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The Uni�ed State Model is a method for expressing orbits using a set of seven elements.
The elements consist of a quaternion and three parameters based on the velocity hodograph.
The equations of this model and the background theory necessary to understand them
have been shown here. Numerical simulations comparing the Uni�ed State Model with the
traditional Cartesian coordinates have been carried out for perturbed orbits, orbits with
low-thrust propulsion, and a solar sailing trajectory. The Uni�ed State Model outperforms
Cartesian coordinates for all cases in terms of accuracy and computational speed, except
for highly eccentric perturbed orbits. The performance of the Uni�ed State Model is
exceptionally better for the case of orbits with continuous low-thrust propulsion with CPU
simulation time being an order of magnitude lower than for the simulation using Cartesian
coordinates. This makes the Uni�ed State Model especially suited for use in trajectory
simulators and optimizers.

I. Introduction

Cartesian coordinates and classic Keplerian elements are well-established for the propagation and visu-
alization of orbits. However, there are many other ways in which satellite orbits can be described. One of
these methods is a novel concept known as the Uni�ed State Model (USM). The USM, �rst proposed by
Samuel P. Altman, uses quaternions and velocity hodograph parameters to express orbits.1 The 4 quaternion
elements express the orientation of a reference frame �xed to the orbiting body, with respect to an inertial
frame �xed to the central body. The velocity hodograph parameters give information about the size and
shape of the orbit. During an unperturbed orbit, the velocity hodograph parameters remain constant and
only the quaternion varies with time. This is because the orbital shape remains unchanged for such an orbit,
and only the location of the orbiting body within the orbit changes with time. When perturbations are
present, the variation of the hodographic parameters will be small compared to the variation of Cartesian
coordinates. Thus, the USM will have better numerical stability than Cartesian coordinates as there are
4 rapidly varying and 3 slowly varying elements, compared to the 6 rapidly varying elements. The classic
Keplerian elements have only one rapidly varying element, which is the true anomaly. However, singularities
exist and the equations for the in
uence of perturbations are rather complex.

There has not been much research carried out on the USM since its inception. If the theory has been
mentioned, it has always been in relation to navigation. A method of satellite tracking in velocity space
rather than the traditional position space was �rst shown by Altman,2 which has been mentioned once,3 but
never investigated further. The USM equations have been shown in more detail in another technical note,4

but with a term corrected with respect to the original model. The modi�ed equations are also shown in
the paper by Raol.3 Both Chodas4 and Raol3 focus on satellite orbit tracking and mention that the USM
allows for better trajectory simulation. It was concluded4 that satellite orbit tracking from a ground station
is slightly better using the traditional Cartesian coordinates than with the USM. Therefore, one strategy3

is to use the USM for trajectory propagation and the Cartesian coordinates for state estimation.
It has been previously stated, without showing any results, that the USM is better for numerical in-

tegration than Cartesian coordinates.1,3, 4 One paper uses a modi�ed version of the USM5 as a way of
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integrating rotating bodies. The comparison was performed with Euler angles and not orbital trajectories
and Cartesian coordinates. Cartesian coordinates are used for expressing and integrating orbital trajectories
in well known software like GEODYN-II,6 the Satellite Tool Kit (STK),7 and the General Mission Analysis
Tool (GMAT).8 If the USM improves the performance of numerical integration, it could be implemented
in these software. This is investigated in this work by numerically integrating various orbital trajectories.
With superior numerical performance, the USM would be especially suited for use in numerical optimization
techniques like Particle Swarm Optimization (PSO) and Genetic Algorithms (GA). Especially, optimization
of low-thrust orbits and solar sailing would bene�t the most because of the long Time of Flight (TOF).

In Section II, the background theory required to understand the USM is presented. Section III shows how
the equations of the USM can be derived. The results of some numerical simulations and the comparisons
between the USM and Cartesian coordinates can be found in Section IV and �nally some conclusions can
be found in Section V.

II. Background Theory for the USM

In this section, the background information necessary for the derivation and the application of the USM is
presented. The USM state consists of a quaternion and three hodographic velocities and therefore, quaternion
and hodograph theory is discussed. First, however, some rotation theory is given to better understand
quaternions.

A. Rotation

Reference frames are used to express the position and motion of bodies. Normally, these reference frames
are dextral orthonormal triads, meaning that the �rst axis can be mapped onto the second axis by a 90�

right-handed positive rotation along the third axis. Thus, a reference frame Fa consists of a set of three
right-handed, mutually perpendicular vectors: â1, â2, and â3.

It is often necessary to use di�erent reference frames within the same set of calculations. In this case, it
is required to convert vectors expressed in one reference frame to another. Suppose we have two reference
frames, Fa and Fb, that share an origin. The unit vectors that de�ne Fb are related to the unit vectors that
de�ne Fa in the following manner:9

b̂1 = c1;1â1 + c1;2â2 + c1;3â3 (1a)

b̂2 = c2;1â1 + c2;2â2 + c2;3â3 (1b)

b̂3 = c3;1â1 + c3;2â2 + c3;3â3 (1c)

In Eq. (1), ci;j is the cosine of the angle between b̂i and âj , and is an element of the so-called Direction
Cosine Matrix (DCM), Cb;a. The frame transformation is carried out by pre-multiplying the vector de�ned
in Fa with Cb;a. To convert a vector from Fb to Fa, the inverse of Cb;a should be used. As Cb;a is an
orthonormal matrix, its inverse is simply the transpose.

