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We cannot solve our problems
with the same thinking we used when we created them.
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SUMMARY

Developing accurate and robust numerical approaches that are capable of modeling
fracture in solids has been a challenging undertaking in the computational mechanics
community for decades. Models based on a continuous formulation or on a discon-
tinuous one have been proposed by numerous authors, expanding upon abilities and
disadvantages of these approaches. However, models attempting to bridge these two
approaches have been less often encountered in the literature.

Over the last ten years, a new approach for modeling fracture in solids has been de-
veloped, coined the Thick Level Set (TLS) method, in which the damage evolution is
linked to the movement of a damage front described with the level set method. This
model offers an automatic transition from damage to fracture and deals with merging
and branching cracks as well as crack initiation in a easy and robust manner. Further-
more, the TLS in its new (second) version, coined the TLSV2, is able to model explicitly
the displacement discontinuity at the position of a crack.

These TLS features are very beneficial for the modeling of cusp crack patterns in
resin-rich regions of fiber reinforced polymer composites under mode II loading. In this
process, plasticity might occur prior to fracture, which begins with a series of inclined
cracks that eventually merge to form what is at higher scale of observation understood
as a single crack. When the crack reaches one of the boundaries of these resin-rich re-
gions, the localized deformation in these parts is a sliding one, which is expected to be
traction-free.

This in situ process has been reported as one of the reasons for the differences in
terms of fracture energy between mode I and mode II crack growth since forming cusps
requires the emergence of more crack surface than forming a single straight crack. There-
fore, in order to simulate this fracture process under realistic boundary conditions, a
model based on the TLS can be embedded in a ‘macroscopic’ setup, such as three-point
bend end-notched flexure. A monolithic scheme with extreme refinement in a zone of
interest is the most straightforward approach; however, for a specimen with realistic di-
mensions, this can be computationally unfeasible due to the computational resources
needed to solve the large systems of equations involved in such problem. An ability to
comprehensively model this microscopic process could help to achieve a better under-
standing of the mechanism behind the observed dependence of the fracture energy on
the mode of fracture, which may in turn improve macroscale simulations.

This work focuses on extending the TLS method in order to profit from its full capa-
bilities to deal with simulations of failure in solids under quasi-static loading conditions.
For this purpose, several original numerical and theoretical components are proposed
for reaching qualitative agreement with experimental observations of cusp formation in
polymer matrix. In this context, the primary application of this thesis relies on the ex-
perimental observations at the microscopic level of such process. However, it is worth
mentioning that the numerical tools developed in this thesis are not limited to the prob-

ix



x SUMMARY

lem of cusps; in fact, they can be either used or easily extended to simulate other prob-
lems, for instance crack growth through the microstructure of cementitious materials
with different aggregates.

First, the TLS is combined with plasticity in order to deal with ductile fracture since
polymers may behave plastically prior to failure, particularly when loaded in shear. To
accommodate for plasticity, several changes to the TLS framework are introduced. A
strength-based criterion for initiation of damage based on the ultimate yield surface of
such plasticity model is proposed. A mapping operator for transferring plastic history
is included if the integration scheme in a finite element changes due to the evolution of
the level set field. Furthermore, a new loading scheme is devised in order to take into
account permanent strain.

Next, a generalized framework for the TLSV2 is introduced. The TLSV2 couples con-
tinuous and discontinuous approaches within a single framework, where the continuum
part allows for handling crack initiation, branching and merging, whereas the discon-
tinuous part brings the capability to handle discrete cracks with large crack opening or
sliding without heavily distorted elements, as well as the possibility to model stiffness
recovery upon contact.

Two major issues with the TLSV2 method that have not been dealt with since its in-
ception are addressed in this thesis, and solutions are proposed. Firstly, the method
depends on identifying the location of the skeleton curve of the level set field, on which
the discontinuity in the displacement field is evaluated. The problem of locating the
skeleton curve can be a complicated task, even more so because topological events may
emerge as the analysis progresses, such as crack branching. The skeleton curve is deter-
mined through a combination of ball-shrinking and graph-based algorithms and then
mapped onto the finite element mesh. Secondly, the cohesive forces and displacement
discontinuity of the TLSV2 are modeled using the phantom node method. Furthermore,
a new approach to compute the non-local crack driving force is introduced, and model
calibration is discussed. The degree of stiffness recovery under compression that is still
needed for the continuum part is investigated.

The TLS can be a computationally demanding approach. Therefore, a domain de-
composition strategy is introduced in order to obtain a parallel implementation of the
TLS method. To handle the numerical components specific to the TLS analysis steps
involving level set update, equilibrium solution, and damage front advance, a parallel
strategy is introduced for each of them. The most demanding task in terms of computa-
tional cost, i.e., solving the linearized system of equations from the equilibrium problem,
is performed with a parallel iterative method profiting from the adopted domain decom-
position method. A communication strategy is provided to deal with enriched nodes and
new nodes necessary for the phantom node method belonging to shared regions of sub-
domains. Collective communication strategies are also proposed to deal with operations
related to the level set update, damage front advance, and skeleton curve.

Numerical experiments demonstrate the accuracy and efficiency of the proposed
framework in handling simulations of failure analysis with complex crack patterns in
a sequential and parallel context.



SAMENVATTING

Het ontwikkelen van nauwkeurige en robuuste numerieke methodes voor het modelle-
ren van scheurvorming is al decennia lang een uitdaging in de numerieke mechanica.
Modellen gebaseerd op continue of discontinue formulering zijn voorgesteld door ver-
schillende onderzoekers, onder vermelding van de voor- en nadelen van deze benade-
ringen. Modellen die beide benaderingen proberen te verbinden zijn minder wijdver-
breid in de wetenschappelijke literatuur.

In de afgelopen tien jaar is een nieuwe benadering voor het modelleren van scheur-
vorming ontwikkeld, de Thick Level Set (TLS) methode, waarin de ontwikkeling van scha-
de gekoppeld is aan beweging van een schade-front dat beschreven wordt met de level
set methode. Deze benadering biedt een automatische transitie van schade naar breuk
en kan het vertakken en samengroeien van scheuren op een eenvoudige en robuuste
manier beschrijven, evenals de initiatie van scheuren. De tweede versie van de methode
(de TLSV2) biedt de mogelijkheid de discontinuïteit in verplaatsingen ter plaatse van de
scheur expliciet te modelleren.

Deze eigenschappen van de TLS zijn gunstig voor het modelleren van het patroon
van cusp-vorming zoals dat voorkomt in de harsrijke zone in vezelversterkte kunststoffen
onder mode II belasting. In dit proces kan plasticiteit aan scheurvorming voorafgaan,
gevolgd door het ontstaan van een reeks schuine scheuren die uiteindelijk samengroeien
tot wat op hogere schaal van observatie een enkele scheur is. Wanneer de scheur een
van de randen van de harsrijke zone bereikt vindt gelokaliseerde vervorming plaats in de
vorm van afschuiving zonder overbrenging van spanningen.

Dit in situ proces is genoemd als een van de oorzaken voor het verschil in breuk-
energie tussen mode I en mode II scheurgroei, omdat de cusp-vorming met een groter
scheuroppervlak gepaard gaat dan een enkele rechte scheur. Om dit proces met realisti-
sche randvoorwaarden te simuleren, kan een model gebaseerd op de TLS ingebed wor-
den in een macroscopisch model, bijvoorbeeld voor driepuntsbuiging met eindscheur.
Een monolithisch schema met extreme verfijning in een specifieke zone is de eenvou-
digste benadering, maar voor een proefstuk met realistische afmetingen is dit niet haal-
baar vanwege de rekentijden die vereist zijn om de grote systemen van vergelijkingen
van een dergelijk model op te lossen. Het microscopische proces volledig te modelleren
zou kunnen helpen om de mechanismes achter de geobserveerde afhankelijkheid van
breukenergie van het type scheurgroei te doorgronden, wat vervolgens macroscopische
berekeningen nauwkeuriger zou kunnen maken.

Dit onderzoek is gericht op het uitbreiden van de TLS om de mogelijkheden van de
methode volledig te benutten voor simulaties van scheurgroei onder quasi-statische be-
lastingen. Om dit te bereiken worden verschillende oorspronkelijke numerieke en theo-
retische elementen voorgesteld met als doel kwalitatieve overeenkomst met experimen-
tele waarnemingen van cusp-vorming. Hoewel de primaire motivatie voor de voorge-
stelde methodes ligt in microscopische experimentele waarnemingen van dit proces,
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zijn de methodes niet uitsluitend geschikt voor het simuleren van cusp-vorming; ze kun-
nen ook gebruikt worden voor simulatie van andere problemen, bijvoorbeeld scheur-
groei door de microstructuur van materialen gebaseerd op cement met verschillende
toeslagmaterialen.

Ten eerste is de TLS gecombineerd met plasticiteit om ductiele breuk te kunnen be-
schrijven, omdat kunststoffen plastisch vervormen voordat ze bezwijken, zeker wanneer
ze in afschuiving belast worden. Om plasticiteit te kunnen modelleren zijn verschillende
wijzigingen toegepast in het TLS raamwerk. Een criterium voor initiatie gebaseerd op
het vloeioppervlak van een plasticiteitsmodel is voorgesteld. Een operatie is toegevoegd
voor het overdragen van geschiedenis wanneer het integratieschema in een element ver-
andert. Bovendien is een nieuw belastingschema opgesteld om permanente vervorming
in rekening te kunnen brengen.

Vervolgens is een algemeen raamwerk voor de TLSV2 geïntroduceerd. De TLSV2 kop-
pelt continue en discontinue benaderingen in één raamwerk, waarbij het continue deel
initiatie, vertakking en het samengroeien van scheuren verzorgt, terwijl het discontinue
deel de mogelijkheid biedt om discrete scheuren met grote opening of afschuiving te
modelleren zonder extreem vervormde elementen, met daarbij de mogelijkheid om stijf-
heid te herwinnen bij contact.

Twee belangrijke punten waar de TLSV2 eerder nog niet compleet was zijn in dit
proefschrift aangepakt. Ten eerste, vereist de methode het bepalen van de locatie van
de skelet-curve van het level set veld, waar de discontinuïteit in de verplaatsing geëva-
lueerd dient te worden. Deze locatiebepaling is een uitdaging, vooral omdat de topo-
logie van de skelet-curve tijdens de analyse kan veranderen, bijvoorbeeld ten gevolge
van vertakking van de scheur. De skelet-curve wordt vastgesteld door een combinatie
van bal-krimp- en grafenalgoritmes en vervolgens op het elementen-net geprojecteerd.
Ten tweede, worden de discontinuïteit in de verplaatsingen en de cohesieve krachten
gemodelleerd met de phantom node methode. Daarbij is een nieuwe benadering om de
niet-lokale drijvende kracht achter scheurgroei te bepalen geïntroduceerd en calibratie
van het model verkend. De mate waarin het herwinnen van stijfheid onder druk nog
toegepast dient te worden in het continuüm domein is onderzocht.

De TLS kan veel rekenkracht vereisen. Daarom is een strategie van domein-decom-
positie geïntroduceerd die een parallelle implementatie van de TLS mogelijk maakt. Een
parallelle strategie is geïntroduceerd voor de TLS-specifieke taken van update van het
level set veld, berekening van evenwicht en ontwikkeling van het schadefront. De meest
veeleisende taak, het oplossen van het gelineariseerde systeem van vergelijkingen voor
de evenwichtsberekening is uitgevoerd met een parallelle iteratieve methode gebruik
makend van de domein-decompositie. Strategieën voor communicatie rondom verrijkte
knopen en toegevoegde knopen, alsmede voor operaties betreffende de level-set update
en bepaling van de skelet-curve zijn ontwikkeld.

Numerieke experimenten tonen de nauwkeurigheid en efficiëntie van het voorge-
stelde raamwerk voor het simuleren van bezwijken met complexe scheurpatronen in se-
quentiële en parallelle context.



1
INTRODUCTION

1.1. BACKGROUND
The development of numerical tools capable of capturing complex mechanisms present
in fracture in solids is still one of the most lively fields in computational mechanics, in
spite of its vastness of publication in the literature and long history. Modeling fracture
can be achieved in different manners, which can be categorized into two approaches [1]:
discontinuous and continuous. In the former approach, cracks are explicitly inserted
into the solution basis by adding a discontinuity in the displacement field. Optionally,
cohesive forces are applied on the crack surface in order to control the amount of energy
that is dissipated. In the latter approach, cracks are modeled by an internal damage
variable that degrades the stiffness of the material as a consequence of accumulative
micro-crack emergence.

Advantages and drawbacks of both families of models have been extensively reported
in the literature. Cohesive elements, which fall into the category of discontinuous ap-
proaches, have been widely used to model fracture in solids where a discontinuity is
considered between finite element edges, and cohesive tractions are defined connecting
the adjacent elements. Complex behavior at the crack surface, such as frictional contact
and mixed mode fracture, can readily be modeled. These models, however, tend to suffer
from mesh bias due to the fact that discontinuity (and consequently the crack path) has
to follow the finite element mesh orientation. Numerical methods have been proposed
in order to overcome this mesh dependency by allowing the crack to propagate across fi-
nite elements, such as XFEM [2, 3] and the phantom node method [4, 5]. Although these
methods allow for representing arbitrarily positioned discontinuities, proper adminis-
tration of the evolving discontinuity in presence of branching and merging is challeng-
ing, as well as for general 3D cases.

At the other end of the spectrum, continuum damage models can readily handle
damage onset and complex damage distributions, even when multiple merging events
are taking place as the simulation progresses. However, these models are well known
for experiencing spurious localization in the strain field resulting in pathological mesh
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dependency. Several models have been proposed to avoid this problem, well-known ex-
amples being the non-local integral models [6, 7] and gradient damage models [8, 9]. All
these models rely on the concept of introducing, implicitly or not, an intrinsic material
length scale in order to obtain a non-local description. In line with these approaches,
two new frameworks have been proposed recently, the phase-field method [10–12] and
the Thick Level Set (TLS) method [13–15]. Both methods introduce a superposed field
to describe the material degradation, giving rise to a transition region from sane to fully
degraded material.

The TLS method is the approach of choice for modeling fracture in this thesis. The
TLS has been proposed as an approach that couples both fracture and damage in a sin-
gle regularized framework. The location of fronts of damaged zones are implicitly rep-
resented as the zero level set of an auxiliary field, the level set field. All the topological
events with respect to damage fronts are handled with the level set technology [16, 17].
Damage is constrained to follow a given profile within a thick band of material behind
the damage front, the transition zone with fixed width, where the damage variable de-
pends directly on the level set values and gradually increases until a zero-stiffness state
is obtained, i.e., when macro-cracks emerge. The introduction of a material length scale
characterized by the width of the transition zone introduces a non-local feature in the
formulation that prevents spurious localization in the strain field. Furthermore, damage
growth is dictated by non-local configurational forces that are obtained by integrating
local values of energy release rate over damaged regions. The non-local configurational
force can be related to the energy dissipation upon crack growth and, as such, links the
damage formulation to fracture mechanics. Additionally, the damage evolution is per-
formed separately from the computation of the displacement field, which gives the TLS
the natural ability to avoid convergence issues in challenging crack growth scenarios.

Since its first inspection by Moës et al. [13] and further studies by Stolz and Moës
[14], the TLS method has been a research topic of several works. A brief tour of the works
based on the method is given as follows. Bernard et al. [15] introduced improvements
to the first TLS implementation for elastic materials in two-dimensional settings under
quasi-static loading condition, especially the way how to compute the non-local con-
figurational force, and how to achieve a strain discontinuity across a fully degraded re-
gion through an enrichment scheme. These two enhancements and the model itself by
Bernard et al. [15] were used as basis for the three-dimensional implementation of the
TLS by Salzman et al. [18], where a new way to construct the cracks faces are proposed,
called double cut algorithm by the authors. Moreau et al. [19] proposed the TLS ap-
proach in the dynamical context of materials subjected to impact loading cases, in which
different time discretization schemes were applied for the equilibrium equations and
level-set-related update. Latifi et al. [20] proposed a model, called the Interface Thick
Level Set (ITLS) model, in which the TLS is combined with interface elements for mod-
eling quasi-static delamination growth in composites. Latifi et al. [21] and Voormeeren
et al. [22] extended the ITLS approach to simulate fatigue crack growth. Contrary to the
ITLS, where the crack path has to be known a priori, Niessen [23] proposed a TLS-based
model to simulate a standard compact tension test in a fatigue context without defining
interface elements. In other studies, the TLS method has been compared with alter-
native approaches, such as phase-field [24] and cohesive zone models [25], where the
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3

numerical investigations carried out in both studies indicated similar results in terms of
load-displacement curves and damage distribution among the approaches.

One application where the robustness of the TLS is particularly relevant is the sim-
ulation of cusp formation, which involves many merging cracks. Cusp formation is a
process that accompanies mode II delamination crack growth, and it is understood to
be one of the causes of the difference in fracture energy between mode I and mode II
crack growth [26–28]. This process starts with an array of inclined cracks which are per-
pendicular to the direction of maximum principal stress (see Fig. 1.1). As these cracks
evolve, S-shaped cracks are formed, which eventually merge, leading to a single crack on
a higher level of observation. Appropriate theoretical and computational tools that can
predict this process on the microscale may lead to a better understanding of the mech-
anisms behind the observed variability in fracture energy, which may in turn allow for
devising physics-based models for macroscopic crack growth [26, 27].

τ

τ

τ

τ

τ

τ τ

τ
τ

τ

σ σ

Resin-rich region

Figure 1.1: Cusp formation stages in a resin-rich region subject to shear (τ). Cracks are perpendicular to the
direction of maximum principal stress (σ).

One noteworthy fact in this direction is that the TLS method, in the version by Van
der Meer and Sluys [29], has already been used to model the cusp crack pattern in elas-
tic sandwich-like specimens. Based on their investigations, the authors improved the
representation of free-sliding deformations in mode II failure condition by introducing
a special constitutive law that only takes into account stiffness recovery on the strain
component normal to the plane that defines the interface, and made the resistance pa-
rameter against damage growth a function of the size of damaged zones in order to cap-
ture different stress levels for damage onset and propagation.

More recently, a new (second) version of the TLS, designated as the TLSV2, has been
proposed as a new concept for coupling continuum damage modeling and cohesive
crack modeling, combining concepts from continuous and discontinuous approaches,
for failure analysis in solids [1]. The main objective of this new framework is to profit
from both modeling approaches, the continuum part allows for handling crack initia-
tion, branching and merging, whereas the cohesive part brings the capability to handle
discrete cracks with large crack opening or sliding without heavily distorted elements,
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and with the possibility to model stiffness recovery and friction upon contact, i.e., the
main issues found in simulations presenting cusp crack patterns [29]. The method de-
pends on identifying the location of a so-called skeleton curve of the level set field, i.e.,
the line along which the slope of the level set field is discontinuous, which defines the
middle of a damaged zone and on which the discontinuity in the displacement field
should be inserted. However, the problem of locating the skeleton curve can be a compli-
cated task, especially when it has to be sufficiently smooth for defining the discontinuity
along which sliding can be modeled. The complexity increases further when topologi-
cal events, such as crack branching takes place. Despite its promising advantages and
benefits, the TLSV2 has only been applied to test cases with straight skeleton curves at a
priori known locations [1].

Coupling the continuous and discontinuous descriptions within a single framework
is not a novelty. As examples, we refer to [30–33], in which the cohesive cracks are in-
troduced as soon as the damage variable exceeds a damage threshold. Unlike these
approaches, the TLSV2 permits a concurrent evolution of quantities (e.g., damage vari-
ables) related to the bulk and cohesive parts by means of a unique level set field in the
whole domain [1].

1.2. SCOPE AND OUTLINE
The objective of this thesis is to develop numerical tools based on the TLS approach
keeping the cusp formation process in resin-rich regions of polymer matrix of compos-
ite materials subject to mode II delamination as benchmark application. The thesis is
restricted to 2D analysis under quasi-static loading, and we will consider crack growth
through elastic and elasto-plastic materials. Plasticity is combined with the TLS solution
scheme since polymers may behave plastically prior to failure when loaded in shear. The
TLSV2 capabilities are extended in order to deal with free-form skeleton curves. Parallel
computing is employed in order to accelerate numerical simulations since the TLS may
be a time demanding approach.

The core numerical tools developed in this work are detailed in the following four
chapters of the thesis, which are composed of three published in peer reviewed jour-
nal papers with minor changes in their original introduction and conclusion sections
in Chapters 2 to 4, respectively, and an additional investigation that integrates the work
from these preceding chapters in Chapter 5. What follows next is a brief description on
topics treated in all the remaining chapters of the thesis.

In Chapter 2, the TLS method is combined with plasticity. To accommodate plastic-
ity, several changes to the TLS framework are introduced. A new loading scheme is de-
vised that does not rely on secant unloading. Numerical experiments demonstrate the
accuracy and effectiveness of the proposed model to handle simulation of crack growth
in a medium with hardening plasticity.

In Chapter 3, a domain decomposition strategy to obtain a parallel implementation
of the TLS method is introduced. It describes how to handle the numerical features spe-
cific to the TLS analysis steps involving level set update, equilibrium solution and dam-
age front advance. For each of these tasks an appropriate parallel computing strategy is
proposed. Numerical experiments demonstrate the accuracy and efficiency of the pro-
posed framework to handle parallel computing with the TLS method.
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In Chapter 4, the TLSV2 approach is developed beyond the proof of concept from the
paper in which it was introduced. Challenges are addressed on the development of algo-
rithms to track the skeleton curve, and on how to model the displacement discontinuity
over a crack based on the skeleton location. Compared to its predecessor, a slightly dif-
ferent algorithm scheme is devised for the TLSV2. Numerical experiments demonstrate
the accuracy and ability of the proposed model to handle simulation of failure analysis
presenting non-trivial topological crack patterns with actual displacement discontinuity
at the position of the crack.

In Chapter 5, the innovations from Chapters 2 to 4 are combined into a single frame-
work. Extra features are added to the original parallel implementation in order to ac-
commodate the specific operations related to the TLSV2. Despite adding new tasks into
the parallel implementation in Chapter 3, numerical examples show that the additional
tasks associated with the TLSV2 do not substantially change the total runtime compared
to the parallel version designed for its predecessor model.

Finally, in Chapter 6, the main scientific conclusions are presented, followed by rec-
ommendations for future research.





2
COMBINING THE THICK LEVEL SET

APPROACH WITH PLASTICITY

2.1. INTRODUCTION
The Thick Level Set (TLS) method to model damage in solids was originally proposed
by Moës et al. [13]. In the TLS, the location of the front of a damaged zone is implicitly
represented as the zero level set of an auxiliary field and its evolution is handled with the
level set method [16, 17]. Unlike conventional continuum damage models, in which the
damage variable is a direct function of the local strain field, the TLS considers a band of
damage with a predefined characteristic length where the damage variable depends on
the level set value whose evolution is dictated by the non-local strain field. Macro-cracks,
i.e., regions with damage equal to one, appear as a consequence of the front evolution.
As the damage evolution is separated from computation of displacement [15, 29], the
TLS is a robust method which can handle multiple branching and merging cracks with-
out convergence problems.

Since the first paper on the TLS [13], improvements on its implementation have been
proposed [15, 35], and more recently an extension was presented, where the main idea
is to couple cohesive zone models with the TLS to capture crack opening [1]. In other
publications, the TLS has been compared with alternative approaches, such as phase-
field [24] and cohesive zone [36] models.

As already mentioned in Chapter 1, modeling numerically the process of cusp forma-
tion in polymer matrices is not a straightforward task, mainly because of complex crack
patterns may arise during the analysis. One more key aspect that has to be taken into ac-
count in this mechanism is plasticity. When loaded in shear, polymers behave plastically
prior to failure. Therefore, plasticity cannot be ignored in simulation of cusp formation.
However, adding plasticity to the TLS can be a complicated issue, because the current
solution procedure [15, 29] depends on the assumption of secant unloading behavior.

Apart from minor changes to its introduction and conclusion sections, this chapter was integrally extract from
L. A. T. Mororó and F. P. van der Meer. European Journal of Mechanics - A/Solids 79 (2020) [34].

7
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In this chapter, we seek to simulate the cusp formation process more realistically.
For this purpose, the TLS method in the version by Van der Meer and Sluys [29] is ex-
tended with a plasticity formulation. To represent the plastic behavior of polymers, the
pressure-dependent plasticity model by Melro et al. [37] is implemented in the TLS
framework. A plasticity-related criterion for damage initiation is introduced, and a new
loading scheme is devised that does not rely on secant unloading.

The chapter is structured as follows. Section 2.2 is devoted to the formulation of the
proposed model, presenting the plasticity model, recalling some fundamentals of the
TLS damage model and detailing the main features added to the framework from Van
der Meer and Sluys [29]. Several numerical examples including plasticity are presented
in Section 2.3 and used to assess the accuracy of the proposed model to deal with cusp
formation. Finally, conclusions are presented in Section 2.4.

