
Time-Optimal Control
for Tiny Quadcopters

J.M. Westenberger

Fa
cu
lty

of
Ae

ro
sp
ac
e
En

gi
ne
er
in
g

Time-Optimal
Control
for Tiny Quadcopters

by

J.M. Westenberger

to obtain the degree of Master of Science at the Delft University of Technology, to be defended
publicly on

Tuesday March 23, 2021 at 14:00

Student number: 4233425
Project duration: June, 2019 – March, 2021
Thesis committee: prof. dr. G.C.H.E. de Croon Control and Simulation, TU Delft, supervisor

ir. C. de Wagter Control and Simulation, TU Delft, supervisor
dr. E.J.J. Smeur Control and Simulation, TU Delft
dr. A. Menicucci Space Engineering, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Acknowledgements
I would like to start off by thanking my supervisors, Guido and Christophe, for their precious guidance
and support. Thank you for giving me the freedom to explore my own ideas whilst making sure I stayed
in the right direction.
Furthermore, I am immensely grateful for being given the opportunity to be part of the MAVLab Al-
phapilot team. The months in this team have given me a lot of insight on software development, em-
bedded systems, deep learning and debugging. The level of proficiency, focus and perseverance that
Christophe, Federico and Nilay displayed during the final weeks of the competition inspired me greatly.

I would also like to thank my fellow researchers of the MAVLab: Rohan, Nilay, Anoosh, Karan, Dennis
and Bart for their friendship and support. Your continued presence and humor were invaluable to me
and made me keep my motivation and high spirit in a time of a pandemic.

Finally, I would like thank my parents for their patience and my grandfather, whose lack of patience
pushed me at the right moments.

J.M. Westenberger
Delft, March 2021

iii

Abstract
Time-optimal model-predictive control is essential in achieving fast and adaptive quadcopter flight. Due
to the limited computational performance of onboard hardware, aggressive flight approaches have
relied on off-line trajectory optimization processes or non time-optimal methods. In this work we propose
a computational efficient model predictive controller (MPC) that approaches time-optimal flight and
runs onboard a consumer quadcopter. The proposed controller is built on the principle that constrained
optimal control problems (OCPs) have a so-called ’bang-bang’ solution. Our solution plans a bang-bang
maneuver in the critical direction while aiming for a ’minimum-effort’ approach in non-critical direction.
Control parameters are computed by means of a bisection scheme using an analytical path prediction
model. The controller has been compared with a classical PID controller and theoretical time-optimal
trajectories in simulations. We identify the consequences of the OCP simplifications and propose a
method to mitigate one of these effects. Finally, we have implemented the proposed controller onboard
a consumer quadcopter and performed indoor flights to compare the controller’s performance to a PID
controller. Flight experiments have shown that the controller runs at 512hz onboard a Parrot Bebop
quadcopter and is capable of fast, saturated flight, outperforming traditional PID controllers in waypoint-
to-waypoint flight while requiring only minimal knowledge of the quadcopter’s dynamics.

v

Contents
Acronyms ix

List of Symbols xi

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Motivation . 1
1.2 Objective & Research questions. 1
1.3 Planning. 2

1.3.1 Gantt Chart . 3
1.4 Document Structure . 4

1.4.1 Scientific Paper . 4
1.4.2 Literature Review . 4
1.4.3 Preliminary Results . 4
1.4.4 Flight Experiment Results . 4

I Scientific Paper 5

II Literature Review 21

2 Optimal Control Theory 23
2.1 Introduction to Optimal Control . 23
2.2 Discrete case: Bellman Equation . 23
2.3 Continuous-time case: Hamilton-Jacobi-Bellman Equation 24
2.4 Pontryagin’s Minimum Principle . 25
2.5 Solving Optimal Control Problems. 26

2.5.1 Dynamic Programming . 27
2.5.2 Direct Methods . 27
2.5.3 Indirect Methods . 28

2.6 LQR Control . 28
2.7 Chapter Summary . 29

3 Drone Racing 31
3.1 Chapter Outline . 31
3.2 Competitions . 31

3.2.1 Alphapilot/AIRR. 32
3.2.2 IROS . 32
3.2.3 IMAV . 32

3.3 Trajectory Generation . 32
3.3.1 Minimum-Snap . 32
3.3.2 Cluttered Environments . 33
3.3.3 Machine Learning Approaches . 34
3.3.4 Solving Time-Optimal Principles . 35

3.4 Control . 36
3.4.1 Trajectory Tracking . 36

3.5 Perception . 38
3.5.1 Visual Odometry . 39
3.5.2 Object Recognition . 40

vii

viii Contents

3.6 On-board State Estimation . 42
3.6.1 Visual Approaches to State Estimation . 42
3.6.2 Estimating Attitude . 43
3.6.3 Filtering . 43
3.6.4 Estimating Position . 44
3.6.5 Estimating Velocity . 44

3.7 Chapter Summary . 45

A Pontryagin’s Conditions for Optimality 47

III Preliminary Work 51

4 Lightweight Optimal Control 53
4.1 Bang-Bang Optimal Control . 53
4.2 Bang-Bang Controller . 55

4.2.1 Prediction Model . 55
4.2.2 Switch Time Solver . 57
4.2.3 Lateral Control . 58
4.2.4 Braking . 58

4.3 Matlab Simulations . 58
4.3.1 Simulation Observations . 58

4.4 Trajectory Comparisons . 61
4.4.1 Straight Flight . 61
4.4.2 Longitudinal + Lateral Flight . 61

4.5 Transition Compensation. 63
4.6 Discussion of the Preliminary Results . 65

4.6.1 The Effects of Simplifications . 65
4.6.2 Computational efficiency . 66

B Bang-Bang Prediction Model 75
B.1 Decoupled Prediction Model . 75
B.2 Combined Euler Angles . 76

C Flight Experiments Results 79
C.1 Flight Maneuvers . 79
C.2 Plots. 81

Acronyms
ADP Adaptive/Approximate Dynamic Programming
ADR Autonomous Drone Racing
AHRS Attitude and Heading Reference System
AI Artificial Intelligence
AIRR Artifical Intelligence Robitic Racing
ANN Artificial Neural Network

BVP Boundary Value Problem

CNN Convolutional Neural Network

DRL Drone Racing League

EKF Extended Kalman Filter

GPS Global Positioning System
GPU Graphics Processing Unit

HDP Heuristic Dynamic Programming
HJB Hamilton-Jacobi-Bellman Equation

IEKF Iterated Extended Kalman Filter
IMAV International Micro Air Vehicles, Conferences and Competi-

tions
IMU Inertial Measurement Unit
INDI Incremental Nonlinear Dynamic Inversion
IROS International Robots and Systems

LQR Linear Quadratic Regulator

MDP Markov Decision Process
MPC Model Predictive Control

NDI Nonlinear Dynamic Inversion
NLP Nonlinear Programming

OCP Optimal Control Problem
ODE Ordinary Differential Equation

PID Proportional-Integral-Derivative
PMP Pontryagin’s Minimum Principle
PnP Perspective-n-point

QP Quadratic Programming

RANSAC Random Sample Consensus
RRT Rapidly-exploring Random Tree

ix

x Acronyms

SE-SCP Spherical Expansion and Sequential Convex Programming
SQP Sequential Quadratic Programming

UAV Unmanned Aerial Vehicle

V-SLAM Visual Localization and Mapping
VIO Visual Inertial Odometry
VO Visual Odometry

List of Symbols
𝐵 Input Matrix

𝐶𝑑 Drag Coefficient

e⋅ Error

𝑓(⋅) System Dynamics Function

𝑔 gravity (9.81 m/s2)

ℋ Hamiltonian

𝐽(⋅) Cost Function

𝐾⋅ Gain

𝑚 Mass

p Co-state Vector
Φ(⋅) Switching Function
𝜙 Roll Angle
𝑝 Lagrangian Multiplier
𝑥 Position
𝑧 Altitude

𝑄 Cost Matrix

𝑅 Cost Matrix

𝑇 Thrust Force
𝑡 Time
𝑡𝑓 Final Time
𝜃 Pitch Angle

u Input Vector

𝑊 Weight

x State Vector
x𝑟 Reference Trajectory

xi

List of Figures
2.1 Available routes between states with corresponding costs (from [5]) 24
2.2 Overview of solving OCPs approaches . 27

3.1 Here SE-SCP is used to find the shortest path from the lower-left corner to the upper-right
corner. (from Baldini et al. [28]) . 34

3.2 Characteristic time-optimal control input sequence (adapted from Hehn and D’Andrea
[40]) . 36

3.3 Tal and Karaman’s control pipeline (derived from Tal and Karaman [51]) 38
3.4 Lemniscate trajectory tracking (from Tal and Karaman [51]) 38
3.5 VO pipeline . 39
3.6 Feature point P is projected as p on frame 1 and as p’ on frame 2. The epipolar constraint

states that potential matches for p must lie on l’ and potential matches for p’ must lie on
l. (adapted from Zhang et al. [62]) . 40

3.7 Example of a classic CNN architecture. This particular one is developed by LeCun et al.
[70] to recognize handwritten characters. (from [70]) . 41

3.8 The effect of blade flapping on thrust (adapted from Huang et al. [81]). 43

4.1 2-D Quadcopter model 𝑇 =Thrust 𝐷𝑥 =Drag = 𝐶𝑑 ⋅ �̇� 𝑊 = 𝑚𝑔 =Weight 𝑚 =Mass
𝑔 =Gravity 𝜃 =Attitude angle 𝑥 =Position . 54

4.2 One-dimensional bang-bang maneuver trajectory. 56
4.3 Bisection switching time optimization . 57
4.4 Straight Trajectory - Comparison between low- and high-gain inner loop 59
4.5 Resulting states and trajectory of a skewed maneuver 60
4.6 Estimated time of arrival through out the flight . 60
4.7 Longitudinal trajectory comparisons . 62
4.8 Longitudinal + lateral trajectory comparisons . 63
4.9 Predicted position with and without transition compensation applied. 64
4.10 Resulting pitch angle and speed for different levels of transition compensation. 65

C.1 Comparison compositions of the motion primitive maneuvers. Each color represents a
single run with a different controller: Red = PID, Blue = BangBang without compensta-
tion, Green = BangBang with compensation . 79

C.2 Compositions of single circular runs for the bang-bang controller and PID controller. . . 80
C.3 Forward Maneuver . 81
C.4 Backward Maneuver . 82
C.5 Sideways Maneuver . 83
C.6 Forward-Sideways . 84
C.7 Forward-Up & Forward-Down . 85

xiii

List of Tables
2.1 Example adapted from Kirk [5] . 24

3.1 Approaches Comparison (from Tang, Sun, and Hauser [35]) 35

4.1 Simulation Settings . 61

xv

1
Introduction

1.1. Motivation
Drone racing has been on the rise in the recent years. Every year the best pilots compete against each
other and winners walk away with prices of hundred-thousands of dollars. During these events the
pilots have to steer quadcopters through gates that are distributed along a complex racing track. The
pilots wear first-person-view video-goggles that are connected to the on-board camera of the quad-
copter so that they can quickly react whilst flying at speeds of over 140 km/h [1].
Simultaneously, new innovations are introduced in the autonomous sector of drones at an accelerating
rate.
However, the recent Alphapilot 2019 challenge has shown that there is still a large gap in performance
between human racing pilots and autonomous controllers. Human pilots still excel in being adaptive
and improvising quickly to unsuspected events.
In this challenge TeamMAVLab, from the TUDelft, won the competition against other automated drones
by finishing a track in 11 seconds, flying fully autonomously. However, in a bonus round against a hu-
man pilot, Gab707, one of the world’s best racing pilots finished the same track manually controlling
the same drone in only 6 seconds [2].

Advancements in control theory show promise that the performance gap between human pilots and
autonomous drones can be overcome in the near future. And despite that Bellman [3] and Pontryagin
[4] have developed the mathematical foundation for optimal control theory in the 1950s, applying these
methods to real-life scenarios are often so computationally expensive that, even today, the required
hardware would be too heavy and power-hungry to be implemented onboard a small quadcopter. The
complete approach has to address accurate state estimation, expensive numerical solvers and genera-
tion of feasible flight trajectories. Much of the relevant research had to rely on simulations, or off-board
and off-line computations, as will be discussed in chapter 3. While for autonomous drone applications
it is desirable to execute all computations on-board.

On the other hand, extensive research is performed on tiny, pocket-sized quadcopters and their on-
board processing capabilities on the road to high-performance autonomous control. Currently, the
objective in this field mostly comprises autonomous navigation, obstacle avoidance and swarming.
Research in on-board time-optimal control solutions often result in machine learning approaches that
require large datasets and significant training time. The ambition of this project is to combine fast
time-optimal control with lightweight, (computational) power-limited quadcopters. Research has been
performed in the fields of drone racing and optimal control theory and investigate how it can be applied
in conjunction to quadcopters. The goal is to develop an on-board solution of a time-optimal controller
which is able to run in real-time on a small quadcopter, demonstrating independence of external com-
puters.

1.2. Objective & Research questions
Based on the arguments of section 1.1 the main objective of this project is:

1

2 1. Introduction

to make a small quadcopter navigate through a course of positional waypoints in a
time-optimal fashion, by developing a controller that can run real-time and on-board.

From which the following research questions are derived:

1. Is the complete control system computationally efficient enough to run onboard a power-limited
microcontroller?

2. How well does the control system approach true time-optimality?

The first question is important to demonstrate that the solution can run in real-time onboard of the drone.
However, in order to do so it is expected that some simplifications and assumptions will have to be
chosenwhichmay cause the solution to deviate from the theoretical time-optimal solution. Furthermore,
other in-flight phenomena may affect the flight behavior to an unexpected level. These so-called ’reality
gaps’ must be identified and it must be investigated how they can be mitigated in order to answer the
second research question.

1.3. Planning
The thesis project consists of two phases: the preliminary research phase and the main thesis phase.

In the preliminary research phase work is done to:

1. Perform a literature review to investigate more thoroughly research performed on optimal control
formulations,solutions and practical implementations of optimal controllers.

2. Select which approach the thesis will take.

3. Demonstrate principal optimal controller in simulation.

4. Demonstrate principal optimal controller on a real quadcopter

In this context the principal optimal controller consists of only the system that is responsible for solving
the optimal control problem and generating the control inputs. That is, subsystems that deal with state
estimation and perception are not regarded yet. The preliminary phase is concluded with this document.

The main thesis phase will focus on working towards a complete practical implementation of the opti-
mal controller on a tiny quadcopter. Which includes analyzing and minimizing the ’reality-gap’ between
simulation and real flight, completing the optimal controller with required systems such as perception
and state estimation. Finally, a working solution shall be demonstrated and its performance will be
compared to the theoretical time-optimal flight. The main thesis phase is concluded with a scientific
paper and the thesis defense.

A detailedGantt chart of the chronological planning of the thesis project is presented in subsection 1.3.1.
It takes into account a 5 day work week and 3 weeks of holidays, giving a total active project time of 9
months.