Another fundamental concept in rotations of reference frames is Euler’s theorem.9 This theorem states
that any rotation between two frames can be expressed by a rotation of an angle, �, around an axis â,
through the shared origin of the two reference frames. This axis and angle are often referred to as the
Euler axis and the Euler angle, respectively. Since the Euler axis-angle pair and the DCM both express the
rotation between two frames, there exists a relationship between them. The DCM can be constructed from
the Euler axis-angle pair using9

C = I3 cos � + (1� cos �)ââT � [â�] sin � (2)

In Eq. (2) â = [a1; a2; a3]T is the Euler axis, � is the Euler angle, and the term [â�] is the skew-symmetric
form of the Euler axis and is de�ned as

[â�] =

264 0 �a3 a2

a3 0 �a1

�a2 a1 0

375 (3)
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B. Quaternions

Attitude is synonymous with orientation and in the aerospace world it almost always means the orientation
of a spacecraft or an aircraft. The attitude of a spacecraft relative to a reference frame actually means the
orientation of a reference frame �xed to the body of the spacecraft with respect to another reference frame.
Attitude parameters are just parameters that can describe this orientation. Thus, the DCM, Euler axis, and
Euler angle are all attitude parameters.

A quaternion is a 4 dimensional hyper-complex number consisting of 1 real and 3 imaginary numbers.
Quaternions of unit magnitude are used to express rotations, with the imaginary part being a vector, �, and
the real part a scalar, �. The quaternion can be created using the Euler axis-angle in the following manner:

� =
h
�1; �2; �3

iT
= â sin(�=2) (4a)

� = cos(�=2) (4b)

Quaternions, especially when de�ned in the above manner, are also known as Euler parameters. In terms of
complex numbers, the quaternion can be written as

Q = � + �1i+ �2j + �3k (5)

where i,j, and k are all square roots of -1.
The rotation speci�ed by the quaternion is expressed as (�; �). The 4 quaternion elements are not

mutually independent because they satisfy the following constraint.

�T �+ �2 = �21 + �22 + �23 + �2 = 1 (6)

This shows that the quaternion describes a unit 3-sphere, meaning a sphere in 4 dimensional space. Any
rotation is therefore a trajectory on the surface of the 3-sphere. Also, the orientation speci�ed by (�; �) is
the same as the orientation speci�ed by (��;��). This is because the second quaternion describes the Euler
rotation with Euler axis �a and Euler angle ��. Thus, if (�; �) describes the shortest rotation then (��;��)
describes the longest rotation. To ensure that the shortest rotation is taken, a necessary condition is that
� > 0. To visualize this, quaternions can be viewed in another manner. The norm of the quaternion is 1,
so the 4 quaternion elements represent the radial vector of a point on a 4-dimensional unit sphere. Since it
is very di�cult to imagine a 4-dimensional sphere, we can consider the vector part � to express the radial
vector of a point on a 3-dimensional sphere. The radius of this 3-dimensional sphere, the norm of �, can be
found using the unit norm constraint of the quaternion in the following manner:

j�j =
p

1� �2 (7)

Thus, the sphere expressing � changes with values of �. This will be a unit 3-dimensional sphere if � = 0, and
only a point if � = �1. Since � is in the fourth dimension, the 3-dimensional spheres of � corresponding to
� can be thought to be present at various times like an animation. This can also be shown as a sphere with
a linear o�set from a point. Each o�set corresponds to a certain value of � and all the points on the surface
of the sphere express the possible values of �. This can be seen in Fig. 1 along with a speci�c orientation.

A DCM can be constructed from a quaternion in the following manner:9

C =
�
�2 � �T �

�
I3 + 2��T � 2� [��] (8)

This essential matrix can be written out in full as

C =

264 1� 2
�
�22 + �23

�
2 (�1�2 + �3�) 2 (�1�3 � �2�)

2 (�2�1 � �3�) 1� 2
�
�23 + �21

�
2 (�2�3 + �1�)

2 (�3�1 + �2�) 2 (�3�2 � �1�) 1� 2
�
�21 + �22

�
375 (9)

Inversely, there are two methods to extract a quaternion from a DCM. The �rst method is very compact,
but has a singularity at � = 0. In this method, the unit magnitude property of a quaternion is used to �nd
the � from the DCM found in Eq. (9).

� = �1
2

p
TrC + 1 (10)
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(a) 3 dimensional spheres expressing the constraint for � for var-
ious values of �

(b) Expression of a speci�c orientation (�,�)

Figure 1. Visualizing quaternions

264 �1

�2

�3

375 =
1
4�

264 c2;3 � c3;2
c3;1 � c1;3
c1;2 � c2;1

375 (11)

In Eq. (10), the sign can be chosen arbitrarily. This is because the orientation expressed by the quaternion
(�; �) is the same as the orientation expressed by (��;��). As seen in Eq. (11), the signs of the elements
of � change according to the sign of �. The appropriate sign should be chosen from the quaternion history.
If the present step is considered to be k, the quaternion element with the largest magnitude in step k � 1
should have the same sign in step k. For there to have been a smooth switch of sign for all the quaternion
elements in one time step, the time step has to be extremely large because of the unit-magnitude constraint.
If 3 of the quaternion elements pass through 0, one element still has to be approximately 1 or -1. Thus, for
reasonably sized time steps and smooth uni-directional motion, only a maximum of 3 quaternion elements
may change sign simultaneously.

A second method also exists that has no singularities.10 In this method, the squares of the vector and
scalar parts of the quaternion should �rst be computed using the following equations:

4�2i = 1� TrC + 2ci;i (12a)

4�2 = 1� TrC + 2TrC (12b)

Starting from the quaternion element with the largest square in Eq. (12), the following relations can be used
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Figure 2. Cartesian and polar frame on the orbital plane

to compute the remaining quaternion elements:

4�i�j = ci;j + cj;i (13a)
4�i� = cj;k � ck;j (13b)

In Eq. (12) and Eq. (13), the subscripts (i; j; k) are cyclic permutations of (1; 2; 3). By default, the positive
square root can be taken and then, the elements can get the appropriate sign based on the quaternion history.

