
Simulating Chiral Induced Spin Selectivity
using Non-Equilibrium Green’s Functions

Tim H.F. Vroomans

October 22, 2019
revised: January 30, 2020



Abstract

In this thesis a method is proposed to improve upon the Non-Self-Consistent
Green’s function transport calculation used by the Amsterdam Density Func-
tional package (ADF) made by Software for Chemistry and Materials (SCM)
[1] [2] [14] so ADF is able to simulate Chiral Induced Spin Selectivity (CISS).
CISS is an effect that causes spin polarisation to occur in currents that flow
through chiral molecules, such as DNA [7] [19]. In this thesis, Helicene is cho-
sen since it has a helical structure but it is also a relatively simple molecule to
simulate. In the calculations the helicene is attached to two gold contacts via
a sulfur atom on each side. Gold is chosen for its strong spin-orbit coupling,
which is thought to cause the effect.

The native Green’s function transport calculation uncouples the spin-
orbitals into their two spin directions, it essentially preforms the same cal-
culation twice for both spin direction [13]. Because the spin directions are
treated separately this method neglects any interactions between electrons
of different spin. Therefore no spin polarisation will arise in the absence of a
magnetic field.

The proposed method improves on this by accounting for the full spin-
orbitals, and therefore their potential overlap with each other [11]. Because
the potential interactions between orbitals occupied by electrons of different
spin, spin-flip interactions are taken into account in the Green’s function
when calculating the transmission of the Helicene. This then gives rise to
potential spin polarisation in the current.

Due to a lack of time and an overabundance of run-time errors in the
FORTRAN code used to implement the proposed method in ADF 2019, no
results could be obtained to confirm or deny this.
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Chapter 1

Introduction

1.1 The discovery of electron spin

In the nineteenth century, physicists were trying to uncover relations between
the different forces of nature, and therefore many experiments were aimed
at measuring the effects of electromagnetic fields on light. In this fashion
it was found that candle light would become polarised if it was affected by
magnetic fields [8] and the spectral lines of glowing substances would split if
the substance was subjected to an electric field [6], which is called the Kerr
effect. In 1896, as a follow-up on his doctoral research on the Kerr effect,
Pieter Zeeman was interested in the effect of a magnetic field on the spectral
lines of matter [20]. To this end Zeeman heated up some kitchen salt which
started to glow with the well known yellow glow of Sodium, made famous by
street lights. He then passed the light emitted by the salt through an optical
grating to obtain the unique spectral lines of Sodium. When Zeeman placed
the salt in the magnetic field of an electromagnet, he would observe that the
spectral lines would thicken.

Hendrik Lorentz caught wind of these observations and went on to try
and explain these observations using electromagnetic theory. He implied that
the spectral lines did not thicken, but split into two or three different spectral
lines. These spectral lines were caused by particles which Lorentz called ’Ions
of light’ which circled around in atoms [17]. Using the Maxwell Equations,
Lorentz was not only able to predict the effect Zeeman observed, but he was
also able to predict the charge to mass ratio of his ’Ions of light’. Lorentz
explained that Zeeman did not observe a split in spectral lines because the
resolution of his optical grating was too low. This was confirmed later when
Zeeman used Cadmium and he observed the splitting of its spectral lines. In
1897 Joseph John Thomson discovered the electron, which had the charge
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to mass ratio which Lorentz predicted [3]. And thus it was discovered that
Lorentz’ ’Ions of light’ were actually Thomson’s electrons. Using the Zeeman
effect the structure of atoms could now be studied.

There was a catch though. When more experiments of the same kind were
executed they showed splitting of the spectral lines into more than three new
spectral lines. Physicists attributed these extra splittings to the angular
momentum of the spinning core of the atom. However, not long after that,
Wolfgang Pauli respectfully obliterated this notion in a landslide article [9].
In this article Pauli introduced a fourth quantum number and the theorem
that no two electrons could exist in the same quantum state. This is now
known as the famous Pauli Exclusion Principle. In 1924 Samuel Goudsmit
and George Uhlenbeck introduced the concept of electron spin and showed
that this spin was Pauli’s fourth quantum number [18]. Because of its spin
an electron is not only a tiny electric charge but also a tiny magnetic dipole,
causing the electron to behave like a minuscule bar magnet. Adapting the
Bohr model for the atom with the electron’s spin the Zeeman effect could be
explained.

1.2 The applications of electron spin

Electron spin could now describe and explain a whole plethora of phenomena
such as atoms with unpaired electrons and spin-orbit coupling, an expression
of the Zeeman effect due to the fact that the electrons on the inner orbitals
of heavy atoms move so fast that relativistic effects start to become very
relevant. One of these effects is that the electric field caused by the nucleus
of a heavy atom starts to look like a magnetic field in the reference frame
of an electron moving at relativistic speeds. This magnetic field then causes
a perturbation on the energy of the electron due to the magnetic dipole
produced by its spin. But other than some symmetry constraints it was not
important for closed-shell systems such as hydrocarbons which have a very
small Spin-Orbit coupling.

In the 1980’s the notion of ”spintronics” was conceived of. In spintronics
spins are used as quantum bits to transfer information and preform calcu-
lations. Generally this is associated with inorganic matter, such as met-
als, semiconductors and oxides. But if organic molecules could be used it
would have several advantages because of their, ease of production, flexibil-
ity, compatibility with biologic systems and, not entirely unimportant, low
cost. Some headway has been made in incorporating organic molecules in
spintronics, but only when adsorbed to a (ferro)magnetic substrate [7].
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Figure 1.1: The experimental set-up used in [4]
.