2.2. MODEL FORMULATION

2.2.1. SEPARATION BETWEEN DAMAGE AND PLASTICITY
In this section, the main features of the proposed model are outlined. The quasi-static
problems that are assessed in this chapter are based on the framework of small displace-
ments and additive decomposition of the total strain ε into an elastic (or reversible) part
εe and a plastic (or permanent) part εp:

ε= εe +εp. (2.1)

The equilibrium equation and the relation between the total strain ε and the displace-
ment field u in a body Ωwithout body force read, respectively:

∇·σ= 0 and ε= 1

2

(∇u+∇uT)
, (2.2)

in which σ is the stress tensor.
The starting point of the proposed model is a separation between damage and plas-

ticity. The free energy is defined under the hypothesis of decoupling between elasticity-
damage and plasticity, and it is assumed that plasticity only evolves in the intact material
and not in regions where the damage is activated. Thus, the specific free energy ψ is as-
sumed to be split up into elastic-damage ψed and plastic ψp contributions according
to:

ψ(εe,d ,εp
eq) =ψed(εe,d)+ψp(εp

eq), (2.3)

where εp
eq and d are the internal variables, signifying the equivalent plastic strain and

the damage, respectively.
For instance, assuming an elastic-damage potential that accounts for isotropic stiff-

ness degradation given by:

ψed(εe,d) = 1

2
(1−d)εe : De : εe, (2.4)

where De is the elasticity tensor from Hooke’s law. The stress-strain relation is obtained
by differentiating the potential as:
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σ= ∂ψed

∂εe = (1−d)De : εe. (2.5)

The local energy release rate Y is defined as:

Y =−∂ψ
ed

∂d
= 1

2
εe : De : εe. (2.6)

Along with the loading/unloading conditions in Kuhn-Tucker form for time-independent
models, Y is used to described the the damage evolution:

(Y −Yc ) ≤ 0, ḋ ≥ 0, ḋ(Y −Yc ) = 0 (2.7)

in which Yc is the material resistance to damage growth.
Using the effective stress concept, Eq. (2.5) can alternatively be expressed as:

σ= (1−d)σ̂, (2.8)

where σ̂ is the effective stress defined as:

σ̂= De : εe = De :
(
ε−εp)

. (2.9)

In order to guarantee the admissibility of stresses, the yield criterion f (σ̂,εp
eq) ≤ 0

must be satisfied. The plastic strain rate is written as the product of the plastic multiplier
γ̇ and the direction of plastic flow n [38]:

ε̇p = γ̇n. (2.10)

The evolution of plastic multiplier γ̇ is such that the Kuhn-Tucker conditions are satis-
fied:

f ≤ 0, γ̇≥ 0, γ̇ f = 0. (2.11)

The plasticity model is completed with an evolution law for the equivalent plastic strain,
which is defined as a function of the equivalent plastic strain rate ε̇p

eq.
By design of the TLS, uncoupling damage from plasticity in terms of evolution of the

internal variables can be achieved in a straightforward manner, since the level set field
φ separates the domain Ω into an undamaged zone and a damaged one. In this case,
the evolution of plasticity can only occur in zones where the level set function φ ≤ 0,
whereas the TLS handles the damage evolution law in the region withφ> 0 by taking the
permanent strain contribution into account via Eq. (2.9). Therefore, the damage front
decides where and when the plasticity is evaluated.

2.2.2. PLASTICITY MODEL
In this section, the equations presented in Section 2.2.1 for a general plasticity model
are particularized to the pressure-dependent plasticity model for polymers by Melro et
al. [37] as adapted by Van der Meer [39]. The backward Euler scheme is considered to
discretize all rate quantities for plasticity. Because plasticity is only updated where d = 0
and σ= σ̂, the hat symbol on the effective stress tensor is dropped.
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A paraboloidal yield surface is considered:

f (σ,εp
eq) = 6J2 +2I1(σc −σt )−2σcσt (2.12)

with
σc =σc (εp

eq) and σt =σt (εp
eq), (2.13)

where J2 is the second invariant of the deviatoric stress tensor, I1 is the first invariant of
the stress tensor, and σc and σt are the uniaxial compressive and tensile yield stresses,
respectively. The pressure dependency comes from the term 2I1(σc −σt ). For the case
of σc =σt , the yield surface is equivalent to the classic Von Mises criterion. Both σc and
σt are defined as a function of εp

eq to match measured hardening curves.
If the material is loaded at the yield stress, plastic flow takes place. Using a non-

associative flow rule, the plastic strain increment (cf. Eq. (2.10)) is given by:

∆εp =∆γ
(
3S+ 2

9
αI1I

)
, (2.14)

where S is the deviatoric stress tensor, I is the identity matrix, andα is the parameter that
controls the plastic volumetric flow and depends on the plastic Poisson’s ratio νp :

α= 9

2

1−2νp

1+νp
. (2.15)

The increment of the equivalent plastic strain εp
eq is defined as:

∆ε
p
eq =

p
k∆εp :∆εp, (2.16)

in which k = 1/(1+2ν2
p ).

In order to check for admissibility of stress state and determine the increment of
the plastic multiplier ∆γ such that the constraints in Eq. (2.11) are satisfied, an itera-
tive elastic predictor/return mapping algorithm is used. Details on the return mapping
algorithm and the consistent tangent matrix can be found in [39].

2.2.3. THICK LEVEL SET METHOD
In the TLS, the front of one or more damaged zones is implicitly represented as the iso-
contour (or level set) of an auxiliary field, and its evolution is accomplished by the level
set method [16, 17]. The advantage of the level set method is that one can deal with
geometric features (e.g., merging and branching) involving surfaces or curves on a dis-
cretized domain, without having to explicitly mesh boundaries of these objects. The lo-
cation of the front Γ0 is tracked as the zero level set (or the iso-zero) of a single auxiliary
field φ(x) (see Fig. 2.1).

If φ is a smooth well-behaved function, the definition of φ on a discretized domain
at a given point x is determined by interpolating the values of φ from nodes to x. A
convenient choice for definition of φ is the signed distance function [16, 17], which is
mathematically equivalent to:

|∇φ| = 1 on Ω. (2.17)
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Γ0 : φ = 0
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Figure 2.1: The level set method: the front Γ0 is implicitly located as the zero level set of φ.

By definition, this choice for φ guarantees that the absolute value of φ at a given point is
the shortest distance to the front from that point.

DAMAGE DEFINITION

As it has been mentioned, the level setφ= 0 separates the domainΩ into an undamaged
zone and a damaged one, andφ is known at every point. In the TLS, the damage variable
d is chosen to depend only on φ. As depicted in Fig. 2.2, d is assumed to change from
zero to one as φ goes from zero to the critical length lc . Mathematically, the damage
variable is expressed by:

d(φ) =


0, φ≤ 0

q(φ), 0 <φ≤ lc

1, φ> lc

, (2.18)

where q is a function that has the properties of q(0) = 0, q(lc ) = 1 and q ′ ≥ 0.

 

Undamaged zone

Fully degraded zone

Transition zone

Γc : φ = lc

Γ0 : φ = 0
lc

lc

lc

l

d

φ

1

0

Figure 2.2: The TLS makes use of a single level set function to describe multiple zones. As illustrated on the
right, the damage variable d is a function of level set φ.
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An arc-tangent formula is used for q(φ):

q(φ) = c2 arctan

(
c1

(
φ

lc
− c3

))
+ c4 (2.19)

Following Bernard et al. [15] and Van der Meer and Sluys [29], all computations are per-
formed with c1 = 10 and c3 = 0.5, which lead to a point symmetric profile, as schemati-
cally represented in Fig. 2.2. The other constants c2 and c4 are determined to satisfy the
conditions q(lc ) = 1 and q(0) = 0, respectively:

c2 = (arctan(c1 (1− c3))−arctan(−c1c3))−1 (2.20)

and

c4 =−c2 arctan(−c1c3) . (2.21)

The position of the macro-cracks is located in the zone at a distance larger than lc

behind the front where d = 1. This region is easily identified due to the fact that φ is
a distance function. To accommodate localized deformations, the elements crossed by
the iso-lc of the level set field need some particular enrichment in order to introduce a
discontinuity in strain and provide strain-free localization at crack lips, as explained in
[15].

FREE ENERGY: ASYMMETRIC BEHAVIOR IN TENSION/COMPRESSION

The free energy expression in Eq. (2.4) leads to material laws that present the same be-
havior in tension and compression, which can be applicable to failure analysis in tension
dominated cases. However, if the damaged zone experiences compression, the energy
release rate Y in Eq. (2.6) would still be nonzero, which may result in unphysical com-
pressive cracks. For simulation of cases subjected to shear load conditions, this formu-
lation leads to unrealistic ‘X-shaped’ cracks as reported by Van der Meer and Sluys [29].

Therefore, the free energy density expression from [15, 29] that accounts for stiffness
recovery under compression is used in this thesis:

ψed(εe,d) =µ(1−αi d)(εe
i )2 + λ

2
(1−αv d)tr(εe)2, (2.22)

whereλ and µ are Lamé’s elastic constants, εe
i the eigenvalues of the elastic strain tensor,

and the αi and αv the parameters relate the activation of damage to principal strain εe
i

and the volumetric strain εv = tr(εe), respectively. Each of these constants assumes the
value of 1 or 0 depending on the sign of the associated strain quantity in such way that
if one of the principal strains or the volumetric strain becomes negative, the stiffness
degradation is canceled for the corresponding term:

αi =
{

1, εe
i > 0

0, εe
i < 0

and αv =
{

1, tr(εe) > 0

0, tr(εe) < 0
. (2.23)

By the definitions in Eqs. (2.5) and (2.6), the stress-strain relation and the driving
force for damage growth can be rewritten as follows:
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σi = ∂ψed

∂εe = 2µ(1−αi d)εe
i +λ(1−αv d)tr(εe) (2.24)

and

Y =−∂ψ
ed

∂d
=−µαi (εe

i )2 − λ

2
αv tr(εe)2. (2.25)

One can observe that the damage has no effect on the material in compression: the un-
damaged stiffness is recovered, and Y becomes zero, which means damage does not
grow.

NON-LOCAL EVOLUTION LAW

In the TLS approach, the non-locality is evident when the front moves [15]. Because the
updating of the signed distance function, all points sharing the same curvilinear coordi-
nate s1 are affected as the front at (0, s) moves (see Fig. 2.3). Therefore, the amount of
energy per unit length that will be dissipated as the front moves a unit distance reads:

g (s) =
∫ l

0
d ′(φ)Y (φ, s)

(
1− φ

ρ(s)

)
dφ, (2.26)

where d ′(φ) = q ′(φ) is the spatial derivative of damage with respect to φ, l is the size of
the damaged zone l ∈ (0, lc ] (see Fig. 2.2) and ρ is the curvature of iso-zero.

δφ(s)

A

s

P

φ

Γ0

Γc

Figure 2.3: Curvilinear coordinate system (φ, s). Point P is affected as point A on the front experiences a front
advance.

Now, the loading/unloading condition in Eq. (2.7) can be rewritten in terms of non-
local energy release rate g (s) and gc (s). However, for nucleation, that is, in the limit case
that l tends to 0, g (s) vanishes. Hence, in order to be able to capture nucleation and
smaller damaged zones, the averaged value of Y across the damaged band is introduced
as proposed by Bernard et al. [15]. For any position along the front, the averaged value
Ȳ is defined as the value that satisfies:

1A curvilinear system of coordinates (φ, s) using the change of variable dΩ =
(
1− φ

ρ(s)

)
dφds is introduced for

derivation, following Moës et al. [13]. In the implementation, the curvilinear coordinate system does not
need to be defined.
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∫ l

0
d ′(φ)Y (φ, s)

(
1− φ

ρ(s)

)
dφ=

∫ l

0
d ′(φ)Ȳ (s)

(
1− φ

ρ(s)

)
dφ. (2.27)

The averaged configuration force Ȳ , which tends to Y as l tends to zero, is thus a weighted
average of Y . Finally, the front velocity vn is defined as a function of Ȳ and Ȳc , the
weighted average of Yc (see Section 2.2.3).

In order to compute the averaged configurational force along the front and avoid
direct computation of the term depending on the curvature ρ, Eq. (2.27) is discretized
as a field on the damaged domain Ωd with Ȳ as unknown. Following Bernard et al. [15],
the constraint that Ȳ must be constant along the level set gradient, i.e., ∇Ȳ ·∇φ = 0, is
enforced with Lagrange multipliers. A discretized approximation of Ȳ is introduced in
combination with Galerkin’s method leading to the following system of equations:[

K L
L 0

]{
Ȳ
l

}
=

{
fY

0

}
(2.28)

in which Ȳ and l are vectors with Ȳ and Lagrange multiplier degrees of freedom, respec-
tively. The matrices and the right-hand side vector are defined as:

Ki j =
∫
Ωd

d ′Ni N j + κh2

lc

∂Ni

∂xk

∂N j

∂xk
dΩ, (2.29)

Li j =
∫
Ωd

lc

(
∂Ni

∂xk

∂φ

∂xk

)(
∂N j

∂xk

∂φ

∂xk

)
dΩ, (2.30)

and

f Y
i =

∫
Ωd

Ni d ′Y dΩ, (2.31)

where Ni and N j are the shape functions associated with nodes i and j , κ is a stabiliza-
tion parameter, h is the characteristic size of the smallest element, and Y is the config-
urational force which depends on the current elastic strain field evaluated through Eq.
(2.25). If the damage resistance Yc is not constant over the domain, a similar system of
equations, with a different right hand side where Yc is used instead of Y , is solved to
compute Ȳc .

FRONT MOVEMENT

To update the damage distribution, the advance of the level set field should be related
to the configurational force Ȳ and material resistance against damage growth Ȳc . The
change in the level set field is related to the normal velocity of the front as:

∂φ

∂t
+ vn |∇φ| = 0. (2.32)

In absence of physical time in quasi-static simulations, the TLS does not directly work
with velocities but with a front increment. In this case, vn∆t is regarded as the front
increment. Using forward Euler time discretization and the property of |∇φ| = 1, the
update of the level set field is performed as:
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φ←φ+ vn∆t , (2.33)

where ∆t is the time increment size.
In the previous version of the TLS [13, 15, 29], the loading scheme was based on a

unit load analysis in each time step, computing a critical load scale factor under the as-
sumption of secant unloading. This loading scheme is not applicable when permanent
strain due to plasticity is considered. Therefore, the framework of TLS must be adapted.
Here, the following relation for the normal velocity is used, given by [20, 40]:

vn = 1

η

〈
Ȳ

Ȳc
−1

〉
+

, (2.34)

where η is a parameter that can be interpreted as viscous resistance against crack growth.
In the limit of η → 0, the Kuhn-Tucker conditions for quasi-static crack growth with
Ȳ − Ȳc ≤ 0 are approached. Brackets are used to denote the positivity condition, which
reflects the irreversibility of crack growth.

In order to ensure stability of the explicit level set update, the Courant-Friedrichs-
Lewy condition is applied [17]:

∆t < h

max{vn}
, (2.35)

where h is the characteristic size of the smallest element, and max{vn} is the largest value
of vn over the entire domain. Here, this conditions is rewritten in a more conservative
form according to [17, 40]:

∆t = min

{
∆t 0, αn

h

max{vn}

}
, (2.36)

in which ∆t 0 is the default and maximum time increment, and αn is a constant defined
as 0 <αn < 1.

The level set update with Eq. (2.33) requires the velocity to be known throughout the
domain. However, Eq. (2.34) is only calculated along the front. The velocity computed
at the nodes of elements that contain the front is propagated through the domain by
solving:

∇φ ·∇vn = 0. (2.37)

This is done with a fast marching method [16, 17, 40]. When the level set field φn in the
previous time step n, which is a signed distance function, moves vn∆t units forward in
the normal direction, the updated level set field φn+1 obtained by Eq. (2.33) remains a
signed distance function. This arises from the fact that the gradient of Eq. (2.33) leads to
∇φn+1 =∇φn , since vn∆t is spatially constant in φ direction, i.e., ∇φ(vn∆t ) = 0. Thus, if
φn is initially a signed distance function, it will stay a signed distance function [16, 17].

However, in the discretized model, the level set field may drift away from being an
accurate representation of signed distance. Thus, another fast marching method needs
to be applied periodically in order to keep φ as signed distance function [40]. Since it is
a relatively cheap procedure, this reinitialization is performed every time step.
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INITIATION

To deal with damage activation for the proposed model, the criterion Y ≥ Yc must be
satisfied at undamaged point. Note that this criterion is purely local, which is consistent
with Eq. (2.27), since Ȳ and Ȳc tend to Y and Yc as l tends to zero. When this criterion
is met at any point, a circle with radius φ0 < lc is inserted around that point and the
signed distance function is reinitialized accordingly. The size of this nucleus from then
on increases according to the same framework as introduced in Sections 2.2.3 and 3.2.3.

Following the proposed model in [29], the resistance Yc is made into a function of
the size of the damaged zone in order to handle initiation and propagation with separate
material parameters. In this approach, Yc changes from an initial strength-based value
for initiation Y 0

c to a fracture energy-based value for crack growth Y G
c , as the size of the

damaged zone changes from zero to a circle with radius lc . The intermediate values of
Yc are interpolated between the two bounds in the space of log(Yc ):

log(Yc ) = log(Y 0
c )+ φ̄

φ̄max

(
log(Y G

c )− log(Y 0
c )

)
, (2.38)

where φ̄ is a measure for the size of a damaged zone over a closed damaged subdo-
main defined as the average of φ over the subdomain and φ̄max represents the size for
which the damaged zone is considered a crack. In Fig. 2.4, three stages are schematically
sketched as φ̄ varies from φ̄= 0, for a very small circle with radius φ0, to φ̄= φ̄max, for a
circle with radius lc , to φ̄= lc /2, for a long straight damaged zone with width 2lc .

log(Yc)

log(Y G
c )

log(Y 0
c )

φ̄max lc/2

φ̄

Figure 2.4: Interpolation of Yc between Y 0
c and Y G

c (adapted from [29]).

The averaged value φ̄ is computed in each time step in a similar way as Ȳ in Eq. (2.28)
by substituting level set valuesφ and unknowns φ̄ for Y and Ȳ , respectively, and omitting
the weight factor d ′ from left-hand side matrix and right-hand side vector. Variation of
φ̄ in the normal direction is again eliminated with Lagrange multipliers, while variation
in the curvilinear direction is eliminated by considering a high value for κ [29].

In contrast to what was proposed in [29], in which Y 0
c was set to a constant value

equal to the free energy in the case where the uniaxial stress equals the tensile strength,
Y 0

c is here bounded by the following surface based on Eq. (2.12):

f 0 = 3 Ĵ2

fc ft
+ Î1

(
fc − ft

)
fc ft

−1 = 0, (2.39)
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with fc and ft being the compressive and the tensile strengths which are set equal to the
ultimate yield stress values of the material. The two invariants Ĵ2 and Î1 are determined
using the effective stress. The motivation to use such surface for Y 0

c comes from the
fact that Y 0

c as a function of a single parameter ft may prohibit initiation for certain
stress states when a plasticity model with perfectly plastic tail is used. For the particular
case where a uniaxial tensile strength equals ft , a constant Y 0

c would be defined as (see
Eq. (2.25)):

Y 0
c ( ft ) = f 2

t

2E

(
1+2ν−2ν2

1+ν
)

, (2.40)

where E is the Young’s modulus andν is the Poisson’s ratio. Note that the term depending
on ν in the expression above is a correction factor which was missing in the previous TLS
model (cf. [29], where Y 0

c = f 2
t /2E). This factor is needed because under uniaxial tension

not all α’s in Eq. (2.22) evaluate to 1.
Figure 2.5 illustrates the problem of using the constant Y 0

c ( ft ) from Eq. (2.40) as initi-
ation criterion in presence of plasticity with a given ultimate yield surface f 0 that bounds
the admissible stress states. It can be observed that, if the ultimate uniaxial tensile yield
stress is used for ft in Y 0

c ( ft ), no initiation under pure shear is possible. The damage
cannot be activated since the plasticity bounds the stress states.

Pure shear

f0

Y = Y 0
c (ft)

σ1

σ2

Figure 2.5: Envelopes in principal stress space illustrating the inability of the criterion Y = Y 0
c ( ft ), related to

the single parameter ft , to deal with damage initiation under pure shear.

This illustrates that, in presence of plasticity, more control is needed over the initia-
tion envelope. Here, a relation is devised between Y 0

c and the stress orientation so that
the failure envelope coincides with the final yield surface given by f 0. The relation for
Y 0

c is for 2D plane stress state derived as a function of the angle θ, defined in principal
stress space as θ = arctan(σ2/σ1). The idea is that for a given stress vector σ(σ1,σ2), Y 0

c
is given as Y 0

c (σ0
c ), with the critical stress vectorσ0

c (σ0
c1,σ0

c2) on f 0 obtained by scalingσ
through:
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σ0
c =

r

|σ|σ, (2.41)

where r corresponds to the norm |σ0
c |, as illustrated in Fig. 2.6. To evaluate r as a func-

tion of σ, the length of the ‘radius’ r is parametrically written as an ellipse with a single
parameter θ.

σ(σ1, σ2)

σ0
c (σ0

c1, σ0
c2)

θf0

r = |σ0
c |

(xc, yc)

β
σ1

σ2

50◦ 100◦ 150◦ 200◦ 250◦ 300◦ 350◦
θ

Y 0
c

Figure 2.6: Definition of the length of r (left) and resulting Y 0
c as a function of θ.

The parametric equation for r as a standard form of an ellipse can be deduced from
the fact that Eq. (2.39) under plane stress assumption can be rewritten in principal stress
space as:

f 0 = Aσ2
1 +Bσ1σ2 +Cσ2

2 +Dσ1 +Eσ2 +F = 0, (2.42)

with A = C = 1
fc ft

, B = − 1
fc ft

, D = E = ( fc− ft )
fc ft

and F = −1. The discriminant of the equa-

tion above, which is defined as ∆ = B 2 − 4AC , is always negative, which implies that
Eq. (2.42) represents an ellipse [41, 42]. In this case, Eq. (2.42) can be written as the stan-
dard expression for an ellipse centered at

(
xc ,yc

)
and rotated through an angle β (see

Fig. 2.6):

x2

a2 + y2

b2 = 1, (2.43)

where

x = (σ1 −xc )cosβ+ (
σ2 − yc

)
sinβ

y =− (σ1 −xc )sinβ+ (
σ2 − yc

)
cosβ,

(2.44)

in which xc , yc , β, and the axes of the ellipse a and b are expressed as a function of
the constants A, B , C , D , E and F [41, 42]. For this particular case, one can show that
β= 45◦ and xc = yc = D/B . Substitution of the relations σ1 = r cosθ and σ2 = r sinθ into
Eq. (2.44) and Eq. (2.43) leads to a quadratic equation, which is solved for r , where the
positive root is chosen. Note that such approach can also directly be performed in prin-
cipal strain space by expressing Ĵ2 and Î1 as a function of principal strains and Lamé’s
elastic constants which could allow for generalization to 3D.
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The remaining parameter Y G
c is computed from the fracture energy Gc and lc by con-

sidering the following relation [15]:

Gc = 2AY G
c lc , (2.45)

with A the area under the curve d . For the point symmetric damage profile, A = 0.5.

2.2.4. MAPPING OPERATORS
In the TLS, integration points, from one load increment to another, are dynamically allo-
cated for elements that are cut by the iso-0 and iso-lc , in order to improve the accuracy of
numerical integration. This is not an issue for elastic materials if one uses a total stress-
strain formulation. On the other hand, in the case of crack propagation in elastic-plastic
materials, history terms influence the local response. These history terms are stored at
integration points. When the integration scheme changes, transfer of history terms from
’old’ to ’new’ integration points is needed. In this study, the inverse distance weighted
interpolation [43] and the superconvergent patch recovery (SPR) [44–46] techniques for
transferring plasticity terms between old and new integration schemes are compared.
For the elasto-plastic model, the plastic strain tensor εp and the equivalent plastic strain
ε

p
eq are the history variables that need to be transferred.

INVERSE DISTANCE WEIGHTED INTERPOLATION

Let sold
i be an old history term at an old integration point i . With inverse distance-based

interpolation, the new history term snew
j at a new integration point j is given by:

snew
j =

∑nold
i=1 sold

i

(
1/li j

)∑nold
i=1

(
1/li j

) , (2.46)

where nold is the number of old integration points in an element and li j is the distance
between an old integration point i and a new integration point j inside the same element
(see Fig. 2.7). If a new integration point coincides with an old one, the old history is kept.

lij sold
i

front

snew
j

old integ. scheme new integ. scheme

Figure 2.7: Inverse distance weighted interpolation: sub-triangulation.

SUPERCONVERGENT PATCH RECOVERY

The SPR technique is carried out in two steps. Firstly, a history term sN
k at a node k within

an element patch (see Fig. 2.8) is estimated by:



2

20 2. COMBINING THE THICK LEVEL SET APPROACH WITH PLASTICITY

sN
k = Pa, (2.47)

where P contains the appropriate terms of a complete polynomial expansion of order p
and a is a set of unknown coefficients. For two dimensions and quadratic expansion, for
instance:

P(x, y) = [
1 x y x2 x y y2] (2.48)

and
a = [

a1 a2 a3 a4 a5 a6
]T

. (2.49)

node sN
k

int. points

assembly node

3 node elements 6 node elements
Figure 2.8: Triangular element patches for linear and quadratic finite elements: • nodal values determined by
recovery procedure (Eq. (2.50)).