If there are 2 successive rotations, (�0; �0) followed by (�00; �00), the full rotation, (�; �), can be expressed
as

� = �00�0 + �0�00 + [�0�] �00 (14a)

� = �0�00 � �0T �00 (14b)

Finally, if Fb is a rotating reference frame with an angular velocity ! expressed in Fb, the quaternion
that expresses its attitude with respect to an inertial frame has the time derivative9"

_�
_�

#
=

1
2



"
�

�

#
(15)

with 
 de�ned as


 =

"
� [!�] !

!T 0

#
(16)

C. Hodographs

A hodograph, Greek for path-writing, is also known as a velocity diagram. Hodographs are not used often
in contemporary research in Astrodynamics, but there are some excellent technical reports on hodographs
from the 1960s.11{15 There are various methods to derive the hodographs, but only one of the methods
is presented here due to its simplicity and elegance.15 The result is that the velocity at any point in an
unperturbed orbit is the sum of a velocity normal to the radial vector laying in the orbital plane, C, and a
velocity R, 90� ahead of the eccentricity vector. The eccentricity vector is the vector pointing from the focus
of the orbit to the perifocus and is parallel to the unit vector êx found in Fig. 2. A set of Cartesian and
polar reference frames are de�ned as seen in Fig. 2. In the Cartesian frame, êx points towards the perifocus
of the orbit and êr points towards the orbiting body. C acts along ê� and R acts along êy.

The two velocities have the following magnitudes:15

C = �=h (17)

5 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n 
D

ec
em

be
r 

24
, 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

0-
76

58
 



(a) Classical velocity hodograph for various types of
orbits

(b) Polar velocity hodograph for various types of or-
bits

Figure 3. Classical and polar velocity hodographs

R = �e=h = Ce (18)

Expressions for the velocities in the polar and Cartesian frame give rise to circles in both the Cartesian-
velocity and the polar-velocity space. The path in the Cartesian-velocity space is known as the classical
hodograph and the path in the polar-velocity space is known as the polar hodograph. The equation for the
classical hodograph is15

v2
x + (vy �R)2 = C2 (19)

where vx and vy are the velocity components in the Cartesian reference frame. The classical hodograph is a
circle with its center at (vx,vy) = (0,R) and radius C. If orbits with constant C are chosen, the hodographs
will have the same size, but their centers will translate up along the vy-axis as the eccentricity increases.
Classical hodographs for orbits with various eccentricities, but the same C can be seen in Fig. 3(a).

The equation for the polar hodograph is

v2
r + (v� � C)2 = R2 (20)

The polar hodograph is a circle with its center at (vr ,v�) = (0,C) and radius R. If orbits with constant C
are chosen, the hodographs will be concentric circles with the radius increasing with increasing eccentricity.
The limiting case of circular orbits with e = 0 has a point as the polar hodograph. Polar hodographs for
orbits with various eccentricities, but the same C can be seen in Fig. 3(b).

III. The Uni�ed State Model

Using these hodograph theory and quaternions, it is possible to understand the USM. First, the method
of formulating the USM state elements and state dynamics is presented, followed by the actual equations
and the method of implementation. The USM is explained using the classic Keplerian elements in order to
make it more understandable.

A. USM Theory

As mentioned previously, the USM is a 7 parameter set consisting of the four quaternion elements and three
hodographic parameters. For the USM, the following three reference frames have to be de�ned:

Fg an inertial reference frame �xed on the central body
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(a) Orientation of Ff with respect to Fg (b) Orientation of Fe with respect to Ff

Figure 4. The three reference frames used in the USM

Ff an intermediate rotating reference frame

Fe a rotating reference frame similar to the polar reference frame found in Fig. 2

The frame Fg is de�ned to have the two unit axes ĝ1 and ĝ2 laying in the equatorial plane of the central
body, and the third unit axis ĝ3 is perpendicular to the equatorial plane. The frame Fe is de�ned to have
the unit axis ê1 pointing along the radial vector of the orbiting body, ê3 laying along the angular momentum
vector, and ê2 laying the orbital plane and completing the reference frame. Frame Ff has f̂1 and f̂2 laying
in the orbital plane, and f̂3 laying along the angular momentum vector.

The USM state can then be written as1

x =

266666666664

C

Rf1

Rf2

�O1

�O2

�O3

�O

377777777775
(21)

In Eq. (21), the quantities are

� C is a hodographic parameter

� Rf1 and Rf2 are the projection of R in Ff

� �O1, �O2, �O3, and �O are components of a quaternion that describes the orientation of Fe with respect
to Fg

To get from Fg to Ff , an Euler rotation has to be made around the line of nodes. The line of nodes is the
line joining the ascending and descending node of an orbit, with the positive pointing towards the ascending
node. The Euler angle is equal to the inclination and the resulting rotation can be seen in Fig. 4(a).

To get from Ff to Fe, an Euler rotation has to be made around f̂3. The Euler angle is the true longitude
�, which is the sum of the right ascension of the ascending node, argument of pericenter, and the true
anomaly:

� = 
 + ! + � (22)
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The rotation and the resulting frame can be seen in Fig. 4(b)
The rotations from Figs. 4(a) and 4(b) can be combined into a single rotation and converted into the

following quaternion. "
�O

�O

#
=

26664
sin i

2 cos
�


�u
2

�
sin i

2 sin
�


�u
2

�
cos i

2 sin
�


+u
2

�
cos i

2 cos
�


+u
2

�
37775 (23)

where u is the argument of latitude and is
u = ! + � (24)

The quaternion in Eq. 23 describes the orientation of Fe with respect to Fg and is part of the USM state.
It should be noted that for equatorial orbits 
 is not de�ned, and ! is not de�ned for circular orbits. The
USM is still valid in these cases with the unde�ned Keplerian elements set to 0.