1.2.1 Chiral Induced Spin Selectivity

It was quite the surprise that in relatively recent research by Goheler et al. [4]
and Xie et al. [19] unusually high spin polarisation was measured of photo-
electrons and tunneling currents through chiral organic molecules. This effect
is now called Chiral Induced Spin Selectivity (CISS). The spin polarisation
was calculated as:

P =
j↑ − j↓
j↑ + j↓

, (1.1)

where j↑ is the current associated with spin-up electrons and j↓ is the current
associated with spin-down electrons. Chiral molecules are molecules which
cannot be superimposed on their mirror image, and thus do not posses parity
symmetry. Similarly as to how our hands cannot be superimposed onto each-
other. Which is where chirality (derived from the Greek word for hand) gets
its name.

An example of this is DNA with its famous double-helix structure. If one
would take two DNA strands with identical base-structure, but one strand
would turn clockwise and the other strand would turn counter-clockwise,
taking the mirror image of one would not make the strand identical to the
other strand. Convincing observation of CISS were done by Xie et al and
Gohler et al by transmitting photo-electrons through self-assembled mono-
layers of DNA. The latter experiment gives a very convincing result of CISS.
The experimental set-up of Gohler et al can be seen in Figure 1.1. First
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Figure 1.2: The results obtained from the experiments performed in [4] on a
single-crystal Au(111) substrate. Figure A shows the results from the control
experiment. Figures B through D show the experiments performed with
the dsDNA attached to the substrate. The former figures show the results
for cw circularly polarised light (B), linearly polarised light (C) and ccw
circularly polarised light (D). The x-axes are in terms of the spin polarisation
in percentages, the y-axes are in terms of the amount of runs a specific P
was obtained.

a control experiment was performed on a bare single-crystal Au(111) or
poly-crystalline Au substrate in which, under high vacuum conditions, lin-
early polarised light, clockwise circularly polarised light or counterclockwise
circularly polarised light from a laser is shone onto the gold substrate to
knock loose photo-electrons from the substrate. Their polarisation is mea-
sured using either a Mott polarimeter or a time-of-flight instrument which
records the kinetic-energy distribution of the photo-electrons. Then, strands
of double-stranded DNA (dsDNA) are thiol bonded to the substrate of ei-
ther single-crystal Au(111) or poly-crystalline Au to create a self-assembled
mono-layer of dsDNA. The laser is again shone on the substrate and now
the photo-electrons have to travel through the self-assembled mono-layer of
dsDNA and their polarisation is again measured. The results performed
with the single-crystal Au(111) substrate can be seen in Figure 1.2. During
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Figure 1.3: A counterclockwise and a clockwise Helicene molecule. As can
be seen from the Figure, the two mirror images cannot be superimposed onto
one-another. [11]

the control experiment (Figure 1.2.A) the results are as expected: no spin
polarisation is measured when using linearly polarised light and spin polar-
isation is measured when circularly polarised light is used. But when the
self-assembled mono-layer of dsDNA is attached to the substrate a mean po-
larisation of 〈P 〉 = −31% was measured for linearly polarised light (Figure
1.2.C), 〈P 〉 = −35% for clockwise circularly polarised light (Figure 1.2.B) and
〈P 〉 = −29% for counterclockwise circularly polarised light (Figure 1.2.D).
When the dsDNA is attached to poly-crystalline Au the effect is stronger and
the mean polarisation takes the approximate value 〈P 〉 = −60%. This is a
clear indication that the chiral dsDNA molecules induce spin polarisation.

A simpler molecule with a helical structure is Helicene. In Figure 1.3 its
chiral nature can be seen. 4-Helicene, a Helicene strand consisting of four
benzene rings ”knitted” together, is used in the calculations in this thesis. It
is the goal of the research that leads to this thesis to be able to simulate the
Chiral Induced Spin Selectivity effect using the ADF software developed by
SCM [1].

1.3 Structure of this thesis

In the next chapter of this thesis the relevant theory to this research will
be introduced. In the third chapter the methods used will be explained and
in the fourth chapter the results obtained will be presented, and in the last
chapter a brief discussion of the results will be followed-up by a conclusion.

This research was executed in order to obtain the degree of Bachelor of
Science at the Department of Quantum-Nanoscience, wich is a part of the
Faculty of Applied Sciences at the Delft University of Technology.
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Chapter 2

Theory

2.1 Quantum Transport using Non-Equilibrium

Green’s Functions

This section will follow the explanation of the excellent booklet Non Equi-
librium Green’s Functions for Dummies: Introduction to the One Particle
NEGF Equations by Magnus Paulsson [10]. In this thesis the transport of
electrons through a Helicene molecule connected to two gold contacts is con-
sidered. The left and right contact are both considered to be semi-infinite
and connected to a reservoir of electrons with chemical potentials µL and
µR. Starting form the time independent Schrödinger equation, the Hamil-
tonian is divided up into the contact Hamiltonians (ĤL,R and |ψL,R〉) and a

molecule Hamiltonian (Ĥm and |ψm〉). On a finite basis, the Time Indepen-
dent Schrödinger equation then takes the form:ĤL τ̂L 0

τ̂ †L Ĥm τ̂ †R
0 τ̂R ĤR

|ψL〉|ψm〉
|ψR〉

 = E

|ψL〉|ψm〉
|ψR〉

 . (2.1)

Where τ̂L,R describes the interaction between the respective contact and the
helicene molecule.

