps in
rapid investigation of several parameters such as, architectural characteristics,
application-to-architecture mappings, scheduling policies and hardware/soft-
ware partitioning [12–14]. Performing DSE at a high level of abstraction helps
traversing (typically) huge design spaces efficiently. As a result, it can quickly
identify design candidates, which can satisfy design requirements, such as per-
formance, high flexibility and low power. As the design progresses, the design
space can be gradually trimmed and pruned of unsuitable design alternatives
until the most suitable solution is obtained. Therefore, performing such early
explorations enables design decisions to be made quickly, which can signifi-
cantly reduce the overall design time of a system.

In recent years, reconfigurable architectures [15–17] have received an in-
creasing attention due to their adaptability and short time-to-market. One of
the main advantages of reconfigurable architectures is the ability to increase
performance with accelerated hardware implementation, while possessing the
flexibility of a software solution. These architectures can increase the perfor-
mance of an application by mapping selected parts (application kernels) onto
reconfigurable hardware. However, the design of such architectures is sub-
ject to numerous design requirements, such as performance, chip area, power
consumption, and memory requirement. Several choices have to be investi-
gated and evaluated before making any design decision. Therefore, having
appropriate tools and methodologies to assist designers with the exploration
and performance evaluation of such architectures at an early design stage, is of
utmost importance. Towards this goal, the objective of the research proposed
in this dissertation is to develop a system-level DSE framework for modeling
and simulation of dynamically reconfigurable architectures. The framework
can be deployed as a standard modeling and simulation tool, which can as-
sist system designers to perform system-level DSE with respect to hardware-
software partitioning, application-to-architecture mapping, task allocation and
task scheduling of dynamically reconfigurable architectures.
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1.1 Problem Overview

Over the last years, increasing consumer demand and processor technology
growth have created unique opportunities for embedded systems to use a va-
riety of platform architectures, each designed to obtain certain goals. These
architectures can be categorized into two main domains based on their perfor-
mance and their degree of flexibility: the general-purpose computing domain
and the application-specific computing domain. The general-purpose comput-
ing domain provides a high degree of flexibility in terms of the application
area and rapid development. Despite of the high flexibility, the key drawback
of the general-purpose computing domain is its ineffective performance while
computing certain functionalities. On the other hand, the application-specific
computing domain uses specific processors to perform a certain computation.
Such processors are able to satisfy specific requirements by efficiently exe-
cuting the target application(s). As a result, application-specific domain can
provide better performance than general-computing domain while executing
certain applications. An ideal computing technology, however, should com-
bine the flexibility and the high performance of the aforementioned domains.
Reconfigurable computing is becoming increasingly popular as it bears this
promise - combining the flexibility of the general-purpose computing domain
with the performance of application-specific computing domain.

The reconfigurable computing domain uses reconfigurable architectures,
which are typically composed of a General Purpose Processor (GPP) and re-
configurable hardware, e.g. a Field Programmable Gate Arrays (FPGA)1.
Computational intensive application fragments can be accelerated by execut-
ing them on the FPGA, while control intensive application fragments can be
executed to the GPP. In this way, the architecture can adapt to the application,
combining hardware performance with software flexibility. However, such ar-
chitectures are subject to numerous requirements and design constraints, such
as cost, resources, power consumption, timing constraints and dependability.

Dynamically reconfigurable systems can evolve under diverse conditions
due to changes imposed either by the architecture, or by the applications, or
by the environment. In such systems, the design process becomes more so-
phisticated as all design decisions have to be optimized in terms of runtime
behaviors and values. Static exploration is not sufficient to accurately perform
exploration of dynamically reconfigurable architectures, due to their chang-

1Xilinx [18] and Altera [19] are currently the key producers of FPGAs in the market.
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ing and often unpredictable runtime conditions. With runtime exploration, a
design candidate can be evaluated for (dynamically) changing system require-
ments. As a result, by performing a runtime exploration together with static
exploration, reconfigurable system can be evaluated more efficiently in terms
of aforementioned requirements and constraints.

In this dissertation, we describe a system-level framework, which can as-
sist designers in tackling several challenges while designing reconfigurable
systems. The proposed framework combines static and runtime exploration in
order to perform early-stage DSE with respect to hardware-software partition-
ing, task mapping, task allocation, and task scheduling for dynamically recon-
figurable architectures. Before listing the major challenges addressed, and the
core contributions of this dissertation in the next section, we first elaborate the
problem more in detailed with an example.

Heterogeneous reconfigurable systems consist of a range of processing el-
ements with multiple sets of design criteria, such as performance increase, chip
area optimization, and power consumption minimization. For such systems,
the design space that must be explored to arrive at a suitable design grows
enormously due to the large number of design choices to be investigated. Let
us assume that the application description and the architecture resources in
such a system consists of T computational tasks and P distinct computational
processors respectively, as shown in the top part of Figure1.1. Let us also as-
sume that these application tasks have to be mapped onto the given processors.
Each task can be potentially mapped onto every available processor. The map-
ping of a task onto a processor results in a unique mapping choice, which has
a specific set of system attributes, such as performance, power consumption,
chip area and memory requirement, as shown in the middle part of Figure1.1.
The mapping of T tasks onto P processors results into P T possible mapping
choices, each having unique system attributes. As a consequence, an exhaus-
tive evaluation of all potential mappings quickly becomes computationally in-
tractable. The complexity further increases if multiple objectives are subject
to the design evaluation, which is the case with most heterogeneous reconfig-
urable systems. Under such conditions, the design space quickly explodes as
depicted in the bottom part of Figure 1.1. Additionally, the complexity in-
creases when this evaluation has to be performed at runtime, where design
decisions have to be optimized in terms of runtime behaviors/values and the
current system status. Dynamically reconfigurable systems can change at run-
time due to changes imposed either by the architecture, by the applications,
or by the environment. Under such conditions, fast explorations have to be
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Figure 1.1: Design space explosion while mapping T tasks onto P processors. The
mapping is subject to various system attributes such as, memory, performance, power
and chip area. The explosion of the design space is highly affected by T and P num-
bers.

performed to satisfy changing conditions. As a result, performing DSE under
such conditions becomes a challenging task.

In order to create an efficient design, it is essential to perform DSE to eval-
uate design choices before obtaining a suitable solution. In the traditional co-
simulation methodology, detailed simulators are used for performing DSE with
respect to hardware-software partitioning, application-to-architecture map-
ping, task allocation and scheduling [20]. Nevertheless, when the functionality
demand or the architecture intricacy increases, due to enormous explosion of
the design space, it is not feasible to evaluate all possible choices using such
detailed simulators even with the most efficient and the fastest ones. To cope
with such complexity it is essential to employ a system-level modeling and
design methodology. A system-level modeling and design methodology aims
to raise the abstraction level of the design process, and it simulates the system
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using abstract models for the application and the architecture. Such abstracted
models are fast to create and easy to use, thus, they can traverse a large design
space in an efficient manner. Using such models at a higher level of abstraction
facilitates faster design decisions, which in turn can significantly reduce overall
design time. Towards this goal, we are interested in developing a system-level
modeling and simulation framework in order to perform DSE with respect to
hardware-software partitioning, application-to-architecture mapping, task al-
location and task scheduling of dynamically reconfigurable systems.

1.2 Research Challenges

As mentioned before, performing DSE is essential in order to create an efficient
design. Nevertheless, due to an enormous explosion of the design space, it is
not feasible to evaluate all possible choices in a traditional way using a detailed
simulator. As a result, in this dissertation we propose a methodology which can
allow fast and efficient exploration of reconfigurable architectures. The main
challenges addressed in this dissertation are the following.

Challenge 1. How to allow faster exploration of all possible design choices
in heterogeneous reconfigurable systems at early design stages, in or-
der to cope with the growing design complexity?

In heterogeneous reconfigurable systems, the design space that must
be investigated to arrive at a suitable solution grows enormously, due
to the large number of design choices to be assessed. The traditional
co-simulation framework often uses a detailed simulator for performing
DSE of reconfigurable systems. One of the main disadvantages of using
such detailed simulators for performing DSE at early stage is their high
simulation time. Typically, it is inefficient (if not impossible) to explore
and evaluate all possible design combinations using these simulators at
early design stages, due to the large design space of such systems. When
these simulators are applied for exploring such a large design space, they
often suffer from low simulation speed, which hinders fast exploration
that is essential in early design stages.

An obvious solution to address such issues is to raise the level of abstrac-
tion, in order to achieve faster solutions. By abstracting the specification
of the system from the detailed design, we gain the ability to perform
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fast simulation and efficient synthesis of complex heterogeneous and re-
configurable systems. As a result, it is essential to provide a mechanism
that can perform faster exploration of dynamically reconfigurable sys-
tems by using abstract models.

Challenge 2. How to deal with the runtime exploration of the heterogeneous
reconfigurable systems, in order to efficiently evaluate them, and how
to optimize design decisions in terms of their runtime behaviors and
system status?

Reconfigurable systems can evolve under diverse conditions due to
changes imposed either by the architecture or the applications or the
environment. A reconfigurable architecture can evolve under different
conditions - for instance - processing elements shut-down in order to
save power, or extra processing elements can be added in order to meet
the execution deadline. The application behavior changes, due to the
dynamic nature of the application - application load can change due to
the arrival of sporadic tasks. In such systems, the design process be-
comes more sophisticated as all design decisions have to be optimized
in terms of runtime behaviors and values, such as performance, power
and memory. A static exploration under such conditions often results in
compromised accuracy. As a result, it is essential to provide a mecha-
nism to explore and evaluate reconfigurable systems for a (dynamically)
changing system conditions at runtime.

Challenge 3. How to provide a generic modeling and simulation framework
for DSE which allows designers to model and evaluate any kind of
reconfigurable behavior at runtime?

As mentioned in Challenge 2, reconfigurable systems have to be ex-
plored at runtime in order to optimize their designs in terms of runtime
behaviors and values. Therefore, having appropriate tools to assist de-
signers with exploration and performance evaluation of such systems at
runtime is extremely important. Nevertheless, due to the lack of a stan-
dardized modeling and simulation framework for DSE that allows de-
signers to model and evaluate reconfigurable systems’ behavior at run-
time, many research groups rely on their custom-built proprietary simu-
lators. This results in the following problems:

• the evaluation of various design choices using these custom-built
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simulators is exceedingly complex and,

• the comparison between different evaluations received from these
tools is also extremely difficult if not impossible.

Therefore, a standard modeling and simulation framework becomes es-
sential to evaluate reconfigurable systems, which can be re-used between
research groups. Such a framework can provide a standard platform, al-
lowing easy comparison between design evaluations, and hence it can
also be used as a reference tool for future research. Such a standardized
framework can be used as an excellent tool in the research domain of
dynamically reconfigurable systems.

1.3 Research Methodology

This section of the dissertation provides a description of the research method-
ology used to conduct this research. The research methodology used in this
dissertation consists of several phases as shown in Figure 1.2. As it can be
inferred from the figure, the methodology starts with the background research
and problem identification, followed by a conceptual solution and it imple-
mentation, case studies, and finally the result evaluation. Each research phase
results with a specific outcome, which is passed as a starting point for the
next phase. In the following, we will elaborate each of these phases in more
detailed.

• Background research and problem identification

In the first stage, we performed background research in order to iden-
tify the existing problem. The state-of-the-art related to the system-level
design methodology and the DSE of reconfigurable architectures has
been evaluated. The study suggests that performing system-level DSE
at early design stages is an essential requirement in case of dynamically
reconfigurable architectures, especially in the cases where application
requirements and the architecture behavior can change. Furthermore, the
research also suggests that there is no system-level framework for per-
forming faster exploration at runtime for reconfigurable architectures.
Developing such a framework can model, simulate and explore the re-
configurable architectures at runtime at early design stages such that the
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 Background research and Problem Identification 

Problem formulation and Conceptual Solution 

Solution Implementation 

Case Study and Solution Evaluation 

Problem: Lack of standard system-
level DSE framework for modeling 
and simulation of reconfigurable 
architectures at runtime. 

Solution: Combines static exploration 
together with runtime exploration in 
order to provide an efficient 
exploration in terms of accuracy and 
exploration time.  

Implementation: Employs the Sesame 
framework as a modeling and simulation 
platform for system-level DSE. The Sesame 
framework is extended to model and 
simulate reconfigurable architectures at 
runtime.

Evaluation: Based on two case studies for 
the Molen reconfigurable architecture.  First 
case study demonstrates the use of the 
framework. Second case study evaluates 
diverse task mapping heuristics at runtime 
for different architectural conditions. 

Figure 1.2: Research Methodology carried in this dissertation. Background research
and problem identification is carried as the first step, followed by the conceptual solu-
tion and the solution implementation. At the end of the case study, solution evaluation
is performed. The dashed boxes in the figure list the outcome of the each research
phase.
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design time can be reduced.

• Conceptual solution development

The runtime exploration of a design candidate can provide better accu-
racy as it takes into account certain feedback from the system. However,
one of the major problems with runtime exploration is its enormous de-
sign space generated by the runtime system parameters. As a result, per-
forming runtime exploration of all the design candidates, at the runtime,
results with slow exploration. Static exploration performed under offline
system can generally be fast. In order to benefit from both static and
runtime exploration, we propose a two-level exploration methodology,
which combines a static mapping exploration together with a runtime
mapping exploration. At first, the static mapping exploration performed
under static conditions leads to a set of candidate mappings. After that,
the runtime mapping exploration performs a high quality exploration of
these candidate mappings to address any runtime change in the applica-
tion, in the architecture, or in the environment.

• Solution implementation

We developed a framework, called rSesame, which implements the two-
level exploration methodology described in the previous bullet. The
rSesame framework employs the Sesame framework [2, 21] as a mod-
eling and simulation platform for system-level DSE. To this end, we
performed two major extensions on the Sesame framework. Firstly, it is
extended to model and simulate the behavior of reconfigurable architec-
tures. In the second extension, we extended the Sesame framework to
allow runtime exploration of various architecture-application-mappings
of such architectures.

• Case study and result evaluation

We perform two case studies using the rSesame framework. In the first
case study, we demonstrate the use of the framework to perform static
and runtime mapping exploration. For this we instantiate a model from
the rSesame framework for mapping an Motion-JPEG (MJPEG) appli-
cation onto the Molen [22, 23] reconfigurable architecture. Mapping
application only onto the reconfigurable hardware can give better per-
formance, however it consumes more hardware resources. With the run-
time mapping, a tradeoff can be obtained in terms of performance and
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resources. With this case study, we want to show that the rSesame frame-
work can assist to explore such tradeoffs. We show that the model can
be efficiently used to perform several design parameters, such as exe-
cution time, area usage, number of reconfigurations, and percentage of
hardware/software execution. The runtime exploration is evaluated and
compared against static exploration based on the various design param-
eters obtained from the model.

In second case study, we implement diverse task mapping heuristics for
mapping an extended MJPEG application onto the Molen reconfigurable
architecture using the rSesame framework. These task mapping heuris-
tics are compared and evaluated based on various architectural explo-
ration parameters obtained from the framework. These explorations are
performed under different architectural conditions, where different FP-
GAs are used to evaluate a number of application-to-architecture map-
pings under different resource conditions. With this case study, we want
to show that the rSesame framework is flexible and can efficiently assess
various runtime mapping heuristics in terms of various design parame-
ters under different resource conditions.

1.4 Dissertation Contributions

In this dissertation, we focus on the design of system-level modeling and sim-
ulation framework for dynamically reconfigurable architectures to address the
aforementioned challenges. The main contributions of this thesis are listed as
following.

• The proposal of a two-level DSE approach for runtime mapping ex-
ploration of dynamically reconfigurable architectures.

Static exploration is often performed under static system condition,
where any changes in the system, such as the application, the archi-
tecture or the environment, are not considered during the exploration
process. Such exploration can generally be faster, but it may be less ef-
ficient, as it does not take into consideration the runtime behavior of the
system. Due to changing runtime conditions with respect to e.g. user
requirements or having multiple simultaneously executing applications
competing for platform resources, static exploration of a system alone



12 CHAPTER 1. INTRODUCTION

is not adequate for any kind of architectural exploration. With runtime
exploration, a design candidate is evaluated for (dynamically) varying
system constraints, and as a result, any changes in the system are given
as a feedback to the evaluation process. Runtime exploration can provide
better accuracy compared to static exploration, but is typically hard to
obtain due to the large size of the search space generated by the runtime
system parameters.

We propose a two-level approach for performing DSE of reconfigurable
architectures, which combines both static and runtime mapping explo-
ration. The static mapping exploration performed, in the first step, leads
to a set of candidate mappings, and the runtime mapping exploration,
carried in the second step, performs a high quality evaluation of these
candidate mappings at runtime, in order to optimize them according to
any change in the system conditions. In this way, fast exploration of the
static exploration is combined with a detailed evaluation at runtime, to
obtain more efficient DSE.

• The proposal of a system-level modeling and simulation framework for
dynamic reconfigurable architectures, which allows exploration and
evaluation of dynamically reconfigurable systems at runtime.

The current state-of-the-art on system-level DSE efforts for reconfig-
urable architectures, typically, focuses on providing system-level mod-
eling and simulation framework that can perform rapid exploration of
various reconfigurable design alternatives, only considering static sys-
tem conditions [24–26]. To the best of our knowledge, there is no exist-
ing standardized modeling and simulation infrastructure for DSE, which
allows designers to model and evaluate the reconfigurable systems’ be-
havior at runtime. In order to fill this gap, we propose a system-level
modeling and simulation framework, called rSesame, for performing
DSE of dynamically reconfigurable architectures. The proposed frame-
work allows the modeling, simulation and evaluation of reconfigurable
architecture, and to carry out aforementioned two-level DSE approach
of such architectures.

The proposed framework employs the Sesame framework [2, 21] as a
modeling and simulation platform for system-level DSE. In the context
of Daedalus framework [27], Sesame is used to perform static explo-
ration of multimedia Multiprocessor System-on-Chip (MPSoC) archi-
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tectures. In this context, typically, the Sesame framework is limited
to model MPSoC architectures, and to perform exploration of various
application-to-architecture mappings at static time. In our context, we
performed two major extensions on the Sesame framework. Firstly,
Sesame is extended to support the modeling of the reconfigurable archi-
tectures. Secondly, the Sesame is extended to perform application-to-
architecture mapping exploration of such architectures at runtime. The
detailed description on how the Sesame framework is extended to model
reconfigurable architectures at runtime is provided in Chapter 4.

The rSesame framework is a generic system-level framework for per-
forming DSE of dynamically reconfigurable architectures, targeting
streaming applications from the multimedia domain (e.g. JPEG, MJPEG
and MPEG codecs). The main characteristic of streaming applications
is that they are data-flow oriented applications, i.e. large streams of data
have to be processed. As a result, for the application modeling, the rS-
esame framework uses Kahn Process Networks (KPNs) [28] at the gran-
ularity of coarse-grain tasks. A KPN consists of concurrent processes
with explicit communication over FIFO channels. KPNs are determin-
istic and can conveniently capture the parallel and dynamic nature of
streaming applications in the multimedia domain, which is our target
domain. The rSesame framework can perform system-level DSE with
respect to hardware-software partitioning, application-to-architecture
mapping, task allocation and task scheduling, both statically and at run-
time. A number of design attributes, such as execution time, area usage,
number of reconfigurations, percentage of hardware/software execution
and hardware reusability efficiency can be obtained from the framework.
As we will explain in the next chapters, the rSesame framework strives
for several characteristics, such as flexibility, ease of use, fast perfor-
mance and its applicability to a wide range or reconfigurable systems.

• The use of the rSesame framework to evaluate dynamically reconfig-
urable architectures both statically and at runtime, based on important
system attributes.

We present a case study with the rSesame framework by instantiating a
model for the Molen reconfigurable architecture [23]. The instantiated
model is employed to show that the rSesame framework can be effi-
ciently used to perform DSE with respect to application-to-architecture
mappings for the Molen architecture both statically, where the system
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behavior is fixed, and at runtime, where the system can change at run-
time. These mappings are evaluated based on various design attributes
obtained from the model, such as execution time, area usage, number of
reconfigurations, percentage of hardware/software execution, percent-
age of reconfiguration and hardware reusability efficiency. The obtained
results show that mapping all tasks onto a reconfigurable hardware gives
better performance, but it consumes more hardware resources. With the
runtime mapping, a tradeoff can be obtained in terms of performance and
resources. The rSesame framework can be efficiently used to investigate
and appraise such tradeoffs.

• The evaluation of the characteristics of the rSesame framework by
showing that the framework can easily and quickly model, simulate
and compare a wide range of task mapping heuristics at runtime.

We describe a case study to show the characteristics (flexibility, ease
of use, fast performance, and applicability) of the rSesame framework
tested on the Molen architecture by evaluating and comparing a wide
range of task mapping heuristics at runtime. These heuristics are ob-
tained from diverse domains and they are evaluated under different ar-
chitectural conditions. The case study shows that the rSesame frame-
work can be efficiently deployed to model, simulate and compare a wide
range of mapping heuristics from diverse domains based on various de-
sign attributes, under different architectural conditions.

In this research, we do not focus on developing techniques for system-
level hardware-software partitioning, task mapping, task allocation, task rout-
ing and task scheduling. We also do not provide a high-level or a low-level
design for reconfigurable architectures to improve the technology behind these
architectures. Finally, the implementation of the designs on reconfigurable ar-
chitectures to achieve high performance is also not addressed in this research.
The focus of this research is to develop a generic system-level framework for
modeling, simulation and evaluation of dynamically reconfigurable architec-
tures at early design stages. As a matter of fact, the proposed framework is not
limited to a type or a class of reconfigurable architectures. The framework is
generic and can be applied to evaluate all kinds of heterogeneous dynamically
reconfigurable architectures.
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1.5 Dissertation Outline

The contributions of the dissertation are presented over several chapters. The
dissertation consists of four core chapters, each focusing on different aspects.
The organization of the dissertation is as follows.

Chapter 2 provides the necessary overview of the state-of-the-art in the
context of reconfigurable architectures and the system-level design methodol-
ogy. The chapter discusses reconfigurable architectures and their challenges in
the context of the embedded system domain. It also describes the early DSE
and the system-level design methodology in the context of reconfigurable ar-
chitectures. Finally, the chapter surveys and classifies DSE tools and method-
ologies for such architectures.

Chapter 3 presents an overview of the proposed runtime mapping explo-
ration approach for reconfigurable architectures. Firstly, the chapter provides a
detailed discussion of both static and runtime application mapping. Secondly,
the chapter provides an outline of the two-level mapping exploration, which is
based on the combination of static and runtime application mapping. At the
first level, static exploration identifies a set of mappings. At the second level,
these mappings are optimized at runtime to address any changes in the system.

Chapter 4 describes the rSesame framework, which can realize the two-
level mapping exploration discussed in Chapter 3. The framework is a generic
system-level modeling and simulation framework, which can model, simulate
and evaluate reconfigurable systems statically and/or at runtime. The chapter
discusses the methodology behind the rSesame framework, and it also lists the
key features of the framework.

Chapter 5 describes a case study to show the characteristics of the rS-
esame framework tested on a real reconfigurable architecture. The chapter dis-
cusses a model instantiation from the rSesame framework for a dynamically
reconfigurable architecture. The instantiated model is employed to perform
both static and runtime mapping exploration of the given architecture. The
chapter shows that the model can be efficiently used to perform exploration
of many design parameters, such as execution time, area usage, number of re-
configurations and percentage of hardware/software execution, percentage of
reconfiguration, and hardware reusability efficiency.

Chapter 6 provides an evaluation of the rSesame framework by studying
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and comparing various mapping heuristics at runtime, under different resource
conditions, based on a number of design attributes. The chapter evaluates char-
acteristics of the rSesame framework by showing that the framework can eas-
ily and quickly model, simulate and compare a wide range of runtime mapping
heuristics from diverse domains.

Finally, Chapter 7 provides concluding remarks on the work presented.
This chapter summarizes the dissertation, outlines the main conclusions, fol-
lowed by a number of recommendations intended to strengthen the vision of
the system-level DSE of reconfigurable architecture in the academic and the
industry.

This dissertation work has resulted with several numbers of reviewed pub-
lications. The content of this dissertation is based on these publications. At
the end of each chapter, we list the paper(s) on which the content of that chap-
ter is based on. Furthermore, at the end of this dissertation, a list of all the
publication has also been provided.



Chapter 2
Design Space Exploration of
Reconfigurable Architectures

T he ever increasing intricacy of the functionalities, as well as the in-
creasing use of reconfigurable heterogeneous resources significantly
complicates the design of modern embedded systems. Application

complexity increases, either due to large systems with legacy functions, or
due to a mixture of event-driven and data flow tasks. Similarly, architec-
ture complexity intensifies, due to the design of heterogeneous and recon-
figurable architectures, which consists of mixture of different technologies,
processor types and design styles. These systems are subject to numerous
constraints and design objectives such as cost, resource constraints, power
consumption, timing constraints, and dependability. As a result, the design
of heterogenous reconfigurable systems imposes several challenges to system
designers. These challenges include hardware-software partitioning, Design
Space Exploration (DSE), application-to-architecture mapping, and applica-
tion scheduling, among others.

This chapter presents a background study of the various issues involved
during the design of the aforementioned systems, and the common solutions
available to tackle these design issues. Section 2.1 gives a brief overview of
heterogeneous reconfigurable architectures, and the challenges involved while

17
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Figure 2.1: Positioning of different computing domain in terms of flexibility. The
reconfigurable computing domain combines General Purpose Processor (GPP) and
reconfigurable hardware represented by (GPP + RH) in the figure.

designing such systems. Section 2.2 starts with the description of the system-
level design methodology, and it continues further with an overview of the
early stage DSE process. Section 2.3 presents a thorough analysis of tools and
methodologies for DSE in the context of reconfigurable architectures. Finally,
Section 2.4 presents the summary, and some concluding remarks.

2.1 Reconfigurable Architectures

The general-purpose computing domain is based on the Von Neuman comput-
ing paradigm. This domain is designed for general computing and provides a
high degree of flexibility in terms of the application domain. The main advan-
tage of the Von Neuman paradigm is its flexibility and programmability [29].
Despite of the high flexibility, the fact that algorithms must be sequentially
programmed to run on a Von Neuman machine, such as a General Purpose
Processor (GPP), many applications, especially highly parallelizable ones,
cannot be executed with such machines to their potential best performance.
On the other hand, the application-specific computing domain uses specific
processors, e.g. Application-Specific Integrated Circuit (ASIC), Application-
Specific Instruction-set Processor (ASIP), and Advanced Digital Signal Pro-
cessor (ADSP), which are designed specifically to perform a certain task com-
putation, and as a result, are able to satisfy specific requirements. The use
of specific processors to execute the target application(s) is usually faster and
more efficient compared to a GPP based approach. Nevertheless, this perfor-
mance and efficiency comes at the price of low flexibility and low programma-
bility, as any modification in the function implies redesign and re-fabrication
of the hardware, which increases the production cost.

In an ideal case, a computing domain should provide the performance to-
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gether with a certain level of flexibility. The reconfigurable computing do-
main [15–17, 30] attempts to combine these benefits, the performance of the
hardware execution and the flexibility of the software execution. As illustrated
in Figure 2.1, the reconfigurable computing domain can be placed after the
application-specific computing and the general-purpose computing domains,
when comparing them in terms of flexibility. Reconfigurable architectures
use reconfigurable hardware, such as Field Programmable Gate Arrays (FP-
GAs) [31, 32] or other programmable hardware (e.g. CPLD - Complex Pro-
grammable Logic Device [33], reconfigurable Datapath Array - rDPA [34])
to accelerate algorithm execution by mapping compute-intensive calculations
onto them. These hardware resources are frequently coupled with a core pro-
cessor, typically a GPP, as a host processor. The GPP is responsible for con-
trolling the reconfigurable hardware. Parts of application’s operation are ex-
ecuted on the GPP, while the rest are executed on the hardware. In general,
the hardware implementation of an application is more efficient in terms of
performance than a software implementation. By executing selected appli-
cation part(s) with hardware, the performance of the whole application can
be improved. As a result, reconfigurable architectures enhance the whole ap-
plication through an implementation of selected application kernels onto the
reconfigurable hardware, while preserving the flexibility of the software exe-
cution with the GPP at the same time.

The reconfigurable hardware is composed of a set of programmable logic
blocks, which are customizable at runtime. These logic blocks are connected
using a set of routing resources, which are also reconfigurable. An application
can be executed on the reconfigurable hardware by programming the logic
gates within logical blocks, and using the configurable routing to connect the
blocks together to implement the necessary functionality of the program [35].
These logical blocks are easily customizable, and as a result, they can be pro-
grammed to execute different functionalities at different instance of time. The
main advantages of reconfigurable architectures are:

• changing an existing architecture rather than defining a completely new
one. As a result, existing tools can be partially tuned to fit the new
purpose

• support for a wider range of applications compared to application-
specific processors - reconfigurable architectures have been shown to
accelerate a variety of algorithms from different application domains,
such as pattern matching, video streaming, signal processing and super-
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computing.

• rapid prototyping - reconfigurable architectures can be used for rapid
prototyping of different versions of the final product.

• in-system customization - provides capabilities to upgrade in the field
by changing the configuration.

Reconfigurable device can serve as a runtime re-usable hardware device
for performance critical systems, which allows the reduction of the required
hardware resources [16]. The reconfiguration nature of such devices provides
the ability to change its structure at start-up-time as well as at runtime [30].
Consequently, various application kernels can run on the same chip at different
time instances. This offers a great flexibility to accelerate large portions of an
application. However, it also introduces a reconfiguration overhead.

The state-of-the-art shows a various trend in reconfigurable architectures.
We can generally categorize these architectures into various classes based on
their reconfiguration style as shown in Figure 2.2. There are mainly two types
of reconfigurable architectures: statically reconfigurable architectures and dy-
namically reconfigurable architectures. In the following, these architectures
are described in more detail.

2.1.1 Statically Reconfigurable Architectures

In statically reconfigurable architectures [16], the reconfigurable device is con-
figured only at the beginning of the execution, and it remains unchanged for
the duration of the application run. In order to reconfigure a reconfigurable
device in such architectures, the system has to be halted while the reconfigura-
tion is in progress, and then restarted with the new configuration. An example
of such architecture is depicted in Figure 2.3(a), which consists of a GPP and
reconfigurable device, e.g., FPGA, connected via a shared bus. The applica-
tion to be run on the reconfigurable device is implemented in one or more
Reconfigurable Units (RUs) as depicted in the figure.
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Figure 2.2: General classification of reconfigurable architectures based on their re-
configuration style. These architectures can be configured statically and dynamically.

2.1.2 Dynamically Reconfigurable Architectures

Unlike statically reconfigurable architecture, dynamically reconfigurable ar-
chitectures [23, 35] allows runtime reconfiguration of the reconfigurable de-
vice. As a result, the reconfiguration and execution can proceed at the same
time. An example of such architecture is depicted in Figure 2.3(b), where RUs
can be configured at runtime. The reconfiguration data is downloaded from the
external memory, and it is loaded onto the corresponding RUs at runtime. The
reconfiguration controller is responsible for performing this task at runtime.

The runtime reconfiguration in dynamically reconfigurable architectures
can be performed in two ways, static reconfiguration and dynamic reconfig-
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(b) Dynamically Reconfigurable Architecture

Figure 2.3: An example of a) statically and b) dynamically reconfigurable architec-
ture, which consists of a General Purpose Processor (GPP) and reconfigurable device,
such as an FPGA. The reconfigurable device consists of one or more Reconfigurable
Units (RU).

uration, as described in the following.

• In static reconfiguration, the reconfigurable device can be configured
when the system is running but the device is not running. In this case, the
hardware device is not active during the reconfiguration process. When
a partial design is sent to the device, the rest of the device is stopped
and resumed only after the configuration is completed. An example of
static reconfiguration model is depicted in Figure 2.4(a). In order to
load any incoming configuration data in a part of a reconfigurable device
e.g. FPGA, the whole device has been configured. This mechanism is
depicted in the figure, by showing the status of the device, before and
after the reconfiguration.