ID
T
a
sk

M
o

d
e

T
a
sk

 N
a
m

e
D

u
ra

ti
o

n
S
ta

rt
Fi

n
is

h
P

re
d

e
ce

ss
o

rs

1
T

h
e

si
s

P
ro

je
ct

1
9

5
 d

a
y

s
M

o
n

 4
-1

1
-1

9
F

ri
 2

1
-8

-2
0

2
In

it
ia

l
M

e
e

ti
n

g
1

 d
a

y
M

o
n

 4
-1

1
-1

9
M

o
n

 4
-1

1
-1

9

3
K

ic
k

-o
ff

 m
e

e
ti

n
g

1
 d

a
y

T
u

e
 5

-1
1

-1
9

T
u

e
 5

-1
1

-1
9

2

4
P

re
li

m
in

a
ry

 R
e

se
a

rc
h

7
0

 d
a

y
s

W
e

d
 6

-1
1

-1
9

T
u

e
 3

-3
-2

0
3

5
Li

te
ra

tu
re

 R
e

v
ie

w
4

5
 d

a
y

s
W

e
d

 6
-1

1
-1

9
T

u
e

 2
1

-1
-2

0

6
T

im
e

-o
p

ti
m

a
l

co
n

tr
o

l
2

0
 d

a
y

s
W

e
d

 6
-1

1
-1

9
T

u
e

 3
-1

2
-1

9

7
N

u
m

e
ri

ca
l

S
o

lv
e

rs
5

 d
a

y
s

W
e

d
 4

-1
2

-1
9

T
u

e
 1

0
-1

2
-1

9
6

8
S

ta
te

 e
st

im
a

ti
o

n
5

 d
a

y
s

W
e

d
 1

1
-1

2
-1

9
T

u
e

 1
7

-1
2

-1
9

7

9
C

h
ri

st
m

a
s

h
o

li
d

a
y

2
 d

a
y

s
M

o
n

 2
3

-1
2

-1
9

S
u

n
 5

-1
-2

0

1
0

S
y

st
e

m
 I

d
e

n
ti

fi
ca

ti
o

n
5

 d
a

y
s

W
e

d
 1

8
-1

2
-1

9
T

u
e

 7
-1

-2
0

8

1
1

R
e

a
li

ty
 G

a
p

1
0

 d
a

y
s

W
e

d
 8

-1
-2

0
T

u
e

 2
1

-1
-2

0
1

0

1
2

C
o

m
p

a
re

 &
 s

e
le

ct
 c

o
n

tr
o

l
a

p
p

ro
a

ch
4

5
 d

a
y

s
W

e
d

 6
-1

1
-1

9
T

u
e

 2
1

-1
-2

0

1
3

S
im

u
la

ti
o

n
1

5
 d

a
y

s
W

e
d

 2
2

-1
-2

0
T

u
e

 1
8

-2
-2

0
1

2
;1

1

1
4

R
e

se
a

rc
h

 c
o

n
tr

o
ll

e
r

in
 M

A
T

LA
B

 s
im

u
la

ti
o

n
5

 d
a

y
s

W
e

d
 2

2
-1

-2
0

T
u

e
 2

8
-1

-2
0

1
5

R
e

se
a

rc
h

 c
o

n
tr

o
ll

e
r

in
 R

O
S

 s
im

u
la

ti
o

n
1

0
 d

a
y

s
W

e
d

 2
9

-1
-2

0
T

u
e

 1
8

-2
-2

0
1

4

1
6

S
k

i
tr

ip
2

 d
a

y
s

S
a

t
1

-2
-2

0
S

u
n

 9
-2

-2
0

1
7

B
e

b
o

p
 Q

u
a

d
co

p
te

r
Im

p
le

m
e

n
ta

ti
o

n
1

0
 d

a
y

s
W

e
d

 1
9

-2
-2

0
T

u
e

 3
-3

-2
0

1
3

1
8

Id
e

n
ti

fy
 d

y
n

a
m

ic
a

l
m

o
d

e
l

o
f

q
u

a
d

co
p

te
r

3
 d

a
y

s
W

e
d

 1
9

-2
-2

0
F

ri
 2

1
-2

-2
0

1
9

Im
p

le
m

e
n

t
p

ri
n

ci
p

a
l

co
n

tr
o

ll
e

r
o

n
 B

e
b

o
p

6
 d

a
y

s
W

e
d

 1
9

-2
-2

0
W

e
d

 2
6

-2
-2

0

2
0

P
e

rf
o

rm
 t

e
st

 f
li

g
h

ts
 a

n
d

 l
o

g
 r

e
su

lt
s

2
 d

a
y

s
T

h
u

 2
7

-2
-2

0
F

ri
 2

8
-2

-2
0

1
9

;1
8

2
1

G
e

n
e

ra
te

 t
h

e
o

re
ti

ca
l

ti
m

e
-o

p
ti

m
a

l

tr
a

je
ct

o
ri

e
s

2
 d

a
y

s
M

o
n

 2
4

-2
-2

0
T

u
e

 2
5

-2
-2

0
1

8

2
2

A
n

a
ly

se
 r

e
su

lt
s

1
 d

a
y

M
o

n
 2

-3
-2

0
M

o
n

 2
-3

-2
0

2
0

;2
1

2
3

W
ri

te
 p

re
li

m
in

a
ry

 r
e

se
a

rc
h

 r
e

p
o

rt
4

5
 d

a
y

s
M

o
n

 9
-1

2
-1

9
F

ri
 2

8
-2

-2
0

2
4

D
e

li
v

e
r

R
e

p
o

rt
0

 d
a

y
s

M
o

n
 2

-3
-2

0
M

o
n

 2
-3

-2
0

2
3

2
5

P
re

se
n

ta
ti

o
n

2
 d

a
y

s
M

o
n

 2
-3

-2
0

T
u

e
 3

-3
-2

0
2

4

2
6

M
a

in
 T

h
e

si
s

w
o

rk
1

2
3

 d
a

y
s

W
e

d
 4

-3
-2

0
F

ri
 2

1
-8

-2
0

2
5

2
7

M
id

te
rm

 R
e

v
ie

w
1

 d
a

y
W

e
d

 4
-3

-2
0

W
e

d
 4

-3
-2

0

2
8

R
e

se
a

rc
h

 s
ta

te
 e

st
im

a
to

rs
1

0
 d

a
y

s
W

e
d

 4
-3

-2
0

T
u

e
 1

7
-3

-2
0

2
5

2
9

T
e

st
 s

ta
te

 e
st

im
a

to
rs

 i
n

 R
O

S
 s

im
u

la
ti

o
n

1
0

 d
a

y
s

W
e

d
 1

8
-3

-2
0

T
u

e
 3

1
-3

-2
0

2
8

3
0

Im
p

le
m

e
n

t
S

ta
te

 e
st

im
a

to
r

in
 l

a
rg

e

q
u

a
d

co
p

te
r

1
5

 d
a

y
s

W
e

d
 1

-4
-2

0
T

u
e

 2
1

-4
-2

0
2

9

3
1

A
n

a
ly

se
 c

o
m

p
u

ta
ti

o
n

a
l

e
ff

ic
ie

n
cy

5
 d

a
y

s
W

e
d

 2
2

-4
-2

0
T

u
e

 2
8

-4
-2

0
3

0

3
2

Im
p

le
m

e
n

t
sy

st
e

m
 i

n
 t

in
y

 q
u

a
d

co
p

te
r

4
5

 d
a

y
s

W
e

d
 2

9
-4

-2
0

T
u

e
 3

0
-6

-2
0

3
1

3
3

A
n

a
ly

se
 o

p
ti

m
a

l
co

n
tr

o
l

sy
st

e
m

 i
n

 t
in

y

q
u

a
d

co
p

te
r

5
 d

a
y

s
W

e
d

 1
-7

-2
0

T
u

e
 7

-7
-2

0
3

2

3
4

W
ri

te
 t

h
e

si
s

R
e

p
o

rt
6

5
 d

a
y

s
M

o
n

 2
0

-4
-2

0
F

ri
 1

7
-7

-2
0

3
5

W
ri

te
 S

ci
e

n
ti

fi
c

A
rt

ic
le

3
0

 d
a

y
s

M
o

n
 1

5
-6

-2
0

F
ri

 2
4

-7
-2

0

3
6

G
re

e
n

li
g

h
t

re
v

ie
w

0
 d

a
y

s
F

ri
 1

7
-7

-2
0

F
ri

 1
7

-7
-2

0
3

4

3
7

Im
p

le
m

e
n

t
co

rr
e

ct
io

n
s

fr
o

m
 f

e
e

d
b

a
ck

1
0

 d
a

y
s

M
o

n
 2

0
-7

-2
0

F
ri

 3
1

-7
-2

0
3

6

3
8

H
a

n
d

 i
n

 f
in

a
l

th
e

si
s

re
p

o
rt

0
 d

a
y

s
F

ri
 3

1
-7

-2
0

F
ri

 3
1

-7
-2

0
3

7

3
9

H
a

n
d

 s
c
ie

n
ti

fi
c

a
rt

ic
le

0
 d

a
y

s
F

ri
 3

1
-7

-2
0

F
ri

 3
1

-7
-2

0
3

8
;3

5

4
0

P
re

p
a

re
 d

e
fe

n
se

 a
n

d
 p

re
se

n
ta

ti
o

n
1

0
 d

a
y

s
F

ri
 7

-8
-2

0
T

h
u

 2
0

-8
-2

0
3

8

4
1

D
e

fe
n

se
1

 d
a

y
F

ri
 2

1
-8

-2
0

F
ri

 2
1

-8
-2

0
4

0

2
-
3

1
7
-
7

3
1
-
7

3
1
-
7

O
ct

N
o

v
D

e
c

Ja
n

F
e
b

M
a
r

A
p

r
M

a
y

Ju
n

Ju
l

A
u

g
S
e
p

Q
tr

 4
,
2
0
1
9

Q
tr

 1
,
2

0
2
0

Q
tr

 2
,
2
0
2
0

Q
tr

 3
,
2
0
2
0

P
a
g

e
 1

1.3. Planning 3

1.3.1. Gantt Chart

4 1. Introduction

1.4. Document Structure
The document is divided in three main parts. A scientific paper in Part I, the literature review in Part II.
Preliminary results of the thesis are presented in Part III.

1.4.1. Scientific Paper
The scientific paper presents all contributions of this thesis. The paper can be read as a standalone
document. It gives a brief introduction to optimal control and related work before explaining the main
thesis work and the setup and results of performed experiments. Additionally, some tests have per-
formed that are not covered in the paper. These are briefly described in Appendix C.

1.4.2. Literature Review
The literature review is performed to investigate the relevant scientific work that can aid in solving the
main objective of this thesis.
Consequently, the literature review starts with an introduction to themathematical side of optimal control
theory in chapter 2. It explains how the work of Bellman and Pontryagin have been crucial to defining
and solving optimal control problems.
Secondly, in chapter 3 a review is given of relevant work on the most important quadcopter subsystems
that make autonomous drone racing possible. It summarizes work on trajectory generation methods,
quadcopter control, perception and state estimation.

1.4.3. Preliminary Results
The final part of this document consists of presenting the preliminary results of the thesis. Based on
the literature review a solution to time-optimal control is suggested. It explains the design of a flight
controller and which assumptions/simplifications were made for the benefit of computational efficiency.
Furthermore, this controller has been demonstrated in simulations environments from which the results
are analyzed. It is investigated to which extend this controller approaches time-optimal control. And
what decisions have been made so-far to mitigate the disadvantageous effects of the simplifications.

1.4.4. Flight Experiment Results
The scientific paper describes the most relevant flight experiments and discusses their results. How-
ever, more flight experiments have been performed that have not been covered in the paper due to
inconclusive results or incompleteness. For completeness, all flight experiments have been summa-
rized in Appendix C.

Part I

Scientific Paper

5

1

Time-Optimal Control for Tiny Quadcopters
Jelle Westenberger, Guido C.H.E. de Croon, Christophe de Wagter

Abstract—Time-optimal model-predictive control is essential in
achieving fast and adaptive quadcopter flight. Due to the limited
computational performance of onboard hardware, aggressive
flight approaches have relied on off-line trajectory optimization
processes or non time-optimal methods. In this work we propose
a computational efficient model predictive controller (MPC) that
approaches time-optimal flight and runs onboard a consumer
quadcopter. The proposed controller is built on the principle
that constrained optimal control problems (OCPs) have a so-
called ’bang-bang’ solution. Our solution plans a bang-bang
maneuver in the critical direction while aiming for a ’minimum-
effort’ approach in non-critical direction. Control parameters are
computed by means of a bisection scheme using an analytical
path prediction model. The controller has been compared with
a classical PID controller and theoretical time-optimal trajecto-
ries in simulations. We identify the consequences of the OCP
simplifications and propose a method to mitigate one of these
effects. Finally, we have implemented the proposed controller
onboard a consumer quadcopter and performed indoor flights
to compare the controller’s performance to a PID controller.
Flight experiments have shown that the controller runs at
512hz onboard a Parrot Bebop quadcopter and is capable of
fast, saturated flight, outperforming traditional PID controllers
in waypoint-to-waypoint flight while requiring only minimal
knowledge of the quadcopter’s dynamics.

Index Terms—time-optimal control, model-predictive control,
MAVs

I. INTRODUCTION

DRONE racing has been gaining popularity in recent
years. In addition to human-piloted drone race compe-

titions there are also events taking place that challenge the
autonomous field of quadcopter control . Autonomous drone
racing can be considered to be the most demanding test case
of quadrotor control systems. The desired aggressive flights
and adaptiveness puts all on-board systems to the limit. From
state estimation and trajectory generation systems to trajectory
tracking and inner-loop controllers [1]–[3].
Methods have been developed to automatically generate op-
timal trajectories. One of the most popular approaches is
optimizing a trajectory for minimum-snap which improves
the overall ”smoothness” of the path [4], [5]. This is known
to be beneficial to the measurement quality of the onboard
sensors. Furthermore, the resulting trajectory formulation al-
lows for convenient extraction of control inputs, using dif-
ferential flatness, which greatly improves trajectory tracking
performance when used as feedforward terms in a controller
[4], [6]. Optimizing a trajectory polynomial for minimum-snap
is an efficient process if the total flight time is predefined
and dynamic feasibility is not included in the optimization
problem. When the dynamic feasibility and total flight time
constraints are considered, the computational cost increases
significantly [5].

In optimal-control theory there are generally two approaches
considered in finding the mathematical time-optimal solutions.
The first deals with solving the Hamilton-Jacobi-Bellman
equation (HJB) equation, which in essence searches the entire
state-space of the system for the optimal sequence of states and
control inputs. Such a problem can be solved recursively by
using dynamic programming methods, or it can be solved by
transforming the problem to a nonlinear programming (NLP)
formulation and solving it by using numerical solver methods
such as collocation or shooting [7].

The second approach, also known as the indirect method,
attempts to find the time-optimal control solution by finding
the state and control values for which the conditions for
optimality are satisfied, as stated by Pontryagin’s Minimum
Principle (PMP). However, this approach does not guarantee
that the optimal solution is at a global optimum [8].

Unfortunately, solving time-optimal principles has shown to
be a computationally demanding process. And especially in a
dynamic environment it is desired implement a path predictor
to account for obstacles and other disturbances, which requires
frequent re-calculations of the optimal trajectory. Therefore,
most work consist of calculating the trajectory off-board on
computers, and let the on-board systems only deal with the
trajectory tracking [4], [9], [10].

To address this, work has been performed to approximate
optimal-control with deep neural nets. [11]–[13]. These
methods are less computationally demanding and can be
executed onboard, but require a large dataset and considerable
training time.

The work presented in this paper shows how time-optimal
flight can be approached with a simplified OCP that is light
enough to be solved onboard and can be implemented as an
MPC. The suggested approach is based the knowledge that
time-optimal control problems with constrained inputs have
a so-called ’bang-bang’ shape [8], [14]. This fact reduces
the optimal control problem (OCP) to one in which only
the time instances at which the control values switch from
one saturated value to the other saturated value need to be
optimized. We have developed a model predictive controller
(MPC) that optimizes the switching time of a ’bang-bang’
motion in one critical direction. The noncritical direction
takes on a so-called ’minimum-effort’ approach in which a
constant attitude angle is optimized for minimum required
acceleration. Thanks to a few simplifying assumptions
this method only requires a minimal amount of function
evaluations because the trajectories are described analytically.
Making this method computational efficient enough to run
onboard a small quadcopter.

Section II shows that for our simplified OCP the solution

2

consists of a bang-bang input in attitude. In Section III
we derive the prediction model of the proposed MPC and
elaborate on how the control parameters are optimized. The
MPC is tested in simulation and compared to trajectories from
other approached in Section IV. Section V introduces a method
to mitigate the effects of latency in attitude. The proposed
has been implemented on a consumer quadcopter. The flight
experiments are described in Section VI. Finally, the results are
discussed in Section VII and a conclusion is given in Section
VIII.

II. SIMPLIFIED OPTIMAL CONTROL

In order to reduce the computational effort a more simplified
approach to optimal control must be taken. It is known that for
constrained OCPs the solution consist of a control input with a
bang-bang or bang-singular-bang shape. We take advantage of
this knowledge by assuming beforehand that the quadcopter’s
attitude has a bang-bang shape as well. [8] proves that the
optimal control solution to a two dimensional quadcopter
system is in fact bang-bang for thrust and bang-singular-bang
for angular rate. However, as is shown in Appendix A, an
analytical solution to the path prediction can only be found if
the attitude angle and thrust is considered to be constant. This
implies that angular rate cannot be taken into account in the
analytical path prediction.
In Appendix B we show that for our model simplifications the
attitude control input has a bang-bang shape. The altitude is
assumed to be constant and therefore the constant thrust value
will be governed by this condition.

III. BANG-BANG MPC

A model-predictive controller has been implemented in
which the prediction assumes that the quadcopter’s trajectory
from its current position to its target consists of a bang-bang
motion in either the longitudinal or lateral direction. We call
this the ’critical’ direction. That is, it will accelerate at an
maximum attitude angle (pitch or roll), and subsequently
decelerate at a maximum angle to reach the target with a
specific desired velocity. Additionally, the remaining direction
takes on a so-called ’minimum-effort’ approach. In this
direction the optimizer calculates the optimal constant angle
such that the quadcopter reaches the noncritical target position
at the same time as it reaches the critical target. In this way
most available thrust will be utilized to minimize the critical
position error as quickly as possible.

In practice, the critical and noncritical direction can be in-
terchanged, as is also demonstrated in flight experiments
described Section VI. However, for convenience, we assume
for now that the critical dimension is always in the longitudinal
direction w.r.t. the quadcopter’s body. Therefore, the predicted
maneuver will consist of a bang-bang motion in pitch angle
and of a constant angle in roll. For the longitudinal motion
the parameter to be optimized is the time instant at which the
quadcopter switches from accelerating to decelerating, while
for the lateral motion the parameter to be optimized will be
the roll angle.

A. Path Prediction

A simple decoupled 2nd order model has been derived to
predict the motion of the quadcopter. The derivation is shown
in Appendix A. The longitudinal and lateral dynamics have
been decoupled in this model. Consequently, the longitudinal
and lateral components of the path are predicted individually.
Because our optimal control approach is based on a 2-D model
the quadcopter’s heading is considered constant during the
maneuvers. Furthermore, the vertical dynamics are omitted
by assuming perfect altitude control. This implies that it is
assumed that the collective thrust perfectly compensates for
the quadcopter’s weight. That is, the earth Z-component of
the thrust is the opposite value of the quadcopters weight so
that there is no acceleration in altitude. The collective thrust
force is therefore always W/ (cos θ cosφ). Where W is the
quadcopter’s weight (W = m · g), θ and φ are the pitch
and roll angles, respectively. Moreover, the aerodynamic drag
is assumed to be linearly proportional to, and acting against
the quadcopters speed: FA = Cd · V . Where Cd is the drag
coefficient.
So for the longitudinal direction the motion is described by:

x =c1e
−Cd
m t + c2 +

W tan θ

Cd
t (1a)

ẋ =
−Cd
m

c1e
−Cd
m t +

W tan θ

Cd
(1b)

Where c1 and c2 are calculated by solving the equations for
the initial position and velocity as can be seen in Appendix
A.
The lateral direction is described by:

y =c3e
−Cd
m t + c4 +

W

cos θ

tanφ

Cd
t (2a)

ẏ =c3
−Cd
m

e
−Cd
m t +

W

cos θ

tanφ

Cd
(2b)

Figure 1 shows a typical trajectory prediction when starting
from rest and flying towards a target that is 10 meters ahead
and 5 meters sideways. Note that the longitudinal trajectory
consists of an acceleration and a braking segment while
the lateral trajectory is a single segment with a constant
roll angle. The longitudinal and lateral target are reached
simultaneously.

Bang-Bang Prediction
As aforementioned, the longitudinal direction is considered
to be a bang-bang motion. The trajectory is calculated by
splitting it in two sections. First, the acceleration phase up
to the switching time. Secondly, the braking phase from
switching time up to the target. It is assumed that the attitude
change is achieved instantly.

Lateral Prediction
The lateral direction does not consist of a bang-bang motion,
but rather of a single, constant angle acceleration. So contrary
to the bang-bang motion, this trajectory only consists of a
single segment.

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4

time [s]

0

2

4

6

8

10

12

p
o
s
it
io

n
 [
m

]

Path Prediction

Bang-Bang: Segment 1

Bang-Bang: Segment 2

Minimum-Effort

Longitudinal Target Position (10m)

Lateral Target Position (5m)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

time [s]

-100

0

100

a
n

g
le

 [
d

e
g

]

Pitch Angle

Roll Angle

Fig. 1. Predicted trajectory and corresponding attitude angles.

B. Solving Optimal Control

The control optimization differs between the critical
and noncritical directions. As aforementioned, the critical
direction consists of a bang-bang maneuver, and therefore the
switching time is the parameter-to-be-optimized. Since the
noncritical direction consists of a constant angle maneuver,
the parameter to be optimized for the noncritical motion is
the roll angle.

a) Saturation Dimension Solver: For the critical dimen-
sion an optimal switching time must be found. The opti-
mization procedure is based on reaching a specified desired
speed at the target location. Because the prediction model
is a discontinuous analytical equation,the maneuver can be
described completely by only evaluating Equation 1 at the
target position and at the switching instant to find the initial
conditions for the second segment.
A bisection scheme has been implemented to iteratively adapt
the switching time to minimize the velocity error at the target
position. The scheme has been summarized in Algorithm 1. In
Figure 2 the resulting trajectories of an optimization process
can be seen. In this case the quadcopter is desired to have a
desired velocity of 0 at a position of 30 meters ahead. The
vertical dashed lines indicate the different switching times
which are seen to converge to a value of 1.9 seconds.

b) Lateral Dimension Solver: For the lateral dimension
the corresponding attitude angle is optimized. The scheme
used for this is similar to Algorithm 1. However, instead of
switching time the attitude angle is optimized. The predicted
trajectory is no longer of the bang-bang type but only consists
of a single segment corresponding with a constant attitude
angle. The error value is determined by assessing the position
of the lateral trajectory at the time of arrival that was found
in the optimization of the longitudinal path.
The benefit of this approach is that the lateral error goes
to zero at the same time as the longitudinal position error,

Algorithm 1
t0 ← 0
t1 ← initial guess
Et ← error threshold
yd ← desired position
while E > ET do
ts ← t0+t1

2
tt ← get time from desired speed(vd)
E ← get position(tt)− yd
if E > 0 then
t1 ← ts

else
t0 ← ts

end if
end while

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time [s]

0

50

100

p
o

s
it
io

n
 [

m
]

Path Iterations

t
s

Iter. 1

Iter. 3

Iter. 5

Iter. 7

Iter. 9

Target

Fig. 2. Illustration of the switching time iterations and their corresponding
trajectories

suggesting that no energy is wasted to by reaching the lateral
target position sooner than necessary. The disadvantage is that
no path constraints can be taken into account and that it is not
possible to optimize for a desired lateral speed at the target.

IV. SIMULATIONS

Before applying the method to a real quadcopter, the method
is tested in simulations first. Simulations have been performed
in MATLAB [15], for testing the method’s feasibility, and in
Flightgoggles [16], for higher fidelity testing. Furthermore,
to compare the results with ’true’ time-optimal control the
ICLOCS has been used to create time-optimal trajectories
based on direct-collocation.

A. Matlab Simulations

A relatively simple simulator has been set up in Matlab
which acted as a development platform for the suggested
optimal controller. The dynamical model is almost identical
to the model from which the path predictor is derived (see
Appendix A). However, in contrast to the path predictor
model the simulator model does include rotational dynamics
by approximating the rotational acceleration as a first order

4

time delay. The entire state-space system is described by:

x =
[
r ṙ Θ Ω

]T
u =

[
uΩ uT

]T

f(x,u) =

ṙ

r̈

Θ̇

Ω̇

 =

ṙ

1
m

RE|B

 0

0

−uT

− CD ṙ +

 0

0

mg

RΘ|ΩΩ
1
τ (uΩ −Ω)

(3)

Where r and ṙ are the quadcopter’s position and velocity,
respectively, expressed in world coordinates. Θ contains the
quadcopter’s attitude, expressed in Euler angles. And Ω is the
quadcopter’s body angular rate. The rotation matrices RE|B
and RΘ|Ω transform body forces to the world reference frame
and transform body angular rates to Euler angular rates,
respectively.

a) Controller: The altitude is controlled by a PID
controller that governs the collective thrust. A feedforward
term is added that compensates for the quadcopters attitude
(Tfeedforward = −W/ (cos θ cosφ)). The desired heading
is controlled by a PD controller and the optimal control
optimizer will output a desired pitch and roll angle. An
inner PD control loop will map the desired attitude angles to
angular rates. Absolute limits are predefined for the collective
thrust and the roll and pitch angle. Because in this stage of
development the model’s fidelity was not a priority, generic
values for mass, drag coefficients and the aforementioned
limits were selected.

1) Longitudinal Flight: Figure 3 shows simulations for
several straight flights. Here, the quadcopter starts from rest
and should fly to a target 15 meters forward and pass that
waypoint with a desired velocity. The plots show the desired
and simulated pitch values and velocity for four separate
flights in which the desired speed and attitude control gains
are varied. This will show the influence of the instantaneous
rotation assumption. As the attitude transition takes less time
for the high-gain controller than it does for the lower-gain
controller.
The plots show that the speed error at the target is larger

for the low-gain controller because the transition to braking
takes longer, increasing the mismatch with the instantaneous
attitude change that prediction model assumes. Moreover, the
at higher desired speeds the speed error is smaller because
aerodynamic drag has a larger contribution to the deceleration
at higher speeds.

2) Longitudinal + Lateral Flight: To test the effect of
decoupling the dynamics in the predictor model a flight has
been simulated in which the target lies 15 meters ahead and
5 meters to the right. For this flight the heading is fixed
and the desired longitudinal speed has been set to 0. The
resulting trajectory can be seen in Figure 4. It can be seen
that during the transition at the start and at the switching time
the commanded roll angle fluctuates instead of being constant

0 0.5 1 1.5 2

time [s]

-50

0

50

p
it
c
h
 a

n
g
le

 [
d
e
g
]

0 m/s desired

cmd
 - low gain

 - low gain

cmd
- high gain

 - high gain

0 0.5 1 1.5 2

time [s]

-5

0

5

10

15

s
p
e
e
d
 [
m

/s
]

low gain

high gain

target speed

0 0.5 1 1.5 2

time [s]

-50

0

50

p
it
c
h
 a

n
g
le

 [
d
e
g
]

10 m/s desired

0 0.5 1 1.5 2

time [s]

-5

0

5

10

15

s
p
e
e
d
 [
m

/s
]

Fig. 3. Simulated straight trajectories for high and low gain attitude controller
with 0 m/s and 10 m/s target speeds.

as in the prediction. This is caused by varying thrust from the
altitude controller during the transition on which the calculated
optimal roll angle is dependent. Nonetheless, the quadcopter
reaches the target with a position error of 65.6 cm and a
velocity error of 4.1 m/s.