2.1.1 Green’s Function

Because the system is not an isolated system anymore but connected to
large reservoirs, diagnonalising the Hamiltonian would become a long and
laborious process. That is, if it is possible at all. In these cases using Green’s
function Ĝ is often a faster and easier way to obtain information about
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quantum mechanical systems. Green’s function is defined as:

(EÎ − Ĥ)Ĝ(E) = Î , (2.2)

where Î is the Identity Operator: Î |ψ〉 = |ψ〉 for any |ψ〉 in the Hilbert space.
The Green’s function can be seen as the response of a quantum mechanical
system to a constant in time perturbation |p〉. This can be seen by writing
the Schrödinger equation for a constant perturbation:

Ĥ |ψ〉 = E |ψ〉+ |p〉 . (2.3)

So that we can write:

|ψ〉 = −(EÎ − Ĥ)−1 |p〉 = −Ĝ(E) |p〉 . (2.4)

Two solutions can be obtained to this equation. These are an incoming
wave, called the advanced solution, and an outgoing wave, called the retarded
solution. The solutions are obtained using the advanced Green’s function
ĜA = Ĝ† and the retarded Green’s function ĜR = Ĝ respectively.
In this thesis a capital Ĝ will be used to denote the Green’s function of the
entire system and its sub matrices. A lowercase ĝ will be used to refer to
the Green’s functions associated with the isolated contacts or molecule. For
example ĝm(E) = (EÎ − Ĥm)−1.

2.1.2 Self Energy

It turns out that the Green’s function restricted to the Hilbert space of the
molecule Ĝm can be calculated efficiently. Using Equation 2.2 we can derive
an expression for Ĝm.EÎ − ĤL −τ̂L 0

−τ̂ †L EÎ − Ĥm −τ̂ †R
0 −τ̂R EÎ − ĤR

 ĜL ĜLm ĜLR

ĜmL Ĝm ĜmR

ĜRL ĜRm ĜR

 =

 Î 0 0

0 Î 0

0 0 Î


(2.5)

The system of equations provided by the second column of Green’s function
has three unknowns and three equations. Therefore an expression for Ĝm

can be found in terms of E, Ĥm, τ̂L, τ̂R, ĝL and ĝR.

(E − ĤL)ĜLm − τ̂LGm = 0

−τ̂ †LĜLm + (EÎ − Ĥm)Ĝm − τ̂ †RĜRm = Î

−τ̂RĜm + (EÎ − ĤR)ĜRm = 0

(2.6)
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Using the first and last equation we can easily solve for ĜLm and ĜRm.

ĜLm = ĝLτ̂LĜm (2.7)

ĜRm = ĝRτ̂RĜm (2.8)

Substitution in the second equations yields:

− τ̂ †LĝLτ̂LĜm + (EÎ − Ĥm)Ĝm − τ̂ †RĝRτ̂RĜm = Î . (2.9)

Now, define the self energies Σ̂ as:

Σ̂L,R = −τ̂ †L,RĝL,Rτ̂L,R. (2.10)

Using this definition we can rewrite Equation 2.9 as:

Ĝm = (EÎ − Ĥm − Σ̂L − Σ̂R)−1. (2.11)

When comparing Equation 2.11 to the definition of Green’s function for the
isolated molecule can say that the effect of the contacts is to add their re-
spective self energy to the hamiltonian of the molecule. Thereby creating an
effective Hamiltonian Ĥeff

m = Ĥm + Σ̂L + Σ̂R.

2.1.3 The Spectral Function

The spectral function Â is an important operator which can be obtained
from the Green’s function since it yields the Density Of States (DOS). The
spectral function is defined as:

Â = i(ĜR − ĜA) = iIm(Ĝ), (2.12)

where |k〉 are eigenvectors of G. By expanding the Green’s function in its
eigenbasis,

Ĝ =
1

EÎ − Ĥ
=
∑
k

|k〉 〈k|
E − εk

, (2.13)

we can see that we can rewrite the spectral function as:

Â = 2π
∑
k

δ(E − Ek) |k〉 〈k| . (2.14)

The Density of States can be obtained as follows from the spectral function:

DOS(E) = − 1

π
Tr
[
Â(E)

]
. (2.15)
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2.1.4 Single Particle Transport

First consider the isolated left contact. At the end of the contact waves at a
certain energy will be totally reflected back into the contact. These solutions
are denoted by |ψL,n〉. The n is a quantum number denoting different modes
in the contact. All these solutions can be obtained using the spectral function
of the isolated left contact âL = i(ĝRL − ĝAL ), since Equation 2.14 shows that
âL can give all the solutions to the Schrödinger equation of the isolated left
contact [10].

Next, calculate the wave function of the whole system (the left contact,
molecule and right contact) such that the solution coincides with |ψL,n〉 in the
left contact. Note that the total response should be of the form |ψL,n〉+

∣∣ψR〉,
where

∣∣ψR〉 is the retarded response of the entire system. Using this as an
Ansatz and plugging it into the time independent Schrödinger equation gives:

(ĤL+ τ̂L+ τ̂ †L+Ĥm+ τ̂ †R+ τ̂R+ĤR)(|ψL,n〉+
∣∣ψR〉) = E(|ψL,n〉+

∣∣ψR〉). (2.16)

Solving for
∣∣ψR〉 yields:∣∣ψR〉 = (EÎ − Ĥ)−1τ̂ †L |ψL,n〉 = Ĝτ̂ †L |ψL,n〉 , (2.17)

where Ĥ = ĤL + τ̂L + ... + ĤR. So we could can view
∣∣ψR〉 as the response

of the system to the perturbation τ̂ †L |ψL,n〉. By choosing to use the retarded
response the only part of the wave that is travelling towards the device is the
incoming wave |ψL,n〉 we can write expressions for the wave function of the
molecule |ψm〉 and the contact wave functions |ψL,R〉:

|ψm〉 = Ĝmτ̂
†
L |ψL,n〉 . (2.18)

Using the third row of Equation 2.1, an expression for the wave-function in
the contacts can be easily derived:

ĤR |ψR〉+ τ̂R |ψm〉 = E |ψR〉 → |ψR〉 = ĝRτ̂R |ψm〉 . (2.19)

Substituting Equation 2.18 yields an expression for |ψR〉 in terms of |ψL,n〉:

|ψR〉 = ĝRτ̂RĜmτ̂
†
L |ψL,n〉 . (2.20)