The coefficients in a are determined via the least square method fitting from the in-
tegration points within the element patch, which results in:

a = A−1b, (2.50)

where

A =
np∑
i=1

P(xi , yi )TP(xi , yi ) (2.51)

and

b =
np∑
i=1

P(xi , yi )Tsold
i , (2.52)

with np and (xi , yi ) being the total number and coordinates of integration points in the
element patch, respectively. Secondly, the new history terms at a new integration point
j are obtained by shape function interpolation, which has the same order p as P:

snew
j = NsN . (2.53)

It must be emphasized that Eq. (2.50) is evaluated for each history term using the same
matrix solution. Besides, only a single evaluation of A is necessary per patch. Once a



2.2. MODEL FORMULATION

2

21

is determined, the recovery nodal values sN are simply computed by inserting the ap-
propriate coordinates into Eq. (2.50). In Fig. 2.8, for instance, the nodes for linear and
quadratic triangular elements that are considered for recovery are shown. For internal
element nodes (p ≥ 2), which cannot be an assembly node, the history terms will be
considered from several patches and they are therefore averaged as suggested in [44–
46]. For nodes at boundaries and nodes that give rise to a patch with a single element,
such nodes cannot be an assembly node and they are recovered as an internal element
node [44, 45].

VERIFICATION: 1D PROBLEM

A 1D model is developed (see Fig. 2.9) to assess the performance of both operators for
plasticity quantities and answer the question which the most suitable for the TLS with
a moving front and frozen history behind the front. In this simulation, a uniform mesh
of linear truss elements with two nodes, uniform cross-section area and two integration
point are used. When an element is cut by the front, two more integration points are
added to that element. An elementary constitutive model for linear isotropic hardening
plasticity is used as presented in [47] and shown in Fig. 2.9. The expressions needed to
implement the elastic predictor/return mapping algorithm and tangent modulus D for
this model can also be found in a closed-form analytical manner in [47].

The bar is constantly loaded with rate u̇0 =∆u0/∆t 0 = 0.01mms−1. Young’s modulus,
hardening modulus, length and cross-section area are, respectively, E = 200GPa, K =
5GPa, L = 1.5m and A = 100mm2. When the uniaxial stress reaches immediately around
the yield stress σy = 250MPa, the front l starts to move from left to right side. From
this stress level, the front moves continuously with a constant velocity vn = 0.02mms−1

from l = 0.55m to l = 1m. In line with the proposed TLS framework, the plasticity is not
allowed to increase behind the front.

φ = l − x

l

u̇ σ

σy

E
E

D = EK
E+K

L ε

φinteg. points

Figure 2.9: 1D problem for assessing the performance of mapping operators. The level set valueφ at coordinate
x is related to the position of the front l .

A reference response is also computed with a mesh of 500 elements. For this re-
sponse, each finite element has 100 integration points and the integration scheme does
not change. In Fig. 2.10, a comparison between results obtained with the two operators
and the reference response is shown in terms of a load-displacement curve, obtained
with a mesh with three elements for both operators, along with a convergence study. For
the convergence study, the areas under load-displacement graphs are used and their rel-
ative differences are computed between the two operators and the reference response.
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It is clear particularly for coarse meshes that the SPR technique performs better than in-
verse distance-based interpolation as reported in both graphs in Fig. 2.10. Therefore, for
sake of robustness and accuracy, the SPR technique is used for all the numerical exam-
ples presented in this chapter.
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Figure 2.10: Typical load-displacement graph and convergence study for 1D problem.

2.2.5. ALGORITHM

In Box 2.1, the global algorithm solution, where the problem is solved in a staggered
fashion [15, 29], is schematically summarized. Every time step consists of three main
parts. Firstly, damage initiation is evaluated, φ is reinitialized in order to guarantee the
properties of a signed distance function and φ̄ is computed. Secondly, with a given dam-
age distribution, the displacements, and consequently strains and stresses are computed
according to a standard finite element analysis for elasto-plastic constitutive models in
conjunction with the concept of effective stress. The plastic state is only updated for
integration points in undamaged zones. Finally, the displacements, permanent strains
and φ̄ are used to compute the configurational force Ȳ and the material resistance Ȳc .
In this part, the velocities are first computed at nodes of elements that contain the front
and subsequently extended by a fast marching method. Before going to the next time
step, the time increment size is adjusted based on the stability condition if necessary.

The update of prescribed displacement for the following time step is performed ac-
cording to the same adaptive time step size:

u ← u +∆u0 ∆t

∆t 0 . (2.54)

This allows to capture sharp load drops. If Ȳ becomes very high, ∆t will become very
small, which results in a restraint on the increase in prescribed displacement during un-
stable damage growth.
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For each time step:

1. Damage distribution:

(a) Add new front φ0 for nucleation if Y ≥ Yc is met

(b) Reinitialize φ on the whole domain with fast marching method (optionally only every
n steps)

(c) Assemble and solve linear system similar to Eq. (2.28) for φ̄

2. Finite element analysis:

(a) Update of prescribed displacements (Eq. (2.54))

(b) Compute displacements, strains and stresses. Plastic state is only evaluated for inte-
gration points in undamaged zone

3. Grow fronts:

(a) Compute configurational force Ȳ and material resistance Ȳc (Eqs. (2.28) and (2.38))

(b) For nodes on fronts, compute normal velocity vn (Eq. (2.34))

(c) Extend normal velocity over the entire domain: solving ∇φ ·∇vn = 0 (Eq. (2.37)) with
fast marching method

(d) Adjust new time increment size ∆t (Eq. (2.36))

(e) Update level set field: φ←φ+ vn∆t (Eq. (2.33))

Box 2.1: Global algorithm for single time step.

2.3. RESULTS AND DISCUSSION
The numerical examples in this section are performed with κ = 1 for Ȳ (Eq. (2.28)) and
κ= 1·104 for φ̄. For nucleation, the size of a new damage nucleus is set toφ0 = 0.1lc . Fur-
thermore, the constant αn in Eq. (2.36) is set to αn = 0.5, φ̄max = lc /3 [29] and the default
displacement rate is u̇0 = ∆u0/∆t 0 = 0.005mms−1. The obtained results are quantita-
tively and qualitatively compared with those available in the literature. Unstructured
meshes of triangles generated with Gmsh [48] are used.

2.3.1. V-NOTCHED BAR
In this section, the plane strain response of a V-notched specimen in tension is investi-
gated. The aim of this example is to demonstrate the ability of the proposed model to
deal with ductile fracture by means of comparisons against experimental data by Li et al.
[49] and numerical results by Miehe et al. [50]. Boundary conditions and geometry of
the V-notched specimen are demonstrated in Fig. 2.11. The model properties are listed
in Table Table 2.1.

In this example, second order elements are used to avoid volumetric locking with
the classic Von Mises model. However, linear elements are used for the discretization of
the level set field φ and the normal velocity vn because it simplifies the fast marching
algorithms.
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14 R0.25 4

40

finer mesh

Figure 2.11: V-notched bar: boundary conditions and geometry and associated dimensions (in mm).

Names Values

Young’s modulus (E) 68.9 GPa
Poisson’s ratio (ν) 0.33
Hardening law σy (ε

p
eq) = 700(0.03+εp

eq)0.12 MPa
Ultimate stress ( ft , fc ) 600 MPa
Fracture energy (Gc ) 18 N/mm
Plastic Poisson’s ratio (νp ) 0.5

Table 2.1: Model parameters for V-notched bar (Al-6061) [49–51].

The geometry of the problem leads to a non-uniform stress state near to the notches.
A region around the notches with refined mesh is defined (see Fig. 2.11) where the effec-
tive element size h = 0.05mm. The value of h = 0.05mm was determined by carrying out
a convergence study in terms of the peak load. In this simulation, the crack growth resis-
tance parameter and critical length are, respectively, η= 25smm−1 and lc = 0.4mm. The
value of η is determined as fitting parameter. The influence of lc and η on the response
after choosing lc based on the model geometry and the mesh size is addressed later.

The evolution of the damage front is illustrated in Fig. 2.12. In Fig. 2.13, the load-
displacement graphs from Li et al. [49], Miehe et al. [50] and the TLS are drawn together.
The results verify the accuracy of the proposed model.

(a) (b) (c) (d)

Figure 2.12: Evolution of the damage front on V-notched bar at different loading stages: (a) ≈ 3.6kN, (b) ≈
3.5kN, (c) ≈ 2.0kN and (d) final failure.
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Figure 2.13: Load-displacement graphs for V-notched bar.

To investigate the influence of lc on the global response, simulations have been per-
formed with different values of lc between 0.3 mm and 0.6 mm with a fixed value of
η = 25smm−1 and a fixed mesh. Load-displacement curves from these simulations are
shown in Fig. 2.14. Unlike what was shown in [13, 15], where the global response in terms
of load-displacement curves and energy dissipations did not change considerably when
varying lc for the TLS with linear elastic materials in a quasi-static context, a delayed-
failure response for decreasing lc is observed in the presence of plasticity. This is due to
the fact that for small values of lc , the stress state around the crack tip is higher than the
stress state for larger values of lc , which in turn leads to more plastic strain.
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Figure 2.14: Influence of lc on the global response. Increasing values of lc are indicated by the arrow.

To illustrate the effect of the resistance parameter on the post-critical range after
damage initialization, the same simulation with lc = 0.4mm is repeated with values of
η = 15smm−1, η = 20smm−1, η = 25smm−1 and η = 30smm−1. The results are com-
pared in terms of load-displacement curves in Fig. 2.15. It can be observed that η influ-
ences the shape of the post-critical response. As expected, delayed failure behavior is
obtained by increasing the value of η. The value of η = 25smm−1, which gave the good
fit in Fig. 2.13, is clearly in the regime where there is significant influence of η on the re-
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sponse. This means that the actual fracture energy in the simulation is rate-dependent
and higher than the Gc from Table 2.1.
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Figure 2.15: Influence of η on peak response. Increasing values of η are indicated by the arrow.

In order to assess the performance of both mapping operators in a more realistic sim-
ulation, once again, a convergence study is carried out. In Fig. 2.16, the peak load ob-
tained with inverse distance-based interpolation and SPR technique are compared with
the result obtained by a reference model in which SPR and h = 0.015mm are used. The
same trend is observed that has been presented for the 1D model, in which both opera-
tors converge toward the same response with mesh refinement and that the results with
SPR are generally more accurate. It is also observed that the mesh with h = 0.05mm,
which was used in Fig. 2.13, is suitable since the difference in terms of peak load is neg-
ligible.
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Figure 2.16: V-notched bar: convergence study for the inverse distance-based operator in terms of peak load.

2.3.2. RAIL SHEAR TEST
This numerical example is inspired by rail shear test for mode II failure following Van der
Meer and Sluys [29]. The case consists of a sandwich with stiff faces and a weak core (see
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Fig. 2.17). The faces are loaded in opposite direction so that the core is sheared. This
setup mimics the delamination process in composites, where the stiff faces represent
the plies or fibers and the core represents the resin-rich region around the interface.

6

6

4

10
60

core

face

interphase

u̇

Figure 2.17: Rail shear test: boundary conditions and geometry and associated dimensions (in mm).

In addition, three different cross-sections are considered as depicted in Fig. 2.18.
These variations in cross-section are identical to those of the specimens that have been
tested by Rogers [26] to produce cusp-like features on Polyvinylchloride (PVC) foam ma-
terial. The curvature and width of profiles mimic respectively the influence of fibers
radius and the inter-fiber spacing in composites. In the 2D model, the geometry of the
cross-section is modeled by varying the model thickness as a function of position.
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Figure 2.18: Rail shear test: cross-section profiles (dimensions in mm).

Young’s modulus, Poisson’s ratio, and fracture energy of the core material are, respec-
tively, E = 3760MPa, ν = 0.3, and Gc = 0.9N/mm. For plasticity, a plastic Poisson’s ratio
of 0.39 is used, and the fundamental hardening curves are given in Fig. 2.19 [37, 39]. For
the face material, the properties are E = 200GPa, ν = 0.3, and Gc = 9N/mm. The typi-
cal element size h is 0.14 mm throughout the core, and the critical length lc is equal to
0.6 mm. The distance between a new damage circle and existing damage is set to be at
least 3 mm [29]. The resistance parameter is η= 1smm−1. Linear elements are used for
the discretization of all fields.
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Figure 2.19: Input hardening curves for plasticity model.

When the crack reaches the interface between face and core, sliding deformations
lead to one of the principal strains in this zone become negative, in this case the asym-
metric constitutive law (Eq. (2.22)) leads to stiffness recovery and stress transfer across
the crack, which is undesired here. In order to guarantee traction-free sliding defor-
mation in this zone, the interphase constitutive law introduced in [29] is applied (see
Figs. 2.17 and 2.18). This constitutive law makes use of a vector n normal to the interface
and accounts only for stiffness recovery on the strain component along this vector.

First, the difference in response between the proposed model and the earlier TLS
model without plasticity for this shear test setup is illustrated by means of load-displa-
cement curves in Fig. 2.20. Only the round cross-section is considered in this compari-
son. The difference between the two frameworks in the pre-peak behavior is caused by
the added plasticity, while the absence of oscillations in the post-peak behavior is related
to the new definition of velocity from Eq. (2.34).
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Figure 2.20: Load-displacement response for current and proposed TLS frameworks in the rail shear test.

The framework in [13, 15, 29] is based on a unit load analysis in each time step, which
assumes a secant unloading behavior, and has the ability of capturing snap-backs. The
oscillations that are observed in the post-peak response in Fig. 2.20 are related to nu-



2.4. CONCLUSION

2

29

merical noise in the maximum value for Ȳ that is used to compute the load scale factor
such that the scaled maximum value for the configurational force is exactly equal to the
material resistance Ȳc . This algorithm based on a unit load analysis and a load scale
factor is only applicable to mechanical problems with proportional loading and secant
unloading.

Introduction of plasticity in the mechanical problem requires that the computation
of displacements is performed at the actual load level. In this sense, the criterion that the
configurational force should not exceed the material resistance at any point should be
determined iteratively or relaxed by introducing a viscous parameter between front ve-
locity and configurational force, as proposed in this chapter, following [40]. The absence
of oscillations is a positive side-effect of this change in loading scheme.

The evolution of damage and the equivalent plastic strain distributions for the round
cross-section are shown in Fig. 2.21. It can be observed that damage initiation takes
place around the onset of perfect plasticity, first with a single damage spot near the left
edge of the soft material and soon after in a series of spaced damage nuclei. As the load
increases, all damage nuclei grow to a certain size, until enough energy is available to let
a number of inclined cracks grow from these nuclei as the load drops. It is interesting to
note that two of the damage spots do not evolve into an inclined crack, which indicates
that the numerical spacing does not completely govern the final crack pattern. The same
observation was also made in [29] for linear elastic materials. Eventually, the load drops
to zero as the inclined cracks coalesce to form a single crack. It can be observed that
much of the crack growth takes place in the steep final drop of the load-displacement
graph. The adaptive time step according to Eq. (2.36) ensures that time increments and
consequently displacement increments are very small in this phase.

Figures 2.22 and 2.23 show the load-displacement curves and final damage distribu-
tions obtained with three different cross-sections. It is observed that the change in pro-
file shape has a considerable influence on the fracture morphologies and equilibrium
curves. For the round configuration, the number of randomly spaced inclined cracks
along the specimen length, which eventually coalesced to form cusps, is larger than for
the square and flat configurations. Rogers [26] reported the same trend from experi-
mental observations on PVC foam specimens under similar shear loading conditions.
The initial stiffness of the flat specimen is higher than that of the round and square con-
figurations, because of the flexibility that is introduced by side grooving.

2.4. CONCLUSION
In this chapter, the TLS method for non-local damage modeling has been extended to
include plasticity: the elasto-plastic constitutive model for epoxy resin by Melro et al.
[37] has been combined with the TLS damage formulation, and a new loading scheme
to take into account permanent strain has been proposed.

In addition, due to plasticity that bounds stress states, a new criterion for damage
nucleation has been developed in order to relate crack initiation under different stress
states to a given failure surface. Since the change in the integration scheme for those
elements that are cut by the iso-0 and iso-lc curves, the SPR technique was found to be
accurate for transfer of history.

The influence of lc and η on the global response has been investigated and found to
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be of similar nature. For a given value of lc , the optimal value of η has been determined
through fitting. In practice, the values from which lc can be chosen is limited. An upper
bound is given by the geometry of the problem at hand, in which the width of the damage
band has to be relatively smaller than the geometrical dimensions of the problem. A
lower bound for lc relies on the computational cost, because elements have to be several
times smaller than lc .

The TLS was validated from a good agreement with experimental and numerical re-
sults for ductile fracture in a V-notched bar in tension.

The proposed model was successfully applied to the simulation of shear failure in-
cluding cusp formation. By varying the profile geometry of the core, different load-
displacement graphs and fracture morphologies were produced. Cusp development
comparable to that in composites was more pronounced in curved-profile configura-
tion, which is in agreement with experimental observations.
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Figure 2.21: Rail shear test: damage and equivalent plastic strain distributions for the round configuration.
The red bullets correspond to some time steps when the time increment size was reduced.
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Figure 2.22: Load-displacements curves for round, square and flat configurations.

(a) Round

(b) Square

(c) Flat

Figure 2.23: Rail shear test: final crack distribution for (a) round, (b) square and (c) flat configurations.



3
PARALLEL COMPUTING WITH THE

THICK LEVEL SET METHOD

3.1. INTRODUCTION
The Thick Level Set (TLS) method, first introduced by Moës et al. [13], is a damage model
that contains a non-local damage definition to prevent spurious strain localization. In
this method, the location of the damage front that separates the damaged material from
the undamaged material is tracked as the zero level set of an auxiliary field in which its
evolution is dictated by the non-local energy release rate of the material. The TLS dam-
age variable depends on the distance to the damage front as evaluated with the signed-
distance level set field and varies over a thick band of material with a predefined width
according to a user-defined damage function. Since its first advent, the TLS has been ex-
panded in order to enhance its numerical implementation for quasi-static loading con-
dition [15, 19], to deal with three-dimensional quasi-static problems [18] and dynamics
[19], to couple with cohesive zone models [1], treat fatigue crack growth [20], to improve
the control of damage initiation and representation of free sliding in shear [29], and to
couple damage with plasticity [34].

The TLS works with a staggered solution scheme in which displacements and dam-
age are separately computed. From an existing level set field, i.e., a given damage distri-
bution, an equilibrium problem is solved for the displacement field in a standard finite
element analysis. After computing the displacements, the configurational force for front
movement is evaluated with which the level set field is updated. As a result of the stag-
gered approach, the TLS provides a robust framework for handling topological events
like merging and branching. From an implementation point of view, the global solution
scheme of the TLS contains three modules, where each one encapsulates specific tasks:
update of the level set field, equilibrium solution, and damage front evolution [20, 29,
34].

Apart from minor changes to its introduction and conclusion sections, this chapter was integrally extract from
L. A. T. Mororó and F. P. van der Meer. SIAM Journal on Scientific Computing 43 (6) (2021) [52].

33
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Despite its robustness, the TLS can be a time-demanding approach, mainly because
of the equilibrium solution phase [53]. The high computational demand comes from the
fact that the TLS requires element sizes smaller than the width of the damaged band in
order to achieve a desirable accuracy, especially for the computation of non-local quan-
tities [15, 20], giving rise to a system of equations with many degrees of freedom (DOFs).
This issue can be amplified if the size of the width of the damage band is constrained to
be small relative to the geometry of the problem being investigated, for instance, inter-
laminar cusp formation in a polymer matrix of composite materials subjected to mixed
mode loading condition [54], which takes place in a very narrow area and involves multi-
ple cracks that eventually merge. Additionally, in order to guarantee numerical stability
of the level set update, the damage front advance is constrained such that it does not
move more than one element length per time step [15, 20, 29, 34]. Therefore, for simula-
tions up to final failure of specimens with long cracks, many time steps are required [29,
34].

Parallel computing may be used to mitigate the computational effort associated with
finite element simulations, where many operations (e.g., assembly of matrices and vec-
tors) can be performed simultaneously for different parts of the domain on different
cores. To take advantage of the parallel architecture of a machine for solving large sys-
tems of equations, numerical techniques for decomposing the original problem into col-
laborating sub-problems are needed. In a finite element context, Domain Decomposi-
tion (DD) methods are used to build parallel frameworks running on different cores [55,
56]. The main idea behind a DD approach is to divide the whole domain into subdo-
mains that can be solved almost independently on different cores. Since the solution on
one subdomain is not completely independent from other subdomains, some exchange
of data limited to the interface (or to a small overlapping region) between neighboring
subdomains is necessary. The first mathematical studies on DD gave rise to a family
of Schwarz algorithms based on overlapping domains (e.g., Restricted Additive Schwarz
method [57]). Later, non-overlapping methods whose interpretation is more mechani-
cally oriented were proposed, such as Finite Element Tearing and Interconnecting (FETI)
method [58] and Balanced Domain Decomposition (BDD) [59].

The main premise of this chapter is that such strategies can be advantageous to speed
up the equilibrium solution stage that constitutes the main computational bottleneck
related to the TLS method. However, when applying domain decomposition to one task
of the TLS, care is required for the remaining analysis tasks (update of the level set field
and damage front evolution).

In this chapter, we seek to describe how to apply the DD framework to obtain an effi-
cient parallel version of the TLS method. It demonstrates how to handle the TLS-specific
analysis phases that spawn multiple operations on different processors, where time-
demanding parts of the solution scheme are performed in parallel, while other parts that
require global solution strategies are kept sequential. Two slightly different TLS imple-
mentations are considered as starting point: firstly, the version by Mororó and Van der
Meer [34], for ductile fracture and secondly, the version by Van der Meer and Sluys [29],
which assumes a secant unloading behavior of material. Both of these build on original
concepts of the first paper on the TLS method by Moës et al. [13] and the improvements
on its implementation by Bernard et al. [15]. The parallel iterative solver combined with
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Schwarz-type DD strategy by Lingen et al. [60] is used.

It is worth mentioning that apart from the two TLS implementations considered
here, the proposed parallel framework can easily be extended to other TLS-based meth-
ods, such as the interfacial thick level set method by Latifi et al. [20].

The chapter is structured as follows. Section 3.2 is dedicated to presenting the main
features that comprise the TLS method. The objective of Section 3.2 is to be complete
and to provide the context for the parallel framework introduced in Section 3.3 without
providing motivation for all details of the TLS as presented elsewhere in literature. Nu-
merical examples considering linear elasticity and plasticity are presented in Section 3.4
and used to assess the performance of the proposed framework. Numerical results are
presented with focus on the scalability of the framework and accuracy of the parallel
solution. Finally, conclusions are presented in Section 3.5.

3.2. THE THICK LEVEL SET METHOD

The TLS method makes use of the level set method [16] to track the location of a damage
front Γ0 that separates the undamaged material from a degraded region (see Fig. 3.1).
The damage front is defined as coinciding with the zero level set (or the ’iso-0’) of an
auxiliary field φ(x), the level set field. The level set field φ is chosen to be the signed
distance function to Γ0 in which its gradient satisfies the eikonal equation:

∥ ∇φ ∥= 1 on Ω, (3.1)

whereΩ is the domain on whichφ is defined. This equation guarantees that the absolute
value of φ at a given point x is the shortest distance between that point and Γ0. On a
discretized finite element domain, the definition ofφ at x is determined by interpolating
the values of φ from nodes to x using finite element shape functions.

 

 

Undamaged zone

Fully degraded zone

Transition zone

Γc : φ = lc

Γ0 : φ = 0
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φ
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1
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Figure 3.1: The TLS makes use of a single level set function to describe multiple damaged zones; the damage
variable d is a function of the level set φ.

In the TLS, a damage variable is introduced which is defined as a function of φ. The
damage variable is constrained to follow a given profile in a transition zone with fixed
length between undamaged and fully degraded zones as:
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d(φ) =


0, φ≤ 0

q(φ), 0 <φ≤ lc

1, φ> lc

, (3.2)

where q(φ) is a function that has the properties of q(0) = 0, q(lc ) = 1 and q ′(φ) ≥ 0 onφ ∈
[0, lc ]. Therefore, the damage variable changes from zero to one as φ goes from zero to
the critical length lc over a band bounded by Γ0 :φ= 0 and Γc :φ= lc . In this chapter, the
arctangent profile proposed by Bernard et al. [15] is used for all numerical simulations:

q(φ) = c2 arctan

(
c1

(
φ

lc
− c3

))
+ c4 (3.3)

with c1 = 10 and c3 = 0.5 and the other coefficients given by c4 = −c2 arctan(−c1c3) and
c2 = (arctan(c1 (1− c3))−arctan(−c1c3))−1.

A summary of the staggered algorithm used in this chapter is given in Fig. 3.2. For
every time step, there are three main modules (or analysis phases) that are named level
set update, equilibrium solution and front evolution. The level set update phase consists
of the update of the level set field and its reinitialization, evaluation of damage initia-
tion given an elastic strain field εe, and computation of the size of damaged zones φ̄. In
the equilibrium solution phase, for a given damage distribution (which could consist of
zero damage throughout Ω), displacements and consequently strains and stresses are
computed in a standard finite element analysis. In the front evolution phase, φ̄ and the
elastic strain from the equilibrium solution, εe, are used to compute the non-local con-
figurational force Ȳ and the averaged material resistance to damage growth Ȳc , which in
turn are used to compute the front velocity vn along the front that is subsequently ex-
tended throughout Ω. With the velocity at hand, the resulting new level set field can be
determined and used for the next time step.