Fig. 4. Simulated Longitudinal + Lateral flight. The longitudinal desired
speed at the target is 0 m/s.

5

a) Prediction Stability: The predicted time of arrival has
shown to be a useful indicator of the prediction stability. I.e.,
this value would decrease proportionally with passed flight
time if the flown trajectory matched the predicted trajectory
perfectly. Figure 5 shows the predicted time of arrival for the
simulated flight depicted in Figure 4. The values are corrected
for the passed time, so the flight matches the prediction if the
plot is horizontal. It can be seen that after transitions the plot
is practically horizontal (the small fluctuations are caused by
the numerical precision of the simulation and the bisection
algorithm). From this becomes clear that the prediction and
simulated flight are nearly identical during the acceleration
and final braking phases, but do not comply during the attitude
transitions.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time [s]

2.04

2.06

2.08

2.1

2.12

ti
m

e
 o

f
a
rr

iv
a
l
[s

]

Predicted Time of Arrival

Fig. 5. Course of the estimated time of arrival during the longitudinal+lateral
flight simulation. Corrected for passed simulation time.

B. Trajectory Comparisons

In this section the trajectories that our bang-bang method
produces are compared to the theoretical time-optimal and
minimum-snap solutions. Moreover, a classical PID position
and velocity controller have been implemented to provide
baseline trajectories. This controller uses a single set of gains.
The minimum-time and minimum-snap trajectories are ap-
proximated with the help of the ICLOCS toolbox [17].
ICLOCS offers various methods of defining and solving opti-
mal control problems numerically. We have used this tool to
transcribe the OCP using the direct collocation method and
IPOPT [18] as NLP solver.
Four different scenarios have been simulated: leveled longitu-
dinal flight, longitudinal flight with altitude variation, leveled
longitudinal + lateral flight, and finally, longitudinal + lateral
flight with altitude variations. In all scenarios the quadcopter
starts from rest and should end in rest. The relevant simulation
parameters are listed in Table I.

Parameter Value
Mass 0.452[kg]
Max T/W 3 [-]
Max roll and pitch rate 360 [◦/s]
Max abs. roll and pitch angles 70◦

Max yaw rate 180 [◦/s]
CD 0.57

TABLE I
SIMULATION SETTINGS

1) Longitudinal Flight: The first set of maneuvers to be
compared are straight flights and can be can be seen in Figure
6. These flights can be accomplished with pitch and thrust
control only.

Fig. 6. Simulated trajectories for straight flight. The left column shows the
results the target altitude is similar to the start’s. In the right column the target
altitude is 5m higher.

a) Constant Altitude: For the constant altitude case it
can be seen that both the bang-bang and minimum-time
approaches give bang-zero-bang inputs to the pitch rate. The
thrust also has a bang-zero-bang shape in the minimum-time
solution whereas the thrust in the PID and bang-bang con-
trollers are governed by the PID altitude controller. Although
the bang-bang controller is the second fastest to reach the
target it should be noted that it overshoots its target. Which
is the result of the relative slow transition at the switching
instant.

b) Altitude Variation: In the second scenario the way-
point target altitude lies at 5m. Since the predictor of the
bang-bang controller assumes constant thrust and altitude it
is expected that the controller will perform poorly. In the re-
sulting trajectories it can be seen that the bang-bang controller
struggles to reach the target altitude because of the high pitch
angles. When comparing to the minimum-time solution it can
be seen that thrust is saturated much earlier and that the pitch
angles increases earlier for more vertical acceleration. There is
a optimal balance between horizontal and vertical acceleration.
Whereas the PID controller on the other hand prioritizes on
minimizing the altitude error first. Moreover, it is interesting to
see that the minimum-time and minimum-snap positions look
very similar, but that the thrust and pitch values are completely
different.

6

2) Longitudinal + Lateral Flight: In this set of trajectories
the flightplan consists of two waypoints to create a curved
flight. For the variational altitude flight the first waypoint is
5 meters higher after which the final waypoint is back at the
initial zero altitude. The resulting trajectories can be seen in
Figure 7. Just as in the longitudinal test it is desired for the
quadcopter to be at rest at the final waypoint. However, the
bang-bang controller requires a desired velocity for the first
waypoint as well in order to optimize for a switching time.
This value has been chosen to be equal to the velocity at the
first waypoint from the optimal-time solution. It is expected
that this velocity will be too high because the optimal-time
solution optimizes for the complete trajectory and will likely
pass through the first waypoint at an angle that points closer
to the final waypoint. The bang-bang controller on the other
cannot predict beyond its next waypoint.

Fig. 7. Simulated trajectories for longitudinal + lateral flight. The left column
shows the results all waypoint’s altitudes are equal. In the right column the
first waypoint’s altitude is 5m higher.

In the constant altitude case, the minimum-time trajectory
takes the form of a smooth continuous turn, first rolling to the
left to better line up for the final waypoint. The minimum-
snap trajectory even takes on a larger turn. As expected, the
bang-bang controller overshoots the first waypoint before
turning and heading to the final waypoint.

For the variational altitude trajectories shows that the PID
and bang-bang controllers have similar behavior towards the
first waypoint. However, while flying to the final waypoint the
altitude controller will give less thrust to lower the altitude.
The optimal-time solution on the other hand will keep the
thrust saturated and leverage more extreme pitch and roll
angles to control the altitude such that all power is available
to keep accelerating or decelerating, which was also demon-
strated in the work of Hehn, Ritz, and D’Andrea [8].

It can be seen that the time-optimal solution indeed keeps
the thrust saturated throughout the entire flight. Its pitch angle
going as high as 130◦. Since the PID and bang-bang only
takes one waypoint in account at a time the first part of the
trajectory looks similar. During the last segment the bang-bang
controller still suffers from the overshoot of the first segment
and cannot accelerate towards the final waypoint because the
thrust is zero during the descent.

C. ROS FlightGoggles Simulator

Flightgoggles is a comprehensive quadcopter simulator de-
veloped by Guerra, Tal, Murali, et al. [16] to benefit research
on autonomous control. It is built within the well-known
ROS framework [19]. The quadcopter dynamics are simulated
by a high fidelity model that includes rotor dynamics even
approximates turbulence.
We have implemented the bang-bang controller to prove
effective flight in a simulation with high fidelity dynamics.

1) Controller: The desired thrust, pitch angle and roll
angle are calculated by the bang-bang controller. The desired
heading is calculated from the position error such that the
quadcopter always points toward the waypoint. When within
1m of the next waypoint the desired heading is frozen to
avoid large fluctuations. A PID controller is used to map the
desired attitude angles to angular rates which are sent to the
inner loop controllers of Flightgoggles. Finally, the altitude
controller is similar to the Matlab simulation in Subsection
IV-A which consists of a PID controller with a feedforward
term. For position and velocity control the groundtruth values
of the simulator are used. The attitude is estimated with the
provided on-board sensor simulations.
Although no detailed analyses were performed in this sim-
ulator. It was found that the suggested bang-bang controller
is feasible for quadcopter models that have a higher fidelity
compared to the path prediction model.

V. TRANSITION COMPENSATION

The assumptions introduced in the prediction model will
lead to differences between the predicted trajectory and the
actual quadcopter’s flight path. Leading to sub-optimal flight
results.

As explained in Section III-A it is assumed that switching
maneuver from acceleration to deceleration is instantaneous.
In practice it is not possible for a quadcopter to achieve
infinitely high rotation rates and high prediction inaccuracies
are expected during this transition. Because the quadcopter
starts effectively braking later and at a position closer to the

7

target it can be assumed that braking will always be initiated
too late. This can also be seen in the results of Section IV-B.

In order to mitigate this issue a method has been imple-
mented that approximates how much speed, position and time
will be lost during the transition at the switching instant.
Which are expressed as differences ∆t, ∆y and ∆v relative
to the values at the switching instant ts, y(ts) and v(ts),
respectively. Subsequently, the initial conditions of the second
segment of the bang-bang predictions are adapted to these
losses to improve the final segment of the predicted trajectory.
Figure 8 shows the effect of applying compensation to a pre-
diction. It can be seen that due to the approximated transition
time the optimizer has calculated the switching time to be
sooner for the compensated trajectory.

0 0.5 1 1.5 2 2.5

time [s]

0

5

10

15

x
 [
m

]

Predicted Position

 t

 y

No Compensation

With Compensation

Switching Time No Compensation

Switching Time With Compensation

Fig. 8. Example of compensating for transition losses on the path prediction.
It is approximated that the transition takes ∆t s seconds during which the
quadcopter moves ∆y m and its speed changes with ∆v m

s
.

A risk of using this method is that during the transition the
path prediction must be paused for the estimated transition
period to avoid conflicting predictions and premature
termination of the transition maneuver. Furthermore, the
estimated transition losses cannot be incorporated in the
prediction after the transition is completed. So during the
braking, after the transition is completed, the optimizer will
be under the impression that the current velocity is too low
and thereby counteract the wins from the compensation to
certain extent.

Figure 9 shows the effects of applying different degrees of
compensation. In these simulations the target speed is zero. It
can be seen that without compensation braking is initiated too
late and therefore the quadcopter’s speed at the target it still
too high. However, one could also overcompensate and brake
too early. As aforementioned, when applying compensation
the quadcopter is forced to finish its transition and cannot be
interrupted. The result with overcompensation is that after the
transition the quadcopter’s speed will be too low and a new
bang-bang maneuver must be planned.

VI. FLIGHT EXPERIMENTS

To analyze the bang-bang controller’s performance in real
flight, several flight tests have been performed with a Parrot
Bebop quadcopter. The controller’s performance for different
types of maneuvers is compared to the performance of a more
traditional PID controller.

0 1 2

time [s]

-50

0

50

p
it
c
h

 a
n

g
le

 [
d

e
g

]

No compensation

cmd

0 1 2

time [s]

0

5

10

s
p

e
e

d
 [

m
/s

]

v
t
 = 5.4

Compensation

0 1 2

time [s]

-50

0

50

p
it
c
h

 a
n

g
le

 [
d

e
g

]

0 1 2

time [s]

0

5

10

s
p

e
e

d
 [

m
/s

]

v
t
 = 0.6

Overcompensation

0 1 2

time [s]

-50

0

50

p
it
c
h

 a
n

g
le

 [
d

e
g

]

0 1 2

time [s]

0

5

10

s
p

e
e

d
 [

m
/s

]

v
t
 = 0.7

Fig. 9. Simulated straight flights with three different degrees of transition
compensation. The desired speed at the target position is 0.

A. Experimental Setup

The bang-bang controller has been implemented in the
autopilot framework PaparazziUAV[20]. And will be executed
onboard a Parrot Bebop quadcopter. The flight experiments
were performed in TU Delft’s ’Cyberzoo’, an enclosed indoor
space purposed for UAV flights particularly. The space is
outfitted with an Optitrack system that can accurately track
the quadcopter’s position and heading at high sampling fre-
quencies.

Heading

Position
x,y,z

Cyberzoo
Optitrack

Estimated
Position + Velocity

Complementary
filter

Velocity
x,y,zdifferentiation

Wp+Controller
Selection

Heading Cmd

FlightPlan

Roll+Pitch
Cmds

Bang-Bang
Controller

PID
Controller

Rotor Cmds.INDI

Inertial Measurements

IMU

Onboard

Thrust CmdAltitude
Controller

Fig. 10. Flight Experiments Control Pipeline

1) Control Pipeline: An overview of the control pipeline
of the Bebop can be seen in Figure 10. Position measurements
are taken by the Optitrack system and transmitted to the Bebop
over WiFi. The quadcopter’s velocity and acceleration are
estimated from these measurements on-board by means of a
complementary filter that assumed hover condition and uses
the aerodynamic drag model as the path prediction model
(Equation 1). Equation 4 shows how the velocity v̂E and
position r̂E are estimated by combining the velocity and
position measurements from the Optitrack system with the
modeled acceleration aE .

aE = gẑBRE|B −
Cd
m

v̂E (4a)

v̂E = α (v̂E + aE · dt) + (1− α) vE,GPS (4b)

r̂E = α (r̂E + v̂E · dt) + (1− α) rE,GPS (4c)

Where ẑB is the body z-axis unit vector, RE|B is the
transformation matrix from body to earth reference frame and
α is the complementary coefficient.

8

Furthermore, Optitrack also provides heading measure-
ments. The pitch and roll angles are estimated on-board by
the Bebop’s inertial measurement unit (IMU) and a comple-
mentary filter. The desired pitch and roll angles are provided
by the bang-bang controller that is executed onboard in real-
time at 512Hz. Which are passed on to inner loop controllers
that are based on INDI [21]. Finally, the altitude is controlled
by a PID controller with a feedforward term that compensates
for the pitch and roll angles, similar to the simulations.
A high-gain PID position and velocity controller has been
implemented as well for comparison. The feedback loops maps
the position error to desired velocity which are mapped to
desired roll and pitch rates. Since the Cyberzoo is limited by
its available space, upper limits on the longitudinal and lateral
velocity have been set to 10m/s to avoid colliding with the
walls.
A special case is considered when a bang-bang maneuver must
end in rest. Due to prediction inaccuracies the quadcopter
will likely overshoot or undershoot the target position and as
a consequence a new bang-bang maneuver will immediately
be planned. This will result in endless aggressive bang-bang
oscillations around the target position. To avoid this, the
quadcopter’s control approach will temporarily switch to PID
after the first bang-bang maneuver has been completed.

B. Transition Loss Estimators
As explained in Section V the path predictor can be

augmented to incorporate the losses in time, position and
speed (∆t, ∆y and ∆v) that occur during the transition from
acceleration to braking (or vice versa). For a real quadcopter
these dynamics can be difficult to model accurately because
complex aerodynamics and the changing aerodynamic shape
affect the aerodynamic forces and moments acting on the
quadcopter during the transition. However, for a proof of
concept a simple linear regression model has been fitted
against in-flight measurements to approximate the expected
transition losses.
Three different models has been fitted by least-squares regres-
sion for forward, backward and lateral flight maneuvers. It is
assumed that ∆t, ∆y and ∆v are functions of the quadcopter’s
velocity at the switching instant and the total angle that the
quadcopter needs to rotate. Table II lists the root-mean-square
error (RMSE) for each individual estimator to indicate how
well the models fit the measurements.

Pitch Forward Pitch Backward Roll Sideways

∆t [s] 1.73e−2 1.59e−2 2.57e−2
∆y [m] 7.08e−2 7.95e−2 1.44e−1
∆v [m

s] 6.88e−2 1.37e−1 1.93e−1

TABLE II
THE ROOT-MEAN-SQUARE ERROR OF THE TRANSITION LOSS ESTIMATORS

In the control pipeline one of the three estimator models
will be selected based on in which direction a bang-bang
maneuver is planned. Subsequently, from the selected model
the transition losses are calculated for each path prediction
in the optimization process, as explained in Section V, which
should lead to finding a better switching time.

C. Motion Primitives Flights

Test flights have been performed to analyze the Bang-Bang
controller performance against a traditional PID controller
with a fixed set of gains. Furthermore, the effect of the
transition compensation has been investigated as well. Six dif-
ferent maneuvers have been established to test performance for
different motion primitives. For each maneuver the quadcopter
starts from rest and should end in rest. For example, Figure
11 shows the responses of three individual runs for a forward
flight maneuver.

0 0.5 1 1.5 2 2.5 3 3.5 4

time [s]

-2

0

2

4

x
 [
m

]

Longitudinal Position

BangBang No Compensation

BangBang With Compensation

PID

0 0.5 1 1.5 2 2.5 3 3.5 4

time [s]

-50

0

50

 [
d

e
g
]

Pitch Angle

Command

Measured

Fig. 11. Forward flight comparison between the PID, Bang-Bang controller
and BangBang controller with transition compensation.

Here some distinctions between the three control approaches
can be seen. Because the PID controller is a high-gain velocity
controller the commanded pitch angles strongly resemble a
bang-bang shape. However, as the position approaches the
target the pitch command converges towards zero. The PID
controller is in fact a little bit overdamped as it does not
cross the target. Also the beneficial effect of the transition
compensation can be seen. The compensated bang-bang
controller brakes slightly earlier which decreases the velocity
error at the target and the overshoot. Overall, each controller
performance can best be described by time of arrival and
the velocity error at the target position. To test different
combinations of longitudinal and lateral waypoints as well
as altitude variation the following maneuvers have been
performed: forward, backward, sideways, forward-sideways,
forward-up and forward-down. The results of all test flights
are summarized in Table III. It should be noted that the
gains of the PID controller has been optimized for the
forward-sideways maneuver and remain fixed for all other
maneuvers.

From the results can be seen that the transition compen-
sation system reduces the overshoot and velocity error for
all maneuvers. However, as the PID controller is actually
close to overdamped and practically never has overshoot it is
impossible for the bang-bang controller to surpass the PID for
this performance parameter. Nonetheless, it can also be seen
that in terms of speed there is a trade-off between reaching

9

Controller Maneuver
Forward Backward Sideways Forward-Sideways Forward-Up Forward-Down

Mean Time of Arrival [s]

Bang-Bang 1.38 (n=4) 1.41 (n=4) 1.29 (n=5) 1.47 (n=4) 1.25 (n=3) 1.50 (n=3)
Bang-Bang Comp. 1.42 (n=15) 1.47 (n=12) 1.37 (n=11) 1.53 (n=15) 1.32 (n=7) 1.52 (n=7)
PID 1.48 (n=10) 1.54 (n=8) 1.43 (n=8) 1.51 (n=8) 1.40 (n=5) 1.54 (n=5)

Mean Overshoot [m]

Bang-Bang 0.62 (n=4) 0.81 (n=4) 0.53 (n=5) 0.27 (n=4) 1.20 (n=3) 0.77 (n=3)
Bang-Bang Comp. 0.18 (n=15) 0.22 (n=12) 0.06 (n=11) 0.11 (n=15) 0.51 (n=7) 0.20 (n=7)
PID 0.05 (n=10) 0.04 (n=8) 0.04 (n=8) 0.04 (n=8) 0.03 (n=5) 0.14 (n=5)

Mean Velocity Error [m
s

]

Bang-Bang 3.05 (n=4) 3.51 (n=4) 3.06 (n=5) 1.85 (n=4) 3.82 (n=3) 3.38 (n=3).
Bang-Bang Comp. 1.60 (n=15) 1.88 (n=12) 0.69 (n=11) 0.38 (n=15) 2.63 (n=7) 1.63 (n=7)
PID 0.08 (n=10) 0.08 (n=8) 0.14 (n=8) 0.06 (n=8) 1.01 (n=5) 0.20 (n=5)

TABLE III
PERFORMANCE VALUES THE DIFFERENT CONTROLLERS IN 6 DIFFERENT MANEUVERS.

the target fast with overshoot, or reaching the target more
slowly, but more accurately. The bang-bang controller with
compensation is almost always positioned comfortably in the
middle.

D. Consecutive waypoints flight
To approach flight maneuvers that approach autonomous

drone races more closely a 3m by 4m rectangular flightplan
has been set up in the Cyberzoo. Again, separate flight with
the bang-bang controller and the PID controller have been
performed. A key difference with the motion primitives of
Section VI-C is that quadcopter is not instructed to come to
rest at each waypoint. In fact, for the bang-bang controller
it was found that a desired speed of 2 m/s yielded the most
stable results. Since the PID controller bases the desired
speed on the position error it would still come to rest at
each waypoint. To still allow a smooth flight the flightplan
has been adapted for both controller to switch to the next
waypoint when the quadcopter is within 70 cm of the target.
A limitation of the bang-bang controller is that the predictor
cannot incorporate a variable heading. Therefore, the heading
is kept fixed for both the bang-bang controller and the PID
controller. Moreover, the bang-bang controller switches the
saturation direction based on which component of the position
error is largest. That is, if the next waypoint lies mostly
ahead or behind there will be bang-bang motion in pitch. If
the waypoint lies more to the left or right there will be a
bang-bang motion in roll.

Figure 12 shows a top-view of the multiple waypoint flights
as well as an averaged trajectory. Compositions of single
runs from both controller are found in Figure 14. Already
a clear difference in shape between the bang-bang and PID
controller can be seen. The bang-bang controller trajectories
are more consistent and smoother than the trajectories from
the PID controller. Furthermore, as can be seen in Figure 13
the bang-bang controller does not only pass the waypoints
more closely, it also has always completed a circle more
quickly than the PID controller.

-2 0 2

x [m]

-3

-2

-1

0

1

2

3
y
 [

m
]

Bang-Bang

Start End

Single Run

Mean

WP

-2 0 2

x [m]

-3

-2

-1

0

1

2

3

y
 [

m
]

PID

Fig. 12. Top-view of multiple-waypoints flight

BangBang(4) PID(4)

4

5

6

T
im

e
 [

s
]

Circle Completion Time

BangBang(16) PID(16)

0

0.2

0.4

D
is

ta
n

c
e

 [
m

]

Minimum WP Distance

Fig. 13. A boxplot comparison between the Bang-Bang and PID controller,
looking at the time to complete a circle and how close the quadcopter
approaches the waypoints.