The wave function of the left contact is a bit more complicated, since we
need to also consider the incoming wave:

|ψL〉 = |ψL,n〉+ ĝLτ̂L |ψm〉 = (Î + ĝLτ̂LĜmτ̂
†
L) |ψL,n〉 . (2.21)

Using the expressions found for these wave functions, our goal can be achieved:
Calculating the charge density and the current through the molecule.
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Charge Density

The definition of the Charge Density matrix is:

ρ̂ =
∑
k

f(Ek, µ) |ψk〉 〈ψk| , (2.22)

where f(Ek, µ) are the occupation numbers of the electrons. Since electrons
are fermions, in this case f(Ek, µ) is the Fermi-Dirac distribution:

f(Ek, µ) =
1

1 + eβ(Ek−µ)
, (2.23)

where β = 1
kBT

, kB is the Boltzmann constant and T is the temperature. In
this case µ and T are properties of the reservoir that is injecting the electrons
into the system. Using the definition of ρ̂, f(Ek, µ) and Equation 2.18 we
can write for the contribution of the left contact:

ρ̂m,L =

∫ ∞
−∞

∑
k

f(E, µL)δ(E − Ek)Ĝmτ̂
†
L |ψL,k〉 〈ψL,k| τ̂LĜ

†
mdE. (2.24)

This can be rewritten as, using Equation 2.14:

ρ̂m,L =
1

2π

∫ ∞
−∞

f(E, µL)Ĝmτ̂
†
LâLτ̂LĜ

†
mdE. (2.25)

Now defining Γ̂i = τ̂ †i âiτ̂i = i(Σi − Σ†i ) yields:

ρ̂m,L =
1

2π

∫ ∞
−∞

f(E, µL)ĜmΓ̂LĜ
†
mdE. (2.26)

Summing the result of both the contacts and multiplying by two for spin
yields the following equation:

ρ̂m =
2

2π

∫ ∞
−∞

(
f(E, µL)ĜmΓ̂LĜ

†
m + f(E, µR)ĜmΓ̂RĜ

†
m

)
dE, (2.27)

where µL and µR are the chemical potentials in the Left and Right contacts.

Current

Before the electrical current can be calculated, the current of the wave func-
tion of the electrons has to be calculated first. This can be done by noticing
that, during a steady state current, the probability to find an electron in the
system is conserved:

∂

∂t

∑
i

|ψi|2 = 0, (2.28)
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where the sum runs over the molecule Hilbert space. Working this out via
the product rule for derivatives the following result is obtained:

i

h̄

[
〈ψL| τ̂L |ψm〉 − 〈ψm| τ̂ †L |ψL〉

]
+

i

h̄

[
〈ψR| τ̂R |ψm〉 − 〈ψm| τ̂ †R |ψR〉

]
= 0.

(2.29)

It seems that the incoming probability currents from the left and right con-
tacts should be equal but opposite. Thus if the electrical current is defined
as:

ij =
ie

h̄

[
〈ψj| τ̂j |ψm〉 − 〈ψm| τ̂ †j |ψj〉

]
, (2.30)

where j ∈ {L,R} and e is the electron charge. The total electrical current
through the system can be found in a similar way as to an expression for the
charge matrix was found. Now rewriting Equation 2.30 using equations 2.18
and 2.20 we obtain:

iLR = − e
h̄
〈ψ1,n| τ̂LĜ†mΓ̂RĜmτ̂

†
L |ψ1,n〉 . (2.31)

Summing over all the modes n in the contact and noting that the energy
levels are filled according to the Fermi-Dirac Distribution yields the following
expression for the current from the left to the right contact:

ILR =
e

πh̄

∫ ∞
−∞

f(E, µL)Tr
[
Ĝ†mΓ̂RĜmΓ̂L

]
dE. (2.32)

The total current I = ILR − IRL then becomes:

I = − e

πh̄

∫ ∞
−∞

(f(E, µL)− f(E, µR))Tr
[
Ĝ†mΓ̂RĜmΓ̂L

]
dE, (2.33)

which is the Landauer formula for current. Note that:

T = Tr
[
Ĝ†mΓ̂RĜmΓ̂L

]
(2.34)

is called the transmission of the molecule. This is the Meir-Wingreen formula
and this what will be used in Chapter 3 to calculate the transmissions.

2.2 Self Consistency Methods

The explanation in this section follows the explanations in the book Compu-
tational Physics by Jos Thijssen [16] in chapters 4 and 5.
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For a system of N electrons and K nuclei the Hamiltonian reads:

Ĥ =
N∑
i=1

p̂2
i

2m
+

K∑
n=1

P̂ 2
n

Mn

+
1

4πε0

1

2

N∑
i,j=1;i 6=j

e2

|ri − rj|
−

1

4πε0

K∑
n=1

N∑
i=1

Zne
2

|ri −Rn|
+

1

4πε0

1

2

K∑
n,n′=1;n6=n′

ZnZn′e2

|Rn −Rn′|
, (2.35)

where uppercase letters are used to denote properties of the nuclei and lower-
case letters are used for the electrons. The first and second term account for
the kinetic energy of the electrons and nuclei respectively. The third, fourth
and fifth terms describe the electrostatic interaction between the electrons
themselves, the electrons and the nuclei and the nuclei themselves respec-
tively.
This Hamiltonian is unsolvable for all but the smallest systems, thus ap-
proximations are in order. A first approximation to be made is the so-called
Born-Oppenheimer approximation in which the nuclei are considered to have
fixed positions. That this approximation is valid can be seen by realising that
the nuclei are a couple of orders of magnitude heavier than the electrons. A
single proton is already almost 2,000 times heavier than an electron. Thus
the Born-Oppenheimer approximation seems to make sense.
The Hamiltonian found after using the Born-Oppenheimer approximation is:

ĤBO =
N∑
i=1

p̂2
i

2m
+

1

4πε0

1

2

N∑
i,j=1;i 6=j

e2

|ri − rj|
− 1

4πε0

N∑
i=1

K∑
n=1

Zne
2

|ri −Rn|
. (2.36)

Because in this approximation the electrons are still interacting with each
other, the problem remains nearly impossible to solve for systems of over a
handful of particles. If the second term, which describes the electrostatic
interaction between electrons, would not be there the problem would reduces
to a set of single particle Hamiltonians.
Briefly forgetting about the second term, uncouple the problem into a set of
Independent Particle Hamiltonians, defined as:

ĤIP =
N∑
i=1

[
p̂i

2

2m
+ V̂ (ri)

]
. (2.37)

Now, the eigenfunctions of this Hamiltonian can be found approximately in
an iterative fashion. The difficulty of the problem resides in determining the
V̂ s. In any case V̂ (ri) depends on the locations of the nuclei. V̂ also depends
on the current location but also on other locations, meaning it is non-local,
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on the wave function |ψ〉 it is acting. V̂ also depends on the eigenstates |ψj〉
of the independent particle Hamiltonian, therefore the independent particle
Hamiltonian has to be solved iteratively.

2.2.1 Hartree-Fock Theory

In Hartree Fock Theory (HFT) the wave functions are restricted to be Slater
determinants:

ΨAS(x1, ...,xN ) =
1√
N !

∣∣∣∣∣∣∣
ψ1(x1) · · · ψN(x1)

...
. . .

...
ψ1(xN ) · · · ψN(xN )

∣∣∣∣∣∣∣ . (2.38)

These Determinants per definition take care of the anti-symmetry require-
ment for fermionic wave functions. Using Equation 2.38 with the Born-
Oppenheimer approximation yields the following Schrödinger Equation:

F̂ψk =

[
−1

2
∇2 −

K∑
n=1

Zn
|r −Rn|

]
ψk(x)+

N∑
l=1

∫
|ψl(x′)|2 1

|r − r′|
ψk(x)dx′−

N∑
l=1

∫
ψl(x

′)∗
1

|r − r′|
ψk(x

′)ψl(x)dx′. (2.39)

This is called the Hartree-Fock equation and F̂ is called the Fock operator.
The first term of the HF equation describes the kinetic energy of the electrons,
the second term describes the electrostatic interaction between the electrons
and the nuclei, the third term describes the electrostatic interaction between
the electrons themselves and the fourth term takes care of the anti-symmetry
requirement by interchanging the spin terms and taking the whole term to
be negative.

A solution for the wave functions |ψk,0〉 can now be found by taking a
first guess at |ψk,0〉 and filling them into Equation 2.39. This yields a new
set of orbitals |ψk,1〉 which in their turn are filled back into the Hartree-Fock
equation which yields again a new set of orbitals. This is repeated until
convergence is reached.

2.2.2 Density Functional Theory

In DFT electron orbitals are solutions to a Schrödinger equation which de-
pends on electron density instead on individual electron orbitals. An effective
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independent particle Hamiltonian is used, which gives rise to the following
Schrödinger equation:[
−1

2
∇2 −

K∑
n=1

1

|r − r′|
+

∫
n(r′)

1

|r − r′|
d3r′ + VXC [n](r)

]
ψk(r) = εkψk(r).

(2.40)

The first three terms are identical to Hartree-Fock theory, but the fourth
term is different. This term contains all the many-body effects and is called
the exchange correlation potential. According to Density Functional Theory
an exchange correlation potential exists which yields the exact ground state
energy and electron density. However, this form is not known so, again, we
will have to make do with a number of approximations.
The solution of the DFT Schrödinger equation must be consistent with the
electron density n(r), which is defined as:

n(r) =
N∑
k=1

|ψk(r)|2, (2.41)

where N is again the total number of electrons. The total energy E is then
given by:

E =
N∑
k=1

εk −
1

2

∫ ∫
n(r)

1

|r − r′|
n(r′)d3rd3r′ + EXC [n]

−
∫
VXC [n](r)n(r)d3r, (2.42)

where εk are the eigenvalues of the DFT Schrödinger equation and EXC is
the exchange correlation energy, which is related to the exchange correlation
potential via:

VXC [n](r) =
δ

δn(r)
EXC [n]. (2.43)

Furthermore, the wave functions |ψk〉 have no individual meaning other than
to construct the electron density. In order to find the wave function, Equation
2.40 and Equation 2.41 have to be solved iteratively in a self consistency loop.
DFT is in principle an exact method, but because the exact form of VXC [n]
is unknown, the approximations discussed earlier have to be used. VXC [n]
is a functional derivative of EXC [n] which is a functional of n(r). For a
homogeneous electron gas, the exchange correlation energy only depends on
the local electron density. For a nonhomogeneous system VXC [n](r) not only
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depends on just the local electron density, but also on the variation of n(r)
close to r:

VXC [n](r) = VXC [n(r),∇n(r),∇(∇n(r)), ...]. (2.44)

The variations in n(r) make calculations significantly slower. Thus often the
Ansatz is made that VXC [n] only depends on the local electron density. This
is called the local density approximation (LDA).

EXC [n] =

∫
εXC [n(r)]n(r)d3r, (2.45)

where εXC [n] is the exchange correlation energy per particle of an homoge-
neous electron gas at density n(r). The local density approximation is exact
for homogeneous electron gasses.

