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Abstract

In the Smart In-Car project, in-vehicle signals obtained from the CAN (Controller Area Network)
bus are collected along with the GPS position from 200 equipped vehicles. The main CAN bus
signals in the available data set from the Smart In-Car project are: speedometer, brake usage,
steering position, rpm, indicator usage and fuel consumption, but many more CAN bus signals
exist, offering possibilities for many applications. In this thesis, the applicability of CAN bus signals
for estimating the Level of Service (LOS) on motorways is assessed. The real CAN bus data of
single equipped vehicles, obtained from the Smart In-Car project, is used to estimate the LOS,
using loop detector data as ground truth. To assess the LOS estimation accuracy at higher
penetration rates, simulation data is used. The available real CAN bus signals provide a correct LOS
estimation of 37% with single vehicles. The simulation results show correct LOS estimation rates
ranging from 52% at 1% penetration to 70% at 100% penetration. LOS estimation using only
positional data (GPS) is found to outperform LOS estimation using CAN bus data for most
penetration rates, showing that the CAN bus signhals do not contribute to better LOS estimation.
There are however many other applications which may benefit from CAN bus signals. These will
require further research.
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Executive summary

To improve traffic conditions and safety, a large number of traffic management applications are
being used in daily practice. These traffic management applications need information on the
prevailing traffic conditions to adequately function. To obtain these, traffic sensors are used. Traffic
can be monitored through a large range of different traffic detectors. These detectors are often
quite inaccurate and costly. In the Netherlands, induction loops are the most widely used traffic
Sensors.

The Smart In-Car project offers the possibility to investigate a new type of traffic monitoring. In
this project, the values from several in-vehicle sensors, obtained from the CAN (Controller Area
Network) bus, and the GPS positions are collected with the uCAN on board unit from a small
number of equipped vehicles. In the project, around 200 vehicles were equipped with the uCAN on
board unit. In this study, only part of the data is used, containing two months of data from 35
identical vehicles, part of a taxi company fleet, because of the large amount of data and the
associated computing time required for the data processing. The main in-vehicle signals in the data
set are: speedometer, brake usage, steering position, rpm, indicator usage and fuel consumption.
In the Smart In-Car project, multiple use cases related to traffic state estimation, fleet
management, road maintenance, accident registration, traffic management and weather are
proposed which could benefit from the in-vehicle sensor floating car data.

In this research, several traffic management related use cases are defined in more detail and one
possible application of the CAN bus data is examined. The objective of this research is to determine
if Level of Service (LOS), a categorical qualitative description ranging from A to F of the traffic
conditions on a road, defined by the density, can be accurately estimated with in-vehicle sensor

floating car data.

This is assessed by comparing the accuracy of three LOS estimation methods:

e LOS estimation with in-vehicle sensor floating car data

e LOS estimation with plain floating car data

e LOS estimation with loop detector data
In-vehicle sensor floating car data is defined as the CAN bus data which is collected with the uCAN
on board unit. The uCAN on board unit also provides the GPS positions of the equipped vehicles.
When LOS estimation with the CAN bus data is considered, the GPS data is only used to determine
the location of the vehicles, but not to estimate the LOS. Plain floating car data is defined as
exclusively the positional data (provided by the GPS unit of the uCAN on board unit) of the
equipped vehicles.
Since the number of equipped vehicles is very limited, the real CAN bus data set is only suitable to
assess the LOS estimation with single vehicles. To assess the LOS estimation of in-vehicle sensors
with multiple vehicles at various penetration rates, traffic simulation data, containing vehicle
trajectories and loop detector data, is used. In the simulation, not only detection point data is used

to determine the LOS ground truth, but also the actual density, determined with the vehicle
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trajectory data. Using the simulated CAN bus data, the LOS is also estimated with single vehicles,
to be able to compare the results with the real CAN bus LOS estimation. Therefore, in total 5
methods are used for LOS estimation:

e LOS estimation with real CAN bus data from single vehicles

e LOS estimation with simulated CAN bus data from single vehicles

e LOS estimation with simulated CAN bus data from multiple vehicles

e LOS estimation with simulated plain floating car data from multiple vehicles

e LOS estimation with real loop detector data

From the real CAN bus data set, the data points of vehicles passing a loop detector location are
combined with the respective loop detector data. The loop detector speed and intensity data are
used to determine the LOS ground truth at the time and place of the vehicle passage. The
combined data is used to identify the CAN bus signals which show the strongest correlation with
the LOS. Also, regression analysis is performed to determine functions which are used to estimate
the LOS with the single vehicle passages. Of the available CAN bus signals, using only the average
values from the speedometer signal yields the most accurate LOS estimation functions. A correct
LOS estimation rate of 37% is found.

First, the simulation data is used to assess the LOS estimation accuracy with single vehicle
passages, as is done with the real CAN bus data. The determined correct LOS estimation rate is
52%. The difference between the found correct LOS estimation rates has multiple causes and leads
to the assumption that the LOS estimation with the simulation data can be used to determine an
upper boundary of the real LOS estimation accuracy.

Secondly, the LOS is determined using the simulated CAN bus signals of multiple vehicles, for
different penetration rates. The found correct LOS estimation rates range from 52% at 1%
penetration to 70% at 100% penetration.

Finally, the LOS at different penetration rates is also determined with the simulated data using just
the vehicle positions, to simulate plain floating car data. This is done by dividing the density, based
on the equipped vehicles, with the penetration rate to obtain the estimated density and LOS. For
this method, the correct LOS estimation rate ranges from 39% at 1% penetration to 100% at
100% penetration.

The results show that in-vehicle sensor floating car data generally provides a less accurate LOS
estimation than plain floating car data. Only in case of penetration rates lower than 8%, LOS
estimation with CAN bus data may outperform plain floating car data. Also the LOS estimation
accuracy with loop detectors, estimated at 89%, is much higher than the LOS estimation accuracy
that is reached with CAN bus signals.

Based on the results, it is concluded that it is not possible to accurately estimate the Level of
Service with in-vehicle sensor floating car data. This conclusion relates to, and is only valid for,
two-lane motorways with a 120 km/h speed limit and the CAN bus signals which were available in
the data set, since only that road type and those CAN bus signals where considered in this

research.

Page VIII



If CAN bus data becomes available containing signals which can estimate LOS more accurately,
such as distance headway measurements with radar, it is recommended to investigate the LOS
estimation accuracy with these CAN bus signals. In that case, the research can be improved by
using more accurate ground truth data, using other boundaries of the LOS categories, including
other vehicle types and drivers, improving the model validity and by including other speed limits
and road types. It is also recommended to investigate the CAN bus signal usability for other use
cases. The wealth of information offered by the CAN bus signals offer possibilities for many

applications.
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Management samenvatting

Een groot aantal verkeersmanagementtoepassingen worden gebruikt om de verkeerssituatie en
verkeersveiligheid te verbeteren. Deze toepassingen zijn afhankelijk van informatie over de
optredende verkeerssituatie om goed te kunnen presteren. Om die informatie te verkrijgen worden
verkeersdetectoren gebruikt. Er bestaan veel verschillende soorten detectoren die gebruikt kunnen
worden om het verkeer te observeren. Deze detectoren blijken vaak onnauwkeurig en
kostenintensief te zijn. In Nederland zijn inductielussen de meestgebruikte verkeerssensor.

Het Smart In-Car project geeft de mogelijkheid om een nieuw soort verkeersmonitoring te
onderzoeken. In dit project worden de waarden van verschillende voertuig sensoren, verkregen via
de CAN (Controller Area Network) bus, en de GPS posities verzameld met de uCAN on board unit
van een klein aantal auto’s, die met uCAN zijn uitgerust. In het project zin ongeveer 200 auto’s
voorzien van een uCAN on board unit. In dit onderzoek is slechts een deel van de data gebruikt,
omdat de grote hoeveelheid data en de daarmee gepaard gaande rekentijd voor het verwerken van
de data het gebruik van de complete dataset onmogelijk maakte in de beschikbare tijd. De
gebruikte data bevatte de CAN bus data van 2 maanden voor 35 identieke auto’s, deel van de vloot
van een taxibedrijf. The voornaamste CAN bus signalen in deze dataset zijn: snelheidsmeter,
remgebruik, stuurpositie, toerental, richtingaanwijzergebruik en brandstofverbruik.

In het Smart In-Car project zijn meerdere use cases gerelateerd aan schatting van de
verkeersituatie, vlootmanagement, wegonderhoud, ongevalregistratie, verkeersmanagement en
weer voorgesteld, die zouden kunnen profiteren van de sensordata van voertuigen.

In dit onderzoek zijn enkele verkeersmanagement gerelateerde use cases gedetailleerder
geformuleerd en is een toepassing van de CAN bus data onderzocht. Het doel van dit onderzoek is
om te bepalen of Level of Service (LOS), een kwalitatieve beschrijving van de verkeerssituatie,
ingedeeld in categorieén van A tot F, gedefinieerd door de dichtheid van het verkeer, nauwkeurig

geschat kan worden met de sensordata van auto’s.

Dit is beoordeeld door de nauwkeurigheid van drie LOS schattingsmethoden te vergelijken

e LOS schatting met sensordata van auto’s

e LOS schatting met floating car data

e LOS schatting met inductielus data
Sensordata van auto’s is gedefinieerd als de CAN bus data die wordt verzameld door de uCAN on
board unit. De uCAN on board unit levert ook de GPS positie van het voertuig. Wanneer LOS
schatting met sensordata van auto’s wordt genoemd, wordt de GPS data alleen gebruikt voor de
plaatsbepaling van het voertuig en niet voor de LOS schatting.
Floating car data is gedefinieerd als enkel de positionele data (geleverd door de GPS unit van de
uCAN on board unit) van de voertuigen.
Omdat het aantal auto’s dat uitgerust is met de uCAN on board unit erg beperkt is, kan de echte
CAN bus data alleen gebruikt worden om de LOS te schatten met een enkel voertuig. Om de LOS
schatting met sensordata van meerdere auto’s te beoordelen voor verschillende penetratiegraden,

wordt verkeerssimulatiedata gebruikt, die voertuig trajectorién en detectiepuntdata bevat.
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Bij het gebruiken van de simulatiedata wordt niet alleen de detectiepuntdata gebruikt om de LOS
referentiewaarde te bepalen, maar ook de werkelijke dichtheid, bepaald met de
voertuigtrajectorién.
De gesimuleerde CAN bus data wordt ook gebruikt om de LOS te schatten met een enkel voertuig,
om de resultaten te kunnen vergelijken met de LOS schatting met de echte CAN bus data.
Het totaal aantal LOS schattingsmethoden dat gebruikt wordt in dit onderzoek komt daarmee op
vijf:

e LOS schatting met echte CAN bus data van enkele voertuigen

e LOS schatting met gesimuleerde CAN bus data van enkele voertuigen

e LOS schatting met gesimuleerde CAN bus data van meerdere voertuigen

e LOS schatting met gesimuleerde floating car data van meerdere voertuigen

e LOS schatting met echte inductielusdata

Uit de echte CAN bus dataset worden de datapunten van voertuigen die een inductielus passeren
gecombineerd met de data van de betreffende inductielus. De snelheids- en intensiteitsdata van de
inductielus worden gebruikt om de LOS referentiewaarde op het moment en op de plaats van de
passage van de met uCAN uitgeruste auto te bepalen. Deze gecombineerde data wordt gebruikt
om de CAN bus signalen te identificeren die de sterkste correlatie met LOS hebben. Ook wordt
regressieanalyse uitgevoerd om functies te bepalen die gebruikt worden om de LOS te schatten
met de enkele voertuigpassages. Van de beschikbare CAN bus signalen, blijkt het gebruik van
alleen de gemiddelde waarde van de snelheidsmeter de nauwkeurigste LOS schatting te geven.
Hiermee wordt in 37% van de gevallen de juiste LOS geschat.

De simulatiedata wordt eerst gebruikt om, net als met de echte CAN bus data is gedaan, de
nauwkeurigheid van de LOS schatting te bepalen met de gesimuleerde CAN bus data van passages
van enkele voertuigen. In 52% van gevallen wordt de LOS correct geschat. Het verschil tussen
beide correct LOS schattingspercentages heeft meerdere oorzaken en leidt tot de veronderstelling
dat de simulatiedata gebruikt kan worden om een bovengrens te bepalen van de echte LOS
schattingsnauwkeurigheid.

Ten tweede wordt de gesimuleerde CAN bus data gebruikt om de LOS te schatten met meerdere
voertuigen voor verschillende penetratiegraden. De resultaten laten correcte LOS
schattingpercentages zien tussen de 52% bij 1% penetratie tot 70% bij 100% penetratie.

Ten slotte is de simulatiedata ook gebruikt om de nauwkeurigheid van LOS schatting met de
positionele data van meerdere voertuigen voor verschillende penetratiegraden. Dit is gedaan door
de dichtheid van de gesimuleerde uCAN uitgeruste voertuigen te delen door de penetratiegraad.
Hiermee wordt een geschatte dichtheid verkregen en kan de geschatte LOS worden bepaald. Met
deze methode worden correcte LOS schattingspercentages gevonden tussen de 39% bij 1%
penetratie en 100% bij 100% penetratie.

De resultaten tonen aan dat met sensordata van auto’s in de meeste gevallen LOS minder
nauwkeurig geschat kan worden dan met floating car data. Alleen in geval van penetratiegraden
lager dan 8% zou LOS schatting met CAN bus data beter kunnen presteren dan met floating car
data. Bovendien is het correcte LOS schattingspercentage met inductielusdata, geschat op 89%,

veel hoger dan de nauwkeurigheid van de LOS schatting met CAN bus signalen.
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Op basis van de resultaten wordt geconcludeerd dat het niet mogelijk is om Level of Service
nauwkeurig te schatten met sensordata van auto’s. Deze conclusie heeft betrekking op, en is
slechts geldig voor, twee-strooks snelwegen met een maximumsnelheid van 120 km/h en de CAN
bus signalen die beschikbaar waren in de dataset, omdat alleen dat type weg en die CAN bus
signalen beschouwd zijn in dit onderzoek.

Als er CAN bus data beschikbaar komt die signalen bevatten die de LOS nauwkeuriger kunnen
schatten, zoals volgafstandmetingen met radar, wordt het aanbevolen om de LOS
schattingsnauwkeurigheid te onderzoeken met die CAN bus signalen. In dat geval kan het
onderzoek worden verbeterd door nauwkeuriger LOS referentiewaarde data te gebruiken, andere
grenzen tussen the LOS categorieén te gebruiken, andere voertuigklassen en bestuurders te
gebruiken, het simulatiemodel te kalibreren en wegsoorten en maximumsnelheden te beschouwen.
Een andere aanbeveling is, om de bruikbaarheid van de CAN bus signalen voor andere use cases te
onderzoeken. De schat aan informatie die de CAN bus signalen leveren, bieden mogelijkheden voor

een groot aantal verschillende toepassingen.
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1 Introduction

1.1 Traffic management applications

In the Netherlands, multiple traffic management applications, such as ramp metering, travel time
prediction and dynamic speed limits are used in daily practice to improve traffic conditions and
safety. A more extensive description of various traffic management applications can be found in
Appendix A. These traffic management applications need information about the occurring traffic

conditions to adequately function. This data can be provided by traffic data collection systems.

1.2 Traffic sensors

Common current methods used to measure traffic include induction loops, license plate recognition
cameras, radar, laser and GSM. In the Netherlands, but also worldwide, induction loops are the
most widely used traffic sensors [1]. Induction loops however can be unreliable and can be too
inaccurate for some applications [2]. In recent studies, it was found that loop detectors in the
Netherlands do often not meet the accuracy requirements of the NDW, the National Data
Warehouse for Traffic Information, operating the most important traffic information database in the
Netherlands (see Appendix B). Traffic intensity and speed are only measured where loops are
available. A typical distance between loop detectors on Dutch motorways is 500 meters. For some
applications, like incident detection, this resolution of the induction loops is too low to adequately
function. Video based monitoring can give more detailed information but also has its limitations
and drawbacks, like costs and low detection rate in case of bad weather and at night [3]. A more
extensive description of various traffic sensors and their accuracy, found in literature, is provided in
Appendix B.

New traffic data collection systems which are able to provide data more frequently and with greater
accuracy could open up possibilities for new traffic management applications and improve existing

ones.

1.3 Smart In-Car

A new traffic data collection system is tested in the Smart In-Car project. In the Smart In-Car
project, data from the CAN bus (described in the next paragraph) of vehicles is gathered along with
the GPS position of the vehicle and the acceleration of the vehicle in all three dimensions. Data
from the CAN busses are collected and time stamped by the uCAN on-board unit, developed by
Beijer Automotive. Depending on the vehicle type, signals like brake usage, windscreen wipers, air-
conditioning, speed and steering position can be obtained from the CAN bus. An indicative list of

Page 1



Table 1: indicative list of CAN bus signals [source: Beijer Automotive].

Accessory

Airconditioning

AirconditioningTemperature

Alarm
AlarmSet

AlarmSiren

AnyDirectionIndicator

AnyDoor
AnyFoglLight
AnyGear
AnyRearDoor
AnyRemoteKey
AutolLights
Brake
BrakeForce
BrakeGear
BrakeHard

BrakePedalPosition

BrakePosition
BrakeRear
BrakeSoft
Broadcastl
ButtonMicrophone
ButtonMute

ButtonPhone

ButtonPhoneEndCall

ButtonVolumeDown

ButtonVolumeUp
CancelButton
CarUnlocked
Clutch
ClutchPosition
CruiseActive
CruiseCANButton

CruiseControl

CruiseDecreaseButton

CruiseMin
CruiseOff
CruiseOffButton
CruisePlus
CruiseResButton
CruiseSetButton

DashboardDimmer
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Dimmer
DirectionIndicator
DoorsLocked
DoorsUnlocked
Drive

DriveGear
DriverDoor
DriverSeatbelt
DriverVentilation
EngineRun
EngineStart
FirstGear
Forward
FrontDoors
FrontFoglight
FuelConsumption
FuelLevel

Fuellid

FuellLow

GearShiftLeverSwitch

HazardLights

HazardLights_Switch

Heating
HighBeam
HighBeamFlash
HighBeamLight
Hood

Horn
HydroMotor
Ignition
InjectionTime
Keyln

KeyOut
KeyOutEngineRun
KeyPresent
KickDown

LDI

LDI_Active
LDI_Pulse
LDI_Switch
LeftRearDoor
Lights
LightsAuto

Limiter
LimiterOn
LowBeam
Neutral
NeutralGear
NolLights
Odometer
OdometerHR
OperateFork
ParkingAssistant
ParkingBrake
ParkingGear
ParkingLight
ParkingLightLeft
ParkingLightRight
ParkingRadar
PassengerDoor
PassengerSeatbelt
Periodic
PTOState

Radio

RDI

RDI_Active
RDI_Pulse
RDI_Switch
RearDoors
RearFoglight
Remote
RemoteAnyKey
RemoteClose
RemotelLock
RemoteOpen
RemoteTrunk
RemoteTrunklidle
ResButton
ReverseGear
RightRearDoor
RPM
SeatContact
SetButton
SlideDoor
SnowSwitch

Speed

Speed10
Speed100
Speed15
Speed20
Speed25
Speed2F
Speed40
Speed5
Speed50
Speed8
StartStop
SteeringAngle45
Steeringleft
SteeringPosition
SteeringRight
Test100
Test200
Test300
Test400
Throttle
TractionControl
Trunk
UnlockAllDoors
UnlockDoors
UnlockSlideDoor
VehicleLocked
VehicleOpen
VehicleUnlocked
VIN

Wiper
WiperActive
WiperFast
Wiperlnactive

Wiperinterval

WiperlntervalPosition

WiperlntervalSpeed

WiperMotor
WiperOn
WiperOnce
WiperPositionl
WiperReverse

WiperSlow



the CAN bus signals can be found in Table 1. During the test, the data that has been gathered by
the uCAN on-board unit is wirelessly transmitted and stored in a central database server, operated
by TASS Technology Solutions.

Around 200 uCAN equipped vehicles participate in the Smart In-Car test. Most of these cars are
part of the Cibatax fleet. Cibatax is a taxi company located in Eindhoven. The other equipped
vehicles are part of the fleet of the ANWB, the Dutch emergency roadside assistance organisation.
The data collection of the Smart In-Car test started in March 2012.

Combined with the GPS position, the CAN bus data may provide insight into many vehicle, driver,
road and traffic characteristics. There appear to be many opportunities to use CAN bus data for
traffic management. For example, an abrupt steering maneuver may indicate an obstacle on the
road, windscreen wiper usage can indicate adverse weather (e.g. rain) and activation of ABS might
be an indication for a slippery road surface. This information can be used to warn drivers that are
upstream of the incident location and to alarm the road authorities. If the CAN bus data proves to
be suitable for providing this sort of information, it can contribute to better traffic management and

safer traffic.

1.4 CAN bus

CAN bus was developed in the 1980’s by Robert Bosch GmbH. The constantly growing number of
devices in vehicles led to a growing number of necessary connections between these devices.
Instead of using separate links between these components, CAN bus interconnects several
components at once by connecting them to the same network, thereby reducing the amount of
wiring and costs. Additionally, the CAN bus protocol is able to detect errors in the data
transmission, for example caused by electromagnetic interference. This is corrected by resending
the message.

For over 10 years, CAN bus has been a mandatory protocol for vehicles in the United States and
the European Union. Besides the automotive industry, other fields of application of CAN bus include
industrial automation, medical equipment and domestic appliances.

The CAN (controller area network) bus is a specialized internal communication network that
interconnects components inside a vehicle. It is a vehicle bus standard that allows microcontrollers
and devices in the vehicle to communicate with each other. Typically a vehicle has several CAN
busses. Each of these connects components, called CAN nodes, which depend on each other. An
example is illustrated in Figure 1. In this figure, the traction control unit is connected with the
same CAN bus as the engine ignition controller, the fuel injection controller and the throttle
controller. These CAN nodes are able to transmit data over the network. Messages that are sent by
one of the CAN nodes are sent to all other CAN nodes in the network. Each CAN node uses the
message identifier to decide whether it should process the message or not. When multiple CAN
nodes are trying to send messages simultaneously, the message identifier is also used to
determine the priority of every message. CAN messages can contain up to 8 bytes of information.
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More information can be send by sending several messages. For networks up to 40m, the
maximum transmission rate is 1Mbit/s. [4][5][6]

Figure 1: Traction control CAN bus [4]

1.5 Use cases

The data that is provided by the CAN bus and the GPS unit of the uCAN on board unit may have a
large range of applications. Several brain storm sessions of the Smart In-Car partners have
resulted in a large amount of use cases. Besides traffic state estimation related use cases, also use
cases related to fleet management, road maintenance, accident registration, traffic management
and weather have been suggested. An extensive list of the use cases is shown in Appendix C.

Recently, four of these use cases were explored by LaQuSo [7], one of the partners in the Smart
In-Car project, including traffic jam head and tail detection, rain detection, driver behavior analysis
for fleet monitoring purposes and road abnormalities detection (potholes, speed bumps and rough
roads). Useful results were found for all use cases, demonstrating a lot of potential for the Smart
In-Car technology. In other work [8], a simulation model was used to show a high feasibility of
accurate road profile classification using the data provided by the accelerometer in the uCAN on

board unit.

Several traffic management related use cases, describing detectable and measurable events and
quantities which can be used by traffic management applications, have been defined in more detail.
Below, these use cases are listed. Their descriptions, including the measurement and test method,

can be found in Appendix D.

. Speed (for Dynamayx, traffic jam detection, ramp metering, peak lanes)
. Travel times (for travel information)

. Rain (for Dynamax)

. Wind (for VMS warning)
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. Fog (for VMS warning)
. Obstacle detection (lane closure, peak lanes)
. Intensity (for Dynamax, ramp metering, peak lanes)

In this study, a traffic management application of the CAN bus data will be investigated. Below, the
use cases are discussed to identify a traffic quantity or event which is suitable to be tested with the
available data from the 200 equipped vehicles. Because just 200 vehicles are equipped with a
uCAN on board unit, it will be difficult to test the traffic management use cases. Another
requirement is that the use case is expected to significantly benefit from the CAN bus signals and
does not only need the GPS data from the uCAN.

Some use cases are very useful, but their suitability seems to be trivial. For example, since both
the GPS position (and therefore the GPS speed) and CAN bus speed are known, it is trivial that the
speed can be measured with the CAN bus data, although the penetration rate will have to be high
to give frequent enough measurements for every location and to give a speed measurement which
corresponds accurately enough with the average speed of the whole traffic stream. It is decided
not to investigate this use case, since the added benefit of the CAN bus data is expected to be
small in respect to the GPS data.

The same line of reasoning is followed for the decision to not investigate the applicability of CAN
bus data for the measurement of realized travel times. Travel times can be determined by only
using the GPS data. The CAN bus data is not expected to contribute to better travel time
measurement.

It would be interesting to investigate the rain detection possibilities of CAN bus data. It seems
quite trivial that precipitation can be measured when the usage of the windscreen wipers is known.
In fact, the reference data, which would be used to confirm the suitability of the CAN bus data for
rain detection, is likely to be less accurate than the CAN bus windscreen wiper data. When vehicles
in an area are using their windscreen wipers and reference data from weather services claim there
is no precipitation at that location, it is much more likely the weather service data is wrong than
the CAN bus data, since it is unlikely that many vehicles use their wind screen wipers when it is not
raining. Beside traffic management applications, also meteorological services might be interested in
this kind of detailed information. A large amount of uCAN equipped vehicles can form a dense
network of precipitation detectors. Because the amount of equipped vehicles is small and the
possibility of rain detection has already been demonstrated in [7], also this use case is dismissed to
examine here.

Like rain, also fog is likely to be suitable to be indicated with CAN bus signals. When the usage of
the fog lights of a large amount of vehicles is known, the presence of fog on roads is likely to be
able to be determined very accurately. The small amount of uCAN equipped vehicles in
combination with the rare occurrence of fog leads to the decision not to investigate this use case.
Similarly to rain and fog detection, when the CAN bus signals would prove to be able to measure
wind direction and speed, the CAN bus data may be used to indicate the wind conditions on all
roads. Wind measurements are used in traffic management to warn for dangerous wind conditions.
The wind is measured locally at locations where strong wind is likely to occur (e.g. bridges). It is
questionable what the gain is of detailed knowledge of wind conditions on other locations. For the
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rain and wind use case, there are CAN bus signals (fog lights and wind screen wipers) which
correspond directly to the measurable event. This is however not the case for wind. Some CAN bus
signals are expected to show some dependency on the wind speed and direction, like speed, fuel
consumption and steering position, but the dependency is expected to be small and therefore, also
the accuracy of the wind measurements is likely to be small. This leads, along with the relative
small practical relevance of wind detection for traffic management, to the dismissal of the
examination of the wind use case.

Also the obstacle detection use case is very interesting. Unfortunately, the current penetration rate
of uCAN equipped vehicles and the rare occurrence of obstacles do not allow us to test the obstacle
use case in this stage of the Smart In-Car test.