The difference in performance is mainly caused by the
fact that a PID controller uses the same high gains for
longitudinal and lateral control and can therefore not prioritize
between directions. This implies that controller will attempt
to minimize the position error in both directions as quickly as
possible, causing oscillations in the direction that is reached
first and not optimally leveraging the available thrust. One
could mitigate this problem to some extend by incorporating
separate sets of gains in the flightplan, but this can be a tedious
process.
On the other hand, the bang-bang controller will automatically
only opt for maximum accelerations in one direction whilst
going for the minimum required acceleration in the other.

10

(a) BangBang

(b) PID

(c) Position difference after one circle completion (green is the bang-bang)

Fig. 14. Compositions of BangBang and PID circular trajectories

Moreover, as the required thrust to maintain altitude scales
with (cos θ cosφ)

−1 we have to put saturation limits on the
roll and pitch angles. For the PID approach it must be taken
into account that the roll and pitch angle can often both be
saturated at the same time. For the bang-bang controller this
is much less likely and therefore a higher limit can be put
on the angle responsible for the saturation direction while
maintaining stability. It should be noted that in all flight
experiments the same saturation limits were given to the bang-
bang and PID controller.

E. Prediction Stability

As aforementioned in Section IV-A2, an effective measure
for prediction performance is the development of the estimated
time of arrival. Figure 15 shows this and the attitude angles a
single run of the multiple waypoints flight. The predicted time
of arrival is corrected for the elapsed time such that a perfect
prediction would yield a horizontal line. Initially it can be seen
that the predicted time rises, indicating that it will take longer
that initially expected to reach the waypoint. Which is caused
by the transition from rest in pitch. However, after this the
predicted time lowers because it is flying faster than initially
expected. This can be caused by an inaccurate aerodynamic

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

elapsed time [s]

1

2

3

4

5

6

ta
rg

e
t

ti
m

e
 [

s
]

Predicted Time of Arrival

Predicted time of arrival (corrected)

Theoretical Perfect

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

elapsed time [s]

-40

-20

0

20

40

a
n

g
le

 [
d

e
g

]

AttitudePitch Cmd.

Roll Cmd.

Measured

New WP

Fig. 15. Predicted time of arrival throughout one circle

drag model and by the effect the roll angle has on the forward
acceleration.
Furthermore, between 1.4 and 2.9 seconds the lateral direction
becomes the saturation dimension and a bang-bang motion
for roll is planned. Here the predictor assumes that the pitch
must have a constant angle, but it can be seen that it actually
slowly increases during its course to the next waypoint. This is
not only caused by an inaccurate prediction of non-saturation
direction. Remember that the predictor only uses the prediction
in the saturation dimension to estimate the time of arrival.
Since the calculated constant angle is based on the predicted
time of arrival, the fact that this value decreases means that
an increasingly higher pitch angle is required to still reach
the target at the predicted time of arrival. This implies that
the prediction quality of the saturation direction influences the
prediction stability of the remaining direction.

VII. DISCUSSION

In this work we have presented a computationally
lightweight approach to time optimal control. It is based on
the assumption that the optimal trajectory consists of bang-
bang inputs in pitch or roll. This has simplified the OCP such
that only the optimal switching time and a constant attitude
angle need to be found. Simplifications to the dynamic
model allow for analytical evaluation of the position and
speed which drastically reduces the required computational
effort compared to solvers that need to propagate the states.
As a result the complete optimizer pipeline has no trouble
predicting 512 optimized trajectories per second on a Parrot
Bebop drone. However, these simplification and assumptions
do have an effect on how well the theoretical time-optimal
is approached. First of all, we have to manually specify the
desired speeds at the waypoints. For which we do not know
beforehand what values are time-optimal. Furthermore, we
are limited to the constraints of the relative simple dynamics
model that predictor uses. Which includes constant altitude

11

and heading. Therefore, the bang-bang controller cannot
look past its next waypoint which is required if we want to
achieve global time-optimality for the entire course. Also no
complex aerodynamics such as wakes and propeller dynamics
are taken into account.

But as the simulations and flight tests have shown the
assumption that attitude changes are instantaneous has the
biggest effect on prediction accuracy. The fact that the model
does not take into account that it takes some time to rotate
from one extreme attitude angle to the other results in a
switching time that will always be too late, making the
quadcopter overshoot its target. To mitigate this issue we
have suggested a system to compensate for this transition
by simply using a fitted linear model to estimate how much
time the transition will take and how much the velocity
and position change during this period. The predicted paths
are then adapted with this values which leads to a better
switching time. The flight tests have shown great reductions
in overshoot when using this system, as shown in Table III,
despite that the estimator is linear and derived from noisy
measurements.

Flight tests with consecutive waypoints have been
performed with our suggested bang-bang controller and a
more traditional PID controller. Here it became clear that
the bang-bang controller outperforms the PID both in course
completion time as in terms of how closely the waypoints
were approached, under the condition that the heading remains
fixed. The main reason for its superior performance is that
the controller effectively puts most effort in minimizing
the largest positional error component whilst putting the
minimum required effort in the remaining direction. A PID
controller attempts to reach both the longitudinal as the
lateral target with identical priority. Which results in large
simultaneous roll and pitch angles and positional oscillations.

Despite the limited conditions under which the suggested
controller is optimal, its ease of implementation is a major
benefit. Where a PID controller must carefully be tuned
for different maneuvers or a neural network-based controller
must be trained beforehand on a huge dataset, our bang-
bang controller does not require gain tuning and the only
knowledge required from the quadcopter is its mass, equivalent
drag coefficient and estimators for the transition compensation
system. All of which could also easily be learned on-line. This
could for instance be implemented in future work by means of
recursive least-squares estimators [20] or a more sophisticated
method. Additional future work suggestions includes making
the saturation angles adaptive. As currently the maximum roll
and pitch angles must be defined beforehand and take into
account a margin to have an amount of thrust available to
correct for deviations and disturbances. An adaptive system
could be developed that estimates how much thrust must be
reserved for these corrections and adapt the roll and pitch angle
limits accordingly.

VIII. CONCLUSION

In this paper we have presented a computational effi-
cient controller that is fast enough to act as an MPC on
computationally-limited quadcopters while still approaching
time-optimality under certain conditions. The controller is
based on the assumption that the optimal maneuver to be
planned has a bang-bang shape in either pitch or roll angle.
The corresponding optimal control problem thereby reduces to
a problem for which we only need to solve for a switching time
and a constant angle. Which can be solved extremely quickly
using a simple bisection scheme thanks simplifications to the
dynamical model that allows for analytical path evaluations.
A transition estimation model has been implemented to com-
pensate for rotational dynamics that the predictor cannot take
into account. With this system implemented the bang-bang
controller has shown to outperform a traditional high-gain
PID controller for indoor flights with consecutive waypoints.
Furthermore, the suggested controller requires no gain tuning
and can therefore be implemented easily in any quadcopter.
Despite that future work on adaptive saturation angles, better
transition estimation and better aerodynamics modeling are
suggested, we have shown that this relatively simple approach
to time-optimality results in fast flights with minimal com-
putational power and minimal knowledge of the quadcopter’s
dynamics.

REFERENCES

[1] H. Moon, Y. Sun, J. Baltes, and S. J. Kim, “The IROS
2016 Competitions [Competitions],” IEEE Robotics and
Automation Magazine, vol. 24, no. 1, pp. 20–29, 2017,
ISSN: 10709932. DOI: 10.1109/MRA.2016.2646090.

[2] H. Moon, J. Martinez-Carranza, T. Cieslewski, M.
Faessler, D. Falanga, A. Simovic, D. Scaramuzza, S.
Li, M. Ozo, C. De Wagter, G. de Croon, S. Hwang,
S. Jung, H. Shim, H. Kim, M. Park, T. C. Au, and
S. J. Kim, “Challenges and implemented technologies
used in autonomous drone racing,” Intelligent Service
Robotics, vol. 12, no. 2, 2019, ISSN: 18612784. DOI:
10.1007/s11370-018-00271-6.

[3] P. Foehn, D. Brescianini, E. Kaufmann, T. Cieslewski,
M. Gehrig, M. Muglikar, and D. Scaramuzza, “AlphaPi-
lot: Autonomous Drone Racing,” 2020. arXiv: 2005 .
12813. [Online]. Available: http://arxiv.org/abs/2005.
12813.

[4] D. Mellinger and V. Kumar, “Minimum snap trajec-
tory generation and control for quadrotors,” in Pro-
ceedings - IEEE International Conference on Robotics
and Automation, IEEE, 2011, pp. 2520–2525, ISBN:
9781612843865. DOI: 10.1109/ICRA.2011.5980409.

[5] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory
planning for aggressive quadrotor flight in dense indoor
environments,” Springer Tracts in Advanced Robotics,
vol. 114, no. Isrr, pp. 649–666, 2016, ISSN: 1610742X.
DOI: 10.1007/978-3-319-28872-7 37.

12

[6] M. Faessler, A. Franchi, and D. Scaramuzza, “Differen-
tial Flatness of Quadrotor Dynamics Subject to Rotor
Drag for Accurate Tracking of High-Speed Trajecto-
ries,” IEEE Robotics and Automation Letters, vol. 3,
no. 2, pp. 620–626, 2018, ISSN: 23773766. DOI: 10 .
1109/LRA.2017.2776353. arXiv: 1712.02402.

[7] F. Biral, E. Bertolazzi, and P. Bosetti, “Notes on nu-
merical methods for solving optimal control problems,”
IEEJ Journal of Industry Applications, vol. 5, no. 2,
pp. 154–166, 2016, ISSN: 21871108. DOI: 10 . 1541 /
ieejjia.5.154.

[8] M. Hehn, R. Ritz, and R. D’Andrea, “Performance
benchmarking of quadrotor systems using time-optimal
control,” Autonomous Robots, vol. 33, no. 1-2, pp. 69–
88, 2012, ISSN: 09295593. DOI: 10.1007/s10514-012-
9282-3.

[9] D. Mellinger, N. Michael, and V. Kumar, “Trajectory
generation and control for precise aggressive maneuvers
with quadrotors,” in International Journal of Robotics
Research, 2012. DOI: 10.1177/0278364911434236.

[10] E. Tal and S. Karaman, “Accurate Tracking of Ag-
gressive Quadrotor Trajectories Using Incremental Non-
linear Dynamic Inversion and Differential Flatness,”
Proceedings of the IEEE Conference on Decision and
Control, vol. 2018-Decem, pp. 4282–4288, 2019, ISSN:
07431546. DOI: 10.1109/CDC.2018.8619621. arXiv:
1809.04048.

[11] E. Kaufmann, A. Loquercio, R. Ranftl, M. Müller, V.
Koltun, and D. Scaramuzza, “Deep Drone Acrobatics,”
arXiv, 2020, ISSN: 23318422. DOI: 10.15607/rss.2020.
xvi.040. arXiv: 2006.05768. [Online]. Available: http:
//arxiv.org/abs/2006.05768.

[12] S. Li, E. Ozturk, C. De Wagter, G. C. H. E. de Croon,
and D. Izzo, “Aggressive Online Control of a Quadrotor
via Deep Network Representations of Optimality Prin-
ciples,” 2019. arXiv: 1912.07067. [Online]. Available:
http://arxiv.org/abs/1912.07067.

[13] A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy,
V. Koltun, and D. Scaramuzza, “Deep Drone Racing:
From Simulation to Reality With Domain Randomiza-
tion,” IEEE Transactions on Robotics, pp. 1–14, 2019,
ISSN: 1552-3098. DOI: 10 . 1109 / tro . 2019 . 2942989.
arXiv: 1905 .09727. [Online]. Available: http : / / arxiv.
org/abs/1905.09727.

[14] R. Bellman, I. Glicksberg, and O. Gross, “On the
“bang-bang” control problem,” Quarterly of Applied
Mathematics, vol. 14, no. 1, pp. 11–18, 1956, ISSN:
0033-569X. DOI: 10.1090/qam/78516.

[15] MATLAB, version 9.7.0 (R2019b). Natick, Mas-
sachusetts: The MathWorks Inc., 2019.

[16] W. Guerra, E. Tal, V. Murali, G. Ryou, and S. Karaman,
“FlightGoggles: Photorealistic Sensor Simulation for
Perception-driven Robotics using Photogrammetry and
Virtual Reality,” 2019. arXiv: 1905 . 11377. [Online].
Available: http://arxiv.org/abs/1905.11377.

[17] Y. Nie, O. Faqir, and E. C. Kerrigan, “ICLOCS2: Try
this Optimal Control Problem Solver before you Try
the Rest,” 2018 UKACC 12th International Conference

on Control, CONTROL 2018, vol. 2, no. 2017, p. 336,
2018. DOI: 10.1109/CONTROL.2018.8516795.

[18] A. Wächter and L. T. Biegler, “On the implementation
of an interior-point filter line-search algorithm for large-
scale nonlinear programming,” Mathematical Program-
ming, 2006, ISSN: 00255610. DOI: 10 .1007 / s10107-
004-0559-y.

[19] Stanford Artificial Intelligence Laboratory et al.,
Robotic operating system, version ROS Melodic More-
nia, May 23, 2018. [Online]. Available: https://www.
ros.org.

[20] P. Brisset, A. Drouin, M. Gorraz, P.-s. Huard, and J.
Tyler, “The Paparazzi Solution,” Mav2006, 2006.

[21] E. J. Smeur, Q. Chu, and G. C. De Croon, “Adaptive
incremental nonlinear dynamic inversion for attitude
control of micro air vehicles,” Journal of Guidance,
Control, and Dynamics, vol. 39, no. 3, pp. 450–461,
2016, ISSN: 07315090. DOI: 10 . 2514 / 1 . G001490.
[Online]. Available: http : / / resolver . tudelft . nl / uuid :
31536cfa-89e1-4d44-873e-f2f398bd69ca.

13

APPENDIX A
PREDICTION MODEL DERIVATION

-�

T

W

D

x

z

Tx

Tz

Fig. 16.

T = Thrust
D = Drag = Cd · V
W = mg =weight
m = mass
g = gravity
θ = attitude angle
x = position

Assume perfect constant altitude control:

Tz =W

T =
W

cos θ

Tx =T sin θ = W
sin θ

cos θ
= W tan θ

(5)

Sum of forces:

m · ẍ =Tx −D = W tan θ − Cd · ẋ

ẍ =g tan θ − Cd
m
ẋ

(6)

Homogeneous equation:

ẍ+
Cd

m
ẋ =0 (7)

Characteristic equation:

r2 +
Cd
m
r =0

r

(
r +

Cd
m

)
=0

r1 = 0, r2 =
−Cd
m

xh =c1 + c2e
−Cd
m t

(8)

Particular equation:

Assume xp = A · t, where A is a constant:

xp =At

ẋp =A

ẍp =0

0 =g tan θ − Cd
m
·A

A =
W tan θ

Cd

xp =
W tan θ

Cd
t

(9)

x =xh + xp = c1e
−Cd
m t + c2 +

W tan θ

Cd
t (10a)

ẋ =c1
−Cd
m

e
−Cd
m t +

W tan θ

Cd
(10b)

Solve for initial conditions:

ẋ0 =c1
−Cd
m

e
−Cd
m t0 +

W tan θ

Cd

c1 =

(
ẋ0 −

W tan θ

Cd

)
m

−Cde
−Cd
m t0

x0 =c1e
−Cd
m t0 + c2 +

W tan θ

Cd
t0

c2 =x0 − c1e
−Cd
m t0 − W tan θ

Cd
t0

=x0 −
(
ẋ0 −

W tan θ

Cd

)
m

−Cde
−Cd
m t0

e
−Cd
m t0 − W tan θ

Cd
t0

(11)
In the MPC we always assume that t0 = 0 which makes the
constants:

c1 =

(
ẋ0 −

W tan θ

Cd

)
m

−Cd

c2 =x0 −
(
ẋ0 −

W tan θ

Cd

)
m

−Cd
= x0 − c1

(12)

Because of the specific rotation order of euler angle trans-
formations, the lateral component of the thrust force is also
affected by θ. Therefore, the lateral position and velocity are
described by:

y = c3e
−Cd
m t + c4 +

W

cos θ

tanφ

Cd
t (13a)

ẏ = c3
−Cd
m

e
−Cd
m t +

W

cos θ

tanφ

Cd
(13b)

Where constants c3 and c4 are again found with the initial
conditions y0 and ẏ0.

APPENDIX B
BANG-BANG PROOF

This section demonstrates how PMP can be used to prove
that a bang-bang control input shape is the solution to a
time-optimal control problem. This derivation is similar to
the derivation given by Hehn, Ritz, and D’Andrea [8] but is
adapted to work with attitude angle as control input rather than
attitude rate.

14

Consider the system depicted in Fig. 16. The motion of this
quadcopter can be described by:

x =
[
x ẋ z ẋ θ

]T
u =

[
uθ̇ uT

]T[
uθ̇ uT

]T
≤ u ≤

[
uθ̇ uT

]T

f(x,u) =

ẋ

ẍ

ż

z̈

θ̇

 =

ẋ

1
m (uT sin θ − Cd · ẋ)

ż
1
m (W − uT cos θ − Cd · ż)

uθ̇

(14)

However, we assume constant altitude and instantaneous ro-
tation. Therefore we can discard the ż, z̈ and θ̇ dynamics.
Furthermore, state θ becomes input uθ.

In optimal control theory, for a system of the form
ẋ = f(x(t),u(t), t) and a cost function of the form J =
h(x(tf), tf) +

∫ tf
t0
g(x(t),u(t), t)dt, the Hamiltonian can be

given by:

H(x(t),u(t),p(t), t) = g(x(t),u(t), t)+pT (t)[f(x(t),u(t), t)]
(15)

For an OCP in which we desire to minimize time the cost
function h(x(tf), tf) = 0 and g(x(t),u(t), t) = 1. The
Hamiltonian then becomes:

H = 1 + pT f(x,u) = 1 + p1ẋ+ p2
1

m
(uT sinuθ − Cdẋ)

(16)
Where pn are the Lagrange multipliers (or costates). PMP
states that the optimal control input minimizes the Hamilto-
nian. From this it can be found that, depending on the sign of
p2, u∗θ becomes either uθ or uθ̇. Similarly,uT is either uT or
uT . The conditions do not hold when p2, uT or uθ is zero. In
this case the nonzero control input takes on a so called singular
value. That can often be solved by explicitly expressing the
costates from the second PMP that states that

ṗ = −∇xH(x∗,u∗,p) (17)

From this we find that:

ṗ1 =− ∂H
∂x

= 0→ p1 = c1

ṗ2 =− ∂H
∂ẋ

= −p1 → p2 = c2 − c1t
(18)

This means that p2 is only zero at a single instant when t = c2
c1

.
Which we can neglect. And because uT is governed by the
hover condition it is never zero, we therefore can also discard
the singular arc of uθ and state that uθ has a bang-bang shape.

Part II

Literature Review

21

2
Optimal Control Theory

The largest theoretical basis that the research will be based upon is the optimal control theory. This
field in mathematics is concerned with finding the control laws for which a system will move from one
state to a target state while minimizing a certain cost function. This chapter will give a brief introduction
to Optimal Control Theory and explain several common methodologies within the framework.

2.1. Introduction to Optimal Control
Several classes have been distinguished within the framework of optimal control theory with each their
own methodologies of formulating and solving optimal control problems (OCPs). Generally, an OCP
takes on the following form:
A system of differential equations, representing the dynamics:

ẋ(𝑡) = 𝑓(x(𝑡),u(𝑡), 𝑡) (2.1)

Where 𝑥(𝑡) is the state variable and 𝑢(𝑡) is the input variable. This system should propagate from a
initial state 𝑥(𝑡0) to a target state 𝑥(𝑡𝑓) while minimizing a cost function of the form:

𝐽 = ℎ(x(𝑡𝑓), 𝑡𝑓) + ∫
𝑡𝑓

𝑡0
𝑔(x(𝑡),u(𝑡), 𝑡)𝑑𝑡 (2.2)

The cost functions consists of two main terms. ℎ(x(𝑡𝑓), 𝑡𝑓) is a function that determines how much the
total cost depends on the final state values and the final time. Whereas 𝑔(x(𝑡),u(𝑡), 𝑡) determines how
much the total cost depends on the values the states and inputs take on along the path.

A control sequence that minimizes the cost function over the time-horizon [𝑡0 → 𝑡𝑓], while respecting
all constraints, is considered to be the solution to the optimal control problem. The corresponding
minimum cost value 𝐽∗1 is also called the ’optimal cost-to-go’ and is defined as:

𝐽∗(x, 𝑡) = min
u(𝑡→𝑡𝑓)

𝐽(x, 𝑡,u(𝑡 → 𝑡𝑓)) (2.3)

2.2. Discrete case: Bellman Equation
The Bellman equation is an equation that describes the optimal cost-to-go along the optimal control
path. It is derived using the principle of optimality:

Principle of Optimality: An optimal policy has the property that whatever the initial
state and initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision. (Bellman [3])

The following example from Kirk [5] is used to demonstrate this principle in a more intuitive way:

1The ∗ superscript notation indicates that the corresponding variable or function is optimal

23

24 2. Optimal Control Theory

Figure 2.1: Available routes between states with corresponding costs (from [5])

Consider Figure 2.1. Say that one would like to travel from state 𝑎 to state ℎ in a minimum-cost fashion.
The costs to travel from one state to an adjacent state are shown along the edges (e.g. to travel from 𝑎
to 𝑑 adds 8 to the total cost). A procedure to find the minimum-cost path could be to start at the target
state and work backwards from there, as shown in Table 2.1.