To be able to use the USM, it is necessary to know how to compute the time derivatives. Unfortunately,
the dynamic equations are not as simple to compute as for Cartesian coordinates. The intermediate quantities
in Eqs. (25 - 29) have to be computed in the presented order. The quaternion elements depend on �, so �
can be found after some algebraic manipulation of the quaternion elements.1"

sin�
cos�

#
=

1
�2O3 + �2

O

"
2�O3�O

�2
O � �2O3

#
(25)

� = arctan
�

2�O3�O
�2
O � �2O3q

�
(26)

The velocities expressed in Fe can be found by projecting the hodographic velocities using �.1"
ve1

ve2

#
=

"
0
C

#
+

"
cos� sin�
� sin� cos�

#"
Rf1

Rf2

#
(27)

A quantity required for computing the time derivative of C is simply a relation of C and ve2.1

p =
C

ve2
(28)

The last required relation is required for expressing the dependancy of Rf1 and Rf2 on out-of-plane per-
turbing accelerations, and is missing from the original model.4


 =
�O1�O3 � �O2�O

�2O3 + �2
O

(29)

As input to the dynamic equations of motion, the perturbing accelerations have now to be computed
in Fe. It should be noted that the 2-body problem is inherent to the USM. Thus, the accelerations to be
computed should not include the acceleration due to the central gravity �eld. The dynamic equation for the
quaternion requires the following angular velocities:1

!1 =
ae3
ve2

(30)

!3 =
Cv2

e2

�
(31)

The angular velocity !2 = 0. Finally, the quaternion time derivative can be computed using the standard
formulation:9 26664

_�O1

_�O2

_�O3

_�O

37775 =
1
2

26664
0 !3 0 !1

�!3 0 !1 0
0 �!1 0 !3

�!1 0 �!3 0

37775
26664
�O1

�O2

�O3

�O

37775 (32)
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The time derivative of the hodographic velocity parameters can be computed in the following way:4264 _C
_Rf1

_Rf2

375 =

264 0 �p 0
cos� �(1 + p) sin� �
Rf2=ve2

sin� (1 + p) cos� 
Rf1=ve2

375
264 ae1

ae2

ae3

375 (33)

The method of initializing all the USM elements, except for Rf1 and Rf2, has been shown. R must be
expressed in Ff to give Rf1 and Rf2. The vector R lies in the orbital plane and is 90� ahead of the perifocus;
this means that in Fe, R can be written as

Rej�=90� =
h
R; 0; 0

iT
(34)

At the location where R is expressed, � = 90� and � is

�j�=90� = 
 + ! + 90� (35)

The rotation matrix Cf;e is the inverse of Ce;f and is

Cf;ej�=90� =

264 cos� � sin� 0
sin� cos� 0

0 0 1

375 (36)

R can be converted to Ff using the de�nitions of � and u.264 Rf1

Rf2

0

375 =

264 cos ((
 + !) + 90�) � sin ((
 + !) + 90�) 0
sin ((
 + !) + 90�) cos ((
 + !) + 90�) 0

0 0 1

375
�������
�=90�

�

264 R

0
0

375
�������
�=90�

=

264 �R sin (
 + !)
R cos (
 + !)

0

375
(37)

B. Re
ections on the USM

The USM has some attractive properties that make it suitable for numerical integration. The fact that
the Euler parameters have a unit norm makes for a convenient way to check for numerical errors during
integration. During numerical integration, normalizing the quaternion is suggested.5 Three of the seven
state elements vary only in the presence of perturbations. This means that during any orbit, only 4 of the
7 state elements vary rapidly. Also, the 4 rapidly varying elements are bounded between -1 and 1. It is also
possible to scale the velocity parameters by dividing by C0, which is the initial value of C. This will ensure
that these parameters also stay in the unit region. It is realistic for most simulations that during the orbit
C, Rf1, and Rf2 do not increase by an order of magnitude. In case the attitude of the spacecraft is also
simulated, the usage of Euler parameters for all 6 degrees of freedom may decrease the computation load.

Even though the Euler parameters are free from singularities, the USM is unfortunately not. There are 2
types of orbits where the USM breaks down. This can be seen in the mathematics whenever the denominator
of a fraction is 0.

Case 1 �2O3 + �2
O

Case 2 h from the de�nition of C

Case 2 signi�es that the motion is rectilinear. This is not the case for normal trajectories in celestial
mechanics. This might be the case for hyperbolic orbits when the true anomaly limit is reached. At the
true anomaly limit the orbit degenerates into a rectilinear orbit. In the absence of perturbing accelerations,
this would cause both !1 and !2 to become 0. Thus, the Euler parameters and the velocity parameters of
the USM would remain constant and the state would be undeterminable, but without a singularity. This
is logical because at this point the spacecraft has escaped from the central gravity �eld, thus violating the
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a [km] e [ ] i [deg] 
 [deg] ! [deg] � [deg]
7213 0.01 98.9 269 205 174

Table 1. Keplerian elements of an almost circular orbit

underlying assumption of the USM: motion is in a central gravity �eld, albeit perturbed. This will not be
a problem for orbital work because, using the notion of sphere of in
uence, the orbit should be out of the
sphere of in
uence of the planet, and in orbit around the Sun. Escapes from the Solar System are not cases
that occur very often for arti�cial spacecraft.

The other singularity occurs when
�2O3 + �2

O = 0 (38)

Using the condition found in Eq. 38 and the condition of unit norm for Euler parameters results in

�2O1 + �2O2 = 1 (39)

This can be deduced by using the de�nition of the Euler parameters in terms of the Keplerian elements.

�2O3 + �2
O = cos2

�
i

2

�
= 0 (40)

which can subsequently be used to �nd that i is 180�. The reason for the singularity can be found in the
rotation matrix from Fg to Ff , Cf;g.