The final use case considered is intensity. This quantity is very relevant for traffic management and
the dataset provides enough CAN bus parameters which might be able to show a correlation with
the intensity and can thus be used to estimate the intensity. However, the penetration rate of
uCAN equipped vehicles is very low and the intensity estimations will have to be made with a single
vehicle passage. It is expected that the CAN bus signals of single vehicles will yield intensity
estimations with too little accuracy too be practically useful, while for higher penetration rates, the
intensity estimations could prove to be accurate enough. Therefore, another traffic condition
indicator, Level of Service (LOS), is considered which is expected to be more likely to be able to
give reasonable accuracy using CAN bus data from single vehicles. It is decided to investigate the
possibility to estimate Level of Service, a categorical qualitative description ranging from A to F of
the traffic conditions on a road, with CAN bus data. Since Level of Service is expressed in
categories, it is more probable that Level of Service can be estimated with reasonable accuracy

than the intensity. In the next paragraph, a description and definition of Level of Service is

provided.
1.6 Level of Service
1.6.1 Description

Level of Service is a term used to qualitatively describe the operating conditions and effectiveness
of elements of transportation infrastructure. Level of Service qualifications are based on one or
several traffic quantities, such as average speed, density and intensity. Level of Service was
introduced in the 1965 Highway Capacity Manual. The Highway Capacity Manual defines Level of

Service as:
“Level of Service (LOS) is a quality measure describing operational conditions within a traffic
stream, generally in terms of such service measures as speed and travel time, freedom to

maneuver, traffic interruptions, and comfort and convenience.”

There are six levels, ranging from A to F. LOS A is defined as free flow and LOS F reflects

breakdowns in vehicular traffic. Table 2 shows the LOS definition from the 2000 Highway Capacity
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Manual. Table 3 shows the traffic quantities for every category. These are also graphically

presented in Table 4.

Table 2: Level of Service category definitions [9]

Level of Service | Definition

category

A Free-flow operations. Vehicles are almost completely unimpeded in their ability to maneuver within
the traffic stream.

B Reasonably free-flow. Free-flow speeds are maintained. The ability to maneuver within the traffic
stream is only slightly restricted, and the general level of physical and psychological comfort
provided to drivers is still high.

C Flow with speeds at or near free-flow speed of the freeway. Freedom to maneuver within the traffic
stream is noticeably restricted, and lane changes require more care and vigilance on the part of the
driver.

D Speeds begin to decline slightly with increasing flows and density begins to increase somewhat more
quickly. Freedom to maneuver within the traffic stream is noticeably limited, and the driver
experiences reduced physical and psychological comfort levels.

E Operation at capacity. Vehicles are closely spaced. Maneuverability within the traffic stream is
extremely limited, and the level of physical and psychological comfort afforded the driver is poor.

F Breakdowns in vehicular flow.

Table 3: HCM Level of Service criteria for basic freeway sections [10]

1994 HCM Level of Service Criteria for Basic Freeway Sections

70 mph 65 mph 60 mph
Free-Flow Speed Free-Flow Speed Free-Flow Speed
Density” Speed" Maximum® MSF* Density® Speed®  Maximum® MSF Density”  Speed”  Maximum® MSF?
LOS (pe/milin) (mph) ViIC (pcphpl) {pe/mifin (mph) VIC (pephpl) (pefmifing (mph) ViC (pephpl)
A =10.0 = 70.0 0.318/0.304 700 =100 = 65.0 0.295/0.283 650 =100 60.0 0.272/0.261 600
B = 16.0 = 70.0 0.509/0.487 1,120 = 16.0 =65.0 0.473/0.457 1,040 = 16.0 60.0 0.436/0.412 960
C =240 - 68.5 0.747/0.715 1,644 =240 =645 0.704/0.673 1,548 =24.0 60.0 0.655/0.626 1,440
D =320 - 63.0 0.916/0.876 2,015 =320 -61.0 0.887/0.849 1,952 =320 57.0 0.829/0.793 1,824
E =36.7/39.7 - 60.0/58.0 1.000 2,200/2.300 =393/434 = 56.0/53.0 1.000 2,200/2,300 = 41.5/46.0 53.0/50.0 1.000 2,20012,300
F Variable Variable Variable Wanable Vanable Vanable Vanable Variable Variable  Varable Variable Variable

® Density in passenger cars per mile per lane.

* Average travel speed in miles per hour.

© Maximum volume-to-capacity ratio

* Maximum service flow rate under ideal conditions in passenger cars per hour per lane.

= less than or equal to
= greater than or equal to

Note: In table entries with split values, the first value is for fourdane freeways, and the second is for six- and eight-lane freeways.

Page 7



80 v
‘f -~
75 mi/h free-flow speed / ___A A
! -
70 70 mi/h / ’ T — Vi
/ — < -
65 mi/h f il \/'\ ~
7 -~
60 L8omi/h / 2 Z c
/ 7~
55 mi/h / ; \,\
f’ > = //—,!—-
50 / Ve - _ \
Lo 7 - - -
= J 4 // -~ -
= LOS A LOSB - LOSC .- LOSD |-~ LOSE _+~
E / Ve -
S 40 ff ’ ~ < - - - -
B / // 7 - -7 //,/
[} / / g -7 -
=% / / - -~ PR
0 30 ~ 4 ’ - P
Y & & o AP
& (§>\’ & gﬁl(g\\\’ e it LOS F
> P
20 :?'CS; Syl ]
/ - -
,f/ ) // /}/ -
f // ~ - - - -
10 1/ o Pral e
/s ,/ ’//’,/’/’ -
1,0
lye~
o k%
0 500 1,000 1,500 2,000 2,50

Flow Rate (pc/h/In)

Figure 2: Level of Service graph [11]

The number of levels and the boundaries between the levels are quite arbitrary. After the first
definition of the Level of Service, in the Highway Capacity Manual 1965, several suggestions have
been made to change the amount of levels, to change the boundaries between the levels or to
change the quantities that are used to measure the LOS.

Choocharukul et al. [12] investigated the user perception of highway Level of Service. They
concluded that LOS F does not adequately represent the conditions that are perceived by the road
users as the “breakdown in vehicle flow” that this LOS is intended to represent. They also showed
that there are a number of attributes besides traffic density which determine public perceptions of
LOS.

Brilon [13] and Cameron [14] both point out that different traffic qualities exist within LOS F.
Cameron proposes to use additional levels beyond LOS F (G, H and I) to properly quantify
congestion conditions. Brilon proposes to use a more objective parameter to determine the
thresholds between subsequent LOS. He introduces efficiency, as a combination of demand,
capacity and quality of flow, which should be able to determine the boundaries between the LOS,
especially for LOS D and E.

Level of Service can be used for traffic information, but also for other traffic management
applications. Landman et al. [15] have shown that route guidance control based on Level of Service
is able to improve network performance, while taking into account policy objectives and route

priorities of road authorities.
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1.6.2

Definition

In this research, the LOS definition of the 2010 HCM will be used. The metric classification values

are shown in Table 4.

Table 4: Level of Service boundaries density values.

LOS | max. density (pc/mile/lane) max. density (pc/km/lane)
A 11 6,8

B 18 11,2

Cc 26 16,2

D 35 21,7

E 45 28,0

F

1.7 Research objective

The objective of this master thesis is: “to assess the possible applicability of real-time wireless

transmitted CAN bus data, combined with GPS position, for estimating Level of Service at

motorways.”

1.7.1

Research questions

In this master thesis, the following main research question will be answered:

Is it possible to accurately estimate the Level of Service with in-vehicle sensor floating car

data?

To answer this main question, a set of sub-questions has to be answered:

1.
2.
3.

Which main driver behavior characteristics are dependent on Level of Service?

Which CAN bus signals are provided by the uCAN equipped vehicles?

What is the accuracy of Level of Service estimation with in-vehicle sensor floating car
data from single vehicles?

What is the accuracy of Level of Service estimation with in-vehicle sensor floating car
data from multiple vehicles?

Does in-vehicle sensor floating car data provide a better LOS estimation than plain
floating car data?

Does CAN bus data provide a better LOS estimation than loop detector data?

Does the transmission frequency of the CAN bus signals influence the LOS estimation

accuracy?

Some of the terms in the sub questions need clarification. In-vehicle sensor floating car data is
defined as the CAN bus data which is collected with the uCAN on board unit. The uCAN on board
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unit also provides the GPS positions of the equipped vehicles. When LOS estimation with the CAN
bus data is considered, the GPS data is only used to determine the location of the vehicles, but not
to estimate the LOS.

Plain floating car data is defined as exclusively the positional data (provided by the GPS unit of the
uCAN on board unit) of the equipped vehicles.

1.8 Research relevance

This research contributes to the practice of Rijkswaterstaat. It explores the applicability of CAN bus
signals for the estimation of Level of Service. It also gives insight in the possibility of density
estimation, intensity estimation and speed estimation with CAN bus signals. Especially intensity
and speed are important quantities which are used by many traffic management applications used
by Rijkswaterstaat. This research is a first step in the investigation of applicability of CAN bus
signals for traffic management. Besides Level of Service estimation, several use cases are defined
which could be suitable to be measured with CAN bus signals. This new kind of traffic sensor could
prove to be more accurate and cost effective than existing traffic measurement systems, thereby
not only reducing costs and effectiveness of existing traffic management applications, but also
providing opportunities for applications which are currently not used, because the required data to
adequately function is not available, like obstacle detection.

Another aspect of this research is that it provides insight in the properties of the signals which can
be provided by the CAN bus. This knowledge can be used for the investigation of applicability of
CAN bus signals for the proposed traffic management use cases or the other use cases relevant for
Rijkswaterstaat, like measuring road surface conditions for road maintenance purposes.

The CAN bus signals may also be used for research on driving behaviour. CAN bus signals, which
can be used to measure parts of the driving behaviour, are ideal to measure driving behaviour in
real driving conditions. Better understanding of the driving behaviour in various traffic conditions

can contribute to better traffic modelling.

1.9 Report outline

1.9.1 Research approach

In chapter 2, the phases are described that are executed to accomplish the research objective.
First, literature is reviewed to find driving behavior characteristics which show a dependency on
Level of Service. Then code is written to import, process and analyze an initial CAN bus data set.
With the findings, a part of the uCAN equipped vehicles is selected, which supply CAN bus signals
which are most likely to be able to measure the driving behavior characteristics which were found
to depend on LOS.

The CAN bus data of these selected vehicles is combined with data from loop detectors on

motorways in the Eindhoven area, which are used to determine the LOS ground truth. With the
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combined data, the CAN bus signal correlations with LOS are determined and a LOS estimation
function is defined which uses the CAN bus signals of a single uCAN equipped vehicle to estimate
the LOS.

Using a traffic simulation model, LOS estimation with CAN bus signals from multiple vehicles is
investigated. The model is also used to estimate LOS using only the positional data (simulating
GPS). The results of the real CAN bus data LOS estimation, the simulated CAN bus data LOS
estimation and the simulated positional data LOS estimation are compared and discussed.

1.9.2 Level of Service

In chapter 3, literature is reviewed to identify the main driving behaviour characteristics which

show dependency on LOS. Sub question 1 is answered in this paragraph.

1.9.3 CAN bus data

In chapter 4 the process of importing, processing and analysing the CAN bus data from the Smart
In-Car project is described. Visualizations are presented which are used to interpret the data and
give a first impression of the available data. Frequency, accuracy and several other properties of
the CAN bus data are discussed. Sub question 2 is answered in this paragraph.

1.9.4 Results

Chapter 5 contains the results of the phases which are described in chapter 2.

In paragraph 5.1 the LOS estimation accuracy with real CAN bus data is determined. Based on the
findings in the previous section, data from a part of the vehicle fleet is selected, containing those
CAN bus signals which are most likely to be suitable to estimate LOS. The data from 35 equipped
taxis over a period of two months is collected. Also loop detectors, located near Eindhoven where
the taxis operate, are selected to provide data to determine the LOS ground truth. The data from
the loop detectors and the uCAN equipped vehicles is combined and used to show the
dependencies between LOS and several CAN bus parameters. The effect of various radii (the
distance from the loop detector that defines the area in which data points are collected) and signal
periods (the CAN bus signal transmission periods) is discussed and the LOS is estimated using
single and multiple CAN bus parameters. It is found that using a single CAN bus signals, the
average speed, yields the most accurate LOS estimation. LOS estimation using the real CAN bus
speed from single vehicle passages is correct in just 37% of the cases. Sub question 3 and 7 are
answered in this paragraph.

In paragraph 5.2 the LOS estimation accuracy with simulated CAN bus data is determined. This is
done with single vehicle passages, to allow a comparison with the results of the LOS estimation
with real CAN bus data, and with multiple vehicle passages, for several penetration rates.

This is done using several LOS ground truths, based on detection point measurements and the

actual density. Also, the LOS is estimated using only the vehicle positions, simulating plain floating
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car data, for example from GPS units. This paragraph is concluded with a comparison between both
LOS estimation methods. For high penetration rates, the correct LOS estimation rate using the
simulated CAN bus data reaches 70%, while the correct LOS estimation rate using only the vehicle

positions, simulating GPS data, reaches 100%. Sub question 4, 5 and 6 are answered in this
paragraph.

1.9.5 Conclusions and recommendations

In chapter 6 the answers to the main research question and the sub questions are presented and

discussed, resulting in several recommendations.
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2 Research approach

This chapter describes the phases that are executed to accomplish the research objective, which

was formulated in the previous chapter as: “to assess the possible applicability of real-time

wireless transmitted CAN bus data, combined with GPS position, for estimating Level of Service at

motorways.” The methods that are used to answer the research questions are described. Also, the

data which are used in the analysis is discussed. The research approach is schematically shown in

Figure 3. The various elements and their relations will be discussed in this chapter.
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Figure 3: Schematic research approach
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Level of Service and driving behaviour

In this phase, literature is reviewed to examine if there are certain driving behaviour characteristics

which depend on the Level of Service. Since the in-vehicle sensors are able to capture part of the

driving behaviour, this knowledge will be used to select the vehicles that produce sensor data from

those sensors which are expected to have the largest probability of showing a correlation between
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the LOS and the values of the sensor signals. Not all data from all vehicles is used, since

processing all data would require too much calculation time (several months).

2.2 CAN bus data processing

After selecting the vehicles which will be used for the analysis, the CAN bus data from those
vehicles will have to be obtained and processed. Since the data is distributed in text files in json
format (JavaScript Object Notation, a text-based open standard, see Figure 11 for an example),
the data will first be imported to Matlab and converted to a matrix format. The goal of this phase is
to write Matlab code which is able to import and convert the raw data files to Matlab matrix files,
which can be easily and quickly accessed, queried, edited and processed.

The final Matlab matrices will have a single row per vehicle per time instant, showing, in separate
columns: the time, the date, the vehicle id, the GPS position and all CAN bus data available in that
time instant.

2.3 CAN bus data analysis

When the data set has been imported and converted, it will be explored. The goal of this phase is
to obtain knowledge about the available information and its characteristics in the data set.

For starters, the locations of the vehicles will be looked into. The results will be used to determine
which and how many loop detectors will be used to obtain the ground truth data, described in
section 2.5.1 Also the available sensors and their frequencies will be investigated. Insight into the
CAN bus data will be obtained as well by visualizing the data in various ways. For example by
plotting several CAN bus data values versus each other or by plotting the CAN bus data versus the
position, given by the GPS position.

2.4 CAN bus data quality

Before using the CAN bus data for LOS estimation, we need to gain insight in the accuracy and
reliability of these CAN bus signals. This will be done by reviewing literature on the CAN bus and by
comparing the values from the several CAN bus signals with each other. For example, the accuracy
of the CAN bus speedometer signal can be compared with the speed, calculated from the GPS
positions. The visualizations, described in the previous paragraph, can also give insight in the

accuracy and reliability of the CAN bus signals.

Page 14



2.5 LOS estimation with real CAN bus data

In this paragraph, the steps that will be followed to accomplish a LOS estimation with real CAN bus
signals are described.

25.1 Determining the LOS ground truth

To investigate whether the CAN bus data can accurately estimate the Level of Service, reference
data is needed to determine the LOS ground truth at the position and time of the uCAN equipped
vehicle presence. The LOS ground truth will be determined by using the speed and intensity data of
the loop detectors in the road. This data is aggregated per minute. Using this information, the LOS
will be determined for every minute, according to the definition in section 1.6.2. Not all roads are
equipped with loop detectors, so the research will have to be restricted to those roads that are
equipped with loop detectors. The map in Figure 4 shows the locations of the loop detectors in the

Eindhoven area. All loop detectors are located on motorways, so no loop detector data of
secondary roads is available.
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Figure 4: Detection loops in the Eindhoven area. The red icons indicate the locations of the loop detectors.
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Only 35 uCAN equipped cars are included in this study. These vehicles are taxis, which are
expected to primarily make short trips in the city or to the airport. Therefore, the number of uCAN
equipped vehicle passages in the available dataset on the motorways near Eindhoven is expected
to be very limited. It will be found that on average the detection points on the motorways in the
Eindhoven area only passed once per day by one of the 35 selected vehicles. Because of this, only
road sections that have a similar cross section will be included in this research. The most common
cross section in the Eindhoven area is a 2*2-lane motorway, with a shoulder lane (see Figure 5).
The data from these road sections will be combined to get a larger amount of similar
measurements. Road sections with on-ramps, off-ramps and weaving sections will not be part of

this research, to ensure all measurement are made in similar road conditions.

Figure 5: 2*2-lane motorway

2.5.2 Acquiring the relevant CAN bus data

To obtain the CAN bus data from the uCAN equipped vehicles that drive on road sections like in
Figure 5, the data will have to be filtered. Since the LOS is determined from the data of a single
point on the road and the CAN bus data is collected all over the road section, a part of the road
section has to be selected where the CAN bus data is collected. This will be done for various road
section lengths, in the ensuing defined by the radius: the distance from the loop detector that
defines the area in which CAN bus data points are collected. With the findings resulting from the
following steps an optimal road section length will be determined which will be used in the rest of
the research. The optimal radius is expected to be around 200m, because it is assumed to be a
reasonable concession between minimizing the length to assure a good comparison with the loop
detector data and maximizing the length to obtain enough CAN bus data points from the passing
vehicles. At 130 km/h, a vehicle will provide a CAN bus data point every 36 meters, since it will be
found that the CAN bus signals are transmitted around once per minute. With a road section length
of 400m, at least 10 data points will be collected for each passing vehicle. Initially, radius values of
50m, 100m, 200m and 400m will be considered. Additional radius values will be added if this
proves to be necessary to acquire the optimal radius.
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When the data is filtered by the GPS position, there will be some data points, coming from vehicles
on roads that over- or underpass the motorway or from vehicles on parallel roads, which will
contaminate the data. So instead of just filtering by GPS position, virtual checkpoints will be used
to assure that we only get the right data points. At the start and end of each road section a virtual
checkpoint is created. When a vehicle passes the checkpoint at the start of the road section, all
data between that moment and the moment when the vehicle passes the checkpoint at the end of
the road section will be saved in a separate file and used for the further filtering.

In Figure 6, the CAN bus data filtering is visualized. From the CAN bus data points between both
checkpoints, the ones which are within the radius of one of the loop detectors are stored. Notice
that the area defined by the radius is large and also includes roads other than the motorway. This
does not cause problems, since the checkpoints will make sure that only the data from the
motorway and from vehicles driving in the right direction will get selected. The size of the
checkpoint area has to be large enough, because the positional data is only given once per second.
The path through the checkpoint area has to be longer than the distance a fast vehicle covers in a
second (50 meters at 180 km/h), therefore as checkpoint radius of 30m is used.

The data points of every vehicle passage will be processed, to get a single line of data from every
vehicle passage which can be combined with the single line of loop detector data. This line will
contain the average value and the standard deviation of the CAN bus parameters, as well as the

minimum and maximum value.

. Checkpoint 2

."'Iq.‘_ : Wl s
=
: —

Figure 6: CAN bus data filtering. uCAN equipped vehicles are checked for subsequently passing checkpoint 1 and
checkpoint 2 with their GPS data. When they do, it is certain they are driving on the motorway and in the correct
direction. From the CAN bus data points between both checkpoints, the ones which are within the radius of one of the
loop detectors (just one in the figure) are stored and can be used to combine with the loop detector data.
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253 Combining the loop detector data with the CAN bus data

The single CAN bus data line will be combined with the loop detector data by matching the CAN bus
timestamp and the loop detector timestamp. This is visualized in Figure 7. After combining the
data, we get a table including all loop detector data, the CAN bus parameters and the LOS. The
contents of this table are listed below.

o Date
e Time
e VehicleIlD
e Road

e direction

¢ longitudinal position

e 1-minute aggregated intensity from loop detector

e 1-minute aggregated speed from loop detector

¢ LOS

e For every CAN bus parameter: the average value during the passage

e For every CAN bus parameter: the standard deviation during the passage
e For every CAN bus parameter: the minimum value during the passage

e For every CAN bus parameter: the maximum value during the passage

s Bt el

loop detector

Figure 7: Combining the CAN bus data with the loop detector data. The dots indicate the GPS coordinates of the data
points of a uCAN equipped vehicle. The blue circle, determined by the loop detector position and the radius, indicates
the area in which the CAN bus data points are collected.
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254 Correlation and regression analysis

With the combined data from the CAN bus and the loop detectors, first the relationship between
the individual CAN bus parameters will be visualized by plotting the measured CAN bus parameter
versus the measured Level of Service. Subsequently, the correlations between the CAN bus
parameters and the LOS will be determined. Regression analysis will be used to determine the
combination of CAN bus parameters which give the best LOS estimation. Since the LOS is in an
ordinal scale, multinomial logistic regression will be used. With the results of the regression
analysis, LOS estimation functions will be constructed of the form:

P(LOS=y) = e / 5, gD
where: P(LOS=y) is the chance that the Level of Service is y

By is the regression coefficient for LOS=y

Xi is the value of the CAN bus parameter

Bk are the regression coefficients for the 5 other LOS (LOS#y)
This will be done by using the mnrfit function in Matlab. This function uses Maximum Likelyhood
Estimation to determine B’s which yield the best fit.
With this resulting function, the LOS can be estimated with a single vehicle passage, using the
mnrval function in Matlab. Using the B’s, determined with mnrfit, and the values of X; this function
calculates for every LOS the probability that this LOS occurs. The LOS with the highest probability
will be selected as the estimated LOS. This will be done with the available dataset. The results of

these estimations will be shown and discussed.

2.6 LOS estimation with simulation

Since the number of vehicles which are equipped with the uCAN on board unit is very limited, it is
not possible to investigate the LOS estimation accuracy at higher penetration rates. Therefore, data
from traffic simulation software is used to simulate LOS estimation at higher penetration rates.

For the simulation study simulation software package OpenTraffic [16] will be used. This is an open
source simulation package developed in Java. For the simulation set up the settings used in [17]
are largely adopted. In the simulation, a 2 lane road with a length of x = 6000 and a simulation
time t = 10800 with time steps of 1s is used. Starting at x = 2500 vehicles are able to merge on
the main carriageway. 9 loop detectors were placed, namely at x = 500, x = 1000, x = 1500, x =
2000, x = 3500, x = 4000, x = 4500, x = 5000 and x = 5500 (before and after the on-ramp).
During the simulation, the intensity on both the motorway and onramp is gradually increased. The
demand eventually exceeds the capacity of the road section downstream of the on-ramp. This is
done to ensure that congestion will emerge and spill back from the onramp to the 2-lane section,
so every LOS will occur at this 2-lane section during the simulation. Only one vehicle class is
applied (passenger cars). The applied car following model is a modification of the Intelligent Driver
Model [18]. For this model, the parameter settings described in Kesting et al. [19] are adopted. As
a lane changing model, the Lane changing Model with Relaxation and Synchronization model
(LMRS) described in Schakel et al. [16] will be used.
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The simulation software is not able to produce many CAN bus parameters. The floating car
parameters that are produced by the simulation software are: speed, acceleration, longitudinal
position and lateral position (lane). The detector loops from the simulation provide 1-minute
aggregated speed and intensity data. Although this traffic simulation software is not able to provide
a vast amount of simulated CAN bus parameters, the speed is expected to be an important
indicator for LOS estimation. Therefore, we expect the simulation can be used to indicate a lower
boundary for the real LOS estimation performance. In case in reality more in vehicle signals are
suitable to be used as LOS indicator, the LOS estimation accuracy will be higher than the found

LOS estimation accuracy with the simulation.

2.6.1 LOS ground truths

The LOS estimation with the real CAN bus data, as described in section 2.5, uses LOS ground truth
based on the loop detector data. This is not the most accurate way to determine the LOS for three
reasons:

e First of all, the density, which the LOS is based on, is calculated with the detector speed
and intensity data, but this is not the real density at a road section.

e Secondly, a vehicle passage is matched with a LOS ground truth based on the 1-minute
aggregated loop detector data, but the traffic conditions can change drastically during a
minute.

e Finally, the loop detectors can be quite inaccurate, as was found in section 1.2, leading to
inaccurate LOS estimation.

Therefore, the simulation data will be used to determine the LOS ground truth in multiple ways.
This is possible, because besides the detection point data, the simulation data also provides all
vehicle trajectories.

In the remaining part of this section, four different LOS ground truth determination methods are
described which will be used in this part of the research.

e The first LOS ground truth is determined in the exact same way as the LOS ground truth
for the real CAN bus data. Using the 1-minute aggregated speed and intensity data from
the simulated detection points, the 1-minute aggregated density is calculated with k=qg/u.
Using this density, LOS ground truth 1 is determined.

e Although LOS ground truth 1 is determined analogously to the LOS ground truth for the
real CAN bus data, there is a difference. The data from the simulated detection point is
perfect, while the real loop detectors can be quite inaccurate. Therefore, LOS ground truth
2 will also be determined with the same simulated detection point data, but with an added
error. This LOS ground truth and the corresponding LOS estimation should provide the best
simulation of the LOS estimation with real CAN bus data. Also, by comparing the LOS
estimation results for both LOS ground truths, the effect of the loop detector accuracy on
the LOS estimation with real CAN bus data can be assessed.

e The third LOS ground truth is based on the average density during a minute on the road
section (200m) near the detection point. This ground truth can be used for LOS estimation

with single and multiple vehicles.
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e LOS ground truth 4 resolves all three issues which were mentioned at the beginning of this
paragraph. It is also based on the average density on the road section (200m) near the
detection point, but only for the 5 seconds around the moment of the passage. This LOS

ground truth can only be used for LOS estimation with single vehicles.

2.6.2 LOS estimation with CAN bus signals from single vehicles

Using the simulation data, first the same steps will be taken as with the real CAN bus data. Using
the four LOS ground truths, the same LOS versus CAN bus parameter figures will be made, the
LOS versus CAN bus parameter correlations will be calculated and LOS estimation functions will be
determined with multinomial logistic regression. The results can be compared with the results of

the real CAN bus data. Using these comparisons, the model validity can be discussed.

2.6.3 LOS estimation with CAN bus signals from multiple vehicles

Subsequently, the LOS will be estimated using multiple vehicle passages. The average values of
the CAN bus parameters of all vehicles which are considered to be uCAN equipped and pass a
detection point in the same minute are taken. These values are used to estimate the LOS
estimation functions with multinomial logistic regression. This is done for different penetration

rates. The LOS estimation accuracy for every penetration rate will be determined.