Level set update: LSModule

- updateLevelSet

- reinitializeLS

- testInitiation

- makeNucleus

- solver

Equilibrium sol.: EquilModule

- initEnrichment

- initSPRHistory

- solver

Front evol.: VelocityModule

- solver

- extendVelocity

Next time step, t+∆t

φ εe

φ̄

vn, ε
e

Figure 3.2: The global sequential staggered solution scheme for a single time step. Dashed arrows represent
the data exchange among the three modules.

The remainder of this section is dedicated to outlining the main operations for each
of the three modules. Modular pseudo-codes are provided to clarify the implementation.
Parts of these pseudo-codes are highlighted in blue to indicate modifications related to
the parallelism that will be addressed in Section 3.3. In the present section, where the
original sequential algorithm is presented, these parts can be ignored. For sake of com-
pactness, the framework for ductile fracture is firstly presented, and the other one for
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linear elastic fracture assuming secant unloading behavior is then addressed, inheriting
the structure from the former.

3.2.1. LEVEL SET UPDATE

The first task in every time step is to define the level set field for that step. In the first time
step, the level set field is initialized. In all other time steps it is updated with the nodal
normal velocities, as shown in Algorithm 3.1. The level set field at every node belonging
to N (the complete set of nodes in the mesh) is then updated as:

φ←φ+ vn∆t , (3.4)

where ∆t is the time increment size. In order to guarantee the numerical stability of the
level set update, ∆t is constrained as [34, 40]:

∆t = min

{
∆t 0, αn

h

max{vn}

}
, (3.5)

in which ∆t 0 is the default and maximum time increment size, αn is a constant defined
as 0 < αn < 1, h is the characteristic size of the smallest element1, and max{vn} is the
largest value of vn over the entire domain.

Algorithm 3.1 The updateLevelSet algorithm.

Input: the nodal normal velocities vn ; the default and maximum time increment size∆t 0; and the constantαn and parameter
h

Output: the updated level set field φ at nodes and time increment size ∆t
1: vmax ← 0 /∗ Compute the maximum velocity vmax ∗/
2: for all node i ∈N do
3: if vni > vmax then
4: vmax ← vni
5: end if
6: end for
7: Allreduce ( vmax ) /∗ Get the maximum vmax from all processes ∗/
8: ∆t ←αn

h
vmax

9: if ∆t 0 <∆t then /∗ Update the time increment size, if required ∗/
10: ∆t ←∆t 0

11: end if
12: for all node i ∈N do /∗ Update the level set field ∗/
13: φi ←φi + vni ∆t
14: end for

In theory, when the level set field is updated with vn∆t and a properly extended ve-
locity field, the updated level set field obtained by Eq. (3.4) remains a signed distance
function. However, the discrete nature of the level set update deteriorates the property of
Eq. (3.1). Thus, a reinitialization procedure is periodically performed with a fast march-
ing algorithm [16, 40] in order to keep φ as an accurate representation of the signed dis-
tance function. Since it is a relatively cheap procedure [29, 34, 40], this reinitialization is
performed every time step.

1h is defined as the length of the diagonal of the smallest possible rectangle around an individual element in
the mesh.
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Next, an initiation check is performed at every integration point in a user-defined set
of elements Enucl where nucleation is allowed, according to Algorithm 3.2. A damage nu-
cleus, i.e., a small region with positive level set values, is inserted when the local driving
force for damage growth Y that depends on the elastic strain tensor εe is greater than or
equal to the material resistance to damage initiation Y 0

c . If Y ≥ Y 0
c is met, a circle with

radius φ0 is inserted around the point xnucl with the highest ratio Y /Y 0
c . The initiation

check is only performed in those elements belonging to Enucl that are at least a distance
φspacing away from an existing damage front.

Algorithm 3.2 The testInitiation algorithm.

Input: the parameter φspacing; the elastic strain field; and a function getIPCoords to retrieve the coordinates of a integra-
tion point j for a given element i

Output: the highest value of Y/Y0
c and its corresponding location xnucl

1: for all element i ∈ Enucl do
2: if any node-φ-values of element i >−φ spacing then
3: continue
4: end if
5: max ← 0 /∗ initialize the maximum value of Y/Y0

c ∗/
6: for all integration point j do
7: x j ← getIPCoords( i , j ) /∗ Get coordinates of integ. point j ∗/
8: Y j ← Eq. (3.9)

9: Y 0
c j ← Eq. (3.17)

10: r ati o ← Y j

Y 0
c j

11: if r ati o > max then /∗ Update max and xnucl, if required ∗/
12: max ← r ati o
13: xnucl ← x j
14: end if
15: end for
16: end for
17: return max and xnucl

After the nucleation check, if a new damage front is added to the problem, the value
of φ is checked at every node belonging to N and updated if the node is closer to the
new front than to the existing front, as schematically shown in Algorithm 3.3.

Algorithm 3.3 The makeNucleus algorithm.

Input: the nucleus coordinates xnucl and size of new front φ0
Output: the updated level set field φ at nodes after nucleation

1: for all node i ∈N do
2: di ←∥ xi −xnucl ∥
3: φn ←φ0 −di
4: if φn >φi then
5: φi ←φn
6: end if
7: end for

The level set update phase is finished with the computation of a measure for the size
of enclosed damaged zones. For this purpose, the averaged level set value φ̄ is computed
in each time step in a similar way to Ȳ in Eq. (3.13) by substituting level set values and un-
knowns φ̄ for Y and Ȳ , respectively, and by leaving out the weight factor d ′ in Eqs. (3.14)
and (3.16) [29]. Unlike the computation of Ȳ , in which only the variation in the normal
direction of Ȳ is eliminated by means of Lagrange multipliers, the variation of φ̄ along
the front is also eliminated by considering a high value for κ [29]. By eliminating the vari-
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ation of φ̄ in both directions, a single representative value for each individual damaged
subdomain is obtained. By adopting the structure of Eq. (3.13), the computation of φ̄
does not add much complexity to the framework since its implementation inherits the
basic structure from what is already needed for the computation of Ȳ and Ȳc .

The level set update phase is summarized in Algorithm 3.4.

Algorithm 3.4 The LSModule algorithm.

Input: the nodal normal velocity vn ; the time increment size ∆t 0; the constant h; the parameter αn ; the size of new front φ0;
the parameter φspacing and elastic strain field

Output: the insertion of a new damage front and updated level set field φ
1: updateLevelSet ( vn ,∆t 0 , αn , h )

2: Gather (φ ) /∗ Gather updated ϕ to the root process ∗/
3: reinitializeLS ( )

4: Scatter (φ ) /∗ Scatter ϕ all over the processes ∗/
5: Y /Y 0

c , xnucl ← testInitiation (φspacing, εe )

6: Allreduce (Y /Y 0
c , xnucl ) /∗ Get the maximum Y/Y0

c and xnucl from all processes ∗/
7: if Y /Y 0

c ≥ 1 then
8: makeNucleus (xnucl , φ0 )
9: end if

10: Gather (K, L, fφ ) /∗ Gather matrices and right-hand side vector for Eq. (3.13) ∗/
11: φ̄← solver ( Eq. (3.13) )

12: Scatter ( φ̄ ) /∗ Scatter ϕ̄ over the processes ∗/

3.2.2. EQUILIBRIUM SOLUTION

Following [34], the equilibrium solution phase is executed in the framework of elasto-
plastic finite element analysis for a given damage distribution assuming small displace-
ments and additive decomposition of the total strain ε into an elastic part εe and a plastic
part εp, i.e., ε= εe +εp. Moreover, plasticity is only allowed to evolve in the undamaged
material and not in regions where φ> 0.

The equilibrium equation without body force and the relation between the total strain
ε and the displacement field u in Ω read, respectively, ∇·σ= 0 and ε= 1

2

(∇u+∇uT
)
, in

which σ is the stress tensor. The displacement field is subjected to Dirichlet boundary
conditions u = û onΩu .

Under the hypothesis of decoupling between elasticity damage and plastic harden-
ing, the specific free energyψ is written as a function of the elastic strain εe, damage vari-
able d , and equivalent plastic strain εp

eq and is split as ψ(εe,d ,εp
eq) =ψed(εe,d)+ψp(εp

eq)

into a sum of an elastic-damage contribution ψed and a contribution due to hardening
ψp.

The following elastic-damage energy density that takes into account stiffness recov-
ery under compression [15] is used in all numerical simulations:

ψed(εe,d) =µ(1−αi d)(εe
i )2 + λ

2
(1−αv d)tr(εe)2, (3.6)

where λ and µ are Lamé’s elastic constants, εe
i the principal strain values, tr(εe) the trace

of the elastic strain tensor,
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αi =
{

1, εe
i > 0

0, εe
i < 0

and αv =
{

1, tr(εe) > 0

0, tr(εe) < 0
. (3.7)

With Eq. (3.6), the constitutive relation in principal stress space and the local driving
force for damage growth can, respectively, be expressed as:

σi = ∂ψed

∂εe
i

= 2µ(1−αi d)εe
i +λ(1−αv d)tr(εe) (3.8)

and

Y = ∂ψed

∂d
=−µαi (εe

i )2 − λ

2
αv tr(εe)2. (3.9)

In regions where φ≤ 0, the basic form of the constitutive law for plasticity is

σ= De : εe = De :
(
ε−εp)

, (3.10)

where De is the elasticity tensor from Hooke’s law. The plastic strain εp, whose evolu-
tion is defined by a plastic flow rule, is computed by using an elastic predictor/return
mapping algorithm so that σ satisfies the yield criterion f (σ,εp

eq) ≤ 0 [38].
Inserting the constitutive relations in Eqs. (3.8) and (3.10) into the equilibrium equa-

tion results in a nonlinear system of equations that is iteratively solved with the Newton-
Raphson method. In order to capture sharp load drops during unstable damage growth,
the update of prescribed displacements û is performed with the adaptive time step size
from Eq. (3.5), û ← û +∆û0 ∆t

∆t 0 , with ∆û0 being the initial displacement increment [34,
40].

The region with φ > lc where d = 1 represents stress-free macro-cracks in the TLS
method. In simulations with regular finite elements, this region needs to be at least one
row of elements wide to represent this stress-free state, causing mesh dependency [29].
In order to achieve a stress-free state in elements that are only partially in φ> lc , the en-
richment strategy proposed by Bernard et al. [15] is employed, which allows for a strain
discontinuity across the iso-lc . In this strategy, extra DOFs are added to a node inside
the fully degraded region if the elements in its node support are cut twice by the iso-
lc , as shown in Fig. 3.3. From an implementation point of view, nodes are dynamically
enriched and unenriched as the damage front advances.

Figure 3.3: On the left, the nodes of element m and node n exemplify, respectively, typical cases of nodes
without and with the necessity of being enriched. In the dashed box on the right, the change in integration
scheme of the element l crossed by the iso-0 is illustrated (adapted from [15]).

The enrichment function is constructed as a continuous ramp function across the
fully degraded area where φ > lc . In practice, this scheme divides the element support
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for an enriched node into two lists of elements: positive and negative. This design will
be important when building the parallel framework in Section 3.3.

The numerical integration scheme necessary for accuracy and robustness of the TLS
changes in elements that are crossed by the iso-0 and iso-lc as the front advances from
one load increment to another, e.g., the element l illustrated in Fig. 3.3. In the case of
crack propagation in elastic-plastic materials, extra care is required with this procedure
since history variables that are stored at integration points have to be transferred from
old to new integration schemes. In this chapter, the superconvergent patch recovery
(SPR) technique [44, 45] is applied to transfer the plastic strain tensor εp and equivalent
plastic strain εp

eq, following [34].
In Algorithm 3.5, the equilibrium solution phase is summarized.

Algorithm 3.5 The EquilModule algorithm.

Input: the damage distribution d(φ) and level set field φ
Output: the nodal displacements; the new integration scheme; and transferred history variables

1: initEnrichment ( )

2: commEnrich ( ) /∗ Enrichment update for receive nodes ∗/
3: initSPRHistory ( )
4: û ← û +∆û0 ∆t

∆t0

5: u, εp, εp
eq ← solver ( )

3.2.3. FRONT EVOLUTION
The last analysis phase concerns computation of the front velocity. It begins with evalu-
ation of the averaged configurational force along the front. Due to the use of the signed
distance function, all points sharing the same curvilinear coordinate s are affected when
the front at (0, s) (see Fig. 3.1) experiences a front advance2. Thus, movement of the front
at (0, s) leads to an increase in damage and, consequently, to energy dissipation in all as-
sociated points. Therefore, the energy dissipation per unit length as the front moves a
unit distance reads:

g (s) =
∫ l

0
d ′(φ)Y (φ, s)

(
1− φ

ρ(s)

)
dφ, (3.11)

where d ′(φ) = q ′(φ) is the spatial derivative of damage with respect to φ, l is the size of
the damaged zone l ∈ (0, lc ], and ρ is the curvature of the iso-0. To evaluate g (s) in a
discretized setting, an averaged configurational force Ȳ (s) is introduced which is related
to Y (φ, s) through:∫ l

0
d ′(φ)Y (φ, s)

(
1− φ

ρ(s)

)
dφ=

∫ l

0
d ′(φ)Ȳ (s)

(
1− φ

ρ(s)

)
dφ. (3.12)

Numerically, this averaged configurational force is discretized with DOFs on the nodes
of those elements that are at least partially inside the damaged domain Ωd. Lagrange
multipliers are used to weakly enforce the constraint that Ȳ is constant in φ direction
[15]. The following system of equations is obtained [29]:

2A curvilinear coordinate system (φ, s) is introduced here for the derivation, but in the final equations as im-
plemented, the s-coordinates are not used, or even constructed.
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[
K L
L 0

]{
Ȳ
l

}
=

{
fY

0

}
, (3.13)

in which Ȳ and l are vectors with Ȳ and Lagrange multiplier DOFs, respectively. The
matrices and the right-hand side vector are defined as:

Ki j =
∫
Ωd

d ′Ni N j + κh2

lc

∂Ni

∂xk

∂N j

∂xk
dΩ, (3.14)

Li j =
∫
Ωd

lc

(
∂Ni

∂xk

∂φ

∂xk

)(
∂N j

∂xk

∂φ

∂xk

)
dΩ, and (3.15)

f Y
i =

∫
Ωd

Ni d ′Y dΩ, (3.16)

where Ni and N j are the shape functions associated with nodes i and j , κ is a stabiliza-
tion parameter, h is the same parameter used in Eq. (3.5), and Y is the local configura-
tional force which depends on the current elastic strain field through Eq. (3.9).

The material resistance to damage growth Yc is made into a function of the size of the
damaged zone in order to take into account independent input parameters for damage
initiation and propagation [29]. In this approach, Yc varies from an initial strength-based
value Y 0

c to an energy-based value Y G
c as the size of the damaged zone φ̄ increases. For

intermediate values of Yc , the following interpolation is adopted [20]:

log(Yc ) = log(Y 0
c )+ φ̄− φ̄init

φ̄max − φ̄init

(
log(Y G

c )− log(Y 0
c )

)
, (3.17)

where φ̄init and lc /3 ≤ φ̄max ≤ lc /2 are, respectively, the initial size of the damaged zone
and the size for which the damaged zone is considered a crack. The quantity Y 0

c is related
to the strength of the material, where we follow earlier work in [34]. The parameter Y G

c
related to propagation is given by Y G

c = Gc
2Alc

, with A being the area under the curve q(φ)
given in Eq. (3.3) and Gc being the fracture energy [15].

As Yc is not constant on Ωd, due to its dependence on φ̄ (cf. Eq. (3.17)) and in order
to account for the general case of multiple materials being used in the same mesh, the
resistance is also averaged over the width of the damaged band. Therefore, Ȳc is com-
puted by solving once more the system of equations in Eq. (3.13) but then with Ȳc in the
right hand side vector instead of Y .

Next, the computation of nodal normal velocity vn is carried out in two steps. Firstly,
vn is computed at the nodes belonging to N0 (the set of nodes of those elements that
contain the front) based on Ȳ and Ȳc as:

vn = 1

η

〈
Ȳ

Ȳc
−1

〉
+

, (3.18)

where η is a parameter that can be interpreted as viscous resistance against crack growth.
Brackets are used to denote the positivity condition, which reflects the irreversibility of
crack growth. Secondly, the nodal velocity is propagated throughout the domain by solv-
ing ∇φ ·∇vn = 0 with a fast marching method [16, 40].

Algorithm 3.6 summarizes the operations of this phase.
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Algorithm 3.6 The VelocityModule algorithm.

Input: the nodal values of φ̄; the elastic strain field; and parameters lc , h, κ and η
Output: the nodal velocity vn

1: Gather (K, L, fY , fYc ) /∗ Gather matrices and right-hand side vector for Eq. (3.13) ∗/
2: Ȳ , Ȳc ← solver ( Eq. (3.13) )

3: Scatter ( Ȳ , Ȳc ) /∗ Scatter Ȳ and Ȳc over the processes ∗/
4: for all node i ∈N0 do

5: vni = 1
η

〈
Ȳi

Ȳci
−1

〉
+

6: end for
7: Gather ( vn ) /∗ Gather vn at nodes of the front ∗/
8: extendVelocity ( )

9: Scatter ( vn ) /∗ Scatter vn all over the processes ∗/

3.2.4. SECANT UNLOADING SCHEME

If one wants to let the crack grow under the condition that Ȳ cannot exceed Ȳc instead
of with Eq. (3.18), that is possible with an alternative loading scheme under the assump-
tion of secant unloading [13, 15, 29]. This alternative involves solving a unit load analysis
in the equilibrium solution and determination of a load scale factor γ after the Ȳ corre-
sponding to unit loading is evaluated.

With this approach, there is no adaptive time increment procedure. The velocity is
defined such that the maximum is always equal to vlim. Hence, the first loop in Algo-
rithm 3.1 is skipped and the second loop is passed with∆t = 1s (cf. Eq. (3.4)). The nucle-
ation check should be performed with the actual load level. The ratio Y /Y 0

c is therefore
scaled by γ2 (see Eq. (3.19)) in the tenth and seventh lines of Algorithms 3.2 and 3.4, re-

spectively. For simulation without plasticity, Y 0
c is defined as Y 0

c = f 2
t

2E , where ft and E
are, respectively, the tensile strength and Young’s modulus.

Because unit load analysis only makes sense under secant unloading, this loading
scheme cannot be used in combination with plasticity in the undamaged part of the
material. Therefore, in Algorithm 3.5, the operations in lines three and four are skipped
for this loading scheme.

The pseudo-code in Algorithm 3.7 illustrates the front evolution phase with this load-
ing scheme. The strain field and, consequently, the averaged configurational forces Ȳ
are evaluated with unit load boundary conditions. The actual load level for a time step
is then determined by scaling the unit-load solution with a load scale factor γ such that
the maximum scaled value for Ȳ along the front is equal to Ȳc :

γ2 max
i∈N0

{
Ȳi

Ȳci

}
= 1. (3.19)

Finally, the front velocity vn for every node in N0 is obtained through [29]:

vn = k

〈
cγ2Ȳ

Ȳc
−1

〉
+

with k = vlim

c −1
, (3.20)

where vlim is the maximum growth the front can experience for a time step. In order
to guarantee the numerical stability of the staggered scheme, a value vlim = αnh (cf.
Eq. (3.5)) is used in this chapter, following [29]. The parameter c influences the spread
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of the front movement to nodes with lower values for the ratio Ȳ /Ȳc . For c → 1, only
the node with the highest value Ȳ /Ȳc undergoes a front advance. On the other hand, for
higher values of c, nonzero front movement is found in more nodes.

Algorithm 3.7 The VelocityModule algorithm for secant unloading scheme.

Input: the nodal values of φ̄; the elastic strain field and parameters lc , h, c, k; and vmax
Output: the nodal velocity vn

1: Gather (K, L, fY , fYc ) /∗ Gather matrices and right-hand side vector for Eq. (3.13) ∗/
2: Ȳ , Ȳc ← solver ( Eq. (3.13) )

3: Scatter ( Ȳ , Ȳc ) /∗ Scatter Ȳ and Ȳc over the processes ∗/
4: max ← 0 /∗ initialize the highest ratio Ȳ/Ȳc ∗/
5: for all node i ∈N0 do

6: r ati o ← Ȳi
Ȳci

7: if r ati o > max then
8: max ← r ati o
9: end if

10: end for
11: Allreduce (max ) /∗ Get the highest ratio Ȳ/Ȳc from all the processes ∗/
12: γ=

√
1

max /∗ Compute the load scale factor ∗/
13: for all node i ∈N0 do

14: vni = k

〈
cγ2 Ȳi

Ȳci
−1

〉
+

15: end for
16: Gather ( vn ) /∗ Gather vn at nodes of the front ∗/
17: extendVelocity ( )

18: Scatter ( vn ) /∗ Scatter vn all over the processes ∗/

3.3. PARALLEL VERSION OF THE TLS METHOD
This section deals with the modifications to the sequential algorithm presented above
that are needed to parallelize it. This parallelization consists of concurrent tasks or pro-
cesses, being executed on distinct processors, in which each task encapsulates a copy of
the sequential framework. Tasks are not completely independent; as a result, they need
to interact by exchanging data (i.e., sending and receiving data) or messages. For the
communication between processors, the Message Passing Interface (MPI) [61] commu-
nication protocol is used.

3.3.1. DOMAIN DECOMPOSITION
The DD strategy described by Lingen et al. [60] is used in this thesis. In this strategy, the
problem is divided in sub-problems that are solved almost independently. Therefore, the
original finite element mesh is first partitioned into non-overlapping groups of elements,
each one corresponding to one subdomain as exemplified in Fig. 3.4. A task is defined for
each subdomain. Both tasks and subdomains are identified by an integer number called
rank that ranges from 1 to np . The np subdomains are then optionally extended with
overlap regions by assigning extra nodes (and consequently elements) from neighboring
subdomains.

The original nodes and elements on one subdomain are called internal nodes and
elements, whereas the additional ones are called overlapping nodes and elements (see
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Figure 3.4: An original finite element mesh decomposed into two subdomains. The dashed box on the right
indicates the mesh overlapping option.

Fig. 3.4). Observe that some nodes and elements on the overlapping region are also in-
ternal quantities; they are referred to as send nodes and elements. The counterparts of
send nodes and elements are named receive nodes and elements. Although overlapping
regions are not necessary in the DD strategy [62], it has been shown that this overlap can
improve the convergence rate of parallel iterative algorithms [57].

Nodes and elements are indexed locally. However, the exchange of messages among
subdomains is based on unique global indices (IDs), which are assigned during the par-
titioning of the original mesh [62, 63].

3.3.2. ALLREDUCE, GATHER AND SCATTER ROUTINES
Modifications to achieve a desirable parallelism for the level set update and front evolu-
tion analysis phases require communication among tasks. Unlike the equilibrium solu-
tion phase, where the majority of communications are point-to-point (i.e., send and re-
ceive communication routines) between neighboring subdomains, collective communi-
cation routines in the sense that they involve participation of all subdomains or a group
of them are proposed for the level set update and front evolution analysis phases. The
main idea behind setting up these communication routines is to be minimally intrusive
to the operations in Algorithms 3.4, 3.6 and 3.7.

Three general collective routines are used: Allreduce, Gather and Scatter3.
Allreduce is an all-to-all collective routine that is used to compute the maximum
value of a quantity from all processes and distributes the result back, as schematically
illustrated in Fig. 3.5. Gather and Scatter are, respectively, designed to collect and
spread messages involving a single receiving or originating process, named the root.
Gather is an all-to-one (or a ’some-to-one’) collective function in which each process
(root process included) sends the contents of their send buffer; the root process receives
the messages and stores them in rank order. Scatter , on the other hand, is a one-to-
all (or a ’one-to-some’) collective routine used by the root to send a message, possibly
with different sizes, to all processes or a group of them.

Note that Gather and Scatter are well suited for having operations executed by
the root that are mostly sequential in nature and/or have the necessity of using global so-

3They have similar functionality as MPI_Allreduce, MPI_Gather and MPI_Scatter functions found in
MPI. However, Allreduce, Gather and Scattermight operate on non-default MPI data type. Moreover,
Gather and Scatter might involve only a small group of processes.
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Figure 3.5: The collective routine Allreduce is used to compute the global maximum value of a quantity
from all the local values {1,8,2,0} allocated on different tasks and distribute the result back to all the tasks.
Arrows and colored blocks indicate, respectively, the data flow and content.

lution strategies. Depending on the nature of the operation executed by the root, all pro-
cesses or a subset of process participate in the Gather and Scatter routines, as illus-
trated in Fig. 3.6. In all algorithms, operations that are positioned in between a Gather-
Scatter pair are only executed by the root, and the inputs and outputs necessary for
this operation are exchanged between the root and other processes by the Gather and
Scatter routines.
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Figure 3.6: The root executes functions operation1 and operation2 along with a Gather -Scatter
execution block. Rank 1 is considered as the root process. In this illustration, all processes contribute to both
communications for operation1, whereas rank 3 is the only process that does not participate in the com-
munication routines for operation2. Arrows and colored blocks indicate, respectively, the data flow and
content.