• On the other hand, the dynamic reconfiguration allows the reconfig-
urable device to be configured when the device is running. It allows
overlapping of the computation of one part of an application with the re-
configuration of another part of the same application. As a consequence,
it can reduce reconfiguration overhead. The dynamic reconfiguration is
further possible in two ways: multi-context reconfiguration (as available
in Xilinx FPGAs [36]) and partial reconfiguration (as available in Xil-
inx [36] and atmel FPGAs), as discussed in the following.
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Figure 2.4: Different basic models of runtime reconfigurations in dynamically re-
configurable architectures. The reconfiguration controller is responsible for loading
configuration data onto the reconfigurable device (e.g. FPGA) at runtime. The run-
time reconfiguration can either be performed at static time, when the device is not
active, or at dynamic time, when the device is still running.
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– Multi-context reconfiguration groups configurations into contexts
(typically), and the reconfiguration is performed based on the con-
text. A reconfigurable device consists of multiple memory bits for
each programming bit location. These memory bits can be thought
of as multiple planes of configuration information. Only one plane
of configuration can be active at a given moment, but the archi-
tecture can quickly switch between different contexts of already
programmed configurations. An example of the multi-context re-
configuration model is depicted in Figure 2.4(b), where only one
context of the reconfigurable device is swapped and configured as
required.

– In partial reconfiguration [36, 37], configurations do not occupy
the full reconfigurable device and only a part of the device can
be configured. While the device is still active and critical parts
of the design are still operating, the controller can load a partial
design into another part of the reconfigurable module. The con-
cept of partial reconfiguration permits to change the structure of
only a part of the reconfigurable hardware, while the rest is still
running. The partial reconfiguration model is depicted in Figure
2.4(c), where only a part of the device is configured, while the rest
is still running another configuration.

The emergence of dynamic partial reconfiguration has added new dimensions
to the reconfigurable computing domain. However, it has also added a new
set of challenges to designers while evaluating such systems. The exploration
and partitioning problem for such systems is not only limited to assignment
and scheduling of tasks to the set of fixed hardware and software resources. It
also has to address the issue of how the reconfigurable space can be efficiently
used. This introduces to a number of other problems, such as task allocation
and task placement, among others. In the following, the issues involved in the
design of heterogeneous dynamically reconfigurable architectures are listed
and discussed in more detail.

2.1.3 Hardware-Software Partitioning

One of the major problems with heterogeneous reconfigurable systems is the
identification of which application tasks should be implemented onto which
resources, in order to improve a particular design metric, such as faster ex-
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ecution, reduced power consumption, and lower hardware cost. Hardware-
software partitioning of reconfigurable systems can be categorized into: the
spatial partitioning problem and the temporal partitioning problem.

2.1.3.1 Spatial Partitioning

The spatial partitioning deals with the allocation of application tasks onto dif-
ferent types of processors. The spatial partitioning places the tasks onto differ-
ent physical areas: the GPP (SW tasks) or a reconfigurable hardware unit (HW
tasks). The spatial partitioning is driven by various objectives, of which some
are the following:

• The basic objective of the spatial partitioning is to achieve a performance
gain. One way to achieve this goal is to place tasks with high execution
latency onto reconfigurable hardware and to execute tasks with lower
execution latency as software. In this way, tasks with higher latency
can be accelerated with a hardware implementation in order to increase
the performance. Another way to achieve a performance gain is to mini-
mize the communication between hardware and software domains. Min-
imizing the transfer of data between hardware and software may again
achieve a performance increase.

• Another objective of spatial partitioning is to efficiently utilize the re-
configurable hardware resources. For example, by placing only the
tasks, those are more beneficial to execute in hardware, on the recon-
figurable unit, the tradeoff between hardware cost and performance can
be achieved.

The criteria mentioned above are not always orthogonal. For instance, map-
ping a task with high execution latency to hardware can increase the com-
munication between hardware and software domains. Nevertheless, it may
also increase the amount of required resources. Various techniques of differ-
ent complexities for spatial partitioning of tasks onto heterogeneous recon-
figurable architectures can be found in the literature. These techniques focus
on achieving one or more of the goals discussed above. A few examples are
presented in [38–42].
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2.1.3.2 Temporal Partitioning

The reconfiguration capability of modern reconfigurable devices allows map-
ping application tasks that are larger than the available hardware resources. To
implement applications of which the requirements exceed the available hard-
ware capacity, it is necessary to perform temporal partitioning. The temporal
partitioning places tasks in separated time slots (temporal independence), shar-
ing the same physical resources on the reconfigurable hardware. It divides a
design into mutually exclusive, limited sized segments, such that the logic re-
quirements for implementing a segment is less than or equal to the capacity
of the available hardware. These segments are called hardware configurations,
and they can be sequentially executed on the reconfigurable hardware. The
temporal partitioning is driven by various objectives, of which some are the
following:

• The minimization of the communication between different hardware
configurations. This can reduce the communication overhead between
different hardware configurations, which in turn, can speedup the whole
application.

• The minimization of the reconfiguration latency. Reconfiguration la-
tency can be avoided by a careful selection of the tasks to load onto
the reconfigurable device. This, in turn, can significantly improve the
performance of the whole applications.

Nonetheless, these objectives also compete with each other. For instance, min-
imizing the communication between hardware configurations can decrease the
load balancing between these configurations. A number of techniques for tem-
poral partitioning of tasks onto sets of reconfigurable hardware have been pre-
sented in [10, 43, 44].

2.1.4 Task Allocation and Placement

With the partial dynamic reconfiguration of dynamically reconfigurable archi-
tecture, tasks can be swapped in or out of the hardware individually at runtime,
without interrupting other tasks running on the same hardware. Such feature
allows better flexibility and device utilization. However, it creates a new chal-
lenge for task placement at runtime. Task placement deals with placing a set of
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HW tasks onto reconfigurable hardware in different stages. The reconfigurable
devices are subjects to various constraints such as area, memory requirement
and power consumption. As a result, placement of tasks onto such reconfig-
urable devices involves various challenges in order to satisfy the given system
constraints. Several techniques for allocation and placement of tasks onto set
of reconfigurable hardware have been presented in [45–48].

2.1.5 Task Scheduling

Task scheduling is another problem which deals with scheduling of various
tasks on architecture. The SW tasks, the HW tasks and the communication
channels shared by different architectural components (such as the GPP and
the reconfigurable hardware) have to be scheduled. This scheduling has to be
done at runtime in order to avoid resource conflicts and to meet the execution
requirements of the application. The task scheduling becomes complicated in
case of partial reconfigurable systems, where few HW tasks can be configured
onto the reconfigurable hardware, while other tasks are still running on the
same device. In such systems, the efficiency of task scheduling directly im-
pacts the overall system performance. Several mechanisms for task scheduling
onto dynamically reconfigurable hardware with partial dynamic reconfigura-
tion have been presented in [49–52].

2.2 Design Space Exploration

The increasing intricacy of the application functionalities and, at the same
time, the escalating use of heterogeneous reconfigurable platforms has sig-
nificantly enlarged the design space of modern systems. Several choices have
to be evaluated and judged for executing any decision at each stage of the de-
sign. Therefore, it is essential to perform DSE at every design stage, starting
from the very early ones, in order to investigate tradeoffs between all possi-
ble design goals, and to select the most appropriate solution. As the design
progresses, these design choices can be gradually refined at subsequent stages
in order to find the final “optimal” solution. DSE is the process of analyzing
functionally equivalent alternative design points, either architecture and/or ap-
plication, in order to identify the “optimal” design point. These design points
are determined based on the various system constraints imposed on the system.
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Figure 2.5: Design Space Exploration (DSE) process between application specifica-
tion and architecture characterization. Such a DSE process contains both the applica-
tion requirements and the architectural constraints.

An example tradeoff for such design can be between the best execution time
and the used area.

The main goal of DSE is to strengthen the synergy between the applica-
tion and the architecture to attain an improvement of a particular design metric,
such as area, performance and power. A number of dedicated tools (generic
or specific), methodologies and environments can be employed to explore the
design space, to select the best architecture and/or application characteristics.
The major challenge of such DSE methodologies is to take advantage of the
application models and choose the best architecture platform available for that
application. As a result, a DSE method has to take into account not only the ap-
plication information, but also the types of resources in the architecture, their
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number and their timing information. To enhance the conjunction between
the application and the architecture, DSE environments link the application re-
quirements and the architecture constraints together. Figure 2.5 depicts such
an instance of a DSE process between an application specification and an ar-
chitecture characterization. Such DSE environments assist in the rapid per-
formance evaluation of different parameters, such as architectural character-
istics, application-to-architecture mapping, scheduling policies and hardware-
software partitioning. Consequently, they enable a designer to identify a design
candidate, which satisfies various design attributes, such as performance, chip
area, memory and power consumption.

2.2.1 System-level Design and Early Stage DSE

In the traditional design process, designers often start with an informal spec-
ification of the system. This is followed by a manual or semiautomatic gen-
eration of several alternative designs, which are subjected to a series of time-
consuming and, typically, ad-hoc evaluations. At the end of such evaluations,
the most suitable design is chosen to be synthesized into an architecture im-
plementation. With the complexities of heterogeneous reconfigurable systems
rising almost daily, such traditional design processes, when applied to the de-
sign of these systems, results in an inefficient design methodology.

The co-simulation framework that is based on the classical design ap-
proach generally starts from a single system specification, which is gradu-
ally refined and synthesized into an architectural implementation. In such
approaches, typically, different types of simulators are employed for the simu-
lation of the application and the architecture. For example, an instruction-level
simulator can be used for the simulation of the application, and the architecture
can be defined using VHDL [53] or Verilog [54] and the corresponding cycle
accurate simulator. The major disadvantage of using such detailed simulators
for performing DSE at an early stage is their high simulation time. Due to
the enormous design space of heterogeneous reconfigurable architectures, it is
almost impossible to evaluate all possible designs at early design stages even
while using the most efficient simulator. Furthermore, it uses a single system
specification to describe the application and the architecture, which makes the
design process inefficient and incomplete.

To cope with the design complexity of modern heterogeneous and recon-
figurable systems, it is essential to have a methodology that can handle the
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Figure 2.6: The Y-chart design scheme. The scheme shows a strict separation between
architecture, applications and mapping/performance analysis.

given complexities with increased productivity and decreased time-to-market.
An obvious solution to address such issues is to raise the level of abstraction,
in order to quickly achieve the solution. By abstracting the specification of the
system from the detailed design, we can gain the ability to perform fast simula-
tion and efficient synthesis of complex heterogeneous and reconfigurable sys-
tems. This had lead to the emergence of a modern design methodology, called
system-level design methodology [55], which tries to overcome the aforemen-
tioned shortcomings of the classical co-simulation framework. The system-
level design methodology aims at raising the abstraction level of the design
process in order to simulate the application and the architecture using abstract
models. The system-level design methodology incorporates ideas from Y-chart
scheme [56, 57]. The Y-chart scheme is based on the separation of concerns
principle, which typically separates various aspects of design. The separa-
tion of various aspects of the design allows for more effective exploration of
alternative implementations. One fundamental separation in design process
suggested by the Y-chart scheme is the separation of the application behavior
and the architecture constraints. Additionally, the separation in computation
and communication behavior in the application can also be realized using the
Y-chart scheme.

The Y-chart design scheme is visualized in Figure 2.6. As it can be seen
from the figure, the Y-chart design scheme recognizes a clear separation be-
tween an application model and an architectural model. The application and
the architectural models are associated with each other using an explicit map-
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ping layer. The application model describes the functional behavior of an
application, which is independent of architectural specifics. Similarly, the
architecture model defines the architecture resources and captures their tim-
ing characteristics. Both models (application and architecture) can be mapped
onto each other, by means of well defined mapping methods. The performance
and estimation are then obtained through the analysis of different mapping in-
stances, which consist of different applications-architecture pairs. Different
instances of this mapping can be evaluated and compared. These estimations
are available as a feedback to revisit certain decision through a feedback to
any of the three blocks as indicated by light bulbs in Figure 2.6. This may in-
spire the designer to improve the architecture and/or the application, or change
the mapping. The separation of application and architecture modeling, as sug-
gested by the Y-chart, allows designers to use a single application model to
map them onto a range of architecture models representing different instances
of a single platform, or the same platform instance at various abstraction lev-
els. Such a capability, clearly demonstrates the strength of decoupling the
application and the architecture model, encouraging the reuse of both types of
models.

With the emergence of the system-level design, it is possible for designers
to model the system at the early design stages and to evaluate their perfor-
mance. System-level design typically uses models that capture the input ap-
plication, the target architecture and the system constraints, such as latency,
throughput and energy dissipation. These high level models minimize the
modeling effort and are optimized for faster execution. As a result, they can
be applied during early stages of the system design of complex heterogeneous
systems. The advantages of the system-level design methodology includes: a)
easy to design and validate, b) quick system evaluation, and c) low cost.

In the DSE framework based on system-level design methodology, de-
signers use system-level models to investigate and explore the system. These
models are relatively easy and fast to construct, and as a result, designers can
apply this to traverse a larger design space at early design stages. System-level
DSE helps in the rapid performance evaluation of different parameters, such
as architectural characteristics, application to architecture mappings, schedul-
ing policies and hardware-software partitioning. Thus, performing DSE at a
higher level of abstraction facilitates design decisions to be made at the very
early stages. This, in turn, can significantly reduce overall design time.

Figure 2.7 depicts the abstraction levels in DSE. The multiple design crite-
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Figure 2.7: Different levels of Design Space Exploration. Models at the top of the
funnel are more abstract and less accurate, but they are easy and quick to build. Con-
versely, models at the bottom are more detailed and accurate, however they are more
difficult and time consuming to build [14].

ria in the system design result in an exponential explosion in the design space.
Furthermore, this is also subject to the multi-dimensional objective space. In
the higher levels of DSE, a huge design space must be explored in a short pe-
riod of time. It is, therefore, important to prune the design space using fast
(and often heuristic) methods. Models at this level have a higher level of ab-
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straction and these are easier to build, but they are less accurate. As design
progresses, more refined and accurate (and thus more expensive) evaluation
algorithms (e.g. simulation) can be applied to a reduced design space. Models
that are used at the lower level incorporate more details, and are more difficult
to build. Nevertheless, they are more accurate. After performing initial cal-
culations, designers propose various solutions. These solutions are evaluated
and compared at a high level of abstraction, and a set of candidate solutions
is identified. The candidate set can be further analyzed at a lower abstraction
level, such as the transaction level and cycle accurate level, and a more refined
set of solutions is identified. Later, the refined solution set can further be an-
alyzed at the synthesizable Register Transfer Level (RTL), in order to reach
an “optimal” solution. In this way, higher abstract models can be used to ex-
plore the large design space at the early stages and more detailed models at the
later stages convey more implementation details and subsequently attain better
accuracy.

2.2.2 System-Level Simulation and Exploration Tools

Over more than a decade, the system-level design methodology has become
an important research field, trying to improve the embedded system design
process. Various system-level design environments have been developed in
order to provide such improved system design. SystemC [58] is a simulation
driven system description language and has become the most popular language
for system-level design. It is widely used for modeling both hardware and
software at various levels of abstraction in many application domains, such as
embedded software, SoC, multicore systems and reconfigurable architectures.

The system-level design framework presented in [59, 60] is a sys-
temC based simulation environment for function/architecture co-design for
Network-on-Chip (NoC) system. The framework enables the quantitative eval-
uation of application-to-platform mappings by means of an executable perfor-
mance model [61]. The methodology presented in [62] is also a SystemC
based design methodology for system-level architectural exploration and per-
formance analysis for hardware-software co-design. Similarly, STepNP [63]
is an exploratory network processor simulation environment for exploring ap-
plications, multiprocessor network processing architectures, and SoC tools. It
is a system-level exploration platform based on SystemC and supports model
interactions, instrumentation and analysis of new processors, coprocessors and
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interconnects. In [64], STepNP has been extended to provide a system-level
exploration platform for network applications based on configurable proces-
sors.

Ptolemy [65, 66] is a system-level design framework that allows simula-
tion and prototyping of heterogeneous multiprocessor SoC systems. It has
well established computational models to express both architectures and ap-
plications at multiple levels of abstraction. Similarly, the Metropolis [67, 68]
framework embodies the platform based design methodology integrating mod-
eling, simulation, synthesis and verification tools within a single framework.
In the platform-based design methodology, a common platform is specified
and shared across multiple applications in a given application domain [69]. It
also emphasizes in systematic reuse of Intellectual Property (IP) core in order
to reduce development risks, costs and time-to-market.

MILAN [14] is a model based integrated simulation framework for em-
bedded system design and optimization, which employs a model based solu-
tion for hardware-software co-design and co-simulation. It integrates various
simulation models at different levels of abstraction. The designers formally
model the target application, underlying hardware, and the system constraints
through the interfaces provided by the framework.

The use of UML in embedded system modeling has also been an active
research area. Modeling frameworks that use UML notations for modeling
reconfigurable architectures can be found in the literature. In such design
frameworks, the design process can begin from use-case models that are grad-
ually refined via set of models towards the implementation. The framework
DIPLODOCUS [7, 70] is UML [71] based environment that allows fast sim-
ulation of SoC at a high level of abstraction. With DIPLODOCUS, applica-
tions are modeled using either a UML class or activity diagrams and archi-
tectures/mappings are modeled using UML deployment diagrams. Similarly,
in [72], the authors proposes a methodology for system modeling based on
a specific UML profile. In the context of their work, a high design abstrac-
tion level for modeling and analyzing hardware resource sharing has been de-
fined. Additionally, a systemC based simulator to simulate modeled systems
and evaluate their performance has been developed. Their methodology is also
based on the DIPLODOCUS framework.

The system-level performance analysis and design space exploration
methodology called SPADE [13] provides a means to quickly build models
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of architectures and applications at an abstract level. The application model
consists of Kahn Process Networks (KPN) [28], which is discussed in more
detail in Section 3.1. The application model describes the functional behavior
of an application. The architecture model defines the architecture resources,
and it captures their timing characteristics. Application models can be explic-
itly mapped onto the architecture models and the performance of the resulting
system can be analyzed via simulation. It is based on the Y-chart principles,
where application models and architecture models are separated via an explicit
mapping step. It distinguishes among application specification and architec-
ture characterization, and it uses a trace-driven simulation technique [73] for
co-simulation of application and architecture models. Decoupling application
and architecture allows the designers to use a single application model to ex-
ercise different hardware-software partitioning and to map it onto a range of
architecture platforms.

Artemis [12] is also a system-level modeling and simulation environment
related to SPADE. Artemis aims at efficiently exploring the design space of
heterogeneous embedded systems architectures at multiple abstraction level.
Sesame [2,6] is developed within the context of the Artemis project for the effi-
cient system-level performance evaluation and architecture exploration of het-
erogeneous embedded systems targeting the multimedia application domain.
Sesame also uses KPN for modeling application characteristics.

Similarly, the framework defined in [74] is a system-level design frame-
work, and it follows the Y-chart design scheme. In this context, the mapping of
applications onto architectures is performed on graph based descriptions and
based on the information provided by the designer. In this case, the mapping
methodology uses abstract information, such as cycle counts.

2.3 DSE Approaches for Reconfigurable Architectures

In general, DSE methodologies can loosely be categorized based on two cri-
teria: i) methods used to evaluate a single design candidate, and ii) methods
used to traverse a design space in order to evaluate more design points [75].
Methods for evaluating a single design candidate can range from purely ana-
lytical methods to system-level simulation, RTL simulation and cycle-accurate
simulation. Correspondingly, traversing of a design space can also be done in
various ways. A trivial method to traverse the design space in order to find the
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Figure 2.8: General classification of DSE methodologies at the system- and micro-
architecture levels. This classification is summarized from the survey presented in [75]

“optimal” solution is to exhaustively evaluate all the design points. For this,
various levels of simulation tools can be used, such as system-level simulation,
instruction-set simulation and cycle accurate simulation. The design space for
a system-level exploration can quickly become large if such exhaustive explo-
ration mechanisms are employed and the tracing of the design space becomes
inefficient. Therefore, this method is prohibitive for large design spaces. Other
method for traversing the design space includes optimization heuristics, which
can be used to iteratively evaluate several design points. Common examples
of such methods are genetic algorithms, simulated annealing, ant colony opti-
mization and tabu search (see Section 2.3.1). This approach of traversing the
whole design space is usually more effective in terms of time. The general clas-
sification of DSE methodologies at the system- and micro-architecture level of
computer architecture domain is presented in Figure 2.8. This classification
is summarized from the survey presented in [75], which provides an excel-
lent survey for evaluating and covering the design space during early design
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development.

Similar classification of DSE methodologies can also be identified for the
reconfigurable system domains. The state-of-the-art shows a variety of tools
and methodologies used for carrying out DSE for dynamically reconfigurable
systems. These methodologies can also be categorized based on the aforemen-
tioned criteria as shown in Figure 2.8. Here, we focus on two main approaches
of performing DSE for dynamically reconfigurable architecture: a) simulation-
based approaches and b) algorithm-based approaches. Note that, these two
approaches are not mutually exclusive. This means that any algorithm can also
be used together with the simulation-based approach to perform a certain kind
of analysis. Furthermore, both approaches can be used to evaluate a single
design candidate, or they can also be used to traverse the whole design space.
However, there is a clear separation between how these approaches can be used
to traverse a design space, such as online and offline. A simulation framework
can traverse certain execution paths in the design space. Typically, the simula-
tion allows an exhaustive traversal of one of more design points in the design
space. When combined the simulation approach with certain algorithms, it can
sample the design space in a specified way. For instance, when the genetic
algorithm is applied together with the simulation, the design space can be ran-
domly traversed. In the rest of this section, these approaches are elaborated in
more detail.

2.3.1 Algorithm-Based Approaches

As it can be inferred from Figure 2.9, in an algorithmic approach, algorithms
of different complexities are used to evaluate a set of criteria for a set of alter-
native designs. These algorithmic approaches can obtain the required results
quickly for a one-time use. However, they are difficult to recreate and repro-
duce in case of comparison and/or re-evaluation. For instance, if the appli-
cation or the architecture changes, the algorithm has to be re-implemented. A
large number of different algorithms can be found in literature for DSE to carry
out hardware-software partitioning, mapping and scheduling of reconfigurable
architecture. For example, dynamic programming [76] branch and bound [77],
Integer Linear Programming (ILP) [10], simulated annealing [52, 78], tabu
search [79], genetic algorithm [80] and ant colony optimization [81]. Many
of these algorithms are used to explore the design space of reconfigurable sys-
tems, and they are widely accepted for carrying out automated DSE for recon-
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Figure 2.9: Classification of DSE Methodologies for reconfigurable architectures.
These methodologies can be classified based on the approach used to perform DSE
and the time of the evaluation.

figurable systems.

Typically, an algorithm-based approach can either be used to evaluate a
single design point, or it can also be used to traverse the whole design space.
The exhaustive search algorithms for DSE evaluate every possible combina-
tion of design points, and as a result, they are less effective in case of large
design spaces. The technique presented in [10] introduces such an exhaustive
exploration method based on ILP for resolving temporal partitioning problems.
Similarly, the authors in [82] proposed a greedy search technique of DSE for
partitioning and scheduling. Chatha et al. [38,83] utilize an iterative algorithm
for DSE based on list scheduling and the methodology presented in [42] em-
ploys a maximum flow formulation for DSE solution for spatial partitioning.
These algorithms are often implemented to optimize or to evaluate new design
alternatives in order to reach the near-optimal design point.

Algorithms, such as the simulated annealing [52, 78], the genetic algo-
rithm [39] and the tabu search [79], randomly sample the design space in order
to traverse the total design space. On the other hand, the ant colony opti-
mization algorithm [81] does not randomly sample the design space, rather
incorporates some knowledge of the design space to analyze the design point.
Wang et al. [81] present an approach based on ant colony optimization, in
which collection of agents co-operate using distributed and local information
to effectively explore the search space. The authors in [80] perform DSE based
on multi-objective evolutionary algorithms, which introduce performance im-
provements for genetic algorithms. The technique in [8] also describes the
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automated DSE methodology for area timing tradeoffs utilizing evolutionary
multi-objective algorithms. Many DSE techniques also employ the combina-
tion of one or more of such algorithms. A combination of the tabu search and
the list scheduling is presented in [84], a combination of the genetic algorithm
and the list scheduling algorithm is presented in [80], and a hybrid strategy for
DSE based on the genetic algorithm and the tabu search is presented in [79].

2.3.2 Simulation-Based Approaches

In the simulation-based approaches, a design candidate is evaluated with a de-
fined set of stimuli. Typically, in such an approach, a standardized simulation
framework is used to model, simulate and explore reconfigurable systems’ be-
havior at various design levels. Such a simulation framework offers modeling
methodologies and simulation tools to evaluate different design criteria. The
simulation-based approach can also be used to evaluate a single design point,
as well as, to exhaustively traverse the given design space. Advantages of
simulation-based approaches include higher model (component) re-usability
and an easy customization of the design. These models are easier to construct
and validate. Therefore, they allow quick design and validation of the system.
The literature shows a variety of simulation frameworks for reconfigurable ar-
chitectures developed by various research groups (See Figure 2.9). Typically,
these frameworks include system-level simulation, RTL simulation and cycle-
accurate level simulation. In this research, we focus only on the system-level
simulation tools. In the following, a number of such system-level simulation
frameworks are summarized.

The simulation framework presented in [85,86], allows a system-level cy-
cle accurate performance evaluation of hybrid reconfigurable processors, at
low architectural level. Within the context of the presented framework, the
processor behavior is modeled by an extension of the SimpleScalar simula-
tor [87] and the reconfigurable unit is implemented in VHDL. Another system-
level modeling and co-simulation environment for reconfigurable architecture
is presented in [88]. This co-simulation approach is designed for power per-
formance tradeoffs in task scheduling, and it is based on clock-gating and
frequency-scaling. The approach used in this framework is based on an object-
oriented system, where discrete event classes and objects are used to model
all the necessary behaviors of reconfigurable systems. Likewise, the model-
ing approach presented in [89] exploits a graph based approach for modeling
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a hardware-software partitioning problem for architectures including recon-
figurable hardware. The application is modeled as a process graph, and the
architecture is modeled as an architecture graph. Each instance of a partition
consists of a process graph, an architecture graph and an explicit communica-
tion channel.

The ADRIATIC project [90] proposes a SystemC based design flow
methodology for DSE, simulation and synthesis of reconfigurable systems.
With the proposed methodology, reconfigurable components are modeled as
classes, and these classes are transformed into modules, which provide the
implemented functionality. These modules are called Dynamically ReConfig-
urable Fabric (DRCF), and they may be created from multiple classes. Simi-
larly, the DSE scheme of [91,92] presents a system-level performance estima-
tion approach for SoC featuring reconfigurable logic. This approach is related
to the methodology presented in the ADRAITIC project. In this context, the
reconfigurable components are used as hardware accelerators.

The SyCERS project [26] is also a SystemC design exploration framework
for SoC reconfigurable architecture. The framework can be used by system
designers to study and verify reconfigurable system specifications. It is built on
top of the SystemC library, and it allows the specification of both architecture,
and system models. Architecture models are implemented as a class, which
are derived from a set of common interfaces provided in the framework. The
system models use the interfaces, which are implemented in the architecture
model, in order to access the hardware resources. As a result, a model can be
tested in any architecture implementing the same interface set.

Rissa et al. [25, 93] have presented a system-level approach based on
OCAPI-xl [58] for modeling and implementing hardware-software systems
that contain runtime reconfigurable systems. OCAPI-xl is a modeling language
similar to SystemC. Similarly, Tiensyrjä et al. [94] present a system-level de-
sign methodology for reconfigurable SoC based on SystemC and OCAPI-xl.
The work presented in [95] also uses SystemC based co-simulation scenarios
to model reconfigurable cores in multiple-context representation of the differ-
ent functionalities.

Perfecto [24, 96] is another SystemC based design space exploration
framework for dynamically reconfigurable architectures. It allows a designer
to perform rapid exploration of reconfigurable design alternatives, and to de-
tect system performance bottlenecks. Given an architecture model and an ap-
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plication model, Perfecto uses SystemC transaction level models to automat-
ically simulate the system design alternatives. Numerous hardware-software
partitioning, scheduling and placement algorithms, can be embedded into the
framework for the system analysis.

The objective of the OverRSoC project [97] is to provide a complete de-
sign framework for exploration and validation of embedded real time operating
systems for reconfigurable SoC. OverRSoC is a system-level modeling frame-
work for the design of a complete reconfigurable SoC platform including pro-
cessor(s), dynamically reconfigurable architecture and operating system ser-
vices. The method provided in the project is based on abstract and modular
SystemC models that allow to explore, simulate and validate the distribution
of operating system services on reconfigurable platforms.

Tseng et al. [98] and Chun-Hsian et al. [99] proposed a UML-based
hardware-software co-design platform for dynamically reconfigurable com-
puting systems targeting network security systems. The proposed design flow
takes a UML-based application model and facilitates the co-synthesis and
rapid prototyping of dynamically reconfigurable computing systems. Simi-
larly, Kangas et al. [100] describes a complete design flow based on UML for
multiprocessor SoC covering the design phases from system-level modeling to
FPGA prototyping.

We can categorize DSE approaches for reconfigurable architectures also
based on the time of the evaluation: offline evaluation and online evaluation.
This categorization is well displayed in Figure 2.9.

2.3.3 Offline Evaluation

Offline evaluation refers to a condition where a design candidate is evaluated
for fixed system constraints. This evaluation is often performed at design-
time. No changes in the system (application, architecture and/or environment)
are given as feedback to the evaluation process. Therefore, the evaluation sim-
ply returns its results without such dynamic consideration. As a result, such
methods are not appropriate for dynamic system conditions. Offline evalua-
tion can generally be faster, but it may be less accurate as the runtime behavior
of a system is mostly captured by offline (static) estimations and predictions.
Examples of such evaluation can be found in [39–42, 83].
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2.3.4 Online Evaluation

Online evaluation refers to the runtime evaluation of the design candidates
where a design candidate is evaluated for (dynamically) varying system con-
straints. Any changes in the system (application, architecture and/or environ-
ment) are given as feedback to the evaluation process. As a consequence, the
design parameters are adjusted during the evaluation based on the changes en-
countered by the system. The runtime evaluation of a design candidate can
provide better accuracy as it takes into account some feedback from the sys-
tem. Nevertheless, such evaluation is typically hard, due to the enormous size
of the search space generated by the runtime system parameters.

Vahid et al. [101] present a simple approach for online evaluation of the
task mapping in which a mapping module evaluates the most frequently ex-
ecuted tasks at runtime and maps them onto a reconfigurable hardware com-
ponent. This work [101], however, has a focus on the lower level and tar-
gets only loop kernels. A similar approach for high-level runtime evaluation
of application mapping is presented in [102] for multiprocessor SoC contain-
ing fine-grain reconfigurable hardware tiles. This approach details a generic
runtime resource assignment heuristic that performs fast and efficient task as-
signment. In [103], the authors define the dynamic coprocessor management
problem for processors with FPGA and provide a mapping to an online opti-
mization based on cumulative benefit heuristics, which is inspired by a com-
monly used accumulation approach in online algorithm work. In the same
way, Compton et al. [104] present runtime resource allocation and scheduling
heuristic for a multi-threaded environment based on the status of the reconfig-
urable system. Correspondingly, Ghaffari et al. [47] presents a dynamic and
online DSE method for task mapping, task scheduling and task allocation for
reconfigurable architectures. The proposed method consists of dynamically
adapting the architecture to the processing requirements. The authors in [105]
also present a runtime optimization targeting the speedup of applications run-
ning on a reconfigurable platform. In this context, an online adaptive decision
algorithm has been proposed. The algorithm is used to determine whether a
task should be executed as a hardware task or a software task.

Likewise, authors in [106, 107] present online resource management for
heterogeneous multi-processor SoC systems, and the authors in [108] also
presents a runtime mapping of applications to a heterogeneous reconfigurable
tiled SoC architecture. The approach of [108] consists of a mapper, which de-
termines a mapping of application(s) to an architecture, using a library at run-
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time. The approach presented by authors in [109] performs mapping of stream-
ing applications, with real-time requirements, onto a reconfigurable MPSoC
architecture. In the same way, Faruque et al. [110] present a scheme for run-
time agent based distributed application mapping for on-chip communication
for adaptive NoC based heterogenous multi-processor systems.

The classification presented in Figure 2.9 shows that the trend of most
current DSE research efforts for reconfigurable architectures focus either on
the second row or the second column of the table. Note that, the mentioned
categories in the classification are not strictly orthogonal to each other, and
there is no absolute separation between the cells, in the row and column. As
a matter of fact, few DSE efforts overlap each other (see the arrows in Fig-
ure 2.9). The DSE methodology presented in [111] combines an algorithmic
approach with a simulation approach for the algorithm and architecture explo-
rations. They use an estimation based algorithm for DSE for reconfigurable
architectures [112] together with a simulation modeling framework. In a sim-
ilar way, the approaches in [102, 113, 114] combine a design time exploration
together with a runtime management to tradeoff faster exploration with accu-
racy. The approach of [114] proposes a customized runtime management to
map an application onto the platform. This customized runtime management
is a pareto-based approach combining the design time application mapping and
platform exploration with a low complexity runtime manager. Similarly, the
approach described in [3, 115] provides a DSE framework for enabling and
supporting runtime resource management for MPSoC. The framework com-
bines the design-time and runtime methodology to provide an “optimal” trade-
off in terms of various parameters, such as power and performance.