2.6.4 LOS estimation with plain floating car data from multiple vehicles

The LOS will also be estimated by only using vehicle positions, simulating vehicles which do not
provide CAN bus data, but only positional data. This LOS estimation method uses the following
formula to estimate the density:

Kestimated = Kmeasured / P
where: Kestimated 1S the estimated density

Kmeasured iS the density of the equipped vehicles

P is the penetration rate
Also for this method, the LOS estimation accuracy will be determined at various penetration rates.

2.6.5 Comparison between LOS estimation methods

Finally, the results of the LOS estimation accuracy for the various methods will be compared.
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3 Level of Service and driving behaviour

In this chapter, the literature about driving behavior in different traffic conditions is reviewed which
make it possible to assume that LOS can be estimated with the CAN bus data. Several relationships
between traffic conditions and driving behaviour are found. Since part of the driving behaviour can
be measured with the CAN bus signals, it is probable that also the LOS can be estimated with these
signals.

3.1 Speed

First of all, the fundamental diagram shows a clear relation between the speed and density.
Although there are many different models for the diagram, they all have in common that as the

density increases, the average speed will decrease, as is shown in Figure 8.
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Figure 8: Fundamental diagram models [20]

3.2 Lane change behaviour

Tang Chang-Fu et al. [21] investigated lane change rate versus density. They found that the
amount of lane changes on a 2-lane freeway increases when the density increases, up to 17.5
veh/km/lane (0.035 veh/m in Figure 9). If the density gets larger, the amount of lane changes
decreases again. Figure 9 shows how the amount of lane changes is affected by the density.
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Knoop et al. [22] investigated the dependency of lane change rate on the density of the origin and

target lane. Figure 10 shows the dependency they found of the lane change rate between the
second and third lane of a 3-lane motorway.
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Figure 10: Lane change rate density dependency [22]

Although the GPS data from the uCAN on board unit does not prove to be accurate enough to
detect lane changes, the changes in the steering position and usage of direction indicators might

show relationships with the density.

3.3 Speed variation

Ko et al. [23] investigated the relation between speed variation with the Level of Service. They
used the acceleration noise, defined as the root mean square deviation of the vehicle acceleration,

as a measure of the speed variation. It was found that in general the speed variation increases as
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the density increases. Also, it was observed that the speed variation is more sensitive to traffic

microscopic traffic conditions than speed for LOS A, B and C.

3.4 Distance headway

Also the following distance of vehicles depend on the LOS. This is trivial, since the definition of the
following distance is the reciprocal of the density:

s=1/k
where: s is the average distance headway (km)

k is the density (veh/km)
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4 CAN bus data

In this chapter, the CAN bus data processing method is described and the processed CAN bus data
is explored. Also, the accuracy and reliability of the CAN bus signals is investigated, by reviewing
literature and by using the processed CAN bus data. The findings in this paragraph will be used in
combination with the finding of the previous paragraph, to select those uCAN equipped vehicles
which are most likely to be able to accurately estimate LOS.

4.1 CAN bus signal frequencies and reliability

In literature, some information is found on the CAN bus signal frequencies and reliability.
The devices that are connected to the CAN bus differ per vehicle. In general, modern vehicles will
have more CAN bus nodes than older vehicles. Every signal is send over the CAN bus network with

its own frequency. In Table 5 the period of a number of CAN bus signals is shown.

Table 5: CAN bus signal periods [24]

signal number signal period (ms)
1 Traction Battery Voltage 100.0
2 Traction Battery Current 100.0
3 Traction Battery Temp, Average 1000.0
4 Auxiliary Battery Voltage 100.0
5 Traction Battery Temp, Max 1000.0
6 Auxiliary Battery Current 100.0
7 Accelerator Position 5.0

8 Brake Pressure, Master Cylinder 5.0

9 Brake Pressure, Line 5.0

10 Transaxle Lubrication Pressure 100.0
11 Transaction Clutch Line Pressure 5.0

12 Vehicle Speed 100.0

Tindell et al. [24] have investigated the message response times of the CAN bus. They analyzed
the worst-case response time of a message. Table 6 shows the worst case response times for a few
signals of a CAN bus network (the signal number corresponds to the number in Table 5).

The frequencies of the CAN bus signals are high, ranging from 1 Hz to 200 Hz. The worst case
response times of CAN bus signals are in the order of milliseconds, indicating very high reliability.
Both properties are expected to be more than sufficient for LOS estimation.
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Table 6: CAN bus worst case response times [24]

signal number period (ms) | worst case response time (ms)
8,9 5.0 2.128

7 5.0 2.632

11 5.0 3.720
15,16,17,19,20,22,26,27 | 10.0 9.040

18 100.0 10.128

1,2,4,6 100.0 18.944

12 100.0 19.448

10 100.0 19.552

3,513 1000.0 20.608

4.2 CAN bus data from Smart In-Car

Ideally, the available data from the uCAN equipped vehicles would be made available in a matrix
format, containing all parameter values in single row. This however, is not the case. In Figure 11, a
couple of lines from the raw data files are shown. Instead of containing all parameters, most lines
only contain one CAN bus parameter. They are logged individually in so called json format. Since
we want to be able to perform analyses on the data, the raw data has to be converted to a proper
format which allows these analyses. Therefore the raw data is imported in Matlab and converted to

a matrix format.

{ "timestamp" : 1335874566255e88 , '"gpsdata" : { "lat" : 51.46685527777779 , "lon" : 5.473162500800002} ,
“uvm™ : { "id"™ : 119611000024168 , "licenseplate" : “16-XN-FT"}}

{ "timestamp" : 1335874566511l1ee@ , "candata" : { "Speed" : 22.579200744628926} , “uvm" : { "id" :
11961100€024168 , "licenseplate" : "16-XN-FT"}}

{ "timestamp" : 13358745666565@@ , "candata™ : { "RPM" : 1797.@} , "uvm" : { "id" : 119611000024168 ,
"licenseplate™ : "16-XN-FT"}}

{ "timestamp" : 13358745670313@@ , "candata" : { "Speed" : 22.9248088728082734} , “uvm" : { "id" :
119611900024168 , "licenseplate" : "16-XN-FT"}}

{ "timestamp" : 1335874567335@8@ , "gpsdata" : { "lat" : 51.466869444444455 , "lon" : 5,473101944444446} ,
“uvm" : { "id"™ : 119611000024168 , "licenseplate" : "16-XN-FT"}}

{ "timestamp" : 13358745675512@@ , "candata" : { "Speed" : 23.443281065063477} , "uvm" : { "id" :
11961100ee24168 , "licenseplate" : "16-XN-FT"}}

{ "timestamp" : 13358745676661ee , "candata™ : { "RPM" : 1822.@} , "uvm" : { "id" : 1196lleeeez4les ,
"licenseplate™ : "16-XN-FT"}}

{ "timestamp" : 1335874568871l1ee@ , "candata" : { "Speed" : 23.50080108642578} , “uvm" : { "id"
11961100€024168 , "licenseplate" : "16-XN-FT"}}

{ "timestamp" : 13358745683320@@ , “"gpsdata™ : { "lat"™ : 51.46687861111112 , "lon" : 5.473@10833333335} ,
“uvm" @ { "id"™ : 119611000024168 , "licenseplate" : "16-XN-FT"}}

{ "timestamp" : 13358745685999@@ , "candata" : { "Speed" : 23.96160125732422} , “uvm" : { "id"
119611900024168 , "licenseplate" : "16-XN-FT"}}

{ "timestamp" : 13358745686677@@ , "candata" : { "RPM" : 1848.@} , "uvm" : { "id" : 1196lleeee24168 ,
"licenseplate™ :; "16-XN-FT"}}

Figure 11: Example of the raw CAN bus data

A complete description of the conversion methods can be found in Appendix E. A few rows and
column from the resulting Matlab matrix is shown in Table 7. These are the converted lines from
Figure 11.
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Table 7: 1 second aggregated data in Matlab

year | month | day | hour | minute | second | epoch timestamp uvm lon lat rpm | speed
2012 | 5 1 12 16 6,4742 | 1335874566474200 | 119611000024168 | 5,4732 | 51,4669 | 1797 | 22,5792
2012 | 5 1 12 16 7,3959 | 1335874567395900 | 119611000024168 | 5,4731 | 51,4669 | 1822 | 23,1840
2012 | 5 1 12 16 8,4154 | 1335874568415420 | 119611000024168 | 5,4730 | 51,4669 | 1848 | 23,7312
4.3 CAN bus visualizations and quality

In section 1.2 of Appendix E, many visualizations of the CAN bus data are presented. These are,
together with the analysis in section 1.3 of Appendix E, used to assess the reliability and accuracy
of the CAN bus signals. The most important findings are presented here.

Although the uCAN equipped vehicles provide a vast amount of data, the penetration rate is
limited. The frequency of the CAN bus parameters differs per vehicle and parameter, but are often
around once per second. Also the available CAN bus parameters differ per vehicle.

Except for a few clear outliers which mostly occur when the vehicle engine is started or turned off,
which can be easily filtered, the CAN bus data shows realistic values. When comparing some of the
CAN bus parameters, they also show expected relationships. Also, when a single variable is
measured in multiple ways, the results match. Not all parameters have been thoroughly examined.
The accuracy of these parameters can’t be guaranteed.

The GPS position in areas with builtup close to the road and below trees can show large errors from
the actual position. The GPS position on motorways is quite accurate. The unit of the fuel
consumption is unknown.

When using the data for analyses, there are some limitations that will have to be kept in mind. The
data is only gathered by taxi drivers. It is quite probable that their driving behaviour differs from
other road users. The taxis are mainly present in the city centre of Eindhoven. Their usage of the
motorways is relatively small. Also, the dataset only contains data from a limited amount of vehicle

types.
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5 Results

5.1 LOS estimation with real CAN bus data

The definition of Level of Service, the determined LOS dependent driving behaviour factors and the
findings from the CAN bus data exploration in the previous paragraphs will be used in this
paragraph to estimate the LOS with CAN bus data. The goal of this chapter is to determine the
accuracy of LOS estimation with CAN bus signals and to assess the effect of different signal

transmission frequencies and different data collection radii.

5.1.1 CAN bus data vehicles

Based on the findings in chapter 3, regarding the driving behaviour dependency on density, CAN
bus signals can be identified which are likely to be able to measure these behavioural factors.
Speed, speed variation, the amount of lane changes and the distance headway were shown to
depend on density. Speed can be measured with the speedometer. The speed variation can also be
measured with the speedometer, but the brake signal and the RPM signal may also be indicators
for speed variation. The CAN bus signals which are most likely to be able to indicate lane changes
are the indicator signals and the steering position, since these values will change during a lane
change. Besides the available signals (Table 20, Appendix E), there could be other CAN bus signals
which are not available in the data set, like cruise control and brake force related CAN bus signals,

which are related with Level of Service.

It is decided that the CAN bus data of the 35 Mercedes E-class (212) 2009 taxis will be used,
because many of these CAN bus signals are provided by these vehicles. Another reason to select
only one vehicle type is to ensure the signals from different vehicles will have the same properties.

As was shown in Table 20 in Appendix E, the CAN bus data of these vehicles include the following

signals:

. RPM

. Speed

) Brake

. SteeringPosition

. RDI_Switch (right direction indicator)
. LDI_Switch (left direction indicator)
. FuelConsumption

. WiperMotor

The CAN bus data from these vehicles which was collected between August 1% 2012 and
September 30™ 2012 is used. This period is chosen because during this period these vehicles were

known to collect the desired CAN bus signals.
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Figure 12:

5.1.2 Loop detectors

From the available loop detectors, shown in Figure 4, all loop detectors are selected which are
located on road sections with a 2*2-lane cross section, as described in section 2.5.1, and located at
least 200m from on-ramps, off-ramps and weaving sections. In total, around 140 loop detector
locations are included in the research. A list of these loop detectors is included in Table 24 in
Appendix F. The locations of the loop detectors are shown in Figure 12. The speed limit on all these
motorway segments is 120 km/h. This hasn’t changed after September 1%t 2012, when the speed
limit on most Dutch motorways was increased to 130 km/h, see Figure 69 in Appendix G. This
enables us to combine the data from the different loop detector locations, since the conditions on
all road segments are to large extent the same. A drawback is that the data does not give the
opportunity to assess the effect of different speed limits. When the speed limit is lower and thus
closer to the speed near capacity conditions (LOS E), it is probable that the differences in driving

behaviour (e.g. speed) in the LOS’s will be smaller, making estimation of the LOS based on CAN
bus signals less accurate.

)
"55;@_
S N
o schijndel

& \ e

..//’&‘ Hoaran [NE1E Boekel gy penwed

Kapelweg

Oisterwijk y

o S
Sifit- AW
Dedenrode T Lij e X

%
3
in
Gemert- %
e-““n“!se;v q

B Balel
B o

Laarbeek

Son En

Tl Mierlo

Breugel
Hilvarenbeek Nuenen, Helmond
Gerwen En i
Nederwetten >
i
B aeied
%% .He\!“w
k-
s
g £} Eindhoven E
g 2 o Geldrop- - Mok
Veldhoven @
|
il

&
el
Heeze- e a
Leende pro
Reusel-De  Bladel & see
5 adel -
Mierden A

?, Eersel

pInZAIPISE -y

Bergeijk

el

Er

Locations of the used loop detectors. The red icons indicate the locations of the used loop detectors.

Page 32



5.1.3 LOS ground truth

As was shown in section 1.2 in Appendix B, the loop detectors used in the Netherlands can be quite
unreliable. Many loop detectors where found which do not meet the NDW requirements [25][26].
Unfortunately, the real accuracy of the loop detectors, which are used for determining the LOS
ground truth, is unknown. However, the effect of the inaccuracy of the loop detectors on the LOS
ground truth determination can be assessed by adding a measurement error to the loop detector
measurements.
The MAPE of the loop detectors is set at 5%, the limit of the NDW requirement (see section 1.7 in
Appendix B). The assumption is made that the error is normally distributed. The following
simulated erroneous loop detector values are generated:

Verror = Vmeasured ¥ (14+normrand(p,o))

ierror = imeasured ¥ (1+normrand(y,o))
with: normrand(p,0) is a function which randomly selects a point from the normal distribution

H=20

o = 0.0625
The Verror @and ierror is calculated for all 7184 passages. UsSiNg Verror @Nd lerror, Kerror iS calculated and
LOScrror is determined. When comparing LOS to LOSgor, in 11% of the passages, LOS and LOS¢;or
do not match. This means that, if the assumed MAPE of 5% corresponds with the real MAPE of the
loop detectors, in 11% of the passages, the LOS ground truth will have been determined
incorrectly (see Appendix I). This also means, that the currently used LOS determination using loop
detectors, even when complying with the NDW requirements, has an inaccuracy of up to 11%. If
the unknown real MAPE would actually be larger, as is found by [25][26], this percentage will be
even larger. It is also likely that individual loop detectors will not have an average error of zero.
They are more likely to have a negative or positive bias (4 # 0), which could also lead to a higher
inaccuracy of the LOS ground truth determination.
The effect of loop detector inaccuracy on LOS ground truth determination will be further

investigated in section 5.2, using the simulated loop detector data.

5.1.4 Combining the CAN bus data with the loop detector data

In total, during August and September 2012, 7184 times one of the 35 selected uCAN equipped
taxis passed one of the selected loop detectors.

Every time a vehicle passed a loop detector, the data points of that vehicle that are near the loop
detector are collected. To assess the effect of different signal transmission frequencies and using
different detection point radii, this is done with variable values of the signal transmission frequency
and the detection point radius. The different signal periods which are used are 1s, 2s, 3s, 4s, 5s
and 6s. The detection point radii are 50m, 100m, 200m and 400m. This yields 24 sets of data
points for every passage.

Note that in some cases, the period is too long and the radius too small to obtain a data point from
a vehicle which passes the loop detector. This can occur when the vehicle travels over 2*radius in
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the time window of the period. This means that some period-radius combinations result in missed
detections.

For every set of passage data points, the mean, standard deviation, minimum and maximum of
every CAN bus parameter is stored. This information is combined with the corresponding loop
detector data, including the determined LOS. Table 8 shows the information that is included in the
resulting table with passages. Information about the units of the parameters can be found in Table
19 in Appendix E.

Table 8: Combined CAN and loop detector data per passage

column parameter description

1 dp_speed loop detector 1-minute aggregated speed during passage

2 dp_intensity loop detector 1-minute aggregated intensity during passage
3 dp_density 1-minute aggragated density (intensity/speed) during passage
4 dp_LOS 1-minute aggregated density LOS during passage, determined with density
5 passagenr unique number of passage

6 Road road number of motorway

7 direction side of road (0=left, 1=right)

8 hectometer the longitudional coordinate of the loop detector position

9 year moment of passage

10 month moment of passage

11 day moment of passage

12 hour moment of passage

13 minute moment of passage

14 second moment of passage

15 epochtime epoch time of passage

16 uvm unique vehicle number

17 lon average GPS longitude during passage

18 lat average GPS latitude during passage

19 rpm_avg average of motor RPM during passage

20 rpm_std standard deviation of motor RPM during passage

21 rpm_max maximum of motor RPM during passage

22 rpm_min minumum of motor RPM during passage

23 speed_avg average vehicle speed during passage

24 speed_std standard deviation of vehicle speed during passage

25 speed_max maximum of vehicle speed during passage

26 speed_min minimum of vehicle speed during passage

27 brake_avg average brake usage during passage

28 brake_std standard deviation of brake usage during passage

29 brake_max maximum of brake usage during passage

30 brake_min minimum of brake usage during passage

31 steeringposition_avg average steering position during passage

32 steeringposition_std standard deviation of steering position during passage

33 steeringposition_min maximum of steering position during passage

34 steeringposition_max minimum of steering position during passage

35 steeringofcenter_avg average steering position of center during passage

36 steeringofcenter_std standard deviation of steering position of center during passage
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column parameter description

37 steeringofcenter_min maximum of steering position of center during passage

38 steeringofcenter_max minimum of steering position of center during passage

39 RDI_avg average right direction indicator usage during passage

40 RDI_std standard deviation of right direction indicator usage during passage
41 RDI_min maximum of right direction indicator usage during passage
42 RDI_max minimum of right direction indicator usage during passage
43 LDI_avg average left direction indicator usage during passage

44 LDI_std standard deviation of left direction indicator usage during passage
45 LDI_min maximum of left direction indicator usage during passage
46 LDI_max minimum of left direction indicator usage during passage
47 hazardlights_avg average hazard lights usage during passage

48 hazardlights_std standard deviation of hazard lights usage during passage
49 hazardlights_min maximum of hazard lights usage during passage

50 hazardlights_max minimum of hazard lights usage during passage

51 RearFoglight_avg average rear fog light usage during passage

52 RearFoglight_std standard deviation of rear fog light usage during passage
53 RearFoglight_min maximum of rear fog light usage during passage

54 RearFoglight_max minimum of rear fog light usage during passage

55 FrontFoglight_avg average front fog light usage during passage

56 FrontFoglight_std standard deviation of front fog light usage during passage
57 FrontFogLight_min maximum of front fog light usage during passage

58 FrontFogLight_max minimum of front fog light usage during passage

59 WiperMotor_avg average wiper motor usage during passage

60 WiperMotor_std standard deviation of wiper motor usage during passage
61 WiperMotor_min maximum of wiper motor usage during passage

62 WiperMotor_max minimum of wiper motor usage during passage

63 FuelConsumption_avg average fuel consumption during passage

64 FuelConsumption_std standard deviation of fuel consumption during passage

65 FuelConsumption_min maximum of fuel consumption during passage

66 FuelConsumption_max minimum of fuel consumption during passage

5.1.5 LOS estimation with CAN bus signals

After collecting the CAN bus data and the LOS ground truth and combining them in the previous
paragraphs, we can now investigate the LOS estimation possibility with CAN bus signals using the
resulting table from section 5.1.4. First of all, the CAN bus signal values of every passage will be
plotted against the LOS, to get a first impression of the LOS dependency of the CAN bus signals.
Secondly, the obtained CAN bus signal passage data will be used to investigate the correlation
between the CAN bus signals and the LOS, to identify the CAN bus signals which have the
strongest correlation with LOS. With this information also a combination of a period and radius will
be chosen, which shows the strongest correlations with LOS, which will be used in the further
analysis. After this step, multinomial logistic regression is used to determine a LOS estimation
formula with single and multiple CAN bus parameters. Finally, these LOS estimation formulas are
used to estimate the LOS during the passages and the accuracy of these estimations is presented
for every CAN bus parameter or CAN bus parameter combination.
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5.1.6 LOS versus CAN bus parameter values

In this paragraph, the values of some of the CAN bus parameters will be plotted against the LOS,
determined with the measured 1-minute aggregated speed and intensity values from the loop
detectors. In all figures in this paragraph, the central red mark inside the blue box indicates the
median. The edges of the box represent the 25th and 75th percentiles. The whiskers extend to the
most extreme data points not considered outliers and outliers are plotted individually with red

crosses.

Figure 13 - Figure 20 show the measured values of several CAN bus parameter at the different
LOS. In all figures, the used radius is 200m and the used period is 1s. Figure 13 shows the LOS
versus the average speed of the single vehicle passages. For increasing LOS, the average speed
decreases. The average speed at LOS A and B is very similar, but the differences between the
values at higher LOS are larger. The overlap between subsequent LOS is however substantial.
Figure 14 shows the standard deviation of the measured speed versus the different LOS. On
average, the standard deviation of the speed increases for increasing LOS. Also here, there is a lot
of overlap of values at different LOS.

Figure 15 and Figure 16 show the LOS versus average fuel consumption and standard deviation of
fuel consumption respectively. Also for these CAN bus parameters, a respectively decreasing and
increasing trend is visible. But the overlap between all LOS is very large, disallowing differentiation
of LOS based on the fuel consumption parameters.

Figure 17 shows the LOS versus the standard deviation of the measured steering position. This
parameter is very similar for all LOS, only showing slightly higher values at LOS F. This makes it
very unlikely that this parameter will be useful to estimate the LOS.

Figure 18 depicts the brake usage of the passing vehicles for the different LOS. For all LOS, the
median value of the brake usage is 0, meaning that the brake is not used at all in the lion’s share
of the passages. For LOS A-E, also the 75™ percentile is 0. In LOS F, the 75 percentile value is
larger than 0, meaning that over 25% of the vehicles in LOS F are using their brakes at least once
during the passage.

In Figure 19 and Figure 20 show the average RPM and standard deviation of the RPM respectively
versus the LOS. These figures are very similar to the speed related Figure 15 and Figure 16,
although the scatter within a LOS and the overlap between LOS are both larger.
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Figure 13: LOS versus average CAN bus speed. The average CAN bus speed of the uCAN equipped vehicles passing a loop
detector is plotted against the Level of Service ground truth in the corresponding minute, determined with the loop
detector data. The central red mark inside the blue box indicates the median. The edges of the box represent the 25th
and 75th percentiles. The whiskers extend to the most extreme data points not considered outliers and outliers are
plotted individually with red crosses.
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Figure 14: LOS versus st.dev. of CAN bus speed. The standard deviation of the CAN bus speed of the uCAN equipped
vehicles passing a loop detector is plotted against the Level of Service ground truth in the corresponding minute.
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Figure 15: LOS versus average fuel consumption. The average fuel consumption of the uCAN equipped vehicles passing a
loop detector is plotted against the Level of Service ground truth in the corresponding minute. The unit of fuel
consumption is unknown.
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Figure 16: LOS versus st.dev of fuel consumption. The standard deviation of fuel consumption of the uCAN equipped
vehicles passing a loop detector is plotted against the Level of Service ground truth in the corresponding minute. The unit
of fuel consumption is unknown.
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Figure 17: LOS versus st.dev of steering position. The standard deviation of the steering position of the uCAN equipped
vehicles passing a loop detector is plotted against the Level of Service ground truth in the corresponding minute. The unit
of steering position is unknown.
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Figure 18: LOS versus average brake usage. The average brake usage (the number of seconds in which the brake was used
during the vehicle passage devided by the total number of seconds of the vehicle passage) of the uCAN equipped vehicles
passing a loop detector is plotted against the Level of Service ground truth in the corresponding minute.
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Figure 19: LOS versus average engine rotational speed. The average engine rotational speed of the uCAN equipped
vehicles passing a loop detector is plotted against the Level of Service ground truth in the corresponding minute.

T T T T T T
1000 F 4 -
o00 . -
+
f00 - . i
+
+
e 7O00F $ H + i
=
L]
S BOOF I + + + i
= ¥ +
5 &o0f + + + + -
2 + + s +
2 amf + % | .
5 : % + |
=1 | _
Z 3w + |
200 F % | -
al $ T
| | | | | |
A B C D E F

LOS

Figure 20: LOS versus st.dev of the engine rotational speed. The standard deviation of the engine rotational speed of the
uCAN equipped vehicles passing a loop detector is plotted against the Level of Service ground truth in the corresponding
minute.
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5.1.7 Relationship between LOS and CAN bus parameters

The figures in the previous paragraph have shown that some of the parameters clearly differ at the
various LOS, albeit with a lot of overlap. To assess which CAN bus parameters can be used to
estimate the Level of Service and to assess which combination of the CAN bus signal transmission
period and the radius is most effective, the correlation between the LOS and all CAN bus
parameters is determined. Since the figures in the previous section clearly show that a correlation
exists between LOS and the CAN bus parameters, but these do not appear to be linear, instead of
the normal Pearson correlation coefficient, the Spearman rank correlation coefficient is determined.
This is also done because the LOS has an ordinal scale, for which Pearson correlation is less
suitable. The Spearman correlation coefficient assesses how well the relationship between two
variables can be described using a monotonic function. In Appendix H, Table 25 - Table 28 show
the R and P values for the Spearman correlation between the CAN bus parameters and the LOS, for
several values of the radius and the signal period. Table 9 and Table 10 show the same R values,
but only for the CAN bus parameters which show the strongest correlation with LOS and have a P-
value near zero. An R value of 0 indicates no correlation, an R value of 1 or -1 relatively indicates
perfect positive of negative correlation. The P-value indicates the chance of no correlation between

the LOS and the specified parameter.

Table 9: R values Spearman correlation between LOS and CAN bus parameters, for 50m & 100m radii and 1-6s CAN bus
signal transmission periods.