The two fast marching algorithms used for the reinitialization of the level set field φ
(i.e., the reinitializeLS function in Algorithm 3.4) and for the extension of front
velocity vn (i.e., the extendVelocity functions in Algorithms 3.6 and 3.7) are per-
formed in combination with the Gather and Scatter routines, mainly because they
use a global sorting of the nodes based on their level set values for determining the order
in which the φ and vn are updated [40].

Furthermore, Gather and Scatter routines are used for the solution of Eq. (3.13)
for the averaged quantities Ȳ , Ȳc and φ̄ (i.e., the solver functions in Algorithms 3.4, 3.6
and 3.7). When solving Eq. (3.13) concurrently, the imposed constraints (i.e., Ȳ , Ȳc and



3.3. PARALLEL VERSION OF THE TLS METHOD

3

47

φ̄ are constant in φ direction, and φ̄ also in s direction) for these averaged quantities will
not be satisfied in a global sense. Note that these quantities are only computed on the
damaged domain Ωd. In many cases, not all subdomains will contain damage, which is
why some-to-one and one-to-some versions of the Gather and Scatter routines are
relevant.

For the execution of these general Gather and Scatter communication routines,
a data structure management, slightly different from what is already used for the parallel
iterative solver, is adopted in which the root has information on the original mesh and
each subdomain keeps an operator R to extract elements from a root vector as ai = Ri a,
where ai is a vector containing the elements from a root vector a associated with the
i -th subdomain. The root also keeps a collection of operators Qi associated with each
subdomain for assembly of root vectors as a = ∑np

i=1 QT
i ai . Note that np not necessarily

includes all processes. The operators R and Q are non-square boolean matrices, and
have similar structures as the right and left restriction operators defined in the parallel
iterative solver proposed in [60].

3.3.3. LEVEL SET UPDATE

The additional modifications related to the level set update phase are addressed follow-
ing the order of the operations shown in Algorithm 3.4. Firstly, updateLevelSet (see
Algorithm 3.1) is executed. Evaluation of the time increment size with Eq. (3.5) needs the
largest value of velocity vn over the whole mesh. After executing the first loop in parallel,
the function Allreduce is therefore called, as shown in Algorithm 3.1. Allreduce
computes the maximum value of max{vn} from all tasks and distributes the result back
to all of them. For those subdomains without damage front, their contributions to this
operation are null.

Next, the fast marching algorithm for reinitialization of φ is executed by the root
only. The reinitializeLS function is therefore sandwiched between a Gather-
Scatter pair where the root first receives the φ updated by updateLevelSet from
each process and sends back the reinitialized values. All processes are involved, similar
to operation1 in Fig. 3.6.

After the reinitialization, testInitiation is called in order to concurrently per-
form the nucleation check, using Allreduce to compute the global maximum ratio
Y /Y 0

c . For this particular operation,Allreduce is designed such that it also returns the
corresponding coordinates xnucl related to the maximum value because makeNucleus
needs xnucl in all processes to update φ concurrently.

Finally, the averaged quantity φ̄ is computed by the root. Again, the functionsolver
is positioned in between the Gather-Scatter pair. The matrices and right-hand side
vector necessary for solving Eq. (3.13) for φ̄ are concurrently partially assembled but only
by processes belonging to Pd (the set of processes that possess any damage front). The
root process gathers these partial quantities from the processes in Pd by means of a
Gather routine in order to assemble the global system of equations. Once the solution
for φ̄ is obtained, the root sends it back to the same set of processes through a Scatter
routine.

Unlike the Gather routine used in the reinitialization operation in which a one-way
communication is performed, i.e., the data flows from senders to the root with noth-
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ing going back in return, the Gather routine considered in the assembly procedure of
Eq. (3.13) encompasses three stages of data communication. First, the root queries pro-
cesses that have a damage front (i.e., processes that form the set Pd) for global IDs of the
nodes belonging to the set of elements completely or partially inside the damaged do-
mainΩd. Once the root receives these nodal IDs, the root numbers DOFs at these nodes
and sends them back along with the size of the final system of equations to the processes
belonging to Pd in rank order. Then, each process makes use of this information to as-
semble its own matrix and right-hand side vector and sends them back to the root. The
root then assembles the final system of equations by summing these contributions, as
depicted in Fig. 3.7.

Figure 3.7: Assembly of the global matrix, belonging to Pd, used by the root to solve the final system of equa-
tions. All the small matrices, each belonging to a single process, have the same indexing as the global n ×n
matrix.

For sake of consistency and efficiency in terms of message communication, two
points of extra attention exist in the aforementioned assembly procedure. First, to avoid
duplicated contributions from the elements in the overlapping region (see Fig. 3.8), re-
ceive elements are excluded from the assembly procedure. Second, due to the sparse
structure of the system of equations, there may be many zero entries which can unneces-
sarily overload theseGather andScatter calls. To make matters worse, the expanded
system of equations assembled on a single subdomain may have just a few non-zero el-
ements. Therefore, a sparse data storage structure is necessary. For this purpose, a Com-
pressed Row Storage (CRS) format is adopted [64, 65], which stores 2nnz+n+1 elements
instead of n2 for an n ×n matrix with nnz nonzero entries. Note that each quantity as-
sembled concurrently by a single process belonging to Pd uses the same global indexing
from the root. This design allows for efficient summation of the global sparse matrix in
the root process from a number of sparse matrices from the other processes.

3.3.4. EQUILIBRIUM SOLUTION
For solving the linear system of equations from the equilibrium problem, the parallel it-
erative Generalized Minimum Residual (GMRES) solver proposed by Lingen et al. [60]
is used. This solver is equipped with a two-level preconditioner that consists of a re-
stricted additive Schwarz preconditioner that acts on the level of subdomains and an
algebraic coarse grid preconditioner that operates on the global level. The restricted
additive Schwarz preconditioner is based on an incomplete Cholesky decomposition,
while the coarse grid preconditioner is constructed in terms of the rigid body modes of
the subdomains.
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The interaction communication associated to this solver is mostly one-to-one, i.e.,
involving only the shared region between adjacent subdomains, except when global re-
duction operations such as a global sum necessary for computing a scalar product. The
messages involved in this interaction consist of a vector with a given length and a data
type (e.g., integer or double). The length of this vector which is usually proportional to
the number of DOFs attached to the nodes (i.e., send and receive nodes) on the shared
regions.

PARALLEL ENRICHMENT SCHEME

It is important to recall that as the iso-lc evolves, DOFs are added to and/or removed
from the problem, which changes the dimensions of stiffness matrix and force vectors.
If one overlapping node is enriched or unenriched on a subdomain, its counterparts, i.e.,
the nodes with the same global ID on different subdomains, also have to be enriched or
unenriched accordingly. This is necessary since the messages exchanged by the routines
of the solver along the boundaries of neighboring subdomains need to be equal in size.

Hence, after performing its own enrichment procedure, each process has to exchange
data with its neighbors about the enrichment status of its own overlapping nodes. Note
that this communication is only necessary when a crack is propagating across subdo-
main boundaries. In this communication, the message is a vector with entries of a spe-
cial data type, which encodes three types of information (or a triplet): the global ID of
an overlapping node, its enrichment flag (whether or not it is enriched), and element
support (positive and negative lists of global element IDs).

The send nodes control this process because they are interior nodes and, hence, al-
ways have sufficient information to decide whether the node should be enriched and
because every node in the overlapping region is always send node in no more and no
less than one subdomain. Thus, when DOFs attached to one send node are updated,
receive nodes on the neighboring subdomains will follow, as shown in Fig. 3.8. Note that
this is only possible as long as the continuity of φ is guaranteed across the boundaries
of subdomains, which ensures that all subdomains involved in this communication pro-
cess share the same geometric location of the iso-lc on their overlapping regions. Con-
sequently, these subdomains are able to determine the exact length of the message for
both send and receive packets of data.

Figure 3.8: The node n is shared by two subdomains and can automatically be identified when the iso-lc
crosses both subdomains. Dashed lines represent the part of the iso-lc that belongs to the neighboring subdo-
main.
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The parallel enrichment scheme involves two stages. Firstly, each process p exe-
cutes the function initEnrichment (see Algorithms 3.5 and 3.8) for all its nodes with
level set value φ > lc , except for those that are receive nodes. During the execution of
initEnrichment, the send and receive nodes are collected and their triplets (i.e.,
global ID, enrichment flag, and element support) are stored in two special data struc-
tures sendBuffer and recvBuffer, respectively. Both sendBuffer and recvBuffer store the
exact amount of data for each neighbor of process p. At this point, the triplet of each
node that is stored in recvBuffer only contains the global node IDs, whereas the triplet
of each node that is stored in sendBuffer may be complete. If a send node is unenriched,
the element support associated to this node is not stored and, hence, the enrichment
flag in the triplet related to this node becomes false.

Secondly, exchange of information between processes is handled. The procedure for
sending and receiving sendBuffer and recvBuffer on one process p is executed only if
send and/or receive nodes have been collected. First, once data is stored in recvBuffer,
process p loops over all its neighbors i calling the function InitReceive4, which ini-
tiates a nonblocking receive communication [61]. This function returns a handle (or
request recvreq) that can be used at a later time to check whether the message has been
received. Note that if p does not have messages to be received from one specific neigh-
bor i , the size of recvBuffer (i.e., recvBuffer[i] .size( ) ≤ 0) is checked and the call of
InitReceive is then skipped. BecauseInitReceive does not block the calling pro-
cess, messages can be called in any order without risking ’deadlock’ issues. Next, as long
as sendBuffer contains any data, the send procedure is executed in a similar way to the
receive one. After these two receive and send loops, the functions WaitAll are called
in order to complete the multiple receive and send requests. Finally, once p has received
messages from all its neighbors, it updates the enrichment status for receive nodes by
means of the function setLEnrich.

Note that InitReceive is called as early as possible to increase the chance that
a matching call InitSend by another process can be completed immediately. This
strategy helps to lower communication overhead because each message that cannot be
moved directly to a receiver buffer must be temporarily stored in a pending queue [61].
This communication pattern is similar to what was proposed in [62] to deal with en-
riched nodes in an extended finite element context for hydraulic fracturing in elastic
materials.

MAPPING OPERATORS

Regarding the SPR technique for transferring history, it is chosen to let each subdomain
deal with its own execution of routine initSPRHistory, even though this means that
incomplete patches are used for nodes at boundaries of subdomains. In order to be
more consistent, an extra communication strategy would be necessary for those patches
to be completely assembled. However, this will not have significant effect on the global
response.

4InitReceive and InitSend make use of nonblocking functions from MPI, such as MPI_Irecv and
MPI_Isend, as well as MPI_Waitall (which is represented here as WaitAll ) for the completion of com-
munication. A special MPI data type is also designed in order to deal with recvBuffer and sendBuffer data
structures.
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Algorithm 3.8 The commEnrich algorithm for communication of enrichment.

Input: the enrichment status of send nodes
Output: the enrichment update of receive nodes

1: if processor p has collected receive nodes then /∗ Receive data ∗/
2: for all neighbor i of process p do
3: if recvBuffer[i] .size( ) ≤ 0 then
4: continue /∗ Skip neighbors without message to be sent ∗/
5: end if
6: InitReceive (recvBuffer[i], recvreq[i], i )
7: end for
8: end if
9: if processor p has collected send nodes then /∗ Send data ∗/

10: for all neighbor i of process p do
11: if sendBuffer[i] .size( ) ≤ 0 then
12: continue /∗ Skip neighbors without message to be received ∗/
13: end if
14: InitSend (sendBuffer[i], sendreq[i], i )
15: end for
16: end if
17: if process p has collected receive nodes then /∗ End receive procedure ∗/
18: WaitAll (recvreq )
19: setLEnrich(recvBuffer ) /∗ Update enrichment for receive nodes ∗/
20: end if
21: if process p has collected send nodes then /∗ End send procedure ∗/
22: WaitAll (sendreq )
23: end if

Another option would be the inverse distance weighted interpolation scheme, in
which all the transferring of history takes place locally on the element level without it-
eration with its vicinity. However, it was shown in [34] that the SPR technique is more
suitable, especially for coarse meshes.

3.3.5. FRONT EVOLUTION

The modifications of the front evolution analysis phase follow those introduced for the
parallel version of level set update phase. Two Gather-Scatter execution blocks are
introduced, as shown in Algorithm 3.6. For solution of Eq. (3.13) for the averaged forces
Ȳ and Ȳc, the same strategy is adopted as already discussed for φ̄. For the fast marching
algorithm, extendVelocity, the strategy is the same as for the reinitialization of the
level set field.

3.3.6. SECANT UNLOADING SCHEME

The main difference between the two loading schemes considered in this chapter is
found in the front evolution phase, as outlined in Section 3.2.4. To parallelize the scheme
with secant unloading (see Algorithm 3.7), one additionalAllreduce call is introduced
in order to compute the maximum value of the load scale factor, which is needed for the
nucleation check by all subdomains, as shown in Algorithm 3.4.

3.4. RESULTS AND DISCUSSION
The performance of the parallel versions of the TLS model is investigated with numeri-
cal examples in this section. The models have been developed within the parallel open
source Jem/Jive toolkit [65], which provides graph-based partitioning algorithms for de-
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composition of the original mesh [62] and the parallel GMRES solver [63]. The simula-
tions have been run on the Numerical Mechanics Cluster HPC27 which is a regular High
Performance Computing master-slave system at Delft University of Technology. Each
node is equipped with two Intel Xeon E5-2630 version 4 processors, having 10 cores each,
and 128 GB memory.

For all numerical examples, unstructured meshes of linear triangles generated with
Gmsh [48] are considered. For nucleation, the size of a new damage nucleus φ0 is about
the effective element size h. Regarding the stabilization parameter, two values of κ are
used: κ= 1 for Ȳ (Eq. (3.13)) and κ= 1·104 for φ̄. All presented results are obtained under
plane strain assumptions.

3.4.1. DOUBLY-NOTCHED SQUARE PLATE (DNSP)
As a first example, the response of a doubly-notched square plate (DNSP) [13] is sim-
ulated. The material is modeled as elastic, allowing the use of the secant unloading
scheme. To investigate the scalability of the parallel approach, the same analysis is per-
formed with different numbers of subdomains, each time using as many cores as there
are subdomains. For each number of subdomains, the problem is run three times and
the average runtime is computed.

Boundary conditions and geometry of the specimen are shown in Fig. 3.9. Poisson’s
ratio, Young’s modulus, fracture energy, and tensile strength are, respectively, ν= 0.3, E =
7000MPa, Gc = 40N/mm, and ft = 79MPa. The critical length lc is equal to 0.8 mm. This
example is performed with c = 2,αn = 0.5, φ̄init = 0, and φ̄max = lc /3. A region around the
notches with refined mesh is defined where the effective element size h = 0.1mm. Away
from this region, the element size is 0.5 mm, leading to a mesh of 151370 elements and
76136 nodes, i.e., 152272 DOFs. The nucleation check is only performed on elements in
the fine mesh region.
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Figure 3.9: DNSP: boundary condition and geometry (dimensions in mm).

Before the number of subdomains is varied, the influence of using an overlapping
region on the runtime is investigate. The analysis with 20 subdomains is performed with
overlap region ranging from zero to six elements wide. Table 3.1 shows the total runtime
for different layers of elements in the overlapping region. It is found that an overlapping
region with one layer of elements is optimal for this example.

The load-displacement curve for a reference solution, obtained without parallelism,
is compared with the result of using 20 subdomains in Fig. 3.10. Even in the oscillatory
post-peak part, the results with 20 cores are exactly the same as those from a single core.
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Table 3.1: Total runtime for different sizes of the overlap region.

Overlap layers Time [s]

0 595.21
1 526.68
2 555.31
4 584.70
6 628.79

By using 20 cores, the parallel framework accelerates the sequential approach by a factor
of 13.4 without loss of accuracy. Fig. 3.10 shows for the case of six subdomains that the
continuity of the level set field is ensured even when the crack crosses the subdomain
boundaries.
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Figure 3.10: DNSP: load-displacement curve (right), and final crack distribution in the mesh partitioned into
six subdomains (left).

Fig. 3.11 shows the total runtime as well as the total time spent for each analysis
phase (level set update, equilibrium solution, and front evolution) as a function of num-
ber of subdomains. As expected, the equilibrium solution phase is the most time con-
suming. The total time spent on this phase scales very well as the number of subdomains
increases with close to the optimum of linear scaling.
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Figure 3.11: DNSP: wall clock time (left) and speed-up (right) graphs.

Unlike the equilibrium solution phase, the level set update and front evolution phases
are barely accelerated since their main operations rely on collective communication pat-
terns, yielding a low level of parallelism. Going from one to four subdomains, a speed-up
of about a factor of two is obtained, but further increasing the number of subdomains
does not lead to significant changes in total time needed for these phases. However, the
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total time needed for these phases without parallelism is much less than for the equilib-
rium solution phase. Therefore, the overall scaling is still very favorable. Nevertheless,
the fact that part of the framework is not scaling optimally means that the scaling in total
runtime deviates increasingly from optimal linear scaling.

One possible option to achieve better scaling for the level-set-related operations in
the level set update and front evolution phases would be to use the weak form, and
its discretization, to solve the reinitialization and velocity extension problems following
Adams et al. [66] and Dekker et al. [67]. In this approach, we have systems of equations
for both problems which can also be solved by the parallel iterative solver. Matrices and
right-hand side vectors have assembly procedure similar to standard finite elements.
Thus, we could have a better parallelism level, i.e., a more one-to-one communication
strategy, instead of a global-like solution strategy, which involves global reduction com-
munication patterns as presented.

3.4.2. SINGLE-NOTCHED SHEAR TEST (SNST)
In the second example, the response of a single-edge notched plate considering plas-
ticity is simulated. Once again, the scalability and accuracy of the parallel framework
are assessed by means of load-displacement and speed-up curves considering different
numbers of subdomains and cores for the same analysis.

Fig. 3.12 shows the boundary conditions and geometry of the example. A horizontal
displacement is applied to the top half of the left edge. The material is modeled with the
pressure-dependent plasticity model for polymers by Melro et al. [37] as revised by Van
der Meer [39]. This plasticity model makes use of a paraboloidal yield surface that takes
into account different compressive and tensile yield stresses. Young’s modulus, Poisson’s
ratio, and fracture energy are, respectively, E = 3760MPa, ν= 0.3, and Gc = 0.9N/mm [37,
39]. The other properties of the material, such as hardening curves, plastic Poisson ratio,
and the ultimate yield stress values for the nucleation check, are the same as in [39]. The
critical length lc is equal to 2 mm. This example is performed withαn = 0.5, φ̄init = 0, and
φ̄max = lc /3. The whole geometry is meshed with h = 0.4mm, leading to 157600 elements
and 79419 nodes or 158838 DOFs. The nucleation check is only performed on a region
near the notch tip. The viscous parameter against grack growth and displacement rate
are, respectively, η= 5smm−1 and u̇ =∆u0/∆t 0 = 0.05mms−1.
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Figure 3.12: SNST: boundary condition and geometry (dimensions in mm).

Fig. 3.13 depicts the comparison between the reference solution obtained with the
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sequential framework and the result of using 20 subdomains. Again, there is no loss
of accuracy in the sense that both responses are in excellent agreement. The level set
continuity across the subdomain boundaries is also preserved, as illustrated in Fig. 3.13
for the case of 20 subdomains. With 20 subdomains, the parallel framework accelerates
the sequential approach by a factor of 13.2, as shown in Fig. 3.14.
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Figure 3.13: SNST: load-displacement curve (right) and final crack distribution in the mesh partitioned into its
20 subdomains (left). Shading indicates the subdivision into its 20 subdomains.

The total runtime, as well as the total time spent for each analysis phase, and their
corresponding speed-ups are given in Fig. 3.14. The same trends presented for the pre-
vious example with secant unloading scheme are also observed for this example with
plasticity. The equilibrium solution phase is the most time consuming and presents the
best scalability among the three analysis phases, although the scalability of the equilib-
rium solution phase is not as good as in the previous example. The level set update and
front evolution phases, again, do not scale as well as the equilibrium solution phase, but
for this example they have an even smaller contribution to the total runtime.
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Figure 3.14: SNST: wall clock time (left) and speed-up (right) graphs.

Fig. 3.15 shows the percentage of the equilibrium solution phase to the total runtime
for two cases discussed so far. Despite having slightly different mesh sizes, it is notewor-
thy that the equilibrium solution phase is even more dominant for the plasticity case,
reinforcing the importance of a good parallel strategy for that particular phase. How-
ever, when comparing speed-up of the equilibrium solution phase to that from simula-
tion without plasticity (Fig. 3.14 versus Fig. 3.11), it can be observed that the additional
nonlinearity reduces the scalability of the parallel iterative solver. As a result, overall
speed-ups are similar for the two cases.
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Figure 3.15: Percentage of the equilibrium solution phase to the total runtime for the first two examples.

3.4.3. THREE-POINT BEND END-NOTCHED FLEXURE (3ENF) TEST CASE
The final example is chosen as a case where computation time without parallel approach
would become prohibitively long. The case is inspired by experimental observations of
cusp crack patterns taking place in resin-rich regions of composite materials in mode II
loading conditions [54, 68]. This process begins with an array of inclined cracks perpen-
dicular to the maximum principal stress, which eventually merge to form a single crack
on a higher level of observation. Therefore, this example requires the proposed parallel
framework to deal with several damage nuclei arising on various subdomains that grow
and join up in merging and branching events. Moreover, in realistic simulation of this
process, nucleation and growth of the crack should take place in a medium with hard-
ening plasticity. The three-point bend end-notched flexure (3ENF) setup is adopted (see
Fig. 3.16). Because the cusp formation takes place in a narrow area close to the notch tip,
a very fine discretization is needed near in this area, which gives rise to a large system
of equations that would be prohibitive to be solved with a direct solver or with a single
computer core.
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Figure 3.16: 3ENF: boundary condition and geometry (dimensions in mm).

The geometry consists of two stiff arms and one weak core as schematically illus-
trated in Fig. 3.16. The round cross-section is inspired by rail shear test in [26]. Note that
the top arm is also supported in y direction in order to avoid interpenetration without
having to model contact between the arms. The two faces are considered as linear elastic
materials whose properties are E = 200GPa, ν = 0.33, Gc = 9N/mm, and ft = 960MPa.
The core is modeled with the same plasticity model and material properties mentioned
in the second example.

When the crack reaches the interface between core and faces, the crack cannot grow
in pure mode I and the constitutive law in Eq. (3.6) leads to stress transfer across the
crack. As a result, an artificial hardening is found, as reported by Van der Meer and Sluys
[29]. In order to circumvent this undesirable behavior, the interphase constitutive law
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introduced in [29] is adopted in a band next to the material interface as indicated in
Fig. 3.16. This constitutive law only takes into account stiffness recovery on the strain
component normal to the plane that defines the interface, which, in this case, is the
strain component in y direction.

The region where the nucleation check is performed is indicated in Fig. 3.16. The
smallest element size h is 0.1 mm for the nucleation check region. For the other re-
gion of the core and faces, the mesh has element size of 0.15 mm and 0.45 mm, respec-
tively. The mesh therefore has 229919 elements, 115527 nodes, and, initially, 231054
DOFs. The critical length lc is equal to 0.6 mm. The distance between a new dam-
age nucleus and existing damage front is set to be φspacing = 4mm. The viscous pa-
rameter against crack growth and displacement rate are, respectively, η = 5smm−1 and
u̇ =∆u0/∆t 0 = 0.01mms−1. This simulation is performed with αn = 0.2, φ̄init = 0.1, and
φ̄max = 0.36.

Fig. 3.17 shows the load-displacement curves for different number of subdomains.
The original mesh is divided into 20, 30, and 40 subdomains. The whole analysis takes
74.35 h by using 40 subdomains, whereas the models subdivided into 30 and 20 take
86.54 h and 118.94 h, respectively. Observe that all solutions are in excellent agreement.
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Figure 3.17: 3ENF: load-displacement curve.

Fig. 3.18 presents the damage distribution for the model subdivided into 30 subdo-
mains. Observe that damage initiation takes place in different subdomains and some
initial fronts evolve crossing multiple subdomains where the compatibility of φ is guar-
anteed on shared regions.

3.5. CONCLUSIONS
In this chapter, a parallel framework is proposed for the Thick Level Set method. Two TLS
models have been adopted: one considering secant unloading loading scheme [29] and
the other one for ductile fracture [34]. The parallel iterative solver by Lingen et al. [60]
equipped with a DD scheme is used for the equilibrium solution stage. Profiting from
the adopted DD scheme, collective communication strategies have been introduced in
order to deal with the level set information and the computation of averaged quanti-
ties. Moreover, a special data type and communication pattern have been developed to
handle enriched nodes belonging to shared regions in the mesh.