Current state
𝛼

Input Next State 𝑥𝑖 minimum cost
from 𝛼 to ℎ via
𝑥𝑖

minimum cost
from 𝛼 to ℎ

Optimal Input

𝑔 N ℎ 2 2 N
𝑓 E 𝑔 3 + 2 = 5 5 E
𝑒 E ℎ 8

S 𝑓 2 + 5 = 7 7 S
𝑑 E 𝑒 3 + 7 = 10 10 E
𝑐 N 𝑑 5 + 10 = 15

E 𝑓 3 + 5 = 8 8 E
𝑏 E 𝑐 9 + 8 = 17 17 E
𝑎 E 𝑑 8 + 10 = 18 18 E

S 𝑏 5 + 17 = 22

Table 2.1: Example adapted from Kirk [5]

This table demonstrates the principle of optimality. I.e. the optimal cost to reach the target state from
the current state is equal to the optimal cost to reach an adjacent state plus the optimal cost to reach
the target state from the adjacent state. The global optimum is then found by selecting the input value
that will lead to the optimal adjacent state.

Using Equation 2.2, Equation 2.3 and the principle of optimality the Bellman equation can be derived:

𝐽∗(𝑥, 𝑡) = min
u(𝑡→𝑡𝑓)

(ℎ (x(𝑡𝑓), 𝑡𝑓) + ∫
𝑡1

𝑡0
𝑔 (x(𝑡),u(𝑡), 𝑡) 𝑑𝑡 + ∫

𝑡𝑓

𝑡1
𝑔 (x(𝑡),u(𝑡), 𝑡) 𝑑𝑡)

= min
u(𝑡→𝑡𝑓)

(∫
𝑡𝑓

𝑡1
𝑔 (x(𝑡),u(𝑡), 𝑡) 𝑑𝑡 + min

u(𝑡→𝑡𝑓)
(ℎ (x(𝑡𝑓), 𝑡𝑓) + ∫

𝑡1

𝑡0
𝑔 (x(𝑡),u(𝑡), 𝑡) 𝑑𝑡))

= min
u(𝑡→𝑡𝑓)

(∫
𝑡𝑓

𝑡1
𝑔 (x(𝑡),u(𝑡), 𝑡) 𝑑𝑡 + 𝐽∗(x(𝑡1), 𝑡1))

(2.4)

This equation allows to split a optimal control problem into smaller parts. But, in this form it can only be
applied to discrete-time problems. The Hamilton-Jacobi-Bellman equation is a format of the Bellman
equation which is intended for continuous-time problems.

2.3. Continuous-time case: Hamilton-Jacobi-Bellman Equation
Equation 2.4 in its current form can only be applied in discrete-time optimal control problems. However,
in order to be able to apply it in continuous-time control problems the equation has to be derived in a
different way:

2.4. Pontryagin’s Minimum Principle 25

Again, combining Equation 2.2 and Equation 2.3:

𝐽∗(x(𝑡), 𝑡) = min
u(𝜏)
𝑡≤𝜏≤𝑡𝑓

(∫
𝑡𝑓

𝑡
𝑔(x(𝜏),u(𝜏), 𝜏)𝑑𝜏 + ℎ (x (𝑡𝑓) , 𝑡𝑓))

= min
u(𝜏)
𝑡≤𝜏≤𝑡𝑓

(∫
𝑡+Δ𝑡

𝑡
𝑔(x(𝜏)𝑑𝜏 + ∫

𝑡

𝑡+Δ𝑡
𝑔(x(𝜏)𝑑𝜏 + ℎ (x (𝑡𝑓) , 𝑡𝑓))

(2.5)

Implementing the principle of optimality:

𝐽∗(x(𝑡), 𝑡) = min
u(𝜏)

𝑡≤𝜏≤𝑡+Δ𝑡

(∫
𝑡+Δ𝑡

𝑡
𝑔(x(𝜏)𝑑𝜏 + J∗(x(𝑡 + Δ𝑡), 𝑡 + Δ𝑡)) (2.6)

Subsequently, the Taylor series is used to expand Equation 2.6 around (x(𝑡), 𝑡).

𝐽∗(x(𝑡), 𝑡) =min
u(𝑡)

(∫
𝑡+Δ𝑡

𝑡
𝑔(x(𝑡))𝑑𝜏 + 𝐽∗(x(𝑡), 𝑡) + [𝜕𝐽

∗

𝜕𝑡 (x(𝑡), 𝑡)] Δ𝑡

+ [𝜕𝐽
∗

𝜕x (x(𝑡), 𝑡)]
𝑇
[x(𝑡 + Δ𝑡) − x(𝑡)] + 𝑜(Δ𝑡))

(2.7)

Where 𝑜(Δ𝑡) are the higher order terms. For small Δ𝑡:

𝐽∗(x(𝑡), 𝑡) =min
u(𝑡)

{𝑔(x(𝑡),u(𝑡), 𝑡)Δ𝑡 + J∗(x(𝑡), 𝑡)

+ 𝐽∗𝑡 (x(𝑡), 𝑡)Δ𝑡 + 𝐽∗𝑇x (x(𝑡), 𝑡)𝑓(x(𝑡),u(𝑡), 𝑡)Δ𝑡 + 𝑜(Δ𝑡)}
(2.8)

Where 𝐽𝑡 and 𝐽x are the partial derivatives of 𝐽 w.r.t. 𝑡 and x, respectively. Next remove the terms that
do not depend on u(𝑡) from the minimization.

0 = 𝐽∗𝑡 (x(𝑡), 𝑡)Δ𝑡 +min
u(𝑡)

{𝑔(x(𝑡),u(𝑡), 𝑡)Δ𝑡

+𝐽∗𝑇x (x(𝑡), 𝑡)𝑓(x(𝑡),u(𝑡), 𝑡)Δ𝑡 + 𝑜(Δ𝑡)}
(2.9)

Then by taking the limit Δ𝑡 → 0 and dividing by Δ𝑡:

0 = 𝐽∗𝑡 (x(𝑡), 𝑡) +min
u(𝑡)

{𝑔(x(𝑡),u(𝑡), 𝑡) + 𝐽∗𝑇x (x(𝑡), 𝑡)𝑓(x(𝑡),u(𝑡), 𝑡)} (2.10)

Which is known as the HJB because of the similarity to the Hamilton-Jacobi equation [6]. This differ-
ential equation has the following boundary condition:

J∗(x(𝑡𝑓), 𝑡𝑓) = ℎ(x(𝑡𝑓), 𝑡𝑓) (2.11)

For convenience, the Hamiltonian is defined as:

ℋ(x(𝑡), 𝑢(𝑡), 𝐽∗𝑥 , 𝑡) =𝑔(x(𝑡).u(𝑡), 𝑡) + 𝐽∗x𝑇(x(𝑡), 𝑡) [𝑓(x(𝑡),u(𝑡), 𝑡)]
ℋ (x(𝑡),u∗ (x(𝑡), 𝐽∗x, 𝑡) , 𝐽∗x, 𝑡) =min

u(𝑡)
ℋ (x(𝑡),u(𝑡), 𝐽∗x, 𝑡) (2.12)

Which means that the HJB-equation can be written as:

0 = 𝐽∗𝑡 (x(𝑡), 𝑡) +ℋ (x(𝑡),u∗(x(𝑡), 𝐽∗𝑥 , 𝑡), 𝐽∗𝑥 , 𝑡) (2.13)

2.4. Pontryagin’s Minimum Principle
The calculus of variations is a branch within mathematics that has been used in solving particular
optimization problems. The fundamental idea behind this theorem is that in variational problems the
variations of a functional 2must be zero on extremal curves. This is analogous to the theorem that within
2Functionals can be interpreted as ’Functions of Functions’ as they refer to a class of functions that take functions as input. An
indefinite integral is well known example of a functional [5]

26 2. Optimal Control Theory

functions the derivatives become zero on extreme points. The Russian mathematician Lev Pontryagin
has developed a theory, called PMP, which provided a set of necessary, but not sufficient conditions
for optimality. Being non-sufficient implies that these conditions must hold for the optimal solution of
a problem, but may also hold for a non-optimal solution. Nonetheless, finding solutions for which the
minimum principle is satisfied can be convenient for identifying candidates. [5]
In optimal control theory PMP can be helpful in solving for which inputs to a system a minimum cost
will be found. In all practical cases of optimal control the inputs are always constrained. In these cases
the cost function (Equation 2.2) can be augmented to have the constraints included inside the function:

𝐽(u) = ℎ (x (𝑡𝑓) , 𝑡𝑓) + ∫
𝑡𝑓

𝑡0
𝑔(x(𝑡),u(𝑡), 𝑡) + p𝑇(𝑡)[𝑓(x(𝑡),u(𝑡), 𝑡) − ẋ(𝑡)]𝑑𝑡 (2.14)

Where p is a vector, called the co-state, containing Lagrange multipliers3. From this equation condi-
tions for optimality are derived again.

The fundamental difference in this derivation, as compared to the derivation of the HJB-equation, is that
the calculus of variations is used to find the conditions for which a cost function becomes stationary
to small perturbations of the control inputs. Whereas the HJB-equations starts from the principle of
optimality as described in section 2.2 and expands this recurrence relation to a continuous-time form.
In this system the Hamiltonian is defined as:

ℋ(x(𝑡),u(𝑡),p(𝑡), 𝑡) = 𝑔(x(𝑡),u(𝑡), 𝑡) + p𝑇(𝑡)[𝑓(x(𝑡),u(𝑡), 𝑡)] (2.15)

Which is formatted differently than Equation 2.12, but has the same fundamental meaning. And the
PMP conditions for optimality are [5]:

ẋ∗(𝑡) = 𝜕ℋ
𝜕p (x

∗(𝑡),u∗(𝑡),p∗(𝑡), 𝑡)
ṗ∗(𝑡) = −𝜕ℋ𝜕x (x

∗(𝑡),u∗(𝑡),p∗(𝑡), 𝑡)
0 = 𝜕ℋ

𝜕u (x
∗(𝑡),u∗(𝑡),p∗(𝑡), 𝑡)

⎫

⎬
⎭

for all
𝑡 ∈ [𝑡0, 𝑡𝑓]

(2.16)

However, if these conditions are satisfied it only implies that an extremal has been found. In other
words, it is not yet clear whether or not a maximum or minimum cost has been reached. Therefore the
minimum principle states:

ℋ (x∗(𝑡),u∗(𝑡),p∗(𝑡), 𝑡) ≤ ℋ (x∗(𝑡),u(𝑡),p∗(𝑡), 𝑡) (2.17)

Which ensures that the extremal is indeed at a (local) minimum cost. Equations 2.16 and 2.17 are
necessary and sufficient conditions for optimality w.r.t. a cost function. In Appendix A a derivation of
these conditions can be found.

In some specific optimal control problems these conditions are sufficient to find an analytical solution
to the two-point boundary value problem. However in most cases there are too many unknowns and
therefore numerical methods are required to find a solution.

2.5. Solving Optimal Control Problems
Simple optimal control problems may be able to be solved analytically, but most practical optimal con-
trol problems are too complex to be solved in this way. Properties that increase the complexity of a
problem are for instance: dimensionality of the system (number of states and inputs), planning horizon,
format of the cost function and constraints. In practice, the solution of such problems rely on numerical
methods, which in turn rely on available computational resources.

Despite some exceptions, the solving approaches can generally be divided in three classes: Dynamic
programming, direct methods and indirect methods [7–10]. Figure 2.2 shows a compact overview.
3Lagrange multipliers are convenient variables that are selected to define the augmented function in such a way that its derivative
is zero for extremal points. Note that Equation 2.14 is independent of p because the equality constraint term, 𝑓(x(𝑡),u(𝑡), 𝑡) −
ẋ(𝑡), is zero along the entire trajectory. [5]

2.5. Solving Optimal Control Problems 27

Optimal Control Problem

Dynamic Programming:

Recursively solve HJB

Indirect Approach:

Satisfy Necessary Conditions for Optimality

Direct Approach:

Transform problem to NLP and solve it

Multiple ShootingSingle ShootingCollocation

Multiple ShootingSingle Shooting

Collocation

Figure 2.2: Overview of solving OCPs approaches

2.5.1. Dynamic Programming
In the dynamic programming approach attempts are made to find the optimal solution by solving the
Bellman equation, or in the continuous-time case the HJB-equation (Equation 2.13). Unfortunately,
there are only limited cases of optimal control problems that can be solved analytically. The vast ma-
jority must be solved in a numerical, recursive way. In that case the problem leverages the principle of
optimality and is split into smaller sub-problems which are solved individually using a tabular approach.
This process starts from the desired target state and steps back to the initial state, similar to the exam-
ple given in section 2.2. Methods that use this approach are forms of exact Dynamic Programming.

A big drawback from this approach is that the cost function will need to be evaluated in the entire state-
space to find the global minimum. The complexity, and therefore the required computational resources
to solve the problem, scales exponentially with the dimensions of the problem.[3, 11].

Fortunately, there are methods that can make dynamic programming a feasible approach for certain
control problems. ADP, for instance, is a class of dynamic programming that uses different methods
to approximate the cost function (the HJB equation in the optimal control case) instead of calculating
it exactly as in the aforementioned tabular approach. The ADP methods distinguish themselves from
each other by the approximation method they use. Examples are: Neurodynamic Programming, HDP,
Dual HDP, Action-Dependent HDP and Globalized Dual HDP. However, almost all methods use a
reinforcement learning approach based on MDPs and/or ANNs. [11–13]. MDPs are processes that
specify which decisions (control inputs) to make in semi-stochastic systems where the outputs are
probabilistic.

2.5.2. Direct Methods
The class of direct methods approach the optimal control problem by transforming it into an NLP prob-
lem and subsequently solve it with one of the various well-known solver methods. Direct methods
can deal more easily with different types of inequality constraints when compared to indirect methods,
which are required to calculate co-state equations. Co-state equations are the equations that should
solve the second necessary condition in Equation 2.16 and thus deal with the Lagrange multipliers.

The majority of off-the-shelf optimization tools used in finding solutions to optimal control problems
make use of direct methods. The most common implementation make use of either (multiple) shooting
or collocation methods.[8]

Direct Shooting
Direct shooting may in essence be one of the simplest forms of the solving methods. It is often com-
pared to optimizing the aim of a cannon to hit a target. Which is an initial value problem. The process
of optimizing this problem starts with guessing the initial state and control inputs (i.e. cannon angle and
impulse magnitude). These values are then iteratively changed based on the results of the simulated
trajectory.
This approach can be implemented in more complex optimal control problems by discretizing and sub-

28 2. Optimal Control Theory

sequently parameterizing the control space by piecewise functions. Finally, the resulting ODEs are
solved by means of numerical integration and gradient descent methods [8].
A difference is made between single shooting and multiple shooting approaches. In multiple shooting
approaches the time interval is divided into smaller sections. Each section is then solved by a single
shooting method as described above. State continuity between the sections are enforced by adding
the by adding the corresponding boundary conditions to the NLP formulation.

Unfortunately, this methods has shown to be rather sensitive to the initial conditions. To reduce this sen-
sitivity the shooting method has been extended to multiple shooting. This technique splits the problem
into smaller segments. The total problem will now increase in size because each new segments comes
with new variables, constraints and boundary conditions. A direct result is that more computation time
is required to solve the problem[14].

Direct Collocation
Collocation (sometimes also called Transcription) is a method very similar to shooting. In addition to
the control space this method also parameterizes the state space. This implies that the controls and
states are approximated by polynomial splines so that the differential equations can be represented by
algebraic constraints. Each constraint must be satisfied at a specific collocation points. Off-the-shelf
NLP-solvers exist that are able to solve these systems of equations.

Within direct collocation several classes exist such as trapezoidal-, orthogonal-, (pseudo)spectral-, and
Hermite-Simpson collocation. The classes distinguish them self from one another mostly by the way
the collocation points are chosen, the way the system is discretized and what kind of parameterization
is used[10].

2.5.3. Indirect Methods
Approaches that attempt to satisfy the conditions for optimality stated by Ponyryagin’s minimum princi-
ple (Equations 2.16 and 2.17) fall under the indirect methods. Contrary to direct methods, which convert
the problem in a non-linear programming problem and attempt to solve the HJB equation explicitly. Fun-
damentally speaking, direct methods try to find the minimum of the objective function whereas indirect
methods try to find the root of the necessary conditions.[14]

Generally, indirect methods start by creating the necessary conditions and then discretize them. A two-
point BVP is obtained that must satisfy the boundary conditions for ẋ and ṗ. The boundary conditions
and the optimal control inputs are not solved simultaneously. Instead, the control inputs are found by
locally minimizing the Hamiltonian (Equation 2.15) for each time step, which are subsequently substi-
tuted in the boundary condition equations and iteratively updated in the case the conditions are violated.

Similarly to the direct methods, indirect methods can be solved by shooting and collocation, but the
main difference is that besides the states, also the adjoint variable (co-states) must be integrated. And
more difficult, an initial guess for the Lagrange multipliers must be made. Which can be challenging
since the Lagrange multipliers have no intuitive meaning. Therefore, it can be more troublesome to
implement an indirect method as opposed to a direct method.[8, 10]

2.6. LQR Control
LQR control is a form of optimal control that can be applied to certain linear systems with quadratic cost
functions. The solution to the problem is a feedback controller that minimizes the cost function.

The cost function typically looks like:

𝐽(x,u) = ∫
∞

0
x̃𝑇𝑄x̃+ ũ𝑇𝑅ũ𝑑𝑡 (2.18)

Where x̃ and ũ are the errors to the reference state and input, respectively. 𝑄 and 𝑅 are cost matrices

2.7. Chapter Summary 29

related to the states and inputs.

It is assumed that the optimal cost-to-go is 𝐽∗(x) = x𝑇𝑃x. The solution for 𝑃 can be found by solving
the continuous algebraic Riccati equation.
It is found that the optimal feedback control law is:

u =𝑢0 + 𝐾 (x− x0)
𝐾 = − 𝑅−1𝐵𝑇𝑃 (2.19)

Where 𝐵 is the input matrix to the state-space system,[15, 16].

Foehn and Scaramuzza [16] have designed an LQR controller to find the optimal thrust and body rate
inputs for trajectory tracking and hover conditions. In their work they needed to use the HDP approach
of Al-Tamimi, Lewis, and Abu-Khalaf [13] to solve the problem of finding 𝑃.

To find the controller’s parameters the solution for optimal control must be derived analytically from the
differential equations that describe the system.
Therefore, for true mathematical optimal control, it is required that the system’s equations are able to
be solved analytically. Consequently, LQR control is typically used in relatively simple linear systems.
Such as fast inner loop controllers for rotor control.
However, LQR can be effective in nonlinear systems as well. In these cases the system can be lin-
earized around specific trim points of the states. [16, 17]

2.7. Chapter Summary
This chapter has explained two main approaches of finding optimal control with respect to a cost func-
tion. Namely, one approach that is derived from the classic ”traveling salesman” problem, i.e. the HJB
equation. And the second approach is PMP which uses calculus of variations to derive the necessary
conditions for optimality.

These are just methods of defining optimal control problems. Despite that some particular problems
can be solved analytically, the majority of practical problems will need a numerical approach to find a
solution. These approaches can be divided in three classes: Dynamic programming, direct methods
and indirect methods. Each of which comes with its own benefits and limitations.

Dynamic programming methods attempt to recursively solve the HJB equation and has as benefit that
it searches the entire state-space for the optimal sequence of control inputs. Guaranteeing that the
optimal solution is the global optimal solution. Despite that it is suitable for certain mixed integer and
continuous problems, it suffers from the ’curse of dimensionality’. That is, the complexity (and thus in
numerical approaches, the required computational power) increases exponentially as the problem’s di-
mensions increase [3, 8]. Powell [18] even speaks of the ”three curses of dimensionality” because this
problem does not only apply to the dimension of the problem’s state vector, but also to the dimensions
of the possible inputs and outputs.

Direct methods transform the OCP to an NLP problem and have as advantage that the inequality con-
straints are more intuitive to handle than in the case of indirect methods. Therefore, there are numerous
off-the-shelf software toolboxes available that can efficiently solve OCPs with a wide range of different
structures. Software toolboxes such as IPOPT, MUSCOD, ICLOCS and ACADO are well known to
have a good applicability.

Indirect methods attempt to find a control input sequence that satisfies the necessary conditions for op-
timality as stated by PMP. Similar to the direct methods, there is a range of software solutions available
that are robust and computational efficient to solve a variety of optimal control problems. According
to Biral, Bertolazzi, and Bosetti [8] there is no clear difference between direct and indirect methods in
terms of accuracy and computational efficiency. This was based on experiments that show that dif-
ferences in computation time for specific problem mainly depend on how the different solvers adopt
the optimal control problem. It was shown that the discretized NLP from the direct method is almost

30 2. Optimal Control Theory

identical to the BVP of the indirect method. However, defining a OCP in an indirect methods is more
difficult because of the non-intuitive nature of the co-states.