Cf;g =

264 cos i+ cos2 
(1� cos i) cos 
 sin 
(1� cos i) � sin 
 sin i
cos 
 sin 
(1� cos i) cos i+ sin2 
(1� cos i) cos 
 sin i

sin 
 sin i � cos i sin i cos i

375 (41)

When the case of i = 180� is �lled in, the resulting Cf;g is

Cf;g =

264 2 cos2 
� 1 2 cos 
 sin 
 0
2 cos 
 sin 
 2 sin2 
� 1 0

0 0 �1

375 (42)

As can be seen in Eq. (42), di�erent values of 
 result in di�erent orientations of Ff . This is obviously not
the case in reality; thus, the singularity. This singularity can be removed by de�ning an alternate Ff based
on a rotation about the descending node.4 This translates mathematically into a rotation from Fg to Ff
using the Euler axis and angle

a1 =

264 cos (
 + �)
sin (
 + �)

0

375 = �

264 cos 

sin 


0

375 (43a)

�1 = i (43b)

Specialists in astronautics are accustomed to visualizing orbits using classic Keplerian elements. An
orbital trajectory is also easy to see when plotted in Cartesian coordinates. There are no available visualiza-
tions, in existing literature, of orbits using the USM elements. Therefore, the behavior of the USM elements
for an unperturbed orbit, with the initial Keplerian elements found in Table 1 is presented in Fig. 5.

The quaternion elements are bounded by 1, but C, Rf1, and Rf2 are many orders of magnitude larger.
To ensure that all the USM elements �t in one plot, the velocity parameters are scaled by using the initial
value of C. Two orbital periods are plotted instead of one to show the periodicity of the quaternion elements.
Figure 5 shows the evolution of the USM elements over two orbital periods of an almost polar, retrograde,
and slightly eccentric orbit. The plots show that after a full orbit, all the quaternion elements have the same
magnitude, but the opposite sign. This is correct because when � = 360�, the rotation is the same as when
� = 0�, but the long way around. For the next orbit, the behavior is the same but with the signs reversed.
This is because the quaternion elements use the half angle of the Euler angle and thus, are periodic over
720�. To be very consistent, the sign of the quaternion elements should be switched using some control logic
once � > 360�. This would, however, not in
uence the results and it would add an unnecessary discontinuity
in the ephemeris.
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(b) Behavior of the normalized USM velocities

Figure 5. The behavior of the USM elements over 2 orbits with Rf1 and Rf2 overlapping (C � 7434 m/s,
Rf1 � �68 m/s, and Rf2 � �30 m/s)

IV. Applications and Results

In this section, the USM is applied to �ve scenarios to compare its performance in numerical integration
against the Cartesian coordinates. Two orbit types have been used to test the performance of the USM
for perturbed Keplerian orbits without any thrust. An orbit raising maneuver from LEO to GEO has been
used to test the performance of the USM under the in
uence of low-thrust propulsion and perturbations.
Also, a trajectory is simulated where there are no perturbing forces on a satellite, except for a continuous
low-thrust. Finally, the USM is applied to a solar-sailing scenario.16

A. Integrator

All the simulations carried out require a reference trajectory, which cannot be determined analytically for
perturbed orbits. Thus, a more accurate integration is used to �rst generate the so-called truth model.
A RK5(4) integrator is then used to �nd the error with respect to the truth model. A more accurate
integration can be obtained by either using a more stringent tolerance or by increasing the order of the
integrator. A higher order integrator with more stringent tolerances is used to get the truth model for the
solar-sailing scenario. For the other scenarios, however, only the tolerances were made more stringent. Since
simulations are normally carried out using variable step-size integrators, results of simulations using �xed
step-size integrators are not presented.
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Figure 6. The procedure for a �nding the state time derivative when carrying out integration using the USM

It is possible to derive all the various perturbations in terms of the USM,1 however, users already have
perturbations available in the Cartesian form. To ensure that the USM can be easily implemented without
much overhead and because the time required to switch between the USM and Cartesian coordinates is
very small compared to the computation time required to compute the perturbations, perturbation models
expressed in Cartesian coordinates have been used. The perturbations applied are: atmospheric drag,
J2;0, J2;2, solar and lunar 3rd body perturbation, and solar-radiation pressure. These perturbations are
the major sources of perturbation for Earth orbiting satellites and the perturbation models can be easily
found in literature.17 The time derivative for USM was computed as shown in Fig. 6. This shows that if
perturbations are to be used, the USM state is �rst converted to Cartesian coordinates prior to computing
the perturbations. However, if only low-thrust propulsion is used, there is no need to convert the state to
Cartesian coordinates since it is simpler to compute the perturbing accelerations in Fe than in Fg.

When implementing the dynamics function for the USM, it is important to validate them with respect
to an unperturbed analytical, and a perturbed orbit before they can be used to generate trajectories. For
Cartesian coordinates the dynamics function is quite simple to implement and choosing an unperturbed,
eccentric, and inclined orbit will su�ciently excite all the time derivatives. For the USM however, an
unperturbed orbit only causes a change in the quaternion. Unless a perturbed orbit is chosen, _C, _Rf1, _Rf2,
and !1 will not be excited. Thus, any bug in the dynamics regarding those elements would not be found.