In three examples, a successful parallel implementation has been shown. The quality
of the results is not influenced by the number of subdomains. The results show that it is
possible to apply the parallel framework to different variations of the TLS to benefit from
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Figure 3.18: 3ENF: final crack distribution, load-displacement graph, and crack evolution (close-up) located
ahead of the notch tip considering the mesh partitioned into 30 subdomains. The colored set of elements
represents the 30 subdomains.

parallel computing power.
Near-ideal speed-ups are obtained for the equilibrium solution phase, which is the

most time demanding part of the TLS in terms of computational cost. For the level
set update and front evolution phases, speed-ups remained limited. However, because
these phases are less demanding, they did not become real bottleneck for the investigate
number of cores. Adding plasticity makes the equilibrium solution phase more domi-
nant, but the added nonlinearity also reduces the speed-up of that particular phase such
that overall speed-ups with and without plasticity are comparable. Altogether, substan-
tial speed-ups have been achieved using a moderate amount of cores which decreased
the total computational time significantly. This is a necessary improvement in order to
use the TLS models for fracture analysis in large-scale problems, as exemplified with the
simulation of shear cusps at the notch tip in mode II loading conditions.
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4.1. INTRODUCTION
The Thick Level Set (TLS) method, first introduced by Moës et al. [13], is a non-local
damage model that couples damage and fracture mechanics within a single regular-
ized framework. In this method, the damage variable that describes continuum stiff-
ness degradation is made into a function of a level set field. The level set method with a
signed distance function is used to construct the level set field in which its the zero level
set is used to keep track of the damage front. The level set method gives the TLS method
the natural ability of representing complex crack events, such as branching and merging
[16, 17]. In the TLS, the damage variable gradually varies over a thick band of the ma-
terial located behind the damage front until fully degraded regions arise. The presence
of a characteristic length represented by the width of this damaging band gives the TLS
a non-local nature that prevents spurious localization in the strain field. The update of
damage is related to the averaged configurational force, which is obtained by integrating
the local values of energy release rate over this characteristic length.

In the original method (the TLSV1), stress-free macro-cracks are determined by zones
where the level set value is greater than the critical length, and damage is equal to one.
In a domain discretized with regular finite elements, these zones need to be at least one
row of elements wide to represent this stress-free state; as a result, mesh dependency
might be present [29]. In order to circumvent this issue, Bernard et al. [15] proposed an

Apart from minor changes to its introduction and conclusion sections, this chapter was integrally extract from
L. A. T. Mororó, A. Poot, and F. P. van der Meer. Engineering Fracture Mechanics 268 (2022) [69].
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enrichment strategy for those elements that are cut by the iso-critical curve of the level
set field, which allows for a discontinuity in the strain field across such iso-critical curve.

One application where the robustness of the TLSV1 has been a significant advantage
is the simulation of cusp formation in resin-rich regions of composite materials loaded
in mode II loading conditions [29, 34, 52]. For this particular problem, Van der Meer and
Sluys [29] showed the necessity of using an asymmetric constitutive law with different
behavior under tension and compression in order to avoid unrealistic ’X-shaped’ crack
configuration in the material loaded in shear. On the other hand, they also found that
this constitutive model leads to unrealistic stiffness recovery and stress transfer across
the crack along material interfaces. In order to allow for traction-free sliding deforma-
tion, Van der Meer and Sluys [29] proposed a special interphase constitutive law that
prevents stiffness recovery on the direction of the material interface.

The TLS has been compared with alternative approaches, such as the phase-field
method [24]. It is important to emphasize that the same issues found in the shear test
case by Van der Meer and Sluys [29] with symmetric and asymmetric constitutive models
may be present in simulations with phase-field models equipped with the same consti-
tutive models.

More recently, a new version of the TLS, referred to as TLSV2 hereafter, has been pro-
posed by Lé et al. [1]. The main objective of this method is to couple both continuum
damage modeling and cohesive zone modeling within a single framework and, conse-
quently, profit from the advantages of both: the directionality for crack propagation as
well as crack branching and merging ability of the former, and the capacity to model
discrete cracks of the latter. Building on the basic premise of the TLS, both damage vari-
ables are described by the same level set field. An advantage that has been highlighted
by Lé et al. [1] with respect to the TLSV1 is the possibility to introduce complex interfa-
cial behavior at the crack faces, such as frictional contact. To this we would like to add
the possibility to describe free sliding deformation without need to include information
of the orientation of a nearby material interface in the constitutive relation.

The TLSV2 method evaluates the cohesive forces and displacement jump on the so-
called skeleton curve, in which its representation is dictated by the level set field. It is
important to emphasize that Lé et al. [1] only investigated test cases with trivial skele-
ton curves at a priori known locations. A general implementation of the TLSV2 requires
the extraction of the skeleton curve from an arbitrary level set field with corresponding
damage front.

The objective of this chapter is to introduce a more general framework for the TLSV2
method. The main requirements that are addressed are the extraction of free-form skele-
ton curves and the construction of a discontinuity in the displacement field at the po-
sition of that skeleton as the analysis progresses. The concepts of the original paper on
TLSV2 by Lé et al. [1] are taken as starting point. To determine the location of skeleton
curve, an algorithm based on a combination of ball-shrinking [70, 71] and graph-based
algorithms is designed. The resulting skeleton curve is mapped onto the finite element
mesh in order to define the cohesive segments, by determining intersection points be-
tween the skeleton curve and finite element edges. Subsequently, the cohesive segments
are used to define overlapping elements that are used in a phantom node approach [4,
72] in order to evaluate the cohesive contribution of the TLSV2. An ad hoc approach to
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compute the averaged values of local quantities related to crack growth is introduced. In
addition, a generalization of two constitutive models for the bulk is introduced to profit
from the advantages of both.

This chapter is organized as follows. In Section 4.2, the main concepts of the TLSV2
method as proposed by Lé et al. [1] are outlined, highlighting the differences with the
TLSV1. Section 4.3 is devoted to the algorithm for obtaining the skeleton curve for a
given level set field. In Section 4.4, the main features of the phantom node method are
outlined. Several numerical examples are presented in Section 4.5 to assess the accuracy
of the proposed model and to demonstrate its ability to deal with various crack growth
scenarios. Finally, conclusions are presented in Section 4.6.

4.2. THE THICK LEVEL SET V2 METHOD
This section is dedicated to outlining the main features of the TLSV2 method. As in the
TLSV1 method, the location of the damage front Γ0 is tracked as the zero level set (or
the ’iso-0’) of an auxiliary field φ(x), the level set field, which is constructed on the entire
domain Ω as the signed distance function to Γ0, such that the level set field satisfies the
eikonal equation [16]:

∥ ∇φ ∥= 1 on Ω. (4.1)

On a discretized finite element domain, the definition of φ at a given point x is deter-
mined by interpolating the values of φ from nodes to x using finite element shape func-
tions.

The TLSV2 implementation in this chapter inherits the main framework that has
been adopted in earlier TLSV1 models [1, 15, 29, 34, 52]: a staggered solution scheme in
which displacements and damage are computed separately, as schematically depicted in
Fig. 4.1. More precisely, it inherits most of the sequential version detailed in [52] where
every time step consists of three main modules (or analysis phases, as coined in [52]):
LSModule, EquilModule, and VelocityModule. In Fig. 4.1, the highlighted func-
tions indicate the new operations related to the TLSV2 method. For more background
on the remaining functions, the reader is referred to [52] or to Chapter 3.

The global solution scheme is described as follows. Firstly, the level set field is up-
dated. As a new task in the LSModule, the skeleton curve is determined from the po-
sition of the damage front through the skeletonizer function. Subsequently, over-
lapping nodes and elements are introduced in order to accommodate at a later time
the phantom node method, for which updateMesh is responsible. Then, φ is reinitial-
ized, evaluation of damage initiation given the elastic strain field ε is performed, possi-
bly leading to insertion of a new damage nucleus, and the size of damaged zones, φ̄, is
computed, for which the computePhiBar function is responsible.

Next, with a given damage distribution associated with φ (which could initially con-
sist of negative values throughout Ω to represent an undamaged specimen), the dis-
placements and, consequently, strains and stresses are computed in a standard finite
element analysis performed in the EquilModule. In this analysis phase, the Int-
SchemeUpdate function (see Fig. 4.1) is responsible for defining displacement degrees
of freedom to the new nodes that has been created in theupdateMesh function and for
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Level set update: LSModule

-updateLevelSet 

-skeletonizer

-updateMesh 

-reinitializeLS

-testInitiation
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-computePhiBar

Equilibrium sol.: EquilModule

-IntSchemeUpdate

-solver

Front evol.: VelocityModule
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-extendVelocity
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φ ε

φ̄

vn, ε

Figure 4.1: The global sequential staggered solution scheme for a single time step. Dashed arrows represent
the data exchange among the three modules (cf. [52]).

updating the integration scheme by means of a subtriangulation scheme for those ele-
ments that contain the iso-0 or skeleton curves.

Finally, the displacement field and φ̄ are used to compute the configurational force.
In this part, the actual load for a time step is determined by scaling the unit-load solution
with a load factor, γ, such that the maximum scaled value for the non-local averaged
configurational force, Ȳ , equals the averaged material resistance to damage growth, Ȳc ,
at one point along the front without exceeding it anywhere. With Ȳ and Ȳc along the
front, the front velocity, vn , is computed, which is subsequently extended throughout Ω
by means of a fast marching algorithm. Knowing vn everywhere, the resulting newφ can
be obtained and used for the next time step.

Apart from the phantom node method in the equilibrium solution phase, the two
functions reinitializeLS and extendVelocity in LSModule and Velocity-
Module that are, respectively, responsible for the reinitialization of φ and front veloc-
ity extension, as well as the two functions computePhiBar and solver in the same
modules that are, respectively, responsible for the computation of φ̄, and the non-local
fields (Ȳ and Ȳc ), are performed on the mesh that has been updated by theupdateMesh
function.

4.2.1. DAMAGE DEFINITION

In the TLSV2, there are two damage variables instead of one, introducing an interfacial
damage variable d next to the bulk damage variable D from the TLSV1. In line with
the TLS concept, both damage variables are defined as functions of a unique level set
field φ, as illustrated in Fig. 4.2. Both damage variables are constrained to follow user-
defined profiles within material layers with distinct widths and bounds. As such, the
TLSV2 couples both bulk and cohesive damage models within a single framework.

Unlike the TLSV1 method, where D varies from zero to one as φ goes from zero to lc ,
D in the TLSV2 no longer reaches one at φ= lc . Mathematically, the continuum damage
variable is expressed by:



4.2. THE THICK LEVEL SET V2 METHOD

4

63

 
Undamaged zone

Transition zone

Skeleton curve
(displacement discontinuity)

Γs : φ = φs

Γ0 : φ = 0

Γ⋆ : φ⋆

lc

lc

lc

l

φ

φ⋆

1

0

DV1

D

d

Figure 4.2: The TLSV2, as the TLSV1, makes use of a single level set function to describe multiple damaged
zones. As illustrated on the right, the damage variables D and d related to the bulk and interfacial models
are functions of φ and φs , respectively. For comparison, the damage variable associated to the TLSV1, DV1, is
shown.

D(φ) =


0, φ≤ 0

Q(φ), 0 <φ≤ lc

Q(lc ), φ> lc

, (4.2)

where Q is a function that has the properties of Q(0) = 0, Q(lc ) < 1 and Q ′ ≥ 0. As D is al-
ways lower than one, stress-free deformation in the bulk is not possible. In the middle of
the damage band, i.e., on the skeleton curve of the level set field, a displacement discon-
tinuity is included, with cohesive tractions acting across it related to a second damage
variable, d . The cohesive damage variable depends also on φ, more precisely on φ eval-
uated at the skeleton curve, Γs , φs =φ(xs ), with xs being a point on Γs . The following set
of equations is used for the relation between d and φs :

d(φs ) =


0, φs ≤φ⋆
q(φs ), φ⋆ <φs ≤ lc

1, φs > lc

, (4.3)

where q is a function that has the properties of q(φ⋆) = 0, q(lc ) = 1 and q ′ ≥ 0, and φ⋆
is a user-defined constant. Observe that d does reach one at φs = lc to allow for a fully
degraded material.

Note that the cohesive zone model in the TLSV2 method changes in three stages asφ
(and consequentlyφs ) evolves. Whenφs <φ⋆ andφ> 0, the TLSV2 behaves equivalently
to the TLSV1, hence, D ≥ 0, d = 0, and there is no cohesive forces acting in the system.
The displacement discontinuity with cohesive tractions arises at xs , and d kicks in when
φs >φ⋆. Finally, the crack is traction-free when φs = lc , i.e., when the damage band has
a width of 2lc .

In order to fulfil the conditions in Eqs. (4.2) and (4.3), the following equations for Q
and q are, respectively:

Q(φ) = η f (φ) (4.4)
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and

q(φs −φ⋆) = f (φs −φ⋆), (4.5)

where f is an arc-tangent formula given by [15, 29, 34]:

f (φ) = c2 arctan

(
c1

(
φ

lc
− c3

))
+ c4, (4.6)

with c1 = 10 and c3 = 0.5 and the other coefficients given by c4 = −c2 arctan(−c1c3) and
c2 = (arctan(c1 (1− c3))−arctan(−c1c3))−1 [15]. The user-defined parameter 0 < η < 1
in Eq. (4.4) defines the value for Q(lc ) in Eq. (4.2). Observe that q in Eq. (4.5) is shifted
to the right on the horizontal axis by making the argument of f equal to (φs −φ⋆) (see
Fig. 4.2). Note that Lé et al. [1] used a different strategy for obtaining Q and q based on a
1D model.

4.2.2. EQUILIBRIUM PROBLEM
For the present study, the following potential energy definition is adopted:

E(u,φ) =
∫
Ω
Ψ(ε(u),D(φ))dΩ+

∫
Γs

ψ(�u�,d(φs ))dΓs −
∫
ΓN

tN ·udΓN , (4.7)

where ε is the elastic tensor defined as the symmetric part of the gradient of the displace-
ment field u, ΓN is the surface on which Neumann boundary conditions are considered,
and �u� is the displacement jump over the crack surface Γs .

Following the previous TLS models [13, 15, 29], the free energy for the bulk part is
adopted:

Ψ(ε,D) =µ(1−αi D)(εi )2 + λ

2
(1−αv D)tr(ε)2, (4.8)

where λ and µ are Lamé’s elastic constants, εi the principal strain values and tr(ε) the
trace of ε, and

αi =
{

1, εi > 0

β, εi < 0
, and αv =

{
1, tr(ε) > 0

β, tr(ε) < 0
, (4.9)

with 0 ≤ β ≤ 1 being a user-defined parameter that allows for equal stiffness loss under
tension and compression

(
β= 1

)
, full stiffness recovery under compression

(
β= 0

)
or

anything in between. The influence of β on the global response of a shear test will be
assessed in Section 4.5.3.

With Eq. (4.8), the stress-strain relation in principal stress space and the driving force
for damage growth can respectively be expressed as:

σi = ∂Ψ

∂εi
= 2µ(1−αi D)εi +λ(1−αv D)tr(ε) (4.10)

and

Y =−∂Ψ
∂D

=µαi (εi )2 + λ

2
αv tr(ε)2. (4.11)
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Regarding the cohesive part, the free energy based on the displacement jump ex-
pressed in the local frame (n, s) defined on the crack face with normal and shear compo-
nents (see Fig. 4.12), �ū� = {�ū�n ;�ū�s }T, is considered [73]:

ψ(�ū�,d) = (1− ᾱni d)
1

2
K �ū�2

i , (4.12)

where the positive constant K is a penalty stiffness, and ᾱn is defined as:

ᾱni =
{

1, �ū�n > 0

(1−δni ) , �ū�n < 0
(4.13)

so that the possibility of interpenetration between crack faces is prevented by contact
along the n-axis, where δi j is the Kronecker delta. Hence, the state equations associated
with the cohesive model become:

t̄i = ∂ψ

∂�ū�i
= (1− ᾱni d)K �ū�i , (4.14)

and

y =−∂ψ
∂d

= 1

2
ᾱni K �ū�2

i . (4.15)

4.2.3. CONFIGURATIONAL FORCE
The non-locality of the TLS method appears when a portion δs of the damage front,
Γ0, moves outwards of a distance δφ [15] (see Fig. 4.3). Because of the signed distance
function, all the points having the same curvilinear coordinate s1 are affected when Γ0

experiences this front advance. The equation that expresses the amount of dissipated
energy as the front moves of δφ on δs can be obtained by differentiating Eq. (4.7) with
respect to δφ (cf. [13, 15]):

δE =−
∫
Ω

Y D ′(φ)δφdΩ−
∫
Γs

yd ′(φs )δφs dΓs , (4.16)

where D ′ is the derivative of D with respect toφ, and d ′ is the derivative of d with respect
to φs .

δφ(s)

A

s

P

φ

Γ0

Γs

Figure 4.3: The curvilinear coordinate system (φ, s). Point P at (φP , s) is affected as point A at (0, s) on the front
experiences a front advance.

1The change in variable is obtained by means of dΩ=
(
1− φ

ρ(s)

)
dφds, following Moës et al. [13]. However, in

the final equations as implemented, the curvilinear system are not used, or even constructed.
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Following Bernard et al. [15], we introduce an averaged quantity Ȳ to construct a
discretized measure for δE as a function of φ. Here, the cohesive part of the TLSV2 is
added to the formulation, such that Ȳ is the solution of the problem:∫

Ωd
Ȳ D ′(φ) ˆ̄Y dΩ=

∫
Ωd

Y D ′(φ) ˆ̄Y dΩ+
∫
Γs

yd ′(φs ) ˆ̄Y dΓ ∀ ˆ̄Y ∈ Ȳ , (4.17)

with Ȳ being the space of constant fields along the gradient of φ and along the coordi-
nate s in the damaged domainΩd, i.e., in the region where φ> 0.

This problem is discretized as a field on the nodes of those elements that are at least
partially inside Ωd with Ȳ as unknown. The constraint that Ȳ is constant along the level
set gradient, i.e., ∇Ȳ · ∇φ = 0, is weakly enforced with Lagrange multipliers. Galerkin’s
method is employed to find nodal values of Ȳ from the discretized version of Eq. (4.17)
giving rise to the following system of equation:[

K L
L 0

]{
Ȳ
l

}
=

{
fY

0

}
, (4.18)

in which Ȳ and l are vectors with Ȳ and Lagrange multiplier degrees of freedom, respec-
tively. The matrices and the right-hand side vector are defined as (cf. [29]):

Ki j =
∫
Ωd

D ′Ni N j + κh2

lc

∂Ni

∂xk

∂N j

∂xk
dΩ, (4.19)

Li j =
∫
Ωd

lc

(
∂Ni

∂xk

∂φ

∂xk

)(
∂N j

∂xk

∂φ

∂xk

)
dΩ, and (4.20)

f Y
i =

∫
Ωd

Ni D ′Y dΩ+
∫
Γs

Ni d ′y dΓ, (4.21)

where Ni and N j are the shape functions associated with nodes i and j , κ is a stabiliza-
tion parameter, h is the length of the diagonal of the smallest possible rectangle around
an individual element in the whole mesh, Y is the local configurational force which de-
pends on the current elastic strain field through Eq. (4.11), and y is the configurational
force related to the interfacial model evaluated through Eq. (4.15). It is interesting to
note that this system of equation keeps the same solution procedure already found in
several TLS-based models [15, 20, 29, 34] simply adding the interfacial contribution in
Eq. (4.21). This does come at the cost of losing the direct relation between Ȳ and the
energy released per unit crack growth as existed in the TLSV1. Observe that Lé et al. [1]
made use of a different strategy to compute non-local fields; instead, they followed the
approach based on approximation functions (modes), as explained in [35].

Finally, it is remarked that Eq. (4.16) as measure for total energy dissipation is only
valid when it is assumed that no energy is dissipated where the displacement disconti-
nuity is introduced, i.e., that the displacement jump is zero atφ⋆. This is only accurate if
K is chosen sufficiently high to mimic initially rigid behavior. However, very high K may
affect how y is distributed along the cohesive crack [20, 22]. Perhaps, an initially rigid
formulation [72, 74] can be adopted, but this is considered out of scope for the present
investigation.
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4.2.4. FRONT MOVEMENT
The front propagation criterion at a given point at the front is obtained by comparing the
averaged configurational force Ȳ with Ȳc , the averaged value of a resistance parameter
against the damage growth, Yc . For the general case where Yc can be a function of spa-
tial coordinates, the averaged resistance Ȳc is computed by solving a system of equations
similar to Eq. (4.18), but replacing Y by Yc , and Ȳ by Ȳc [29] while the surface contribu-
tion (over Γs ) is left out. If a simulation has a single material and a single value of Yc , the
averaging procedure is not performed and Ȳc = Yc . The change in the level set field is
related to the normal velocity (or level set field increment), vn , as:

φi ←φi + vni (4.22)

with i ∈N , the complete set of nodes in the mesh.
Before computing the front increment along Γ0, the configurational force Ȳ has been

computed with the displacement field from the unit load boundary condition. The ac-
tual load level for a time step is then determined by scaling the unit-load solution with a
load scale factor γ such that the maximum scaled value for Ȳ along the front is equal to
Ȳc :

γ2 max
i∈N0

{
Ȳi

Ȳci

}
= 1, (4.23)

where N0 is the complete set of nodes of those elements that contains the front. Finally,
the front velocity vn for every node in N0 is obtained through [29]:

vni = k

〈
cγ2Ȳi

Ȳci
−1

〉
+

with k = vmax

c −1
, (4.24)

where vmax is the maximum growth the front can experience for a time step. Brackets 〈·〉+
are used to denote the positivity condition, which reflects the irreversibility of damage
growth. In order to guarantee the numerical stability of the staggered scheme, a value
vmax = ξh is used in this chapter, following [29]. The parameter c influences the spread
of the front movement to nodes with lower values for the ratio Ȳ /Ȳc . For c → 1, only
the node with the highest value Ȳ /Ȳc undergoes a front advance. On the other hand, for
higher values of c, nonzero front movement is found in more nodes.

As Eq. (4.24) for vn is only calculated along the front Γ0, and due to the fact that the
level set update with Eq. (4.22) requires the velocity to be known throughout the domain
Ω, vn has to be determined on Ω. Therefore, the velocity computed at the nodes of
elements that contain the front is propagated throughΩ by solving:

∇φ ·∇vn = 0, (4.25)

which is carried out with a fast marching algorithm. In theory, the updated level set
field obtained with Eq. (4.22) remains a signed distance function [16, 17]. However, the
discrete nature of the model may cause it to deviate from being an accurate represen-
tation of a signed distance function. Thus, a reinitialization procedure is periodically
performed with another fast marching algorithm [29, 40].
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4.2.5. INITIATION
In order to take into account independent input parameters for damage initiation and
crack propagation, Yc is made into a function of φ̄, a quantity that measures the size of
a damaged zone. With values for Yc related to an initial strength-based value, Y 0

c , and to
an energy-based value, Y G

c , the following interpolation is adopted [20] (see Fig. 4.4):

log(Yc ) = log(Y 0
c )+ φ̄− φ̄init

φ̄max − φ̄init

(
log(Y G

c )− log(Y 0
c )

)
, (4.26)

where φ̄init and φ̄max are, respectively, the initial size of the damaged zone and the size
for which the damaged zone is considered a crack. The quantity Y 0

c is related to the
strength of the material, in which we follow the work in [29]:

Y 0
c = f 2

t

2E
, (4.27)

where ft and E are, respectively, the tensile strength and Young’s modulus. Unlike ear-
lier studies in [15, 29] where Y G

c is a direct function of the fracture energy, Gc , and lc ,
Y G

c in this study is obtained through a fitting procedure based on mode I specimens so
that the area under the load displacement curve produces an accurate value of Gc (see
Section 4.5.1).

log(Yc)

log(Y G
c )

log(Y 0
c )

φ̄maxφ̄init

φ̄

Figure 4.4: Interpolation of Yc between Y 0
c and Y G

c (adapted from [20]).

In contrast to what was proposed in [29], in which φ̄ is computed in a similar way as Ȳ
in Eq. (4.18), φ̄ is related to the front length of each closed damaged subdomain making
use of additional information on the damage front that is anyway needed for the skeleton
curve construction (see the function computePhiBar in Fig. 4.1). The computation of
φ̄ encompasses two stages. First, for a given damage front, its length is computed, and its
value is stored at the set of nodes of those elements which contains this damage front.
Then, this nodal value is propagated in the same way the front velocity is extended in
Eq. (4.25), i.e., by a fast marching algorithm (see Fig. 4.5); however, φ̄ is only propagated
through the region whereφ> 0. As a result, we have a single value of φ̄ for each damaged
subdomain.

In order to deal with damage initiation, the criterion Y ≥ Y 0
c is used. If this inequality

is met at any undamaged point, a circle with radius φ0 < lc is inserted around the point
xnucl with the highest ratio Y /Y 0

c . Note that Y used in this criterion is purely local, but
still consistent with the non-local growth criterion since Ȳ → Y and Ȳc → Yc as l → 0.
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a

b

c

d

Figure 4.5: Computation of φ̄ for four distinct damaged regions. For each of the four damaged regions, φ̄ is
computed as the length of associated damage front.