50m 100m

CAN bus parameter 1s 2s 3s 4s 5s 6s 1s 2s 3s 4s 5s 6s

rpm_avg -0,45 -0,45 -0,45 -0,45 -0,46 -0,47 -0,45 -0,45 -0,45 -0,44 -0,44 -0,45
rpm_std 0,30 0,27 0,22 0,19 0,20 0,19 0,32 0,30 0,29 0,25 0,22 0,21
rpm_max -0,46 -0,45 -0,46 -0,46 -0,46 -0,47 -0,47 -0,46 -0,46 -0,46 -0,45 -0,45
rpm_min -0,42 -0,43 -0,44 -0,45 -0,45 -0,46 -0,40 -0,40 -0,42 -0,42 -0,42 -0,43
speed_avg -0,46 -0,46 -0,47 -0,47 -0,47 -0,49 -0,46 -0,46 -0,46 -0,46 -0,46 -0,46
speed_std 0,28 0,26 0,23 0,19 0,20 0,19 0,30 0,29 0,28 0,25 0,22 0,22
speed_max -0,46 -0,46 -0,47 -0,47 -0,47 -0,49 -0,47 -0,46 -0,47 -0,46 -0,46 -0,46
speed_min -0,45 -0,46 -0,47 -0,47 -0,47 -0,49 -0,45 -0,45 -0,45 -0,45 -0,46 -0,46
brake_avg 0,12 0,12 0,11 0,11 0,12 0,10 0,16 0,15 0,15 0,14 0,14 0,13
brake_std 0,13 0,12 0,11 0,11 0,12 0,11 0,15 0,15 0,15 0,13 0,14 0,15
steeringposition_std 0,09 0,17 0,20 0,19 0,19 0,18 0,05 0,05 0,08 0,14 0,17 0,20
steeringofcenter_std 0,08 0,17 0,20 0,19 0,19 0,18 0,06 0,06 0,08 0,14 0,17 0,19

The CAN bus parameters which show the strongest correlations, for all period-radius combinations,
are average RPM, maximum RPM, average speed, maximum speed and minimum speed. For many
CAN bus parameters, it appears that the correlation doesn’t reduce for increasing periods. It
appears that for many CAN bus parameters, a single data point provides enough information. For
some CAN bus parameters, especially the standard deviation parameters, this doesn’t hold. For an
adequate determination of the standard deviation, multiple data points are necessary. The effect of
the radius on the correlation also seems to be limited, but larger radii generally show greater
correlations than smaller radii. Based on these findings, in the rest of the analysis, a radius of
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200m and a period of 1s will be used. 400m is not chosen, because this length is greater than the
minimum distance between the selected loop detectors and on-ramps, off-ramps and weaving

sections, as mentioned in section 5.1.2. Using a radius of 400m would contaminate the data.

Table 10: R values Spearman correlation between LOS and CAN bus parameters, for 200m & 400m radii and 1-6s CAN bus
signal transmission periods.

radius =200m radius = 400m
CAN bus parameter | ¢ 2s 3s 4s 5s 6s 1s 2s 3s 4s 5s 6s
rpm_avg -0,45 -0,45 -0,45 -0,45 -0,45 -0,45 -0,46 -0,46 -0,46 -0,46 -0,46 -0,46
rpm_std 0,33 0,33 0,32 0,31 0,30 0,28 0,34 0,34 0,33 0,32 0,32 0,32
rpm_max -0,48 -0,48 -0,48 -0,47 -0,47 -0,47 -0,49 -0,49 -0,49 -0,49 -0,49 -0,49
rpm_min -0,37 -0,38 -0,39 -0,39 -0,40 -0,42 -0,32 -0,33 -0,35 -0,35 -0,36 -0,38
speed_avg -0,46 -0,46 -0,46 -0,46 -0,46 -0,47 -0,47 -0,47 -0,47 -0,47 -0,47 -0,47
speed_std 0,32 0,32 0,32 0,30 0,29 0,27 0,33 0,33 0,32 0,31 0,31 0,31
speed_max -0,48 -0,48 -0,48 -0,47 -0,47 -0,47 -0,49 -0,49 -0,49 -0,49 -0,49 -0,49
speed_min 0,44 | 044 | -0,44 | 044 | -0,44 | 045 | -0,42 | 042 | -0,43 |-043 | -0,43 | 044
brake_avg 0,19 0,19 0,18 0,16 0,18 0,16 0,22 0,22 0,21 0,20 0,21 0,19
brake_std 0,19 0,19 0,18 0,16 0,18 0,16 0,22 0,22 0,21 0,19 0,21 0,19
steeringposition_std 0,05 0,05 0,05 0,05 0,06 0,08 0,04 0,05 0,04 0,05 0,04 0,04
steeringofcenter_std 0,07 0,07 0,06 0,06 0,05 0,09 0,06 0,06 0,06 0,05 0,04 0,05

Besides the correlation between the CAN bus parameters and LOS, also the Pearson correlation
between the CAN bus parameters and the 1-minute aggregated speed and intensity and density
have been determined. The R and P values can be respectively found in Table 29 and Table 30 in
Appendix H. Generally, the CAN bus parameters have the strongest correlation with speed. The

correlations with the density are weaker and the correlations with the intensity are the weakest.

5.1.8 LOS estimation

The Level of Service is indicated with a letter, meaning it is measured on an ordinal scale.
Therefore, normal regression analysis is not suitable. Instead, since the LOS uses an ordinal scale,
multinomial logistic regression is used. With multinomial logistic regression, the B’s of the LOS
estimation function are determined:
P(LOS=y) = eBYX) / 5, Bk*X)

First, this is done with using single CAN bus parameters for x;. Using the resulting functions, for
every passage the LOS with the highest probability is chosen as the LOS estimation. The
percentage of correct LOS estimations is subsequently calculated. The results can be found in the
second left column of Table 11. The CAN bus parameters which provide the highest LOS estimation
accuracy are shown in bold letters. As expected, these are the parameters which also show the
strongest correlation with the LOS. These CAN bus parameters are combined with the other CAN
bus parameters and used as variables x; to determine the B’s of the LOS estimation functions.
Again, the LOS is estimated for all passages and the correct LOS estimation percentage is

determined. The results are shown on the right side of Table 11.
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Table 11: Multinomial logistic regression LOS estimation accuracy using 1 or 2 variables. The percentage indicates the
correct LOS estimation rate, when using the specified variable(s).

CAN bus parameter single 2 variables
variable rpm_avg rpm_max speed_avg speed_max speed_min

rpm_avg 34,6% 36,4% 36,9% 36,9% 36,0%
rpm_std 31,1% 35,5% 36,1% 36,8% 36,9% 36,5%
rpm_max 35,7% 36,4% 36,5% 36,8% 35,9%
rpm_min 32,1% 35,4% 36,2% 36,9% 37,0% 36,2%
speed_avg 37,1% 36,9% 36,5% 36,9% 36,6%
speed_std 30,5% 35,5% 35,7% 36,7% 36,8% 36,8%
speed_max 37,0% 36,9% 36,8% 36,9% 36,7%
speed_min 36,1% 36,0% 35,9% 36,6% 36,7%

brake_avg 30,0% 34,6% 35,4% 36,9% 36,9% 36,3%
brake_std 30,1% 34,7% 35,5% 36,8% 36,8% 36,3%
brake_max 29,8% 34,6% 35,7% 37,1% 37,0% 36,1%
brake_min 30,3% 34,8% 35,4% 36,7% 36,8% 36,4%
steeringposition_avg 27,0% 32,1% 33,6% 34,0% 34,1% 33,2%
steeringposition_std 27,1% 32,3% 33,4% 34,2% 34,0% 33,3%
steeringposition_min 26,1% 33,0% 33,9% 34,1% 33,9% 33,3%
steeringposition_max 27,1% 31,8% 33,3% 33,9% 34,0% 33,2%
steeringofcenter_avg 27,0% 32,2% 33,5% 33,9% 33,9% 33,2%
steeringofcenter_std 26,4% 32,5% 33,5% 34,0% 33,7% 33,4%
steeringofcenter_min 27,0% 32,0% 33,2% 33,8% 33,9% 33,0%
steeringofcenter_max 26,3% 32,7% 33,7% 33,9% 33,8% 33,3%
RDI_avg 29,8% 34,7% 35,9% 37,2% 37,0% 36,1%
RDI_std 29,8% 34,7% 35,8% 37,1% 36,9% 36,1%
RDI_min 29,8% 34,7% 35,7% 37,2% 36,9% 36,2%
RDI_max 29,8% 34,6% 35,8% 37,0% 36,9% 36,1%
LDI_avg 29,8% 34,8% 35,8% 37,0% 36,9% 36,1%
LDI_std 29,8% 34,8% 35,7% 37,0% 36,9% 36,1%
LDI_max 29,8% 34,7% 35,7% 37,1% 36,9% 36,1%
FrontFoglLight_avg 30,0% 34,7% 35,7% 36,9% 36,8% 36,1%
FrontFoglLight_min 30,0% 34,7% 35,7% 36,9% 36,8% 36,1%
FrontFogLight_max 30,0% 34,7% 35,7% 36,9% 36,8% 36,1%
WiperFast_avg 29,6% 34,6% 35,7% 36,9% 36,9% 36,2%
WiperFast_std 29,7% 34,5% 35,7% 36,7% 36,8% 36,1%
WiperFast_min 29,6% 34,6% 35,7% 36,9% 36,8% 36,1%
WiperFast_max 29,6% 34,4% 35,8% 36,7% 36,7% 36,1%

Adding more variables to the multinomial logistic regression does generally not improve the correct

LOS estimation percentage. The multinomial logistic regression with the average speed as single

variable gives us the best LOS estimation functions, with an accuracy of 37.1%. These functions

are visualized in Figure 21. From the figure, several things can be observed. First of all, as was also

shown in Figure 13, there is a lot of overlap between subsequent LOS. Secondly, from the figure,

the boundary values of the average speed between subsequent LOS can be observed. Finally, the
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LOS can only be estimated with large accuracy when the speed is very low (LOS F) or very high
(LOS A). For all other speeds, the accuracy is very limited, because those speeds are more likely to

occur in several LOS.
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Figure 21: LOS probability functions. The functions indicate, for every value of the average speed of the passing uCAN
equipped vehicle, the probability of occurrence of every LOS. The LOS with the highest probability is selected as LOS
estimation.
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5.2 LOS estimation with simulation

In the previous chapter, we have shown that CAN bus signals can provide relevant data to assess
the LOS. However, the penetration rate of the uCAN equipped was too low to estimate the LOS
with an acceptable accuracy. In this chapter, simulation data will be used to determine how the
accuracy of LOS estimation with CAN bus data improves for higher penetration rates.

Since LOS estimation with only the average speed was found to be the most accurate in the
previous section, and the speed is one of the parameters which is available in the simulated data
set, we will be able to estimate the LOS estimation accuracy at higher penetration rates, instead of
only giving a lower boundary of this accuracy which was expected in section 2.6.

First, the single vehicle passages will be used again to estimate the LOS with the single vehicle
passages. Secondly, for every minute and detection point for which a LOS has been determined,
the LOS will be estimated with the simulated CAN speed signal from multiple vehicles, for different
penetration rates. Finally, the LOS will also be estimated by only using the positional data
(simulating the GPS signal) and the results of the different LOS estimation methods will be

compared.

5.2.1 LOS ground truths

As was defined in section 1.6.2, LOS is determined by the density. For the real data, the LOS
ground truth was determined using the loop detector 1-minute aggregated speed and intensity
data to estimate the density, using k=qg/u. This was the only applicable method to determine the
LOS, since no other information was available. In the case of simulation, there is more information
available which can be used to determine the LOS. The LOS ground truth in the simulation is

determined through four different methods. These are described in this paragraph.

Similar to the real situation, in the simulation detection points are present which provide 1-minute
aggregated speed and intensity data which can be used to estimate the density and the
corresponding LOS. This method corresponds with LOS determination with perfect functioning loop
detectors in real life.
The second LOS ground truth is determined using the detector data with an introduced error.
Assuming the same MAPE as in section 5.1.3 of 5%, a random normally distributed error is added
to the perfect simulation detector measurements to obtain measurements with an accuracy which
is similar to the accuracy of the real loop detector measurements, using:

Verror = V + normrand(y,0)

Ierror = I + normrand(u,o)
with: normrand(p,0) is a function which randomly selects a point from the normal distribution

pH=20

o = 0.0625
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The third LOS ground truth is based on the observed density. Since the simulation data also
includes all vehicle trajectories, it is also possible to determine the 1-minute aggregated LOS using
the actual density. This is done by measuring the average density in a minute over a 200m road
section, 100m upstream and 100m downstream of the detection points.

The fourth LOS ground truth is similar to the third LOS ground truth, but is not 1-minute
aggregated. Instead, for every vehicle passage, the LOS at that moment and at that position is
determined by the average density in the same 200m road section, but only during the 5 seconds
closest to the moment of the detection point passage. This final ground truth gives the highest
certainty that the determined LOS ground truth really reflects the traffic conditions that the vehicle
encounters during the detection point passage.

5.2.2 LOS estimation with single vehicle passages

LOS ground truths versus simulated CAN bus parameters

In this paragraph, the values of some of the simulated CAN bus parameters will be plotted against
the four different LOS ground truths. These figures are consequently compared with the
corresponding figures in section 5.1.6.

Figure 22 and Figure 23 respectively show the LOS, determined using the detection point data,
versus the average speed and the LOS, determined with the error included detection point data,
versus the average speed. Although the LOS determination inaccuracy was found to be quite high,
no large differences are found between the figures. This could mean that the loop detector
accuracy has no significant effect on the LOS estimation accuracy. This will be further investigated
in section 5.2.

In case of a correct estimation of the loop detector accuracy and a perfect simulation model, Figure
23 should look a lot like Figure 13. In general it can be stated that the simulated data shows less
overlap between the values at different LOS. Furthermore the values found in LOS A-D are similar
in both figures, but the average speed values in LOS E and F are quite different. Both properties
contribute to better LOS differentiation possibilities based on the average speed of the simulated
CAN bus data. The difference in LOS E and F is thought to be mainly caused by the difference in
real driving behaviour and the simulated driving behaviour. To make the simulated model
correspond more with reality, the simulation model parameters will have to be altered toward more
risk prone behaviour. This will result in smaller headways and higher average speeds at high
densities. Model calibration has not been executed in this study and is left as a recommendation for
further research.

Figure 24 depicts the average speed for LOS ground truth 3. The average speed values for LOS A-D
are similar to the values for other LOS ground truths. Differences occur for LOS E. The average
speed at LOS E is higher when using LOS ground truth 3 and more concentrated.

LOS ground truth 4 provides similar results, illustrated in Figure 25, but the amount of outliers for
LOS A-C is strongly reduced, compared to the amount of outliers for the other LOS ground truths in
Figure 22 - Figure 24. This is an indication that LOS ground truth 4 is indeed the best LOS ground
truth determination method.
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In the following paragraph, the average speed dependency on LOS will be further discussed, by
calculating the correlation and the LOS estimation accuracy using multinomial logistic regression.

Also, based on those findings, the model validity will be further discussed.
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Figure 22: LOS ground truth 1 versus average speed. The average simulated CAN bus speed of the simulated vehicles
passing a detection point is plotted against the Level of Service ground truth in the corresponding minute, determined
with the detection point data.
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Figure 23: LOS ground truth 2 versus average speed. The average simulated CAN bus speed of the simulated vehicles
passing a detection point is plotted against the Level of Service ground truth in the corresponding minute, determined
with the detection point data, including an error, simulating real loop detector performance.

160 F T T T T -
i i
| H
140 : -
|
| I I +
| | | —
120 | | I | .
' |
= : ' '
Sor | | | ; —
E | | I
= BD - —
g + +
2 .
3 B0 .
+
|
40+ + + | .
|
+ +
+ + E’E
20 -
‘ :
| | | | | |
A B C D E F

LOS

Figure 24: LOS ground truth 3 versus average speed. The average simulated CAN bus speed of the simulated vehicles
passing a detection point is plotted against the Level of Service ground truth in the corresponding minute, determined
with the presence of the simulated vehicles near the detection point.
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Figure 25: LOS ground truth 4 versus average speed. The average simulated CAN bus speed of the simulated vehicles
passing a detection point is plotted against the Level of Service ground truth at that moment, determined with the
presence of the simulated vehicles near the detection point.

Relationship between LOS and CAN bus parameters

The Spearman rank correlation coefficient has been calculated for the available simulated CAN bus
parameters and the different LOS ground truths. The results are presented in Table 12. When
comparing the R values in this table with the R values which were found for the correlation
between the LOS and the real CAN bus parameters, in Table 9 and Table 10, it can be observed
that the simulation data shows a stronger correlation between LOS and the CAN bus parameters.
This is in line with the findings of the previous paragraph.

As expected, the correlation between the speed parameters and LOS ground truth 2 (based on the
erroneous detector values) is slightly weaker than the correlation of LOS ground truth 1 (based on
the perfect detector values), although the differences are very limited.

Surprisingly, the LOS ground truth based on the 1-minute aggregated density shows weaker
correlations with the speed parameters than LOS ground truth 1 and 2. The R values for LOS
ground truth 4 (which was thought to be the best LOS determination method) are however indeed

larger than the other LOS ground truths.
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Table 12: R values Spearman correlation between simulated CAN bus signals and several LOS ground truths

LOS ground truth
variable 1 2 3 4
avg_speed -0,7221 -0,71402 | -0,6872 | -0,7638
stdev_speed | 0,6108 0,60513 0,6078 0,6173
min_speed -0,7285 -0,71986 | -0,6949 | -0,7673
max_speed -0,7005 -0,69296 -0,6651 -0,7404

LOS estimation

Analogous to the process in 5.1.8, the simulated average speed data is used to estimate the LOS
with single vehicle passages using multinomial logistic regression. The correct LOS estimation

percentage per LOS ground truth is presented in Table 13.

Table 13: Correct LOS estimation percentage using average simulated CAN bus speed, for several LOS ground truths.

LOS ground truth

1 2 3 4

52,4% 50,8% 51,5% 53,3%

In accordance with the correlation findings, the average speed from a passing vehicle is best suited
to estimate LOS ground truth 4 (determined with the density at the moment of passage).

The correct LOS estimation with the real data was found to be 37.1% (section 5.1.8). The
corresponding correct LOS estimation percentage (using LOS ground truth 2) with simulation is
50.8%. The consequences of this difference are discussed in the next paragraph. The visualizations
of the LOS estimation functions, using multinomial logistic regression, are shown in Figure 70 -
Figure 73, in Appendix H.

Model validity

In the previous paragraphs, we have shown that the correlation between LOS and the average
speed is larger for the simulated data than for the real CAN bus data. Consequently, we have also
seen that the correct LOS estimation percentage is larger with the simulated data. These
differences are thought to be mainly caused by the difference in real driving behaviour and the
simulated driving behaviour.

Another source of the differences between the simulation data and real data results is the
inaccuracy of the real loop detectors. This inaccuracy will lead to erroneous LOS ground truth
determination and is likely to cause a negative effect on the LOS estimation accuracy. The average
size of the error is however not known. We have seen that the requirements of the NDW and
findings in literature do not match. Using the greatest allowable MAPE, by NDW standards, we
found only a small negative effect on the LOS estimation accuracy. But the actual error of the loop
detectors could be larger, leading to a greater negative effect in the LOS estimations.

Another difference between the model and reality is the vehicles types. The real CAN bus data only
contains data from one type of vehicle and a specific driver type (taxi driver), on roads with
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multiple vehicles types. The model only produces data from one vehicle type, on a road with just
that vehicle type.

Because of these differences, the LOS estimation with the traffic model performs better than the
LOS estimation with real data. Therefore, we will consider the outcomes of the analysis with the

traffic model as an upper boundary for the LOS estimation accuracy in real life.

5.2.3 LOS estimation with CAN bus data at variable penetration rates

In the preceding sections, the LOS has been estimated and the LOS estimation accuracy has been
determined using simulated and real CAN bus parameters from single vehicle passages. In this and
following sections, the LOS will be estimated using the simulated CAN bus average speed from
multiple vehicle passages. This is done for several penetration rates.

Although in real life the overall penetration rate may be known (eg. the number of equipped
vehicles in the Netherlands divided by the total amount of vehicles in the Netherlands), the
penetration rate on a certain road section at a certain moment will not be known. With the
assumption that the equipped vehicles are randomly distributed over the network, this is taken into
account in the simulation analysis as follows. Given a certain penetration rate, the data from a
passage is randomly included with a chance equal to the penetration rate (and otherwise
excluded). All data from the passages which were included during a minute at a detection point are
used to calculate the average speed during that minute at that detection point. Using this average
value of the average speed of the considered (simulated uCAN equipped) vehicles, again LOS
estimation functions are determined with multinomial logistic regression. The used LOS ground
truths are 1 and 3. The LOS estimation functions for several penetration rates are visualized Figure
74 - Figure 86, in Appendix H. The certainty with which the LOS can be estimated, increases for
increasing penetration rates. When an average speed below 85 km/h or above 125 km/h is
measured, it can be stated with very large certainty that the occurring LOS is F/E or A respectively.
For values in between, the accuracy of LOS estimation is much smaller.

The percentage of correct LOS estimations for different penetration rates, using both LOS ground
truths, is displayed in Figure 26. In this figure only the minutes in which at least one of the
equipped vehicle passes the detection point are considered. The correct LOS estimation percentage
at very low penetration rates approaches the values which were found with the LOS estimation
with single passages, which is as expected, since at very low penetration rates, the LOS estimation
will often be based on a single vehicle passage. For increasing penetration rates, the LOS
estimation accuracy increases up to over 70% for LOS ground truth 3 (determined with the
average density in a minute). LOS ground truth 1 (determined with the 1-minute aggregated speed
and intensity measurements from detection points) can be less accurately determined for all
penetration rates.

In case of low penetration rates, it will often occur that during a minute none of the equipped
vehicles will pass the detection point. In that case, no measurement values are available to

estimate the LOS. The percentage of minutes for which no data is available is shown in Figure 27.
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Figure 26: Penetration rate versus correct LOS estimation with simulated average CAN bus speed, for ground truth 1,
determined with simulation loop detector data, and ground truth 3, determined with the vehicle presence, for minutes
with available data.
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Figure 27: Penetration rate versus percentage of minutes without information
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When determining the LOS estimation accuracy for all minutes, including the minutes for which no
data is available, we obtain Figure 28. In this figure, all minutes without any equipped vehicle
passages are considered to have an incorrect LOS estimation.
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Figure 28: Penetration rate versus correct LOS estimation with simulated average CAN bus speed, for ground truth 1,

determined with simulation loop detector data, and ground truth 3, determined with the vehicle presence, for all
minutes.

5.2.4 LOS estimation with plain floating car data at variable penetration rates

When the penetration rate is sufficiently large, the density and thus the LOS can be estimated by
observing the amount of vehicles on a road section and dividing it with the penetration rate:
k=m/L/n/P
with: k = density (vehicles/km/lane)
m = amount of observed vehicles on road section
L = length of road section (km)
n = number of lanes
P

penetration rate

As mentioned before, the exact penetration rate at a certain road section at a certain moment is
not known. Again we assume the equipped vehicles are perfectly randomly distributed over the
network, meaning the chance of a vehicle being an equipped vehicle is unrelated to the location of
the vehicle and the presence of other equipped vehicles. With this assumption, we can use the
simulation trajectory data to determine the accuracy of the LOS estimation with plain floating car

data by again randomly drawing vehicles which will be considered as equipped vehicles with a
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chance equal to the penetration rate. The average density that these vehicles cause near a
detection point (100m upstream and 100 downstream) during a minute is divided by the
penetration rate to obtain the estimated density and LOS.

The LOS estimation accuracy for LOS ground truth 1 and 3, when only considering minutes in
which at least one equipped vehicle was present on the road section, can be seen in Figure 29. The
LOS estimation accuracy at very low penetration rates is less than 40% for both LOS ground
truths. For increasing penetration rates, the accuracy increases, up to 100% for LOS ground truth
1 estimation and over 94% for LOS ground truth 1 estimation. LOS ground truth 3 estimation
reaching an accuracy of 100% is trivial, since the LOS determined with this measurement method
and LOS ground truth are determined in the same way. They are both based on the average

density, caused by all vehicles, during a minute.
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Figure 29: Penetration rate versus correct LOS estimation with simulated plain floating car data (containing only
positional data), for ground truth 1, determined with simulation loop detector data, and ground truth 3, determined with
the vehicle presence, for minutes with available data.

Also using this LOS estimation method, there will be minutes without any data from equipped
vehicles. When these minutes are considered to result in an incorrect LOS estimation, the LOS

estimation accuracies in Figure 30 are obtained.

Page 54



100 ,

90 -

80

—+—Plain floating car estimated LOS (ground truth 1)
—+— Plain floating car estimated LOS {ground truth 3}

0

B0 - —

40 - —

Correct LOS estimation (%)
m
=
T
|

30+ -

0 1 l l 1 l 1 l l 1
o 10 20 30 40 50 5O 70 a0 a0 100
Penatration rate (%)

Figure 30: Penetration rate versus correct LOS estimation with simulated plain floating car data (containing only
positional data), for ground truth 1, determined with simulation loop detector data, and ground truth 3, determined with
the vehicle presence, for all minutes.

5.2.5 Method accuracy versus penetration rate

The figures from the previous paragraph have been combined in Figure 31 and Figure 32. Figure 31
shows the LOS estimation accuracy for both methods and for both LOS ground truths, for all
minutes with available data. Figure 32 shows the same information, but for all minutes, also the
minutes where no data is available.

Both figures show that LOS estimation with plain floating car data performs better than LOS
estimation with CAN bus data for penetration rates over 8%. In fact, since the LOS estimation
accuracy with simulated CAN bus data is considered to be an upper boundary of the real CAN bus
LOS estimation accuracy, as mentioned in the section about Model validity in 5.2.2, it is likely that

plain floating car data also outperforms CAN bus LOS estimation at penetration rates under 8%.
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Figure 31: Penetration rate versus correct LOS estimation with simulated plain floating car data (containing only
positional data) and average simulated CAN bus speed, for ground truth 1, determined with simulation loop detector
data, and ground truth 3, determined with the vehicle presence, for minutes with available data.
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Figure 32: Penetration rate versus correct LOS estimation with simulated plain floating car data (containing only
positional data) and average simulated CAN bus speed, for ground truth 1, determined with simulation loop detector
data, and ground truth 3, determined with the vehicle presence, for all minutes.
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6 Conclusions and recommendations

CAN bus data, containing data from in-vehicle sensors, combined with GPS signals, may offer a
new method to measure traffic flow. In this study, the Level of Service estimation accuracy of CAN
bus signals is investigated.

After identifying several driving behaviour factors which depend on Level of Service and exploration
of the processed CAN bus data, several vehicles are selected to be used in this research. Using the
CAN bus data of 35 vehicles of the same type over 2 months and loop detector reference data over
the same period, the Level of Service estimation accuracy with CAN bus data from single vehicles is
determined. A traffic simulation model is used to assess the Level of Service estimation accuracy
with simulated CAN bus data from multiple vehicles, for various penetration rates. Also, the traffic
simulation model is used assess the Level of Service estimation using only the simulated positional
data, to be able to compare the Level of Service estimation performance of CAN bus data and GPS
data.

Using the findings of the previous chapter, in this section, the research questions will be answered

and recommendations are provided.

6.1 Conclusions

The main research question of this master thesis is:
Is it possible to accurately estimate the Level of Service with in-vehicle sensor floating car data?

To answer this main question, first the answers to the sub questions will be provided.