Finally, LQR control as an optimal control approach was explained. LQR is always implemented as a
feedback controller. This controller is designed in such a way that it minimizes a quadratic cost function
and are most often used as inner loop controllers to linear systems.

3
Drone Racing

In this chapter an introduction to ADR is given. Even though drone racing with human pilots is still
a rather recent phenomenon. Steps are being made to have editions where the human element is
removed from the equation. Despite being primarily intended for entertainment purposes ADR seems
to be the perfect environment to test the physical limits of a quadcopter and demonstrate the latest
advances in autonomous systems.
Thanks to the competitive element of these events it seems to be the perfect platform to apply time-
optimal control to. Moreover, the required aggressive and high-acceleration maneuvers put the on-
board hardware and systems to the test. Particularly systems such as perception and state-estimation
suffer in performance in high velocity and low-light conditions.
Naturally, the relevant developments will not only prove to be useful in ADR, but are likely to be bene-
ficial in other fields such as military, search & rescue or any other aviation/robotics oriented fields.

In human-piloted drone races the pilots typically have to guide their drone through a course with gates
and obstacles. Naturally, humans have the ability to quickly recognize obstacles and steer their drone
according to a trajectory that they have in mind. Even in dynamic environments humans can quickly
adapt their strategy accordingly.
In ADR on the other hand, it is not that simple unfortunately. There are certain disciplines required to
successfully follow the same steps as a human pilot.

3.1. Chapter Outline
This chapter starts in section 3.2 with a brief overview of the current esteemed ADR events during
which the newest relevant developments in robotic systems are demonstrated.
In the subsequent sections the different subsystems that enable ADR are being addressed starting with
automatic trajectory generation in section 3.3.

Where a human can recognize a gate and its current position relative to the drone almost instantly,
an autonomous drone depends, among others, on subsystems that are responsible for perception
and state estimation. Which current state of affairs will be expanded upon in sections 3.5 and 3.6.
Additionally, automatic trajectory generation methods are required to efficiently plan a route through
the course, which ideally should be the fastest path possible. This will be elaborated on in section 3.3.
Finally, once the trajectory is known the quadcopter’s rotors should be actively controlled in such a
manner that the quadcopter robustly tracks the desired trajectory. section 3.4 explains the different
methods that enable this.

3.2. Competitions
In this section a summary is given of the most prestigious event during which the latest developments
in autonomous drone racing are being showcased.

31

32 3. Drone Racing

3.2.1. Alphapilot/AIRR
In 2019 Lockheed Martin and the DRL came together to organize the first edition of AIRR, also named
Alphapilot. In this competitions teams have to develop the control pipeline for a 3 kg quadcopter and
compete in multiple rounds at different race tracks. Each team had to work with identical hardware, but
were given complete freedom to develop the flight control software.
The quadcopter was outfitted with 4 cameras and an Nvidia Xavier processing unit alongside a IMU
and laser range finder.

The teams were not able to work with the quadcopter’s hardware directly, but were given a development
kit which consisted of a desktop pc and the NVIDIA Jetson AGX Xavier GPU to develop the software
on and test the code in a simulation environment. They were responsible for creating a system that
could perceive gates, which were distributed along the course, and the flight control system that would
steer the quadcopter to fly through these gates.[2]

3.2.2. IROS
Since 2016, an ADR competition has been a part of the yearly recurring IROS conference. The ADR
is seen by multiple research groups as a prestige opportunity to demonstrate the latest developments
in (small) UAVs. Generally, the competitions consists of a obstacle course that the UAV must pass
through in the shortest time. Both static and moving obstacles are placed in the course to test the
autonomous systems for robustness in dynamic, cluttered environments.[19, 20]

3.2.3. IMAV
The IMAV is a yearly event during which the newest development on small UAVs are displayed. Each
year, several challenges, each with a different focus are given to teams to participate in. For instance,
one challenge focuses on the small and efficient drones, where the other focuses on stability in a
turbulent environment.[21]

3.3. Trajectory Generation
In this section various methods of generating trajectories will be discussed. A trajectory is, in the con-
text of quadcopter control, in most cases not simply a series of positional waypoints, but actually a
description of the path that some of the states and/or their derivatives will follow. When generating a
trajectory it is important to incorporate the quadcopter’s dynamics such that the quadcopter is actually
able to reach the sequence of state values.

Especially in dynamic environments it is crucial that a quadcopter can adapt to environmental changes
and obstacles. One way of addressing this is by re-planning the trajectory during flight which is the
principle of MPC.
One particular example is the work of Mueller, Hehn, and D’Andrea [22]. In their paper an efficient
approach to an MPC implementation is introduced that allows a quadcopter to intercept a thrown ball
and bounce it to a target position. In order to do so the ballistic trajectory of the ball must be pre-
dicted continuously. Based on this, an optimal flight path will be calculated to intercept the ball and
simultaneously bounce it to the target. Due to the low computational effort of this method experiments
have shown that thousands of potential ways to hit the ball can be calculated and evaluated at a rate
of 50Hz. Despite that the calculations are performed off-board by a consumer-spec laptop, it shows
great potential nonetheless for on-board implementation of MPC cases that do not require such a shear
amount of path evaluations as in this example.

3.3.1. Minimum-Snap
There are numerous approaches in trajectory generation, but one of the most cited papers in this field
is the work from Mellinger and Kumar [23]. Who have developed a method to generate minimum-
snap1trajectories subjected to pre-defined constraints in real-time.
One appeal of minimum-snap trajectories is that its smoothness benefits the measure quality of the
on-board sensors and that no aggressive control inputs are needed [24]. However, a more important
benefit is that the required body moments can be derived analytically from the trajectory if the positional
snap values are known as well as the second derivative of the yaw. Which will be used as feedforward

3.3. Trajectory Generation 33

terms in the tracking controller that Mellinger and Kumar have created, as will be explained in subsec-
tion 3.4.1.

The trajectories are generated by formulating the minimum-snap optimization as a QP problem, con-
straints are added that force the trajectory to stay within a small corridor around the waypoints. In the
formulation of the trajectories the times of arrival at each waypoint need to be specified beforehand. In
order to further optimize the trajectory for minimum snap, an additional optimization problem has been
added to find the optimal segment durations (the paths between the waypoints are called segments)
while keeping the final time of arrival constant. Which is solved using a constrained gradient descent
method.
Finally, when the final trajectories are known, the required control inputs can be derived by leveraging
the differential flatness2property of the system.

In their experiments they have shown that trajectories can be generated in real-time and fast enough
to adapt to dynamic obstacles. Flying through a falling hoop for instance. However, the experimental
setup consisted of an external motion capture system to estimate position, velocity and attitude. Addi-
tionally, it should be noted that the trajectory generation was performed off-board and that this method
does not yield time-optimal trajectories.

In the work of Richter, Bry, and Roy [26] the method of minimum-snap trajectory generation from [23]
is revised. An issue of Mellinger’s and Kumar’s method is being addressed in which the QP becomes
ill-conditioned in the case too many segments, high-order polynomials, or widely varying segments
times are concerned. This is done by reformulating the constrained QP from [23] as an unconstrained
QP which solves for the endpoint derivatives directly instead for the polynomial coefficients. This yields
a more numerically stable optimization approach than the original. Moreover, an ”aggressiveness” pa-
rameter is included which allows to put a cost on the total trajectory time. By increasing this parameter’s
value the generated trajectory becomes less snap-optimal and more time-optimal.

3.3.2. Cluttered Environments
The aforementioned trajectory generations methods allows the inclusion of corridor constraints to guar-
antee that the resulting trajectory remains within certain positional bounds and does not collide with a
fictional wall. However, these corridors will need to be defined beforehand which requires manual ef-
fort. Especially in unknown or dynamic environments, which is very relevant in ADR, it is of importance
that trajectory generation methods can automatically adapt to obstacles.

Landolfi et al. [27] have addressed this by combining and extending the work of Mellinger and Kumar
[23] with a SE-SCP algorithm, that originates from the research of Baldini et al. [28]. This algorithm
is used to find the shortest path and create an initial set of consecutive waypoints in a cluttered en-
vironment. The SE-SCP algorithm can be seen a spherical version of the well-known RRT methods,
which were originally used for path planning purposes, but have proven to be beneficial for searching
high-dimensional spaces as well [29, 30]. An example of the working principle of SE-SCP can be seen
in Figure 3.1.
Once the initial waypoints are known, a minimum-snap trajectory is generated in a similar way to the
aforementioned approach of unconstrained QP that Richter, Bry, and Roy [26] have used as well.
Furthermore, wind has been included the dynamical model and an ℒ1 adaptive controller has been im-
plemented that introduces robustness to wind and mass changes. Although no practical experiments
have been performed. This method has been verified in a sophisticated simulation environment, using
a dynamical model based on the CrazyFlie 2.0 quadcopter [31].

Penin et al. [32] created have enhanced time-optimal trajectory generation to keep visual cues inside
view during a maneuver. This particularly useful to quadcopters that use a monocular camera for VIO.

1Snap is the fourth derivative of position.
2Differential flatness is the property of a system in which states can be expressed explicitly in terms of inputs and states or
derivatives of the states. An advantage of such systems is that the required sequence of input values can be found algebraically
from the state trajectory. [25]

34 3. Drone Racing

Figure 3.1: Here SE-SCP is used to find the shortest path from the lower-left corner to the upper-right corner. (from Baldini et al.
[28])

In their approach a standard NLP, time-optimal control formulation is extended to include the feature
points to always lie within the field of view of the camera. Subsequently, it is solved using a SQP
method as used in NLOPT [33]. A downside is that the resulting trajectories are expressed in B-spline
polynomials, limiting the type of motion that quadcopter can perform. Moreover, the visibility constraint
is a hard constraint which puts a cap on the maneuverability.
Falanga et al. [34] addresses these issue in their work. They have created a framework in which the
cost function couples perception objectives with action objectives. Allowing to dynamically optimize the
priority put on perception and on the flight objective. The problem is solved using an SQP and is fast
enough to run in real-time and on-board, enabling it to function as an MPC.

3.3.3. Machine Learning Approaches
Using machine learning principles to generate trajectories is an approach that has recently become
more popular. At the core, the idea is to generate training and validation data off-line by means of one
of the more computational expensive numerical solvers and use it to train an ANN in simulation and/or
in real flight. The goal is that these ANNs are able to produce optimal trajectories and/or control inputs
independently.

For example, Tang, Sun, and Hauser [35] have come up with an approach in which they first generate a
library of optimal trajectories off-line and use them to train a neural network that is able to output trajec-
tories on-line, using the quadcopter’s current state as input. Additionally, since these outputs may not
fully satisfy all constraints due to approximation errors, the trajectories are refined by a single iteration
of a quadratic-programming solver. Although a network needs to be trained extensively this system is
eventually able to map trajectories in a matter of milliseconds. Which is fast enough to run in real-time
and can therefore be used as an MPC.
The solutions have been tested on a CrazyFlie 2.0 quadcopter. That is, the neural network is executed
externally and control commands are transmitted to the quadcopter. Moreover, their solution is com-
pared to different approaches, such as minimum-snap and three different NLP methods. In Table 3.1
an overview can be found of the required computation time and resulting cost (lower is better) for each
of these methods.
It was found that the solutions with NLP solvers generally yield a lower cost value. However, they also
require significant more calculation time, whereas the paper’s ANN method only takes 1.8ms for only
a slightly higher cost.
The minimum-snap method comes close with a computation time of 10.21ms. In experiments it was
found that the Crazyflie had more trouble to track these trajectories than the trajectories from the pa-
per’s method because the paper also adjusted the cost function to penalize rapid changes in the rotors’
speed. Which is beneficial to quadcopters with a lower thrust-to-weight ratio such as the Crazyflie.
However, for all tracking experiments a PID positional controller was used to track the trajectory, which
tends not to lead to optimal tracking performance.

Li et al. [36] solve this issue by developing a neural network that solves for a more simple scenario.

3.3. Trajectory Generation 35

NN+OSQP Minimum-
Snap

SL+NLP NNOC NN+NLP

Time [ms] 1.80 10.21 382.9 194.7 131.1
Cost 8.73 8.88 8.64 8.64 8.64

Table 3.1: Approaches Comparison (from Tang, Sun, and Hauser [35])

Instead of producing time-optimal trajectories the network is trained to output optimal thrust and optimal
pitch rate commands. With practical experiments, this controller is compared to a method that uses
differential flatness to find the control values as in [23].
Results have shown that the neural network approach can make the quadcopter reach its target almost
60% faster than the differential flatness approach. However, since only thrust and pitch rate commands
are calculated, this method can only approach optimal control in 2D scenarios.

More complex maneuvers were performed in the work from Kaufmann et al. [37]. They have demon-
strated a deep learning approach to extreme autonomous acrobatic maneuvers. In this method a neural
network is trained not to generate trajectories, but to accurately track reference maneuvers consisting
of extreme accelerations (up to 3g). In addition to the reference trajectory the ANN architecture also
processes on-board sensor measurements such that the quadcopter does not only rely on traditional
state estimation methods, which typically suffer from reduced accuracy during high acceleration ma-
neuvers.

Similar research has been performed by Camci and Kayacan [38], who have developed a method in
which reinforcement learning is used to learn motion primitives that can be used in real-time motion
planning. Using this approach they are able to quickly search and plan specific swift maneuvers in an
existing trajectory.

Loquercio et al. [39] have developed a pipeline in which a convolutional neural network is trained on
raw monocular images from a simulation environment to perceive the gates it should fly through and
to output a positional waypoint and a desired velocity. Subsequently, a short minimum-jerk trajectory
is generated from the current position to the waypoint. Although the training can only be performed
off-line. The neural network can run in real-time and on-board a real quadcopter. Experiments have
shown good robustness to changing lighting conditions and moving the gates.

3.3.4. Solving Time-Optimal Principles
Hehn and D’Andrea [40] generate a time-optimal trajectory by solving the conditions for optimality as
stated by PMP (see section 2.4). The 𝑥−, 𝑦− and 𝑧-coordinates are decoupled and optimal state-to-
state trajectories are solved for each dimension separately, following the direct adjoining approach for
optimal control problems with state constraints, as described by Hartl, Sethi, and Vickson [41]. They
have tested this method in practice, using a Ascending Technologies ’Hummingbird’ quadcopter. The
trajectories and control inputs were calculated by an external computer in real-time and transmitted to
the quadcopter during flight. This method has shown to be computational efficient enough to be able
to re-plan trajectories at a rate of 50Hz in this experimental setup. Figure 3.2 shows what a typical
time-optimal input control sequence looks like for one of the dimensions. This characteristic shape
is called bang-zero-bang control and is often the solution to linear time-optimal control problems [42].
One downside of Hehn and D’Andrea’s approach is that the maximum allowed acceleration must be
specified beforehand and is fixed. Furthermore, some aerodynamic effects are neglected which is likely
the cause for trajectory deviations during decelerations.

Knowing beforehand whether a solution has a bang-type solution can simplify the solving process dras-
tically. The OCP reduces in such a case from a continuous control input problem to one that is discrete.
One only need to solve for the optimal switching time instances. Between those instances the control
input is constant. Lucas and Kaya [43] have been working on calculating switching times in optimal
control problems where bang-bang controllers are used to control nonlinear systems. Their work has

36 3. Drone Racing

resulted in a numerical algorithm, based on Newton’s method, that increases computational efficiency
in solving the time-optimal bang-bang problems with one or two control inputs.

Similarly, Shen and Andersson [44] have been working on minimum-time control of bang-bang con-
trollers. In their work they start with a second order system and derive the necessary conditions for
optimal control using Pontryagin’s Minimum Principle. From which follows that there is no analytical
solution to calculate the optimal switch time. However, from the system dynamics they have derived an
affine mapping that relates the switch time to the final time. Using this mapping they can represent the
final time and switch time curves in a phase plane plot. An algorithm has been created that finds the
crosspoint of these curves numerically which yields the solution to both the optimal switching time and
the time of arrival. Despite the fact that this research has been performed with the control of servos
and actuators in mind, the methodology could be applied to quadcopter control as well.

0 t
1

t
2

t
3

t
4

t
f

Time t

u
min

0

u
max

In
pu

t

Figure 3.2: Characteristic time-optimal control input sequence (adapted from Hehn and D’Andrea [40])

As a followup, Hehn, Ritz, and D’Andrea [45] continued on extending this work to a benchmarking tool.
In the algorithm there is no priority set on computational efficiency, but the goal is to create a robust
comparison method to identify the lower bound quadrotor performance that can be used to compare
other time-optimal controllers or see the influence of certain physical parameters of a quadcopter. In
the paper a two-dimensional, first-principles quadcopter model is used. Which means that only two-
dimensional time-optimal trajectories can be calculated with this tool and that lesser dominant dynam-
ics, such as rotor dynamics and aerodynamic drag, are neglected. Nonetheless, the methodology has
been validated by performing tests with real quadcopters which were able to perform maneuvers that
the tool had calculated.

3.4. Control
In traditional control solutions, such as PID controllers, quadcopters are steered from waypoint to way-
point by having an outer control loop map a positional error to a desired heading and velocity and inner
control loops take care of the angular rates and propeller power setpoints.
In optimal control theory on the other hand, solutions often result in trajectories that can be seen as
time-continuous or discrete descriptions of the quadcopter’s position, attitude and velocity as a func-
tion of time. Making quadcopters fly in a time-optimal manner therefore deals with the problem of
finding the time-optimal trajectories, as discussed in section 3.3, but also letting the quadcopter track
the trajectories accurately.

3.4.1. Trajectory Tracking
In drone racing human pilots are able to fly aggressive trajectories that traditional inner PID control
loops may not be able to track accurately. Faessler, Falanga, and Scaramuzza [46] have created an
angular rate controller that is based on LQR methods. LQR controllers for this purpose have been
researched before by Kawai and Uchiyama [47] and Wang, Ghamry, and Zhang [48], but only dealt
with single-axis angular rate control. This paper on the other hand, describes an method in which an
LQR solution for the coupled angular rates in all three dimensions. Moreover, an iterative thrust mixing
scheme has been developed that, in case of propeller power saturation, prioritizes between generating
torques or generating total thrust in such a way that tracking errors are minimized. Experiments with
a custom-built quadcopter have shown that, compared to a state-of-the-art PID controller [49], angu-
lar rate tracking errors have reduced with almost 50% and positional tracking errors with more that 25%.

3.4. Control 37

As explained in section 3.3, Mellinger and Kumar [23] have created a method to generate minimum-
snap trajectories while incorporating the dynamics of the vehicle. In addition to generating a minimum-
snap trajectory, they also make use of the model’s differential flatness property to analytically derive
the control inputs to track the reference trajectory.
It is shown that from the positional acceleration and the yaw reference values the thrust vector can be
derived. Moreover, from the jerk and yaw rate references the attitude rate can be found. And finally,
from the reference snap and yaw acceleration the attitude angular accelerations are found. These val-
ues are fed to the inner-loop controllers that then take care of the individual propeller speeds.

Despite that the optimal control inputs are known now, a feedback controller is still required to account
for disturbances and initial state inaccuracies. Therefore, the control inputs are used as feedforward
terms in a PD controller. In which the tracking error governs the desired thrust force vector as shown
in Equation 3.1.

Fdes = −𝐾𝑝e𝑝 − 𝐾𝑣e𝑣 +𝑚𝑔z𝑤 +𝑚ẍ𝑟 (3.1)

Where e𝑝 is the tracking error in position, e𝑣 is the tracking error in velocity and 𝑚𝑔z𝑤 accounts for
gravity. The feedforward term, ẍ𝑟, is the acceleration from the reference trajectory. Subsequently, the
desired attitude is found from the body axes which can be derived from the reference trajectory’s yaw
angle and assuming that the body’s 𝑧-axis aligns with the desired thrust vector. Inner PD control loops
then relate the attitude error to propeller speeds.
This method has been demonstrated by flying a quadcopter through a set of circularly positioned hoops,
reaching speeds up to 2.6 m/s.

One shortcoming on the method presented in this paper is that the dynamic model does not include
any aerodynamic forces acting on the body which will lead to trajectory tracking inaccuracies at higher
flying speeds. Luckily, this has been addressed in the work of Faessler, Franchi, and Scaramuzza [50]
in which they extend the dynamic model to include linear aerodynamic rotor drag terms. They prove
the differential flatness of this extended model such that the control inputs can again be derived analyt-
ically from a reference trajectory. They created a tracking controller that is very similar to the controller
used by Mellinger and Kumar [23] as explained above. It only differs by accounting for aerodynamic
effects in calculating the desired thrust and also in using the reference angular rate and accelerations
as feedforward terms (Mellinger and Kumar only use the reference position, speed and acceleration
values).
Experiments have shown that tracking performance already visibly improves from a speed of 0.5 m/s
onward, compared to the model without drag. The RMS tracking error reduces with 50% overall with
speeds up to 5 m/s. Flight tests were performed for a circular trajectory and for a ’Gerono lemniscate’
trajectory (a characteristic 8-figure).

It was found that tracking performance increased when the drag parameters were identified for the par-
ticular trajectory to be flown. This is an issue since it is not possible to find one set of drag parameters
that optimizes tracking performance for all types of trajectories. The cause for this is the assumption
that rotor drag can be modeled as a linear system which is not sufficient to accurately model all complex
aerodynamics.