4.3. SKELETON CURVE

In a setting where the damage front can evolve in arbitrary directions, the TLSV2 requires
identification of the skeleton curve of the level set field. Several approaches for deter-
mining the location of the skeleton curve have been proposed in the literature, based on
the direct information on non-uniqueness of the gradient of the level set field ∇φ [75],
and on Voronoi cell-based algorithms [76, 77]. In this work, we make use of the ball-
shrinking method proposed by Ma et al. [70] due to its implementation simplicity and
robustness.

This method relies on the concept of maximally inscribed ball (or interior medial
ball) of a given region delimited by a contour (or surface), such as damaged regions
bounded by the damage fronts found in the TLS-based methods. By definition of the
signed distance function, the center of such maximal inscribed ball lies at the skeleton
curve [70, 71, 76]. As such, the skeleton curve consists of the set of centers of all interior
medial balls of a given region. In a discrete setting, one can obtain a point-based repre-
sentation of a skeleton curve with a finite set of maximal inscribed balls. This method
only requires the set of points that form Γ0, i.e., the iso-0 curve, and the gradient ∇φ at
these points as input.

Fig. 4.6 schematically illustrates the Skeletonizer algorithm that has been designed in
order to determine the skeleton curve for the TLSV2 method. The Skeletonizer is com-
prised of three parts. Firstly, for a given accurate damaged subdomain enclosed by its
iso-0 curve, a ball-shrinking algorithm is executed in order to obtain discrete points that
lie at the ’theoretical’ skeleton curve, which are called atoms or atom points, as depicted
in Fig. 4.6a. Secondly, these atoms are connected in a manner that corresponds to the
connectivity of the skeleton curve, which is a first approximation of the skeleton curve, as
illustrated in Fig. 4.6b. This is done by means of a graph-based algorithm. Thirdly, once
this approximate skeleton curve is fully known, it can be mapped onto the mesh in order
to determine the intersection between the skeleton curve and the finite element edges,
as shown in Fig. 4.6c. These intersection points are used to construct the segments that
are later used for the phantom node method.



4

70
4. SKELETON CURVE AND PHANTOM NODE METHOD FOR THE THICK LEVEL SET

APPROACH TO FRACTURE

δi ≥ δmin

atom

the iso-0 curve

theoretical skeleton curve

approximate skeleton curve

discretized skeleton curve (or cohesive segments)

(a) Atom points.

δi ≤ δmax

(b) Approximate skeleton curve.

cut element

(c) Discretized skeleton curve (cohesive segments).

Figure 4.6: The Skeletonizer algorithm for a given damaged region.

The remainder of this section outlines these three parts of the Skeletonizer algorithm.
For the sake of simplicity, Ωd refers to a single damaged region enclosed by Γ0, unlike
elsewhere in this chapter, where it refers to the union of all damaged regions. More-
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over, let I0 be the set of all the points that defines Γ0 in a finite element domain, i.e.,
the points that are determined by the intersection between the iso-0 curve and finite el-
ement edges. Although the Skeletonizer algorithm is outlined through a single generic
damaged domain, it can be applied to problems that consist of multiple damage fronts.
In this case, one can apply the proposed skeletonizer algorithm for each damaged sub-
domain (for instance, see Figs. 4.5 and 4.13).

4.3.1. BALL-SHRINKING ALGORITHM

The atom points are computed with the ball-shrinking algorithm proposed by Ma et al.
[70] as improved by Peters [71]. The skeleton curve ofΩd consists of the set of centers of
all interior medial balls inΩd. According to Peters [71], a ball is an interior medial ball of
Ωd if it is maximal, namely, if a ball is a subset of Ωd and any ball that contain such ball
is not contained in Ωd, as exemplified in Fig. 4.7. Furthermore, a medial ball does not
contain any part of Γ0; however, a medial ball does touch Γ0 at least two points.

Γ0

maximal ball

non-maximal ball

center (atom)

Figure 4.7: Examples of maximal and non-maximal inscribed balls (disc in 2D) (adapted from Blum [78], as
cited in Peters [71]).

Fig. 4.8 and Algorithm 4.1 schematically show the ball-shrinking algorithm for a point
p from I0 with normal vector n =∇φ. The main premise of the algorithm is that the max-
imal inscribed ball associated with point p must have its center point on line L, which
is the line through p parallel to n. To find this center point, an initial huge ball is iter-
atively shrunk along the line L until an interior medial ball is obtained. The algorithm
constructs a new candidate ball that is smaller than the previous one and closer to the
final interior medial ball at each iteration [71]. Initially, a huge ball with radius rinit is
generated touching p. For the center of the current ball, c, its closest point to Γ0, de-
noted qnext, is computed. With p, n and qnext, the ball touching the points p and qnext

is defined for the next iteration. The algorithm terminates when a maximal inscribed
ball is found, i.e., when it is not possible to shrink the ball any further (see line eight in
Algorithm 4.1).
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n, L

p

qnext

q

next ball

current ball

center

(a) Initial ball.
(b) Second iteration.

(c) Third iteration. (d) Fourth iteration.

Figure 4.8: Ball-shrinking algorithm: an interior medial ball is obtained at the fourth iteration (adapted from
[71]).

Algorithm 4.1 The shrinkBall algorithm (adapted from [71]).

Input: a set of points I0 and its corresponding KD-tree data structure T0; point p ∈ I0 and its normal vector n; and denoising
angle θ1

Output: the medial ball center c; and radius r associated to p
1: i ← 0
2: r ← rinit
3: c ← computeCenter (p, n, r )
4: while tr ue do
5: qnext ←nearestNeighbour (T0 , c)
6: rnext ←computeRadius (p, n, qnext)
7: cnext ←computeCenter (p, n, rnext)
8: if rnext ≥ r −ϵtol then
9: break

10: end if
11: if i > 0 and θ1 >∠pcnextqnext then
12: break
13: end if
14: c ← cnext
15: r ← rnext
16: end while

Algorithm 4.1 makes use of three special functions: nearestNeighbour ,compu-
teRadius andcomputeCenter. ThenearestNeighbour function simply returns
the closest point from the set I0 to a given query point, which is efficiently implemented
using a KD-tree data structure [79, 80], represented by T0 in Algorithm 4.1. Note that
this tree-like data object has to be built prior to the iterative loop of the ball-shrinking
algorithm [71]. The remaining two functions are schematically illustrated in Fig. 4.9.
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The function computeRadius determines the radius of a new ball for a given triplet:
p, n, and qnext. The function computeCenter gives the center of a new ball for a given
triplet: p, n, and rnext.

p

n q

r

d

r = computeRadius(p,n,q)

d =
1

2
‖ p− q ‖

cosα =
n · (p− q)

2d

r =
d

cosα

p

n
c

c = computeCenter(p,n, r)

c = p+ rn

Figure 4.9: The auxiliary functions, computeRadius and computeCenter , used in Algorithm 4.1 (adapted
from [71]).

Building on the original algorithm by Ma et al. [70], Peters [71] proposed a denoise
approach in order to avoid spurious interior medial balls due to the presence of noisy
points at Γ0. The main premise of this procedure is that even in the presence of a noisy
point, a proper medial interior ball is usually found before shrinking it further to become
a spurious one. In order to determine at which iteration the ball-shrinking algorithm
has to be interrupted, Peters [71] suggested to use a separation angle, θ, observing that a
point q that varies at each iteration may be shifted from one side to the other side of Γ0;
as a result, θ suddenly becomes smaller, as illustrated in Fig. 4.10.

p

n

q

c

cnext

qnext

Skeleton curve

Figure 4.10: Example of the concept of separation angle when a disk flips side, from one side of the Γ0 to the
other. The spurious ball can be detected by the small separation angle θnext (adapted from [71]).
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The threshold angle θ1 is used to detect a spurious ball to obtain a balance between
robustness and sensitivity to small noise in Γ0 [71]. Because exterior medial balls are
not considered in this work, unlike in [71], only one such condition is included in the
algorithm.

Note that Algorithm 4.1 computes the interior medial ball for a single point q in I0.
Hence, to obtain all the atoms associated to the region Ωd, it is necessary to loop over
all the points in I0, as shown in Algorithm 4.2. In order to avoid overlapping atoms and
atoms too close to one another (also avoiding elements with multiple atoms), a distance
threshold, δmin (see Fig. 4.6a), is imposed. Therefore, before storing a center of a medial
ball, this distance restriction is checked via distNearestAtom on line four in Algo-
rithm 4.2, where the distance between a given center c and its closest existing neighbor
atom is computed.

Algorithm 4.2 The makeAtoms algorithm.

Input: a set of points I0
Output: interior medial balls store in Matom for a region whose boundary are formed from all the points in I0

1: T0 ← makeKDTree (I0)
2: for all p ∈ I0 do
3: c ← shrinkBall (p,n,T0)
4: δ← distNearestAtom (Matom,c)
5: if δ≥ δmin then
6: Matom ← push (c)
7: end if
8: end for

4.3.2. APPROXIMATE SKELETON CURVE
In order to connect the atoms to form a skeleton curve (see Fig. 4.6b), a spanning-mini-
mum-tree problem is solved. In this problem, a weighted and undirected graph is given,
for which the smallest possible tree (an acyclic graph) is found that still connects all ver-
tices of the original graph [81].

Therefore, before solving this problem, a graph data type needs to be constructed,
G = (V ,E), consisting of:

• a complete set of vertices, V , which corresponds to the atoms;

• a complete set of edges connecting the atoms, E . For each edge, an edge weight,
the distance between two linked neighbor atoms, is set.

Algorithm 4.3 shows how the minimum spanning tree associated with the atom points
is built. The function initAtomsGraph on line one is responsible for connecting
atoms whose outcome is a graph data representation of atoms. Once this graph is con-
structed, Prim’s algorithm is used to obtain its corresponding minimum spanning tree,
as represented by the function primsAlgorithm on line two. This greedy algorithm
finds a minimum tree from a graph representation by constructing this tree one atom
at a time, from an arbitrary starting atom, at each step adding the closest possible con-
nected atom from the graph to another atom [79, 81]. After determining the minimum
spanning tree associated to atom points, a loop over such tree is executed in order to
check if the edges of tree are too long through a maximum distance value for thresh-
old edge selection, δmax (Fig. 4.6b), or are crossing Γ0 at any point. The helper function
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distEdge computes the length of a given tree edge. If one of these conditions is met,
the corresponding edge is removed from the tree via the function removeEdge.

Algorithm 4.3 The makeAtomsGraph algorithm.

Input: a set of medial balls Matom
Output: a graph representation of atoms, G

1: G ← initAtomsGraph (Matom)
2: G ← primsAlgorithm (G)
3: for all ed g e ∈G do
4: δ← distEdge (ed g e)
5: if δ≥ δmax or ed g e cr osses Γ0 then
6: removeEdge (G ,ed g e)
7: end if
8: end for

4.3.3. DISCRETIZED SKELETON CURVE

The skeleton curve obtained with the previous two steps connects atoms that are gen-
erally not on element edges. However, for the phantom node method, we are looking
to construct segments that cross elements in a single straight line. The location of the
cohesive segments can be determined by projecting the approximate skeleton curve
onto the finite element mesh (see Fig. 4.6c). This operation is performed in two stages.
Firstly, crack branches (end-to-end, end-to-junction, or junction-to-junction branches)
are generated from the connectivity of the approximate skeleton curve. Next, looping
over these branches, the intersection points between the approximate skeleton curve
and the elements are determined. As a result, the approximate skeleton curve is mapped
on the mesh. This last stage can be efficiently carried out by a R-tree data structure used
for spatial searching. An R-tree can store any set of objects (polygons, line segments,
points, for instance), and it can give intersection queries with any other object. For an
extensive overview of R-trees and their implementation, see [79, 82].

The resulting intersection points and finite elements crossed by the cohesive seg-
ments can again be stored as a graph, in which the elements are treated as vertices and
the intersection points are treated as edges. This storage scheme facilitates determining
for any given finite element which intersection points it contains, and to which finite
element it is connected.

Two points of extra attention exist in the element-intersection graph representation.
First, one atom might give rise to a ’corner’, as exemplified in in Fig. 4.11. Second, unlike
the graph representation of the approximate skeleton curve that has acyclical character-
istic (see Fig. 4.13), the element-intersection graph representation might present local
cycles at locations where one atom contains a junction, as exemplified in Fig. 4.11. Cor-
ners are considered to be elements with more than one intersection points lying on the
same element edge (see Fig. 4.11a); on the other hand, junctions are considered to be el-
ements containing more than two intersection points (see Fig. 4.11b). Furthermore, the
approximate skeleton segment might cross the same element edge twice, which in turn
produce two edges that both connect the same of pair of vertices since these intersection
are stores as edges in the element-intersection graph. In order to deal with such scenar-
ios, shortcuts are made in the discretized skeleton curve, as illustrated by the magenta
curves in Fig. 4.11.
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(a) Corner element.

(b) Junction element.

Figure 4.11: Example of corner and junction elements, which contain local cycles or loops. Triangle markers
indicate intersection points between the approximate skeleton curve and finite element edges used to define
the discretized skeleton curve

4.4. PHANTOM NODE METHOD
Once the discretized skeleton curve has been located, i.e., when Γs has been determined,
the phantom node method is used to introduce a discontinuity in the solution basis at
that location. Fig. 4.12 schematically illustrates the phantom node method. When an
element is crossed by a crack at Γs , such element is divided into two complementary
subdomains, A and B , as illustrated in Fig. 4.12. Phantom nodes are added over the
original ones, i.e., ñ1, ñ2, and ñ3. Thus, the original element is substituted by two new
elements, A and B , which have the exact same geometry but different connectivity. The
shaded area indicates which part of a new element is active, ΩA and ΩB . The internal
force vector and stiffness matrix contribution of each new element to the global system
of equations are obtained by integrating only over the active part of the elements.

Figure 4.12: Connectivity and active parts of two overlapping triangular finite elements in phantom node
method. Local frame (n, s) and its orientation angle ϑ.
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The discontinuous displacement field in the pair of overlapping elements is defined
as:

u(x) =
{

N(x)uA , x ∈ΩA

N(x)uB , x ∈ΩB
, (4.28)

where N contains the standard finite element shape functions, and uA and uB are the
nodal displacements from element A and B . The displacement jump over the crack is
computed as the difference between the displacement fields of the two overlapping ele-
ments:

�u�(x) = N(x)(uA −uB ), x ∈ Γs . (4.29)

Observe that Eq. (4.29) gives the displacement jump in the global frame, while the consti-
tutive-related expressions in Eqs. (4.13) to (4.15) are evaluated in the local frame (n, s).
The transformation from global to local coordinate frame is performed as:

�ū� = Q�u�, (4.30)

where the transformation matrix Q is given as:

Q =
[−sinϑ cosϑ

cosϑ sinϑ

]
. (4.31)

It is also possible to relate:
t̄ = Qt. (4.32)

More details on how the internal force vector and linearized stiffness matrix are assem-
bled and their contribution to the global system of equations can be found in [4, 5, 72].

For a known discretized skeleton curve, possibly containing junctions and multiple
disconnected parts, the phantom nodes and overlapping elements are generated in the
updateMesh function (see Fig. 4.1). This is done by looping over the vertices of the
element-intersection graph turning ’right’ wherever it meets a junction. Figure 4.13 gives
a general view of how these loops are constructed. Looping along each of the dashed
lines, the part of the elements on the right side of the skeleton curve is taken as the ac-
tive part, while phantom nodes are introduced for all nodes on the left side. During
this procedure, end vertices are regarded as anchor points, at which a crack path be-
gins and ends. This approach facilitates consistency in the connectivity of neighboring
pairs of elements. An example of implementation of these two tasks on the element-
intersection graph and phantom node constructions, and shortcut operations in the dis-
cretized skeleton curve can be found in [83].

It can be observed from Fig. 4.13 that at junctions, small triangles are created. Ele-
ments are defined along the dashed lines, taking the closest magenta skeleton line as the
edge of the active domain. As a consequence, the triangles inside the junctions do not
belong to the active part of any element. It can occur that junction elements are split
in three active parts (e.g., at the junction of paths 1, 2, and 3 in Fig. 4.13). With the pro-
posed procedure for defining the phantom nodes and overlapping elements, no special
treatment is required to allow for presence of three or more overlapping element, except
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that no cohesive segments are introduced in elements with more than two overlapping
elements. Near the junctions it may also happen that there are two overlapping ele-
ments that do not touch (e.g., between paths 8 and 10 in Fig. 4.13). Also in this case, no
cohesive element is introduced. In other words, elements that contains junction, their
contribution to the system of equation for equilibrium solution phase and to the system
of equation in Eq. (4.18) are not taken into account.
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Figure 4.13: Example of phantom node construction. The top left damaged subdomain illustrates the ’global’
acyclical property of the atom graph after executing Prim’s algorithm.

4.5. RESULTS AND DISCUSSION

The performance of the proposed TLSV2 method is assessed with numerical examples
in this section. The method has been developed with Jem/Jive [65], which is an open-
source toolkit for finite element analysis, along with the Boost Graph Library [79], which
contains minimum spanning tree algorithms, tools to manage graph data structures, and
R-tree functionality.

For all numerical examples, unstructured meshes of linear triangles generated with
Gmsh [48] are considered. For nucleation, the size of a new damage nucleus φ0 is about
the effective element size. The stabilization parameter from Eq. (4.18) is set to κ = 1.2.
Furthermore, the constant ξ used to compute vmax in Eq. (4.24) is set to ξ = 0.5, the
constants φ̄init and φ̄max for Yc -interpolation expression in Eq. (4.26) are, respectively,
set to φ̄init = 0 and φ̄max = 2πlc + 2lc . The compression factor in Eq. (4.4) is η = 0.92,
and the user-defined level set value φ⋆ = 0.5lc (see Eqs. (4.3) and (4.5) and Fig. 4.2). The
penalty stiffness terms is K = 8×104 N/mm3 (see Eqs. (4.12), (4.14) and (4.15)).

Regarding the parameters used for the Skeletonizer algorithm, the denoising angle
is θ1 = 125◦, the initial ball has rinit = 50lc (see Algorithm 4.1). Besides, the threshold
parameter δmin is about three times the effective element size, i.e., δmin ≈ 3h, and δmax ≈
4δmin (see Algorithms 4.2 and 4.3 and Fig. 4.6).
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4.5.1. COMPACT TENSION TEST

As a first example, the response of a compact tension test under plane stress is consid-
ered. Boundary conditions and geometry of the specimen are shown in Fig. 4.14. Young’s
modulus, Poisson’s ratio, and tensile strength are, respectively, E = 7000MPa, ν = 0.3,
and ft = 79MPa. The critical length lc is equal to 3 mm. This example is performed with
c = 2 (see Eq. (4.24)). A refined mesh, with effective element size h = 0.25mm, is ap-
plied in the region where the crack is expected to develop. The nucleation check is only
performed around the notch tip. As this example is a tension-dominant problem, the pa-
rameter β in Eq. (4.9) is equal to one, which associated with Eq. (4.8) lead to a symmetric
material law that presents the same behavior in tension and compression.
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Figure 4.14: Compact tension test: boundary condition and geometry (dimensions in mm).

In Fig. 4.15, the load-displacement curves from Van der Meer and Sluys [29], obtained
with a cohesive zone analysis with Gc = 40N/mm, and the TLSV2 are drawn together,
and the deformed specimen for the final time step is shown. The result verifies the accu-
racy of the proposed model. Unlike earlier TLS studies [15, 29], in which the parameter
related to crack growth Y G

c (see Eq. (4.26)) was a direct function of the fracture energy
Gc , and lc , Y G

c in this work is obtained via a fitting procedure at Y G
c = 15.6MPa. The

match with cohesive zone analysis in the descending branch shows that during crack
propagation the effective fracture energy obtained with the TLSV2 is constant.
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Figure 4.15: Compact tension test: load-displacement curve in comparison with the cohesive zone analysis
(CZA) as presented in [29] (left), and deformed specimen with plotted vertical displacement field (right) con-
sidering lc = 3mm.
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Figure 4.16 shows the load-displacement graphs for different values of lc : 2 mm,
3 mm, and 4 mm. Observe that the curves (the graph on the left-hand side) obtained
with lc equal to 2mm and 4mm, and with the fixed value of Y G

c = 15.6MPa drift away
from the corresponding simulation with lc = 3mm since they are simulated without their
corresponding fitted Y G

c -value.

The graph on the right-hand side shows results from simulations where Yc is varied
along with lc in a inversely proportional way. The inverse proportionality is based on
the fact that Y G

c is a direct function of Gc and lc in TLSV1 models (cf. [15, 29], where
Y G

c = Gc
lc

). It can be observed that also with TLSV2, the same effective fracture energy is

obtained for different combinations of Y G
c , and as long as the product of the two is equal.
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Figure 4.16: Compact tension test: load-displacement curves with fixed values of Y G
c = 15.6MPa (left), and

with inversely proportionally adapted values of Y G
c (right).

Figure 4.17 shows the two fields of the averaged quantities Ȳ and Ȳc obtained through
Eq. (4.18). It is important to emphasize the consistency of these results, in which Ȳ is
zero in the region behind the crack tip, indicating the presence of a traction-free crack
and Ȳc does reach the constant maximum value of 15.6 MPa, the value set in Y G

c .

(a) Non-local configurational force, Ȳ (MPa).

(b) Material resistance to crack growth, Ȳc (MPa).

Figure 4.17: Compact tension test: averaged quantities at given load step in the post-peak response.
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Figure 4.18 shows the outcome of main stages of the Skeletonizer algorithm for one
time step from the compact tension simulation. Note that the last atom point obtained
by Algorithm 4.2 is the atom s located at cs ; as a result, it would have a lack of cohesive
segments between s and the curveΓ⋆, which in turn gives rise to a non-gradual evolution
of traction forces in this region. In order to avoid this absence of cohesive segments in
this region, the atom s is moved until it reaches Γ⋆, in which its new location is indicated
by the atom t located at ct . This shifting procedure is accomplished by moving s on
the line oriented by the normal vector defined as n = cs−cr

∥cs−cr ∥ ; therefore, the intersection
point between such line and Γ⋆ defines the location of t .

tsrΓΓ0

(a) Atom points.

(b) Approximate skeleton curve.

(c) Cohesive segments.

Figure 4.18: Compact tension test: stages of Skeletonizer algorithm with iso-0, iso-φ⋆, and iso-lc curves of the
level set field.
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4.5.2. MODIFIED COMPACT TENSION TEST
In the second example, the compact tension test is modified, as shown in Fig. 4.19, in
order to show the ability of the proposed framework to deal with crack branching and,
consequently, a junction in the skeleton curve. This numerical example is inspired by
crack branching case studied by Moës et al. [13] in which the specimen is made of two
different Young’s moduli. The soft material has the same properties used previously in
the first example, and for the stiff material, the properties are E = 70000MPa, ν= 0.3, and
Y G

c = 468MPa. The critical length lc is equal to 1 mm, and the parameter c is increased,
c = 4, in order to promote more modes along the damage front. The typical element size
h is equal to 0.15 mm around the region where the crack is expected to develop. Making
use of the previously calibrated value and because Y G

c is inversely proportional to lc , Y G
c

is equal to 46.8MPa in this example.
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Figure 4.19: Modified compact tension test: boundary condition and geometry (dimensions in mm). Colored
area indicates where the stiffer material is set.

Fig. 4.20 shows the load-displacement curve and crack evolution along with its ap-
proximate skeleton curve for some time steps. The crack is initiated in the soft material
and grows without touching the region where the stiff material is defined.
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Figure 4.20: Modified compact tension test: load-displacement curve, and crack evolution (close-up) and its
corresponding approximate skeleton (green curve).

Figure 4.21 shows the deformed specimen and a close-up figure of the junction.
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Crack branching naturally takes place as the iso-0 curve evolves, and consequently, its
corresponding skeleton curve. This case would clearly be more complicated to represent
with classical XFEM-based models (see Fig. 4.22).

Figure 4.21: Modified compact tension test: deformed specimen (left), and a close-up figure of the crack (right).

e

Figure 4.22: Modified compact tension test: zoom of the junction located at element e that has been divided
into three overlapping elements.

4.5.3. RAIL SHEAR TEST

The final example is a case where traction-free sliding deformation is desired. The case
is inspired by the plane strain rail shear test for mode II failure analysis following Van
der Meer and Sluys [29]. The case consists of a weak core sandwiched between two stiff
arms, as illustrated in Fig. 4.23. The arms are loaded in opposite direction so that the core
is sheared. This setup leads to the crack distribution observed in experimental tests of
cusps forming in resin-rich regions of composite material in mode II loading conditions.



4

84
4. SKELETON CURVE AND PHANTOM NODE METHOD FOR THE THICK LEVEL SET

APPROACH TO FRACTURE

6

6

5

10
40

core

face

F

Figure 4.23: Rail shear test: boundary condition and geometry (dimensions in mm).

Young’s modulus, Poisson’s ratio, and tensile strength of the core material are the
same as mentioned in the first example in this paper. For the face material, the prop-
erties are E = 2.1×103 GPa (three hundred times stiffer than the core material), ν = 0.3,
and ft = 79MPa. The typical element size h is 0.15 mm throughout the core region, and
lc and Y G

c are, respectively, 1mm and 46.8MPa. This simulation is performed with c = 2,
the same value used in the compact tension test.