The categorization, however, pointed out that there is still a huge gap for
tools and methodologies for online evaluation of reconfigurable architectures,
which fit the last cell in the classification diagram (see Figure 2.9). To the best
of our knowledge, there is no existing framework for DSE which allows de-
signers to model and evaluate the reconfigurable systems’ behavior at runtime.
Due to this lack, various research groups rely on their custom-built propri-
etary models/simulators for evaluating architectures and algorithms. As a re-
sult, the evaluation procedure is complex, and the comparison between various
evaluations is difficult if not impossible. Therefore, it is crucial to have a com-
mon modeling and simulation framework that can be re-used between research
groups or even industry. This can provide a standard platform, which can allow
easy comparison between various evaluations, and hence, it can also be used
as a reference tool for future research. This can add a tremendous value in the
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area of reconfigurable systems by providing an excellent vehicle for research.
Furthermore, we believe, providing such a standardized framework can also
provide an invaluable insight to future generations of (partially) dynamically
reconfigurable systems from the industrial perspective. A parallel example
can be found in the field of micro-architecture with the revolution brought by
the SimpleScalar [87] in the academic, as well as the industrial research prac-
tice. Towards this end, in order to fill this gap, the focus of this dissertation is
to provide a generic system-level modeling and simulation framework, which
can explore and evaluate reconfigurable systems both statically and at runtime.

2.4 Conclusions

This chapter served as a simple introduction to the concepts associated with
the reconfigurable architecture and the system-level DSE. In this chapter, we
discussed the heterogeneous reconfigurable systems, and their challenges in
the context of the embedded system domain. Several challenges encountered
while designing such systems are hardware-software partitioning (e.g. spatial
and temporal partitioning), task allocation, task placement and task schedul-
ing. Moreover, the chapter also presented a description of the DSE and its
importance at the early design stage. Early stage DSE allows to investigate
and analyze tradeoffs between all possible design goals, and to select the most
appropriate solution at early design stages. As a result, performing such ex-
ploration enables decisions to be made quickly, and it can significantly reduce
the overall design time. Furthermore, the chapter also presented the study
of system-level design methodology. System-level design methodology uses
abstracted models to capture the application, the architecture and the system
behavior. As a result, it allows easy and rapid exploration of the various design
alternatives at early design stages. There are several design frameworks sup-
porting system-level design in the context of embedded system domain, which
have also been reviewed in the chapter. Additionally, we presented a classifi-
cation of DSE tools and methodologies for reconfigurable architectures. These
tools are classified based on the approach used for performing DSE (such as
algorithm-based approach and simulation-based approach) and the stages they
are used for carrying out DSE (such as offline and online evaluation).

In the next chapter, we propose a two-level exploration mechanism for
reconfigurable systems, in order to address the various challenges that are en-
countered while designing such systems. The proposed mechanism allows
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exploration and evaluation of reconfigurable system, both statically and at run-
time.

Note. Some contents of this chapter is based on the following article:

K. Sigdel, M. Thompson, C. Galuzzi, A.D. Pimentel, K.L.M. Bertels, rSesame - A Generic
System-Level Runtime Simulation Framework for Reconfigurable Architectures, Proceed-

ings of the International Conference on Field-Programmable Technology (FPT’09), Sydney,

Australia, December 2009, pp. 460-464.





Chapter 3
Runtime Mapping Exploration

D ynamically reconfigurable systems can evolve under various condi-
tions due to changes imposed either by the architecture, or by the
applications, or by the environment. The architectural behavior can

change due to various reasons - e.g. processing elements shut-down in or-
der to save power or extra processing elements are added in order to meet the
real time constraints. Similarly, the application behavior changes due to the
dynamic nature of the application - e.g. the application load can change due
to the arrival of sporadic tasks. In such systems, the design process becomes
more sophisticated as all the design decisions have to be optimized in terms
of runtime behaviors and values. Runtime mapping exploration allows to ex-
plore reconfigurable systems at runtime to optimize application-to-architecture
mappings1 in order to adapt to the changing behavior of the application(s), the
architecture or the environment. Performing such runtime explorations, the
system efficiency can be increased in terms of various system attributes, such
as performance, chip area, memory requirement, and power consumption.

This chapter presents an overview of the runtime mapping exploration of
reconfigurable architectures and various issues involved with it. The chapter
is organized as follows. Section 3.1 summarizes the Kahn process network,

1Application-to-architecture mapping is sometimes referred simply as mapping in this dis-
sertations.
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which is used as the model of computation for representing applications in
this research. Section 3.2 presents the problem definition together with the
tool flow for the runtime mapping exploration. Section 3.3 and Section 3.4
discuss the static and the runtime application mapping respectively. Section
3.5 proposes the two-level mapping exploration approach for reconfigurable
architectures, while section 3.6 presents an overview of the runtime mapping
manager. Finally, Section 4.5 concludes the chapter.

3.1 Kahn Process Networks

The main focus of this research is to develop a generic system-level frame-
work for performing DSE of dynamically reconfigurable architectures, target-
ing streaming applications from the multimedia domain (e.g. JPEG, MJPEG
and MPEG codecs). The main characteristic of these applications is that they
are data-flow oriented applications, i.e. large streams of data have to be pro-
cessed. A Kahn Process Network (KPN) [28] has simple operational seman-
tics, which can conveniently specify stream-oriented data processing behavior
of such multimedia applications. As a result, they are suitable to model the
parallel and streaming nature of these applications. Therefore, in this research,
we specify applications as graphs at the granularity of task or function level
KPNs. In the following, we describe KPN in more detailed.

The KPN model of computation consists of a network of concurrent processes.
These processes run autonomously and communicate with each other over un-
bounded FIFO channels, in a point-to-point fashion, using a blocking-read
synchronization module. In the KPN, each of these processes consists of a se-
quential program that executes concurrently with other processes. When these
processes are mapped onto hardware, such as an FPGA, they are synchronized
via a blocking read and non-blocking write synchronization protocol. The
KPN characteristics can be summarized as follows:

• The KPN network is deterministic in nature, which implies that for any
input there exists the same output. In other words, the output does not
depend on the process execution order. As a matter of fact, it produces
same output for the same set of input, irrespective of the schedule chosen
to evaluate the process networks. This makes KPN easier to be mapped
onto different processors in the architecture.
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Figure 3.1: An example of Kahn Processor Network (KPN). Proc A, Proc B and Proc
C are autonomous processes that communicate with each other using FIFO channels.

• The KPN models have a distributed control without a global scheduler,
and as a result, a partitioning of a KPN over multiple processes is a sim-
ple task. This makes KPNs ideal for mapping onto concurrently avail-
able resources, such as FPGAs. Furthermore, with KPN models, the
exchange of data is distributed over the FIFO channels without having
a global memory structure, and hence resource contention does not oc-
cur. However, this highly depends on the memory/buffer structure in
the underlying architecture model, and how FIFOs are mapped onto this
structure.

• The processes in a KPN are self-schedulable. The inter-processor syn-
chronization is done by blocking reads and non-blocking writes. This
synchronization mechanism can be easily realized in both hardware and
software.

Figure 3.1 depicts an example of a KPN, where Proc A, Proc B, Proc C are
autonomous processes that communicate with each other via FIFO channels.
KPN models are widely used for modeling the parallel nature of streaming ap-
plications as presented in [12, 13, 21]. In [116], KPNs are extended with the
notion of time behavior. In this case, they are used to describe packet process-
ing workloads, and to enable the time dependent behavior. These models can
be manually derived, or they can also be automatically converted from sequen-
tial C/C++. The automatic generation of KPN models from sequential code
has been addressed in [117], [118].
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Figure 3.2: An example of a KPN and a dynamically reconfigurable architecture
considered in the system model.

3.2 The System Model

Let us consider an example of a KPN as depicted in Figure 3.2(a). Addition-
ally, let us consider an example of a dynamically reconfigurable architecture as
shown in Figure 3.2(b). The KPN consists of six different tasks having differ-
ent requirements, and they are suitable for mapping onto different architectural
components. The architecture consists of a GPP, a reconfigurable hardware, a
memory, and a reconfiguration controller, all connected to a peripheral bus.
The reconfigurable hardware consists of one or more Reconfigurable Units
(RUs). The application to be run on the reconfigurable hardware is loaded
onto RUs. The reconfiguration controller is responsible for loading and con-
figuring the application onto the RUs at runtime. Finally, let us consider an
execution of the application given in Figure 3.2(a) on a dynamically reconfig-
urable architecture as the one depicted in Figure 3.2(b). In the following, we
discuss the mapping in more detail.

There are three different types of tasks to be specified in a system: software
tasks, hardware tasks and pageable tasks:

• software tasks (SW Tasks) are the tasks always executed as software on
the GPP;

• hardware tasks (HW Tasks) are the tasks always executed as hardware
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on the reconfigurable hardware;

• pageable tasks (pageable Tasks) are the tasks that can switch between
the GPP and the reconfigurable hardware for their execution.

Given an acyclic KPN and different types of tasks, the primary goal of task
partitioning is to assign each task to a given task set (HW, SW or pageable).
From the KPN given in Figure 3.2(a), let us consider, as an example, the
following task sets:

SW Tasks = (T1)SW
HW Tasks = (T4,T5,T6)HW
pageable Tasks = (T2,T3)pageable

This is called spatial partitioning. The spatial partitioning identifies a set of
tasks that belong to a particular task type. Given the partitioning, task mapping
binds each task to a resource either the GPP or the reconfigurable hardware.
The mapping of HW and SW tasks is already known, and therefore, they are
simply be coupled with their corresponding resources. The HW tasks are cou-
pled with the Reconfigurable Hardware (RH), and the SW tasks are coupled
with the GPP. The mapping of pageable task is, however, not known before-
hand. Therefore, pageable tasks are coupled with any of the available resources
depending on the system conditions. In the mapping phase, particularly, the
pageable task set attains a resource binding.

For the previously mentioned partitioning, we can find, for example, the
following mappings.

Mapping1 : (T1,T2)GPP, (T3,T4,T5,T6)RH
Mapping2 : (T1)GPP, (T2,T3,T4,T5,T6)RH

The example shows that in the mapping phase, tasks T2 and T3 from the page-
able task set attain their resource bindings with the GPP and the RH respec-
tively in Mapping1. In Mapping2, both tasks (T2 and T3) attain their resource
binding with the reconfigurable hardware only.

Reconfigurable hardware is limited by its physical hardware size. As a re-
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sult, not all the tasks mapped onto the hardware can be executed at the same
time. Depending on the size of the reconfigurable fabric, these tasks have to
be divided into different mutually exclusive hardware configurations. Each
configuration can therefore be sequentially executed onto the hardware at each
configuration time. This process is called temporal partitioning.

In the example, let us assume a limitation of two tasks that can be executed on
the given reconfigurable hardware at once. In this case, the execution of tasks
T2, T4, T5 and T6 in Mapping1 and the tasks T2, T3, T4, T5 and T6 in Map-
ping2 are not possible at once. These tasks therefore have to be divided into
different hardware configurations. For example, we can consider the following
configurations.

Mapping1: (T1,T2)GPP, ( (T3,T4)C1, (T5,T6)C2)RH;

Mapping2: (T1)GPP, ( (T2, T3)C1 , (T4, T5)C2 , (T6)C3 )RH

where C1, C2 and C3 are different hardware configurations.

In Mapping1, since tasks T2 and T4 can fit on the reconfigurable hardware at
the same time, these tasks can run in parallel as there is no task dependency
between them according to Figure 3.2(a). On the other hand, though tasks
T5 and T6 are in the same configurations, these two tasks cannot run at the
same time due their dependency. Under such circumstance, task T6 can be
configured and made ready for execution on the hardware, while task T5 is still
executing. In this way, the configuration time of one task can be overlapped
with the execution time of the other task. In similar ways, the configuration
hiding is possible also for the tasks T4 and T5 in Mapping2. This mechanism
is also discussed with an example in Section 3.3.

Definition 1: Given a task set T: { T1, T2, ..., TN } with N > 0 number of tasks
in a KPN, the mapping can be defined as M = { HW, SW }, where

HW, SW ∈ T and
SW ∪ HW = T
SW ∩ HW = φ

Definition 2: Given a task set T: { T1, T2, ..., TN } with N > 0 number of tasks
in a KPN, the goal of the runtime mapping exploration is to find a set of SW
and HW, such that M is “optimal” according to the given criteria.
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These criteria can be defined based on the various design objectives and the
design constraints imposed on the system. The designers can specify different
kinds of design constraints, such as area, communication bandwidth and power
consumption. Additionally, they can also indicate different design objectives,
such as the maximization of the system performance, the minimization of the
communication bandwidth and the minimization of the power consumption.
The runtime mapping exploration takes these objectives and constraints into
consideration, and it tries to find the sets of HW and SW tasks at runtime, such
that the mapping identified is “optimal” in some predefined ways.

3.2.1 Runtime Mapping Exploration Framework

The conceptual framework for the runtime mapping exploration is shown in
Figure 3.3. In the first phase, the application program is transformed into a
KPN model. This transformation can be performed either manually or auto-
matically from sequential C/C++ code by using an automatic KPN generation
tool, such as the one presented in [117].

As a preprocessing phase, the application is profiled to gather various software
estimates. Well established methods and tools (software profilers such as gprof
[119]) can be used for analyzing the application, statically and/or dynamically,
in order to determine relevant information, such as the execution time, the
memory size, and the number of times a task is executed. For these tools, the
worst-case behavior is a reasonable assumption for the system evaluation. As
a result, the quantitative measure obtained through such analysis is, typically, a
worst-case estimate. The profiling of the application provides various software
estimates for a task when it is executed on a microprocessor. We are mainly
interested in the following software estimates:

• the software latency, which is the quantitative measure of the total ex-
ecution time for a task during its execution as software on the micropro-
cessor. The software latency for a task T is denoted as TSW;

• the communication bandwidth, which is the quantitative measure of
the total number of bytes exchanged (written or read) through a FIFO
channel between two processes in a given KPN. It is computed as the
product of the total number of tokens sent through a FIFO channel and
the size (in bytes) of each token sent through that particular channel. The
communication bandwidth between tasks Ti and Tj over a FIFO channel
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Figure 3.3: The conceptual framework for the runtime mapping exploration. The
KPNs are annotated with HW and SW estimates and passed to the Design Space
Exploration (DSE) unit. The DSE unit performs mapping exploration and identifies
various task mappings for the given reconfigurable architecture.

k is given as:

CLij =
N∑
k=1

nijk ·mk, i, j = 1 ... N

where nijk is the number of token sent through channel k between tasks
Ti and Tj, mk is the token size of channel k and N is the total number of
FIFO channels between Ti and Tj.

Similarly, hardware cost prediction models can be used to determine the hard-
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ware attributes of a task. A hardware cost prediction model (e.g. the Quipu
model [120]) can predict different hardware attributes, such as hardware area,
interconnect delays and hardware latency for a task when it is executed on a
given reconfigurable hardware. We are interested in the following hardware
estimates:

• the hardware latency, which is the quantitative measure of the total
execution time for a task executed onto the reconfigurable hardware.
The hardware execution time for a task T is denoted as THW.

• the area occupancy, which is the quantitative measure of the area occu-
pied by a task on a given reconfigurable hardware. Area can be measured
in slices or it can also be expressed in terms of percentage of the total
hardware area. The area prediction for a task T is denoted by AT.

Each task in a KPN is annotated with software and hardware attributes result-
ing in an annotated KPN. As shown in Figure 3.3, the annotated KPN is then
passed to the DSE phase, where several exploration strategies can be applied.
The DSE unit collects a variety of architectural information, such as the free
resources and timing information. Based on the architecture information, the
application information, and using the DSE strategy implemented, the DSE
unit generates several mappings for the underlying architecture. In this case,
DSE is performed in two phases.

In the first phase, a static exploration is performed to compute an initial set
of mappings. In this case, only the static condition of the system is considered.
As a result, the application and the architecture constraints are pre-determined
and fixed. Each mapping consists of a HW and a SW task sets (see Definition
1). Out of these task sets, the designers can specify few tasks to be pageable.
In the second phase, in order to optimize the mapping, these pageable tasks
are optimized. Note that, designers can guide this decision using their own
knowledge about the application. For instance, designers can explicitly decide,
for certain tasks, to be either software or hardware or pageable.

In the second phase of DSE, the mappings from the first phase are opti-
mized to accommodate the runtime condition of the system. This implies that,
if there is any change in the architecture or the application, then this is also
given as a feedback to the decision unit, which adjusts the mapping accord-
ingly. As depicted in Figure 3.3, the Runtime Mapping Manager (RMM) is re-
sponsible for performing such optimization. If any change in the architecture
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and/or the application is reported, pageable tasks may be relocated from the
GPP to the reconfigurable hardware and vice versa, resulting into a different
set of mappings. The performance evaluation unit monitors the performance
impact of each mapping for a particular system function for the given recon-
figurable resources. Furthermore, the evaluation results from the performance
evaluation unit can also be used as a feedback to the DSE unit. Such informa-
tion can assist the RMM for further decision making while identifying various
other mappings. At the end of the exploration, an “optimal” set of mapping is
obtained, which satisfy the given system condition.

3.3 Static Application Mapping

The traditional application mapping approaches for reconfigurable architec-
tures and embedded systems, in general, use static methodologies for mapping
an application onto an architecture [39, 42, 77]. These classical mapping ap-
proaches typically rely on offline information of an application and/or architec-
ture as primary information for application mapping. Such application and/or
architecture information are recorded under static system conditions using var-
ious techniques such as profiling. Static conditions, here, refer to the condition
of the system where the application, the architecture and the environment do
not change. Under static conditions, the application behavior is steady, the
architecture requirement is fixed, and system constraints are predetermined.
Based on static information, various heuristics for application mapping are ap-
plied to execute an application onto the architecture. As a result, a static set
of HW tasks and SW tasks are identified for the architecture mapping. In the
following, an example showing a static mapping behavior for an application is
discussed.

Let us consider the KPN shown in Figure 3.2(a). Let us assume that while
using the mapping heuristic to execute parallel tasks onto the reconfigurable
hardware, the static mapping approach identifies the two sets of tasks: SW =
{ T1, T5, T6 } and HW = { T2, T3, T4 }. The HW task set is then mapped
onto the reconfigurable hardware and the SW task set is mapped onto the GPP.
This mapping is determined statically, thus, each task is mapped onto only one
resource during the entire execution of the application. The mapping behavior
for this example is shown in Figure 3.4(a). As it can be seen from the figure,
the mapping of tasks T2, T3 and T4 onto the reconfigurable hardware, and the
mapping of tasks T1, T5 and T6 onto the GPP, are fixed during their entire
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execution (see period I, II and III in the figure). In this example, we assume
that the given reconfigurable hardware can fit only two tasks at the same time.
As a result, although task T4 can run in parallel with tasks T2 and T3, it can be
executed only after the execution of these tasks.

The mapping depicted in Figure 3.4(a) also takes the reconfiguration over-
head into account. Each hardware task is configured before its execution. The
reconfiguration time for each task in Figure 3.4(a) is shown with shaded lines.
In this example, we assume that all the tasks have the same hardware, soft-
ware and reconfiguration latency. Additionally, the example shows that the
configuration of task T2 is overlapped with the execution of task T1 in order
to gain performance. We call this as reconfiguration hiding. Performance can
be significantly improved by hiding reconfigurations. Note that, reconfigura-
tion hiding is possible only in case of partially reconfigurable hardware, which
allows part of the hardware to be configured while other parts are executing
other tasks.

3.4 Runtime Application Mapping

Dynamic systems can change under various conditions while maintaining both
functional consistency and non-functional design attributes, such as power
consumption, performance and redundancy. These changes can be imposed
and initiated either by architecture, or by an application, or by the environment.
For example, an architecture can change under the following conditions: an
increase or decrease of the available or connected resources, a requirement to
temporarily switch-off one or more parts of the hardware to reduce the power
consumption, or a necessity to achieve high fault tolerant behavior for certain
tasks. At the same time, the application itself can change to maintain a spec-
ified Quality of Service (QoS) for variable processing load of one or multiple
applications, or due to the arrival of additional sporadic tasks, or to uphold the
load balancing.

Applications with varying execution intensities have dynamic tasks. The
processing requirement for such dynamic tasks is not fixed. As a result, when
the application requirements for such tasks change, it can be advantageous to
change their mapping as well. For instance, if the processing requirement for a
task significantly decreases, it may be more profitable to change its execution
from the reconfigurable hardware to the microprocessor, such that the hard-
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Figure 3.4: Tasks mapped onto the GPP and the reconfigurable hardware with the
static and the runtime application mapping. With the static mapping, the same set of
tasks is mapped at different mapping intervals (I, II, III), while with runtime applica-
tion mapping, different task sets are mapped at different mapping intervals.

ware can be used to accelerate other tasks. The static mapping methodologies
however do not cover any of the circumstances discussed above. To cope with
all these situations, it is necessary to support runtime application mapping.

Runtime application mapping allows a task to be executed on various re-
sources at different time intervals during the execution of the application with-
out interfering with the execution of the other tasks. As a result, task mapping
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can be changed whenever required to adapt to the changes imposed either by
the application, or by the architecture, and/or by the environment. In the fol-
lowing, an example showing a runtime mapping behavior for an application is
presented.

Let us consider the KPN given in Figure 3.2(a). An example of runtime
mapping behavior for the application is shown in Figure 3.4(b). The runtime
mapping approach identifies different sets of tasks at different intervals. For
time intervals I to III, different sets of tasks are identified: SWI = {T1, T5, T6},
SWII = {T1, T3}, SWIII = {T1, T2, T3} and HWI = {T2, T3, T4}, HWII =
{T2, T4, T5, T6}, HWIII = {T4, T5, T6} respectively. As it can be inferred
from the figure, these HW and SW tasks are mapped onto the reconfigurable
hardware and the GPP respectively at the corresponding execution intervals.
As a result, in this example, tasks T2, T3, T5 and T6 change their mapping
during the execution from the GPP to the reconfigurable hardware and vice
versa. As in the static mapping case, since the given reconfigurable hardware
can fit only two tasks at the same time, although task T4 can run in parallel
with tasks T2 and T3, the former can be executed only after the execution of
the latter two tasks. Furthermore, with this mapping, the reconfiguration hiding
is possible between task T1 with T2 and T3, task T3 with T5 and task T2 with
T4, respectively.

3.4.1 Pageable Tasks

In addition to the classical sets of HW tasks and SW tasks, the runtime map-
ping recognizes another set of tasks, which is called pageable task set. Page-
able tasks are those tasks that can change their execution resources during their
execution. These tasks can be mapped onto the GPP or the reconfigurable hard-
ware, depending on the runtime status of the system. A pageable task can be
executed as a traditional software program on the microprocessor at one point
of the execution and it can be executed as a hardware circuit on the reconfig-
urable hardware at another point, thus providing a solution, which is a perfect
blend of flexibility and performance. As discussed in the runtime application
mapping example, it can be observed from the example of the runtime applica-
tion mapping in Figure 3.4(b) that task T2, T3, T5 and T6 change their mapping
from the GPP to the reconfigurable hardware and vice versa. As a result, these
tasks are considered as pageable tasks.

Pageable tasks provide great flexibility with their implementation migra-
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tion at runtime between the GPP and the reconfigurable hardware. Each page-
able task must be available in both implemented versions (configuration data
for the reconfigurable hardware and software object code for the micropro-
cessor). Whenever decided by the system, a pageable task may be executed
by picking its corresponding version and loading it into the target execution
environment. Moreover, during execution, a pageable task may be relocated
to another execution environment. Such task relocations can be performed in
different ways. . For example, in one way of performing such relocation, the
task is frozen first, and then its counterpart version is loaded into the target ex-
ecuting environment, the context data is migrated and finally the task resumes
its execution in the new execution environment. For instance, when the execu-
tion requirement of such tasks decreases, they can be executed on the GPP and
when the requirement increases, they can execute on the reconfigurable hard-
ware. In this way, pageable tasks can utilize computation-per-resource cost
more efficiently.

By adding the notion of pageable tasks, dynamism is added to the mapping
methodology, which allows on demand application mapping onto different re-
sources as required. Nevertheless, pageable tasks also have penalty associated
with them. Changing the mapping for a pageable task at runtime involves var-
ious issues, such as saving the state of the task, context switching, and address
space transfer. All these can incur overhead. Typically, a tradeoff has to be
made between the cost and the benefits of changing the mapping for a page-
able task.

The degree of dynamism in the mapping can be decided by the number of
pageable tasks in the system. By allowing all the tasks to be pageable, the de-
gree of dynamism in the application mapping is maximum. At the same time,
it can have the maximum overhead of changing the mapping. As a result, fix-
ing certain tasks as HW tasks and/or SW tasks allows a good tradeoff between
area, performance and the overhead associated with them. Typically, tasks
with constantly higher processing demands can be fixed as HW tasks such
that they can be accelerated with reconfigurable hardware. On the other hand,
tasks with lower processing demands can be fixed as SW tasks. In the same
way, a task with variable intensities can be considered as a good candidate for
a pageable task - as the intensity changes, the task can be mapped onto differ-
ent resources. Several profiling and program analysis tools can be employed
to make such decisions. Nonetheless, this can also be subjectively decided by
the system designers depending on the application and on the architecture.
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By allowing a system to have a mechanism to fix few tasks as HW, SW and
pageable, a tradeoff can be accomplished, for instance between resources and
performance. The execution of a task always on the reconfigurable hardware
consumes expensive resources, while its execution always on the GPP has a
slow performance compared to the hardware execution. A benefit can be made
by changing the execution of tasks between the GPP and the reconfigurable
hardware depending on the requirement of the task. This is where a pageable
task plays an important role.

Figure 3.5 depicts an example, which shows how pageable tasks change
their mapping behavior and use different resources for the execution. As it
can be inferred from the figure, tasks J and D change their mapping at each
period. Task E changes its mapping from HW to SW only once in period i+2,
and it executes as HW again in the last period. Similarly, Task C changes its
mapping only once. This implies that tasks J and D have more flexibility to be
executed on both platforms compared to tasks C and E. Nevertheless, they also
have more overhead associated with their mapping change.

Let us consider the total execution time for a pageable task is denoted by tpage.
This execution time can be calculated as:

tpage =
n∑

i=1

(tHWi + tReconi) +
m∑

j=1

tSWj + p · ρ (3.1)

where, given a task t, tHW is its hardware execution latency, tSW is its software
execution latency, and tRecon is its reconfiguration latency. The task t executes
n times on the reconfigurable hardware, m times on the GPP and it changes
its mapping p times. ρ is the overhead of changing the mapping for the given
task.

The change of mapping for a pageable task from a SW set to a HW set is
beneficial only if the factor of accelerating it with hardware is higher than its
relocation overhead such that:

ρ < r · [tSW − (tHW+ tRecon)] (3.2)

where r is the number of times the task is executed on the hardware instead
of executing it on its software counterparts after changing its mapping. Note
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that if a task configuration is already present in the hardware, the task is not
configured, in those cases, tRecon in Equation 3.2 is set to 0.

With runtime application mapping of tasks onto the reconfigurable architec-
ture, the total application execution time can be calculated as:

Truntime =
m∑

i=1

[tHWi + tReconi] +
n∑

j=1

tSWj +

p∑
k=1

tpagek
(3.3)

where m, n and p are the number of HW tasks, SW tasks and pageable tasks
respectively. As a result, the total application execution time of tasks for the
static application mapping onto the reconfigurable architecture is:

Tstatic =
m∑

i=1

[tHWi + tReconi] +
n∑

j=1

tSWj (3.4)

As the set of pageable task is empty, only HW and SW sets exist in static
application mapping. Let us assume that the performance in this case is mea-
sured in terms of speedup. The corresponding speedup with static and runtime
application mapping can be calculated as follows:

Performance (runtime) =
Truntime

TSW
(3.5)

Performance (static) =
Tstatic

TSW
(3.6)

where TSW is the total application execution time when all the tasks are ex-
ecuted as software. Let us assume that the average area utilization with the
static and the runtime application mapping is Astatic and Aruntime respectively.
The cost of the design is proportional to the area it consumes. The ratio of
performance per cost can be calculated as follows:

Ratio (static) =
performance (static)

Astatic
(3.7)

Ratio (runtime) =
performance (runtime)

Aruntime
(3.8)
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This ratio can be used to compare static application mapping and runtime
application mapping in terms of cost and performance. Moreover, it can also
help to explore if identical performance can be achieved with the runtime map-
ping instead of the static mapping with a lower utilization of resources. The
runtime application mapping can utilize computation-per-resource cost more
efficiently than the static mapping. A mapping with higher performance-per-
cost ratio is better as it better utilizes the area. Obviously, there is a perfor-
mance area tradeoff. The interesting point, however, is to find out the “opti-
mal” cost that can incur in order to achieve a particular performance. Another
important issue is to measure the resource penalty that has to be paid in order
to increase the performance of the application by a certain factor. Pageable
tasks play an important role for exploring such tradeoffs.

3.5 Two-Level Mapping Exploration

The static exploration of a system alone is not sufficient for any kind of archi-
tectural exploration, due to changing runtime conditions of the system. Such
conditions can occur in the system with respect to, e.g., user requirements, or
having multiple simultaneously executing applications competing for platform
resources. Static exploration is carried out often under offline system condi-
tions without considering any change in the system (application, architecture
and/or environment). Such exploration can generally be faster. However, it is
less accurate as it does not consider the runtime behavior of the system. With
offline system condition, applications that run in parallel and their respective
user requirements are unknown. Thus, while performing static exploration,
such runtime behavior of the system is mostly captured by static estimations
and predictions. As a result, the precision of static time exploration is compro-
mised.

On the other hand, with runtime exploration, a design candidate is eval-
uated for (dynamically) varying system constraints. Any change in the sys-
tem (application, architecture and/or environment) is given as a feedback to
the evaluation process. As a consequence, the design parameters are adjusted
during the evaluation based on the changes encountered by the system. The
runtime exploration of a design candidate can provide better accuracy com-
pared to the static exploration, as it takes into account certain feedback from
the system. Nevertheless, such evaluation is typically hard to obtain due to the
enormous size of the search space generated by the runtime system parameters.
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Figure 3.6: The two-level mapping exploration. The first level of mapping exploration
performed statically, identifies a mapping that consists of a set of the HW, the SW and
the pageable tasks. The second level of mapping exploration performed to address
the runtime system condition, optimizes that mapping based on the runtime system
conditions.

In order to benefit from both static and runtime exploration, we propose an
exploration approach, which combines a static mapping exploration together
with a runtime mapping exploration. At first, the static mapping exploration
performed under static conditions leads to a set of static mappings. Each map-
ping is characterized by a set of HW, SW and pageable tasks, and it is subject
to the combination of used architectural resources, costs and constraints. After
that, the runtime mapping exploration performs a high quality exploration of
these task sets to address any runtime change in the application, in the archi-
tecture, or in the environment. In this way, with a faster static exploration, it is
possible to evaluate large set of different mappings, and further on, the detailed
runtime mapping exploration can evaluate a set of selected mappings for better
accuracy.

The two phases of the two-level mapping exploration are depicted in Fig-
ure 3.6. The static mapping exploration is carried out at the first level, and it
results in static sets of tasks. These sets consist of HW, SW and pageable tasks.
With the runtime exploration, these task sets are optimized at runtime. Such
runtime exploration, typically, consists of a low complexity runtime mapping
manager that is responsible for performing runtime mapping decisions in order
to optimize mappings based on runtime changes in the system (the application,
the architecture or the environment). The detailed discussion of such a runtime
mapping manager is provided in Section 3.6. In the following, the two-level
mapping exploration is discussed more in detail.
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3.5.1 Static Mapping Exploration - The First Level

Static mapping exploration is performed at the first level of the exploration.
At the first level, we address the exploration of the system under static condi-
tions. Static, here, refers to the condition of the system where applications, the
architecture and the environment do not change during the exploration. The
system constraints imposed in such conditions are fixed and known during the
exploration. For instance, a condition where a single application is mapped
onto a fixed architecture is an example of a static condition. In this case, the
exploration is performed to address static system condition by iteratively eval-
uating different mappings until the most suitable mapping satisfying the given
system constraints are identified. If multiple mappings are found, one or more
mappings are selected. This set of mapping is considered “optimal” in a pre-
defined way. Static exploration can be carried out using any static exploration
methodology, such as the ones presented in [24, 90, 91]. Each mapping iden-
tified in this case is associated with a set of HW and SW task sets. This is
used as a starting point for the runtime exploration in the second level of the
exploration. At the end of the static exploration process, certain tasks out of
HW and/or SW sets are considered as pageable, which can be optimized with
the runtime mapping exploration.