6.1.1 Sub questions

1. Which main driver behavior characteristics are dependent on Level of Service?
In chapter 3, a short literature survey was used to identify the following main driver behavioural
factors depending on Level of Service: speed, speed variation, lane change rate and distance
headway. This knowledge was used to select data from vehicles which contain CAN bus signals
which are most likely to be able to be used for LOS estimation.

2. Which CAN bus signals are provided by the uCAN equipped vehicles?

The complete list with CAN bus signals which are provided by the uCAN equipped vehicles is found
in Table 20 in Appendix E. A total of 19 different CAN bus signals are provided by the uCAN
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equipped vehicles in the Smart In-Car project, but not every uCAN equipped vehicle provides all of
these signals. The main CAN bus signals provided by the 35 vehicles selected for this study are:

speedometer, brake usage, steering position, rpm, indicator usage and fuel consumption.

3. What is the accuracy of Level of Service estimation with in-vehicle sensor floating car data

from single vehicles?

In section 5.2.2, the Level of Service was estimated using the real CAN bus data from 7185
passages of single vehicles and loop detector data from the specific locations to determine the LOS
ground truth. The most accurate LOS estimation functions were found by using only the average

CAN bus speed of the single vehicles. A correct LOS estimation rate of 37% was found.

4. What is the accuracy of Level of Service estimation with in-vehicle sensor floating car data

from multiple vehicles?

In section 5.2.3, using only the average speed of multiple vehicles from simulation data , the found
LOS estimation accuracy with multiple vehicles ranged from 52% at 1% penetration rate and 70%
at 100% penetration rate. Because the simulated CAN bus data was found to provide a higher
correct LOS estimation rate with single vehicles than the real CAN bus data (52% versus 37%
respectively), these found accuracies are considered to be an upper boundary for the accuracy
which could be reached with real CAN bus data.

5. Does in-vehicle sensor floating car data provide a better LOS estimation than plain floating

car data?

In section 5.2.4, the LOS estimation accuracy at various penetration rates was determined by using
the vehicle trajectories from simulation data. When comparing the results with the LOS estimation
with in-vehicle sensor floating car data, we found that CAN bus data may provide a better LOS
estimation than plain floating car data at penetration rates lower than 8%. Generally, LOS
estimation with plain floating car data, containing only the vehicle position, outperforms LOS
estimation with CAN bus data.

6. Does CAN bus data provide a better LOS estimation than loop detector data?
In section 5.1.3, we estimated, using the NDW requirements, that the correct LOS estimation rate
with loop detectors is around 89%. Since the maximum correct LOS estimation rate using CAN bus
data was found to be 70% at most in section 5.2.3, the CAN bus data does not provide a better

LOS estimation than loop detector data.

7. Does the transmission frequency of the CAN bus signals influence the LOS estimation

accuracy?
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In section 5.1.7, we found that the frequency of the CAN bus signals does have an effect on the
correlation with LOS, but that this influence is small when the amount of data points during a

passage is sufficiently large.

6.1.2 Main research question

With the answers from the sub questions, also an answer for the main research question can be
formulated.

No, it is not possible to accurately estimate LOS with the CAN bus signals which were present in
the available dataset. The correct LOS estimation rate with CAN bus signals ranges up to 70% at
100% penetration, which does not comply with NDW requirements. Also LOS estimation with loop
detectors and plain floating car data both perform better, especially at high penetration rates.

Note that the this conclusion relates to, and is only valid for, two-lane motorways with a 120 km/h
speed limit and the CAN bus signals which were available in the data set, since only that road type

and those CAN bus signals where considered in this research.

6.2 Discussion

In this section, we will reflect on the performed study.

6.2.1 Restrictions

In this study, several assumptions have been made, several conditions have been encountered and
several decisions have been made which affect the study results and restrict the validity of the

study. These will be discussed in this paragraph.

First of all, the available CAN bus data only contained a small part of the total CAN bus signals
which are used in modern vehicles (compare Table 1 with Table 19). If more CAN bus signals are
available, the LOS estimation might be more accurate, although none of these new CAN bus signals
are expected to provide a significant improvement for LOS estimation. There is however at least
one in-vehicle signal which is not mentioned in Table 1, but is measured by some vehicles and
should be suitable to be used to estimate density. As stated in section 3.1.2, the average distance
headway of vehicles is directly related to the density and Level of Service. If this distance headway
can be obtained from the sensors of adaptive cruise control or collision warnings systems, this data
can be used to estimate the LOS.

Also, the loop detector data which was used to determine the LOS ground truth is known to be
inaccurate, as was mentioned in section 1.2. In section 5.1.3, we estimated the correct LOS
estimation rate of loop detectors at 89% using the requirements of the NDW, which are mentioned

in Appendix B. The effect of this inaccuracy on the correct LOS estimation rate was found to be
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small by using simulation data in section 5.2.2, although the real inaccuracy of the loop detectors
is unknown and may be larger than the assumed inaccuracy.
The simulation model is another point of attention. In section 5.2.2 we discussed the model
validity. The correct LOS estimation rate with single vehicles was found to be 37% and 52%, using
real CAN bus data and simulated CAN bus data respectively. Three sources for this difference were
identified:

e The differences in real driving behaviour and the simulated driving behaviour.

e The difference in the simulated and real loop detector accuracy.

e The usage of only one vehicle type (passenger cars) in the model, while multiple vehicle

types are present in reality.

Because no detection point data was available on secondary roads near Eindhoven, only road
sections on the motorways were included in this research. This, together with the finding that the
uCAN equipped vehicles used the motorways sporadically, led to the decision to combine the loop
detector data and uCAN equipped vehicle passages for all road sections. Although only road
sections with the same cross section were used (2 lanes with a shoulder lane), we cannot exclude
the possibility that there are small differences in the road sections which influence the local driving
behaviour. Should this be the case, then a larger accuracy of the LOS estimation with CAN bus data
at a single location may be found. Also, because only one type of road section was used, the LOS
estimation capabilities of CAN bus data for other road sections is not known, although it is not
expected that these will differ much.
On all road sections of the motorways near Eindhoven which were included in the research, the
speed limit is set at 120 km/h. The LOS estimation accuracy at roads with another speed limit is
therefore not known. But it is expected that the LOS estimation accuracy will be higher for roads
with a higher speed limit and lower for roads with a lower speed limit, since the free flow speed at
the latter will be lower and closer to the speed at capacity, making differentiation of Level of
Service based on speed less accurate.
Other conditions which affect the study results are the availability of only one vehicle type
(Mercedes E-class 212) and only one driver type (taxi driver).
During the research, it was decided to adopt the Level of Service boundaries from the 2010
Highway Capacity Manual. When some of the CAN bus parameters values was plotted against the
LOS (section 5.1.6), it was found that the average speed at LOS F is higher than 80 km/h. This
should have made us realize that the used LOS boundaries yielded LOS categories which do not
reflect the conditions which these categories are supposed to reflect (Table 2). When more
appropriate LOS boundaries would have been determined, this could have improved the LOS

estimation accuracy.

6.2.2 Level of Service and other traffic quantities

In this study, the suitability of CAN bus data for LOS estimation was investigated. In this
paragraph, the findings of this study are used to discuss the plausibility of suitability of CAN bus
data for estimation of other traffic quantities: density, intensity and speed.
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At the start of this study, it was decided to investigate the estimation capabilities of CAN bus
signals for Level of Service, instead of intensity, because it was expected the intensity estimation
accuracy with CAN bus data from single vehicles would be very small. If the results from this study
indicate that LOS can be accurately estimated with CAN bus signals, the study could be extended
to investigate the CAN bus signal suitability for intensity estimation. In this study, it was found that
the LOS estimation accuracy with single vehicle CAN bus data is small. To provide insight in the
accuracy of density estimation, in the next section, the results of density estimation with simulated
data are briefly discussed. It will be shown that the corrected mean average percentage error
(MAPE) of the density estimation ranges from 31% at 1% penetration to 24% at 100%
penetration.

In section 5.1.7 and Table 29 in Appendix H, we found that the CAN bus signals show the strongest
correlation with speed, followed by density, while the correlation with intensity was the weakest.
Based on these findings, it is expected that intensity estimation will perform less accurate than
density estimation and speed estimation will perform more accurate than density estimation.
Therefore, it is plausible that CAN bus data will prove to be unsuitable for intensity estimation,
while it could be suitable for speed estimation. However, since the GPS data can also be used to

measure speed, the CAN bus data is not likely to significantly contribute to speed estimation.

6.2.3 Density estimation

In this section, the density estimation accuracy with simulated CAN bus data of multiple vehicles
for different penetration rates is presented.

The results for the density estimation were obtained with the same methods as the LOS estimation
in this report. However, instead of multinomial logistic regression, which was used because of the
ordinal scale of Level of Service, the curve fit tool, included in Matlab, is used to determine a
function which best fits the found points in the CAN bus speed and density plane. The fitted
function is used to estimate the 1 minute aggregated density with the average CAN bus speed of
the vehicles passing the detection point during that minute.
To assess the density estimation accuracy using CAN bus signals and plain floating car data, the
mean absolute percentage error of the density estimation is calculated. The absolute percentage
errors (APE’s) are found to be quite large, especially when the density is low. The regular APE
definition is:

APE = abs(Kestimated / Kgroundtruth = 1) * 100%
where: APE is the absolute percentage error

Kgroundtruth 1S the density ground truth

Kestimated IS the estimated density
Using this definition,  Kestimated=1 and Kgroundgtruth=8 Yields an APE of abs(1/8-1)*100% = 87.5 %

and Kestimatea=8 and Kgroundgrutn=1 Yields an APE of abs(8/1-1)*100% = 700 %.

When Kgroundgtruth 1S small, or even zero, the found APE is very large and can even be infinite when

Kgroundtruth=0. These extreme APE values strongly influence the MAPE and give results which are
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hard to interpret. Therefore, an alternative MAPE definition is used, which corrects this aspect. The
absolute percentage error of the density estimations is calculated with:

APEcorrected = abs(Kgroundtruth / Kestimated = 1) * 100% for Kestimated > Kgroundtruth

APE orrected = abs(Kestimated / Kgroundtruth = 1) * 100% for Kestimated < Kgroundtruth
where: APE qrrected iS the corrected absolute percentage error

Kgroundtruth 1S the density ground truth

Kestimated 1S the estimated density
Using the corrected APE definition, in both cases (Kestimatea=1, Kgroundtruth=8 and Kestimated=8,
Kgroundtruth=1) an APE of 87.5 % is found. The average value of APE.rected gives us the corrected
mean absolute percentage error (MAPE orrected)-
In Figure 33 the MAPE,rected Of the density estimation using CAN bus signals and plain floating car
data is presented, using two density ground truths and for two estimation methods, similar to the
approach in section 0.
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Figure 33: Corrected Mean Absolute Percentage Error of the density estimation with simulated CAN bus data and
simulated plain floating car data (only containing positional data) using multiple vehicles, for different penetration rates.
The 1-minute aggregated density ground truth is determined with the simulated detection point data (ground truth 1)
and with the real density near the detection point, using the simulated vehicle trajectories (ground truth 3).
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6.3 Recommendations

6.3.1 Further research on CAN bus signal usability for other use cases

It is recommended to also examine the other use cases which are mentioned in the introduction of
this thesis and to look for other applications which could benefit from CAN bus signals. The
processed and analyzed CAN bus data in this study show that CAN bus signals provide a wealth of

information which may be used for many applications.

6.3.2 Further research on the CAN bus signals

Supporting the further research on the other use cases, it is recommended to do more research on
the properties of the several CAN bus signals. Knowledge of the accuracy and reliability of the CAN
bus signals is valuable. Also differences between the CAN bus signals of different vehicle models

should be investigated.

6.3.3 Further research on the costs of a CAN bus signal traffic measurement system

Once applications have been found which could benefit from CAN bus signals, it is useful to
compare the costs of a CAN bus signal traffic measurement system with other traffic measurement

systems.

6.3.4 Further research with other CAN bus signals

Only a small part of the CAN bus signals which could theoretically be available, as shown in Table
1, is available in the CAN bus data set from the Smart In-Car project. Most of the CAN bus signals
which are not available are unlikely be strongly correlated with LOS, but one of them might be able
to significantly improve the LOS estimation. As stated in section 3.4, the average distance headway
of vehicles is directly related to the density and Level of Service. If this distance headway can be
obtained from the sensors of adaptive cruise control or collision warnings systems, this data can be
used to estimate the LOS. Therefore, it is recommended to investigate the LOS and density

estimation capabilities of the distance headway CAN bus signal, when this data becomes available.

6.3.5 Suggestions for improvements and extensions of the research

Some aspects of this research could be improved or be extended. Because the expectancy that
these improvements will significantly change the outcome is low, it is only recommended to
actually implement these improvements when CAN bus signals have become available which are

able to estimate the LOS much more accurately, like described in the previous paragraph.
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More accurate ground truth data

As we have shown in section 5.1.3, the accuracy of the LOS ground truth determined with loop
detector data is likely to be small. The LOS estimation capabilities of CAN bus signals can be better
assessed if the LOS ground truth is determined more accurately.

Other LOS boundaries

Figure 13 shows the average speeds in LOS F are higher than 80 km/h. This is not according to the
definition of LOS F, which should reflect a congested traffic state. Apparently, the definition of the
boundaries of the LOS is not optimal for the conditions encountered in this research. With redefined
LOS boundaries, the CAN bus signals might show larger correlations and improved LOS estimation

accuracy.

Other vehicle types and drivers

As mentioned before, the used CAN bus data set only includes taxis. Other vehicle types may show
different results.

Improved simulation model validity

In section 5.2.2, the model validity was discussed. The research can be improved by improving the
model validity. This can be done by calibration of the model parameters and by adding more
vehicle types.

Field test with higher penetration rates

A field test with higher penetration rates can be performed to check for compliance of the results

with the simulation results.

Other speed limits

The considered road sections in this research only included roads with a speed limit of 120 km/h.
As was already mentioned in section 2.5.1, the LOS estimation accuracy may be affected by the
occurring speed limit. Therefore, also road sections with other speed limits should be included in

the research.

Other road types

While LOS estimation at motorways is useful, LOS estimation at secondary roads where normally
no traffic detectors are present may be even more valuable. Therefore, it is recommended to also
investigate the LOS estimation capabilities at other road types. Also, the LOS at motorways with

more than 2 lanes or at weaving sections or on-ramps and off-ramps can be considered.
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6.3.6 Level of Service category boundaries in the Netherlands

As we have seen in section 5.1.6, the definition of Level of Service categories as given in Table 2
and the corresponding densities, does not seem to match with the occurring traffic conditions at
the observed motorways. The found average vehicle speeds at LOS E and LOS F were much higher
than would be expected according to their definitions. Apparently, traffic in the Netherlands is able
to maintain higher speeds at high densities. This is in line with the fact that the capacity of Dutch
motorways are generally higher than the capacity values of motorways given in the Highway
Capacity Manual [27]. Therefore, it is recommended to more accurately determine the Level of
Service category boundaries for the Netherlands, to obtain Level of Service categories which

properly represent the traffic conditions they should represent.
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Appendix A

1 Common applications

In this paragraph, a description of commonly used traffic management applications will be given.
The necessary measured traffic flow variables will be discussed. Like in the previous paragraph, the
contents of this paragraph is meant as an overview, not as a complete summary of all available
traffic management applications. With the obtained information, we will be able to propose several
use cases in the next chapter. Besides the traffic management applications that will be described in
the following subparagraphs, there are many other applications. Some of them will be briefly
mentioned here. Traffic jam detection can, besides for warning upstream road users which will be
discussed in the next paragraph, also be used for traffic information applications. Shockwave
detection can be used to dissolve the shockwave by adjusting maximum speeds with variable
message signs. [28] Besides warning for traffic jams, variable message signs can also be used in
combination with local traffic systems to warn road users for opening bridges. Also, in case of
adverse weather conditions like rain, snow, ice formation and fog variable message signs can be
used to warn the road users. These systems use local weather sensors as a data source. Other
traffic management applications on motorways include: peak lanes, plus lanes, obstacle detection,

high occupancy vehicles lanes and road pricing. [29]

1.1 Traffic jam detection

Traffic jam detection is one of the most common traffic management applications. In the
Netherlands, Automatic Incident Detection (AID), which is part of the Motorway and Traffic
Managementsystem (MTM2), is used to detect the traffic jams. AID warns road users for
downstream traffic jams. AID does not use the common available 1-minute aggregated data. It
uses the individual vehicles observations from inductive loop detectors to calculate a running
average of the speed. If this speed drops below certain boundaries (often 35 km/h) the AID gets
activated and the variable message signs upstream of the loop detectors will start showing adapted
speed limits. When the speed exceeds a certain boundary again (often 50 km/h) the AID will be
turned off and the adapted speed limits will disappear. [30]

The formula that is used to calculate the running average of the speed is:
Prieww = @ * Pgemeten + (1-0) * Pouq
with: @ = @acc if Pgemeten < Poud

@ = Qdec if Pgemeten > Poud

common values for a;.c and aq4ec are 0.15 and 0.40 respectively.
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1.1 Dynamic maximum speeds

Dynamic maximum speeds (Dynamax) can be used for several reasons. Maximum speeds can be
increased to reduce travel times or to increase capacity. Maximum speeds can be decreased to
reduce noise or pollution, to increase capacity or to increase safety. Listed below are some of the

Dynamax control types which are used in the Netherlands [31]:

e Increasing the maximum allowed speed when the intensity is low, to decrease travel times
(Al between Bussum and Muiderberg).

e Decreasing the maximum allowed speed when the intensity gets higher than a certain level
or the average speed below a certain level.

e Increasing the maximum allowed speed during the night (22:00 - 7:00, A10 West).

e Increasing the maximum allowed speed from 80 km/h to 100 km/h during the rush hour to
increase capacity.

e Decreasing the maximum allowed speed from 130 km/h to 100 km/h when the intensity
downstream gets to high or a traffic jam occurs downstream (A2 Everdingen-Deil, A16
Klaverpolder-Galder).

e Decreasing the maximum allowed speed when it rains (A12 Bodegraven-Woerden).

e Decreasing the maximum speed in case of shockwaves (A12).

In most cases, the 1-minute aggregated speed and intensity is used for Dynamax. In some cases,
like the rain-based Dynamax control, more specific data is needed. The rain-based Dynamax
control uses rainfall radar data with a 30 second interval from a meteorological service. The
shockwave-based Dynamax control needs data that is more actual than the NDW 1-minute

aggregated data. It uses individual vehicle passages per 30 seconds from inductive loop detectors.

1.2 Ramp metering

A ramp meter is a traffic light just upstream of an onramp, which controls the traffic flow entering
the motorway. The traffic light has a short cycle time. The green light indicates only one (or two)
vehicle is allowed to enter the motorway. Ramp metering is used to prevent congestion on the
motorway, by limiting and spreading the inflow from onramps. By limiting the inflow, breakdown of
the vehicular flow on the motorway can be prevented. Vehicles tend to arrive at onramps in
platoons, because of signalized intersections near the onramp. The merging if the platoon can
cause disturbances at the motorway. The ramp meter can reduce the disturbances on the
motorway by breaking up these platoons.

The ramp meter uses traffic flow conditions on the motorway to determine the maximum allowable
inflow from the onramp without causing congestion on the motorway. In the Netherlands, speed

and intensity information is obtained from the 1-minute aggregated data of inductive loop

Page 72



detectors, upstream and downstream of the onramp, to determine the upstream demand and the
downstream capacity. [32][33]
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Appendix B

1 Common data collection systems
1.1 Introduction

In this chapter, several common traffic flow data collection systems will be discussed. The content
of this chapter is intended as an overview, not as a complete summary of all existing traffic data
collection systems. Besides a description of the traffic detectors, their performance will be
discussed. In literature, there are numerous studies that focus on the performance of a particular
sensor. Since there are several different types of all sensors, each with its own characteristics,
these studies do not provide a full overview for the whole sensor type. Therefore, multiple sources
will be mentioned, in order to provide a broader picture of the performance of each sensor type.
Finally, also the requirements of the NDW, the Dutch National Data Warehouse for Traffic

Information, will be mentioned.

1.2 Inductive loop detectors

The inductive loop detector is the most widely used traffic detection sensor. An electric current
flows through a coil of wire that is embedded in the pavement. When a metal vehicle is present or
passes over the loop, the inductance of the loop is reduced. The decreased inductance leads to an
increase in the frequency of the oscillation. The detector oscillator detects this higher frequency
and the vehicle’s presence is registered. Single loop detectors are not able to directly measure
speed and vehicle classification. These can be estimated with an algorithm or be determined more

accurately with a double loop. [34]

Two studies have been performed two assess the quality of inductive loop detectors in the
Netherlands in 2009. In the first study [25] a mean error of 2.0% for the 1-minute aggregated
intensity measurements of 50 locations was found. Based on the accuracy, 12% of the
measurements did not comply with the NDW requirements, which will be mentioned in section 1.7.
Based on the reliability, 8% of the measurements did not meet the NDW requirements.

In the second study [26] traffic measurements have been performed at 75 locations in the
Netherlands with radar and infrared detectors, to assess the accuracy and reliability of the traffic
measurement with inductive loop detectors. The results showed that 41% of the 1-minute
aggregated intensity measurements and 11% of the 1-minute aggregated speed measurements
have an error greater than 8%. For the 15-minute aggregated data, the amount of measurements

with an error greater than 8% were 17% and 8% respectively.
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The Minnesota Department of Transportation [35] compared manual counts of 46 hours of
videotapes with loop detector data. They found differences for 1-hour aggregation periods between
0.1% and 3% at motorways and between 2.8% and 8.6% at an intersection. Using probe vehicle
data, the speed performance of the detector loops was also determined. An average speed error
between 1.2% and 3.3% was found.

Middleton et al. [36] examined the classification accuracy of the PEEK ADR-6000, which uses four
inductive loops per lane. The classification accuracy was found to be 98.9%, using 12 vehicle

classes. Also the count accuracy performed very well. Only one out of 1923 vehicles was missed.

1.3 Magnetic detectors

Magnetic detectors are, contrary to loop detectors, passive sensors that sense the vertical
component of the Earth’s magnetic field. When the Earth’s magnetic field is disturbed by the metal
of a passing vehicle, the vehicle detection is registered. When two magnetic detectors are used,
the speed and length of vehicles can also be registered. [34][37]

Grone [38] found a correct detection rate of 92.7% for the 3M Microloop 702. Its mean absolute
percent error (MAPE) at a 1-minute aggregation interval was 6.1%. The volume detection was
found to be negatively affected by the combined effect of dusk lighting and rain. The Microloop 702
showed a correct vehicle classification rate of 94.9%, using 3 classes based on length (0-24 ft, 25-
40 ft, 40+ ft). The 15-minute aggregate classification error was 2.1%.

Minge et al. [37] reported a volume error of 2.5% for the GTT Canoga Microloop. The speed error
was found to be smaller than 1 mph. The observed vehicle length error was 4 ft.

The Minnesota Department of Transportation [35] tested the 3M Canoga and found a 15-minute
aggregate volume error of 2.4% and a 15-minute aggregate volume error between 1.4% and
4.9%.

The 3M Microloop was also mentioned in a report by Middleton et al. [39]. They observed a volume
error of 5%. The speed estimate error was found to be -0.25 mph on average with a standard
deviation of 3.6 mph.

Cheung et al. [40] performed two experiments on an urban road to assess the detection
capabilities of magnetic sensors. They found a vehicle detection rate better than 99% and the

accuracy of the speed and vehicle length estimates appeared to be larger than 90%.

1.4 Video

Video image processor systems use a microprocessor to analyze the video images of one or
multiple cameras. The images are interpreted by software and converted to traffic flow data. The
video image processor is able to detect vehicles by comparing successive frames. Video-based

detectors are able to detect many traffic flow parameters, like volume, speed, density,
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qualification, acceleration and lane changes. Weather conditions can negatively affect the video
image quality. For example, rain, fog, snow and low light conditions reduce the performance of
video-based detectors. [34][37]

Grone [38] tested the Autoscope Solo Pro II and found a correct detection rate of 90.5% and a
MAPE at a one-minute aggregation interval of 6.5%. The Autoscope Solo Pro II was able to
correctly classify 85,4% of the vehicles, using 3 classes based on length (0-24 ft, 25-40 ft, 40+ ft).
Its 15-minute aggregate classification error was 10,4%.

Minge et al. [37] found that the volume error for the Miovision is smaller than 2%.

The Minnesota Department of Transportation [35] assessed the performance of the Autoscope Solo
and the Traficon VIP D. Both systems were tested in sidefire and overhead position. The 15-minute
aggregate volume error of the Autoscope Solo was reported to be 1,5%-2,2% in overhead position
and 2,0%-2,7% in sidefire position. The 15-minute aggregate speed errors were 2,5%-7,0% and
5,7%-7,4% respectively. The Traficon VIP D 15-minute aggregate volume error ranged from 1,9%
to 3,7% in sidefire position and from 2,7% to 4,8% in overhead position. The 15-minute aggregate
speed errors were reported to be 2,3% to 7,7% and 3,3%-7,2% respectively.

In another study, by Middleton et al. [39], the volume error of the Autoscope Solo was estimated
at 2.1-3.5%. The reported speed error was 0.8-3.1%.

Robert [41] focussed on the performance of a video image processor in low light conditions. A

correct detection rate of 97% was found at night and 94.8% at dusk.

1.5 Microwave radar

Microwave radar uses electromagnetic waves to detect vehicles. It emits the waves in the direction
of the road. A portion of these waves is reflected back to the sensor by passing vehicles. Microwave
radars can be installed in overhead or sidefire position. There are two types of microwave radar
sensors used as traffic detectors.

CW Doppler radar transmits continuous wave (CW) Doppler waveforms and detects vehicles using
the Doppler principle. The frequency of the reflected wave will be higher than the frequency of the
emitted wave for vehicles approaching the radar and lower for vehicles moving away from the
radar. The CW Doppler radar is not able to detect stationary vehicles, since they do not change the
frequency of the reflected wave.

Frequency modulated continuous wave (FMCW) radar transmits an electromagnetic wave with a
frequency which is continuously being changed with time. The use of different frequencies allows
the radar to determine the distance to the vehicle. By using successive measurements, the vehicle
speed can also be obtained. The FMWC is also able to detect stationary vehicles. [34][37][32]

Grone [38] assessed the performance of two FMCW radars in sidefire position, the ISS RTMS G4

and the Wavetronix Smartsensor 105. The former was found to have a correct detection rate of

92.8% and a MAPE at a one-minute aggregation interval of 5.5%. The correct detection rate of the
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latter was just 83,7% and its MAPE at a one-minute aggregation interval 8,2%. The RTMS G4
showed a correct detection rate of 96,2%, using 3 classes based on length (0-24 ft, 25-40 ft, 40+
ft), and a 15-minute aggregate classification error of 1,6%. For the Smartsensor 105, these
percentages were 95,2% and 2,1% respectively.

Minge et al. [37] found a volume error for the Wavetronix Smartsensor HD, another FMCW radar,
in sidefire position smaller than 2% at LOS A-D, but ranging up to 20% for LOS E-F. They reported
a speed error smaller than 1 mph for LOS A-E and a length error between 1,6 and 2 ft.
Urazghildiiev et al. [42] found a classification accuracy of 99% for a down-looking FMCW radar,
using 5 different vehicle classes.