SINGLE DAMAGE NUCLEUS

Following the approach used to investigate a similar setup with TLSV1 in [29], the prob-
lem is first considered to have an initial damage nucleus at the mid-height plane of the
core, 15 mm from the left side edge, with radius 0.95 mm, which is slightly smaller than
lc , in order to assess the material laws obtained through Eq. (4.8) by varying the param-
eter β in Eq. (4.9).

Three different choices for β are investigated. Firstly, β is set to one, which gives
rise to a symmetric constitutive model for the bulk in the sense that stiffness degrada-
tion is equal under tension and compression. Figure 4.24 shows the load-displacement
curve and crack distributions for this case. It is clear that this constitutive model leads
to an unrealistic behavior. Similar to what was observed with the TLSV1, initially an X-
shaped crack appears, with unphysical compressive branches. However, with the TLSV2,
the tensile branches are eventually favored, because there is still tension/compression
asymmetry in the cohesive model. Nevertheless, secondary compressive branches ap-
pear, and the overall final crack pattern is not realistic. It is concluded that the asymme-
try in the cohesive part of the TLSV2 is not sufficient to prevent compressive damage.
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Figure 4.24: Rail shear test with an initial damage nucleus and β= 1: equilibrium curve, and crack distribution
for two different time steps are marked on the load-displacement curve.
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The second simulation is performed withβ= 0 where the degradation of material be-
haves asymmetrically, with complete stiffness recovery under compression. In Fig. 4.25,
the equilibrium curve obtained with β equal to zero is plotted, and the final crack dis-
tribution and its corresponding deformed configuration are shown. Unlike to what is
shown with the TLSV1 in [29], where a hardening phenomenon is obtained with the same
constitutive model due to the fact that one of the principal strains in the shear band be-
tween arm and core becomes negative leading to stiffness recovery and stress transfer
across the crack, the TLSV2 model proposed does not show such undesired behavior.
The contact condition in the discontinuity does not prevent sliding deformations, and
the surrounding bulk material can completely unload. However, the choice for β = 1
does lead to more oscillatory behavior in the post-peak response.
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Figure 4.25: Rail shear test with an initial damage nucleus and β= 0: load-displacement curve, and final crack
distribution and its corresponding deformed specimen with horizontal displacement field.

The last one-nucleus simulation uses a constitutive model that combines the bene-
fits from both models that have been investigated previously. The choice for β= 1 brings
robustness, whileβ= 0 gives the correct directionality for crack propagation. For the ini-
tial transition from a circular damage nucleus to a clean tensile crack under shear load-
ing, full stiffness recovery under compression (β= 0) is essential. Later, when the asym-
metry in tension/compression behavior is partially represented across the displacement
discontinuity, stiffness recovery in the bulk becomes less important, although a value
of β = 1 may still lead to undesirable secondary compressive crack branches. For large
cracks, an intermediate value of β is sufficient and still provides an improvement in sta-
bility over the stricter β = 0. Because we have information on the size of the damaged
zone through φ̄, we can achieve a transition for β from 0 to a higher value as the dam-
aged zone grows. Therefore, β is made into a function of the size of damaged zone φ̄ as
follows (see Fig. 4.26):

β(φ̄) =


0, φ̄≤ φ̄init

φ̄−φ̄init,β

φ̄max,β−φ̄init,β
βmax, φ̄init,β < φ̄≤ φ̄max,β

βmax ≤ 1, φ̄> φ̄max,β

, (4.33)

where φ̄init,β and φ̄max,β are, respectively, the initial size of the damaged zone and the size
for which the material is considered to behave as a fully constitutive law with β=βmax.
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Figure 4.26: Variability of parameter β as a function of the size of damaged domains φ̄.

Therefore, the problem is simulated again with φ̄init,β = 2φlc+3lc , φ̄max,β = 2φlc+6lc ,
and βmax = 0.88 for the equation above. Figure 4.27 shows the load-displacement curve
with the variability of β, and crack distribution along with its deformed configuration
for the last time step. It is clear that the approach proposed for evaluation of β through
Eq. (4.33) influences the overall response on this problem. The initial nucleus does not
grow into a X-shaped crack, because the material is dictated by the asymmetric constitu-
tive law. In addition, this simulation does not suffer from substantial oscillations when
the crack reaches the interface region between core and arms due to the fact that the
constitutive law at this point has much less stiffness recovery under compression with
β = βmax. Also, note the absence of secondary branches when compared to the final
crack configuration obtained with fixed value of β= 1.
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Figure 4.27: Rail shear test with an initial damage nucleus and varying β=β(φ̄): load-displacement curve, and
final crack distribution and its corresponding deformed specimen with horizontal displacement field.

MULTIPLE DAMAGE NUCLEI

With this new way to address the value of β, the shear test is revisited. Now, the TLSV2
model is also applied to a case without predefined initial damage nucleus. The nucle-
ation check is only performed around the mid-height of the core. Besides, the distance
between a new damage radius and existing damage fronts is set to be at least 7 mm.

The evolution of damage in the shear test with the varying value of β is shown in
Fig. 4.28. As already detailed in a similar test case with the TLSV1 [29], the first nuclei
appear before the peak load is reached. As the load increases, the inclined cracks start to
form; however, only the left most crack, the main crack, reaches the interface between
the two materials, and this crack eventually extends over the whole length of the core.
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As the analysis progresses, the load eventually drops as the main crack reaches the right
end of the specimen. Furthermore, it can be observed that the skeleton curve of the
main crack does not join up with others even though its iso-0 curve does merge with the
damage fronts of all inclined cracks. The skeleton curves do not merge because of the
fact that when the fronts join up and the main crack moves towards to the right edge of
the specimen, these regions experience unloading, after which the front stops evolving.
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Figure 4.28: Rail shear test: damage front and approximate skeleton curve evolution.
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4.6. CONCLUSIONS AND DISCUSSION
In this chapter, the TLSV2 method is extended to provide the ability of dealing with free-
form skeleton curves for crack growth problems in solids that bring branching and merg-
ing events. The TLSV2 method by Lé et al. [1] has been used as a basis model for the pro-
posed version. A skeletonizer algorithm equipped with the ball-shrinking algorithm in
the version by Peters [71] and Prim’s algorithm has been designed. The phantom node
method has been used to account for the discontinuous part of the TLSV2. Once the
skeleton curve has been mapped into the mesh, the construction of the phantom node
method including the possibility of crack branching is achieved by traversing along crack
branches one side after the other.

After implementing these features, the TLSV2 method proposed was successfully as-
sessed in three numerical examples. The first example, the compact tension test, was
used to define some input parameters, and to verify the ability of the TLSV2 to represent
crack growth at a constant fracture energy. Even though the fracture energy is not a direct
input in the proposed method, this shows that the model can be calibrated to fracture
energy measurements. It was demonstrated that it is necessary to extend the last atom
point obtained from the ball-shrinking algorithm.

The proposed framework was shown to work for the case of crack branching and
merging in the second and third test cases, although merging was only found for the
damage front and not for the skeleton. In the shear test, the influence of the stiffness re-
covery parameterβ on the global response was investigated. Variability ofβ as a function
of the size of damaged zone was proposed to benefit from the advantages of the constitu-
tive laws with and without stiffness recovery under compression preventing unrealistic
compressive crack branches as obtained with β = 0, as well as undesirable oscillations
as encountered with β= 1. Furthermore, the special interphase material used in the ear-
lier TLS versions [29, 34, 52] was not necessary, since the crack could grow in a mode II
manner without artificial hardening.

The work in this chapter is restricted to unstructured meshes of linear triangles and
to 2D simulations. However, the proposed framework, especially the algorithm to locate
the skeleton curve in conjunction with the phantom node approach, is expected to work
as well for meshes of quadrilaterals without substantial changes.

On the other hand, a 3D version of the proposed framework would require extra at-
tention, mainly for construction of crack surface. Although the ball-shrinking algorithm
behaves the same in 3D as it does in 2D [71], it still provides a point-based representa-
tion of the medial surface of the iso-0 surface in 3D simulations, i.e., an unstructured set
of medial atoms, which would need to be transformed into surfaces with boundaries in
order to represent cracks in 3D. An extensive overview of methods for constructing this
surface can be found in [84]. Once the medial surface of the iso-0 surface has been de-
termined, the corresponding discretized skeleton surface can be determined, which can
subsequently be used in conjunction with the phantom node method for constructing a
discontinuity in the displacement field.



5
A PARALLEL IMPLEMENTATION OF

THE THICK LEVEL SET V2 METHOD

5.1. INTRODUCTION
In this penultimate chapter of this thesis, the main concepts and features of the numer-
ical models based on the TLS method that have been presented in Chapters 2 to 4 are
brought together in order to have a parallel implementation of the TLSV2 method. As
already emphasized in Chapter 4, the sequential implementation for the TLSV2 inherits
most of the sequential framework designed for the TLSV1. Therefore, the global solu-
tion scheme for the TLSV2 outlined in Chapter 4 can readily be plugged into the parallel
framework detailed in Chapter 3. In this chapter, we focus only on the highlighted func-
tions shown in Fig. 4.1, which are those functions that have been specifically designed
for the TLSV2.

The main premise employed in the parallel framework presented in Chapter 3 is
adopted here, namely, that different parts of the TLSV2 are performed with different lev-
els of parallelism. In that spirit, the skeletonizer, updateMesh, and compute-
PhiBar functions are kept in a global context, i.e., only the root process is responsible
for handling them, whereas the IntSchemeUpdate function is performed in a local
context, where each process executes the update on its own subdomain without any
data exchange.

In line with the collective communication routines addressed in Section 3.3.2, the
skeletonizer and updateMesh functions are therefore sandwiched between a sin-
gle Gather-Scatter execution block where the root executes their corresponding
tasks as follows. Once the root receives the φ updated by updateLevelSet from each
process (see Fig. 4.1), it computes the global skeleton curve through skeletonizer,
which is subsequently used to determine the updated global mesh by means ofupdate-
Mesh. This execution block ends with the root sending the new mesh quantities (i.e.,
global IDs of elements and nodes) back to processes possessing the skeleton curve.

As new nodes are dynamically added into the system to be used in the phantom node
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approach, the operators R and Q (see Section 3.3.2), which are used by processes to ex-
change data in a collective operation and depend on the number of nodes in the mesh,
have to be updated accordingly. This update is carried out as soon as the mesh has been
changed in the updateMesh function.

Regarding the computePhiBar function, the root executes a global fast marching
algorithm in order to compute φ̄ following the same steps detailed in Section 4.2.5 and
schematically illustrated in Fig. 4.5. Despite being a global operation, this task is not
positioned between a Gather-Scatter pair since the root has already had the global
skeleton curve and updated φ at this stage. Therefore, only a Scatter call is executed
in order to send φ̄ back to processes that have damaged regions, i.e., processes that form
the set Pd (see Section 3.3.3). With new nodes at hand, the IntSchemeUpdate func-
tion is executed defining the integration schemes of the cracked elements and the new
displacement DOFs.

In order to investigate the performance of this parallel version of the TLSV2, two nu-
merical examples assessed in Chapter 4 are considered. Firstly, the compact tension test
presented in Section 4.5.1 is investigated where the material is still modeled as elastic
and, hence, allowing the use of the secant unloading scheme. The final example is cho-
sen as the case that has been shown cusp crack patterns, which have strongly motivated
the development of the TLS methods in this thesis, the rail shear test. For this final exam-
ple, the version presented in Section 4.5.3 is considered, however, unlike in Chapter 4,
the core is modeled with plasticity, while the arms are kept elastic.

5.1.1. COMPACT TENSION TEST
The main objective of the first example is to assess the performance of the TLSV2 in its
parallel version in terms of accuracy and scalability. For this purpose, load-displacement
and speed-up curves considering different numbers of subdomains and cores for the
same analysis are considered. For each partition scheme, the problem is run three times,
and the average runtime is computed.

The setting parameters, boundary conditions, and geometry of the first example are
the same as presented in Section 4.5.1, except for the effective element size, in which a
unique value is used for the whole mesh, h = 0.3mm, and lc = 2.3mm. In this case, the
initial mesh consists of 278380 elements, 140098 nodes and 280196 DOFs. Regarding the
overlapping region, one layer of elements is used during the partitioning of the mesh.
Making use of the calibrated value (15.6 MPa) from Section 4.5.1, and to the assumption
of the inversely proportional characteristic of Y G

c , Y G
c = 20.4MPa in this example.

The load-displacement curve for a reference solution, obtained without the parallel
framework, is compared with the result of using 24 subdomains in Fig. 5.1. Unlike what
was observed in previous test cases in Section 3.4.1, the load-displacement curves are
not perfectly matched, however, they do present the same trend, even for the post-peak
part.

Figure 5.2 shows for the case of 24 subdomains that the continuity of the level set field
and skeleton curve are ensured even when the crack crosses the subdomain boundaries,
just like what was found for the damage band with the TLSV1 in Chapter 3.

Figure 5.3 shows the total runtime as well as the total time spent in each analysis
phase (level set update, equilibrium solution, and front evolution) as a function of num-
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Figure 5.1: Compact tension test: load-displacement curve.

Figure 5.2: Compact tension test: the iso-0 and skeleton curves (left), and deformed configuration (right) in
the mesh partitioned into 24 subdomains. The colored set of elements represent the 24 subdomains.

ber of subdomains. By using 24 cores, the parallel framework accelerates the monolithic
response by a factor of 12.2. Once again, as already reported in the examples of Chap-
ter 3, the equilibrium solution phase is the most time consuming and presents the best
scalability among the three analysis phases. On the other hand, the level set update and
front evolution do not scale as well as the equilibrium solution phase, mainly because
they rely on collective communication strategies.
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5.1.2. RAIL SHEAR TEST

The main objective of this final example is to show the ability of the parallel imple-
mentation of the TLSV2 to handle problems with hardening plasticity. The boundary
condition and geometry of Section 4.5.1 are considered. Young’s modulus, Poisson’s ra-
tio, tensile strength, and hardening curves for the core material are the same as men-
tioned in Sections 2.3.2, 3.4.2 and 3.4.3. Although Y G

c has not been calibrated, Y G
c is set

equal to 0.96 MPa, the penalty stiffness is K = 8×102 N/mm, and the parameter that ac-
counts for stiffness recovery in the bulk material is β= 0.25 (see Eq. (4.33)). The viscous
parameter against crack growth and displacement rate are, respectively, η = 1smm−1

and u̇ = 0.025mms−1. For the face material, the properties are E = 376GPa (approx-
imately one hundred times stiffer than the core material), ν = 0.3, ft = 79MPa, and
Gc = 10N/mm.

The typical element size for the core is 0.15 mm while the faces are meshed with el-
ement size of 0.8 mm, leading to an initial mesh of 26902 elements, 13587 nodes and
27174 DOFs. The critical length lc is 1 mm, which is the same as for the corresponding
example in Chapter 4. The nucleation check is only performed in the mid-height plane
of the core. The SPR operator is used for transferring history.

Figure 5.4 shows the load-displacement curve for 15 subdomains. Figure 5.5 presents
the final damage distribution and deformed configuration. Note that the continuity of
the iso-0 and skeleton curves are guaranteed on shared regions once again. Also, the
compatibility of duplicate mesh quantities for the phantom node approach is ensured
on overlapping regions. The whole analysis takes 3.1 h.
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Figure 5.4: Rail shear test: load-displacement curve. The colored set of elements represent the 15 subdomains.
The two bullets on the graph correspond to the two figures that show the level set field and its skeleton evolu-
tion.
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Figure 5.5: Rail shear test: the final iso-0 and skeleton curves (top), and the final deformed configuration (bot-
tom) in the mesh partitioned into 15 subdomains.

5.2. CONCLUSIONS
In this final chapter of this thesis, it has been shown how to obtain a parallel framework
for the TLSV2 method based on the numerical tools proposed in Chapters 2 to 4. Minor
changes, the majority of them related to the level set update phase, have been required to
achieve a parallel version of the TLSV2 method, which shows the versatility and modu-
larity of the numerical tools and implementation that have been proposed in this thesis.

Remarks can be made based on the two examples analyzed in this chapter. As the
proposed parallel framework inherits the same design pattern detailed previously in
Chapter 3, there is clear resemblance in terms of performance between the two paral-
lel approaches. The equilibrium solution phase presented the best scalability among
the other analysis phases, as shown with the speed-up study in the first example. Be-
sides, the presence of the skeletonize, updateMesh, and computePhi functions
did not bring much complexity in terms of scalabilty to the level set update phase, even
though it involves more complex operations and data storage management compared
with the corresponding analysis phase for the TLSV1. Although a speed-up study has
been performed only for one test case in this chapter, based on the results shown in
Chapter 3, the same performance of the proposed framework for test cases with plas-
ticity is expected. In both simulated examples, the continuity of the level set field and
its corresponding skeleton curve were ensured even for cracks crossing multiple subdo-
mains.
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CONCLUSIONS AND DISCUSSION

A numerical framework based on the Thick Level Set (TLS) method for failure analysis
in solids has been extended and assessed. The existing TLS-based methods have been
adopted as bases for the proposed framework. Hardening plasticity, parallel comput-
ing, and cohesive cracks have been incorporated into the TLS approach as new features
within a single implementation architecture. With the proposed framework, a new nu-
merical tool has not only been made to more realistically assessed the complex process
of cusp formation in resin-rich regions of composite material in mode II delamination
condition.

NEW DEVELOPMENTS
What follows next is a chapter-wise summary of the main contributions that have been
made to the collection of existing TLS-based models for the computational modeling of
damage and crack growth in solids in a quasi-static context:

• Plasticity has been combined with the TLS method. Two elasto-plastic models
have been considered and assessed, the model by Melro et. al. [37] for epoxy resins
and the classic Von Mises formulation. A new criterion for damage initiation based
on the ultimate yield surface for ductile fracture simulations has been proposed. A
new loading scheme that takes into account the permanent strain in the presence
of plasticity has been introduced.

• A parallel framework built on the concepts of domain decomposition technology
has been designed for the framework. Collective communication routines have
been designed to handle TLS-specific analysis phases. A point-to-point commu-
nication routine has been employed to handle the enrichment scheme.

• A collection of algorithms and methods have been used and designed to bring to
life the full capabilities of the TLSV2. A skeletonizer algorithm equipped with ball-
shrinking and graph-based algorithms has been designed for robust identification
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of free-form skeleton curves for the TLSV2 method. The phantom node method
has been applied to deal with strong discontinuities in the TLSV2 method.

• The proposed TLSV2 model has been incorporated into the parallel framework
originally designed for its predecessor version, showing the versatility and mod-
ularity of the model components and their computational implementations de-
signed in this work.

CONCLUSIONS
The accuracy and ability of different approaches and components of the proposed model
to failure analysis including complex topological crack patterns have been tested in sev-
eral numerical examples. The main conclusions from the simulations are:

• In a medium with hardening plasticity, the characteristic length, lc , and the vis-
cous resistance against crack growth, η, have a great influence on the global re-
sponse. The amount of plasticity can be controlled via these two parameters.

• The superconvergent patch recovery has been found to be an accurate operator to
transfer history when the integration scheme in the mesh is changed.

• The influence of geometry of resin-rich regions in fiber reinforced polymer com-
posites on cusp development is qualitatively validated. The cusp pattern is more
pronounced in curved-profile configuration, in agreement with experimental ob-
servations. Different load-displacement curves and fracture morphologies are ob-
tained by varying the profile geometry of such regions.

• Substantial speed-ups are achieved with the developed parallel framework using
a moderate amount of cores. The most time demanding part of the TLS method in
terms of computational cost, the equilibrium solution part, scales very well with
the number of cores used for the analysis. The less demanding parts of the TLS
scales less favorably.

• The proposed skeletonizer algorithm along with the phantom node method give
the TLSV2 the ability to handle complex skeleton events, including branching and
merging.

• Free-sliding deformation is achieved in test setups with cusp development with
the TLSV2, without the necessity of including information of the geometry orien-
tation of problem being investigated.

• The tasks related to the TLSV2 method do not delay considerably the parallel frame-
work, despite having complex operations.

FUTURE PERSPECTIVE
Although this work presents a TLS-based framework to simulate failure in solids upon
mechanical loads, open questions remain. In the following, a number of improvements
and applications for future research are listed.
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• In the testing of the proposed framework in a parallel context, several issues have
been encountered that can be improved for better scalability, mainly in the analy-
sis phases of the level set update and front evolution. The fast marching operations
could be replaced with a system of equations for velocity extension or reinitial-
ization over the mesh, such that parallel iterative solvers can be applied in these
solution phases as well. However, an alternative to parallelize the way averaged
quantities (e.g., Ȳ and Ȳc ) are computed would still be necessary to completely
parallelize all main solution phases. Regarding the parallel version of the TLSV2
method, skeleton curves could be computed on each subdomain with subsequent
smoothing/matching processing on overlapping regions.

• The certainty that no energy is dissipated when a cohesive segment is inserted
along the skeleton curve is neither guaranteed nor investigated in this work. Per-
haps, an initially rigid formulation can be adopted. To what extent that is neces-
sary and how it can be achieved are remaining questions for now.

• A 3D implementation is undoubtedly a great challenge, which requires several
changes and new features. Firstly, the damage nucleation criterion based on the
ultimate yield surface should be rewritten in terms of principal strain components,
and the out-of-plane plane component would need to be taken into account. Sec-
ondly, the skeletonizer algorithm by means of its ball-shrinking component will
still provide a point-based representation of atoms, which should subsequently
be transformed into surfaces to represent cracks. The complexity of this issue is
further amplified when complex crack events arise during the analysis, such as
branching and merging.

• The problem that has motivated the development of this work, the process of
cusps in a resin-rich region in mode II delamination, can be investigated more re-
alistically. This process has been reported as one of the reasons for the differences
in terms of fracture energy between mode I and mode II crack growth since form-
ing cusps requires the creation of more crack surface than forming a single straight
crack. For this purpose, virtual experiments based on well-known setups can be
used, such as three-point bend end-notched flexure (ENF) and single leg bending
(SLB). A better understanding of this in situ process can allow us to develop proper
physics-based criteria and traction-separation relations for macroscale simula-
tions.

• Despite having a different context, the models that have been developed in this
thesis could be extended to dynamics and fatigue analyses, specially the consider-
ation of cohesive cracks through the specific algorithms that have been designed
for the TLSV2. Models by Moreau et al. [19], for dynamics, and by Latifi et al. [21]
and by Niessem [23], for fatigue, could be used as bases for such extensions.
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PROPOSITIONS

accompanying the dissertation

EXTENDING THE THICK LEVEL SET APPROACH

PLASTICITY, PARALLEL COMPUTING AND COHESIVE CRACKS

by

Luiz Antonio TAUMATURGO MORORÓ

1. You can only affirm that you have well understood a numerical model when you
are able to implement it completely.

2. Focusing too much on building numerical tools can keep you away from the actual
problem that has originally motivated the development of such tools.

3. Turning a sequential implementation into a corresponding parallel one can be
harder than implementing the same parallel framework from scratch.

4. A powerful computer cluster can be useless if your parallel implementation relies
primarily on collective-like routines.

5. A PhD journey can be less tortuous by using the divide-and-conquer concept from
domain decomposition methods.

6. Despite having more potentialities, the Thick Level Set method is less popular than
phase field approaches.

7. Fixing a memory-related error in a C++ code within a parallel environment is as
thrilling as celebrating a goal of your favorite football team.

8. Most people think all Brazilians are good at football – in fact, the majority of them
are.

These propositions are regarded as opposable and defendable, and have been approved
as such by promotors Dr. ir. F. P. van der Meer and Prof. dr. ir. L. J. Sluys.





STELLINGEN

behorende bij het proefschrift

EXTENDING THE THICK LEVEL SET APPROACH

PLASTICITY, PARALLEL COMPUTING AND COHESIVE CRACKS

door

Luiz Antonio TAUMATURGO MORORÓ

1. Je kan alleen stellen dat je een numeriek model doorgrond hebt wanneer je in staat
bent het helemaal te implementeren.

2. Een te sterke focus op het ontwikkelen van numerieke gereedschappen kan je af-
houden van het eigenlijke probleem dat oorspronkelijk aangezet heeft tot de ont-
wikkeling van deze gereedschappen.

3. Een sequentiële implementatie ombouwen tot een parallelle kan moeilijker zijn
dan hetzelfde parallelle raamwerk helemaal opnieuw te implementeren.

4. Een krachtig rekencluster kan nutteloos zijn als je parallelle implementatie primair
op gedeelde routines leunt.

5. De reis van een promotie kan minder kronkelig gemaakt worden door het verdeel-
en-heers principe van domein-decompositie methodes.

6. Ondanks een surplus aan mogelijkheden is de Thick Level Set methode minder
populair dan phase field benaderingen.

7. Het herstellen van een geheugen-gerelateerde fout in C++ code in een parallelle
omgeving is even opwindend als het vieren van een doelpunt van je favoriete voet-
balteam.

8. De meeste mensen denken dat alle Brazilianen goed zijn in voetbal – in feite zijn
de meesten dat.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig goed-
gekeurd door de promotoren Dr. ir. F. P. van der Meer en Prof. dr. ir. L. J. Sluys.
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