There are several advantages of performing the static exploration. First,
it allows faster exploration. Second, it is applicable in every embedded sys-
tem environment, as it does not require runtime information. Additionally,
it provides a good coverage for the exploration of an enormous size of the
search space. One of the major disadvantages of static exploration is that the
mapping decisions made under static system conditions can often only cover
certain scenarios, and it fails in efficiency when hard-to-predict system scenar-
ios occur. This process becomes more difficult especially in dynamic systems,
where changes in the user requirements and architectural parameters are often
unpredictable in advance.

3.5.2 Runtime Mapping Exploration - The Second Level

At the second level, mapping exploration is performed to address the runtime
conditions of the system. In this case, the pageable task set identified with
static exploration is optimized in order to address the runtime conditions of the
system. This is done by dynamically changing the mapping, for such tasks,
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from one resource to another at runtime, such that the given design constraints
are satisfied. For example, in order to meet the real-time constraints of a spo-
radic task with faster execution, few tasks can be migrated from the recon-
figurable hardware to the GPP, in order to give priority to the sporadic task.
Similarly, if a sudden increase in the application load is detected, performance
can be enhanced by moving tasks from the GPP to the reconfigurable hard-
ware.

The main advantage of performing runtime exploration is its accuracy
while exploring different mappings. As it considers real runtime system sce-
narios, it can be efficiently used to explore dynamic and hard to predict system
conditions. Nevertheless, runtime exploration is slower compared to static ex-
ploration, when it is used to explore the enormous search space. The main
objective of the runtime mapping exploration is to allow pageable tasks identi-
fied in static exploration to change their mapping at runtime, such that mapping
can be optimized to satisfy any change in the system.

As mentioned before, with the static exploration, tasks are classified onto
HW, SW and pageable sets. In the runtime mapping exploration, these tasks
are refined using the knowledge from any change in the system. To perform
such refinement, we change the mapping of tasks onto different resources at
the runtime. As a result, at the end of the runtime exploration, a refined task
set is obtained together with the policy that is used to perform mapping change
at runtime. Note that the policy for changing mapping at runtime is bound to
the classification of the tasks onto different task sets. On the contrary, differ-
ent policies implemented for changing the application mapping, results with
different refinements.

The runtime mapping exploration involves various issues, which are discussed
in the following.

• The first issue that needs to be addressed while performing runtime map-
ping exploration is to understand the criteria to decide if a current map-
ping is not adequate and it has to be changed. Most importantly it is
necessary to identify whether the current mapping is sufficient to satisfy
the given system constraints or not. For this purpose, several pre-defined
system criteria can be used based on various design parameters, such as
performance, resource utilization and power consumption. Based on
these criteria, the system can decide to change the mapping for one or
more pageable tasks at runtime.
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• A system needs to support task migration from one resource to another
to allow a pageable task to change its mapping at runtime. Task migra-
tion between various resources has always been seen as a way to perform
dynamic load distribution, to ensure fault resilience, facilitate system ad-
ministration and to enhance data access locality [121–124]. In this case,
the migration of pageable tasks is possible from the GPP to the recon-
figurable hardware and vice versa. For instance, if the reconfigurable
hardware cannot accommodate the current HW task, a set of pageable
tasks can be migrated from the reconfigurable hardware to the GPP, thus
freeing resources for its execution. Furthermore, if a part of the recon-
figurable hardware is left idle, and if there are not enough HW tasks,
the pageable tasks must be migrated from the GPP to the reconfigurable
hardware to promote the use of the hardware. Moreover, whenever user
requirements change (e.g. switching to another resolution in a video ap-
plication) or in case of hardware failure, the runtime application can use
runtime task migration to re-allocate resources to overcome the change.

• Once the criteria for pageable tasks have been identified to migrate to a
different resource, another issue that needs to be addressed is to decide
for which pageable tasks to change the mapping. This involves several
issues, such as which pageable task to migrate and where to migrate it.
To tackle this, a system needs to implement certain policies for decision
making. These decision making policies have to be chosen based on
various pre-defined system criteria. Typically, such strategies are cho-
sen based on the tradeoff between the solution space search mechanism
and the computation requirement for that search. At runtime, a fast,
light weight algorithm that comes up with a reasonable good solution is
generally preferable over an algorithm that comes up with an “optimal”
solution requiring a lot of computations. A number of algorithms can be
used for making such runtime decisions. These algorithms are discussed
in Section 2.3.

• Once the migration criteria are known and the mapping decisions are
identified, the mapping decision can be made and the pageable tasks can
be migrated to another resource. Nonetheless, another issue that needs
to be addressed at this point, while migrating tasks at runtime, is how to
handle the task state while migrating the task and how to ensure func-
tional and communication consistencies of the system. For instance, to
maintain the system consistency, the tasks can be migrated at pre-defined
execution points. Performing such migration at predefined execution
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points, the task state can be saved and the context can be shifted to an-
other resource. In this way, the functional as well as the communication
consistencies can be ensured. In another way, the task can be migrated
when it is not actually running but in the waiting state. The task can be
in the waiting state if it is waiting for the resource to be free or due to the
data dependency on another task. Nevertheless, task migration always
incurs some overhead. A tradeoff has to be made between the cost and
benefits of the migration. A number of techniques have been devised to
alleviate this migration cost, as discussed in [121–124].

3.5.3 Two-Level Mapping Exploration Illustration

To illustrate the two-level mapping exploration, let us consider a scenario with
two applications App1 and App2. App1 is a regular application that runs on the
given reconfigurable architecture. Application App2, in this case, is sporadic
and, as a result, it can go in and out of the system at random time forcing the
application to behave dynamically. The first level exploration identifies HW,
SW and pageable task sets for each application separately. In this case, we
assume that each application is separately mapped onto the given architecture
separately. This exploration starts with an initial random solution and different
task sets are identified by searching the design space with iterative simulations.
Let us denote the most suitable task sets for application App1 and App2 as
App1SW, App1HW, App1page, App2SW, App2HW and App2page.

In the second level of the exploration, the application model App3 is consid-
ered as a combination of App1 and App2. Therefore, the initial task sets for
the second level of the exploration can be defined as follows:

App3HW = App1HW ∪ App2HW

App3SW = App1SW ∪ App2SW

App3page = App1page ∪ App2page

In order to address the “dynamic behavior” of the application model App3,
a number of explorations have to be carried out at runtime in order to find
the most suitable mapping for the pageable task set. With the new system
condition, when application App2 starts to execute in the system, the tasks in
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App3page have to compete for resources. As a result, subsets of App3page may
predominantly be executed either on hardware (P) or on software (Q). The task
sets then can be changed accordingly, as follows:

App3HW = App1HW ∪ App2HW ∪ P,

App3SW = App1SW ∪ App2SW ∪ Q,

App3page = (App1page ∪ App2page)− P− Q,

where P ≥ 0, Q ≥ 0.

Note that, although not all the tasks in the HW task set may fit on the recon-
figurable hardware at the same time, all tasks can be executed with a delay
after reconfiguring them onto the hardware. In such cases, in order to avoid
the reconfiguration delay, few tasks from the HW task set can also be moved
to a pageable task set. At any point during the exploration process, designers
can influence the process by manually setting up these task sets using their do-
main knowledge, or by using heuristics. For instance, the designer may decide
to manually fix certain tasks from one task set to another (e.g. when there is
no hardware implementation available for a certain task), in order to reduce or
enlarge the design space for iterative simulation.

System designers can also define, a priori, which tasks are mapped stati-
cally onto hardware or software. At the same time, the designers can addition-
ally define a set of pageable tasks. In such case, the runtime search space is the
largest when all the tasks are defined to be pageable. However, it also has the
maximum overhead for changing their mapping. Typically, system designers
have knowledge about the system (application and/or architecture) and they
can specify certain tasks as hardware to run on the reconfigurable hardware
(eg. computation intensive kernels) and certain tasks as software to run on the
GPP (eg. control dominated tasks or tasks for which no RP implementation
is available). The rest of the tasks can be specified as the pageable task set so
that their mapping can be dynamically optimized based on the system behav-
ior. In this way, system designers can tailor the exploration process to suit their
purpose.
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Figure 3.7: The structure of a typical Runtime Mapping Manager (RMM). A RMM
consists of an application manager, a resource manager, a mapping manager and task
mapping policies.

3.6 The Runtime Mapping Manager

In a reconfigurable system, in order to address the previously discussed run-
time task mapping issues, and to perform runtime mapping exploration, there
is a need for a runtime decision making component. The Runtime Mapping
Manager (RMM) is such a decision making component that can be employed
to make intelligent mapping decisions in order to address the runtime system
conditions. Typically, the RMM resides in between the application and the ar-
chitecture, and it is responsible for making any kind of mapping decisions at
runtime. These mapping decisions can be made based on the dynamic system
conditions, such as the application, the architecture or the system environment.
In general, for dynamic systems the RMM has to identify whether the current
mapping is sufficient to satisfy the given system constraints or not. If not,
then it should also be able to identify for which tasks to change the mapping.
More importantly, the RMM should identify which tasks to migrate and when
to change the mapping to perform the migration. For this, various types of
information about the runtime conditions of the system can be used - applica-
tion information such as task priority, real time constraints, and architecture
information, such as free resources and timing information.

Figure 3.7 outlines the structure of a typical RMM. The main responsi-
bility of the RMM is to decide what services should the RMM provide with
respect to the application and the architecture in order to satisfy various sys-
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tem constraints. Therefore, it is crucial for the RMM to understand both the
application requirements and the architecture behavior. As it is depicted in
Figure 3.7, there are four basic functionalities contained within the RMM:
the application manager, the resource manager, the mapping manager and the
mapping policies. This structure of the RMM is the basis for the runtime map-
ping exploration, which we believe to be generic enough to match many other
industrial and academic platforms that support runtime mapping management.
In this case, we consider that the RMM is placed between the application and
the architecture (see again Figure 3.7). In the actual system implementation,
the RMM entity may be part of the application, middleware, operating system
or even implemented as a hardware component. By separating the applica-
tion management from the resource management and by creating a set of well
defined interfaces between them, we enable reuse and interchangeability of
the runtime management components. In addition, such modularity conforms
to the separation of concerns principles and also complies with the platform
based design paradigm. For this particular reason, the RMM is structured
with functionalities distributed among different modules. In the following,
we present a general description of each component involved in the runtime
mapping management and its respective roles and responsibilities.

3.6.1 The Application Manager

The application manager interacts with the application layer and monitors any
change in the application, such as change in user requirement, arrival of spo-
radic tasks, priority of tasks and real time constraints. It deals with these task
requirements and administers QoS management, e.g., in case to ensure the
execution at a particular frame rate to maintain the required image quality.
The application manager is a platform independent component and it is only
responsible for dealing with applications. In case of any change in the appli-
cation, it notifies the mapping manager for optimizing the mapping decision.
Other application characteristics, such as real time application constraints and
task priorities are also handled by the application manager.

3.6.2 The Resource Manager

The resource manager is a platform dependent component and it gathers infor-
mation about the architecture platform. It administers the architecture behav-
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ior, and it provides various types of architectural information to the mapping
manager, such as free resources and timing information. In case of any change
in the architecture (e.g. component failure, power safe mode), it reflects these
changes to the mapping manager for optimizing the mapping decisions. Fig-
ure 3.8 illustrates the structure of a typical resource manager. It consists of
platform dependent components, the resource monitor and resource functions,
and a platform independent component, the resource management policies.

The resource monitor unit systematically keep track of all the resources
available in the architecture. These resources are stored in a list, which can
also be accessed by the runtime mapping policies unit. If any change in the
architectural resources is noticed, the resource monitor updates its entry in the
list. The implementation of the resource monitor is done in a platform depen-
dent way. As a result, the functionality of the resource monitor can change
based on the reconfigurable platform used. The resource functions are pre-
dominantly derived from the resource list. Consequently, based on the type
of resources considered in the system, the resource functions change, making
them platform dependent components. These resource functions are used by
the mapping manager unit to determine the task mapping. Moreover, the re-
source functions can also be used to determine the overall cost or quality of
the mapping. The resource management policy, on the other hand, determines
how the resource space is searched.

Note that, in this case, there are two management units, one dedicated to
the resource management and another one dedicated to the mapping manage-
ment. In other cases, the resource management unit can be coupled with the
runtime mapping policy. This depends on the choice of the policy and imple-
mentation of the system. The key point however is to separate the manage-
ment decision from the platform dependent component to achieve flexibility
and modularity.

The reconfiguration controller manages the reconfiguration process and
the configuration state of the reconfigurable hardware. The main task of this
unit is to load the compile-time prepared hardware implementation of a HW
task.This involves accessing the hardware library and configuring the appro-
priated task onto the hardware.

The loader, on the other hand, is responsible for loading SW programs
from the software library onto the GPP. Loading a program involves reading
the contents of an executable file, loading the file containing the program text
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Figure 3.8: The structure of a typical resource manager that consists of a resource
monitor, resource management policies and resource functions. The resource man-
ager interacts with a runtime mapping manager, a reconfiguration controller and an
application loader.

into memory, and finally it involves carrying out other required preparatory
tasks to run the executable onto the GPP.

3.6.3 The Mapping Manager

The mapping manager is responsible for making actual mapping decisions. For
executing these decisions, the mapping manager has to employ one or more
mapping mechanisms. A mechanism describes a set of actions, the order in
which they need to be performed, and their respective preconditions. In order
to get such information, the mapping manager collaborates with the resource
manager and the application manager (see Figure 3.7). Based on application
information from the application manager and architecture information from
the resource manager, the mapping manager finds the mapping at runtime. The
mapping manager can be designed to learn from its execution history, to predict
future requirements, or can employ several mapping policies to optimize the
mapping. These mapping policies are implemented as a modular component.
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As a result, a variety of policies can be easily plugged in and out of the system.

3.6.4 Mapping Policies

The runtime mapping manager employs various strategies for decision making.
Different types of algorithms can be used in this context depending on, e.g., the
tradeoff of mapping speed versus mapping quality. Optimal mapping policies
often require longer time for finding a “best” mapping compared to heuristics
based solutions that use few simple rules to determine a “good” solution. These
decisions can be categorized as static and dynamic based on when the task
assignment is performed. More information about different types of mapping
algorithms has been presented in Section 2.3. The task mapping decision of
such policies is also influenced by the platform-specific resource functions.
The mapping manager can choose one or more of these policies to optimize
the mapping based on the system condition. Note that, in this context, there is
a dedicated component for carrying out the mapping decisions. Nonetheless,
this decision making process can be implemented in the actual system in any
number of different ways, e.g., in the application, in the hardware or in the
operating system as a system policy.

3.7 Conclusions

In this chapter, we presented an overview of the runtime mapping exploration
of reconfigurable architectures. Within the context of the dissertation, the ap-
plications are represented by using the KPN model of computation. We iden-
tified three types of tasks in the system: software tasks, hardware tasks and
pageable tasks. The chapter provided a detailed discussion of static and run-
time application mapping. Static mapping is performed under static system
conditions, where tasks are mapped onto only one resource during their exe-
cution, while runtime application mapping allows the tasks to be executed on
different resources during their execution. Based on the static and the runtime
application mapping, the chapter outlined the two-level mapping exploration
mechanism, in which both static and runtime mapping explorations are per-
formed. At the first level, a static exploration is performed, which identifies a
set of candidate mappings that is obtained by considering only the static con-
dition of the system. These mappings consist of HW, SW and pageable tasks
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sets. After that, at the second level, the runtime exploration performs a high
quality exploration at runtime to optimize these mappings. More importantly,
the mappings are optimized by allowing pageable tasks to be executed on dif-
ferent resources during their execution, such that the any change in the system
(the application, the architecture or the environment) is satisfied. Finally, the
chapter elaborated the definition and the structure of the RMM. The RMM is
a key component, which performs an intelligent mapping decisions at runtime,
by deciding where and when to change the mapping of pageable tasks, based
on the imposed system condition. The RMM consists of a resource manager,
an application manager, a mapping manager, and mapping policies.

In the next chapter, we propose a framework that can realize the pro-
posed two-level mapping exploration. The proposed framework can be used
to carry out both the static and the runtime mapping exploration of recon-
figurable architectures. Additionally, the framework can model and simulate
reconfigurable architectures, and it can also perform system-level DSE with
respect to hardware-software partitioning, task mapping, task allocation and
task scheduling.

Note. The content of this chapter is based on the the following articles:

K. Sigdel, M. Thompson, A.D. Pimentel, C. Galuzzi, K.L.M. Bertels, System-Level Runtime
Mapping Exploration of Reconfigurable Architectures, Proceedings of the Reconfigurable
Architectures Workshop (RAW’09), Rome, Italy, May 2009, pp. 1-8.

K. Sigdel, M. Thompson, A.D. Pimentel, K.L.M. Bertels, Towards System Level Runtime
Design Space Exploration of Reconfigurable Architectures, Proceedings of the Annual

Workshop on Circuits, Systems and Signal Processing (ProRISC’08), Veldhoven, The Nether-

lands, November 2008, pp. 1-8.



Chapter 4
rSesame Framework

I n the previous chapter, we proposed the two-level mapping exploration
methodology, which can explore reconfigurable architectures statically as
well as at runtime. In this chapter we develop a sytem-level framework,

called rSesame, which can implement the two-level mapping framework de-
scribed in the previous chapter. The rSesame framework is a generic model-
ing and simulation framework, which can explore and evaluate reconfigurable
systems at the early design stages. The framework can be used to perform
system-level Design Space Exploration (DSE) by performing rapid investiga-
tion of several parameters such as, architectural characteristics, application-to-
architecture mappings, scheduling policies and hardware/software partition-
ing, both statically and at runtime. It provides various important system at-
tributes, such as execution time, number of reconfigurations, time-weighted
area usage, percentage of hardware-software mapping, percentage of reconfig-
uration, and hardware reusability efficiency. The main features of the rSesame
framework include flexibility, ease of use, fast performance, and its applicabil-
ity to a wide range or reconfigurable systems.

The rSesame framework has been implemented on top of the Sesame
framework. Sesame [2, 21] is a modeling and simulation platform for system-
level DSE. To this end, the Sesame framework is extended to model and sim-
ulate reconfigurable architectures at runtime. In this chapter, we will demon-

77
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strate the modeling methodology behind the rSesame framework with an ex-
ample of a generic reconfigurable architecture. More specifically, we discuss
how the Sesame framework is extended to model reconfigurable architectures
both statically as well as at runtime. We performed two major extensions on
the Sesame framework. Firstly, it is extended to model and simulate the be-
havior of reconfigurable architectures. In the second extension, we extended
the Sesame framework to allow runtime exploration of various architecture-
application-mappings of such architectures. The rSesame framework consists
of the aforementioned extensions.

The chapter is organized as follows: Section 4.1 presents an overview of
the Sesame modeling and simulation infrastructure. Section 4.2 discusses the
necessary extensions in the Sesame framework to model reconfigurable ar-
chitectures, and Section 4.3 discusses a necessary extension in the Sesame
framework to facilitate the runtime application mapping of such architectures.
Section 4.4 presents the rSesame framework, which consists of the aforemen-
tioned extensions. Finally, Section 4.5 provides the summary of this chapter.

4.1 The Sesame framework

In this section, we provide background information about the Sesame frame-
work. The Sesame modeling and simulation environment [6,21,125] is geared
towards fast and efficient exploration of embedded multimedia architectures,
typically those implemented as heterogeneous MPSoCs. Using Sesame, a de-
signer can construct system-level performance models, map applications onto
these models, and explore the design space through high-level system sim-
ulation. For this purpose, Sesame uses a technique called trace-driven co-
simulation [21] to map application models onto architecture models. Sesame
adheres to a transparent simulation methodology, where the concerns of the
application and the architecture modeling are separated via an intermediate
mapping layer. An application model describes the functional behavior of an
application. An architecture model defines the architectural resources and con-
straints. In the following, each layer of the Sesame framework is discussed in
more detail.

The application layer

Sesame uses the Kahn Process Network (KPN) model of Computation [28]
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Figure 4.1: The three layers in the sesame infrastructure. The application layer and
the architecture layer are separated via an intermediate mapping layer that consists of
virtual processors.

for application modeling. A KPN model consists of concurrent Kahn pro-
cesses that communicate using blocking read/non-blocking write synchroniza-
tion over unbounded FIFO channels. These models are suitable for model-
ing stream-based (multi-media) applications. Additional information on KPN
models has been presented in Section 3.1.

Sesame employs trace-driven co-simulation. To this end, the code of each
Kahn process is equipped with annotations that describe the action of each
process. When such a process is executed, it generates its own trace of events
which represent the application workload imposed on the architecture by that
specific process. These events are coarse-grained computation and commu-
nication operations, such as read (R), write (W) and execute (X). The events
R and W describe FIFO channel communication and the event X describes
the computations performed by a Kahn process (typically a function). These
events are actual primitives that drive the architecture simulation. They are col-
lected into event traces that are mapped, using an intermediate mapping layer,
onto an architecture model (see Figure 4.1).

The mapping layer

In the Sesame framework there is an intermediate layer between the application
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model and the architecture model called mapping layer. The mapping layer
acts as an interface for mapping Kahn processes from the application layer
onto the architecture model components. This layer is also responsible for the
scheduling of application events at runtime when multiple Kahn processes are
mapped onto a single architecture component.

The mapping layer consists of Virtual Processors (VPs) and FIFO channel
components of a bounded size, which are connected using the same network
topology as the application model (see Figure 4.1). The main purpose of the
VPs is to forward the event traces to components in the architecture model and,
hence, to drive the architecture model component for co-simulation. This for-
warding is done according to a user-specified mapping of application processes
and communication channels. Application processes are mapped onto proces-
sors and communication channels are mapped onto communication structures.
The components in the mapping layer simulate the synchronization of commu-
nication events in such a way that forwarded events are “safe”, meaning that
they do not cause any deadlock due to unmet data dependencies when applica-
tion processes are mapped onto shared resources. This mechanism also ensures
deadlock free scheduling when application events from different event traces
are merged. Unlike the application model, which is un-timed, the mapping and
architecture layers are modeled in the same timed simulation domain.

The architecture layer

The architecture model is constructed from generic building blocks provided
by a library, which contains template performance models for processors, co-
processors, memories, buffers and buses. The architectural timing conse-
quences of the events are modeled in the architecture model. This requires
each Kahn process and channel of the KPN to be mapped onto one component
of the architecture model. The trace events generated by each Kahn process
are routed via the mapping layer to their corresponding architecture compo-
nent, which then models the appropriate timing consequences.

The processor components of the Sesame framework model the proces-
sor utilization of the simulated architecture. Similarly, interconnection and
memory components model the utilization and the contention caused by com-
munication events. For modeling the processor utilization, the processor com-
ponent uses a lookup table that associates the computational (X) events to an
execution latency. By changing the latency assigned to these events, a generic
processor model component can simulate the timing behavior of a particular
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simulated processor, which can either be a reconfigurable processor or a ded-
icated hardware implementation. These latency values may be obtained from
existing literature, hardware measurements, rough estimates, predictions tools,
such as the one presented in [120], or even from more detailed simulators, such
as the one described in [2].

The initial high level of abstraction of the Sesame models allows for very
fast simulation: typically in the order of 1 system-level application/architec-
ture co-simulation per second. By extending the Sesame framework with a
structured exploration environment as done in the context of Daedalus [126]),
it is possible to efficiently perform early DSE.

4.2 Extension of the Sesame framework to model
Reconfigurable Architectures

In this section, we describe an extension of the Sesame framework for mod-
eling reconfigurable architectures. The extensions listed in this section are
designed to be as generic as possible, and applicable to any type of recon-
figurable architecture. However, to describe some extensions, we assume a
typical reconfigurable architecture. For this purpose, we consider the dynam-
ically reconfigurable architecture as depicted in Figure 4.2. The architecture
consists of a core processor that is a GPP, and a reconfigurable hardware. The
reconfigurable hardware consists of one or more Reconfigurable Units (RUs).
The GPP, RUs, a memory and a reconfigurable controller, all are connected
using a shared bus. In order to speedup the execution of a program by using
reconfigurable hardware, parts of the program code can be implemented on
these RUs. The reconfiguration controller configures these task onto RUs at
runtime.

To model the correct behavior of the reconfigurable architecture with the
Sesame framework, the following behaviors have to be modeled.

• The main feature of dynamically reconfigurable architecture includes
task configuration at runtime. When a task is mapped onto RUs, the
task is configured, which adds a certain reconfiguration delay. Such a
reconfiguration delay has to be modeled.

• The tasks mapped onto the RUs consume certain amount of resources



82 CHAPTER 4. RSESAME FRAMEWORK

General Purpose 
Processor

B
us

Reconfiguration 
Controller

R
ec

on
f H

ar
dw

ar
e

RU

RU

Memory

Figure 4.2: A generic reconfigurable architecture with a GPP and a reconfigurable
hardware, which consists of one or more RUs. The GPP, RUs, the reconfiguration
controller and the memory, all are connected to a peripheral bus.

in the reconfigurable hardware. Such a resource occupancy has to be
modeled.

• Similarly, the reconfigurable hardware is limited by the resources. When
the tasks are mapped onto the hardware, these resources has to be man-
aged efficiently at runtime. Such a resource management behavior also
has to be modeled.

In order to accommodate the above listed behaviors of the reconfigurable
architecture, we implemented extensions in each layer of the Sesame frame-
work. In the following sections, we describe these extensions in more detail.

4.2.1 Construction of the Reconfigurable Architecture

As in conventional heterogeneous MPSoC architecture design, the reconfig-
urable architecture also consists of many different types of architectural com-
ponents, such as processors, memories and interconnects. To model recon-
figurable architectures, first utmost requirement is to be able to construct an
architecture that consists of these components. Architecture models in the
Sesame framework can be constructed from generic building blocks provided
as a library, which contains templates for processors, memories, buses and
on-chip networks. Several features have to be added to these components, in
order to accommodate the additional features of reconfigurable architectures
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as discussed before. With these features added in these components, a recon-
figurable architecture can be easily constructed using the Sesame templates.

As mentioned before, reconfigurable architectures are generally composed
of two kinds of architectural components: the GPP and RUs. The RUs are
connected via a common bus to a shared memory or a different network com-
ponent (e.g. a crossbar). A task to be executed in the hardware is mapped
onto these RUs. With the Sesame framework, we intend to explore reconfig-
urable architectures at a high abstraction level. At this level of abstraction, the
characteristics of the GPP and RUs are comparable, except that RUs have a few
additional attributes, such as resource occupancy and the reconfiguration delay.
As a result, in the rSesame framework, the GPP and RUs can be represented by
one and the same modeling component for a processor. In this case, the RUs
are given extra attributes for resource occupancy and reconfiguration delay, in
addition to the general attributes, such as task execution latency. Since the
functionality of the RU changes depending on the task mapped onto it, there
can be as many RUs as the number of tasks mapped onto the reconfigurable
hardware, and each RU can have different attributes. In Figure 4.3, an exam-
ple of a reconfigurable architecture constructed from the Sesame framework is
depicted together with the mapping of an application onto it.

4.2.2 Modeling of the Reconfigurable Behavior

Dynamic reconfiguration provides the ability to change the hardware configu-
ration during the execution of the application. Partial dynamic reconfiguration
allows the overlapping of computations with reconfigurations to significantly
reduce the reconfiguration time overhead. Through partial reconfiguration,
tasks can be reconfigured in hardware individually, without interfering with
other tasks already running on the same hardware in other stages. This enables
a larger percentage of the application to be accelerated on the reconfigurable
hardware, hence reducing the overall execution time. However, the recon-
figuration of the hardware introduces a reconfiguration delay (e.g. bitstream
loading time for an FPGA), which can negatively affect the performance, and
it can also increases the power consumption [16, 32].

The main feature of the dynamically reconfigurable architecture is task
configuration at runtime. Typically, the reconfiguration controller is respon-
sible for performing such a functionality in the reconfigurable architecture as
shown in Figure 4.2. Depending on the availability of the reconfigurable re-
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Figure 4.3: The three layers in Sesame’s infrastructure for reconfigurable architec-
tures. The architecture layer consists of a GPP and one or more RUs. The dashed
lines in the application layer are the token channels added for synchronization pur-
poses.

sources (e.g. area slices, memory components, lookup tables, registers, DSP
elements, wire segments and interconnects) RUs can be configured and un-
configured on a particular reconfigurable hardware at runtime. To model this
behavior with Sesame, we added an extra component in the architecture layer,
called the Resource Manager (RM). The RM is responsible for keeping track
of RUs and the resources consumed by them, and to configure/un-configure
them on the reconfigurable hardware as required. When configuration data is
loaded on the hardware for a particular task, the corresponding RU has to be
configured on the reconfigurable hardware and the reconfiguration delay has
to be modeled for that particular RU. The RM also allows to perform such
functionality. All RUs are connected to the RM, and the RM keeps track of
them.

In summary, the responsibility of the RM is twofold. First, it is responsi-
ble for configuring and releasing RUs based on the resource availability in the
reconfigurable hardware. Second, it is responsible for managing the resources
on the reconfigurable hardware. In the following, we describe this process with
an example. Figure 4.4 shows the interaction between RUs and the RM. As it
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Figure 4.4: The sequence diagram showing an interaction between RUs and the Re-
source Manager (RM). The RM synchronizes various RUs and keeps tracks of archi-
tectural resources.

can be seen from the figure, when a task needs to be mapped onto a RU, the
latter sends a request to the RM to be configured. The RM checks for the avail-
ability of resources1 on the reconfigurable hardware, and it decides whether or
not to configure a particular RU. If there is enough area available, the RU is
configured immediately (RU1 and RU2 in Figure 4.4), otherwise it is blocked
until sufficient area becomes available (RU3 and RU4 in Figure 4.4). Once
the necessary area is available, the RU is configured and blocked to model the
reconfiguration delay before it initiates the real execution of the events. This
blocking time is added to the total simulation time of the system. In this way,
the effects of the reconfiguration delay on the system performance are mod-
eled. In the example shown here, a simple first fit algorithm is used to
schedule RUs onto the reconfigurable hardware, according to which, the first
RU that fits onto the available hardware area is configured first. However,
more refined task placement and scheduling algorithms for the reconfigurable
hardware, as described in [45, 47–49, 122, 127], can also be implemented as a

1In this particular case, we use area as a quantitative measure indicating the amount of
resources used by the RU on the reconfigurable hardware, typically an FPGA.
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plug-in to the reconfiguration manager.

Note that, in Figure 4.3, the RM is modeled as a part of the architecture
layer, assuming that the management of RUs is performed in the architecture
layer. However, in other reconfigurable systems, this management can also be
defined in other fashions, such as at operating system or at user-level. In those
cases, the functionality of the RM can be modeled in any other layer of the
framework, such as in the mapping layer. A detailed discussion of a typical
RM has been presented in Section 3.6.

4.2.2.1 Addition of the Reconfiguration Event

To indicate possible reconfiguration points, an extra execute event (Xp ), is
added in the application layer. This reconfiguration point can be defined as a
possible point for the reconfiguration of a task onto the reconfigurable hard-
ware. Note that, a task is not always configured when mapped onto a reconfig-
urable hardware. If the hardware configuration for the task is already present
in the hardware, the task is not reconfigured. Therefore, based on the Xp event,
the RM can decide when to configure and/or un-configure a particular task.

As discussed in Section 4.1, in a Sesame application model, a Kahn pro-
cess generates events when reading (R) or writing (W) to/from a channel, and
while performing computations (X). Often a Kahn process reads data, per-
forms computation on that data and writes the result to another process. Since
our Kahn processes are typically a part of a streaming application, each pro-
cess usually consists of a loop that iteratively performs computations on certain
data items, which are passed on through the network. A single iteration of the
loop can be considered as a complete and atomic operation to be performed by
the process.

With the aforementioned assumption, the Xp event is added at the end
of each iteration of our Kahn process, in order to enable the reconfiguration
point. By adding the Xp event, at the end of each iteration, reconfiguration is
allowed only after a Kahn process performs a complete iteration of R, X and
W events. In our Kahn process, this assumption about atomic execution makes
sense because un-configuring the RU, once the data has been read, would sim-
ply cause the data to be lost. Similarly, the RU should not be un-configured
before writing the result, otherwise the computed result could be lost. In this
way, a process guarantees that it generates Xp event only after it finishes a set
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of events for that iteration. As a consequence, its corresponding RU is auto-
matically required to complete a part of the application execution before being
un-configured from the reconfigurable hardware. The implementation is per-
formed in such a way that whenever an Xp event is encountered, the RU can
always request the RM for its un-configuration. However, the RU can always
request for its configuration (if not already configured), whenever it receives
any other event.