It is important to note that the tolerances are checked during the USM integration by converting the
propagated state to Cartesian coordinates. This way, a consistent time step-size adjuster is used for integra-
tion with both the USM and Cartesian coordinates. The variable step-size integrator requires two tolerance
values "pos and "vel. After an integration step, both the actual 5th-order solution y, and the embedded
4th-order solution yem are used. If the integration is carried out using the USM, solutions are converted
to Cartesian coordinates. The di�erence between the two vectors in Cartesian coordinates, �, is taken and
then divided by the present time step-size h:

� =

"
�r
�v

#
=

y � yem
h

(44)

In case j�rj � "pos and j�vj � "vel, the solution is accepted. Otherwise, the integration is repeated using a
new time step-size hnew. Even if the solution is accepted, hnew is computed for the next integration step.
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Orbit Type a [ km ] e [ - ] i [ deg ] 
 [ deg ] ! [ deg ] � [ deg ]
Elliptic 26559 0.70 63.2 206.3 281.6 0.0

Almost Circular 6936 0.00 28.5 194.8 272.3 0.0

Table 2. Initial Keplerian elements of the reference orbits

Two more values are de�ned to be

�r = 0:84
�
"pos
j�rj

�1=4

(45a)

�v = 0:84
�
"vel
j�vj

�1=4

(45b)

The di�erence � to be used to �nd hnew is the smallest out of �r and �v. Finally, hnew is computed using
one of the following three ways: If � � 0:1

hnew = 0:1 � h (46)

if � � 5
hnew = 5 � h (47)

and for all other cases
hnew = � � h (48)

B. Orbits without Thrust

An almost circular and an elliptic Molniya type of orbit with e = 0:7 are chosen as the reference orbits to be
simulated. Trial runs using the USM showed that it has better integration performance and therefore, the
truth-model is created using RK5(4) with the USM and "pos = "vel = 10�9. The minimum time step-size
was set to 5 s and the maximum time step-size to 250 s. The initial Keplerian elements for the two orbits
can be found in Table 2.

Integration was again carried out using the RK5(4) with Cartesian coordinates and the USM for various
tolerances. The position and velocity tolerances were set to the same value, "pos = "vel, and the tolerances
were made more stringent by an order of magnitude for each simulation from 10�1 to 10�7. The maximum
and minimum time step-sizes were kept at 5 s and 250 s respectively. The upper limit was reached for the
simulations with the least stringent tolerances and the lower limit was reached for the simulation with the
most stringent tolerances. The simulations were carried out in MATLAB on a MacBook with a 2.4 GHz
Intel Core 2 Duo processor and 2 GB of RAM. The mean error in position between the truth-model and
the simulated trajectory is computed for each simulation and plotted against the CPU time as seen in Figs.
7 and 8. The mean error in velocity is not shown because it follows the same trend as the position error
and therefore does not provide any additional information. The CPU time was measured using the tic toc
function available in MATLAB.

The results of variable step-size integration of 100 initial orbital periods for the almost circular LEO can
be seen in Fig. 7. During the variable step-size integration, the results of the Cartesian model form a front
in the position error - CPU time space that is like a Pareto front used for optimization. Any USM results
below or to the left of this front can be considered to perform better than the Cartesian results. As can be
seen in Fig. 7, all of the USM results are better than the Cartesian results. For a given mean position error,
the CPU time for the USM is approximately one tenth of the CPU time for Cartesian coordinates. Even
for the most stringent tolerance, the mean error for the integration using Cartesian coordinates is around
5� 10�2 with a CPU time of approximately 750 s. This accuracy is achieved by the USM with a CPU time
of only 90 s.

The results of variable step-size integration of 50 initial orbit periods for the Molniya type of orbit can
be seen in Fig. 8. Again, if a front is created using Cartesian coordinates, all of the USM results are better
than the Cartesian results. For a given mean position error, the CPU time for the USM is in the range of a
half to a quarter of the CPU time for Cartesian coordinates. Even though the results of the USM are better
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Figure 7. Mean error in position against CPU time for 100 original orbital periods of an almost circular orbit
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Figure 8. Mean error in position against CPU time for 50 original orbital periods of an eccentric orbit

than the results for Cartesian coordinates, the improvement due to the USM is not as dramatic as for the
case of an almost circular orbit. In an eccentric orbit, the majority of the time is spent in the part of the
trajectory that is almost rectilinear. In this part, the quaternion elements vary very slowly due to the low
value of !3. Any small error in the quaternion results in a large error in the position and therefore, it is easy
for numerical errors to creep in.

C. Orbit using Low-Thrust Propulsion

Using low-thrust propulsion to change orbital parameters is the focus of much work these days. There are
a few analytical solutions for low-thrust orbits such as exponential sinusoids18 and inverse polynomials.19

These analytical solutions su�ce for a �rst-order approximation, but to get more accurate results, optimizers
have to be used that simulate the whole trajectory. However, low-thrust orbits take a long time to simulate
because of the mission duration. Therefore, the USM could be readily applied if the CPU time for simulations
decreases. To test the performance of the USM for trajectories as a result of low-thrust propulsion, the
following two thrusting scenarios have been utilized:

Scenario 1 A circular parking orbit at an altitude of 838 km is used as the initial orbit and then simulated
for 100 original orbit periods with a continuous tangential acceleration of 0.0005 g (0.004905 m/s2).
No other perturbing accelerations are used.

Scenario 2 A circular parking orbit at an altitude of 1000 km is used as the initial orbit. A continuous
tangential acceleration of 0.001 g (0.00981 m/s2) is then applied till the spacecraft reaches GEO
altitude. The spacecraft is under the in
uence of all perturbations and this trajectory is comparable
to a low-thrust GTO.

14 of 21

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 T

E
C

H
N

IS
C

H
E

 U
N

IV
E

R
SI

T
E

IT
 D

E
L

FT
 o

n 
D

ec
em

be
r 

24
, 2

01
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

0-
76

58
 



0 20 40 60 80 100 120 140
10

−6

10
−4

10
−2

10
0

10
2

10
4

10
6

CPU Time [ s ]
M

ea
n

E
rr

or
in

P
os

it
io

n
[
m

]

 

 

USM
Cartesian coordinates

Figure 9. Mean error in position against CPU time for a trajectory with only low-thrust propulsion
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Figure 10. Mean error in position against CPU time for a trajectory with low-thrust propulsion and other
perturbations

All the simulations were carried out with the same conditions for the integrators as for the orbits without
thrust.