Zwahlen et al. [43] found that the Wavetronix SmartSensor 105 in sidefire position counted more
than 95% of all vehicles and measured vehicle speeds to within 3 mph. Vehicle classification was
found to be very unreliable, even though just 3 classes were used (0-20 ft, 20-40 ft and more than
40 ft).

1.6 Infrared

There are two types of infrared traffic detectors, passive infrared and active infrared (laser).

Active infrared sensors operate by transmitting low-energy laser beams to the road surface and
measuring the time for the reflected signal to return to the sensor. Presence of a vehicle reduces
this time and makes detection possible. By transmitting two beams, vehicle speeds can be
measured by comparing the times at which the vehicle enters the detection area of each beam.
Depending on the particular sensor and how it is deployed, detection capabilities of active infrared
sensors include count, presence, length and speed. [35][37]

Passive infrared sensors detect energy from graybody emission. Graybody emission occurs at all
objects with a temperature higher than 0 K. When a vehicle enters the sensor’s field of view, the
observed graybody emission changes, caused by the difference in thermal radiation between the
road surface and the vehicle, and the vehicle is detected. Passive infrared sensors are able to
detect vehicle volume, speed , classification by length and presence. Adverse weather conditions

are known to have a negative effect on the detector performance. [34][35][37]

In a study of Minge et al. [37] two active infrared detectors were tested in sidefire position. The
volume error in LOS A-D for the PEEK Axlelight and the TIRTL were 5.4% and 3.8% respectively.
The speed error of the PEEK Axlelight was reported to be 2 mph and 1.2 mph for the TIRTL. The
Axlelight’s length error was 1-2 ft, while the TIRTL length error was smaller than 1 ft.

In a study by the Minnesota Department of Transportation [35] the volume and speed performance
of an active infrared, the Autosense II, and a passive infrared, the ASIM IR 254, sensor were
reported, both in overhead position. The 15-minute aggregate volume error of the active infrared
sensor of 0.7% was found to be much smaller than the passive infrared sensor’s volume error of
10.0%. The difference between both 15-minute aggregate speed errors were smaller, at 5.8% for
the Autosense II and 10.8% for the ASIM IR 254,
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1.7 NDW requirements

In the Netherlands, the National Data Warehouse for Traffic Information (NDW) operates a

database containing traffic data. The data in this database is collected by various road authorities.

Every minute, data from more than 20,000 measuring sites in the Netherlands is collected by the

database and distributed to users of the data. The data is processed and made available to the

customers within 75 seconds. [44]

The NDW has set specific requirement for the data to be accepted in the database. Measuring sites

must be operational an average of 97% of the time. These requirements have been summarized in

Table 14. In the table, ON stands for the mean absolute percentage error (MAPE) of the 1-minute

aggregated data. OB is the percentage of the 1-minute aggregated values, greater than the

specified maximum error.

Table 14: NDW accuracy and reliability requirements [45]

Accuracy Reliability
ON oB maximum error
Intensity <5% 2% | 20%
Speed <5% 2% | 20%
Estimated travel time <20% <3% | 30%
Realized travel time <10% <3% | 20%

The NDW has also set requirements for the vehicle classification. Within every 24-hour period, over

95% of the vehicles have to be correctly classified.
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Appendix C

1 Use cases

Adopted from [7]:
Government use cases

e Traffic information
o Average travel time (rush hour)
o Traffic jam
= Start point
= End point
= Avg. speed
o Throughput
= Vehicle
= People
o Traffic density

o Incidents

e Accidents
o Where did it occur?
When did it occur?

People involved

o O O

Seatbelt used or not

e Road conditions

o Roughness
Noise
Quality of the road
Fuel consumption
Foggy condition
Slippery road
Manholes
Potholes
Black holes

Bumps

O O O O o o o o o o

Black spot
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Fleet owner use cases

e  Fuel consumption

Per driver

Per location
Per time of day

Per vehicle

O O O o o

Per road segment

e Routing optimization
o Traffic density (real time)
o Static road conditions (pot holes)

o Dynamic road conditions

¢ Information for service and maintenance planning.

o Deviation from the optimal vehicle performance

e Driver behavior monitoring
o Vehicle wear
Position (GPS)
Breaks (frequency, duration)

Drunk or tired drivers

O O O O

Truck heavier/lighter than expected

General public use cases

e Tactical level

o Route planning
» Estimated time of arrival

o Economical route
= Fuel efficiency
= Car wear

o Blocked roads

o Weather

o High risk routes
= Risky corners
» Other...

o

Team up routes (several people using one car)

e Strategic level

o Dangerous situations coming up
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o Enough fuel
o Expected traffic jam

» Because of accident or alike
o Traffic jam ahead

= Alternative suggestions

o Directed marketing

= Seat belts
= Speeding
* Drunk

= Sleepy

Control level

o Fuel

o Emissions

o Maintenance

o Dynamic tolling
o E-call

= Accident severity

= Cause
e Heart attack
e Drunk
e Sleep

= Doctor nearby (civilian)
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Appendix D

1 Traffic management use cases

In this appendix, several CAN bus data use cases are described. The descriptions of the use cases
contain:
e A measurable quantity
e The purpose of obtaining this information
e Definition of the measurable quantity
o A formula that defines the measurable quantity
e CAN bus measurement method(s)
o A description of one or several methods that use the CAN bus data to measure or
estimate the required variable that was defined for the use case.
o The CAN bus variables that are needed for these methods with an estimate of the
required frequency.
e Norm
o A quality requirement which describes the allowed difference between the estimate
of the measurable quantity from the CAN bus data and the ground truth.
e Test method
o A description of a method to test whether the estimate of the measurable quantity
from CAN bus data meets the norm.
As much as possible, existing definitions of the quantities and norms as used by Rijkswaterstaat

and the NDW (National Data Warehouse for Traffic Information) will be used.
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1.1 Speed

There are numerous traffic management application which use speed measurements. Some
examples are Dynamax, traffic jam detection, ramp metering and peak lanes. Since most of these
applications use the 1-minute aggregated values of the average speed, as was shown in Appendix

A, also in this use case the 1-minute aggregated average speed values will be considered.

1.1.1 Definition
Vaverage(T/ T, X) = Ziz1.m: Vi(x)/M

where: T is the time, in whole minutes

T is the length of the time interval <T, T+ 1>

i = 1..M are the vehicles (M in total) passing location x during the interval
Vi(x) is the speed of vehicle i which passes location x during the interval

1.1.2 Measurement method

Vaverage;estimated(Tl T, X) = zi=1...m: Vi(Xy/m

where: m is the amount of equipped vehicles passing location x within T

The speed of vehicle i is obtained from the CAN bus data when it passes location x. vi(x) is the
speed at the location nearest to location x. The amount of equipped vehicles passing location x

within T, m, is smaller than or equal to M, since not every car is equipped with uCAN.

Required CAN signals

e GPS position
e GPS speed or CAN speed

1.1.3 Norm

For this use case the requirements of the NDW for the 1-minute aggregated average speed will be
used (see Table 15).

Table 15: NDW accuracy and reliability requirements for 1-minute aggregated speed measurements [45]

Accuracy Reliability

ON OB maximum error

Speed <5% <2% | 20%
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1.1.4 Test method

Obtaining the ground truth of Vayerage(T, T, X) from loop detector data.
Obtaining the Vayerage:estimated(T, T, X) from the passages of the vehicles in the CAN bus data set.

Determining the minimum penetration rate to meet the norm.
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1.2 Intensity (for Dynamax, ramp metering, peak lanes)

There are numerous traffic management application which use intensity measurements. Some
examples are Dynamax, ramp metering and peak lanes. Since most of these applications use the
1-minute aggregated values of the average speed, as was shown in Appendix A, also in this use
case the 1-minute aggregated average intensity values will be considered.

1.2.1 Definition
Iaverage(T/ T, X) = M/T

where: T is the time, in whole minutes
T is the length of the time interval <T, T+ 1>

M is the amount of vehicles passing location x during the interval

1.2.2 Measurement method

The intensity of the traffic flow can only be determined directly if all vehicles can be detected. This
will be achieved when all vehicles are equipped with uCAN. To determine the intensity when only a

part of the vehicles is equipped, other methods will have to be used to estimate the intensity.

1.2.3 Measurement method: Vehicle position with full penetration

Laverage;measured(T, T, X) = M/T
where: T is the time, in whole minutes
T is the length of the time interval <T, T+ >
M is the amount of vehicles passing location x during the interval

Required CAN signals

e GPS position

1.24 Measurement method: Distance headway

The first method which can be used to estimate the intensity uses the vehicle time headways.
When the vehicle speed and the gross distance headway (or the net distance headway and the
vehicle length) are known, the intensity can be derived from these values. When using this
method, it essential to know the amount of lanes.

Taverage;estimated(T, T, X) = Vaverage(T, T, X) / Sy * N
where: S, is de average gross distance headway of uCAN equipped vehicles which pass location x

during interval T
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N is the amount of lanes

Required CAN signals

1.2.5

GPS position
Gross distance headway or

Net distance headway and CAN speed or GPS speed

Measurement method: Estimation with CAN bus sensors which are related

with intensity

Some CAN bus signals are expected to be correlated with intensity. Using regression analysis,

these CAN bus values can be used to give an estimation of the intensity. The CAN bus signals

which are expected to be correlated with intensity are:

Speed: based on the fundamental diagram it can be derived that speed and intensity are
correlated.

Speed variation: It is probable that the speed variation will show are relation with intensity.
It is likely that the speed variation will be low in low intensity conditions and high in high
density conditions.

Braking behavior: It is likely that the brake usage is low in low intensity conditions and
higher in high intensity conditions.

Steering behavior and direction indicator usage: It is also plausible that the intensity
influences the amount of lane changes. The amount of lane changes is likely to be low in
low intensity conditions and high when the intensity in higher. It is expected that this will
thus also affect the steering behavior and usage of direction indicators.

Usage of cruise control: It is expected that cruise control is used more in low intensity
conditions than in high intensity conditions, since high intensity conditions restrict the

possibilities to retain the same speed for a long time.

Required CAN signals

GPS position

GPS speed or CAN speed
Brake

Brakeforce

LDI_Active

RDI_Active
AnyDirectionIndicator
Steeringleft
SteeringPosition
SteeringRight

CruiseActive
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e CruiseControl

1.2.6 Norm

For this use case the requirements of the NDW for the 1-minute aggregated average speed will be
used (see Table 16).

Table 16: NDW accuracy and reliability requirements for 1-minute aggregated intensity measurements [45]

Accuracy Reliability

ON OB maximum error
Intensity <5% <2% | 20%
1.2.7 Test method

Obtaining the ground truth of I,yerage(T, T, X) from loop detector data.
Obtaining the Iayerage;estimated(T, T, X) from the passages of the vehicles in the CAN bus data set.

Determining the minimum penetration rate to meet the norm.
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1.3 Travel times (for travel information)

1.3.1 Definition
TT(X1, Xn, T) = Zig=p.mat (E2(X2) = tai(x1)) / My +
Zip=1.m2t (ta(X3) - ti(X2)) / Mz + ... +
Zin-1=1.Mn-1¢ (t2(Xn) = t1(Xn-1)) / Mnt
with: T >1t, > T + 1 minute
where: x;...x, are the start and end points of the travel time sections
t(xa) is the time at which vehicle i passes location x,
M, is the Total amount of vehicles reaching the end of travel time section a between T
and T + 1 minute

The travel time for a section between x; and x,, existing of subsections x; to X, X, to X3, .... , Xn-1
to x,, for time T is the sum of the average travel time of every subsection, given by the average
travel time of the vehicles which covered the subsection from x,.; to x; where x, was passed
between T and T + 1 minute.

1.3.2 Measurement method

TTmeasured(X1, Xn, T) = Zicpomat (t2(X2) = ti(x1)) / My +
Ziogomz (Ba(X3) = ti(%2)) / My + . +
Zizi.mn-1t (t2(Xn) = t1(Xn-1)) / Mpay
with: T >t, > T + 1 minute
where: Xx;..x, are the start and end points of the travel time sections
t(xs) is the time at which vehicle i passes location x,
M, is the amount of equipped vehicles reaching the end of travel time section a

between T and T + 1 minute

When there are no vehicle passages between T and T + 1 minute, the data from the most recent
minute is taken with vehicle passages. When the last vehicle passage is longer than a certain
amount of time, historical averages will be used.

For the purpose of comparing the travel times using floating car data with the travel times acquired
with loop detectors it is recommended to use the same subsections. Travel times on a subsection
between two location are only reliable if the subsection is the only possible route between both
locations.

For every equipped vehicle passing location x, (distance between x, to their GPS position smaller
than a certain value) between T and T + 1 minute, the time t;(X,.1) at which this vehicle passed
location X,.; is taken and subtracted from t,(x,) and the travel time on the subsection for this

vehicle is obtained. The average travel time of all vehicles on the subsection is taken as the travel
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time of the subsection. Adding all subsection travel times produces the travel time for the total

section.

Required CAN signals

e GPS position

1.3.3 Norm

For this use case the requirements of the NDW for the 1-minute aggregated travel time will be
used (see Table 17).

Table 17: NDW accuracy and reliability requirements for 1-minute aggregated realized travel time measurements [45]

Accuracy Reliability

ON OB maximum error
Realized travel time <10% <3% | 20%
134 Test method

Obtaining the ground truth of TT(xy, x,, T) from loop detector data.
Obtaining the TTeasured(X1, Xn, T) from the passages of the vehicles in the CAN bus data set.

Determining the minimum penetration rate to meet the norm.
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1.4 Rain (for Dynamax)
14.1 Definition
WR(T, 1, x) : R(T, T, X)
where: R is the nominative rain intensity (dry, light rain, rain, heavy rain)
T is the time
T is the length of the time interval <T, T+ >
x is the location
1.4.2 Measurement method
WRmeasured(T/ T, X) . RWS(T/ T, X)
“dry” if Zicy Mt RWS(T, T, x)/M
“light rain” if Zi—1 Mt 0.5 < RWS(T, 1, x)/M
“rain” if Zi—1 M- 1.5 < RWS(T, T, x)/M
“heavy rain” if - m: 2.5 < RWS(T, 1, x)/M

where: RWS is the windscreenwiper speed

with:

M is the amount of equipped vehicles

RWS = 0 if Wiperon = 0
RWS = 1 if Wiperinterval = 1
RWS = 2 if Wiperslow =1
RWS = 3 if Wiperfast = 1

IAN AN IA

IA

0.5
1.5
2.5
3.0

This measurement method might be improved by adding the speed signal. AT higher speeds, more

rain will be catched by the windscreen, resulting in a higher windscreenwiper speed.

Required CAN signals

143

T.B.D.

GPS position

Wiperon

Wiperinterval

Wiperslow

Wiperfast

GPS speed or CAN speed

Norm
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1.4.4 Test method

Dependent on the available reference data.
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1.5

1.5.1

WW(T,

where:

Wind (for VMS warning)

Definition
T, X) : Wi(Tl T, X)
W; is the average windspeed [m/s]

T is the time

T is the length of the time interval <T, T+ 1>

X is the location

1.5.2

where:

Measurement method

wwi(T, T, X) : V(wwi,® + wwi,?)
wwiy is the average wind speed in x direction

wwi, is the average wind speed in y direction

The x direction is the driving direction of the vehicle.

In x direction

where:

wwiy = ABG(V) / GBG(v) * SF(v)

ABG(v) is the current fuel consumption at the current speed v

GBG(v) is the average fuel consumption at speed v. The values of this function differ per
vehicle and will have to be known.

SF,(v) is a scaling factor to convert the difference between the current fuel consumption
and the average fuel consumption in a windspeed. The values of SF,(v) differ per vehicle

and will have to be known.

In y direction

Hypothesis: Because crosswinds will cause a counter directed steering manouvre, the wind speed

in y direction can be deduced from the steering position of the vehicle.

where:

wwiy, = ASH(Xq,X2)/HSH(X1,X2)*SF()

ASH(x1,X;) is the current average steering position between x; and x,

HSH(x4,X5) is the historical average steering position between x; en x,. The values of this
function differ per vehicle and will have to be known.

SF,(v) is a scaling factor to convert the difference between the current and historical
steering position in wind speed. The values of SF,(v) differ per vehicle and will have to be

known.
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Required CAN signals

e GPS position
e GPS speed or CAN speed
e SteeringPosition

e FuelConsumption or Throttle

1.5.3 Norm
T.B.D.
1.5.4 Test method

Obtaining the ground truth of WW;(T, T, x) from available road side wind measurement stations.
Obtaining wwi(T, T, x) from the passages of the vehicles in the CAN bus data set.

Determining the minimum penetration rate to meet the norm.
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1.6 Fog (for VMS warning)
1.6.1 Definition
WM(T, 7, X) :  “very dense fog” if M(T, 1, x) < 50
“dense fog” if 50 < M(T, T, x) <200
“fog” if 200 < M(T, T, X) <1000
“no fog” if 1000 < M(T, 1, x)

where: M is visibility [m]
T is the time
T is the length of the time interval <T, T+ 1>

X is the location

1.6.2 Measurement method

WMmeasured(T, T, X): MLG(T, T, X)

with boundaries (example):

“no fog” if 2i-1.m: MLG(T, 1, x)/M < 0.01
“fog” if 0.01 < ;. m: MLG(T, 1, X)/M < 0.4
or 0.4 < Zi-i.m: MLG(T, T, X)/M £0.6
& Vaverage;estimated(T, T, X) > 80
“dense fog” if 0.4 < Zi-y.m: MLG(T, T, X)/M < 0.6
& Vaverage;estimated(T, T, X) < 80

or 0.6 < Zi-;.m MLG(T, T, X)/M <0.8
or 0.8 < Zi-i.m: MLG(T, T, X)/M =£1.0

& Vaverage;estimated(T/ T, X) > 60
“very dense fog” if 0.8 < Zi-i.m: MLG(T, T, X)/M £1.0
& Vaverage;estimated(Tl T, X) < 60

where: MLG is rear fog light usage
with: MLG = 0 if RearFoglLight = 0
MLG = 1 if RearFoglLight = 1

The initial boundary values can be optimized with the CAN bus data set and reference data.

Required CAN signals

e GPS position

e FrontFoglight

e AnyFoglight

e RearFoglight

e GPS speed / CAN speed
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1.6.3 Norm
T.B.D.
1.6.4 Test method

Obtaining the ground truth of WM(T, T, x) from available road side weather measurement stations
or from other nearby meteorological stations.
Obtaining WMeasured(T, T, X) from the passages of the vehicles in the CAN bus data set.

Determining the minimum penetration rate to meet the norm.
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1.7 Obstacle detection

1.7.1 Definition
BD(M,X,Y,T) : Iaverage(T, T, X,¥)) = O & Laverage(T, T, X+5,Y)) > 0 & Laverage(T, T, X-S,Y))

where: T is the time, in whole minutes
T is the length of the time interval <T, T+ 1>
x is the considered position where no flow is possible if there is an obstacle
s is the distance upstream and downstream of the obstacle where flow is possible

y is the lateral position (the lane)

1.7.2 Measurement method: Speed difference

Hypothesis:
At the location of the obstacle, the speed of the vehicles will be lower than upstream and

downstream of the obstacle.

BDestimated(Mley/T) . Vaverage;estimated(T/ T, X) * 1.2 < Vaverage;estimated(Tl T, X+5) &

Vaverage;estimated(Tr T, X) *¥1.2< Vaverage;estimated(Tr T, X-S)

Required CAN signals

e GPS position
e GPS speed / CAN speed

1.7.3 Measurement method: Steering behavior

If an obstacle is present, it is expected that drivers will steer a lot to avoid the obstacle. The
amount of lane changes will be high and the direction indicators will be used more. This will mostly
be the case upstream of the obstacle. Obstacles on the right lane will be easier to detect using this
driving behaviour than obstacles on the left lanes, because there will not always be traffic on the

left lanes.

Hypothesis: In case of an obstacle, the changes in steering position will be larger at the position of

the obstacle than further upstream and downstream of the obstacle.

BDestimated(M, X,Y,T) : GSV(x-2s, x-s, T, T) * 2 < GSV(x-s, x, T, T) &
GSV(x, x+s, T, T) * 1.5< GSV(x-s, X, T, T)
with: average change in steering position GSV = Z;_; m: SV(Xy,X2)/M

where: SV is the sum of the change in steering position between location x; and x;
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i = 1...M are the vehicles (M in total) passing location x during the interval
GSV(xy, X5, T, T) is the average sum of the change in steering position of the vehicles

between x; and x,. These vehicles pass x, in interval <T, T+1>.

Required CAN signals

e GPS position
e SteeringPosition

1.7.4 Measurement method: Direction indicators

Hypothesis: In case of an obstacle, the usage of the direction indicators will be larger at the

position of the obstacle than further upstream and downstream of the obstacle.

BDestimated(M,X,Y,T) :  GRG(Xx-2s, x-s, T, T) * 2 < GRG(x-s, x, T, T) &

GRG(x, x+s, T, 1) * 1.5 < GRG(x-s, x, T, 1)
with: average indicator usage GRG = Z;_; m: RG(xy,X3)/M
where: RG is:

e Time of direction indicator usage (float)
¢ Amount of times of direction indicator usage (int)
e The usage of the direction indicators (bool)
between location x; en X,.
i = 1...M are the vehicles (M in total) passing location x during the interval

Required CAN signals

e GPS position
e RDI_Active
e LDI Active

e AnyDirectionIndicator

1.7.5 Measurement method: Combinations of CAN bus sensor data

Analogous to measuring the intensity, detecting an obstacle is difficult when only a part of the
vehicles provide data. Therefore, the combined use of several of the previously mentioned method
might offer a solution. Each method can give an indication of the chance that an obstacle is
present. By combining these indicators, a more reliable obstacle detection can be provided. Other
signals which might show a relation with obstacle presence include cruise control and brake related

signals.

Required CAN signals
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e GPS position

e GPS speed / CAN speed
e Brake

e BrakeForce

e HazardLights

e LDI_Active

e RDI_Active

e AnyDirectionIndicator

e CruiseActive

e CruiseControl

1.7.6 Norm
T.B.D.
1.7.7 Test method

To test the obstacle detection, the available CAN bus data from the equipped vehicles can be used.
However, the occurrence of obstacles is rare and not always registered. Therefore it is unlikely that
the obstacle detection can be tested sufficiently using only the available CAN bus data.

There are however other possibilities to be sure enough data will be available to test the obstacle
detection. Intentionally creating an obstacle on the public road will cause danger and is therefore
not an option. Creating an obstacle in a controlled environment is however possible. Another option

would be to study the effects of an obstacle on the driving behavior with a driving simulator.
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Appendix E

1 CAN bus data

In this chapter the CAN bus data from the Smart In-Car project will be discussed. In the first
paragraph, the initial dataset is described and converted to Matlab. In paragraph 1.2, several
visualizations are presented, to provide insight into the contents of the dataset. In paragraph 1.3,

de quality of the data will be discussed.

1.1 Raw CAN bus data from Smart In-Car

The Smart In-Car project can deliver CAN bus data of around 130 taxis and 40 vehicles of the
ANWB (the Dutch emergency roadside assistance) between April 2012 and October 2012. The
format and amount of the data made it impossible to process and use all this data for this
research. Before deciding which use case to investigate, a relatively small dataset was processed
and analyzed. With the knowledge obtained from this dataset, it could be better assessed which
use case could be investigated with the available data.

This initial dataset was around 8.5 Gigabyte, containing 60 million lines of CAN bus events from
around 60 taxis. On average, 4 CAN bus signals were stored per second. So this dataset contained
around 4000 hours of data (15 million seconds). In this chapter, first it will be explained how the

raw data was processed to a MATLAB format.

{ "timestamp" : 133587456625508@ , "gpsdata" : { "lat" : 51.46685527777779 , "lon" : 5.473162500000002} ,
“uvm" : { "id"™ : 119611000024168 , "licenseplate" : "16-XN-FT"}}

{ "timestamp" : 1335874566511l1e@ , "candata" : { "Speed" : 22.5792007446289%9@6} , “uvm" : { "id" :
119611800024168 , "licenseplate" : "16-XN-FT"}}

{ "timestamp" : 13358745666565@@ , "candata" : { "RPM" : 1797.@} , "uvm" : { "id" : 1196lleeeez41es ,
"licenseplate™ : "16-XN-FT"}}

{ "timestamp" : 13358745670313@@ , "candata" : { "Speed" : 22.924800872802734} , “uvm" : { "id" :
11961100€024168 , "licenseplate" : "16-XN-FT"}}

{ "timestamp" : 133587456733500@ , “"gpsdata™ : { "lat" : 51.466869444444455 , "lon" : 5.473101944444446} ,
"uvm" : { "id"™ : 119611880024168 , "licenseplate" : "16-XN-FT"}}

{ "timestamp" : 13358745675512@@ , "candata" : { "Speed" : 23.443201065063477} , “uvm" : { "id" :
119611900024168 , "licenseplate" : "16-XN-FT"}}

{ "timestamp" : 13358745676661e@ , "candata" : { "RPM" : 1822.@} , "uvm" : { "id" : 1196ll00e@24168 ,
"licenseplate™ :; "16-XN-FT"}}

{ "timestamp" : 13358745688711@@ , "candata" : { "Speed" : 23.50080108642578} , "uvm" : { "id"
119611800024168 , "licenseplate" : "16-XN-FT"}}

{ "timestamp" : 1335874568332e88 , "gpsdata" : { "lat" : 51.46687861111112 , "lon" : 5.473018833333335} ,
“uvm™ : { "id"™ : 119611000024168 , "licenseplate" : “16-XN-FT"}}

{ "timestamp" : 13358745685909@@ , "candata" : { "Speed" : 23.96160125732422} , “uvm" : { "id"
11961100€024168 , "licenseplate" : "16-XN-FT"}}

{ "timestamp" : 13358745686677@@ , "candata™ : { "RPM" : 1848.@} , "uvm" : { "id" : 119611000024168 ,
"licenseplate™ : "16-XN-FT"}}

Figure 34: example of the raw CAN bus data

Ideally, the available data would be made available in a matrix format, containing all parameter

values in single row. This however, was not the case. In Figure 34, a couple of lines from the raw
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data files are shown. Instead of containing all parameters, most lines only contain one CAN bus

parameter. They are logged individually in so called json format. Since we wanted to be able to

perform analyses on the data, the raw data had to be converted to a proper format which allows

these analyses. The program that has been chosen for these analyses is Matlab. The raw data had

to be imported in Matlab and converted to a matrix format.

1.1.1

Conversion to Matlab

The matrix code that has been written to import the raw data files is shown in Appendix I.

Importing the text files to Matlab is time consuming. On a fast computer, the total processing

speed, including the step in the next paragraphs, is around 5MB per minute. So the processing of

this dataset will take around 30 hours.

Table 18 shows the rows of the matrix that were converted with the raw data of Figure 34. After

importing, every CAN bus parameter has a separate column.