4.2.2.2 Managing Reconfigurable Resources at Runtime

The basic Sesame models are self-schedulable. This implies that R, X and W
events from the application models are automatically scheduled to the architec-
tural component without having an explicit (global) scheduler. Unlike simple
processors that model only the simulation time, the RUs in the reconfigurable
architectures, should model the simulation time and the hardware resources
they consume. As a result, R, X and W events associated with RUs should
also be able to model the simulation time and the resources they consume in
the hardware. Therefore, adding one or more RUs on the reconfigurable hard-
ware without considering their resources requirements, can create a deadlock
situation and jeopardize the self-schedulable property of the Sesame model.

Reconfigurable architectures are limited by the available resources. If not
enough reconfigurable resource is available to load a task, the latter cannot
be executed on the hardware. Such a resource constraint imposed by the re-
configurable hardware can add dependencies between the tasks mapped onto
the RUs. As a result, if there are not enough resources available to load a
RU, the latter has to wait until another RU executing on the hardware finishes
its execution. While modeling reconfigurable architectures with the Sesame
framework, in some cases, such resource dependencies between RUs can lead
to deadlock situations in the architecture model. To avoid such deadlocks, we
have restricted the KPN in the application layer to be acyclic. Additionally, to
make sure that only safe events are forwarded from the mapping layer to the ar-
chitecture models, we extended the application model to support an additional
token channel, such that, each two communicating Kahn processes are also
connected with a token channel. This can be better explained with an example
in the following.

Let us consider a KPN as shown in 4.5(a). In the example, let us assume
that each of the processes A, B and C requires more than half of the total
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Figure 4.5: An example of a KPN with and without token channel. The corresponding
event sequences for each process are listed in the figure. The event sequence with
token channel has two extra read Rat and Rbt for the token channel at and bt .

area on the reconfigurable hardware for the execution. This implies that two
processes cannot be executed on the reconfigurable hardware at the same time.
As a result, there is an implicit resource dependency between these processes.
Let us assume that process A configures on the hardware first, and it executes
a sequence of events as shown in the figure2. The task executes a function
(denoted by the event X), followed by writing the channel a (denoted by the
event W) and finally the task is un-configured (denoted by the even Xp ).

At this point, both processes B and C could start their configuration on the
reconfigurable hardware at the same time. Due to the parallel nature of KPN
processes, as soon as the data for C is available in the channel a written by
A, C could also start its configuration on the hardware. If B starts its config-
uration, the scheduling is automatic, and there is no deadlock. Nonetheless,
if C configures on the hardware before B executes and C starts executing its
event sequence (XP, Rb, Rb ... XP), a deadlock situation incurs while reading
channel b. Since process B has not been yet executed and there is not enough
area to load B on the reconfigurable hardware, there is no data written in the
channel b.

By adding token channels, as shown in Figure 4.5(b), we ensure that all the
processes are configured only when all the input data are available for them.
These token channels are ordinary Kahn channels that are used to read and
write tokens. As a result, each process reads the token channel before reading
any data channel and writes onto the token channel after writing all the data

2The event sequences are read in the figure in the bottom up manner.
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channels. For example in Figure 4.5(b), A and B write token channels, at
and bt respectively, after writing data to their respective data channel a and
b. In this way, C can only proceed after reading tokens from A and B, which
guarantees that the data is already written by A and B. This enforces an implicit
scheduling between the tasks, forcing task A and B to be executed before C,
and hence, the aforementioned deadlock situation can be avoided.

The application model can be easily extended to accommodate the token
channels. As mentioned earlier, in the Sesame framework, Kahn processes
typically consists of a loop that first reads application data, performs execution
and finally writes output. In this case, Kahn processes can easily be extended
to produce token channels to read/write an extra token channel at the end of
each iteration.

4.2.2.3 Resource Management Strategies

To manage architectural resources on the reconfigurable hardware at runtime,
the RM can employ a variety of algorithms. The identification of “optimal”
mapping and scheduling strategies for reconfigurable architectures is a well
known NP-hard problem [127]. Therefore, many different heuristics have been
proposed to address task mapping and scheduling on the reconfigurable hard-
ware when the complexity of the problem does not find a solution in a feasible
time [45, 46, 48, 49]. Such heuristics, however, need access to the global state
of the system status, in order to perform efficient mapping. The RM can keep
track of such information as required by the system for making mapping deci-
sion. One of the main goals of the RM is to utilize hardware resources in an
efficient manner. Other goals include the minimization of the scheduling time,
the reduction of the waiting time and the minimization of the communication
between two tasks on the hardware. The choice of such an algorithm can be
made based on the design objective. Based on the requirements, any kind of
task placement and scheduling algorithm for the reconfigurable hardware can
be easily implemented in the model as a plug-in to the RM.

4.2.2.4 Virtual Processors Extensions

In the Sesame framework, the VPs forwards the events (R, X and W), from
the application model to the corresponding architectural components, as soon
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as their dependencies are met. To avoid any deadlock that can occur due to
the reconfigurable nature of RUs, as mentioned before, Kahn processes in the
application layer, are extended to support an additional token channel. To ac-
commodate such changes in the application layer, extensions are implemented
also for VPs in the mapping layer. Towards this end, the VPs are extended in
such a way that a VP first checks the availability of all its input data by check-
ing a special token channel for all of its inputs. When all data is available, a VP
proceeds as normal and it forwards all R, W and X events to the corresponding
architectural components. For instance, X events are forwarded either to the
GPP, or to the RU, and R and W events are forwarded to the corresponding
memory component. Similarly, Xp events are forwarded the corresponding
RUs. After completing this process, a VP writes a token to all of its output
token channels to notify all subsequent nodes about the data availability. Since
VPs do not have any knowledge about the structure of an application, they
cannot autonomously determine when all inputs are available or when to no-
tify about the output availability to other nodes. The reading and writing of
token channels is, therefore, managed explicitly by the application model, and
the events created by the special reads (RT) and writes (WT) are used by the
VPs, in order to perform the extra synchronization in the timed simulation do-
main. Note that, these synchronization events (RT and WT) are not forwarded
to the architecture model. As a result, only the timing consequences of normal
R, W or X events are modeled in the architecture. Hence, the simulation result
is not affected by extra events.

4.2.2.5 Self-Schedulable Property Preservation

The modifications to the application model essentially allow the mapping layer
to dynamically determine a valid and deadlock-free schedule for application
events, which is needed to successfully drive the underlying reconfigurable ar-
chitecture model. The architecture and mapping models in the Sesame frame-
work do not contain any structural information about the application. They just
receive and process events (R, W and X). Therefore, as discussed before, the
application model is changed in such a way that the mapping layer can send
special tokens to the architecture to indicate when all inputs are available. This
provides an indication for a particular RU to be configured when sufficient re-
sources are available. The subsequent events (R, W and X) that arrive at the
RU component are part of the atomic execution block, which are annotated
with the special event (Xp ). The Xp is sent to the RU indicating that it can be
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un-configured, and its resources on the hardware can be released to be used by
another RU.

This approach is relatively easy to implement because the functionality of
the architecture layer is rather simple, as the synchronization is performed in
the mapping layer. The architecture layer, for instance, only keeps track of the
available area, and it maintains a list of RUs that are waiting until resources are
available. Furthermore, the model is self-schedulable, meaning that there is no
need to provide an external schedular and the self-scheduling automatically
works for all mappings. Furthermore, this self-schedulability is also required
when runtime change in mapping has to be supported, which is discussed in
the next section.

The disadvantage of this approach, however, is that it requires modifica-
tions of the application model. These modifications may limit the class of
KPNs that can be run, because not all KPNs can be easily extended with the
required token channels. For instance, KPNs with highly irregular communi-
cation pattern or KPNs with cyclic communication patterns, may not be easily
extended based on the loop iteration as explained before. In these cases, the
Kahn application may require to be rewritten by merging certain processes.

Note that, this behavior of the reconfigurable architecture can also be im-
plemented with the Sesame framework in many other ways. We choose this
approach for its simplicity. The choice of the approach depends on the trade-
off between low modeling effort and the flexibility of the model. It is up to the
designer to decide where and how to implement such functionalities.

4.3 Runtime Application Mapping Modeling

In the previous section, we explained about the extension of the Sesame frame-
work to model dynamically reconfigurable architectures in general. In this sec-
tion, the extension of the Sesame framework to model the runtime application
mapping of the reconfigurable architecture is described in detail. With runtime
mapping, changes in the application mapping are allowed at runtime, in order
to accommodate any change either in the application, or in the architecture, or
in the environment. The task can change its mapping from one architectural
resource to another. In this particular case, the task can change its mapping
from the GPP to the RU or vice versa at runtime. The detailed description
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about runtime application mapping has been presented in Section 3.4.

In order to allow the modeling of the application mapping at runtime, an
additional component, called Runtime Mapping Manager (RMM), has to be
modeled, which can perform the mapping decision at runtime. The detailed
discussion of a typical RMM has been presented in Section 3.6. Before dis-
cussing on how to model the behavior of a typical RMM with the Sesame
framework in Section 4.3.2, in the following, we first talk about the runtime
mapping behavior.

4.3.1 Runtime Mapping Behavior

The modeling of a system that allows runtime mapping of tasks to process-
ing resources can be divided into two parts: the spatial mapping behavior and
the temporal mapping behavior. Spatial mapping is the process of identifying
which part of the application can be implemented on the reconfigurable hard-
ware (HW tasks), and which part should be executed as software (SW tasks).
Not all HW tasks may fit on the reconfigurable device at the same time. There-
fore, a logical configuration has to be defined for a set of HW tasks for which
the functional logic has been loaded on the reconfigurable device at a given
moment. Temporal mapping is the process of determining a sequence of these
configurations at runtime, such that all HW tasks can run efficiently. In sum-
mary, spatial mapping determines where to map a task and temporal mapping
determines when to map a task.

With the rSesame framework, a task can be modeled either as a HW task
or as a SW task. A task modelled as HW is always mapped onto the hardware
component of the architecture and a task modelled as SW is always mapped
onto its software counterpart. Task assignment for the SW and HW categories
is done a priori. At runtime, these tasks are mapped onto their corresponding
resources based on time, architectural resources and conditions of the system.
If more than one task is mapped onto the reconfigurable hardware, and if all
of them do not fit on the hardware at once, they are divided into logical con-
figurations and executed sequentially. In this way, the temporal mapping is
addressed at runtime with the rSesame framework.

In order to model the spatial mapping behavior at runtime, the framework
supports a third task type: the pageable task. Unlike HW and SW tasks, a
task modelled as pageable does not have a fixed spatial mapping. Basically, a
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pageable task can be either a HW or a SW task and it can be mapped onto any
of the computing resources. For pageable tasks, the spatial mapping decision
is made at runtime. These tasks are mapped either as HW or SW depending
on the runtime conditions of the system (e.g. resource availability).

For HW and SW tasks, only the decision of when to map is made at run-
time, and for the pageable tasks the decisions of when and where to map are
made at runtime. Note that, by eliminating pageable tasks, only the tempo-
ral mapping behavior is supported at runtime, while with pageable tasks, both
temporal and spatial mapping are addressed at runtime. In other words, with-
out pageable tasks, only the temporal mapping behavior takes place at runtime,
whereas with pageable tasks, both temporal and spatial mapping take place
at runtime. Designers can perform various exploration with these task sets
depending on the system requirements and their evaluation purpose, such as
static exploration and runtime exploration. In this way, rSesame can be used
to model the task mapping both statically and at runtime, and to realize the
two-level mapping exploration as discussed in Section 3.5. To perform such
mapping decisions at runtime, the rSesame framework rely on the RMM com-
ponent. In the following, we discuss the modeling of the behavior of the RMM
with Sesame.

4.3.2 Modeling of the Runtime Mapping Manager

The RMM is the central intelligent component, which performs runtime map-
ping decisions. The complexity of RMM implementations can vary from rela-
tively simple to extremely complicated. As explained in the case of the RM, in
the actual system implementation, the RMM entity may be a part of the appli-
cation, middleware, operating system or even implemented as a hardware com-
ponent. In this particular implementation, we model the case when the RMM
is placed between the application and the architecture. Therefore, the RMM is
modeled as a mapping layer component that resides between the VP and the
RM. VPs can be considered as a distributed form of the application manager
since they bring application information (e.g. priority of tasks, real time con-
straints) to the RMM. The RM is a component in the architecture layer, which
brings the architectural information (e.g. resources, timing information) to the
RMM. The RMM uses this information as inputs for its decision making. In
order to make any mapping decisions, the RMM employs any available method
or heuristic to perform the mapping decision. The RMM also bears the abil-
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Figure 4.6: The three layers in the Sesame infrastructure for modeling runtime ap-
plication mapping on reconfigurable architectures. The Virtual Processors (VPs) are
extended to connect to the GPP and to the RU.

ity to learn from its environment, from its previous data, or from the current
situation. Based on these values and behaviors, the RMM can make mapping
decisions for each task using the current application behavior, the past execu-
tion or even the predicted dynamic conditions of the system. Since the runtime
mapping policy is implemented as a separate component, it is easy to plug-in
diverse range of RMM policies for different experiments.

In order to facilitate runtime application mapping with the Sesame frame-
work, the VPs can be connected to multiple processor resources. The trace
events from the application model can now be forwarded to any connected
processor in the hardware layer. Figure 4.6 shows an example where a virtual
processor VP2 is connected to the GPP and RU1. A hardware or a software
task requires only one connection to a RU or GPP respectively. However, a
pageable task has a connection to both processors. In many scenarios, it is
conceivable that there are multiple RU implementations for one pageable task,
however, for the sake of simplicity, we currently restrict it to one. Moreover,
in many heterogenous architectures that include more than two types of
processors, this connection can be established with all those processors. The
VP forwards events, but does not make the mapping decision by itself. This
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Figure 4.7: The sequence diagram showing an interaction between the Resource Man-
ager (RM), the Runtime Mapping Manager (RMM), the application Virtual Processor
(VP) and the GPP/RU to enable runtime application mapping. The RMM resides be-
tween the Resource Manager (RM) and the application VP, which performs mapping
decisions at runtime based on the policy implemented.

is done by the RMM to which all VPs are connected. Before forwarding
events from the application to the architecture, a VP asks the RMM on which
processor to execute the event. Based on the policy implemented, the RMM
returns a target processor identifier (either a RU or the GPP) and the VP
forwards events accordingly.

Components Interaction

To summarize the interaction between different components (such as the
RMM, the RM, the VP, the GPP and RUs), let us consider Figure 4.7. It shows
an example of time-interaction diagram of the components that are involved
in processing application trace events for a GPP and a RU. As soon as the VP
receives an event to forward it to the architecture layer, it requests the RMM to
obtain a mapping for that event (get map()). Before making any mapping
decision, the RMM checks the resource availability in the architecture layer by
contacting the RM (get res()). The RM provides the necessary architec-
ture information to the RMM (set res(area)). If there are available re-
sources on the reconfigurable hardware, the RMM maps the task onto the RU
(set map(RU)) otherwise to the GPP (set map(GPP)). The RMM may
request additional information about the system or the environment. Based on
the policy implemented, the available resources and the system conditions, the



96 CHAPTER 4. RSESAME FRAMEWORK

RMM decides which event to forward to which processor component. The VP
gets this decision in form of a target process identifier (either RU or GPP) and
the VP forwards the event accordingly. Note that, the delay for these compo-
nents can also be modeled in the system. Such delays can be easily provided
as a parameter in each of these components.

4.4 The rSesame Framework Characteristics

The Sesame framework is extended to model and simulate reconfigurable ar-
chitectures. These extensions are discussed in Section 4.2.2 and Section 4.3.2.
Basically, with these extensions, the framework can realize the two-level map-
ping explorations of reconfigurable architectures as discussed in Section 3.5.
As it can be observed from Figure 4.6, without the implementation of the
RMM, the framework can be used to perform static exploration of reconfig-
urable architectures. With the implementation of an application mapping pol-
icy in the RMM, it can be used to evaluate the application mapping at runtime.
In this way, the framework can be exploited to perform both the static and the
runtime mapping explorations. Such a framework strives for various charac-
teristics, such as a the one described in the following.

• Generic Framework: The rSesame is a generic framework in the sense
that it is not restricted to the modeling of one type or class of recon-
figurable systems. Instead, it can be deployed to model and evaluate
any kind of reconfigurable architecture running a wide set of streaming
applications from the multimedia domain. Using the rSesame frame-
work, a designer can instantiate a model for the given architecture and
any additional architectural specifics can be augmented in the model as
required. Figure 4.8 presents a scenario where several models are instan-
tiated from the rSesame framework for different types of reconfigurable
architectures running different sets of applications. In the next chapter,
we discuss an example of one such instance for a specific architecture
running a particular application set.

• Flexibility by Modular Design: In the presented model, an appli-
cation model is independent of the architectural specifics. As a result,
application and/or architecture models can be re-used and altered with-
out affecting each other. This separation of concerns makes easier to
accommodate any kind of modification to the model, permitting de-
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architectures (Arch-X, Arch-Y, ...Arch-Z) running different set of applications.

sign variations and even completely different architectures to be mod-
eled with ease. Moreover, a well defined structure of the RM and the
RMM makes the model flexible. Therefore, any kind of mapping pol-
icy can be plugged into the model and evaluated without affecting other
components.

• Performance by abstraction: The applications are modeled at the
granularity of tasks where the application behavior is abstracted as read
(R), write (W) and execute (X) events. The model operates based on
discrete-event simulation of these events leaving out all the minute de-
tails that might, otherwise, hinder the model’s performance. Therefore,
we provide easy construction of the models and fast simulation. There
is always a tradeoff between detailed modeling and fast model perfor-
mance and, in this case, we compromise details for performance. As a
result, the accuracy of the resulted model is also compromised. This is
a fair tradeoff for a system-level model, which is targeted at very early
design stages. At this level, where the design space is extremely large,
a quick exploration is more important than a detailed and very accurate
exploration.
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• Ease of Use: The modular design and the higher abstraction level to-
gether facilitate the ease of use of the model. In case of application
modeling, the Kahn application models can be automatically converted
from sequential C/C++ code using tools, such as the one presented in
[117]. Similarly, any kind of architecture model can be constructed from
generic building blocks provided by a library, which contains templates
for processors, memories, buses, on-chip networks and so on. Moreover,
any policy can be implemented with a minimal effort and without having
detailed knowledge of all parts of the model. Thus, the learning curve is
rather moderate.

• Input/Output: The input given to the model consists of different archi-
tecture parameters, such as hardware and software latencies, area and re-
configuration delay. The model simulates the application characteristics,
architecture responses and the runtime spatial and temporal mapping be-
havior. As a result, it produces various system evaluation attributes, such
as performance, speedup, number of reconfigurations, mapping behav-
ior of a task, area utilization, number of HW and SW tasks, percentage
of hardware/software execution, percentage of reconfiguration and hard-
ware reusability efficiency.

4.5 Conclusions

In this chapter, we presented the rSesame framework. rSesame is a generic
system-level modeling and simulation framework which can explore and eval-
uate reconfigurable systems both statically and at runtime. The main features
of the rSesame framework include flexibility, ease of use, fast performance,
and applicability. The rSesame employs the Sesame modeling and simulation
framework as a system-level simulation platform. The Sesame framework al-
lows efficient system-level performance evaluation and exploration of hetero-
geneous embedded multimedia architectures. We extented the Sesame frame-
work to perform the modelling and simulatation of recofigurable architectures
at runtime. To model reconfigurable architectures with the Sesame framework,
the following extensions have been performed:

• an Xp event has been added to steer configuration of tasks onto the re-
configurable hardware, and scheduling of RUs;
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• a Resource Manager (RM) is employed to manage reconfigurable re-
sources at runtime;

• token channels haven been added to preserve self-schedulability and
deadlock-free properties of the model.

Additionally, the chapter presented the discussion on modeling reconfigurable
architecture at runtime with the Sesame framework. In order to facilitate the
runtime change in the application mapping with Sesame, the mapping layer
of the framework is extended by adding the RMM component, which allows
changing in the application mapping at runtime by employing diverse mapping
policies.

In the next chapter, we present a case study, where the rSesame framework
is deployed to perform the system-level DSE of a reconfigurable architecture.
In particular, the rSesame framework is used to perform rapid evaluation of
several application-to-architecture mappings of a reconfigurable architecture,
both statically as well as at runtime. A model is instantiated from the rS-
esame framework for an existing reconfigurable architecture, and the instanti-
ated model is used to show how the framework can be used to perform such
explorations.

Note. The content of this chapter is based on the the following articles:

K. Sigdel, M. Thompson, C. Galuzzi, A.D. Pimentel, K.L.M. Bertels, rSesame - A Generic
System-Level Runtime Simulation Framework for Reconfigurable Architectures, Proceed-
ings of the International Conference on Field-Programmable Technology (FPT’09), Sydney,
Australia, December 2009, pp. 460-464.

K. Sigdel, M. Thompson, A.D. Pimentel, T. P. Stefanov, K.L.M. Bertels, System-Level Design
Space Exploration of Dynamic Reconfigurable Architectures, Proceedings of the Interna-
tional Symposium on Systems, Architectures, MOdeling and Simulation (SAMOS’08), Samos,
Greece, July 2008, pp. 279-288.





Chapter 5
Molen Architecture : A Case
Study

T he rSesame framework presented in the previous chapter can be de-
ployed for performing system-level Design Space Exploration (DSE)
of reconfigurable architectures by evaluating several parameters, such

as architectural characteristics, hardware-software partitioning, and scheduling
strategies, both statically as well as at runtime. The main goal of this chapter is
to introduce a case study to show the characteristics of the rSesame framework
tested on an existing and well known reconfigurable architecture by perform-
ing system-level DSE based on various design attributes. The aim of this case
study is twofold. First, we instantiate a model from the rSesame framework
for the Molen reconfigurable architecture [22, 23]. The Molen reconfigurable
architecture is established based on the Molen architectural paradigm incorpo-
rating a microprocessor and a reconfigurable processor. The instantiated model
is used to demonstrate how the rSesame framework can be deployed to perform
two-level mapping exploration (static and runtime mapping exploration) of the
Molen architecture. Second, we show that the model can be efficiently used to
perform exploration of various design parameters such as execution time, area
usage, number of reconfigurations and percentage of hardware and software
execution.
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Figure 5.1: The machine organization of the Molen reconfigurable architecture. The
architecture consists of a General Purpose Processor (GPP) and a Reconfigurable Pro-
cessor (RP), which are coordinated by an arbiter.

The remainder of the chapter is organized as follows. Section 5.1 presents
an overview of the Molen reconfigurable architecture, which is used as a test
bench to perform the proposed case study. Section 5.2 deals with the model
instantiation from the rSesame framework for the Molen reconfigurable archi-
tecture. Section 5.3 presents the application model considered for the case
study together with the necessary experimental setup required. In Section 5.4,
the instantiated model is used to perform mapping exploration of the given ap-
plication onto the Molen reconfigurable architecture both statically as well as
at runtime. In Section 5.5, we demonstrate that the rSesame framework can be
efficiently deployed to explore various design attributes. Section 5.6 presents
the detailed analysis and the comparison of the results obtained from the static
exploration and the runtime exploration. Finally, Section 5.7 summarizes the
major contributions and concludes the chapter.

5.1 Molen Architecture

The Molen polymorphic processor is established on the basis of the tightly
coupled co-processor architectural paradigm [22, 23]. It consists of two dif-
ferent kinds of processors: the core processor, which is a General Purpose
Processor (GPP), and the Reconfigurable Processor (RP). Figure 5.1 depicts
the machine organization of the Molen reconfigurable architecture. The re-
configurable processor is further subdivided into the reconfigurable microcode
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(ρµ-code) unit and Custom Computing Unit (CCU). The CCU is executed on
reconfigurable hardware, e.g., an FPGA, and is intended to support additional
functionalities, which are not implemented in the core processor. In order to
speed up the program execution, parts of the code running on a GPP can be
implemented on one or more CCUs.

The GPP and the RP are connected to an arbiter. The arbiter controls
the co-ordination of the GPP and the RP by directing instructions to either of
these processors. The code to be mapped onto the RP is annotated with spe-
cial pragma directives. When the arbiter receives the pragma instruction for
the RP, it initiates an “enable reconfigurable operation” signal to the reconfig-
urable unit, gives the data memory control to the RP and it drives the GPP into
a waiting state. When the arbiter receives an “end of reconfigurable opera-
tion” signal, it releases the data memory control back to the GPP and the GPP
can resume its execution. An operation executed by the RP, is divided into
two distinct phases: set and execute. In the set phase, the CCU is configured
to perform the supported operations and in the execute phase the actual exe-
cution of the operation is performed. The decoupling of set and execute
phase, allows the set phase to be scheduled well ahead of the execute phase
and thereby hiding the reconfiguration latency.

5.2 Model Instantiation for the Molen Architecture

In order to perform exploration of different application-to-architecture map-
pings onto the Molen architecture by using the rSesame framework, we instan-
tiate a Molen model using the rSesame framework 1. This model is depicted
in Figure 5.2, which consists of the Molen architecture. In the Molen architec-
ture, the task to be accelerated by executing with the reconfigurable hardware
is implemented in the CCU. Therefore, there can be as many CCUs as the
number of tasks mapped onto hardware. As a result, the Molen architecture
depicted in Figure 5.2 consists of more than one CCU. In the remainder of this
section, the modeling of the different components of the Molen architecture
will be discussed.

Figure 5.2 depicts that in the Molen model, the CCUs and the GPP are
modeled as architectural layer components. The GPP is a core processor, thus,

1Now onwards we address the Molen reconfigurable architecture simply as the Molen ar-
chitecture
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Figure 5.2: A model instantiated from the rSesame framework that can facilitate static
and runtime exploration of the Molen reconfigurable architecture. The arbiter is mod-
eled as a part of the architecture layer, which co-ordinates the GPP and CCUs.

is simply instantiated from rSesame’s processor class. A CCU represents a
RP’s custom computing unit, and it bears the ability to execute task the same
way the processor does. As a consequence, a CCU is also instantiated from
the processor component. In addition to the normal processor class, a CCU is
also provided with additional parameters, such as area occupancy and recon-
figuration delay. The pragma directive is modeled as a special execute event
(Xpragma ) in the application layer. Based on the special event Xpragma , a CCU
can be configured/unconfigured on the RP. The Xpragma event corresponds to
the Xp event defined in Section 4.2.

The Molen architecture exhibits a tightly coupled co-processor paradigm,
and it requires CCUs to run as a co-processor, which adds control dependen-
cies between the GPP and CCUs. In some cases, this added dependencies can
lead to a deadlock situation in the architecture model. To avoid this deadlock,
we have restricted the KPNs in the application layer to be static. Addition-
ally, to make sure only safe events are forwarded from the mapping layer to
the architecture models, we modified the application by adding a Kahn chan-
nel from the application’s output (or sink) node to its source node(s). This
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means, for a streaming application, such as depicted in Figure 5.2, after node
A has written data to node B, the former has to wait for the token from the
sink-node E, before it can write a new data item to the stream. To achieve
this, sink and source nodes have been slightly adapted to read and write the
additional token. This way the pipeline parallelism is removed from the ap-
plication, and avoids two data-dependent tasks to be active simultaneously in
the architecture model. This extension is necessary to prevent the deadlock
situation in the model that can occur due to the co-processor behavior of the
Molen architecture. It is important to note that the sink-to-source channel does
not remove all the parallelism in the application. Particularly, “fork-and-join”
parallelism still remains available between tasks that are not data dependent,
such as between the task pair (C,D).

5.2.1 Modeling the Arbiter

The arbiter has been modeled as a component in the architecture layer which
controls the execution of the GPP and CCUs (see Figure 5.2). The arbiter co-
ordinates the co-processor behavior of the Molen architecture by granting ex-
clusive control to either the GPP or the CCUs. In order to model this behavior,
the arbiter implements a synchronization primitive, which allows to execute
instructions for either the GPP or the RP. In the following sections we describe
the GPP/CCUs synchronization mechanism to model the co-processor behav-
ior of the Molen architecture.

As mentioned before, the pragma annotations that mark the hardware im-
plementation of tasks have been modeled as a special execution event (Xpragma)
in the application layer. Together with other events, such as R, X and W, the
Xpragma event is also passed to the architecture model. When a processor (GPP
or CCU) receives the Xpragma, it requests for the execution control from the
arbiter. The arbiter coordinates between these processors by granting control
only to one processor (either GPP or CCU) at a time.

Figure 5.3 illustrates the interaction between the GPP, CCUs and the ar-
biter. The figure shows these interactions in the case where GPP and CCUs
want to execute at the same time. In this particular case, GPP gets the lock
to execute at t0. At time t1, CCU1 also requests for an execution. Since the
GPP is still executing, CCU1 goes to a wait mode. When the GPP finishes
its execution, it returns the lock at time t2 and execution is granted to CCU1.
At time t3, CCU2 requests execution. Since both CCU1 and CCU2 operate



106 CHAPTER 5. MOLEN ARCHITECTURE : A CASE STUDY

ArbiterGPP CCU1 CCU2

Request Control()

Grant Control()

Request Control()

Release Control()

Request Control()

Grant Control()

Reply()
Release Grant()

Reply()

Reply()

Grant Control()

Release Control ()

t0

t1

t3

t4

t5

t2

Figure 5.3: The sequence diagram showing an interaction between the GPP, CCUs
and the arbiter. The arbiter co-ordinates between the GPP and CCUs by granting the
execution control.

in parallel on the FPGA, CCU2 also gets the lock and can start execution. At
time t4, CCU1 finishes its execution, but CCU2 is still executing on the recon-
figurable hardware and only finishes at time t5. At time t4, if the GPP is to
request the lock for execution, then it has to wait until time t5. In this way, the
arbiter guarantees that all the CCUs finish their execution before it releases the
lock to the GPP. This is the interaction between the GPP and CCUs when they
behave in mutual exclusive way. In this case, the arbiter acts as a mutex. The
model can be easily extended to support the parallel operation of the GPP and
the CCUs. In such cases, the arbiter grants control also to CCU1 and CCU2 to-
gether with the GPP. The control is granted whenever it is asked for following
simple scheduling algorithms, such as first-come-first-serve. Depending on the
behavior of the architectural components, the functionality of the arbiter can
be modified and additional functionalities can be easily included in the arbiter.
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5.2.2 The Runtime Mapping Manager

The Runtime Mapping Manager (RMM) is the central intelligent component
of the rSesame framework, which performs runtime mapping decisions. It is
modeled as a mapping layer component, and resides between the applications
Virtual Processors (VPs) and the Resource Manager (RM). As a result, RMM
can receive both the application and the architectural information. In the ac-
tual system implementation, the RMM entity may be a part of the application,
middle-ware, operating system or even implemented as a hardware compo-
nent. The RMM can employ various strategies for performing runtime task
mapping decisions.

The RM that is a part of the architecture layer in the rSesame framework,
provides co-ordination between various reconfigurable units. In the Molen
model, the RM co-ordinates between the various CCUs. The RM also keeps
track of the information on the available resources (i.e. available area) in the
underlying Molen architecture, by monitoring which CCUs are configured on
the RP at any given time. The RM, in this case, is also responsible for config-
uring and un-configuring CCUs for executing them on the RP.

In order to perform the aforementioned actions, the RM implements two
modules for mapping and un-mapping CCUs onto the RP. A CCU invokes the
mapping() module when it initiates its execution on the RP, and it invokes
the unmapping()module when it completes its execution. The pseudo-code
for each module is specified in Algorithm 5.1 and Algorithm 5.2 respectively.
The resource management on the RP is implemented such that, a CCU can
preserve its hardware configuration on the RP, until it is overwritten by another
CCU. The rest of this section discusses the resource management of the RM in
more detail.

We define three states for a given task: a WAITING state, a MAPPED state,
and a RUNNING state. A task is in the WAITING state, if it is waiting to
be mapped onto the RP. Thus, a task in WAITING state does not occupy any
hardware resources. A task is in the MAPPED state if it is already configured
on the RP, but it is not being executed. The task may be re-executed later.
The configuration of such a task is saved on the RP, thus it occupies hardware
resources. When the task in MAPPED state is required to be re-executed, it
can directly start processing without reconfiguration. Finally, a task is in the
RUNNING state, when the task is actually processing data.