For Scenario 1, no other perturbations were used so that the abilities of the USM to handle low-thrust
orbits could be showcased. For the low-thrust case, no conversions have to be made to the Cartesian model
to �nd the perturbations as seen in Fig. 6. The results of the variable step-size integrator for 100 initial
orbital periods can be seen in Fig. 9. This shows that the USM is more suited for simulating trajectories
under the in
uence of continuous low-thrust. All the USM integrations are superior to Cartesian coordinates.
The mean position error using Cartesian coordinates with "pos = "vel = 10�7 is equal to the mean position
error using the USM with "pos = "vel = 10�2. However, the CPU time for the Cartesian coordinates is
approximately 26 times larger.

In reality, low-thrust orbits also have other perturbations. Thus, a full test of the USM would be to
have a low-thrust orbit with perturbations as found in Scenario 2. The results of the variable step-size
integration can be seen in Fig. 10. The results with low-thrust and other perturbations are very similar to
the results found for only low-thrust propulsion. Again, the USM performs better than the Cartesian model
with the accuracy of the USM being much higher than that of Cartesian coordinates. For a given accuracy,
the CPU time of the USM is an order of magnitude less than that of Cartesian coordinates. The mean
position error using Cartesian coordinates with "pos = "vel = 10�7 is equal to the ones using the USM with
"pos = "vel = 10�3. However, the CPU time for the Cartesian coordinates is approximately 13 times larger.
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Figure 11. Optimum trajectory in the Geocentric frame

D. Solar Sailing Mission

Optimization of the trajectory of a mission to the Solar poles using Solar sailing has been previously carried
out, where Evolutionary Optimization (EO) is used instead of Genetic Algorithms (GA), and a realistic
model for the solar sail is used.16 EO is very similar to optimization using GA because they both follow
the Darwinian philosophy of "survival of the �ttest". There is, however, one major di�erence between the
two. GA techniques represent the positions in the search space in terms of binary code, while EO uses the
actual 
oating numbers. EO techniques are usually more e�cient and produce more realistic results when
compared to GA.20 The objective for the optimizer to minimize is the total mission cost, while still satisfying
the constraint of arriving at a solar polar orbit by 2020.

This mission has the spacecraft starting o� in a GTO , followed by a spiraling orbit to escape from the
Earth using solar propulsion. From the escape from Earth onwards, a heliocentric reference frame is used
instead of a geocentric reference frame. This trajectory is simulated until the spacecraft spirals inwards till
it is 0.5 AU from the Sun. Finally, there is an heliocentric phase that cranks the orbit and increases the
inclination to achieve the desired polar orbit. Simulation of this trajectory is carried out in this work using
the USM and compared to Cartesian coordinates to investigate the possible gains due to switching to the
USM.

There are many more speci�c factors that need to be taken into account to fully implement this mission,
but these details can be found in ref. 16 and will not be repeated here. They include perturbations, guidance
of the sail, modeling of the sail, etc. The �nal result of the optimization process is a vehicle of 218 kg with
a sail area of 6424 m and a travel time of 9.46 years. The launch date is January 2011 and the arrival date
is July 2020.16 The geocentric and heliocentric phases of the optimum trajectory can be seen in Fig. 11 and
Fig. 12, respectively.

Throughout the trajectory, the spacecraft is using solar-sailing as a method of low-thrust propulsion. As
has been shown so far, integration of trajectories utilizing low-thrust propulsion is faster using the USM
than Cartesian coordinates. Since the integration of the trajectory is expected to be faster using USM, the
optimization can be carried out faster since numerous individual simulations need to be executed.

To check if the USM is indeed faster, a so-called truth model was created of a trajectory using Cartesian
coordinates and an RKF7(8) integrator. This integrator has a relative tolerance of 10�9 and a maximum
time step-size of 1000 s. This gives a total Time of Flight (TOF) of approximately 3652.5 days, which
is approximately 10 years. The same trajectory was again integrated using the same guidance laws, but
this time an RKF5(6) integrator was used instead of the RKF7(8). The integration was carried out with
Cartesian coordinates and with the USM for various tolerances. This integrator uses an absolute and a
relative tolerance like conventional variable step-size integrators.21 The maximum time step-size was 107

s. For Cartesian coordinates, the velocity and position absolute tolerances are set to 0.1 m/s and 0.1 m,
respectively. For the the USM, there were two cases used. Both cases had an absolute tolerance of 0:1 m/s
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Figure 12. Optimum trajectory in the Heliocentric frame
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Figure 13. The CPU time for various simulations of a solar-sailing mission

for the hodographic velocity components. The �rst case of the USM had an absolute tolerance of 10�7 for
the quaternion elements and the second case of the USM has an absolute tolerance of 10�9 for the quaternion
elements. For the Cartesian and the two USM cases, the relative tolerance is varied from 10�9 to 10�4 and
the integration is carried out. The CPU time for the various cases can be seen in Fig. 13 and the TOF for the
various cases can be seen in Fig. 14 and the TOF mismatch when compared to the TOF of the truth model
can be seen in Fig. 15. The simulation of the solar-sailing trajectories is carried out in a FORTRAN-coded
model.