2.3 Spin-Orbit coupling

In the Bohr model of the atom, when an electron is orbiting the nucleus of
an atom the electron is held in place by the electric field E emitted by the
nucleus. However in the reference frame of the electron it seems as though
the nucleus is orbiting around the electron in a magnetic field B. According
to relativity this magnetic field takes the value in classical notation [5]:

B = −v ×E
c2

, (2.46)

where v is the velocity of the electron around the nucleus and c is the speed
of light in a vacuum. Assuming that we are in the non-relativistic limit for
the nucleus, thus the Lorentz factor γ ≈ 1, it can also be seen that E must
always point radially. That is, E =

∣∣E
r

∣∣ r where r is the radial position of
the electron to the nucleus, and that the momentum of the electron is given
by p = mev. Thus rewriting Equation 2.46 yields:

B =
r × p
mec

∣∣∣∣Er
∣∣∣∣ . (2.47)

From electrostatics it is a known fact that E = −∇V , where V is the elec-
trostatic potential in the vicinity of the nucleus. From the condition that E
always points radially, it is found that V can only depend on r.

|E| = dV

dr
=

1

e

dU

dr
, (2.48)

where U = eV is the potential energy of the electron in the nuclear electric
field and where e is the charge of the electron.
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In classical mechanics the angular momentum of a particle is found by L =
r × p. Thus rewriting Equation 2.47 further, switching to Dirac notation
where B and L are vectors of operators:

B̂ =
1

meec2

1

r

dU

dr
L̂. (2.49)

This shows that the magnetic field the electron feels when orbiting around
the nucleus is parallel to the angular momentum vector of the electron.
Due to B̂ the electron will feel two effects that affect its Hamiltonian Ĥ0.
The spin vector Ŝ will start to precess around the field lines of B and the
intrinsic magnetic moment µ̂s due to the spin of the electron will interact
with the magnetic field. These effects are called Thomas precession and the
Larmor interaction and describe the spin-orbit interaction of the electron.
Thus the full Hamiltonian that governs the movement of the electron is:

Ĥ = Ĥ0 + ∆Ĥ = Ĥ0 + ∆ĤL + ∆ĤT . (2.50)

From Equation 2.50 it can be seen that the spin-orbit interaction perturbs the
”original” Hamiltonian that governs the electron. Qualitatively this results
in the splitting of energy levels.

Starting with the Larmor interaction. The contribution to the Hamilto-
nian by the Larmor interaction is given by the energy of a magnetic dipole
moment in a magnetic field:

∆ĤT = −µ̂s · B̂. (2.51)

The magnetic dipole moment of the electron is given by:

µ̂s = −gsµB
h̄
Ŝ, (2.52)

where Ŝ = Ŝxx + Ŝyy + Ŝzz is the spin angular momentum vector, µB is
the Bohr Magneton and gs ≈ 2 is the electron spin g-factor. Substituting
Equation 2.52 and Equation 2.49 into Equation 2.51, it is found that:

∆ĤL =
2µB

h̄meec2

1

r

dU

dr

(
Ŝ · L̂

)
. (2.53)

The energy contribution of Thomas precession is given by:

∆ĤT = Ω̂T · Ŝ, (2.54)

where Ω̂T is the Thomas precession rate, which is related to the angular ve-
locity of the electron by Ω̂T = ω̂(γ−1). When Equation 2.54 is approximated

to first order in
(
v
c

)2
it is found that:

∆ĤT = − µB
h̄meec2

1

r

dU

dr

(
Ŝ · L̂

)
. (2.55)
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Thus filling the results of ∆ĤL and ∆ĤT into Equation 2.50 we find that Ĥ0

is perturbed by the spin-orbit interaction by:

∆Ĥ = ∆ĤL + ∆ĤT =
µb

h̄meec2

1

r

dU

dr

(
L̂ · Ŝ

)
. (2.56)

Because L̂ and Ŝ need to be considered together in the Hamiltonian, they
are no longer conserved quantities. Therefore the total angular momentum
Ĵ is introduced:

Ĵ = L̂+ Ŝ. (2.57)

It can then be easily seen that, because L̂ and Ŝ commute:

Ĵ2 = L̂2 + Ŝ2 + 2L̂ · Ŝ. (2.58)

Rewriting this to find an expression for L̂ · Ŝ:

L̂ · Ŝ =
1

2

(
Ĵ2 − L̂2 − Ŝ2

)
. (2.59)

Thus the expectation energy of the energy added by ∆Ĥ can be found via:

〈∆E〉 = 〈njlsmj|∆Ĥ |njlsmj〉 =
C

2
[j(j − 1) + l(l − 1) + s(s− 1)] . (2.60)

Where C contains all the constants of Equation 2.56.
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Chapter 3

Method

In this chapter the methods behind a transport calculation through a thi-
olated 4-Helicene molecule sandwiched between two gold contacts is calcu-
lated. This is done using the Amsterdam Density Functional (ADF) package
supplied by the Software for Chemistry and Materials (SCM) [1] [14] [2]. In
the first section, the geometry of the Helicene molecule will be determined
in three ways according to the methods used in [15]. In the second section
the methods behind the actual transport calculations will be presented. The
legacy method used by ADF [13] and the newly implemented method devel-
oped by Marnix Rebergen in [11] will be presented separately. They will be
called the Single Green Method and the Double Green Method respectively.
After being presented, they will be compared and their differences will be
discussed.

3.1 Geometry Optimisation

Before any kind of transport calculation can be executed, the Hamiltonian
of the molecule over which the transport calculation is preformed must be
known. To that effect the shape of the molecule must be known. The entire
system consists of three parts. From left to right the system consists of:
the left contact, the extended molecule and the right contact. The extended
molecule can be seen in Figure 3.1. The extended molecule is a compound
system consisting of the 4-Helicene molecule thiol bonded to two gold leads,
these leads are principal layers of gold. The gold atoms on one side of a
principal layer do not influence the gold atoms in the next principal layer on
the other side of the layer, for gold a principal layer is three atoms thick.