108 CHAPTER 5. MOLEN ARCHITECTURE : A CASE STUDY

Algorithm 5.1 Pseudo-code for the mapping method

Require: CCUi
1: if CCUi ≥ Total AREA in RP then
2: CCUi mapped onto GPP.
3: else
4: {Task already mapped on the RP, reuse it.}
5: if CCUi == MAPPED then
6: CCUi.STATE ← RUNNING ;
7: else
8: {CCU not mapped on the RP, configure the CCU.}
9: if AREA ≥ CCUi.AREA then

10: configure(CCUi );
11: CCUi.STATE ← RUNNING ;
12: else
13: j ← 0
14: {Not enough area, remove the mapped CCUs.}
15: while AREA ≤ CCUj.AREA and j < N do
16: if CCUj == MAPPED then
17: CCUj ← WAITING ;
18: AREA = AREA + CCUj.AREA ;
19: end if
20: end while
21: {Enough area, configure the CCU.}
22: if CCUi.AREA ≤ AREA then
23: configure(CCUi );
24: CCUi.STATE ← RUNNING ;
25: else
26: {Not enough area, store the CCU in CCUList.}
27: Store(CCUi, CCUList );
28: end if
29: end if
30: end if
31: end if

Algorithm 5.1 presents the pseudo-code that describes the functionality of
the mapping() module for task Ti. CCUi represents the hardware imple-
mentation of task Ti. Therefore, Algorithm 5.1 is explained in terms of the
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Algorithm 5.2 Pseudo-code for the un-mapping module

Require: CCUi
1: {Save the configuration for next time.}
2: CCUi.STATE ← MAPPED;
3: while CCUList! = empty do
4: CCUk ← FirstFit(CCUList);
5: {Configure the CCU that fits in the available area.}
6: if AREA ≥ CCUk.AREA then
7: configure(CCUk );
8: CCUk.STATE ← RUNNING ;
9: end if

10: end while

CCUi. If the total available resources 2 of the RP is not enough to accommo-
date any CCU, the latter is mapped onto the GPP (line 1 to 3 in Algorithm 5.1).
Similarly, if a CCU is already mapped on the RP, the CCU can start processing
data without its configuration (line 5 to 7 in Algorithm 5.1). However, if the
configuration of a given CCU is not currently present on the RP, and there is
sufficient area to execute that CCU, then the given CCU is mapped on the RP.
In this case, it is necessary to configure the CCU, and it can only start process-
ing the data after its configuration (lines 8 to 11 in Algorithm 5.1). Finally, if
the RP does not have an adequate amount of area to execute the given CCU, a
set of CCUs out of total N CCUs in RP, whose area is sufficient to accommo-
date the given CCU, is overwritten by the current CCU. Note that, the CCUs
that are currently running cannot be overwritten (line 13 to 20 in Algorithm
5.1). In case, there is not enough area accommodated by overwriting the pre-
viously mapped CCUs on the RP, the current CCU is stored to be configured
later when area becomes available (lines 22 to 27 in Algorithm 5.1).

In the unmapping()module, as depicted in Algorithm 5.2, a CCU is un-
mapped from the RP. When the unmapping() module is called, the state of
a CCUi is changed to MAPPED. This implies that the hardware configuration
for that CCU is saved on the RP, and if the CCU is re-executed, there is no
need for its reconfiguration (line 1 to 2 in Algorithm 5.2). At the end of the
unmapping() module, a set of CCUs from the waiting list is evoked to be
executed on the RP. The policy implemented to select these CCUs is rather

2In this case study, we use area as a factor to measure the amount of resources consumed by
the CCUs on the RP.
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Figure 5.4: The flowchart showing the mapping/un-mapping of a CCU onto the
reconfigurable processor (RP). If the CCU is already mapped, the configuration is
reused, otherwise, the CCU is configured.
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simple. The first CCU from the waiting list that fits on the currently available
hardware area is configured first (line 3 to 9 in Algorithm 5.2).

Typically, the mapping and the un-mapping modules are called in a
subsequent order. When a CCU requires to process its execution traces, the
mapping module is invoked, and when the Xpragma directive is encountered,
the corresponding un-mapping module is invoked. The Xpragma directive in
a typical execution trace is shown in Figure 5.2. The complete phase involved
in mapping and un-mapping CCUs onto the RP is depicted in the flowchart
presented in Figure 5.4. The flowchart illustrates that the configurations of the
CCUs already mapped on the RP, are re-used. A CCU is configured on the
RP when sufficient area is available, and its state is set to MAPPED when its
execution is completed. This way, the configuration of a CCU is saved for
future re-use. When another CCU executes on the RP, if additional area is
required, all the CCUs with MAPPED state can be overwritten to accommodate
that CCU.

5.3 Experimental Setup

We consider a Motion-JPEG (MJPEG) encoder application as a case study.
The corresponding KPN is shown in Figure 5.5. The application model con-
sists of two implementations (MJPEG1 and MJPEG2) of the MJPEG appli-
cation. MJPEG1 operates on the pixel blocks (partially) in parallel (see the 4
DCT/Q streams in the upper part of Figure 5.5), whereas MJPEG2 operates
on the blocks sequentially (lower part of Figure 5.5). MJPEG1 and MJPEG2
are combined together in order to create an example of a dynamic application.
MJPEG2 can be considered as a sporadic application that appears in the sys-
tem randomly and competes with MJPEG1 for the resources. This behavior
is implemented in such a way that, at a certain point in time, MJPEG2 starts
encoding a frame simultaneously with MJPEG1. The inputs for MJPEG1 and
MJPEG2 consists of 8 and 4 picture frames of 128× 128 pixels respectively.

To demonstrate the mapping exploration at runtime with the Molen model,
we incorporated a simple strategy, called As Much as Possible (AMAP), to
perform the runtime mapping decision. This strategy is implemented as a task
mapping policy for the RMM. With the implemented policy, the area is con-
sidered as the only factor for performing task mapping decisions by the RMM.
AMAP tries to maximize the use of the RP area as much as possible. As a
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Figure 5.5: The application model used for the case study which combines two im-
plementations of Motion-JPEG (MJPEG) together.

result, tasks are executed to the RP if sufficient area is available, otherwise
they are executed to the GPP. This straightforward policy can be used as a sim-
ple resource management strategy in various domains. This is also used as a
default runtime mapping strategy in the rSesame framework.

We instantiated a Molen model with 18 CCUs, one for each task. This
allows us to make the most suitable use of the parallelism available in the
application, by mapping each of the DCT and Q tasks onto a CCU. A CCU
represents an implementation of a Kahn process. Hence, the one-to-one map-
ping of the Kahn process onto the CCU represents the correct behavior of the
CCU in the Molen architecture. Note that, the number of CCUs is a parame-
ter that a designer can define based on the number of pageable and HW tasks.
For this case study, we consider all tasks as pageable to fully exploit the run-
time mapping by deciding where and when to map them at runtime depending
on the system condition. We also assume that no task can have a size larger
than the total RP area. Additionally, all CCUs may not fit on the RP at once
due to its area constraints. Nonetheless, they can execute on the RP after the
reconfiguration.

The main purpose of this case study is to demonstrate that the rSesame
framework can be used to perform both static and runtime mapping deci-
sions. As a result, we use estimated values of the computational latency, the
area occupancy (on the RP) and the reconfiguration delay for each CCU. The
computational latency values that the GPP model component associates with
the computational events, are initialized using estimates obtained from liter-
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ature [2, 126] (but non-Molen specific). We estimated area occupancy for
each process mapped onto the CCU using the Quipu model [120]. Quipu
predicts FPGA resources from a C-level description of an application using
Partial Least Squares Regression (PLSR) and Software Complexity Metrics
(SCM). Kahn processes contain functional C-code together with annotations
that generate events such as R, X and W. As a result, Quipu can estimate area
occupancy of each Kahn process.

For this case study, we considered a Xilinx Virtex XC4VFX60 [36]-based
implementation of the Molen architecture. We assume the Processor Local
Bus (PLB) of the FPGA is 4 bytes wide, and the Internal Configuration Access
Port (ICAP) functions at 100 MHz, thus, its configuration speed is considered
at 400 MB/sec [128]. Based on the reconfiguration delay of the considered
FPGA, and the estimated area occupancy of each CCU, we computed the re-
configuration delay of each CCU using the following equation:

TRecon =
CCU slices
FPGA slices

· FPGA bitstream
ICAP bandwidth

(5.1)

where CCU slices is the total number of area slices a CCU requires, FPGA
slices is the total number of slices available on a particular FPGA, FPGA bit-
stream is the bitstream size in MBs of the FPGA and ICAP bandwidth is the
ICAP configuration speed. As a final remark, we assume that there is no de-
lay associated with the runtime mapping such as task migration and context
switching.

5.4 Two-Level Mapping Exploration with rSesame

In this section, we describe a case study using the aforementioned Molen
model to perform an experimental validation of the two-level mapping explo-
rations as presented in Section 3.5, which combines the static mapping explo-
ration together with the runtime mapping exploration. In the static mapping
exploration, the exploration is carried per application basic. As a result, a set of
static mappings, which consists of HW, SW and pageable tasks, is identified.
In the runtime mapping exploration, a high quality exploration of pageable
tasks is performed to address any change in the application, architecture or the
environment. In the remainder of this section, we will show how the Molen
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Mappings HW Tasks SW Tasks

M1 None All tasks

M2 DCT1
DCT2-DCT4, Q1-Q4, VidIn1, VidOut1,
Init1, VLE1

M3 DCT1,DCT2
DCT3, DCT4, Q1-Q4, VidIn1, VidOut1,
Init1, VLE1

M4 DCT1-DCT3
DCT4, Q1-Q4, VidIn1, VidOut1, Init1,
VLE1

M5 DCT1-DCT4 Q1-Q4, VidIn1, VidOut1, Init1, VLE1
M6 DCT1-DCT4, Q1 Q2-Q4, VidIn1, VidOut1, Init1, VLE1
M7 DCT1-DCT4, Q1,Q2 Q3, Q4, VidIn1, VidOut1, Init1, VLE1
M8 DCT1-DCT4, Q1-Q3 Q4, VidIn1, VidOut1, Init1, VLE1
M9 DCT1-DCT4, Q1-Q4 VidIn1, VidOut1, Init1, VLE1

Table 5.1: Different mappings used to perform static exploration of MJPEG1 onto the
Molen architecture. In each successive mapping one task (DCT or Q) from the GPP
is mapped onto its corresponding CCU.

model can be used to perform the static and runtime mapping exploration of
the Molen architecture.

5.4.1 Static Exploration with rSesame

At first-level, the Molen model described above is used to perform static map-
ping exploration. To perform the static exploration, MJPEG1 and MJPEG2 are
separately mapped onto the given architecture, and a range of different map-
pings are evaluated. In particular, we observed the impact of different task
mappings on the total execution time in terms of simulated clock cycles. Since
the changes in the system are not considered while performing mapping deci-
sions, with the static mapping exploration, a fixed set of tasks is mapped onto
the GPP and CCUs. As a result, there are either HW tasks mapped onto the
RP or SW tasks mapped onto the GPP, which means the set of pageable tasks
is always empty.

In the first experiment, we mapped the MJPEG1 onto the Molen architec-
ture. At first, all tasks from the application are mapped onto the GPP and, in
each successive mapping, the mapping is changed by moving one task (either
DCT or Q tasks) from the GPP to the CCUs. The mappings used to perform
static mapping exploration of the MJPEG1 are reported in Table 5.1. The sec-
ond column in the table lists the CCUs that are mapped onto the RP in the
corresponding mapping, while rest of the tasks are mapped onto the GPP. For
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Figure 5.6: The application execution time and the corresponding speedups for the
MJPEG1 application when mapped onto the Molen architecture. This result is ob-
tained from the static exploration.

instance, in M1, all tasks are mapped to the GPP. In M2, DCT1 is mapped to
its corresponding CCU, and rest of the tasks are mapped to the GPP. In M3,
DCT1 & DCT2 are mapped to their corresponding CCUs, and rest of the tasks
are mapped to the GPP. Similarly, in M9, all DCT and Q tasks are mapped to
their corresponding CCUs, and the rest of the tasks are mapped to the GPP.

Figure 5.6 depicts the results of executing all different mappings listed
in Table 5.1 with the Molen model. The primary y-axis (left) in the graph
represents the application execution time measured for each mapping, and the
secondary y-axis (right) in the graph represents the application speedup for
each mappings compared to the software only execution. The x-axis lists all
different mappings considered in this experiment as reported in Table 5.1. A
first observation that can be noticed from the figure is in terms of application
execution time. Due to the lower execution latency of CCUs as compared to
the GPP, we might expect the system performance to significantly increase
with more tasks being mapped onto the RP in each row in the table. However,
the results show that in fact there is a non-linear tradeoff. This is because,
moving the tasks to the CCUs, adds to the latency for reconfiguring the CCUs.

At the end of the first experiment, the most suitable mapping, while map-
ping MJPEG1 onto the Molen architecture, is obtained. The mapping M9
has the best speedup as depicted in Figure 5.6, and it consist of the following
set of tasks: HW1 = {DCT1, DCT2, DCT3, DCT4, Q1, Q2, Q3, Q4}, SW1

={VideoIn1, VLE1, VideoOut1, Init1} and Page1 = {Ø}.
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Similarly, in the second experiment, we mapped MJPEG2 onto the Molen
reconfigurable architecture, and a wide range of different mappings are eval-
uated using the Molen model. We also recorded the most suitable mapping
in terms of speedup at the end of the second experiment. This mapping has
the following set of tasks: HW2 = {DCT, Q}, SW2 = {VideoIn1, VLE1,
VideoOut1, Init1} and Page2 = {Ø}. In the second level of exploration, these
task sets can be optimized, such that, an efficient set of tasks can be found
at runtime. This can possibly even improve the performance by avoiding the
reconfiguration delay for a task running on the GPP. In the following section,
we show the mapping exploration at runtime by optimizing these task sets.

5.4.2 Runtime Exploration with rSesame

In order to carry out the second level of mapping exploration at the runtime,
the combined application model shown in Figure 5.5 is considered. The initial
task sets used as input for this exploration is the most suitable task sets ob-
tained from the static exploration as discussed in the previous section. In this
case, these task sets are formed as the combination of the task sets obtained
for MJPEG1 and MJPEG2, when they are separately mapped onto the Molen
architecture while performing static exploration. The task sets considered as
input in this case are the following: HW = {DCT1, DCT2, DCT3, DCT4, Q1,
Q2, Q3, Q4, DCT, Q}, SW = {VideoIn1, VLE1, VideoOut1, Init1, VideoIn,
VLE, VideoOut, Init} and Pageable = {Ø}.

To perform the runtime exploration with the rSesame, few tasks from the
given HW set are considered as pageable tasks, and the behavior of these page-
able tasks during the runtime is observed. To perform this experiment, in each
successive simulation run, one additional task from the HW task set is marked
as a pageable task, and the behavior of the mapping is evaluated at runtime.
Table 5.2 reports the results of this observation. The second and the third col-
umn in the table show the HW and the pageable tasks considered for each
mapping, used to perform the runtime mapping exploration. The SW task set,
in this case, is fixed, and it consists of the following tasks, VideoIn1, VLE1,
VideoOut1, Init1, VideoIn, VLE, VideoOut and Init. The last column in the
table lists the pageable tasks, which change their execution behavior, and be-
come SW tasks after performing the runtime exploration. For these tasks, the
runtime exploration decided that executing them always on the GPP is neces-
sary. However, few other tasks than those listed in the last column in Table 5.2,
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Mappings HW Tasks Pageable Task
Tasks added to the SW
task set after the Run-
time Exploration

M1
DCT2-DCT4, DCT, Q1-
Q4, Q

DCT1 None

M2
DCT3-DCT4, DCT, Q1-
Q4, Q

DCT1-DCT2 None

M3 DCT4, DCT, Q1-Q4, Q DCT1-DCT3 DCT2
M4 Q1-Q4, DCT, Q DCT1-DCT4 DCT2
M5 Q1-Q4, Q DCT1-DCT4, DCT DCT2, DCT4
M6 Q2-Q4, Q DCT1-DCT4, Q1 DCT2, DCT4
M7 Q3-Q4, Q DCT1-DCT4, Q1-Q2 DCT2, DCT3, DCT4

M8 Q4, Q
DCT1-DCT4, DCT, Q1-
Q3

DCT2, DCT3, DCT4,
Q1

M9 Q
DCT1-DCT4, DCT, Q1-
Q4

DCT2, DCT3, DCT4,
Q1, Q2

M10 None
DCT1-DCT4, DCT, Q1-
Q4, Q

DCT2, DCT3, DCT4,
Q1, Q2, Q3

Table 5.2: The execution behavior of the given application model (MJPEG1 &
MJPEG2) when mapped onto the Molen architecture at runtime.

either move to the GPP or to the RP based on the available resources in the lat-
ter.

This process is highly affected by the number of pageable tasks specified in
the system. When there are less pageable tasks, these tasks can still be mapped
onto the RP. Nonetheless, when this number increases, many of these tasks are
only mapped onto the GPP. In M1 listed in Table 5.2, only DCT1 from the HW
task set is considered as a pageable, the rest of the tasks are considered as HW.
In this case, the DCT1 stays pageable, and executes on the GPP and the RP.
Despite of many HW tasks listed in the second column of the corresponding
mapping, DCT1 is also mapped onto the RP during the runtime exploration.
This is due to the arrival sequence of DCT1. DCT1 executes in parallel with
other DCT tasks. If it arrives first for execution, and at that instance, if there
are no HW tasks running on the RP, it can be mapped onto the RP. However,
this may not be applicable for all DCT tasks. For instance, in M10, when all
the tasks from the HW set are considered as pageable tasks, many tasks always
mapped onto the GPP, due to the limited area on the RP.

Figure 5.7 depicts the results of executing different mappings listed in Ta-
ble 5.2 with the rSesame framework in terms of application execution cycles.
The HWonly (SWonly) execution is performed when all the tasks are mapped
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Figure 5.7: Comparison of the application execution time for the considered applica-
tion model (MJPEG1 and MJPEG2) as given in Figure 5.5. The runtime mapping has
better performance than the static and the SWonly mapping.

onto CCUs (GPP). The static mapping is performed when tasks listed in the
first column of Table 5.2, are executed as fixed SW tasks, and the runtime
mapping is performed when these tasks are considered as pageable as given in
the table. As it can be inferred from Figure 5.7, the HWonly execution per-
formance is higher than the SWonly execution performance due to the lower
execution latency of CCUs as compared to that of the GPP. With the runtime
mapping, the performance has ranged between these two values. We may ex-
pect the performance improvement with the runtime mapping. However, in
this case, we do not see any improvement of the runtime mapping. This is due
to the higher SW latency for tasks as compared to their HW counterparts. Fur-
thermore, the policy implemented by the RMM is very simple and it does not
take into account the performance evaluation for making the mapping decision
(it only looks at available area).

Although the outcome advices negatively against the use of runtime map-
ping, it does show that the rSesame can be used by a designer to evaluate
such tradeoffs. We believe that real performance improvement can be obtained
when the RMM implements intelligent task mapping policies. Although mov-
ing tasks onto the GPP with runtime exploration decreases performance, it may
improve the hardware cost. In Section 5.6, we present the detailed analysis of
the results obtained from the case study. The analysis shows indeed that with
the runtime task mapping, we can evaluate area and performance tradeoffs.
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5.5 Architecture Exploration Design Parameters

In the previous section, we showed that the Molen model instantiated from the
rSesame can be employed to perform mapping exploration both statically and
at runtime. In this section, we show that the model can be efficiently used to
perform exploration of various design parameters. In particular, we show what
kinds of design parameters can be obtained from the rSesame framework. The
rSesame framework provides various useful design parameters to the designer.
These includes the total execution time (in terms of simulated cycles), area us-
age, number of reconfigurations, percentage of reconfiguration, percentage of
HW/SW execution and reusability efficiency. These are very important design
parameters for architectural exploration. Based on these parameters, various
characteristics of reconfigurable architectures, hardware-software partitioning
algorithms and task mapping heuristics can be evaluated and compared. In the
following part of this section, these design parameters are described in more
detail.

5.5.1 Runtime Design Parameters

The Molen model provides various design parameters that describe the runtime
behavior of the application and the architecture. These parameters provide an
useful insight into the characteristics of the architecture and the efficiency of
the task mapping. The runtime information provided by the model is recorded
as a trace during the model execution. In the following, we describe these
runtime parameters in more detail.

5.5.1.1 Spatial behavior of a task

A pageable task can change its behavior from HW execution to SW execu-
tion and vice versa, depending on various constraints imposed in the system,
such as the available resources on the RP. The spatial behavior of a task pro-
vides an indication on whether a pageable task is running as a HW or SW
task. This information is vital to check the correctness of the spatial mapping
behavior. Figure 5.8 captures a snapshot of such behavior for three different
tasks - DCT2, DCT3 (from MJPEG1) and DCT (from MJPEG2), recorded for
the runtime mapping of the given application onto the Molen architecture. The
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Figure 5.8: DCT execution snapshot in MJPEG1 and MJPEG2 while performing run-
time mapping of the given application model onto the Molen reconfigurable architec-
ture. DCT2 and DCT3 switched their mapping onto the GPP in order to accommodate
DCT on the RP.

figure shows that, in order to accommodate DCT on the RP, DCT2 (at time
Ty ) and DCT3 (at times Tx and Tz ) switched their mapping to SW providing
DCT enough area to execute. The figure shows a snapshot of one specific time
interval of the execution. The mapping behavior for all the tasks for the entire
execution time-line can be retrieved from the model.

5.5.1.2 Temporal behavior of a task

As mentioned before, a HW task can further show various behaviors depending
on its execution. It can either be in a waiting state, in a mapped state, or in a
running state. A HW task is in a waiting state if the task is waiting to be
mapped onto the RP. This happens, for example when there is no area available
on the RP, or in case it has a task dependency with other tasks. A HW task is
in a mapped state, if it is already configured on the RP, and it is not currently
executing, but it may execute again. A HW task is in the running state when
the task is actually busy performing execution.

Figure 5.9 depicts a Finite State Machine (FSM) showing different states of a
HW task, where the numbers 1 to 4 refer to the following state transitions:

1. as soon as area becomes available or task dependency ends,

2. the task execution starts,

3. when other tasks need to be executed, and
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Figure 5.9: A Finite State Machine (FSM) showing the temporal behavior of a HW
task.

4. the task execution finishes, but the task may execute again.

The mapped state has a reconfiguration delay associated with it. If a task tran-
sits from a waiting state to a running state, this delay is considered. However,
if the task is already in the mapped state then this delay is ignored. The per-
formance can be significantly improved by avoiding the former transition. A
HW task may or may not enter the waiting state depending on the system con-
ditions, such as available resources. To avoid a task entering the waiting state
due to a lack of area on the RP, the task can be mapped onto the GPP. Mov-
ing a task onto SW not only has the slower execution of the GPP, but it also
has task migration and context switching delay. However entering the waiting
state also has reconfiguration penalty. The decision is up to the specific policy
implemented by the RMM and/or by the RM. If the waiting state is due to a
data dependency, it cannot be avoided.

Table 5.3 shows a snapshot of the temporal behavior of each HW task
during a small period of the application run recorded for the runtime mapping
of the given application onto the Molen architecture. At each execution, the
behavior of each HW task is noted as R, M and W which refer to the Running,
Mapped and Waiting state respectively. In each row, the state of all the HW
tasks is recorded at each execution. As it can be inferred from the table, HW
tasks change their state (R, M and W) with time when the system behavior
changes. The first row shows that DCT2 and DCT3 are in the running state,
DCT1, DCT4 and VideoOut1 (VOut1) are in the mapped state, while the other
tasks are in the waiting state. The RP has limitated area, and as a result, only
few tasks can be in the mapped/running state. Moreover, all the Q tasks, VLE1
and VOut1 have a data dependency with DCT in the application. As a result,
other tasks are in the waiting state, and in the successive executions, these in
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turn, are mapped and run.

As it can be inferred from Table 5.3, when DCT4 changes its state from
M to R, the reconfiguration is avoided. However, in the case of DCT1, when
the state changes from W to R (as it has to pass through the mapped state),
the reconfiguration delay is added. In the latter case, by saving the first M
state (see first row for DCT1 in Table 5.3) for three more executions, this delay
can be easily avoided. The mappings can be optimized by understanding and
analyzing such behavior. Temporal behavior of a task is vital not only to test
the correctness of the mapping algorithms but also for their optimization. We
also observe the spatial behavior of tasks from Table 5.3. For example, when
MJPEG2 arrives, VideoIn1(VIn1) from MJPEG1 is moved to the GPP (indi-
cated by SW in the table) and DCT from MJPEG2 is mapped onto the RP. This
is again due to the area limitation on the RP.

5.5.1.3 Number of hardware or software tasks

The number of hardware or software tasks provides information about the to-
tal number of tasks being executed on HW and SW at a particular point during
the application run. Table 5.4 shows this information at various checkpoints
of the execution time-line, while performing runtime task mapping of the con-
sidered application model onto the Molen architecture. As it can be inferred
from the table, at the first checkpoint, only MJPEG1 is running, and tasks such
as, DCT1, DCT2, DCT3, DCT4, Q2, Q3, Q4 and Q5 are mapped onto the RP.
Note that, not all tasks are mapped onto the reconfigurable hardware at once,
they are executed after reconfiguration, whenever it is required. At the sec-
ond checkpoint (see bi-direction arrow in the table), when MJPEG2 arrives,
DCT and Q from MJPEG2 are also mapped onto the RP. Note that, Table 5.4
accumulates all the tasks that are mapped onto the RP in each interval. The
mapping of tasks within an interval may be different in each snapshot. The
detailed representation of a quarter of a period in Table 5.4 is given as a snap-
shot in Figure 5.8. The information provided by the rSesame framework is
indispensable in order to evaluate the correctness of the mapping.
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5.5.2 Execution time

The execution time is recorded in terms of simulated clock cycles. The SW
execution time is noted as the total number of cycles when all the tasks are
mapped onto the GPP only and HW execution time is recorded when the tasks
are mapped onto the RP. The speedup is calculated as a ratio of these two
values.

5.5.3 Percentage of HW/SW execution time

The percentage of HW execution and SW execution are computed as the to-
tal percentage of the execution time contributed by the RP for HW execution
and the total percentage of the execution time contributed by the GPP for SW
execution of an application respectively. Similarly, the percentage of recon-
figuration time calculates the percentage of the total execution time spent in
reconfiguration. This provides an indication on how much of the total time is
spent in the computation and how much is just spent in reconfigurations. These
values are calculated as follows.

The percentage of SW execution time is given by:

SW Exec(%) =

N∑
i=1

#SWEx(Ti) · TSW(i)

TotalExecTime
· 100 (5.2)

where #SWEx(Ti) is the total number of SW executions counted by the
model for task Ti , TSW(i) is the software execution latency for task Ti and
TotalExecTime is the total simulated execution time.

The percentage of HW execution time is given as:

HW Exec.(%) ≤

N∑
i=1

#HWEx(Ti) · THW(i)

TotalExecTime
· 100 (5.3)

where #HWEx(Ti) is the total number of HW executions counted for task Ti
by the model, THW(i) is the hardware execution latency for task Ti and TotalEx-
ecTime is the total execution cycles incurred while running an application onto
the given reconfigurable architecture.
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Note that, the HW execution percentage can only be given here as an upper
bound, since the execution of tasks on the RP can be performed in parallel.
The metric calculated here is an accumulated value. The simulator, however,
can give the actual snapshots. A similar equation holds for the time spent
reconfiguring, which is given as percentage of the total execution time as fol-
lows:

Recon(%) ≤

N∑
i=1

#Recon(Ti) · TRecon(i)

TotalExecTime
· 100 (5.4)

where #Recon(Ti ) is the number of times Ti is configured and TRecon(i) is
the reconfiguration delay of Ti and TotalExecTime is the total execution cycles
incurred while running an application onto the given reconfigurable architec-
ture.

5.5.4 Number of reconfigurations

The number of reconfigurations is recorded as the total number of reconfigu-
rations incurred during the execution of an application onto the given architec-
ture. This provides an indication on how efficiently the reconfiguration delay
was avoided, while mapping tasks onto the RP. For example, mapping task
A, task B, and then task A again on the RP requires 3 reconfigurations, while
changing this sequence of mapping to task A, task A and then task B requires
only 2 reconfigurations.

5.5.5 Time-weighted area usage

The weighted area usage factor is a metric that computes how much area is
used throughout the entire execution of an application on a particular archi-
tecture. This provides an indication on how efficiently the RP area is utilized.
This is calculated as follows:
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Area Usage(%) =

N∑
i=1

Area(Ti) · THW(i) · #HWEx(Ti)

TotalExecTime · Area(RP)
· 100 (5.5)

where Area(Ti) is the area occupied by task Ti on the RP, THW(i) is the hard-
ware execution latency of Ti , #HWEx(Ti) is the total number of HW execu-
tions counted by the model for task Ti , Area(RP) is the total area available on
the RP and TotalExecTime is the total execution time of the application.

5.5.6 Reusability Efficiency

A CCU execution onto the RP has two phases: the configuration phase, where
its configuration data, which represents a task is loaded onto the RP, and the
running phase, where the CCU is actually processing data. In an ideal case, a
CCU can be configured onto the RP only once and it is executed in all other
cases. Nonetheless, this is not always possible as the RP has limited area.
The Reusability Efficiency (RE) is the ratio of the reconfiguration time that is
saved due to the hardware configuration reuse to the total execution time of
any task. The RE of a CCU can be defined as follows:

REtask =
(#HWEx− #Recon) · TRecon

#HWEx · THW + #SWEx · TSW + #Recon · TRecon
(5.6)

where #HWEx, #SWEx and #Recon are the number of HW executions, SW ex-
ecutions and reconfigurations of a CCU respectively. Similarly, T HW, T SW
and T Recon is the corresponding hardware, software and reconfigurable la-
tencies.

The RE of a task indicates the percentage of the total time saved by a
CCU when multiple reconfigurations are avoided or, in other words, a CCU
is reused. In Equation 5.6, the numerator represents the time that is saved,
when a mapping of a CCU is reused and the denominator represents the
total execution time. The total RE for an application can be calculated as the
summation of the numerator in Equation 5.6 for all N tasks divided by the
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Figure 5.10: Application execution time and the corresponding application speedup
of mapping the given MJPEG application onto the Molen architecture with the
HWonly, the SWonly and the runtime task mapping strategies.

total execution time for the whole application as follows:

REApp ≤

N∑
i=1

(#HWEx(i)− #Recon(i)) · TRecon (i)

TotalExecTime
(5.7)

Note that the RE calculated in this way for the whole application can only
be given here as an upper bound, since the execution of tasks on the reconfig-
urable hardware can be performed in parallel. A higher RE can obtain a higher
speedup. To study this relation, we use the RE as an evaluation parameter to
study the behavior of each CCU.

5.6 Results Analysis

In this section, we provide a detailed analysis of the experimental results and
their implications for the presented case study. We conducted a variety of ex-
periments on the instantiated model by performing mapping of the application
model in Figure 5.5 for the Molen architecture with different static and runtime
mapping strategies. At first, we performed the SWonly mapping, where all the
tasks are mapped onto the GPP only. Secondly, we performed the HWonly
mapping, where all tasks are mapped onto CCUs only. In both cases, the tasks
are mapped statically onto the Molen architecture. The task mapping is fixed,
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Figure 5.11: Time-weighted area usage and the corresponding application speedup of
mapping the given MJPEG application onto the Molen architecture with the HWonly,
the SWonly and the runtime task mapping strategies.

and it cannot be changed at runtime. Furthermore, all tasks are either consid-
ered HW or SW tasks, i.e. there are no pageable tasks. Lastly, we performed
runtime mapping of tasks onto the GPP and the RP. To perform this experi-
ment, all tasks are considered as pageable, such that the full impact of runtime
task mapping can be evaluated. As discussed before, we employed a simple
strategy, called AMAP, for performing runtime task mapping. AMAP tries to
map tasks based on area availability. We compared the results of the runtime
task mapping using the AMAP heuristic with the static task mapping, when all
tasks are either mapped onto the GPP only or to the RP only. We evaluated
and compared the task mapping based on the aforementioned design param-
eters, which are execution time, speedup, percentage of HW/SW execution,
number of reconfigurations, time-weighted area usage and RE. In the rest of
this section, we discuss the results by using these parameters in more detail.