In Fig. 13, it can be seen that making the tolerance more stringent increases the CPU time, as expected.
For a relative tolerance of 10�4, the CPU time of both the USM cases is approximately 1 s and of the
Cartesian case is approximately 1.3 s. As the tolerance becomes more stringent, the CPU times for all cases
increase. However, for a tolerance including 10�7 and lower, the CPU time for the USM with an absolute
tolerance of 10�7 for the quaternion elements tapers o� at around 2 s. The USM case with an absolute
tolerance of 10�9 for the quaternion elements results in increasing CPU times as the tolerances get more
stringent and a �nal CPU time of 3.75 s is reached for a relative tolerance of 10�9. The Cartesian coordinates
case also requires increasing CPU times as the tolerances get more stringent and a �nal CPU time of 5.3
s. From this graph, it can be concluded that when a normal step-size controller is used for the USM, the
absolute tolerance of the quaternion elements is very important. Making this tolerance more stringent forces
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Figure 14. The time of 
ight for various simulations of a solar-sailing mission
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ight mismatch for various simulations of a solar-sailing mission
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Figure 16. Time of Flight Error against CPU time for integration using the USM with an absolute tolerance
of 10�9 on the quaternion elements

the integrator to take smaller time steps, especially when more stringent relative tolerances are also used.
When the relative tolerance is not very stringent, making the absolute tolerance more stringent does not
have any e�ect. With the most stringent relative tolerance, the Cartesian coordinates case takes 2.65 times
the CPU time of the USM case with an absolute quaternion tolerance of 10�7. The Cartesian coordinates
case takes 1.41 times the CPU time of the USM case with an absolute quaternion tolerance of 10�9.

The same information can be found in Figs. 14 and 15. All the cases have a larger TOF than the truth
model. This, however, does not necessarily imply an error. The integration method checks if the present
state has passed the stop criterion, e.g., i = 90�. If the present state of the integrator has not passed the stop
criterion, the next integration step is made. The maximum time step-size is 107 s, which is approximately
116 days. This means that the integration step can have a large time step-size and therefore, the TOF
when the integration stops can be much higher than that of the truth model. Once the integration step has
been made, it is of course possible to interpolate back to the correct stop criterion location in time. This
overshooting is a bigger problem for less stringent tolerances as the time step-sizes will be larger. Also, the
overshooting is more for the USM cases than for the Cartesian coordinates, which suggests that larger time
step-sizes are being used.

Integration using the USM with an absolute quaternion tolerance of 10�9 gives the most accurate results.
The �nal phase of the trajectory involves cranking the orbit to reach an inclination of 90�. The error in
the TOF is plotted against the CPU time for the accurate USM simulations by interpolating to reach the
correct stop criterion in Fig. 16. Again, the general trend that can be seen is that as the tolerances are made
more stringent, the TOF error decreases and the CPU time increases. At the very stringent tolerances, the
behavior becomes a bit erratic due to numerical jitter since the relative errors in the TOF are well below
0.1%. For the simulations varying the tolerances of the Cartesian coordinates and the less accurate USM, the
behavior of the TOF vs. CPU time is very erratic. This is again due to numerical jitter and is also related
to the accuracy of the phase changes in the guidance, which, with large step sizes, can create di�erences.
Despite all these issues, the USM has a tremendous potential for usage in optimizers, where even marginal
relative decreases in CPU time can lead to large gains in terms of absolute CPU time.

V. Conclusions and Recommendations

The equations and the theory behind the elegant USM have been presented in this paper. Since none of
the previous works dealing with the USM have presented any numerical simulations, the focus has been on
showing the performance gains due to using the USM.

It was found that the USM can be used for all the applications for which Cartesian coordinates are used
with very few adaptations. For unperturbed orbits, the behavior of the USM is excellent because the orbital
energy and the angular momentum are conserved. The USM can also be used for parabolic and hyperbolic
trajectories. Hyperbolic trajectories are well represented within the sphere of in
uence of planets and thus,
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the patched conic method can be used for the USM for interplanetary trajectories. Other than the singularity
present for pure retrograde orbits, there are no other theoretical scenarios where the USM cannot be used.
However, the true anomaly limit for hyperbolic orbits causes a practical limit due to the slow change in the
true anomaly near this limit.

For perturbed orbits, the USM performs better than Cartesian coordinates for variable step-size integra-
tion. For very small time step-sizes, the USM and Cartesian results are very similar. However, the error
of the USM is much lower when larger time step-sizes are used. This can also be seen in the results for
the variable step-size integration as the USM performs much better than the Cartesian model with smaller
CPU times. The exception to this is an highly eccentric orbit, i.e., e > 0:9. In this case, the satellite spends
much more time in an almost linear trajectory. Integration in Cartesian coordinates is inherently better
suited for this as each state advancement is linear. For many commonly used orbits, however, the USM still
performs better than Cartesian coordinates. As shown in this paper, a Molniya orbit, with an eccentricity of
around 0.7, still has more accurate results when the USM is used. The scenario where the USM truly shines
is low-thrust propulsion. When the thrust is the only perturbing force, the USM7 has position errors that
are 5 - 6 orders of magnitude lower than the Cartesian model, when using a variable step-size integrator.
When other perturbations are also present, the USM still has errors many orders of magnitude lower than
the Cartesian model.

As the USM performs much better than Cartesian coordinates for low eccentricity and continuous thrust
orbits, we highly recommend its usage in optimizers. For an optimization problem many di�erent trajectories
have to be simulated, which make the computation time very large. Thus, using the USM would help in
reducing this CPU load. In particular, low-thrust trajectories with electric propulsion or solar-sailing, as
shown in this paper, would be the optimal target group of the USM. Because of the inherent numeric stability,
we also recommend the USM for long-term orbit simulation such as orbit debris.

Much work could be carried out on the USM in the future. The implementation of the solar-sailing sce-
nario has to be further re�ned. Especially, backwards interpolation should be implemented for all the mission
phase change criteria to improve the accuracies of the various integration runs. The whole optimization for
solar-sailing and other types of low-thrust trajectories should be carried out in the USM search space to
investigate if fewer population runs would be required. Each population run is already faster with the USM,
thus fewer runs would further increase the gains in CPU time. The navigation performance of the USM
could also be investigated. Instead of the Extended Kalman FIlter (EKF), which was used in the previous
works to compare the navigation performance of the USM,3,4 more recent �lters can be used, such as the
Unscented Kalman Filter22 (UKF) and the Divided Di�erence Filter (DDF)23 to �nd out if they improve
the performance of the USM compared to Cartesian coordinates.
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