The contacts are constructed from a trapezoidal crystal of gold contain-
ing three principal layers, these principal layers are three atoms wide, high
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Figure 3.1: The extended molecule used in the Transport and Density of
States calculations.

and deep. By doing this, the Hamiltonian on the interfaces of the principal
layers approximate a bulk Hamiltonian quite well. This can be seen in Figure
3.2. Therefore a self consistent Density Functional Theory (DFT) calcula-
tion will be done first over the entire crystal using the Zero Order Regular
Approximation (ZORA) to the Dirac equation using ADF. ZORA accounts
for relativistic effects such as spin-orbit coupling. After that the self energy
of the right contact will be calculated on the interface between the green and
blue principal layers and the self energy of the left contact will be calculated
on the interface between the red and green contact. Thus the contacts are
effectively build up as two consecutive principal layers of gold.

Figure 3.2: Three principal layers of gold. Because the atoms in a principal
layer do not influence the atoms two layers apart, the Hamiltonian of the
central layer resembles a bulk Hamiltonian. [12]
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In the extended molecule the 4-Helicene molecule will interact with the gold
leads and change its geometry accordingly. The gold atoms in the leads are
also influenced by the Helicene and will also adapt their positions. This is
accounted for by a geometry optimisation procedure using ADF. This will
be done in three different ways according to the methods presented in the
Bachelor Thesis by Annick Teepe [15] on which this thesis directly builds.
All three methods had an initial geometry optimisation preceding them. The
three methods are:

• No further optimisation is done.

• A second geometry optimisation procedure is executed where the y and
z coordinates of the gold contacts were kept fixed, so the gold atoms
could only move in the x direction. This geometry will no be referred
to as the first optimised geometry

• A second geometry optimisation procedure is executed where the gold
contacts are kept completely fixed in the positions after the first geom-
etry optimisation. This geometry will now be referred to as the second
optimised geometry.

3.2 Transport and Density of States Calcula-

tions

When calculating the transport of electrons through the Helicene molecule
the Landauer Equation (Equation 2.33) must be solved over the entire sys-
tem. To be able to solve this equation, some preparations have to be made.
First, self-consistent Density Functional Theory calculations are preformed
by ADF over each geometry using the ZORA Dirac Equation. The DFT
run yields a set of spatial orbitals φik(~r) the electron density n(~r) and the
ground state energy E for each of the fragments of the extended molecule
using Equations 2.40 and 2.41. The spatial orbitals for each fragment can
expressed in a basis of Slater Type Orbitals χj(~r), see Equation 2.38:

φik(~r) =
∑
j

Ai,kj χj(~r), (3.1)

where i denotes the fragment: L for the left contact, R for the right contact
and m for the molecule. Then these orbitals are used as a basis for a spin
unrestricted ZORA-DFT run over the entire extended molecule. This results
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in a set of spin-orbitals, a product of spatial orbitals and spin states A and
B:

ψk(~r, s) =
∑
i,j

CA
k,jφ

i
j(~r) |A〉+

∑
i,j

CB
k,jφ

i
j(~r) |B〉 . (3.2)

Second, the Green’s function for each geometry of the extended molecule Ĝm

must be calculated via Equation 2.11. For this the molecule’s Hamiltonian
Ĥm must be known and the self energies Σ̂i of the contacts must be calculated
via Equation 2.10. The Hamiltonian of the molecule is defined as the Fock
matrix F̂m. The Fock matrix is calculated via:

F̂ = ŜĈÊĈ†Ŝ, (3.3)

where Ĉ is a matrix where each column is an orbital defined in equation
3.2, Ŝ = (ĈĈ†)−1 is the overlap matrix between the valence orbitals of the
molecule, Ê is the matrix containing the energy points defined in the input.
Thus Equation 2.11 can now be rewritten as:

Ĝm(E) =
(
EŜ − F̂m − Σ̂l − Σ̂r

)−1

, (3.4)

where in this case E is not a matrix, but the scalar input value of Green’s
function. As described in the previous section, using Figure 3.2, the self
energy of the right contact Σ̂r is calculated on the interface between the
green and blue principal layers and the self energy of the left contact Σ̂l is
calculated on the interface between the red and green principal layers. Then
the Gamma matrices Γ̂ can be calculated via Γ̂i = i(Σ̂i − Σ̂†i ).

3.2.1 The Single Green Method

This is the Non-Self-Consistent Green’s function calculation provided by
ADF, created by J. Seldenthuijs [13]. In the way it is currently implemented
in ADF this method does not allow for calculations using ZORA-DFT includ-
ing spin-orbit interactions. In a spin unrestricted Single Green calculation
ADF essentially preforms the same calculation twice for both spin directions,
which will be called A and B. In this case two Ĉ matrices are defined. ĈA
contains the coefficients CA

k,j from Equation 3.2 as entries and ĈB contains

the coefficients CB
k,j as entries. Thus two Green’s functions are defined Ĝm,A

and Ĝm,B, which yields two Transmissions TA and TB via:

Ti = Tr
[
Ĝ†m,iΓ̂RĜm,iΓ̂L

]
. (3.5)
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Two Densities of States, DOSA and DOSB are also obtained via Equation
2.15:

DOSi =
1

π
Tr
[
Im
(
Ĝm,i

)
Ŝi

]
, (3.6)

where i is either A or B. From these equations it can be seen that spin
polarisation would only occur when there is a difference in Ĝm,A and Ĝm,B,
which translates through equation 3.4 into a difference in the Fock matrices
F̂m,A and F̂m,B. Now looking at equation 3.3 it can be seen that (since

Ê is the same for both spin directions, it was defined in the input) spin
polarisation can only occur when the valence orbitals are different for the spin
directions. Since Helicene is considered, an organic molecule with negligible
spin-orbit interaction for the outer orbitals, this model will not predict any
spin polarisation without the presence of a magnetic field.