Figure 5.10 depicts the results of mapping the given MJPEG application
model onto the Molen architecture with both static and runtime mapping strate-
gies. The HWonly (SWonly) execution is measured when all the tasks are
mapped onto CCUs (the GPP). The primary y-axis (left) in the figure repre-
sents the measured application execution time, and the secondary y-axis (right)
represents the application speedup compared to the SWonly execution. It can
be inferred from the figure that the application execution time of the runtime
mapping is five times better than the SWonly execution, and the application
execution time of the HWonly mapping is almost six times better than that of
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Figure 5.12: Percentage of hardware execution, software execution and reconfigura-
tion of mapping the given MJPEG application onto the Molen architecture with the
HWonly, the SWonly and the runtime task mapping strategies.

SWonly execution. Similarly, the runtime application mapping is 1.19 times
slower than the HWonly mapping. When all tasks are mapped onto CCUs,
the performance is higher than when they are all mapped onto the GPP. With
the runtime mapping, the performance has ranged between these two values.
Mapping all the tasks onto CCUs as in the case of the HWonly gives better
performance, but it consumes more hardware resources. This can be observed
from Figure 5.11.

Figure 5.11 depicts the time-weighted area usage for mapping the given
application onto the Molen architecture with both static and runtime map-
ping. Comparing the time-weighted area usage of the HWonly mapping and
the AMAP heuristic in the figure, we can observe that the cost of using recon-
figurable area in case of the HWonly mapping is higher than the performing
runtime mapping with the AMAP heuristic. With the HWonly mapping all
tasks are mapped onto the CCUs, and as a result, the hardware cost is high.
However, mapping all tasks onto the GPP, has no hardware cost, but results
with slow performance. A tradeoff in terms of performance and resources can
be obtained with the runtime mapping, which performs selective task map-
ping onto the RP at runtime. The rSesame framework assists in exploring such
tradeoffs.

Figure 5.12 depicts the percentage of hardware execution, software ex-
ecution and reconfiguration for mapping the given MJPEG application onto
the Molen architecture. With the SWonly mapping, all tasks are mapped onto
the GPP, and as a result, there are no hardware execution and reconfigura-
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tions. With the HWonly mapping, more than 40% of the application execution
time is spent while reconfiguring CCUs, and with the runtime mapping, ap-
proximately 32% of the time is spent with the reconfiguration. This slight
decrease in the reconfiguration time, in AMAP heuristic is due to the result
of SW mapping. In the case of AMAP, tasks are also mapped onto the GPP.
While mapping tasks onto the GPP, the reconfiguration overhead is avoided,
and as a result, the reconfiguration percentage is lowered. The reconfiguration
overhead can be avoided by moving a task onto the GPP. In some cases, this
may achieve a considerable performance gain, especially in the system, where
reconfiguration overhead is significantly high. Nevertheless, changing a task
mapping has a migration and a context switching delay. Moving a task onto
the GPP is beneficial, only if the software latency of a task is lower than ex-
ecuting it on the hardware together with the task migration delay. Therefore,
the decision, weather to change the mapping for a particular task, depends
on a particular system and the constraints imposed on it. With the rSesame
framework, such possibilities can be explored.

Figure 5.13 depicts the number of reconfigurations and the REapp of map-
ping the given MJPEG application onto the Molen architecture. With the
SWonly mapping, none of the tasks is mapped onto the RP, and as a result,
there is no value for reconfiguration and the REapp for the former in Figure
5.13(a) and Figure 5.13(b) respectively. While comparing the HWonly map-
ping and the AMAP in terms of number of reconfigurations, it can be inferred
from the figure that the AMAP has less reconfigurations than the HWonly map-
ping. As explained before, when mapping tasks onto the GPP at runtime with
the AMAP heuristic, the reconfiguration overhead is avoided, and as a result
the number of reconfigurations is lowered. Similarly, it can be inferred from
Figure 5.13(b) that there is no significant difference in the REapp of the runtime
mapping and the HWonly mapping, while we may expect a better configura-
tion re-use for the runtime mapping. This is due the fact that the task mapping
policy implemented by the RMM performs task mapping based on area, and it
does not take the configuration re-use in account. While implementing other
policies, the different value for REapp can be obtained. Such detailed analysis
of architectural parameters is provided in the next chapter.

For this case study, we note that all the above system-level simulations
of running MJPEG1 and MJPEG1 application with inputs of 8 and 4 picture
frames of 128 x 128 pixel respectively, can be executed in less than 10 seconds,
thus allowing fast performance evaluation of the model and extensive design
space exploration.
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Figure 5.13: Number of reconfigurations and the application Reusability Efficiency
(REapp) of mapping MJPEG application onto the Molen architecture with the HWonly,
the SWonly and the runtime task mapping strategies.

5.7 Conclusions

In this chapter, we described a case study to show an application of the rSesame
framework on a real reconfigurable architecture. In order to perform map-
ping exploration based on various design attributes, we instantiated a model
from the rSesame framework for the Molen architecture. A mapping strategy
based on the area availability is implemented in the model in order to per-
form exploration of different application-to-architecture mappings at runtime.
We demonstrated that the instantiated model can be employed to perform both
static and runtime mapping exploration of the Molen reconfigurable architec-
ture. We also showed that the instantiated model can be efficiently used to per-
form exploration of various design parameters, such as execution time, area
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usage, number of reconfigurations and percentage of hardware and software
execution. Based on these design parameters, we evaluated and compared
the runtime mapping against static mapping. The obtained results show that
mapping all tasks onto the RP gives better performance, however, it consumes
more hardware resources. With the runtime mapping, a tradeoff can be ob-
tained in terms of performance and resources. The rSesame framework assists
to explore such tradeoffs.

In the next chapter, we evaluate the rSesame framework’s characteristics
by showing that it can easily and quickly model, simulate and compare a wide
range of runtime mapping heuristics from diverse domains. We evaluate these
heuristics with the rSesame framework by considering, for the same recon-
figurable architecture model, different numbers of resources, under a more
complex application setup.

Note. The content of this chapter is based on the the following articles: K. Sigdel, M. Thomp-

son, A.D. Pimentel, T. P. Stefanov, K.L.M. Bertels, System-Level Design Space Exploration
of Dynamic Reconfigurable Architectures, Proceedings of the International Symposium on
Systems, Architectures, MOdeling and Simulation (SAMOS’08), Samos, Greece, July 2008, pp.
279–288.

K. Sigdel, M. Thompson, A.D. Pimentel, C. Galuzzi, K.L.M. Bertels, System-Level Runtime
Mapping Exploration of Reconfigurable Architectures, Proceedings of the Reconfigurable

Architectures Workshop (RAW’09), Rome, Italy, May 2009, pp. 1-8.





Chapter 6
Task Mapping Heuristics
Evaluation at Runtime

A s described in Chapter 4, the rSesame framework is a generic mod-
eling and simulation framework which can be used to explore and
evaluate reconfigurable systems at early design stages. The frame-

work can be used to perform rapid exploration of several parameters, such as
architectural characteristics, hardware-software partitionings, application-to-
architecture mappings, and scheduling strategies. In Chapter 5, we showed
that the rSesame framework can be efficiently used to perform quick explo-
ration of several application-to-architecture mappings reconfigurable architec-
tures, both statically and at runtime. In this chapter, we elaborate the use of
the rSesame framework to perform runtime mapping exploration of reconfig-
urable architectures in more detail. In particular, we show that the framework
can easily and quickly model, simulate and compare a wide variety of task
mappings strategies at runtime, under different resource conditions.

The main features of the rSesame framework include flexibility, ease of
use, fast performance, and its applicability to a wide range of reconfigurable
systems. We describe a case study where we test these characteristics of the
framework on the Molen architecture, by evaluating and comparing different
task mapping heuristics at runtime, under different resource conditions. These

135
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heuristics are evaluated and compared based on various design attributes,
such as execution time, number of reconfigurations, time-weighted area us-
age, number of hardware and software tasks, percentage of hardware/software
execution, percentage of reconfiguration and hardware reusability efficiency.
With this case study, we show that the rSesame framework can be efficiently
deployed not only to perform rapid exploration of different application-to-
architecture mappings, but also to evaluate different task mapping strategies
and different architectural conditions at runtime.

This chapter is organized as follows. Section 6.1 presents an overview of
the mapping heuristics taken from various domains, which are considered in
the proposed case study. Section 6.2 discusses the required experimental setup
to perform this case study. In particular, it discusses the application model and
the architecture details of the reconfigurable architecture. In Section 6.3, we
present the detailed analysis and the comparison of the results obtained from
the case study. Finally, Section 6.4 summarizes the major contributions and
concludes the chapter.

6.1 Task Mapping Heuristics

The rSesame framework allows easy modification and adjustment of individ-
ual components in the model, while keeping other parts intact. We illustrate
this feature of the framework by allowing designers to experiment with differ-
ent kinds of runtime application mapping heuristics. The considered heuristics
have variable complexity with respect to their implementation, and the nature
of their execution. In the original context, they were used at different system
stages, ranging from the lower architecture level to operating system (OS), and
the higher application levels. This illustrates an example of the rSesame frame-
work’s flexibility in incorporating different kinds of algorithms from various
domains. These heuristics are taken from literature, and have been adapted
to fit in the framework. In the following, we discuss these heuristics in more
detail.
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Algorithm 6.1 Pseudo-code for the AMAP task mapping heuristic.

1: HW← set of tasks mapped onto FPGA
2: SW← set of tasks mapped onto the GPP
3: if Ti .area ≤ area then
4: {Ti is mapped onto FPGA}
5: HW = HW ∪ Ti

6: area = area - Ti .area
7: else
8: {Map Ti onto the GPP}
9: SW = SW ∪ Ti

10: end if

6.1.1 AMAP : As Much As Possible Heuristic

AMAP tries to maximize the use of FPGA resources (such as area) as much
as possible, and it performs task mapping based on resource availability. In
this case, tasks are executed to the FPGA if the latter has enough resource to
accommodate them; otherwise, they are executed on the GPP. This straight-
forward heuristic can be used as a simple resource management strategy in
various domains. This is also used as a default mapping strategy for the rS-
esame framework. Algorithm 6.1 presents the pseudo-code that describes the
functionality of AMAP heuristic for performing runtime mapping of a task Ti .
The heuristic chooses to execute task Ti to the FPGA if there is sufficient re-
sources (e.g. area in the algorithm) for Ti (line 3 to 6 in Algorithm 6.1). On
all other conditions, tasks are executed on the GPP (line 7 to 9 in Algorithm
6.1).

6.1.2 CBH : Cumulative Benefit Heuristic

CBH maintains a Cumulative Benefit (CB) value for each task that represents
the amount of time that would have been saved up to that point if the task had
always been executed to the FPGA. In this case, mapping decisions are made
based on these values and the available resources. For example, if the avail-
able FPGA resources are not sufficient to load the current task, tasks can be
swapped if the CB of the current task is higher than that of the to-be-swapped-
out set. In [103], this heuristic is used for dynamic coprocessor management
of reconfigurable architectures at architecture level.
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Algorithm 6.2 Pseudo-code for the CBH task mapping heuristic.

1: HW← set of tasks mapped onto FPGA
2: SW← set of tasks mapped onto the GPP
3: if Ti .area ≤ area then
4: if CB(Ti ) > (TSW(i) - THW(i)) then
5: {Ti is mapped onto FPGA}
6: HW = HW ∪ Ti

7: area = area - Ti .area
8: end if
9: else

10: {Not enough area, swap the mapped tasks.}
11: while area ≤ Tj .area and j ∈ HW do
12: if CB(Ti ) - (TSW(i) - THW(i)) > CB(Tj ) then
13: area = area + Tj .area
14: end if
15: end while
16: if Ti .area ≤ area then
17: {Ti is mapped onto FPGA}
18: HW = HW ∪ Ti

19: area = area - Ti .area
20: else
21: {Map Ti onto the GPP}
22: SW = SW ∪ Ti

23: end if
24: end if

Algorithm 6.2 presents the pseudo-code that describes the functionality
of the CBH heuristic for performing runtime mapping of a task Ti . If re-
sources, such as area slices, are available in the FPGA, then Ti is executed to
the FPGA, if the CB of Ti is larger than its loading time, defined by (TSW(i)
- THW(i)), where TSW(i) and TSW(i) are software and hardware latencies of task
Ti respectively (line 3 to 8 in Algorithm 6.2). If the FPGA lacks current ca-
pacity for executing task, the heuristic searches for a subset of FPGA-resident
tasks, such that removing the subset yields sufficient resources in the FPGA to
execute the current task. The condition, however, is that, all the tasks in the
subset must have smaller CB value than the current task (line 9 to 18 in Algo-
rithm 6.2). If such a subset is not attained, then the current task is executed to
the GPP (line 19 to 22 in Algorithm 6.2).
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Algorithm 6.3 Pseudo-code for the IBH task mapping heuristic.

1: T← set of all tasks.
2: while T != empty and area ≤ Total area do
3: Select Ti with maximum frequency count
4: if area + Ti .area ≤ Total area then
5: map Ti onto FPGA
6: area = area + Ti .area
7: else
8: map Ti onto GPP
9: end if

10: Remove Ti from T
11: end while
12: Map rest of the tasks from T onto the GPP

6.1.3 IBH : Interval Based Heuristic

In IBH, the execution is divided into a sequence of time slices (intervals) for
mapping and scheduling. At the beginning of each interval, a task is examined
for its execution. In each interval, the execution frequency of each task is
counted, and the mapping decisions are made based on the frequency count
of the previous intervals, such that tasks with the highest frequency count are
mapped onto the FPGA.

Algorithm 6.3 presents the pseudo-code that describes the functionality
of the IBH heuristic for performing runtime mapping in each interval for a T
set of tasks. Working from the highest to the lowest frequency count, each
task Ti ∈T that satisfies the current resource conditions is selected for FPGA
execution. The area constraint is updated accordingly before considering the
next task. This process continues until the FPGA is full, or there is no task left
in T (line 2 to 6 in Algorithm 6.2). If the FPGA current capacity is not enough
for executing any task from T, then they are executed with the GPP (line 8 to 12
in Algorithm 6.2). As it can be seen in Algorithm 6.3, tasks are executed to the
FPGA based on frequency count, but other mapping criteria, such as speedup,
can also be used. The main idea of this heuristic is to divide the execution
into different intervals and perform mapping in each interval. In [104], this
heuristic is used for resource management in a multi-threaded environment at
OS level.
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The implementation of this heuristic with the Molen model is straight for-
ward. The only added concern with this heuristic is intervals marking for the
task mapping. To implement this heuristic, marking of the execution inter-
vals is done by inserting a special event in the application model. Whenever
this special event is encountered in the mapping layer, the frequency count is
revisited, and the task mapping is updated.

6.1.4 RBH: Reusability Based Heuristic

Reconfiguration overhead has always been a serious concern for reconfigurable
architectures, as it can drastically limit the performance of such architectures.
In an ideal case, a task can be configured on the reconfigurable hardware only
once and then be reused to accelerate the application in all other cases. The
reuse of the hardware configuration avoids multiple configurations, and as a
result, reconfiguration overhead can be significantly reduced. Especially in
case of application domains such as streaming and networking, where certain
tasks are executed in a periodic manner e.g. on the basis of pixel blocks or
entire frames, hardware configuration reuse can easily be exploited. To take
advantage of such characteristics of streaming applications, we propose a new
heuristic called Reusability Based Heuristic (RBH).

RBH is based on the hardware configuration reuse concept, which tries to
avoid the reconfiguration overhead by reusing the configurations, which are
already available on the FPGA. The basic idea of the heuristic is to avoid re-
configuration as much as possible, in order to reduce the total execution time.
For certain tasks that are mapped onto the FPGA, the heuristic preserves them
in the FPGA after their execution. These tasks are not removed from the hard-
ware, so that their hardware configurations can be reused when the task is
re-executed. Reusing hardware configurations multiple times can significantly
avoid reconfiguration overhead; thus, performance can be considerably im-
proved. Unfortunately, preserving hardware configurations is not possible for
all tasks. For this reason, the heuristic tries to preserve hardware configurations
for selected tasks. For example, tasks that have higher reconfiguration delay,
and occur more frequently in the system have priority on being preserved in
the FPGA.

As mentioned in Chapter 5, we define three states for a task: a waiting
state, a mapped state, and a running state. A task is in the waiting state if it
waits to be mapped. A task is in the mapped state if it is already configured on
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Algorithm 6.4 Pseudo-code for the RBH task mapping heuristic based on
hardware configuration reuse.

1: {Task already mapped on FPGA, do not configure.}
2: if Ti == MAPPED then
3: Ti .state← RUNNING;
4: else
5: if area ≥ Ti .area then
6: if SpeedUp(Ti ) > 1 then
7: {Task not mapped on FPGA, configure it.}
8: configure(Ti );
9: Ti .state← RUNNING;

10: end if
11: else
12: for All tasks Tj on the FPGA do
13: if SpeedUp(Tj ) < SpeedUp(Ti ) then
14: candidateSet = candidateSet ∪ Tj
15: end if
16: end for
17: while area ≤ Ti .area do
18: Select Tk ∈ candidateSet with lowest RER
19: removeSet = removeSet ∪ Tk
20: area = area + Tk .area;
21: end while
22: if Ti .area ≤ area then
23: for All task Tm ∈ removeSet do
24: Tm .state = WAITING;
25: end for
26: {Task not mapped on FPGA, configure it.}
27: configure(Ti );
28: Ti .state← RUNNING;
29: end if
30: end if
31: end if

the FPGA, but it is not being executed; however, it may be re-executed later. A
task is in the running state when the task is actually processing data. It should
be noted that when a task is in the mapped state, its hardware configuration
is saved in the FPGA. Thus, when the task needs to be re-executed it can



142 CHAPTER 6. TASK MAPPING HEURISTICS EVALUATION

immediately start processing without reconfiguration.

Algorithm 6.4 presents the pseudo-code that describes the functionality
of the RBH heuristic for performing runtime mapping of a task Ti . If Ti is
already configured, then it starts directly processing data (line 1 to 4 in Algo-
rithm 6.4). However, if Ti is not currently available in the FPGA, then the task
is evaluated for its speedup. If resources are available, Ti is executed to the
FPGA only if there is a performance gain (line 5 to 10 in Algorithm 6.4). The
performance gain in this case is measured in terms of speedup. The speedup
for each task is measured at runtime by using the following equation:

Speedup =

{
TSW
THW

t = 0
TSW·(#HWEx+#SWEx)

#SWEx·TSW+#HWEx·THW+#Recon·TRecon
t > 0

(6.1)

where #HWEx, #SWEx and #Recon are the number of HW executions, SW
executions and reconfigurations of a task respectively. Similarly, THW, TSW
and TRecon are the corresponding hardware, software and reconfigurable laten-
cies, and t is the execution time-line. When the application execution starts,
t = 0. The heuristic maintains a profiling count of HW executions, SW exe-
cutions and reconfigurations for all tasks. Each time a task is executed, these
counters for that task are updated. For instance, if a task is executed with the
GPP, its SW count is incremented, and if the task is executed in the FPGA,
its HW count is incremented. Similarly, the reconfiguration count of a task is
incremented when a task is (re)configured. These count values for each task
are accumulated from all the previous executions. As a result, they reflect the
execution history of a task. The speedup calculated with these count values
indicates the precise speedup of a task up to that point of execution.

If the available resources are not enough in the FPGA, a set of tasks
from the FPGA is swapped to accommodate Ti in the FPGA. The task
swapping, in this case, is done based on two factors: a) Speedup and b)
Reconfiguration-to-Execution Ratio (RER). In the first step, a candidate set
of tasks from the FPGA is selected, in such a way that these tasks are less
beneficial than the current task in terms of speedup (line 12 to 16 in Algorithm
6.4). The speedup in this case is also calculated by using the Equation 6.1.
In the second step, the candidate set is examined for its RER ratio, such that
tasks with the lowest RER values are swapped first (line 17 to 21 in Algorithm
6.4). The RER value for each task is computed as follows:
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RER =
TRecon

THW
· Exec Freq (6.2)

where Exec Freq is the average execution frequency of the task in its past
history. The execution frequency of a task can be simply computed from the
execution profile of each task with respect to the total execution count of that
application as follows.

Exec Freq =
#HWEx
N∑

i=1

HWiEx

(6.3)

where the numerator represents the number of times a task is executed on a
hardware. The denominator represents the total hardware execution count of
the entire application, and N represents the total number of tasks in an appli-
cation.

The task with a high RER value indicates that it has high reconfiguration-
per-execution delay, and it has executed frequently, in its history in the system,
making it a probable candidate for future execution. The heuristic makes a
careful selection while removing tasks from the FPGA. By preserving tasks
with high RER values as long as possible in the FPGA, we try to avoid the re-
configuration of the frequently executed tasks. We would like to stress the fact
that the speedup value computed using Equation 6.1 is not a constant factor.
This value is continuously updated based on the execution profile of the task at
runtime. Hence, mapping tasks onto the FPGA based on such value, represents
the precise system behavior at that instance of time. Note that the RBH is a
generic heuristic, and it is not restricted to one type of resources or one type of
architecture. To perform runtime mapping decisions considering multiple re-
sources (such as memory, DSP slices) for different architectural components,
the parameters defining the heuristic can be easily customized, hence making
it a flexible approach.
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Figure 6.1: The Motion-JPEG (MJPEG) application Model considered for the case
study. The MJPEG application is extended by injecting sporadic applications in each
frame.

6.2 Experimental Setup

For this case study, we consider a model instantiated from the rSesame frame-
work for the Molen reconfigurable architecture. The detailed descriptions of
the instantiated model and the Molen architecture have been provided in Sec-
tion 5.2 and 5.1 respectively. In this case study, the previously described Molen
model is used to evaluate the different task mapping heuristics described in
Section 6.1. With the Molen model, an extended MJPEG application as shown
in Figure 6.1 is mapped onto the Molen reconfigurable architecture. We incor-
porate the aforementioned task mapping heuristics as strategies for the Molen
model to perform runtime task mapping of the extended MJPEG application
onto the Molen architecture. We conduct an evaluation of these task mapping
heuristics based on various system attributes recorded from the model. In the
rest part of this chapter, we discuss the case study in more detail.

We extend a Motion-JPEG (MJPEG) encoder application to use it as an
application model for this case study. The corresponding KPN is shown in
Figure 6.1. The frames are divided into blocks, and each task performs a dif-
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Task DCT1 DCT3 DCT2 F’ DCT4 Q1
CCU CCU0 CCU1 CCU2 CCU3 CCU4 CCU5

Task Q2 Q3 Q4 C B F
CCU CCU6 CCU7 CCU8 CCU9 CCU10 CCU11

Task Init VideoIn A VLE D Vout
CCU CCU12 CCU13 CCU14 CCU15 CCU16 CCU17

Task E E’ D’ B’ A’ C’
CCU CCU18 CCU19 CCU20 CCU21 CCU22 CCU23

Task E” D” C” B” A” F”
CCU CCU24 CCU25 CCU26 CCU27 CCU28 CCU29

Table 6.1: Mapping of tasks onto CCUs. Odd rows in the table list all the tasks, and
even rows list their corresponding CCUs.

ferent function on each block as it is passed from task to task. MJPEG operates
on these blocks (partially) in parallel. A random number (0 to 3) of applica-
tions (APP1 to APP3) are injected in each frame of the MJPEG application in
order to create a dynamic application behavior. These applications are consid-
ered as sporadic ones, which randomly appear in the system, and compete with
MJPEG for the resources.

The model instantiated for this case study consists of 30 CCUs. Thus,
each task is mapped onto one CCU. The mapping of the tasks onto CCUs is
given in Table 6.1, where the odd rows list all the tasks and the even row list
their corresponding CCUs. Note that the number of CCUs is a parameter that
can be defined based on the number of pageable and HW tasks. For this case
study, we consider all tasks as pageable to fully exploit the runtime mapping
by deciding where and when to map them at runtime depending on the system
condition. Therefore, for all the tasks, mapping decisions are performed at
runtime. The model allows dynamic partial reconfiguration, and therefore, if
the FPGA cannot accommodate all tasks at once, the latter can be executed
after runtime reconfiguration.

We study and evaluate different task mapping heuristics from various
domains by considering, for the same architecture model, different FPGA
sizes. We consider six FPGAs from the Xilinx Virtex-4 FX family [36],
namely XC4VFX12, XC4VFX20, XC4VFX40, XC4VFX60, XC4VFX100
and XC4VFX140. These FPGAs have different available area (slices) as
shown in Table 6.2. As a result, they are used to evaluate the runtime task map-
ping under different resource conditions. We assume the Processor Local Bus
(PLB) of these FPGAs is 4 bytes wide, and the Internal Configuration Access
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Hardware Area (Slices)
XC4VFX12 5472
XC4VFX20 8544
XC4VFX40 18624
XC4VFX60 25280

XC4VFX100 42176
XC4VFX140 63168

Table 6.2: Available area (in slices) for different FPGAs for the Xilinx Virtex4 FX
family [36].

Port (ICAP) functions at 100 MHz, thus, its configuration speed is considered
at 400 MB/sec [128].

The main purpose of this case study is to demonstrate that the rSesame
framework can be used to evaluate different task mapping heuristics at run-
time, under different resource conditions. As a result, we use estimated values
of the computational latency, the area occupancy (on the FPGA) and the re-
configuration delay for each CCU. The computational latency values for the
GPP model are initialized using estimates obtained from literature [2, 126]
(but non-Molen specific). As mentioned before, we estimate the area occu-
pancy for each of the Kahn processes mapped onto the CCU using the Quipu
model [120]. Quipu establishes a relation between hardware and software, and
it predicts FPGA resources from software code, typically C-level description
of an application, using partial regression. Kahn processes contain functional
C-code together with annotations that generate events such as R, X and W.
Therefore, the Quipu model can be employed to estimate the area occupancy
of each process.

Based on the reconfiguration delay of each FPGA, and estimated area of
each Kahn process, we computed the reconfiguration delay of each CCU using
the following equation:

TRecon =
CCU slices
FPGA slices

· FPGA bitstream
ICAP bandwidth

(6.4)

where CCU slices is the total number of area slices a CCU requires, FPGA
slices is the total number of slices available on a particular FPGA, FPGA bit-
stream is the bitstream size in MBs of the FPGA and ICAP bandwidth is the
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ICAP configuration speed. As a final remark, we assume that there is no de-
lay associated with the runtime mapping, such as task migration and context
switching.

6.3 Heuristics Evaluation

In this section, we provide a detailed analysis of results and their implications
for the aforementioned case study. We conducted a wide variety of experi-
ments on the above-mentioned task mapping heuristics with the Molen archi-
tecture by considering various FPGAs of different sizes. We evaluated and
compared these heuristics based on the following parameters: execution time,
number of reconfigurations, percentage of hardware/software executions and
reusability efficiency. The detailed description of these parameters has been
provided in Section 5.5. In the rest of this section, we discuss the evaluation
results by using these parameters in more detail.

6.3.1 Execution Time

Figure 6.2 depicts the results of running different task mapping heuristics for
mapping an extended MJPEG application onto the Molen architecture with
various FPGAs of different sizes. The primary y-axis (left) in the graph repre-
sents the application execution time measured for each heuristic. The software
only (SWonly) execution is measured when all the tasks are mapped onto the
GPP. Similarly, the hardware only (HWonly) execution is measured when all
the tasks are mapped onto the FPGA1. The static execution (STonly) is mea-
sured when only static exploration is performed. In STonly execution, a fixed
set of hardware tasks are considered for the FPGA mapping and this set does
not change during the application runtime. For this experiment, tasks consid-
ered as fixed hardware are DCT1-DCT4 and Q1-Q4. This implies the cor-
responding CCUs (i.e. CCU0 to CCU8) of these tasks are mapped onto the
FPGA, and the rest are mapped onto the GPP. The secondary y-axis (right) in
Figure 6.2 represents the application speedup for each heuristic compared to
the SWonly execution. The x-axis lists different types of FPGAs which are
ranked (from left to right) based on their sizes, such that XC4VFX12 has the

1In HWonly, tasks are forced to be executed on the FPGA. However, if the task does not fit
on entire FPGA, the task is executed with the GPP.
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Heuristics Performance Increase (%)
XC4VFX12⇒ XC4VFX20 XC4VFX100⇒ XC4VFX140

[has 54% slice increase] [has 33% slice increase]
HWonly 67.9 3.14
STonly 0.69 0.007
AMAP 30 7.7

IBH 15 0.87
CBH 67 8.5
RBH 70 2.8

Table 6.3: The performance increase in different heuristics with corresponding area
increase in the FPGA. There is no linear increase in the performance with the increase
in area.

smallest number of area slices and XC4VFX140 has the largest number of
area slices (see Table 6.2). Several observations can be made from Figure 6.2
in terms of FPGA resources and speedup for different heuristics.

A first observation that can be noticed from Figure 6.2 is that the appli-
cation performance is proportional to the FPGA size: the bigger the avail-
able area in the FPGA the higher the application performance. In the case of
XC4VFX12, there is no significant performance gain by using any heuristic
compared to the software execution. Since there is a limited area, only few
tasks can be mapped onto the FPGA, thus, performance is constrained. Never-
theless, there is a notable performance improvement with other FPGAs.

Secondly, comparing the results of different heuristics for different FPGAs
in the Figure 6.2, we observe that there is no linear increase in the performance
with the increase in the FPGA area. For instance, although XC4VFX20 has
54% more slices than XC4VFX12, the corresponding increase in the appli-
cation performance is 67.9%, in the case of HWonly, as shown in Table 6.3.
Similarly, there is 33% increase in area slices while comparing XC4VFX140
with XC4VFX100 in Table 6.2. Nevertheless, there is considerably lower in-
crease in the performance in this case, as compared to the former case. The
performance increase with corresponding area increase in XC4VFX12 and
XC4VFX20 as compared to XC4VFX100 and XC4VFX140 respectively, in
case of different heuristics, is reported in Table 6.3. The table depicts that
there is indeed no linear increase in the performance with area increase. This
implies that the performance increase in an application is bounded by the de-
gree of parallelism in that application. The use of more resources does not
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Figure 6.3: The performance increase of the RBH as compared to HWonly, STonly,
IBH, CBH and AMAP. RBH performs better than AMAP under all resource condi-
tions expect XC4VFX12. RBH performs better than STonly, IBH and CBH under all
resource conditions.

always guarantee a better application performance.

Another observation that can be made from Figure 6.2 is in terms of appli-
cation performance of each heuristic. As it can be seen from the figure, STonly
has the worst application performance, and HWonly has the best application
performance. HWonly executes all tasks on the FPGA, and as a result, has
approximately upto 9 times better performance than SWonly. STonly executes
only a set of tasks on the FPGA, and mapping optimizations cannot be per-
formed at runtime, and as a result has only upto 3 times better performance
than SWonly. On the other hand, with runtime heuristics such as AMAP, IBH,
CBH and RBH, the task mapping is performed at runtime. When the applica-
tion behavior changes due to the arrival of a sporadic application, task map-
ping is optimized, and better performance can be obtained in latter cases. This
can be clearly seen in the figure, where the performance of the other heuristics,
such as RBH, CBH, IBH and AMAP, has ranged between HWonly and STonly.

While comparing the application performance of RBH against other
heuristics, such as AMAP, IBH and CBH, we observe that, RBH provides
the best performance. RBH outperforms IBH under all resource conditions.
RBH performs similar to CBH in the case of XC4VFX12, XC4VFX20 and
XC4VFX40, while it performs better than CBH for the rest of the FPGAs. Task
mapping is highly influenced by the task selection criteria and the FPGA size.
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CBH chooses a task with the highest SW/HW latency difference and executes
it to the FPGA. RBH also maps tasks based on the speedup factor, but the ma-
jor difference is in the way this value is calculated. RBH calculates the speedup
value at runtime taking into account the past execution history, while with CBH
the SW/HW value is calculated statically. This difference significantly influ-
ences the performance of these heuristics. The performance increase of the
RBH as compared to HWonly, STonly, IBH, CBH and AMAP is reported in
Figure 6.3. As it can be inferred from the figure, the performance improvement
of the RBH compared to AMAP shows an irregular behavior. The RBH per-
forms 10% worst than AMAP for XC4VFX12. However, the improvement
significantly increases for XC4VFX20. For XC4VFX40, the improvement
suddenly decreases to 10%. The improvement is regained for XC4VFX60,
and stays identical for XC4VFX100 and XC4VFX140. AMAP performs task
mapping based on the area availability in an ad-hoc manner, in the sense that
it tries to map as many tasks as possible at once. However, the RBH performs
a selective task mapping based on the task speedup and the hardware config-
uration reuse. When area is limited, as in the case of XC4VFX12, not many
hardware configurations can be preserved in the FPGA, thus, configuration
reuse cannot be exploited with the RBH. As a result, AMAP performs better
than RBH. With the increase in area, many hardware configurations can be
preserved in the FPGA. Consequently, the RBH performs better than AMAP.