Tal and Karaman [51] have solved this in their control pipeline which combines feedforward terms from
differential flatness with INDI. INDI is a model-based control method that inverts the dynamic model
to calculate the required increments for states and control inputs to achieve the desired states [52].
This method is known to be very robust against model inaccuracies and external disturbances. In fact,
the dynamic model used in the paper only incorporates one external force to account for all collective
disturbances such as aerodynamic forces, shunting the need for identifying the aerodynamics while
still achieving high tracking performance. An overview of the system can be seen in Figure 3.3.

Similar to Equation 3.1 a PD controller is used to find a desired acceleration vector. From which the
desired thrust, roll and pitch angles are found using INDI, while differential flatness is used to find the
desired Euler rates and accelerations. Then a sequence of NDI and INDI is used again to find the
desired body angular accelerations and body moments, respectively. By simple inversion of the quad-

38 3. Drone Racing

PD INDI

Differential
Flatness

NDI INDI

Inversion

Figure 3.3: Tal and Karaman’s control pipeline (derived from Tal and Karaman [51])

copter’s inertia the propeller speeds can be derived from the desired body moments and thrust.
This controller has been put to the test by letting a 1kg quadcopter follow aggressive trajectories in-
doors. For instance, a flight in which an Lemniscate trajectory was flown can be seen in Figure 3.4. The
proposed controller only The robustness of this controller was demonstrated by adding a drag plate to
the quadcopter, effectively changing its aerodynamic properties by an unknown amount. Speeds of up
to 8m/s and accelerations of 2g were achieved, but the maximum RMS tracking error was only 3.9 cm
for the proposed controller and 4.5 cm with the drag plate attached.

Figure 3.4: Lemniscate trajectory tracking (from Tal and Karaman [51])

3.5. Perception
The perception subsystem is responsible for making a quadcopter perceive elements from its environ-
ment. Although there is some overlap between perception and state estimation this section will focus
on the different vision-based techniques that are currently applied to quadcopters.
In the context of ADR perception systems have the following two important functions:

• VO

• Obstacles & Gates recognition

VO is crucial in fast and accurate estimation of the quadcopter’s motion and/or attitude. In drone racing
GPS is often not accurate and fast enough due to the races often being held indoors and requiring both
high-speed and high-precision maneuvers. Furthermore, the race often contains competitive elements
that require to navigate through gates and avoid (moving) obstacles. Therefore, the quadcopter also
relies on perception systems to quickly and accurately recognize these objects such that a control policy
can be designed to react accordingly.

3.5. Perception 39

3.5.1. Visual Odometry
VO is the process in which the quadcopter derives its position and attitude using only one or a sequence
of image frames. One speaks of VIO when VO is combined with IMU measurements. The typical VO
pipeline consists can be seen in Figure 3.5. [53]

Image

Retrieval

Feature Point

Extraction

Feature Point

Tracking

Motion

Estimation
Refinement

Figure 3.5: VO pipeline

For image retrieval one can choose to use a monocular camera, a stereo camera, or even more. Stereo
odometry has as benefit that depth can be estimated from two frames at a single instant in time. Depth
can still be estimated in monocular cases, but must be determined from relative motion of the image’s
elements between frames. Only relative depth between elements in the frame can be estimated. To
find the absolute scale can only be determined if the true dimension of an element in the frame is
known, or from fusing with measurements from other sensors such as the IMU or laser rangers. [54].

The second step consists of extracting feature points from the frames. This process searches the image
frames for patches with characteristic patterns, often based on gradients in pixel brightness. Corners
are for instance typical elements that can be unique distinguished within a frame thank to their high
contrast in brightness gradient.
The goal is to detect the same feature points in different images independently, such that its motion
between frames can be estimated. The area around each feature point is defined by a descriptor. For
good matching accuracy the descriptor must allow each individual feature point to be described reliably
and distinctively.
One of the most popular descriptors are SIFT [55] and SURF [56] which are both invariant for scale
and rotation. Other descriptors, such as BRISK and ORB [57, 58], have been developed to improve
computational efficiency, accuracy or robustness. Mukherjee, Jonathan Wu, and Wang [59] have car-
ried out an extensive comparison study on various well-known feature point detectors and descriptors,
evaluating each method for robustness, accuracy and efficiency.

The next step is to match feature points between image frames. The simplest approach is brute-force
matching, in which each feature point descriptor from one frame is compared to each descriptor in the
subsequent frame. Feature points that are most similar are considered to be matches. However, the
number of comparisons scales quadratically with the total amount of feature points, making compu-
tation time a concern. Therefore it may be beneficial to use an indexing system to distribute all the
descriptors across, based on the description properties, such that for each feature point the search
range is limited. Even faster, one can make use of secondary motion estimations (using the IMU for
instance) to predict in which area of the next frame each feature point is expected to be, narrowing
down the search-area.
Unfortunately, there is always a risk of having false-positive. These mismatches can for instance be
caused by blur, image noise and occlusions. There are methods to remove such outliers. RANSAC is
a well-known method that is well suited this case [60]. In each iteration RANSAC selects a random set
of samples, fits a model to these points and finally labels all samples that deviate too much from the
model as outliers. [61].

The fourth step is to calculate the camera’s motion between image frames from the matched features.
Which method is used depends on whether the feature points are specified in 2-D or 3-D.

2-D to 2-D
In this case the feature points in two subsequent images are all specified in 2-D. The transformation
between the two frames can be found by finding the ”essential” matrix. This matrix contains the geo-
metric relations of the two frames and can be decomposed in a translation matrix and a rotation matrix.
In the 2D-2D case the essential matrix is found by using the epipolar constraint. Which determines the
line on which the matched feature point lies on in the subsequent image, as illustrated in Figure 3.6.

40 3. Drone Racing

Defining the constraint for at least five matching pairs gives a solvable system of homogeneous equa-
tions to which the essential matrix is the solution. Subsequently, the translation and rotation matrix can
be decomposed from the essential matrix, describing the relative motion of one image to the other. [54]

p

P

O O'

p'

Frame 1

Frame 2

l l'

Figure 3.6: Feature point P is projected as p on frame 1 and as p’ on frame 2. The epipolar constraint states that potential
matches for p must lie on l’ and potential matches for p’ must lie on l. (adapted from Zhang et al. [62])

3-D to 3-D
3-D to 3-D motion estimation is possible when two stereo image pairs are available. The all feature
points can now be specified in 3-D coordinates. In this casemotion can be extracted by first triangulating
the matched features. Subsequently, a matrix is calculated that minimizes the sum of 𝐿2-distances
between the matched feature pairs, which is theoretically possible with having only three matched
pairs. The translation and rotation can then be extracted from this characteristic matrix. [54]

3-D to 2-D
On the 3-D to 2-D case the feature points in the older frame are specified in 3D (from a previous motion
estimation for instance), but are specified in 2-D in the newer image frame. This particular problem
of estimation the camera’s pose is called PnP and can be solved if there are 3 matching pairs at a
minimum (P3P). However, having only 3 matches yields 4 possible solutions, additional points help in
removing perspective ambiguities in this case. An efficient way of solving P3P is described by Kneip,
Scaramuzza, and Siegwart [63].

3.5.2. Object Recognition
In drone racing navigating through gates is one of the aspects that make ADR difficult. The system
must recognize gates quickly and reliably such that the autopilot can respond accordingly. The high-
velocity travel and changing lighting conditions makes this especially challenging. Object recognition
is clearly not only of essence to ADR but of even more importance in autonomous driving. In which
object recognition has more complex goals, from recognizing roads, cars and people to detecting and
interpreting traffic signs. On top of that, the consequences of failure are more severe and therefore the
reliability of the object recognition systems must be significantly higher than in ADR.

Classical Computer Vision Approaches
In recent years there have been many advances in AI approaches to object recognition and classi-
fication. But before AI became feasible quadcopters had to rely on more traditional computer vision
methods and are still utilized in small quadcopters with limited computational power [64].
Such methods generally relied more explicitly detecting certain obvious characteristics of an object,
such as color or shape. That is, the user has to manually specify beforehand which characteristics to
look for.

For instance, gates are often rectangular. In this case a method such as the Hough transform may be
useful to find all rectangular shapes in an image. A Hough transform can be used to find many different
kinds of shapes under the condition that the shape in question can be parameterized, such as circles,

3.5. Perception 41

straight lines and sinusoidal shapes [65]. The result is a mask per that indicates per frame which pixels
belong to the shape. Using edge and corner detectors such as the Canny edge [66] detector and Harris
corner detector [67] can be useful to give more meaning to such mask by indicating where the detected
lines start or end, and by providing the gate’s corner locations, from which information about relative
pose and perspective can be derived.

For example, Jung et al. [68] have presented a gate detection method for the 2016 IROS ADR Chal-
lenge. Their approach starts with detecting the edges of the gates, based on the bright orange color
of a gate and using a canny edge detector. The next step is to find the contours of the gate by dilating
the edges. Once the width and height of the box were known the center point can be derived to which
the quadcopter was steered.

One year later, during IROS 2017, Li et al. [69] presented the ’Snake Gate’ method to detect gates.
Similarly to Jung et al. [68], their approach was also based on the fact that the gate was bright orange
of color. But contrary to their edge detection method, they randomly search for points that match the
gate’s color and subsequently search the adjacent pixels for continuity of the gate, in an up-down,
left-right fashion. Similar to the popular ’Snake’ video game. Once the gate’s corners are known the
camera’s pose with respect to gate is calculated, using measurements from the onboard AHRS.

Convolutional Neural Networks
The more AI approaches that have gained popularity over the recent years most often deal with training
neural network to distinguish gates in an image frame. CNNs may be the most often utilized in object
recognition approaches. CNNs are ANNs which contain at least one convolutional layer. A convolu-
tional layer is specially designed to process data from multiple arrays as input and is characterized by
some neurons sharing weights in form of a so-called convolutional kernel, or filter. At each neuron
the input data is convolved with local kernels before being passed on to the next layer. In most ar-
chitectures a convolutional layer is often followed by a pooling layer that combines the output of a few
neurons into one, decreasing the dimensions of the network and consequently making the network less
sensitive to small variations of image features. A typical CNN architecture can be seen in Figure 3.7.

Figure 3.7: Example of a classic CNN architecture. This particular one is developed by LeCun et al. [70] to recognize handwritten
characters. (from [70])

A popular training method applied to CNNs is error-backpropagation. In this supervisory approach,
the partial derivatives of the error of the objective function with respect to the trainable parameters is
calculated. Subsequently a gradient-descent scheme is used to iteratively update each parameter. A
large dataset of labeled example images is required to evaluate the network and to quantify the partial
derivatives, at each iteration.[71]

CNNs architectures often consist of more than one convolutional layer. Each of which applies convo-
lution to the output of the previous layer. Interestingly, converged kernels give insight on how detailed
patterns are built-up from more simple features. It is found that the kernels of the first convolutional
layer gives strong responses to basic shapes such as edges and gradients, whereas the responses
in deeper layers are increasingly more complex and specific to the object of interest. This cascade of
increasing complexity allows for instance to robustly distinguish the face of a dog from the face of a cat
[72, 73].

42 3. Drone Racing

In the context of ADR, Jung et al. [74] have demonstrated the use of a CNN that runs on-board and
reliably detects the center point of a single gate. The CNN was use the Single Shot MultiBox Detector
approach from Liu et al. [75], but was modified by using a different CNN architecture based on the de-
sign of Krizhevsky, Sutskever, and Hinton [73]. However, in order to increase execution speed it was
necessary to remove higher-level convolutional layers. Lowering the average precision, but allowing
close to 30 fps processing speed.

Kaufmann et al. [76] have created an even more advanced pipeline. In their approach they use a CNN
from [77] to extract features from images, subsequently a multilayer perceptron network estimates the
relative post of the gate. The pose information is used by a MPC to plan a trajectory through the gate.
Members of this team also participated in the 2019 Alphapilot Challenge. Their entire pipeline is pre-
sented in [78]. For gate detection they moved away from using a CNN to estimate gate pose directly,
but instead used a segmentation approach to identify the four corners of the gates. Subsequently they
have trained a network that can find part affinity fields based on the work of Cao et al. [79], which are
used to find the edges that connects the corners of the gates. Finally, a VIO approach is used to de-
termine the quadcopters pose relative to the gate.

The main benefit of using deep learning approaches is that there is less handcrafting involved com-
pared to more traditional computer vision methods. The training process will determine the values of
the kernels, which essentially specifies the characteristic features of an object that must be searched
for. The downside however, which generally holds for any neural network, is that CNN architectures
are often so complex that it acts as a black box, making debugging a process of trial and error. More-
over, deep learning approaches are known to be computationally expensive, especially in training the
network. But executing a CNN in real-time can be challenging for small quadcopters.

3.6. On-board State Estimation
In order to effectively control a quadcopter it is essential to have knowledge of its states. Therefore,
state estimation is a fundamental subsystem in quadcopter control. Which states need to be estimated
is generally determined by the states on which the controllers are dependent. Most often these include
height, attitude and angular rate for the inner loop controllers. The outer loop controllers rely on position
and velocity estimates.[80]

A number of the practical experiments performed in the work described in section 3.4 used an external
motion capture system to optically track the position and attitude of quadcopters. The quadcopters are
equipped with visual markers which the system is able to track in 3D space. Although this system often
yields close-to-groundtruth results it is an expensive solution and unpractical in cluttered and outdoor
environments. In practice it is desirable to have on-board state estimation, which can be challenge due
to limited computational power and sensor accuracy of the on-board hardware.

3.6.1. Visual Approaches to State Estimation
As explained in subsection 3.5.1 perception methods such as PnP or deep learning approaches, can
be used to calculate the pose of a camera with respect to the world. From the pose one can esti-
mate the quadcopter’s attitude and position. However, real-world information about the image frames
must be known beforehand because the estimated pose is always relative to either an earlier frame or
to a detected object such as a gate. In the former case the method will be sensitive to drift when no
feedback can be applied. Which is why VIO methods use inertial measurements to account for drift.[53]

V-SLAM is an approach that seems very similar to VO but differs from it by being concerned with
global consistency of the trajectory. That is, historical odometry estimates are stored to detect so-
called loop-closure, which will be used to refine the traveled trajectory. VO on the other hand focuses
on optimizing the estimated odometry based only on the last couple of frames. As the complete history
of the trajectory is not relevant to control performance. [54]

3.6. On-board State Estimation 43

3.6.2. Estimating Attitude
In determining the attitude of a quadcopter the IMU’s gyroscope, accelerometer and magnetometer are
used in most cases. The gyroscope is used to estimate the angular rate whereas the accelerometer
can be used to find the initial orientation with respect to the direction of gravity. The latter method
can only be used when the quadcopter is steady, or when a method is available to subtract the body
accelerations from the accelerometer measurements. For instance, thrust may always be aligned with
the body z-axis and so will the body accelerations in undisturbed flight. This leaves 2 accelerometer
axes available to estimate the attitude w.r.t. the gravity vector.

However, in reality blade-flapping may occur when the quadcopter is moving. This is a phenomenon
caused by the fact that the propeller blades experience different airspeeds when comparing the ad-
vancing blade with a retreating blade w.r.t the airspeed. This will result in a difference of the produced
lift along the rotor path. The collective lift force will tilt the rotor slightly as if it were acting 90 degrees
ahead from the location of the maximum lift due to gyroscopic precession. This will cause a slight tilt in
each rotor as well as for the collective thrust as illustrated in Figure 3.8. Which implies that the collective
thrust no longer aligns with the body z-axis, making it less trivial to estimate the correct attitude using
accelerometers only. [80, 81]

Figure 3.8: The effect of blade flapping on thrust (adapted from Huang et al. [81]).

Mahony, Kumar, and Corke [80] explain that the low-frequency component of a 3-axis accelerometer
can be used to estimate the attitude in slow, steady flights. However, in order to improve the estima-
tion for faster dynamics multiple the accelerometer measurements can be fused with the gyroscope
and magnetometer by means of complementary filter or a Kalman filter. A complementary filter ap-
proximates the attitude by making a weighted combination of the fast and slow dynamics. E.g., in the
simplest form it can look like :

�̂�𝑖+1 = 𝑅𝑖,acc ⋅ 𝛼 + (1 − 𝛼)(Ω𝑖,gyro ⋅ 𝑑𝑡 + �̂�𝑖) (3.2)

Where �̃� is the approximation of attitude 𝑅, 𝑅acc is the angle as derived from the accelerometer mea-
surements andΩgyro is the angular rate asmeasured by the gyroscope. 𝛼 determines to what proportion
the next estimate should rely on the accelerometers or on the integrated gyroscope measurements.
This term needs to be carefully tuned in order to give reliable results under different circumstances.
A more sophisticated complementary filter has been developed by Mahony et al. [82] that combines
the gyroscope, magnetometer and accelerometer and other attitude estimation sources. Each sepa-
rate estimation comes with its own corresponding gain that give the related cut-off frequency so that
the filter can be carefully tuned to only select the appropriate frequency signals of each source.

3.6.3. Filtering
As aforementioned, attitude estimations can be calculated by combining fast dynamics from accelerom-
eters with the slower dynamics of magnetometers. This is a basic example of sensor fusing or filtering
and is not only applied in attitude estimation but often also necessary for reliable position and velocity
estimation. The idea is to combine measurements from different sources to make use of their individual
advantages (being fast or accurate) to mitigate the individual disadvantages (being slow or inaccurate)

44 3. Drone Racing

to improve the overall estimation of the state.

Typically, complementary filters do not include statistical properties describing the noise in a signal
and are designed by frequency analysis mostly [83]. Kalman filters on the other hand are filters that
estimate a state by taking a weighted average of measurements and model-based predictions. The
weight (Kalman gain), depends on the statistical certainty of the measurements, which is measured by
the variance of the prediction errors [84]. The basic Kalman filter is intended for linear systems and
can be made optimal with respect to different cost functions, but extensions have been developed to
work with nonlinear systems as well, such as the extended and unscented Kalman filters.

The EKF linearizes the nonlinear prediction model about nominal values of the states and inputs, but
this method may give unsatisfactory results when a system is highly nonlinear. This is mainly caused
because the variance values are propagated based on the linearized model that may not adequately
represent the local linearity of the system. One attempt to mitigate this issue is by improving the lin-
earization. This is the principle on which the IEKF is based. This approach adds an iterative loop in the
EKF algorithm to repeatedly re-linearize the model about new nominal states, which were estimated
based on the linearization of the previous loop [85].
Julier and Uhlmann [86] have developed the unscented Kalman filter to work with highly nonlinear sys-
tems. This filter makes a nonlinear approximation of the covariance values at several sample points
around the mean. This allows for a more robust tuning of the Kalman gain. Crassidis and Markley [87]
use this method in a attitude estimation pipeline for spacecraft which was shown in simulation to have
a better performance than an EKF.

3.6.4. Estimating Position
Thanks to advances in inertial sensors it is possible to obtain relatively cheap and small systems that
are able to estimate position good accuracy and stability. Most position estimation methods rely on a
(slow) absolute position estimation method such as GPS and/or VIO, and use (fast) dead-reckoning
integration of estimated velocity values and accelerometer measurements to estimate the position in
between the GPS/VIO updates.
However, the quality of measurements are highly dependable on what maneuvers are performed. For
instance, accelerometers in IMUs do not only measure linear accelerations a body experiences, but
also includes the influence from gravity and centrifugal accelerations (Coriolis effect) that need to be
corrected for. [88]

As for height, altitude can often be estimated well enough in outdoor flights using a barometric altimeter
and GPS. Indoors however, there GPS does not work to provide absolute height determinations. Baro-
metric measurements can still be used for relative altitude estimations, but may be sensitive to changing
atmospheric conditions. Therefore, one can complement this system with downward oriented distance
sensors such as radar, lidar or sonar. Which are known to have good accuracy and relatively high
sampling rates. Naturally, distance measurements will be influenced by objects on the floor and when
the floor is non-planar.[89]

3.6.5. Estimating Velocity
To estimate velocity one would expect it be done by differentiating the position estimates. However, for
the desired maneuvers of ADR the velocity estimations must be fast and accurate. Meaning that for
positional differentiating to work well enough the position estimates must be even more accurate and
fast. As explained in subsection 3.6.4, absolute position measurements are slow and estimations rely
on velocity values as well. In other words, there is a mutual dependency. Mahony, Kumar, and Corke
[80] demonstrate a simple way to calculate horizontal velocity from accelerometer measurements. For
this approach they assume that the quadcopter is steady in altitude and use a linear drag model that
includes blade flapping. Moreover, a recursive low-pass filter is applied to the estimation to account for
noise in the acceleration measurements.