3.2.2 The Double Green Method

This method was proposed by Marnix Rebergen in his Masters thesis [11].
This method is a more direct approach to the problem, since the calculation
is not divided up into two separate calculations for both spin directions,
but one large calculation. In this case Ĉ is a 2N x k matrix, where the
first N rows contain the CA

k,j coefficients and the last N rows contain the

CB
k,j coefficients. Thus Ŝ is now a 2N x 2N matrix which is not necessarily

block-diagonal, since there might be some overlap between spin-A orbitals
and spin-B orbitals. It then follows that Ĝm might not be block diagonal as
well and thus electrons of different spin might be interaction with each-other.
The transmission must now also account for spin flip processes. Therefore,
the transmission of spin-A and spin-B must now be calculated as:

TA = tAA + tBA

TB = tBB + tAB,
(3.7)

where tii is the transmission of spin-i to spin-i and tij is the transmission
of spin-i to spin-j. Now the bookkeeping starts kicking into gear. The four
spin-to-spin transmissions are calculated via:

tAA = Tr
[
Ĝ†AAΓ̂RĜAAΓ̂L

]
tAB = Tr

[
Ĝ†ABΓ̂RĜABΓ̂L

]
tBA = Tr

[
Ĝ†BAΓ̂RĜBAΓ̂L

]
tBB = Tr

[
Ĝ†BBΓ̂RĜBBΓ̂L

]
,

(3.8)
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where Ĝij with i, j ∈ {A,B} is a sub-matrix of the full Green’s function Ĝm

associated with tij. Because the spins are allowed to interact with each other
in this method, spin polarisation could occur when one spin flip is stronger
than the other spin flip term.

The DOS can now be calculated by:

DOSA = 1
π
Tr[Im(ĜA)]

DOSB = 1
π
Tr[Im(ĜB)],

(3.9)

where Ĝi are the block-diagonal sub-matrices of the full Green’s function
equivalent to the ĜA and ĜB of the Single Green method.
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Chapter 4

Results

4.1 The Single Green Method

The results for the Transmission and Density of States calculations using the
Single Green Method for all three geometries are presented in figures 4.1, 4.2
and 4.3

(a) Transmission of the non-optimised ge-
ometry.

(b) Density of States of the non-
optimised geometry.

Figure 4.1: Transmission and Density of States of the Non-Optimised geom-
etry using the Single Green Method. The purple line indicates the spin-A
and the cyan line indicates the spin-B.
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(a) Transmission of the first optimised ge-
ometry.

(b) Density of States of the first opti-
mised geometry.

Figure 4.2: Transmission and Density of States of the First Optimised ge-
ometry using the Single Green Method. The purple line indicates the spin-A
and the cyan line indicates the spin-B.

(a) Transmission of the second optimised
geometry.

(b) Density of States of the second opti-
mised geometry.

Figure 4.3: Transmission and Density of States of the Second Optimised
geometry using the Single Green Method. The purple line indicates the
spin-A and the cyan line indicates the spin-B.

As can be seen clearly no spin polarisation whatsoever occurs in the Trans-
mission and DOS energy spectra when using the Single Green Method. This
confirms the prediction at the end of section 3.2.1.
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4.2 The Double Green Method

For the Double Green Method no results were obtained due to the finite time-
span of the project, an overabundance of run-time errors in the FORTRAN
code implementing the Double Green method and a lack of ability regarding
the author to parse and resolve said run-time errors in a timely fashion.
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Chapter 5

Discussion and Conclusion

5.1 Comparison of the Single and Double Green

methods

As mentioned in section 3.2.1 the Single Green (SG) method cannot ac-
count for interactions between orbitals of electrons with different spin. And
therefore any spin polarisation that arises by using this method must be an
expression of the Zeeman effect. Thus one would only expect to see spin po-
larisation arise in these calculations when an external magnetic field would be
applied, the contacts would be ferromagnetic. Spin-orbit interactions should
also give rise to some spin-polarisation, but the way the SG-method is im-
plemented into ADF at the moment does not work with a molecule that
was prepared using a ZORA-DFT run configured to account for spin-orbit
interactions.

Therefore the Double Green (DG) method was implemented to account
for interactions between orbitals occupied by electrons of different spin and
to be able to work alongside the ZORA Dirac Equation configured for spin-
orbit interactions. By doing this some extra sources for the observed spin-
polarisation can be identified. Because of some overlap between the spin-A
and spin-B orbitals, spin-flip processes could occur. If these spin-flips do not
occur symmetrically a non-zero spin polarisation would be measured.

One of the causes of these spin-flips could be the transmission of elec-
trons from the gold contact to the Helicene via the sulfur atom. Gold has
a heavy nucleus (Atom number Z = 79), and thus spin-orbit effects are rel-
evant. When the atoms are transmitted to the molecule, the spin-A and
spin-B would be transmitted at different energies which could cause some
spin-polarisation.

Furthermore when the electrons travel through a Helical molecule they
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will follow a somewhat circular path when looking down the center line of the
molecule. This would make a helical molecule act like a little solenoid when a
current is applied, causing a magnetic effect which in turn could cause some
spin-polarisation.

5.2 Implementation of the Double Green Method

ADF is a program written in FORTRAN, one of the first true scientific
programming languages. In the thesis of Marnix Rebergen [11], the code
was implemented in ADF2016 and was working and providing results that
agree with experiment. But now the Double Green method is implemented
in ADF2019. The relevant code was changed to implement the DG method.
After compiling, however, some run-time errors would still shut down the cal-
culation. Due to the finite nature of the project, not all errors were remedied
before the end. Due to this no results were obtained for the DG method.

5.3 Conclusion of this research

As expected a Single Green method calculation can not simulate the CISS
effect and therefore the Double Green method should be implemented in
ADF. During the time of this research the author was not able to successfully
do this and no results were obtained to confirm the ability of the Double
Green method to be able to simulate the CISS effect. But since in the
thesis of Marnix Rebergen [11] the same method was applied to a similar
geometry resulting in spin polarisation agreeable to observations there is
good confidence that the DG method implemented in ADF2019 will prove
successfully as well.
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