Table 18: Raw data imported and converted in Matlab

epoch timestamp uvm lon lat rpm | speed brake | steeringposition | rdi_active | Idi_active
1335874566255000 | 119611000024168 | 5,4732 | 51,4669 | NaN | NaN NaN NaN NaN NaN
1335874566511100 | 119611000024168 | NaN NaN NaN | 22,5792 | NaN NaN NaN NaN
1335874566656500 | 119611000024168 | NaN NaN 1797 | NaN NaN NaN NaN NaN
1335874567031300 | 119611000024168 | NaN NaN NaN | 22,9248 | NaN NaN NaN NaN
1335874567335000 | 119611000024168 | 5,4731 | 51,4669 | NaN | NaN NaN NaN NaN NaN
1335874567551200 | 119611000024168 | NaN NaN NaN | 23,4432 | NaN NaN NaN NaN
1335874567666100 | 119611000024168 | NaN NaN 1822 | NaN NaN NaN NaN NaN
1335874568071100 | 119611000024168 | NaN NaN NaN | 23,5008 | NaN NaN NaN NaN
1335874568332000 | 119611000024168 | 5,4730 | 51,4669 | NaN | NaN NaN NaN NaN NaN
1335874568590900 | 119611000024168 | NaN NaN NaN | 23,9616 | NaN NaN NaN NaN
1335874568667700 | 119611000024168 | NaN NaN 1848 | NaN NaN NaN NaN NaN
The data only contains a limited number of CAN bus parameters. In total, 24 different CAN bus

parameters were found in the total dataset (see Table 19).

The vehicles in the dataset only provide a couple of these parameters. The available parameters

differ per vehicle. Table 20 shows the amount of uCAN equipped taxis per vehicle type that provide

a particular parameter. Note that the amount of parameters per vehicle is only a small fraction of

the total amount of existing CAN bus parameters, as was shown in Table 1.
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Table 19: Parameters in the dataset [source: TASS uCAN APl documentation]

Parameter name Parameter description Unit Range Remark

RPM Rotational speed of the motor rpm 0-10000

Speed Vehicle speed km/h 0-1000

Brake Brake pedal boolean Oorl 1 means brake is active

SteeringPosition Steering position

RDI_Active Right direction indicator control boolean Oorl 1 means right indicator is currently controlled
LDI_Active Left direction indicator control boolean Oorl 1 means left indicator is currently controlled
RDI_Switch Right direction indicator switch boolean Oorl 1 means switch is in the 'right' position
LDI_Switch Left direction indicator switch boolean Oorl 1 means switch is in the 'left' position
RDI_Pulse Actuator signal for rdi light boolean Oorl 1 means actuator is currently active
LDI_Pulse Actuator signal for Idi light boolean Oorl 1 means actuator is currently active
Hazardlights Hazard lights boolean Oorl 1 means hazard lights are on

RearFoglight Rear fog light boolean Oorl 1 means rear fog light is on

FrontFogLight Front fog light boolean Oor1l 1 means front fog light is on

WiperMotor Motor of front windscreen wipers | boolean Oorl 1 means wipers are moving
FuelConsumption | Fuel consumption mi/h >=0

Fuellevel Fuel level | >=0

Odometer Odometer km >=0

OdometerHR Odometer hm >=0

Ignition Ignition boolean Oorl 1 means key position is 'ignition'

LowBeam Low beam boolean | Oor1l 1 means low beam is on

Lights Low beam and / or parking light boolean Oorl 1 means parking light and/or low beam is on
ParkingBrake Parking brake status boolean Oorl 1 means parking brake is active
ReverseGear Reverse gear status boolean Oorl 1 means reverse gear is on
OilPressureSwitch | Oil pressure switch boolean Oorl 1 means oil pressure is low or faulty

Table 20: Amount of taxis with parameter data. [source: TASS uCAN API documentation]

Vehicle type Periodic parameters Event based parameters Other
g c 2

g g |z =P 5

[-4 x = ) oa | o -

El_ || . g8l | B | S5 5| & 58| | B

29| 2| & & B0 ] El3|la|l 8|3 9|8 £

HEIRAR & ol |3 S| 2| » 2| & Y 5

S TS| 8|28 8E 5 ESSE 2S5 2 el 8

2| 2|0|o|l&| & 8|la|l&|»3 28|58l 2|6]|<

Mercedes E-class (211) 2006-2009 3232 32 32132 32 32032 32 32(2

Mercedes E-class (212) 2009 35 35 35(35(35(35|35|35|35 35 35|35(35(35(35(3

Mercedes Sprinter (906) 2006 11 11 (11 11 11 11 112
Opel Vivaro 2001-2006 2 |2 2 2 |12 |2 2 2
Opel Vivaro 2006-2010 35(35(35 35 35(35(35 3535 35
Opel Vivaro 2010 131313 13 13|13|13 13 13
Volkswagen Transporter 2003-2009 4 4 |4 |4 4 4 4 |4 4 4
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The aggregated matrix contains, besides the 24 CAN bus parameter columns, the following
columns:

e 7 time related columns:

o year
o month
o day
o hour
0 minute
o second

e 1 vehicle identifier column:
0o uvm

e 2 GPS position columns:
o longitude
o latitude

e 3 accelerometer parameters:

o X
oy
o z

1.1.2 Conversion of the epoch timestamp

The timestamp of the CAN bus data is given in microsecond epoch format. This is the time in
microseconds since 0:00 on January 1st 1970. To make the timestamp understandable, the
timestamp is converted to standard date and time. Columns with year, month, day, hour, minute
and second are added to the matrix. Table 21 shows part of the same matrix as was shown in

Table 18, after adding the date and time columns.

Table 21: Imported data with converted epoch timestamp in Matlab

year | month | day | hour | minute | second | Epoch timestamp uvm lon lat rpm | speed
2012 | 5 1 12 16 6,2550 | 1335874566255000 | 119611000024168 | 5,4732 | 51,4669 | NaN | NaN
2012 | 5 1 12 16 6,5111 | 1335874566511100 | 119611000024168 | NaN NaN NaN | 22,5792
2012 | 5 1 12 16 6,6565 | 1335874566656500 | 119611000024168 | NaN NaN 1797 | NaN
2012 | 5 1 12 16 7,0313 | 1335874567031300 | 119611000024168 | NaN NaN NaN | 22,9248
2012 | 5 1 12 16 7,3350 | 1335874567335000 | 119611000024168 | 5,4731 | 51,4669 | NaN | NaN
2012 | 5 1 12 16 7,5512 | 1335874567551200 | 119611000024168 | NaN NaN NaN | 23,4432
2012 | 5 1 12 16 7,6661 | 1335874567666100 | 119611000024168 | NaN NaN 1822 | NaN
2012 | 5 1 12 16 8,0711 | 1335874568071100 | 119611000024168 | NaN NaN NaN | 23,5008
2012 | 5 1 12 16 8,3320 | 1335874568332000 | 119611000024168 | 5,4730 | 51,4669 | NaN | NaN
2012 | 5 1 12 16 8,5909 | 1335874568590900 | 119611000024168 | NaN NaN NaN | 23,9616
2012 | 5 1 12 16 8,6677 | 1335874568667700 | 119611000024168 | NaN NaN 1848 | NaN
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1.13 Filling the event based parameter columns

Event based parameters only occur sporadically in the raw data, since they are only stored when
the parameter is switched on or off. So most of the rows don’t contain event based parameter
data, although the state of the parameters is known at that moment, because it will still be the
same as it was in the last row which does contain the event based parameter. To make the event
based parameters available in every second, the events based parameter columns are filled with

the last known value.

1.14 Frequency of the periodic parameters

After the previous steps, the rows still only contain one type of periodic parameter. In the next
step the parameters need to be combined. Therefore, the period of the periodic parameters, the
GPS signal and accelerometer signal in the dataset are analyzed in this paragraph, to choose a
proper aggregation period.

Figure 35 shows the occurrences of the GPS signal with a specific period. Each bar in the figure
represents a 0.01s interval. It appears that 73% of the occurrences of the GPS signal have a period
between 0.985s and 1.025s.
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Figure 35: The occurrence of periods of the GPS signal (0.01s intervals)

Over 99% of the speed signals are given with a period between 0.495s and 1.005s, with peaks
around 1.00s, 0.60s and 0.50s, representing 95% of the measurements (see Figure 36).
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Figure 36: The occurrence of periods of the speed signal (0.01s intervals)

The other periodic parameters appear to have a more fixed period. The period of the RPM is
between 1.015 and 1.025 in over 93% of the occurrences in the dataset. Over 98% of the steering
position occurrences have a period between 1.005s and 1.015s. The period of the accelerometer
was found to have a period between 0.095s and 0.115s in almost all occurrences. In nearly all
occurrences of the fuel consumption, the period is between 0.995s and 1.005s or between 1.095s
and 1.105s, while the period in almost all occurrences of the fuel level is between 0.995s and
1.005s or between 1.195s and 1.205s. This shows that the aggregation interval of 1 second is a
good choice, since most parameters have a period near 1 second.

The Odometer and OdometerHR signal, which were called periodic signals in Table 20, appeared to
be event-based signals instead of periodic signals. The Odometer and OdometerHR signals occur

once every kilometer or once every hectometer respectively.

1.15 Aggregating data

Since most parameters are stored once per second, which was shown in the previous paragraph,
the data has been aggregated with a 1 second period. Every row that occurs in the same second
has been aggregated to a single row. In case a parameter occurs more than once a second, its
average has been used in the aggregated data line. In Table 22 the data lines in the resulting

matrix are shown which have been aggregated from the data in Table 21.

Table 22: 1 second aggregated data in Matlab

year | month | day | hour | minute | second | epoch timestamp uvm lon lat rpm | speed

2012 | 5 1 12 16 6,4742 | 1335874566474200 | 119611000024168 | 5,4732 | 51,4669 | 1797 | 22,5792
2012 | 5 1 12 16 7,3959 | 1335874567395900 | 119611000024168 | 5,4731 | 51,4669 | 1822 | 23,1840
2012 | 5 1 12 16 8,4154 | 1335874568415420 | 119611000024168 | 5,4730 | 51,4669 | 1848 | 23,7312
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1.2 Visualisations

With the data in Matlab matrix format, the data is suitable for processing and analyzing. In this
paragraph a number of visualizations of the dataset will be shown and discussed, to provide insight
in the available data and the possibilities this data gives. Also the accuracy and reliability of the
parameters will be discussed.

In the first paragraph, data from a single trip will be visualized. For a small period, parameters like
position, speed, steering position and brake and indicator usage will be shown. In the second
paragraph, data from all vehicles in the dataset will be used to show relations between several
parameters. Finally, several parameters will be plotted on a map in the third paragraph, to show

the driving characteristics per location.

1.2.1 Single vehicle visualizations

In this paragraph, CAN bus data from a single vehicle is visualized. A seven minute piece is taken
from the data of one of the uCAN equipped taxis. In Figure 37 the GPS position is plotted on a

map. The taxi travels from east to west.
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Figure 37: GPS track from a single trip. The blue line indicates the trajectory of the vehicle. The vehicle travels from east
to west (right to left).
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Besides the GPS position, the speed, RPM of the motor, steering position, fuel consumption,
odometer, brake and direction indicator usage are also recorded during this trip. The values of

these parameters are presented in Figure 38 - Figure 45.
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Figure 38: Speed during the trip
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Figure 39: Brake usage during the trip (0=0ff,1=0n)
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Figure 40: Engine revolutions during the trip
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Figure 41: Fuel consumption during the trip. The unit of fuel consumption unknown.

The unit of the fuel consumption was given in Table 19 as ml/h. But the average value of the fuel
consumption during this trip is just 758 ml/h. Since the average speed during the trip is 35.6
km/h, this would yield a fuel consumption of 47 km/litre. This is unrealistically high. Therefore, the
fuel consumption unit is left out in the figure. The source of the error and the proper fuel

consumption unit have not been further investigated.
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Figure 42: Left direction indicator usage during the trip (0=off, 1=on)
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Figure 43: The steering position values during the trip. The unit of the steering position is unknown.

The unit of the steering position was not given in Table 19. When analyzing all steering position
data in the dataset, the steering position shows values which range from 3297 to 4895, with an
average and median of 4096. 4096 appears to be the center value of the steering position (the
value when the vehicle drives in a straight line). When this number gets deducted from the
steering position value, negative values represent steering to the left, positive values represent
steering to the right. This has been done with the trip data to obtain Figure 44.
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Figure 44: The adjusted steering position values during the trip

Using the GPS and steering position data, for some locations, the steering position values have
been compared with the radius of the road curve. In Table 23, for 5 locations with different curves,
the average steering position is shown. Using this data, a formula has been composed which can
approximate the curve radius with the steering position:

R = 68000/ S*°
with: R = curve radius [m]

S = abs(SteeringPosition-4096)

The last column in the table shows the difference between the calculated and actual curve radius.

Table 23: Steering position and curve radius

radius (m) average steering absolute steering R = 68000/ S™° difference
position position (abs_SP)

16 3820 276 15 -7,3%

41 3959 137 42 3,4%

192 4043 53 176 -8,2%

450 4123 27 485 7,7%

900 4113 17 970 7,8%
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Figure 45: Odometer (hm) values during the trip

When combining the CAN bus parameters with the GPS positions, Figure 46 - Figure 51 can be

made, showing the CAN bus parameters for every position during the trip.
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Figure 46: Position and speed during the trip. The color scale indicates the speed of the vehicle.
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Figure 47: Position and log adjusted steering position during the trip. The (logarithmic) color scale indicates the
difference between the steering position and the neutral steering position.
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Figure 48: Position and RPM during the trip. The color scale indicates the engine revolution per minute.
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Figure 49: Position and fuel consumption during the trip. The color scale indicates the fuel consumption of the vehicle.
The unit of the fuel consumption is unknown.
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Figure 50: Position and brake usage during the trip. Red indicates the usage of the brakes. Blue indicates the brakes were
not used.
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Figure 51: Position and left direction indicator usage during the trip. Red indicates the usage of the direction indicators.
Blue indicates that the direction indicators were not used.

1.2.2 CAN bus parameter relationships

In this paragraph, several scatter plots will be presented, showing multiple parameters.

In Figure 52, the steering position of the vehicle is plotted against its speed. It appears, as can be
expected, the steering angle decreases as the speed increases.

The relation between the revolutions per minute of the motor of the vehicle and its speed can be
observed in Figure 53. Five distinct lines can be seen in the figure. Every line corresponds with a
specific gear. So even if the gear is not part of the available CAN bus parameters, it can still be
obtained if the speed and RPM are known. Some of the data points are not on one of the five lines
which represent the five gears of the vehicles. A possible explanation is that the rpm and speed
have changed during the second in which both signals were obtained. When a vehicle is
accelerating, the rpm and speed will grow linearly. When the RPM signal is stored at the beginning
of a second and the speed at the end of the second, this can cause deviations from the gear ratios.
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Figure 52: Speed versus steering position. The unit of the steering position is unknown.
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Figure 53: Speed versus RPM
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In Figure 54 the average fuel consumption in shown per speed. As mentioned before, the unit of
the fuel consumption is unknown. The local maximum at 40 km/h is notable. A possible explanation
might be that around 40 km/h, the vehicles are often accelerating and not cruising at the same

speed. But this could also be expected for the speeds below 40 km/h.
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Figure 54: Speed versus average fuel consumption. The unit of the fuel consumption is unknown.

1.2.3 CAN bus parameter location plots

In this paragraph, the recorded GPS position will be used as a basis for several figures. The
presented figures will provide insight in the available data and the area where the uCAN equipped
vehicles are present. First of all, the presence of the uCAN equipped vehicles in the Eindhoven area
is plotted. The colours in Figure 55 show how much time the vehicles have spend in a particular
area. Every pixel in all images in this paragraph represents a 7 by 5 meter area. Notice that the
colour scale in this figure is logarithmic. The uCAN equipped taxis are mainly present in the centre
of Eindhoven and on the main urban roads. Their usage of the motorways around Eindhoven (at

the bottom and left side of the figure) is limited.
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Figure 55: Presence of the uCAN equipped taxis in Eindhoven. The color scale represents how often a uCAN equipped
vehicle was present at a specific location. Dark blue (the background color) indicates that no vehicles in the data set have
been at that location. Blue indicates that vehicles were rarely present at the location. Red indicates that vehicles were
often present at the location.

In Figure 56, instead of the presence, the colours represent the average speed at every position.
As one would expect, the average speeds are high at motorways, lower on urban roads and even

more limited in residential areas.
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Figure 56: Average speed (km/h) in Eindhoven. The color scale represents the average speed of the uCAN equipped
vehicles at a specific location. Dark blue (the background color) indicates that no vehicles in the data set have been at
that location. Blue indicates that the average speed of the vehicles at the location is low. Red indicates that the average
speed of the vehicles at the location is high.

Similarly, Figure 57 and Figure 58 show the usage of brakes and direction indicators respectively.
The red colours in the figures represent locations where almost all drivers are using their brakes or
direction indicators. The blue colours represent locations where brakes and direction indicators are
sporadically or never used. As was the case in the previous figures, also these figures seem to be
reliable. Direction indicators and brakes are used at the locations where this is expected, like at off
ramps, before curves and at intersections.

Finally, Figure 59 shows the average steering position for every location. When closely observing
the figure, we can see the steering position matches perfectly with the curves at the motorways,
roundabouts, on- and off-ramps and straight road sections.
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Figure 57: Brake usage in Eindhoven. The color scale represents which part of the uCAN equipped vehicles uses its brakes
while being at a specific location. Dark blue (the background color) indicates that no vehicles in the data set have been at
that location. Blue indicates that no vehicles use their brakes at the location. Red indicates that all vehicles use their
brakes at the location.
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Figure 58: Direction indicator usage in Eindhoven. The color scale represents which part of the uCAN equipped vehicles
uses its direction indicators while being at a specific location. Dark blue (the background color) indicates that no vehicles
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in the data set have been at that location. Blue indicates that no vehicles use their direction indicators at the location.
Red indicates that all vehicles use their direction indicators at the location.
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Figure 59: Steering position in Eindhoven. The color scale represents the average steering position of the uCAN equipped
vehicles while being at a specific location. Dark blue (the background color) indicates that no vehicles in the data set
have been at that location. Blue indicates that the vehicles on average are making a left turn at the location. Red
indicates that the vehicles one average are making a left turn at the location.

1.3 Data quality

The previous paragraphs have shown us that the reliability and accuracy of the CAN bus
parameters in the dataset seem to be very good on a large scale. In this paragraph, the reliability
and accuracy of the most important CAN bus parameters will be discussed in closer detail. The
parameters that will be investigated are GPS position and speed.

13.1 CAN bus speed

The distribution of the CAN bus speed is visualized in Figure 60. For the lion’s share, 42% of the
time, the vehicles are standing still. The figure also shows some outliers above 200 km/h.

Especially the large amount of data points where the recorded speed is 420 km/h is noteworthy.

Page 123



X 105

16¢

141

1.2¢

o
©

o
o

o
~

o©
)

| | |
0 50 100 150 200 250 300 350 400 450

Speed (km/h)

Figure 60: Amount of CAN bus speed occurrences in the dataset

These values seem to occur when the engine is started or turned off. At that moment, besides the
anomalies in speed, also other CAN bus parameters show unrealistic values. Because values above
200 km/h are quite unrealistic, they are clearly faulty. But there could also be errors in the lower
recorded speeds, which are not noticeable in the figure. To check for these errors, the difference
between the speeds in subsequent seconds has been calculated. Because of the physical limitations
of the cars (acceleration and deceleration) these values shouldn’t be much higher than 6 m/s2 (22
km/h/s) or lower than -10m/s2 (-36km/h/s). The speed differences have been calculated for the
whole dataset and have been visualized in Figure 61.
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Figure 61: Occurrences of the change in CAN bus speed in subsequent seconds

Apart from the outliers that were already visible in Figure 60, all data points are relatively close to
0. When we zoom in, Figure 62 shows that all data points are between -28 km/h/s and 22 km/h/s,

which are realistic values.

10000000 [~ -

1000000 [~ -

100000 — -

10000 -

Occurances

1000 — _

100 - -

10~ -

0
-30 -20 -10 0 10 20 30
Speedchange (km/h)/s

Figure 62: Occurrences of the change in CAN bus speed in subsequent seconds, without outliers
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The CAN bus speed has also been checked by comparing it with the speeds that can be calculated
from the GPS positions. Since the GPS positioning can be quite inaccurate in urban areas, as will be
shown in the following paragraph, only data points from motorways have been taken into account
in this comparison. Figure 63 shows the result of the comparison. On average, the GPS speed
appears to be 6% smaller than the CAN bus speed, with a standard deviation of 2.57%. It is
common knowledge, that vehicle speedometers usually overestimate the true vehicle speed. This
offers an explanation for the 6% difference.
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Figure 63: GPS speed / CAN bus speed - ratio

1.3.2 GPS position

Positional data acquired with GPS has an accuracy of a few meters. Objects like buildings or
mountains can introduce an extra error. Modsching et al. [46] have found the average position
error in urban areas ranges from 2 meters on an open square to 15 meters in wide streets with
four story houses on both sides. This was already visible in some of the figures in the previous
paragraph. In the centre of Eindhoven, where the buildings are quite tall and close to the streets,
the positional data shows many anomalies. Figure 64 shows the recorded GPS positions near the
Vestdijk in the centre of Eindhoven. A picture of the builtup alongside the Vestdijk can be found in
Figure 65.
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Figure 64: GPS positions at the Vestdijk, Eindhoven. The blue dots represent the recorded positions of the uCAN
equipped vehicles in the data set.

Figure 65: Buildings at the Vestdijk disturbing the GPS signals [source: Google Streetview]
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Also trees seem to disturb the GPS signal. The position of vehicles driving on the Oirschotsedijk in
Eindhoven shows large deviations from the position of the actual road. In Figure 66 the recorded

positions of the uCAN equipped vehicles are visualized. The soccer field gives an idea of the size of

the error. Figure 66 shows a picture of the Oirschotsedijk with the tree canopy.

Figure 66: GPS positions at the Oirschotsedijk Figure 67: Tree canopy disturbing the GPS signals

Most motorways are in open areas, so there the position error is relatively small, as can been seen
in Figure 68. Although it is quite small, the position error is too large to accurately determine the

lane or even the carriageway where the vehicle is driving.

Figure 68: GPS positioning on the A67 motorway. The blue dots represent the recorded positions of the uCAN equipped
vehicles in the data set.
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1.4 Conclusions

Although the uCAN equipped vehicles provide a vast amount of data, together they don't offer a
high penetration rate. The frequency of the CAN bus parameters differs per vehicle and parameter,
but are often around once per second. Also the available CAN bus parameters differ per vehicle.
Except for a few clear outliers which mostly occur when the vehicle engine is started or turned off,
which can be easily filtered, the CAN bus data shows realistic values. When comparing some of the
CAN bus parameters, they also show expected relationships. Also, when a single variable is
measured in multiple ways, the results match. Not all parameters have been thoroughly examined.
The accuracy of these parameters can’t be guaranteed.

The GPS position in areas with builtup close to the road and below trees can show large errors from
the actual position. The GPS position on motorways is quite accurate. The unit of the fuel
consumption is unknown.