6.3.2 Number of Reconfigurations

Figure 6.4 depicts an overview of the number of reconfigurations for different
heuristics, by considering different FPGAs. Several observations can be made
from Figure 6.4 in terms of FPGA resources and the number of reconfigura-
tions for the different heuristics. Only few tasks can be executed on the FPGA
with limited area slices, contributing to the small reconfiguration counts. When
area slices increases, more tasks executed in the FPGA, and hence reconfigu-
ration counts increases. Nevertheless, the reconfiguration count is greatly in-
fluenced by the mapping strategies used. As it can be inferred from Figure 6.4,
HWonly has relatively higher reconfigurations as compared to other heuristics.
With HWonly, all tasks are executed to the FPGA, and hence they are config-
ured frequently. In large FPGAs, there is a possibility for CCUs to save and
re-use their configurations, and hence avoid reconfiguration. Therefore, re-
configurations saturates with large FPGAs. Similarly, STonly has a relatively
low number of reconfigurations with small FPGAs, such as XC4VFX12 and
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Figure 6.4: Heuristics comparison under different FPGAs conditions in terms of num-
ber of reconfigurations. There is a direct relation between the number of reconfigura-
tions and the FPGA area.

XC4VFX20. The reconfiguration count increases in case of XC4VFX40 and
XC4VFX60, and then it stays constant in all other cases. STonly executes a
fixed set of HW tasks in all cases, since the number of HW task is constant,
the reconfiguration also saturates.

We can observe from Figure 6.4 that AMAP has significantly higher re-
configuration counts unlike the other heuristics. AMAP performs task map-
ping based on the area availability in an ad-hoc manner, in the sense that any
task can be mapped onto the FPGA. This leads to a significant increase in re-
configuration counts. It is worth noticing that the application performance in
case of AMAP does not decrease drastically with the higher reconfiguration
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numbers. We may expect a significant performance decrease due to massive
reconfigurations. The reconfiguration latency considered for a task is relatively
small compared to the HW execution latency. Despite the larger number of re-
configurations, the performance can be considerably improved with the HW
execution in such cases. Similarly, in the case of CBH, the reconfiguration
counts are lower in smaller FPGAs due to lower hardware executions. This
number increases with large FPGAs. There are no significant changes in the
reconfiguration counts with the increase in area slices once sufficient area is
available.

The number of reconfigurations for IBH is somewhat lower compared to
the other heuristics, such as AMAP, CBH and RBH under all FPGA condi-
tions. This is not due to an efficient algorithm which tries to optimize the
reconfiguration delay, rather it is the effect of limited HW execution. In case
of IBH, the mapping decision is changed only in the beginning of each inter-
val, and the mapping behavior is fixed within an interval. Thus, a fixed set
of tasks is mapped onto the FPGA during such an interval. This limits the
hardware execution percentage, and hence the reconfigurations. On the other
hand, RBH reuses the hardware configurations to reduce the total number of
reconfigurations. As a result, we observe a lower number of reconfigurations
in case of RBH compared to CBH and AMAP in Figure 6.4. Note that IBH
and STonly have lower reconfigurations than RBH as a consequence of their
lower hardware execution. Nonetheless, RBH has a better reconfiguration-to-
HW-execution ratio as compared to IBH and STonly, making the former better
in terms of performance.

6.3.3 Percentage of Hardware Execution, Software Execution and
Reconfiguration

Figure 6.5 shows the comparison between different task mapping heuristics in
terms of hardware execution, software execution and reconfiguration measured
using the equations 5.2, 5.3 and 5.4 respectively. The x-axis in the graph is
stacked as 100%, and it shows the contribution of hardware execution, software
execution and reconfiguration to the total execution time. We observe that in
few FPGAs the percentage of execution is greater than 100%. The hardware
execution percentage measured in Equation 5.2 is provided as an upper bound
to address the parallel execution possibility of the FPGA, as a result, its value
can go beyond the 100% limitation.
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Figure 6.5: The comparison of different heuristics based on percentage of hardware
execution, software execution and reconfiguration. The hardware execution percent-
age is low in smaller FPGAs, and it increases considerably with more area slices.
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A first observation that can be made from Figure 6.5 is in terms of execu-
tion percentage and FPGA area. The limited area slices in the FPGA confines
the HW execution percentage in smaller FPGAs. The hardware execution per-
centage increases considerably with more area slices, but this increase is not
linear. As it can be seen from the figure, hardware execution percentage some-
what saturates with large FPGAs, such as XC4FX100 and XC4FX140. This
observation is valid for all the runtime mapping heuristics including STonly
and HWonly.

With HWonly mapping, all tasks are forced to be executed to the FPGA.
However, if the task does not fit on the entire FPGA, then the task is exe-
cuted with the GPP. Therefore, in Figure 6.5, we observe certain percentage of
software execution with small FPGAs, but with larger FPGA, there is only HW
execution and the corresponding reconfiguration. With smaller FPGAs, almost
no tasks are executed in hardware, and as a result, STonly has very minimal
hardware execution (if any) and the corresponding reconfiguration. With the
larger FPGAs, STonly has a relatively good but constant hardware execution
and reconfiguration percentage, since it executes a fixed set of tasks on the
FPGA.

While comparing the runtime heuristics, such as AMAP, CBH, IBH and
RBH, we can observe that AMAP has the best hardware execution percent-
age in larger FPGAs, followed by RBH and CBH. CBH and RBH somehow
shows similar behavior in terms of hardware execution percentage. However,
in case of reconfiguration percentage, they do not follow the same trend. The
reconfiguration is somewhat linear to the hardware execution in case of CBH.
However, RBH does not show any linear increase in reconfiguration with hard-
ware execution. RBH performs task mapping based on configuration re-use,
and as a result, tries to avoid reconfiguration with more hardware executions.
This behavior of RBH heuristic is apparent in the figure, especially in the case
of moderate to large FPGAs, such as XC4FX60, XC4FX100 and XC4FX140.
IBH follows a behavior similar to STonly in terms of software and hardware
execution, as it also executes a fixed set of tasks on the FPGA.

By mapping more tasks onto FPGA, the application can be accelerated, but
it also has reconfiguration overhead. The efficiency of the mapping heuristics
lies in finding the best mapping while minimizing the number of reconfigu-
rations. Nevertheless, in Figure 6.5, we see almost a linear contribution of
the reconfiguration overhead to the total execution time in all heuristics except
in RBH. This phenomenon is highly influenced by the policy implemented for
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task mapping. Another observation that can be made from the figure is the con-
tribution of the hardware execution, SW execution and reconfiguration to the
total execution time. The figure shows that the GPP executes most of the ap-
plication, and the FPGA computes only less than 40% of the total application.
This is due to the architectural restrictions of the Molen architecture - the GPP
and the RP run in a mutual exclusive way, due to the processor/co-processor
nature of the architecture. This influences the mapping decision, which in turn
contributes to the low hardware execution rates. This significantly increases
the total execution time. Another reason for the lower percentage of hardware
execution is due to the lower hardware latency for each task. The execution
percentage is calculated as the ratio of execution latency of all tasks to the to-
tal execution time of an application. The hardware latency is comparatively
lower than the SW latency for each task. Therefore, the corresponding hard-
ware execution contribution is always lower as compared to the percentage of
SW execution.

6.3.4 Time-Weighted Area Usage

Figure 6.6 depicts an average time-weighted area usage measured using the
equation provided in Equation 5.5 for different heuristics under different
FPGA devices. The primary y-axis (left) in the graph represents the time-
weighted area usage measured for each heuristic. The secondary y-axis (right)
in the figure represents the application speedup for each heuristic compared
to the SWonly execution. Several observations can be made from Figure 6.2
in terms of FPGA resources and time-weighted area usage of different heuris-
tics. The first observation that can be made from the figure is in terms of
time-weighted area usage and the hardware resource. As it can be seen from
the figure, the time-weighted area usage is directly impacted by the number
of area slices in the FPGA. With the limited area slices in small FPGAs, few
tasks are executed in the FPGA, contributing to a smaller number of hardware
executions. This, in turn, contribute to the lower area usage. With sufficient
area slices, there is a considerable number of hardware executions, and hence
the area usage is high. Nonetheless, there is no linear relation between the
time-weighted area usage and the available FPGA area. In XC4VFX140, the
area usage is relatively low compared to XC4FX100, despite the fact that area
slices is greater in the former. The area usage measured is the time weighted
factor, and it depends on the hardware execution, the total FPGA area and the
total execution time, as shown in Equation 5.5. The increase in the area slices,
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with no significant increase in hardware executions, contribute to the lower
area usage in the former case.

As it can be inferred from Figure 6.6, HWonly has the highest time-
weighted area usage under all FPGA conditions. HWonly executes all tasks
onto the FPGA, and as a result, the cost of using FPGA in this case is higher
than all other heuristics. STonly, however, has the lowest area usage due to its
lower number of hardware executions, and therefore, its corresponding perfor-
mance is also very poor. Similarly, AMAP has higher area usage compared
to other heuristics, such as CBH, IBH and RBH, under all FPGA conditions,
except XC4VFX60. AMAP performs task mapping based on area availability.
As a matter of fact, it has a relatively higher number of hardware executions
compared to the other heuristics, and therefore it consumes additional area.
RBH, on the other hand, has less time-weighted area usage. While compar-
ing AMAP and RBH, we can observe that RBH performs somewhat better
than AMAP in terms of performance. This implies that the RBH reuses the
hardware configuration already present in the FPGA to avoid reconfiguration
overhead, and as a result it can give better performance with the same amount
of hardware resources as required by AMAP. Likewise, CBH has a comparable
percentage of time-weighted area usage, but it lags behind in terms of speedup
as compare to RBH. However, IBH has a considerably low percentage of area
usage, as it also has lower hardware executions due to the constantly executed
HW task set, and hence it also has lower performance. We can summarize that
HWonly has the best performance, but consumes more hardware resources.
STonly has the lowest area usage, but straggle behind in terms of performance.
A tradeoff in terms of performance and resources can be obtained with task
mapping at runtime, which performs selective task mapping onto the FPGA at
runtime.

Another compelling observation that can be made from Figure 6.6 is the
lower value of the time-weighted area usage. The Molen architecture is based
on processor/co-processor paradigm, as a result, the GPP and the reconfig-
urable processor run in a mutual exclusive. This contributes to the lower num-
ber of hardware executions, which consequently increases the total execution
time. Thus, these two factors significantly contribute to the low value of area
usage. The area usage can be increased either by mapping more tasks onto the
FPGA or by operating the reconfigurable processor and the GPP in parallel.
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6.3.5 Reusability Efficiency

Figure 6.7 depicts the Reusability Efficiency (RETask) recorded for all CCUs
using equation provided in Equation 5.6 for different heuristics under different
FPGA conditions. Several observations can be made from the figure in terms
of FPGA area and the RETask of each CCU. Firstly, we observe that the CCU
reuse is significantly affected by the number of area slices in the FPGA. Small
FPGAs, such as XC4VFX12 and XC4VFX20, have many CCUs with RETask
value zero. A CCU has an RETask value of zero under the following conditions:

• when a CCU is always mapped onto the GPP or

• when a CCU is configured every time it is executed to the FPGA.

With few resources in the FPGA, only a limited number of tasks can be exe-
cuted to the FPGA. Additionally, in such cases, hardware configurations can-
not be preserved for future reuse. As a result, CCUs have an RETask value of
zero. Moreover, in this case, CCUs that are reused have a very small size in
terms of area. With the increase in number of slices in the FPGA, more CCUs
are reused. Medium sized FPGAs, such as XC4VFX40 and XC4VFX60, reuse
more CCUs compared to smaller FPGAs, but in such cases, the reuse percent-
age is still low. With the larger FPGAs such as XC4VFX100 and XC4VFX140,
more CCUs are reused with large RETask value.

Table 6.4 reports the mapping of CCUs onto the FPGA for different heuris-
tics under different FPGA conditions. From the table, we observe that different
heuristics map different CCUs onto the FPGA. As a result, different heuristics
reuse different set of CCUs. Nevertheless, there are few CCUs such as CCU3
CCU8, CCU11 and CCU13 which are reused in many cases. These CCUs have
a small area requirement. Consequently, their hardware configurations can be
preserved even with smaller FPGAs.

As it can be inferred from Figure 6.7, HWonly has the best RETask for
many CCUs in large FPGAs, such as XC4VFX100 and XC4VFX140. HWonly
executes all the tasks on the FPGA, and as a result, it has high hardware ex-
ecution count. However, with small FPGAs, all the tasks are configured, due
to area restrictions, and there is no configuration re-use. On the other hand,
with larger FPGAs, more configurations are saved and re-used, and as a conse-
quence many CCUs have a considerably high RETask value. Similarly, STonly
always maps a set of fixed tasks onto the FPGA. Out of these tasks, only a few
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number of small tasks can be reused. We notice that, these CCUs have a rela-
tively higher RE value compared to the ones reused with the AMAP heuristic
in the figure. AMAP has higher HW execution percentage as compared IBH
and CBH. As a matter of fact, many tasks are reused in case of AMAP, but the
reuse percentage of these CCUs is low. AMAP has no fixed pattern for task
execution, and as a result, any task can be executed in FPGA. Therefore, the
re-usability is rather distributed among many CCUs. CBH, on the other hand,
follows a specific policy for task execution in FPGA, and hence, executes a
fixed set of selected task. As a result, a set of selected tasks is reused. Similar
behavior is observed in the case of CBH, as it also executes a set of specific
task within an interval, same tasks are reused (if any).

Likewise, from Figure 6.7, we observe the RETask of RBH is better than
that of other runtime heuristics for many CCUs. The impact of this hardware
configuration reuse, in case of RBH, can be directly seen in terms of perfor-
mance gain in Figure 6.2, where RBH has better speedup than the other heuris-
tics. From Figure 6.8, we also observe that, for few tasks, REtask decreases
when FPGA resources increase. With larger FPGAs, more tasks can fit onto
the the FPGA. As a result, these tasks are also map onto the FPGA, thus over
writing the saved configurations of other tasks. REtask for few tasks decreases
in the FPGAs with moderate size. With the abundant resources, the hardware
configuration can be saved for more tasks, and REtask increases again.

Note that, STonly, AMAP, CBH, IBH do not map the task based on the
hardware configuration reuse. The reuse obtained in the case of STonly,
AMAP, CBH and IBH is a default value determined based on the arrival of
the application task. If a CCU is already configured on the FPGA, when its
corresponding task arrives, the task can be executed without reconfiguration.
However, the RBH reuses more hardware configurations than the other heuris-
tics on top of the default value obtained.

Figure 6.8 depicts the total REapp recorded using Equation 5.7 for dif-
ferent heuristics under different resource conditions. In the figure, we again
observe that the reusability increases when using larger FPGAs. HWonly ex-
ecute all the tasks in FPGA, and therefore there can be a possibility many of
these tasks are re-used when sufficient area is available, resulting into higher
REapp. STonly has almost a constant REapp in larger FPGA, since it executes
a constant set of tasks in FPGA. While comparing runtime heuristics, such as
AMAP, CBH, IBH and RBH, we can observe that since the RBH has more
CCUs reused than other heuristics as shown in Figure 6.5(f), RBH has a bet-
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Figure 6.8: Heuristics comparison under different FPGAs conditions in terms of ap-
plication Reusability Efficiency (REapp). RBH has better REapp compared to other
heuristics.

ter REapp value than other heuristics in all resource conditions but XC4VFX12.
Since XC4VFX12 has less area, all the heuristics have approximately the same
value for REapp. REapp is the accumulation of the time saved due to hardware
configuration reuse of each CCU. If all CCUs obtain the same value of the
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RE for a task mapping heuristic, then the application REapp depends on the
corresponding total execution time of that heuristics.

6.3.6 Observations and Recommendation

The case study shows that the rSesame framework is flexible and can effi-
ciently assess various runtime mapping heuristics in terms of various design
parameters. Based on the evaluation discussed in the previous section, we can
summarize the following observations:

• Comparison of different FPGAs shows that with very limited resources
(in case of the small FPGAs), the number of tasks that can be mapped
onto the FPGA is low. Consequently, tasks are mapped onto the GPP.
This leads to the poor application performance.

• More resources (in case of moderate/higher FPGAs) imply more tasks
mapped onto the FPGA. Consequently, we can obtain better application
performance.

• Runtime mapping provides better performance compared to static map-
ping in case of dynamic application/architecture conditions. If the appli-
cation behavior is well known in advance, static mapping can give equal
performance.

• Mapping all the tasks onto the FPGA gives better performance, but it
consumes more hardware resources. Runtime mapping performs task
mapping based on the runtime system conditions, as a matter of fact,
with the runtime mapping, a tradeoff can be obtained in terms of perfor-
mance and resources.

• Comparing different heuristics, in case of limited resources conditions
(small FPGAs), the ad-hoc task mapping of AMAP performs better as
compared to CBH, IBH and RBH. The careful task selection with RBH,
CHB and IBH cannot be fully exploited in such cases, due to limited
resources.

• The reuse of hardware configurations is better in case of sufficient re-
source conditions (medium to large FPGAs). As a result, the configura-
tion reuse can be well exploited. Additionally, the RBH provides better
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application performance than AMAP and CBH.

• In case of abundant resource conditions (very large FPGAs), the perfor-
mance saturates due to application constraints. Under such scenarios, all
the heuristics have similar performances.

6.4 Conclusions

In this chapter, we evaluated the rSesame framework’s characteristics by show-
ing that it can easily and quickly model, evaluate and explore a wide range of
application mapping heuristics, under different architectural conditions. We
described a case study in which we tested four different runtime mapping
heuristics from diverse domain by using the rSesame framework. The ob-
tained results show that the rSesame framework can be used to efficiently
perform rapid exploration and evaluation of various task mapping heuristics
based on several architectural parameters, such as execution time, number of
reconfigurations, time-weighted area usage, percentage of hardware/software
execution, percentage of reconfiguration and hardware reusability efficiency
from the framework. These explorations were performed under different ar-
chitectural conditions, where different FPGAs were used to evaluate a number
of application-to-architecture mappings under different resource conditions.
This indicated that the presented framework can be efficiently used as a stan-
dard platform to facilitate easy comparison between various evaluations, such
as application-to-architecture mappings, task mapping strategies, and architec-
tural conditions.

We showed that the rSesame framework can be efficiently used to perform
system-level DSE by performing quick exploration of several design parame-
ters of reconfigurable architectures, both statically and at runtime. In the next
chapter, we summarize the major conclusion of this dissertation. We list the
main contributions and present open issues and future directions.

Note. The content of this chapter is based on the the following articles:

K. Sigdel, M. Thompson, C. Galuzzi, A.D. Pimentel, K.L.M. Bertels, Runtime Task Mapping
Based on Hardware Configuration Reuse, Proceedings of the International Conference on
ReConFigurable Computing and FPGAs (ReConFig’10), Cancun, Mexico, December 2010,
pp. 1-6.
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K. Sigdel, M. Thompson, C. Galuzzi, A.D. Pimentel, K.L.M. Bertels, Evaluation of Runtime
Task Mapping Heuristics with rSesame - A Case Study, Proceedings of the Design, Automa-

tion and Test in Europe (DATE’10), Dresden, Germany, January 2010.



Chapter 7
Conclusions

I n this dissertation, we have developed a system-level framework which
can assist designers in tackling various challenges while designing re-
configurable systems. The framework can be employed to perform early

stage DSE by rapid exploration of several parameters, such as architectural
characteristics, hardware-software partitionings, application-to-architecture
mappings and scheduling strategies. The framework can model simulate and
evaluate reconfigurable architectures combining static exploration together
with runtime exploration in order to provide an efficient DSE. In the previous
chapters of this dissertation, we discussed the methodology behind the frame-
work and studied its key features. We employed the framework to perform
quick exploration of several application-to-architecture mappings for recon-
figurable architecture, both statically and at runtime. Furthermore, we also
used the framework to evaluated various task mapping heuristics at runtime.
In this chapter, we summarize the major conclusions of this dissertation and
lists future directions.

This chapter unfolds in three sections. Section 7.1 summarizes the main
contribution of this dissertations. In Section 7.2, we present the main conclu-
sions of this dissertation. Finally, Section 7.3 lists future directions and open
issues worthy of further research and investigation.
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7.1 Summary of Contributions

This dissertation started in Chapter 2 by providing the necessary overview of
the current state-of-the-art in the context of reconfigurable systems and the
system-level design methodology. More specifically, the chapter discussed
the major challenges while designing heterogeneous reconfigurable systems.
The use of heterogeneous and reconfigurable resources significantly enlarges
the design space of modern systems, as a result, it is essential to perform
DSE at the early design stages in order to efficiently investigate tradeoffs be-
tween various choices such as hardware-software partitioning, architecture-to-
application mapping, task scheduling and task allocation. System-level model-
ing and design methodology allows fast and efficient traversal of a large design
space. As a result, providing a system-level framework allows modeling and
simulation of reconfigurable systems in an efficient manner.

In this dissertation, we presented a two-level mapping exploration ap-
proach for performing DSE of reconfigurable architectures. The presented
approach combines a detailed static exploration together with a high quality
runtime exploration. At the first level, static exploration identifies a set of
mappings. At the second level, these mappings are optimized at runtime to ad-
dress any changes in the application, in the architecture or in the environment.
In Chapter 3, we provided an outline of two-level mapping exploration for
reconfigurable architectures. The chapter also provided a detailed discussion
of the static and the runtime mapping exploration. In Chapter 4 of this dis-
sertation, we present a framework which can perform the two-level mapping
exploration.

rSesame is a generic modeling and simulation framework for performing
DSE of reconfigurable systems at the early design stages, which can model,
simulate and evaluate reconfigurable systems both statically and at runtime.
It employs the Sesame framework as a modeling and simulation platform for
system-level DSE. The rSesame framework provides various architectural ex-
ploration parameters such as execution time, number of reconfigurations, area
usage, percentage of HW/SW execution and reusability efficiency. The main
features of the rSesame framework includes flexibility, ease of use, fast perfor-
mance, and applicability. The rSesame framework together with its character-
istics is discussed in Chapter 4 of this dissertation.

In this dissertation, we described two case studies to show the character-
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istics of the rSesame framework tested on the Molen reconfigurable architec-
ture. First case study is discussed in Chapter 5 of this dissertation, in which
we employed the rSesame framework to perform both static and runtime map-
ping exploration of the Molen reconfigurable architecture. In order to perform
mapping exploration of the Molen reconfigurable architecture based on var-
ious design attributes, we instantiated a model for the Molen reconfigurable
architecture using the rSesame framework. We showed that the instantiated
model can be efficiently employed to perform exploration of various design
parameters. Based on these design parameters, we evaluated and compared
the runtime mapping exploration of the Molen architecture against its static
exploration. The obtained results show that mapping all the tasks onto the re-
configurable hardware gives better performance, but consumes more hardware
resources. With the runtime mapping, a tradeoff can be obtained in terms of
performance and resources. The rSesame framework can explore such trade-
offs.

In another case study, discussed in Chapter 6 of this dissertation, we pro-
vided an evaluation of the rSesame framework by studying and comparing
different runtime mapping heuristics based on various design attributes. We
incorporated four different task mapping heuristics from various domains to
perform runtime mapping of the given application onto the Molen reconfig-
urable architecture. In this case study, we studied and evaluated different
heuristics by considering, different FPGAs for the same architecture model,
in order to evaluate the task mapping under different resource conditions. The
case study showed that the rSesame framework be efficiently deployed not
only to evaluate different heuristics, but it can also be employed to evaluate
different architectural conditions at runtime.

7.2 Main Conclusions

The main conclusions of the research presented in this dissertation can be sum-
marized as follows.

• The use of heterogeneous and reconfigurable resources significantly en-
larges the design space of modern systems. As a result, it is essential
to perform DSE at the early design stages in order to efficiently investi-
gate tradeoffs between various design choices. Such design choices in-
clude hardware-software partitioning, architecture-to-application map-
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ping, task scheduling and task allocation. System-level modeling and
design methodology allows fast and efficient traversal of a large design
space in an efficient manner. Providing a system-level framework for
DSE at early stages, facilitates design decisions to be made very quickly,
which in turn, can significantly reduce overall design time.

• Reconfigurable systems can evolve under various runtime conditions
due to changes imposed either by the architecture or by the applica-
tion(s) or by the environment. In such systems, the design process be-
comes more sophisticated as all the design decisions have to be opti-
mized in terms of runtime behaviors and changing system status. Per-
forming only static exploration under such conditions often results with
compromised accuracy. The two-level mapping exploration, presented
in this dissertation, combines the benefit of fast static exploration with
the detailed exploration at runtime. At the first level, static exploration
leads to a set of mappings. After that, at second level, runtime explo-
ration performs a high quality exploration at the runtime to optimize
these mappings to address any changes in the system. Performing two-
level mapping exploration provides an efficient DSE of reconfigurable
systems.

• The rSesame framework is a generic system-level modeling and sim-
ulation framework which can explore and evaluate reconfigurable sys-
tems both statically and at runtime. The framework can be employed
to perform two-level mapping exploration (static and runtime) for early
stages DSE. Using the rSesame framework, we evaluated and compared
the runtime application mapping, where task mapping can change at
runtime, against the static application mapping, where task mapping is
fixed. The obtained results showed that mapping all the tasks onto the
reconfigurable hardware gives better performance, however, consumes
more hardware resources. With the runtime mapping, a tradeoff can be
obtained in terms of performance and resources. The rSesame frame-
work can be efficiently used to investigate and appraise such tradeoffs.

• The main features of the rSesame framework includes flexibility, ease of
use, fast performance, and applicability. We evaluated these features of
the framework tested on a real reconfigurable architecture. We employed
the rSesame framework to model, simulate and compare a wide range
of runtime task mapping heuristics from various domain. Due to the
fast execution times, the rSesame framework efficiently explored and/or
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evaluated these heuristics based on various design attributes recorded
from the framework. This indicates that the presented framework is flex-
ible, extendable and it can be efficiently used as a standard platform to
facilitate easy comparison between various application-to-architecture
mappings.

• The rSesame framework can also be used to evaluate different archi-
tectural conditions. In this dissertation, we also employed the rSesame
framework to evaluate different architectural conditions. We explored
different application-to-architecture mappings, by considering, for the
same architecture model, different FPGA sizes, in order to evaluate
different architectural conditions. The obtained result showed that the
framework can also be used to efficiently evaluate different architecture
conditions.

7.3 Open Issues and Future Recommendations

From the research presented in this dissertation, some open issues have been
identified. In this section, we lists these issues, together with the possible
future research directions.

• In the current status of the rSesame framework, we only consider one
type of architectural resources i.e area while performing task mapping
decisions for the reconfigurable architecture. A number of other detailed
architectural resources, such as memory components, lookup tables, reg-
isters, DSP elements, wire segments and interconnects can be incorpo-
rated as different architectural parameters in the model. In that case,
these resources can be considered as architectural parameters while per-
forming mapping decisions. Furthermore, currently we consider simple
structure for the reconfigurable hardware, and we do not consider frag-
mentation into consideration. It can be extended to model complex re-
configurable hardware structures, and resource fragmentation can also
be measured as one of the non-functional design attributes.

• Although the rSesame framework envisions to evaluate/model various
non-functional design attributes such as, performance, static or dynamic
power consumption, energy estimation and memory requirements, the
current version of the framework only evaluates performance. In the
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future, the framework can be extended to explore aforementioned at-
tributes as well.

• The model can be extended to support the real-time behavior of appli-
cations. For this, application models in the application layer can be ex-
tended to support deadlines for different tasks. The architecture models
should then also be extended to record any deadline misses from the ap-
plication model. This way the rSesame framework can model the real-
time system behavior.

• The rSesame framework can be coupled with a hardware cost prediction
model, such as QUIPU [120]. QUIPU is a hardware prediction model,
which predicts different hardware attributes, such as hardware area, in-
terconnect delays and hardware latency for a task when it is executed on
a given reconfigurable hardware. Such cost prediction models predict
different hardware attributes, such as hardware area, interconnect delays
and hardware latency for a task. Linking such cost prediction models
with the modeling and simulation framework, enables the framework to
be more accurate in terms of architectural attributes. Furthermore, other
tools, such as profilers, KPN generators and a visualization tool can also
be integrated together with the rSesame framework. Such an integration
will provide a complete DSE tool-flow, which can automatically per-
form DSE of the reconfigurable architectures at runtime starting from
an input application to the output results.

• Another extension is possible in the direction of modeling and simula-
tion of runtime behavior. The dynamic behavior of various architectural
components such as, processor, memory, bus and buffer can be modeled
at runtime. Such architectural components can be added or removed at
runtime in order to model the behavior of the adaptive the reconfigurable
systems.

• Similarly, in the current state of runtime modeling with the rSesame
framework, only tasks can migrate from one processor to another. The
communication channels between these tasks can also migrate from one
memory resources to another depending on the architectural condition.
This behavior can also be modeled with the framework. The mapping
layer, for instance, can be extended to incorporate such sophisticated
functionalities.
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• One of the major challenges in the system-level modeling and the design
is the model calibration. In the current version of the rSesame frame-
work, the model created uses predicted values, and the calibration is
left as a future work. Calibrating rSesame models requires comparing
them against the real implementation data of the reconfigurable archi-
tectures. Models can be tweaked, if there is a deviation in the results.
Furthermore, the error percentage can also be reported. In this way, the
correctness of the models can be guaranteed.
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Samenvatting

H Herconfigureerbare platformen worden steeds populairder,
aangezien ze de beloven de flexibiliteit van software te combineren
met de prestaties van hardware. Desalniettemin zijn dergelijke

architecturen onderhevig aan talrijke beperkingen, zoals kosten, resource
constraints, stroomverbruik, timing constraints en betrouwbaarheid. Om
een efficint ontwerp te creren is het van essentieel belang Design Space
Exploration (DSE) uit te voeren in verschillende ontwerpstadia om doel-
treffend verschillende alternatieve ontwerpen te kunnen beoordelen. DSE
in de vroege ontwerpfasen maakt het mogelijk snel de prestaties van ver-
schillende parameters te evalueren, zoals architecturale eigenschappen,
application-to-architecture mappings, scheduling policies en hardware-
software partitioneringen. DSE methodieken helpen, (meestal) zeer grote,
designruimtes efficint te doorlopen. Zodoende maakt het uitvoeren van DSE
op een hoog abstractieniveau het mogelijk ontwerpbeslissingen te maken in
de zeer vroege ontwerpfasen, wat de totale ontwerpduur van een systeem
significant kan verminderen. Met dit doel voor ogen ontwikkelen we in
dit proefschrift een generiek system-level framework, rSesame genaamd,
om dynamisch herconfigureerbare architecturen in de vroege ontwerpstadia
te kunnen modelleren en simuleren. Het framework kan worden ingezet
als een standaard modeling en simulation framework voor het uitvoeren
van system-level DSE om verschillende ontwerpparameters te verkennen
tijdens het ontwerpen van dynamisch herconfigureerbare architecturen. Het
uitvoeren van run-time evaluaties samen met off-line verkenningen, maakt
herconfigureerbare architecturen efficinter in termen van verscheidene design
constraints, zoals prestaties, geheugengebruik, chip-oppervlak en stroomver-
bruik. Om die reden combineert het rSesame framework zowel off-line
als runtime-verkenningen om zo system-level DSE van herconfigureer-
bare architecturen te vergemakkelijken, wat betreft architectuurexploratie,
hardware-software partitionering en task mapping / scheduling. We hebben
het rSesame-framework ingezet om de Molen herconfigureerbare architectuur
te evalueren door een breed scala van applicatie-tot-architectuur-mappings
te evalueren en beoordelen. Deze mappings zijn gevalueerd op basis van
verschillende systeemkenmerken, zoals de uitvoeringstijd, het aantal hercon-
figuraties, tijd-gewogen oppervlaktegebruik, het aandeel van de hardware
en software in de uitvoeringstijd, het percentage van de herconfiguratie en
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hardware hergebruiksefficintie, onder afwisselende beschikbaarheid van
resources. Uit de case study blijkt dat het rSesame-framework efficint kan
worden ingezet om system-level DSE van herconfigureerbare architecturen
te faciliteren door een effectieve beoordeling van verschillende alternatieven,
zowel off-line als tijdens de uitvoering. De studie toont ook aan dat het
framework kan worden ingezet, niet alleen om verschillende architectuur-to-
application-mappings te evalueren en vergelijken, maar ook om verschillende
architectonische voorwaarden efficint te evalueren tijdens de uitvoering.
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