When using the data for analyses, there are some limitations that will have to be kept in mind. The
data is only gathered by taxi drivers. It is quite probable their driving behaviour differs from other
road users. The taxis are mainly present in the city centre of Eindhoven. Their usage of the
motorways is relatively small. Also, the dataset only contains data from a limited amount of vehicle

types.
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Appendix F

Table 24: List of the locations of the loop detectors which were used in the study

Motorway Direction position (km)
A2 Li 124,195
A2 Li 124,795
A2 Li 125,295
A2 Li 125,795
A2 Li 127,705
A2 Li 128,195
A2 Li 128,845
A2 Li 129,480
A2 Li 130,195
A2 Li 130,895
A2 Li 132,605
A2 Li 133,395
A2 Li 134,940
A2 Li 135,495
A2 Li 136,695
A2 Li 136,950
A2 Li 137,295
A2 Li 170,960
A2 Li 171,251
A2 Li 171,590
A2 Li 171,935
A2 Li 172,635
A2 Li 172,990
A2 Li 173,335
A2 Li 173,690
A2 Li 174,350
A2 Li 174,390
A2 Li 174,735
A2 Li 175,330
A2 Li 175,350
A2 Li 177,720
A2 Li 178,950
A2 Re 124,205
A2 Re 124,805
A2 Re 125,305
A2 Re 125,805
A2 Re 127,715
A2 Re 128,205
A2 Re 128,854
A2 Re 129,480
A2 Re 130,205
A2 Re 130,905
A2 Re 134,945
A2 Re 135,505
A2 Re 136,105
A2 Re 136,705
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Motorway Direction position (km)
A2 Re 137,305
A2 Re 171,945
A2 Re 172,270
A2 Re 172,295
A2 Re 172,645
A2 Re 172,990
A2 Re 173,345
A2 Re 173,690
A2 Re 174,390
A2 Re 174,450
A2 Re 174,745
A2 Re 175,340
A2 Re 175,450
A2 Re 177,720
A2 Re 178,105
A2 Re 178,500
A2 Re 178,950
A58 Li 15,450
A58 Li 15,695
A58 Li 17,660
A58 Li 18,355
A58 Li 20,780
A58 Li 21,545
A58 Li 22,625
A58 Li 22,950
A58 Li 23,295
A58 Li 23,955
A58 Li 24,435
A58 Li 25,145
A58 Li 25,745
A58 Li 26,345
A58 Li 26,895
A58 Li 27,535
A58 Li 28,145
A58 Li 28,695
A58 Re 17,450
A58 Re 17,690
A58 Re 18,365
A58 Re 20,790
A58 Re 21,555
A58 Re 22,105
A58 Re 22,635
A58 Re 23,305
A58 Re 23,965
A58 Re 24,445
A58 Re 25,155
A58 Re 25,755
A58 Re 26,355
A58 Re 26,905
A58 Re 27,545
A58 Re 28,155
A58 Re 28,705
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Motorway Direction position (km)
A67 Li 28,710
A67 Li 29,345
A67 Li 29,400
A67 Li 29,795
A67 Li 30,150
A67 Li 30,495
A67 Li 30,850
A67 Li 31,208
A67 Li 31,510
A67 Li 31,795
A67 Li 32,100
A67 Li 32,395
A67 Li 32,735
A67 Li 33,450
A67 Li 33,480
A67 Li 33,895
A67 Li 34,290
A67 Li 36,195
A67 Li 36,465
A67 Re 24,695
A67 Re 25,122
A67 Re 28,710
A67 Re 29,150
A67 Re 29,345
A67 Re 29,805
A67 Re 30,150
A67 Re 30,505
A67 Re 30,850
A67 Re 31,213
A67 Re 31,510
A67 Re 31,805
A67 Re 32,100
A67 Re 32,405
A67 Re 32,735
A67 Re 33,480
A67 Re 33,550
A67 Re 33,905
A67 Re 34,290
A67 Re 34,695
A67 Re 35,480
A67 Re 35,800
A67 Re 36,205
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Appendix G
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Figure 69: Speed limits on Dutch motorways [47]
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Appendix H

Table 25: R values of Spearman correlation between LOS and CAN bus parameters, for 50m & 100m radii, with 1-6s CAN
bus signal transmission periods

radius = 50m radius = 100m
CAN bus parameter | ¢ 2s 3s 4s 5s 6s 1s 2s 3s 4s 5s 6s
rpom_avg -0,45 | -0,45 | -0,45 -045 | -0,46 | -0,47 | -045 |-0,45 | -0,45 -0,44 | -0,44 | -0,45
rpm_std 0,30 0,27 0,22 0,19 0,20 0,19 0,32 0,30 0,29 0,25 0,22 0,21
rpm_max -046 | -045 |-046 | -046 |-046 |-047 |-047 |-046 |-046 |-046 |-045 | -0,45
rpm_min -042 | -043 |-044 | -045 |-045 |-046 |-0,40 |-040 |-042 |-042 |-042 |-043
speed_avg -046 | -046 | -0,47 |-047 |-0,47 |-049 |-046 |-046 |-046 | -046 |-0,46 | -0,46
speed_std 0,28 0,26 0,23 0,19 0,20 0,19 0,30 0,29 0,28 0,25 0,22 0,22
speed_max -0,46 | -0,46 | -0,47 | -047 |-0,47 |-049 |-047 |-0,46 |-0,47 | -0,46 | -0,46 | -0,46
speed_min -045 | -046 |-047 |-047 |-047 |-049 |-045 |-0,45 | -0,45 -0,45 | -0,46 | -0,46
brake_avg 0,12 0,12 0,11 0,11 0,12 0,10 0,16 0,15 0,15 0,14 0,14 0,13
brake_std 0,13 0,12 0,11 0,11 0,12 0,11 0,15 0,15 0,15 0,13 0,14 0,15
brake_max 0,02 0,04 0,05 0,07 0,07 0,05 0,02 0,02 0,03 0,04 0,04 0,04
brake_min 0,13 0,12 0,11 0,11 0,12 0,10 0,16 0,15 0,15 0,14 0,14 0,13
steeringposition_avg 0,03 0,03 0,02 0,01 0,01 0,01 0,03 0,03 0,03 0,02 0,01 0,01
steeringposition_std 0,09 0,17 0,20 0,19 0,19 0,18 0,05 0,05 0,08 0,14 0,17 0,20
steeringposition_min 0,07 0,07 0,05 0,03 0,02 0,02 0,06 0,06 0,06 0,05 0,04 0,04
steeringposition_max -0,03 | -0,02 |-0,02 | -0,01 | 0,00 -0,01 |-002 |-0,02 |-002 |-0,02 |-003 |-0,02
steeringofcenter_avg 0,01 0,02 0,00 0,00 0,00 0,00 0,01 0,01 0,00 0,00 0,01 0,02
steeringofcenter_std 0,08 0,17 0,20 0,19 0,19 0,18 0,06 0,06 0,08 0,14 0,17 0,19
steeringofcenter_min -0,05 | -0,06 |-0,06 |-002 |-0,02 |-0,01 |-0,05 |-0,06 |-0,07 |-0,06 |-004 |-0,04
steeringofcenter_max | 0,07 0,07 0,03 0,02 0,02 0,01 0,06 0,06 0,04 0,04 0,05 0,05
RDI_avg -0,03 |-003 |-0,04 |-004 |-0,03 |-004 |-003 |-003 |-002 |-003 |-003 |-0,02
RDI_std -0,02 | -0,01 | 0,01 0,02 NaN NaN -0,02 | -0,02 | 0,00 -0,01 | 0,01 0,02
RDI_min -0,02 | -004 |-0,04 |-004 |-0,03 |-004 |-003 |-003 |-004 |-002 |-004 |-0,03
RDI_max -0,03 |-003 |-0,04 |-004 |-0,03 |-004 |-003 |-003 |-002 |-003 |-003 |-0,02
LDI_avg 0,01 0,00 0,00 -0,01 | 0,00 -0,01 | -0,01 | 0,00 0,00 -0,01 | 0,00 0,00
LDI_std 0,00 0,01 0,03 0,01 NaN NaN -0,01 | 0,00 0,00 0,00 0,01 0,03
LDI_min 0,00 -0,01 | -0,02 | -0,02 | 0,00 -0,01 | -0,01 |-0,01 | 0,00 -0,02 | 0,00 -0,02
LDI_max 0,01 0,00 0,00 -0,01 | 0,00 -0,01 | -0,01 | 0,00 0,00 -0,01 | 0,00 0,00
FrontFoglLight_avg -0,06 | -0,06 |-0,07 |-0,07 |-0,05 |-007 |-0,06 |-0,06 |-0,06 |-0,06 |-0,06 | -0,06
FrontFoglLight_std NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
FrontFoglLight_min -0,06 | -0,06 |-0,07 |-0,07 |-0,05 |-007 |-0,06 |-0,06 |-0,06 |-0,06 |-0,06 |-0,06
FrontFogLight_max -0,06 | -0,06 |-0,07 | -0,07 |-0,05 |-0,07 |-0,06 |-0,06 |-0,06 |-0,06 |-0,06 | -0,06
WiperFast_avg -0,03 | -0,03 |-0,02 | -0,01 | 0,00 0,00 -0,02 | -0,03 | -0,03 -0,02 | -0,01 | -0,02
WiperFast_std -0,01 | -0,01 | 0,03 0,04 0,03 0,04 -0,01 | -0,01 |-0,01 | 0,00 0,01 0,01
WiperFast_min -0,03 | -0,03 | -0,03 -0,02 |-001 |-0,01 |-0,02 |-0,02 |-0,03 -0,03 | -0,03 | -0,03
WiperFast_max -0,03 | -0,03 |-0,02 | -0,01 | 0,00 0,00 -0,02 | -0,03 | -0,03 -0,02 | -0,01 | -0,02
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Table 26: R values of Spearman correlation between LOS and CAN bus parameters, for 200m & 400m radii, with 1-6s CAN

bus signal transmission periods

radius = 200m radius = 400m
CAN bus parameter |44 2s 3s 4s 5s 6s 1s 2s 3s 4s 5s 6s
rpom_avg -0,45 | -0,45 | -0,45 -0,45 | -0,45 | -0,45 -0,46 | -046 | -0,46 | -046 |-0,46 | -0,46
rpm_std 0,33 0,33 0,32 0,31 0,30 0,28 0,34 0,34 0,33 0,32 0,32 0,32
rpm_max -0,48 | -048 | -0,48 | -047 |-0,47 |-047 |-049 |-049 |-049 |-049 |-049 | -0,49
rpm_min -0,37 |-038 |-039 |-039 |-040 | -0,42 -0,32 | -0,33 | -0,35 -0,35 | -0,36 | -0,38
speed_avg -0,46 | -046 |-046 | -046 |-046 |-047 |-0,47 |-047 |-0,47 | -047 |-047 | -047
speed_std 0,32 0,32 0,32 0,30 0,29 0,27 0,33 0,33 0,32 0,31 0,31 0,31
speed_max -0,48 | -048 |-0,48 |-047 |-0,47 |-047 |-049 |-049 |-049 |-049 |-049 |-0,49
speed_min -0,44 | -044 | -0,44 | -044 |-0,44 | -0,45 -0,42 | -042 | -0,43 -0,43 | -043 | -0,44
brake_avg 0,19 0,19 0,18 0,16 0,18 0,16 0,22 0,22 0,21 0,20 0,21 0,19
brake_std 0,19 0,19 0,18 0,16 0,18 0,16 0,22 0,22 0,21 0,19 0,21 0,19
brake_max 0,02 0,02 0,02 0,02 0,01 0,03 NaN 0,02 0,00 0,02 0,02 0,02
brake_min 0,19 0,19 0,18 0,17 0,18 0,16 0,22 0,22 0,21 0,20 0,21 0,19
steeringposition_avg 0,04 0,04 0,04 0,03 0,02 0,03 0,05 0,05 0,04 0,04 0,03 0,04
steeringposition_std 0,05 0,05 0,05 0,05 0,06 0,08 0,04 0,05 0,04 0,05 0,04 0,04
steeringposition_min 0,08 0,08 0,08 0,07 0,05 0,06 0,09 0,09 0,08 0,08 0,07 0,07
steeringposition_max -0,01 |-001 |-0,01 |-0,02 |-0,03 |-0,02 -0,02 | 0,00 0,00 0,00 -0,02 | -0,01
steeringofcenter_avg 0,00 0,00 0,00 0,00 0,01 0,01 0,00 0,00 0,00 -0,01 0,00 0,01
steeringofcenter_std 0,07 0,07 0,06 0,06 0,05 0,09 0,06 0,06 0,06 0,05 0,04 0,05
steeringofcenter_min -0,05 | -0,07 |-0,06 | -0,06 |-0,04 |-0,06 |-0,05 |-0,06 | -0,05 -0,06 | -0,04 | -0,05
steeringofcenter_max 0,08 0,07 0,07 0,06 0,05 0,07 0,08 0,07 0,07 0,06 0,06 0,07
RDI_avg -0,04 |-0,03 |-0,02 |-002 |-0,03 |-002 |-0,04 |-003 |-002 |-003 |-003 |-0,01
RDI_std -0,03 | -0,03 | -0,02 -0,01 | -0,02 | 0,00 -0,04 | -0,03 | -0,02 -0,03 | -0,02 | 0,00
RDI_min -0,02 |-002 |-0,01 |-003 |-0,03 |-004 |-0,02 |-002 |-002 |-001 |-002 |-0,02
RDI_max -0,04 |-003 |-0,02 |-002 |-0,03 |-002 |-0,04 |-003 |-002 |-003 |-003 |-0,01
LDI_avg -0,02 | -0,01 | 0,00 -0,01 | 0,02 0,00 -0,02 | -0,01 | 0,00 -0,01 | 0,01 -0,01
LDI_std -0,02 | -0,01 | 0,00 -0,01 | 0,01 0,00 -0,02 | -0,01 | 0,00 -0,01 | 0,01 -0,01
LDI_min NaN 0,01 NaN 0,02 0,02 0,00 NaN NaN NaN NaN NaN -0,01
LDI_max -0,01 | -0,01 | 0,00 -0,01 | 0,02 0,00 -0,02 | -0,01 | 0,00 -0,01 | 0,01 -0,01
FrontFoglLight_avg -0,06 | -0,06 |-0,06 | -006 |-0,06 |-006 |-0,06 |-0,06 |-0,06 |-006 |-0,06 |-0,06
FrontFoglLight_std NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
FrontFogLight_min -0,06 | -0,06 |-0,06 | -0,06 |-0,06 |-006 |-0,06 |-0,06 |-0,06 |-006 |-0,06 | -0,06
FrontFogLight_max -0,06 | -0,06 |-0,06 | -0,06 |-0,06 |-0,06 |-0,06 |-0,06 |-0,06 |-006 |-0,06 |-0,06
WiperFast_avg -0,02 |-002 |-0,02 |-002 |-0,01 |-002 |-002 |-0,01 |-0,02 |-001 |-0,01 |-0,02
WiperFast_std -0,02 | -0,01 | -0,02 -0,01 | 0,01 -0,01 | -0,01 |-0,01 | -0,02 -0,01 | -0,01 | -0,01
WiperFast_min -0,01 |-002 |-0,02 |-0,02 |-0,03 |-0,03 0,00 -0,01 | -0,01 |-0,02 |-002 |-0,02
WiperFast_max -0,02 |-002 |-0,02 |-002 |-0,01 |-002 |-0,01 |-0,01 |-0,02 |-0,01 |-0,01 |-0,02
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Table 27: P values of Spearman correlation between LOS and CAN bus parameters, for 50m & 100m radii, with 1-6s CAN
bus signal transmission periods

radius = 50m radius = 100m
CAN bus parameter 1s 2s 3s 4s 5s 6s 1s 2s 3s 4s 5s 6s
rpm_avg 0,00 | 0,00 | 0,00 | 0,00 | O,00 | 0,00 | 0,00 | 0,00 | O,00 | O,00 | 0,00 | 0,00
rpm_std 0,00 | 0,00 | 0,00 | 0,00 | O,00 | 0,00 | 0,00 | 0,00 | O,00 | O,00 | 0,00 | 0,00
rpm_max 0,00 | 0,00 | 0,00 | 0,00 | O,00 | 0,00 | 0,00 | 0,00 | O,00 | O,00 | 0,00 | 0,00
rpm_min 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | O,00 | 0,00 | 0,00 | 0,00 | 0,00
speed_avg 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00
speed_std 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | O,00 | 0,00 | 0,00 | 0,00 | 0,00
speed_max 0,00 | 0,00 | 0,00 | 0,00 | O,00 | O,00 | 0,00 | 0,00 | O,00 | O,00 | 0,00 | 0,00
speed_min 0,00 | 0,00 | 0,00 | 0,00 | O,00 | 0,00 | 0,00 | 0,00 | O,00 | O,00 | 0,00 | 0,00
brake_avg 0,00 | 0,00 | 0,00 | 0,00 | O,00 | 0,00 | 0,00 | 0,00 | O,00 | O,00 | 0,00 | 0,00
brake_std 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | O,00 | 0,00 | 0,00 | 0,00 | 0,00
brake_max 0,06 | 0,01 | 0,00 | 0,00 | 0,00 | 0,00 | 0,11 | 0,05 | 0,01 | 0,00 | 0,00 | 0,00
brake_min 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | O,00 | 0,00 | 0,00 | 0,00 | 0,00
steeringposition_avg 0,03 002022049 | 042|068 | 0,02 | 002 |003]| 0,12 0,36 | 0,37
steeringposition_std 0,00 | 0,00 | 0,00 | 0,00 | O,00 | 0,00 | 0,00 | 0,00 | O,00 | O,00 | 0,00 | 0,00

steeringposition_min 0,00 | 0,00 | 0,00 | 0,08 | 0,12 | 0,30 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00

steeringposition_max 0,03 { 0,06 009 | 042|085 |069 017|022 0,19 | 0,08 | 0,02 | 0,07

steeringofcenter_avg 0,29 |0,12 (0,71 | 0,96 | 0,82 | 0,90 | 0,64 | 0,68 | 0,86 | 0,91 | 0,32 | 0,19

steeringofcenter_std 0,00 |{ 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00

steeringofcenter_min 0,00 | 0,00 | 0,00 | 0,11 | 0,30 | 0,40 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,01

steeringofcenter_max 0,00 | 0,00 | 0,02 | 0,29 | 0,31 | 0,44 | 0,00 | 0,00 | 0,00 | O,00 | O,00 | O,00

RDI_avg 0,01 { 0,01 | 0,01 | 0,01 | 0,12 | 0,04 | 0,04 | 0,02 | 0,10 | 0,04 | 0,02 | 0,11
RDI_std 0,09 | 0,36 | 0,38 | 0,08 | NaN | NaN | 0,12 | 0,16 | 0,80 | 0,24 | 0,41 | 0,11
RDI_min 0,07 | 0,00 | 0,00 | 0,00 | 0,12 | 0,04 | 0,03 | 0,01 | 0,00 | 0,06 | 0,00 | 0,02
RDI_max 0,01 { 0,01 | 0,01 | 0,01 0,12 | 0,04 | 0,04 | 0,02 | 0,10 | 0,04 | 0,02 | 0,11
LDI_avg 065|089 (088 |031]|077|067|035]|085]|098|052]| 0,77 | 0,77
LDI_std 0,70 | 0,55 | 0,01 | 0,69 | NaN | NaN | 0,36 | 0,89 | 0,95 | 0,84 | 0,66 | 0,02
LDI_min 0,99 | 0,50 | 0,25 | 0,28 | 0,77 | 0,67 | 0,61 | 0,33 | 0,91 | 0,11 | 0,83 | 0,22
LDI_max 064 (089 |088|031]|077| 067|036 088|097 | 053|076 | 0,79
FrontFoglLight_avg 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00
FrontFoglLight_std NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN
FrontFogLight_min 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00
FrontFogLight_max 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00
WiperFast_avg 0,04 | 0,02 | 0,16 | 0,31 | 0,89 | 0,83 | 0,06 | 0,04 | 0,03 | 0,11 | 0,27 | 0,12
WiperFast_std 0,31 (039|004 | 001|009 ]|002)|033]|029 |026 |09 |0,30]0,44
WiperFast_min 0,02 { 0,02 | 0,03 | 0,12 | 0,75 | 0,53 | 0,10 | 0,06 | 0,02 | 0,05 | 0,03 | 0,03
WiperFast_max 0,04 | 0,02 | 0,16 | 0,31 | 0,89 | 0,83 | 0,06 | 0,04 | 0,03 | 0,11 | 0,27 | 0,12

Page 139



Table 28: P values of Spearman correlation between LOS and CAN bus parameters, for 200m & 400m radii, with 1-6s CAN
bus signal transmission periods

CAN bus parameter radius = 200m radius = 400m
1s 2s 3s 4s 5s 6s 1s 2s 3s 4s 5s 6s

rpm_avg 0,00 | 0,00 | 0,00 | 0,00 | O,00 | 0,00 | 0,00 | O,00 | 0,00 | 0,00 | 0,00 | O,00
rpm_std 0,00 | 0,00 | 0,00 | 0,00 | O,00 | 0,00 | 0,00 | O,00 | 0,00 | 0,00 | 0,00 | O,00
rpm_max 0,00 | 0,00 | 0,00 | 0,00 | O,00 | 0,00 | 0,00 | O,00 | 0,00 | 0,00 | 0,00 | O,00
rpm_min 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00
speed_avg 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00
speed_std 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00
speed_max 0,00 | 0,00 | 0,00 | 0,00 | O,00 | 0,00 | 0,00 | O,00 | 0,00 | 0,00 | 0,00 | O,00
speed_min 0,00 | 0,00 | 0,00 | 0,00 | O,00 | 0,00 | 0,00 | O,00 | 0,00 | 0,00 | 0,00 | O,00
brake_avg 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | O,00 | 0,00 | 0,00 | 0,00 | O,00
brake_std 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00
brake_max 0,11 | 0,09 | 0,05 | 0,20 | 0,54 | 0,01 | NaN | 0,05 | 0,90 | 0,05 | 0,05 | 0,20
brake_min 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00
steeringposition_avg 0,00 | 0,00 | 0,00 | 0,04 | 0,19 | 0,02 | 0,00 | O,00 | 0,00 | 0,00 | 0,01 | O,00
steeringposition_std 0,00 | 0,00 | 0,00 | 0,00 | O,00 | 0,00 | 0,00 | O,00 | 0,00 | 0,00 | 0,00 | O,00

steeringposition_min 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00

steeringposition_max 0,25 (05 |035|0,17|0,01 0,16 | 015 | 0,76 | 0,78 | 0,75 | 0,11 | 0,45

steeringofcenter_avg 090 |08 (0,78 | 093 |061|030|08 (091|080 0,66 | 0,76 | 0,37

steeringofcenter_std 0,00 |{ 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00

steeringofcenter_min 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00

steeringofcenter_max 0,00 | 0,00 | 0,00 | O,00 | O,00 | O,00 | 0,00 | 0,00 | 0,00 | O,00 | O,00 | O,00

RDI_avg 0,00 | 0,02 | 0,08 | 0,07 | 0,02 | 0,19 | 0,00 | 0,01 | 0,08 | 0,01 | 0,02 | 0,57
RDI_std 0,01 { 0,04 | 0,14 | 0,24 | 0,12 | 0,70 | 0,00 | 0,02 | 0,13 | 0,02 | 0,05 | 0,86
RDI_min 0,14 | 0,09 | 0,28 | 0,02 | 0,03 | 0,00 | 0,24 | 0,12 | 0,16 | 0,38 | 0,12 | 0,06
RDI_max 0,00 { 0,02 | 0,09 | 0,07 | 0,02 | 0,21 | 0,00 | 0,02 | 0,10 | 0,02 | 0,03 | 0,62
LDI_avg 0,22 {039 081|049 | 0,22 |082 | 0,06 | 0,27 | 0,71 | 0,46 | 0,61 | 0,56
LDI_std 0,22 { 0,38 (0,81 | 0,40 | 0,32 | 0,80 | 0,06 | 0,28 | 0,75 | 0,48 | 0,60 | 0,62
LDI_min NaN | 0,62 | NaN | 0,20 | 0,09 | 0,91 | NaN | NaN | NaN | NaN | NaN | 0,47
LDI_max 0,24 { 0,41 | 0,78 | 0,51 | 0,21 | 0,84 | 0,07 | 0,32 | 0,82 | 0,52 | 0,56 | 0,61
FrontFoglLight_avg 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00
FrontFoglLight_std NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN
FrontFogLight_min 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00
FrontFogLight_max 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00 | 0,00
WiperFast_avg 0,07 | 0,26 | 0,07 | 0,16 | 0,42 | 0,19 | 0,22 | 0,32 | 0,10 | 0,27 | 0,27 | 0,18
WiperFast_std 0,17 { 0,41 | 0,22 | 0,39 | 0,66 | 0,51 | 0,38 | 0,56 | 0,12 | 0,52 | 0,38 | 0,42
WiperFast_min 0,34 | 0,20 | 0,16 | 0,06 | 0,02 | 0,04 | 0,75 | 0,42 | 0,59 | 0,11 | 0,22 | 0,18
WiperFast_max 0,07 | 0,16 | 0,07 | 0,16 | 0,42 | 0,19 | 0,23 | 0,33 | 0,10 | 0,27 | 0,27 | 0,18
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Table 29: R values Pearson correlation between CAN bus parameters and speed, intensity and density, for 200m radius
and 1s CAN bus signal transmission period.

CAN bus parameter Speed | Intensity | Density
rpm_avg 0,62 -0,32 -0,47
rpm_std -0,42 0,14 0,29
rpm_max 0,68 -0,33 -0,51
rpm_min 0,37 -0,26 -0,31
speed_avg 0,76 -0,29 -0,53
speed_std -0,48 0,16 0,34
speed_max 0,77 -0,30 -0,55
speed_min 0,70 -0,29 -0,50
brake_avg -0,33 0,07 0,22
brake_std -0,30 0,10 0,22
brake_max -0,03 0,01 0,02
brake_min -0,30 0,11 0,23
steeringposition_avg -0,08 -0,02 0,01
steeringposition_std -0,13 0,04 0,08
steeringposition_min -0,22 0,02 0,11
steeringposition_max 0,06 -0,04 -0,08
steeringofcenter_avg -0,03 0,01 0,02
steeringofcenter_std -0,12 0,05 0,09
steeringofcenter_min 0,04 -0,03 -0,04
steeringofcenter_max -0,21 0,05 0,13
RDI_avg 0,02 -0,01 -0,02
RDI_std 0,03 -0,01 -0,02
RDI_min 0,01 0,00 0,00
RDI_max 0,02 -0,01 -0,02
LDI_avg 0,03 0,02 0,00
LDI_std 0,03 0,02 0,00
LDI_min NaN NaN NaN
LDI_max 0,02 0,02 0,00
FrontFoglLight_avg 0,08 -0,06 -0,06
FrontFoglLight_std NaN NaN NaN
FrontFogLight_min 0,08 -0,06 -0,06
FrontFoglLight_max 0,08 -0,06 -0,06
WiperFast_avg -0,10 -0,08 -0,04
WiperFast_std -0,04 -0,06 -0,04
WiperFast_min -0,10 -0,06 -0,02
WiperFast_max -0,11 -0,08 -0,04
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Table 30: P values Pearson correlation between CAN bus parameters and speed, intensity and density, for 200m radius
and 1s CAN bus signal transmission period.

CAN bus parameter Speed | Intensity | Density
rpm_avg 0,0000 | 0,0000 0,0000
rpm_std 0,0000 | 0,0000 0,0000
rpm_max 0,0000 | 0,0000 0,0000
rpm_min 0,0000 | 0,0000 0,0000
speed_avg 0,0000 | 0,0000 0,0000
speed_std 0,0000 | 0,0000 0,0000
speed_max 0,0000 | 0,0000 0,0000
speed_min 0,0000 | 0,0000 0,0000
brake_avg 0,0000 | 0,0000 0,0000
brake_std 0,0000 | 0,0000 0,0000
brake_max 0,0132 | 0,3206 0,0720
brake_min 0,0000 | 0,0000 0,0000
steeringposition_avg 0,0000 | 0,0640 0,6141
steeringposition_std 0,0000 | 0,0024 0,0000

steeringposition_min 0,0000 | 0,0823 0,0000

steeringposition_max 0,0000 | 0,0009 0,0000

steeringofcenter_avg 0,0085 | 0,2416 0,1899

steeringofcenter_std 0,0000 | 0,0002 0,0000

steeringofcenter_min 0,0010 | 0,0295 0,0004

steeringofcenter_max 0,0000 | 0,0000 0,0000

RDI_avg 0,0520 | 0,3860 0,1973
RDI_std 0,0391 | 0,5885 0,1436
RDI_min 0,4409 | 0,8157 0,8579
RDI_max 0,0459 | 0,6282 0,1872
LDI_avg 0,0065 | 0,0690 0,8314
LDI_std 0,0100 | 0,0858 0,9089
LDI_min NaN NaN NaN

LDI_max 0,0514 | 0,0873 0,7438
FrontFoglLight_avg 0,0000 | 0,0000 0,0000
FrontFoglLight_std NaN NaN NaN

FrontFogLight_min 0,0000 | 0,0000 0,0000
FrontFoglLight_max 0,0000 | 0,0000 0,0000
WiperFast_avg 0,0000 | 0,0000 0,0041
WiperFast_std 0,0004 | 0,0000 0,0027
WiperFast_min 0,0000 | 0,0000 0,0878
WiperFast_max 0,0000 | 0,0000 0,0038
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Figure 70: LOS probability functions (LOS ground truth 1)
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Figure 71: LOS probability functions (LOS ground truth 2)
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Figure 72: LOS probability functions (LOS ground truth 3)
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Figure 73: LOS probability functions (LOS ground truth 4)
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Figure 74: LOS probability functions for 1% penetration
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Figure 75: LOS probability functions for 2% penetration
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Figure 76: LOS probability functions for 5% penetration
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Figure 77: LOS probability functions for 10% penetration
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Figure 78: LOS probability functions for 20% penetration
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Figure 79: LOS probability functions for 30% penetration
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Figure 80: LOS probability functions for 40% penetration
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Figure 81: LOS probability functions for 50% penetration
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Figure 82: LOS probability functions for 60% penetration
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Figure 83: LOS probability functions for 70% penetration
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Figure 84: LOS probability functions for 80% penetration
1
09 -
08 -
07 -
06 o
> Prob(LOS=A)
£ Prob(LOS=E)
E 051 Prob(LOS=C)|H
) Prob(LOS=D)
o Prob(LOS=E)
041 Prob(LOS=F)
03 -
02 -
011 -
0 | | | |
0] 20 40 60 80 100 120 140 160

Average speed (km/h)

Figure 85: LOS probability functions for 90% penetration
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Figure 86: LOS probability functions for 100% penetration
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Appendix |

In this section, the digital appendices are mentioned, which are enclosed with the report:

Appendix I.1: MATLAB code

Appendix 1.2: LOS estimation accuracy loop detectors with assumed accuracy
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