3.7. Chapter Summary 45

3.7. Chapter Summary
ADR is considered to be a exciting platform to demonstrate the latest developments on quadcopter con-
trol, automated trajectory generation, perception and state estimation. IROS and IMAV are prestigious
events where research groups are given the opportunity to present their work in a form of competitions
that test their approaches on control, object detection and planning. In 2019 the first edition of the Al-
phapilot challenge has been held. This event was brought to live to decrease the gap between human
piloted drone racing and ADR by letting the participating teams challenge one of the best human pilots.
This chapter presented the most crucial subsystem and methodologies to enable a quadcopter to op-
erate fully autonomously.

section 3.3 explained the different approaches to automatic trajectory generation. Which started with
methods that optimized trajectories for smooth, minimum-snap trajectories, and others that aimed at
efficiently planning around obstacles or finding time-optimal solutions. In addition to the methods that
focused on mathematically solving the OCPs work has also been performed on machine learning ap-
proaches. These methods train ANNs with either real flight data or simulation data to give optimal
control inputs.

section 3.4 focused on controlling the quadcopters to track these trajectories. It was shown that most
control pipelines relied on feedforward terms, which could be derived form reference trajectories by
leveraging differential flatness, as well as on feedback terms to minimize tracking errors. Improved
tracking methods were developed by taking account more complex aerodynamic effects in calculating
feedforward terms as well as implementing more robust inner loop controllers such as INDI.

In section 3.5 the application of perception systems were elaborated on. Two main goals of perception
in ADR are VO and object detection. VO is used to derive the quadcopter’s motion and pose from
images captured by the onboard camera.
The most clear purpose of object detection is to visually detect gates so that the flight planner can cal-
culate a trajectory that steers the quadcopter through the gate. It was shown that classical computer
vision methods could be used to detect gates, but that it requires some manual handcrafting and the
gates to be very distinguishable from their surroundings, both in color and shape.
The use of deep learning methods has shown to be very robust. CNNs have been shown to be very
effective in classifying objects and have over the years become very popular methods for gate detection.

Finally, in section 3.6 the process of state estimation was described. It was shown how VO and PnP are
robust, but expensive solutions to estimate position and attitude. Moreover, an explanation was given
on how different on-board sensors could be combined to improve state estimation by using filtering
techniques such as the complementary filter or EKF.

A
Pontryagin’s Conditions for Optimality

In this appendix the derivation Pontryagin’s Minimum Principle will be used to derive conditions for
optimality. This derivation is adapted from Kirk [5]. Starting from the cost function:

𝐽(u) = ℎ (x (𝑡𝑓) , 𝑡𝑓) + ∫
𝑡𝑓

𝑡0
𝑔(x(𝑡),u(𝑡), 𝑡)𝑑𝑡 (A.1)

It is assumed that there are no bounds on the admissible states and control inputs. For the derivation
where the control regions are actually bounded the reader is encouraged to follow the derivation in Kirk
[5]. Where it is found that only the third condition for optimality is different from the unbounded case in
this appendix.

Assuming that ℎ(x(𝑡𝑓), 𝑡𝑓) is differentiable it can be written as:

ℎ (x (𝑡𝑓) , 𝑡𝑓) = ∫
𝑡𝑓

𝑡0

𝑑
𝑑𝑡 [ℎ(x(𝑡), 𝑡)]𝑑𝑡 + ℎ (x (𝑡0) , 𝑡0) (A.2)

Since x(𝑡0) and 𝑡0 are constant ℎ(x(𝑡0), 𝑡0) can be omitted from the minimization and the cost function
can be written as:

𝐽(u) = ∫
𝑡𝑓

𝑡0
{𝑔(x(𝑡),u(𝑡), 𝑡) + 𝑑

𝑑𝑡 [ℎ(x(𝑡), 𝑡)]} 𝑑𝑡 =

∫
𝑡1

𝑡0
{𝑔(x(𝑡),u(𝑡), 𝑡) + [𝜕ℎ𝜕x(x(𝑡), 𝑡)]

𝑇
ẋ(𝑡) + 𝜕ℎ𝜕𝑡 (x(𝑡), 𝑡)} 𝑑𝑡

(A.3)

Next the differential equation constraints are added by introducing Lagrangemultipliers p(𝑡) and chang-
ing the cost function into the augmented form:

𝐽𝑎(u) =∫
𝑡𝑓

𝑡0
{𝑔(x(𝑡),u(𝑡), 𝑡) + [𝜕ℎ𝜕x(x(𝑡), 𝑡)]

𝑇
ẋ(𝑡) + 𝜕ℎ𝜕𝑡 (x(𝑡), 𝑡) + p

𝑇(𝑡)[a(x(𝑡),u(𝑡), 𝑡) − ẋ(𝑡)]} 𝑑𝑡

(A.4)
For convenience the term within the integral is shortened to 𝑔𝑎(x(𝑡), ẋ,u(𝑡),p(𝑡), 𝑡). So that:

𝐽𝑎(u) = ∫
𝑡𝑓

𝑡0
𝑔𝑎(x(𝑡), ẋ,u(𝑡),p(𝑡), 𝑡)𝑑𝑡 (A.5)

Using the principles of the calculus of variations and assuming that the end points at 𝑡𝑓 can both be

47

48 A. Pontryagin’s Conditions for Optimality

specified or free, the variation of 𝐽𝑎(u∗) can be found:

𝛿𝐽𝑎 (u∗) =0 = [
𝜕𝑔𝑎
𝜕ẋ (x∗ (𝑡𝑓) , ẋ∗ (𝑡𝑓) ,u∗ (𝑡𝑓) ,p∗ (𝑡𝑓) , 𝑡𝑓)]

𝑇
𝛿x𝑓

+ [𝑔𝑎 (x∗ (𝑡𝑓) , ẋ∗ (𝑡𝑓) ,u∗ (𝑡𝑓) ,p∗ (𝑡𝑓) , 𝑡𝑓) − [
𝜕𝑔𝑎
𝜕ẋ (x∗ (𝑡𝑓) , ẋ∗ (𝑡𝑓) ,u∗ (𝑡𝑓) ,p∗ (𝑡𝑓) , 𝑡𝑓)]

𝑇
ẋ∗ (𝑡𝑓)] 𝛿𝑡𝑓

+∫
𝑡𝑓

𝑡0
{[[𝜕𝑔𝑎𝜕x (x∗(𝑡), ẋ∗(𝑡),u∗(𝑡),p∗(𝑡), 𝑡)]

𝑇

− 𝑑𝑑𝑡 [
𝜕𝑔𝑎
𝜕ẋ (x∗(𝑡), ẋ∗(𝑡),u∗(𝑡),p∗(𝑡), 𝑡)]

𝑇
] 𝛿x(𝑡)

+ [𝜕𝑔𝑎𝜕u (x∗(𝑡), ẋ∗(𝑡),u∗(𝑡),p∗(𝑡), 𝑡)]
𝑇
𝛿u(𝑡)

+ [𝜕𝑔𝑎𝜕p (x∗(𝑡), ẋ∗(𝑡),u∗(𝑡),p∗(𝑡), 𝑡)]
𝑇
𝛿p(𝑡)} 𝑑𝑡

(A.6)
Next, write out the terms within the integral that contains ℎ(x(𝑡), 𝑡) and write out the partial derivatives:

𝜕
𝜕x [[

𝜕ℎ
𝜕x (x

∗(𝑡), 𝑡)]
𝑇
ẋ∗(𝑡) + 𝜕ℎ𝜕𝑡 (x

∗(𝑡), 𝑡)] − 𝑑
𝑑𝑡 {

𝜕
𝜕ẋ [[

𝜕ℎ
𝜕x (x

∗(𝑡), 𝑡)]
𝑇
ẋ∗(𝑡)]} =

[𝜕
2ℎ
𝜕x2 (x

∗(𝑡), 𝑡)] ẋ∗(𝑡) + [𝜕
2ℎ

𝜕𝑡𝜕x (x
∗(𝑡), 𝑡)] − 𝑑

𝑑𝑡 [
𝜕ℎ
𝜕x (x

∗(𝑡), 𝑡)] =

[𝜕
2ℎ
𝜕x2 (x

∗(𝑡), 𝑡)] ẋ∗(𝑡) + [𝜕
2ℎ

𝜕𝑡𝜕x (x
∗(𝑡), 𝑡)] − [𝜕

2ℎ
𝜕x2 (x ∗ (𝑡), 𝑡)] ẋ

∗(𝑡) − [𝜕
2ℎ

𝜕x𝜕𝑡 (x
∗(𝑡), 𝑡)] = 0

(A.7)

So assuming that the order differentiation can be interchanged, the terms that involve ℎ(x(𝑡), 𝑡) vanish
from the integral. The integral then becomes:

∫𝑡𝑓𝑡0 {[[
𝜕𝑔
𝜕x (x

∗(𝑡),u∗(𝑡), 𝑡)]
𝑇
+ p∗𝑇(𝑡) [𝜕a𝜕x (x

∗(𝑡),u∗(𝑡), 𝑡)]

− 𝑑
𝑑𝑡 [−p

∗𝑇(𝑡)]] 𝛿x(𝑡) + [[𝜕𝑔𝜕u (x
∗(𝑡),u∗(𝑡), 𝑡)]

𝑇

+p∗𝑇(𝑡) [𝜕a𝜕u (x
∗(𝑡),u∗(𝑡), 𝑡)]] 𝛿u(𝑡) + [[a (x∗(𝑡),u∗(𝑡), 𝑡) − ẋ∗(𝑡)]𝑇] 𝛿p(𝑡)} 𝑑𝑡

(A.8)

This term must become zero on extremals. Note that the coefficient of 𝛿p(𝑡) is always zero since it
represents the constraint ẋ∗(𝑡) = a (x∗(𝑡),u∗(𝑡), 𝑡) and therefore can take any arbitrary values. So they
can be selected to make the coefficient of 𝛿x(𝑡) zero:

ṗ∗(𝑡) = − [𝜕a𝜕x (x
∗(𝑡),u∗(𝑡), 𝑡)]

𝑇
p∗(𝑡) − 𝜕𝑔𝜕x (x

∗(𝑡),u∗(𝑡), 𝑡) (A.9)

Since 𝛿u(𝑡) is independent its coefficient must be zero:

0 = 𝜕𝑔
𝜕u (x

∗(𝑡),u∗(𝑡), 𝑡) + [𝜕a𝜕u (x
∗(𝑡),u∗(𝑡), 𝑡)]

𝑇
p∗(𝑡) (A.10)

In order to satisfy Equation A.6 the remaining terms outside of the integral must be zero:

[𝜕ℎ𝜕x (x
∗ (𝑡𝑓) , 𝑡𝑓) −p∗ (𝑡𝑓)]

𝑇 𝛿x𝑓 + [𝑔 (x∗ (𝑡𝑓) ,u∗ (𝑡𝑓) , 𝑡𝑓) +
𝜕ℎ
𝜕𝑡 (x

∗ (𝑡𝑓) , 𝑡𝑓)

+p∗𝑇 (𝑡𝑓) [a (x∗ (𝑡𝑓) ,u∗ (𝑡𝑓) , 𝑡𝑓)]] 𝛿𝑡𝑓 = 0
(A.11)

49

Equations eqs. (A.9) and (A.10) together with the constraint ẋ∗(𝑡) = a (x∗(𝑡),u∗(𝑡), 𝑡) form the neces-
sary conditions for optimality. It is convenient to use the Hamiltonian notation ℋ(x(𝑡),u(𝑡),p(𝑡), 𝑡) =
𝑔(x(𝑡),u(𝑡), 𝑡) + p𝑇(𝑡)[a(x(𝑡),u(𝑡), 𝑡)] so the necessary conditions can be written as:

ẋ∗(𝑡) = 𝜕ℋ
𝜕p (x

∗(𝑡),u∗(𝑡),p∗(𝑡), 𝑡)
ṗ∗(𝑡) = −𝜕ℋ𝜕x (x

∗(𝑡),u∗(𝑡),p∗(𝑡), 𝑡)
0 = 𝜕ℋ

𝜕u (x
∗(𝑡),u∗(𝑡),p∗(𝑡), 𝑡)

⎫

⎬
⎭

for all
𝑡 ∈ [𝑡0, 𝑡𝑓]

[𝜕ℎ𝜕x (x
∗ (𝑡𝑓) , 𝑡𝑓) −p∗ (𝑡𝑓)]

𝑇 𝛿x𝑓 + [ℋ (x∗ (𝑡𝑓) ,u∗ (𝑡𝑓) ,p∗ (𝑡𝑓) , 𝑡𝑓)

+𝜕ℎ𝜕𝑡 (x
∗ (𝑡𝑓) , 𝑡𝑓)] 𝛿𝑡𝑓 = 0

(A.12)

Part III

Preliminary Work

51

4
Lightweight Optimal Control

This chapter will elaborate on the work that has been performed in finding control approaches that are
computationally efficient and simultaneously approach optimal-time solutions.

4.1. Bang-Bang Optimal Control
The approach that has been investigated is a lightweight, model predictive bang-bang controller. As ex-
plained in subsection 3.3.4, bang-bang type control is a control approach in which the control switches
between saturated input values. This approach was considered promising because the OCP is reduced
to one where the switching times are the only variables to be solved. Which is in benefit to the desired
low computational effort.

Take for example a very simple temperature regulator of a room. This controller would instruct the
central heating system to either be idle, heat or cool the room at maximum power. It is obvious that
this is the fastest method of reaching the target temperature from an offset. However, one can imagine
that overshoot is likely to happen if one does not switch between the input values in time. And that can
be difficult to have the temperature settle on the target exactly since the control input does not scale
proportionally with the temperature offset.

It is known that when the control input is constrained, the time-optimal control sequence consists
of bang-bang control in thrust and bang-singular-bang in rotational control, as explained in subsec-
tion 3.3.4. Singular control is a specific type of control in sections of the trajectory where Pontryagin’s
Minimum Principle cannot be easily solved. Other means have to be used to find the solution for that
part of the trajectory. Hehn, Ritz, and D’Andrea [45] do this by adding an equality constraint on one
specific co-state which allows the control input to be solved explicitly.

In the following it will be demonstrated using PMP that for a simple 2D dynamic model with constrained
inputs the time-optimal solution is of the bang-singular-bang type.

Take the quadcopter illustrated in Figure 4.1. The system is described as:

x = [𝑥 �̇� 𝑧 �̇� 𝜃]𝑇

u = [𝑢�̇� 𝑢𝑇]
𝑇 [𝑢�̇� 𝑢𝑇]

𝑇
≤ u ≤ [𝑢�̇� 𝑢𝑇]

𝑇

𝑓(x,u) = ẋ =
⎡
⎢
⎢
⎢
⎣

�̇�
�̈�
�̇�
�̈�
�̇�

⎤
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

�̇�
1
𝑚 (𝑢𝑇 sin𝜃 − 𝐶𝑑 ⋅ �̇�)

�̇�
1
𝑚 (𝑊 − 𝑢𝑇 cos𝜃 − 𝐶𝑑 ⋅ �̇�)

𝑢�̇�

⎤
⎥
⎥
⎥
⎥
⎦

(4.1)

53

54 4. Lightweight Optimal Control

-

T

W

x

z

Tx

Tz

Dx

Dz

θ

Figure 4.1: 2-D Quadcopter model
𝑇 =Thrust
𝐷𝑥 =Drag = 𝐶𝑑 ⋅ �̇�
𝑊 = 𝑚𝑔 =Weight
𝑚 =Mass
𝑔 =Gravity
𝜃 =Attitude angle
𝑥 =Position

Since a time-optimal trajectory is desired the cost function is simply:

𝐽 = ∫
𝑡𝑓

𝑡0
1𝑑𝑡 (4.2)

Compare this to Equations 2.14 and 2.15 and it becomes clear that the Hamiltonian of this system is:

ℋ = 1 + p𝑇𝑓(x,u) = 1 + 𝑝1�̇� + 𝑝2
1
𝑚 (𝑢𝑇 sin𝜃 − 𝐶𝑑�̇�) + 𝑝3�̇� +

𝑝4
𝑚 (𝑢𝑇 cos𝜃 − 𝐶𝑑 �̇� + 𝑊) + 𝑝5𝑢�̇� (4.3)

PMP states that the optimal control input minimizes the Hamiltonian. So for Equation 4.3 it can be seen
thatℋ can be minimized by 𝑢�̇� and 𝑢𝑇 separately.
Starting with the optimal pitch rate, the optimal control input 𝑢∗�̇� can be found minimizing 𝑝5𝑢�̇�.

𝑢∗�̇� = argmin
𝑢�̇�∈[𝑢�̇� ,𝑢�̇�]

{𝑝5𝑢�̇�} (4.4)

From this becomes clear that 𝑢∗�̇� either becomes 𝑢�̇� or 𝑢�̇� if 𝑝5 is larger or smaller than zero, respectively.
𝑝5 becomes the regulating switching function for 𝑢�̇�. If 𝑝5 is zero for a nontrivial time this condition
cannot hold and 𝑢∗�̇� becomes a singular arc. The singular solution for 𝑢�̇� can be derived from the
condition that the switching function 𝑝5 must remain zero by stating that �̇�5 = 0.
From the second PMP condition in Equation 2.16 �̇�5 can be calculated as:

�̇�5 = −
𝜕ℋ
𝜕𝜃 = −(𝑝2𝑢𝑇 cos𝜃 + 𝑝4𝑢𝑇 sin𝜃)

1
𝑚 (4.5)

𝜃∗sing can be found by assuming that 𝑝5 is zero during this period. And therefore �̇�5 is equal to zero. By
subsequently differentiating the resulting expression with respect to time optimal control input 𝑢∗�̇�,sing

4.2. Bang-Bang Controller 55

can be found for the singular arc:

𝜃∗sing = arctan
−𝑝2
𝑝4

𝑢∗�̇�,sing =
𝜕𝜃∗sing
𝜕𝑡 =

𝜕
𝜕𝑡 (

−𝑝2
𝑝4
)

1 + (−𝑝2𝑝4)
2

(4.6)

Hehn, Ritz, and D’Andrea [45] demonstrate how to derive expressions for p so that they can be ex-
pressed in terms of constants and time. However, they have left out aerodynamic drag in their model
which made it easier to find solutions for 𝑝2 and 𝑝4.

Similarly, it can be shown that the optimal control input for thrust, 𝑢∗𝑇 has a bang-bang shape:

𝑢∗𝑇 = argmin
𝑢𝑇∈[𝑢𝑇 ,𝑢𝑇]

𝑝2
𝑚𝑢𝑇 sin𝜃

∗ + 𝑝4𝑚𝑢𝑇 cos𝜃
∗

(4.7)

From which the switching function Φ𝑇 =
𝑝2
𝑚 sin𝜃∗ + 𝑝4

𝑚 cos𝜃∗ can be defined. Again, it can be seen
that 𝑢∗𝑇 is either 𝑢𝑇 or 𝑢𝑇 when Φ𝑇 > 0 or Φ𝑇 < 0, respectively.

4.2. Bang-Bang Controller
An optimal bang-bang control problem is in essence different from other OCPs because the constrained
control values are known beforehand, one only needs to calculate when to switch between the satu-
rated values.
Therefore, the suggested controller consists of a model predictive controller that leverages the simplic-
ity of the bang-bang optimization principle.

The controller is decoupled for two dimensions: Bang-Bang control input is applied to the ’saturation
dimension’. That is, pitch angle when moving in the body X-axis and roll angle when moving in the
body y-axis. The controller will optimize the switching time for this direction. The reason that the roll
and pitch angles have been selected as control inputs instead of rotational rate or torque is that this
model allows to solve for position analytically, as will be shown in subsection 4.2.1. It can be shown that
bang-bang control will still be the optimal solution for this by modifying Equation 4.3 by replacing 𝜃 by
input 𝑢𝜃 and omitting the terms related to the rotational dynamics and 𝑧. Equation 4.7 then becomes:

[𝑢∗𝑇 , 𝑢∗𝜃] = argmin
𝑢𝑇 ∈ [𝑢𝑇 , 𝑢𝑇]
𝑢𝜃 ∈ [𝑢𝜃 , 𝑢𝜃]

𝑝2
𝑚𝑢𝑇 sin𝑢

∗
𝜃

(4.8)

From which it becomes clear that 𝑢∗𝜃 must either be 𝑢𝜃 or 𝑢𝜃 depending on the values of 𝑝2 and 𝑢𝑇.
The solution would be singular if 𝑝2𝑢𝑇 = 0.

The second dimension is the direction which is lateral to the saturation dimension and in this direction
the angle is optimized instead of the switching time. This choice was made because in ADR it is often
not necessary to minimize the lateral position error as quickly as possible. So more power can be
directed towards the longitudinal control.

4.2.1. Prediction Model
As it is intended to be able to run the MPC on a tiny quadcopter emphasis is put on keeping the required
computational power to a minimum to maximize the rate at which predictions can be made. For a start,
this means that the required number of evaluations of the dynamic model will need to be limited.
Typical MPCs predicts ahead by numerically propagating the dynamics from its current state to a so-
called planning-horizon. The number of evaluations then depend on the frequency of prediction, the

56 4. Lightweight Optimal Control

time-horizon and the discretization scheme.

On the other hand, the suggested method uses a 1D dynamic model that evaluates the position and
velocity analytically in one direction. The model assumes perfect altitude control. That is, the thrust

component that aligns with the Earth Z-axis is always equal to the weight: 𝑇 = 𝑊
cos𝜃 cos𝜙

Furthermore, it is assumed that the attitude angle is constant between switching instances and that the
aerodynamic drag is linearly proportional to the speed. In Appendix B the derivation of the position and
speed prediction is given. With as result:

𝑥 = 𝑐1𝑒
−𝐶𝑑
𝑚 𝑡 + 𝑐2 +

𝑊 tan𝜙
𝐶𝑑

𝑡 (4.9a)

�̇� = −𝐶𝑑
𝑚 𝑐1𝑒

−𝐶𝑑
𝑚 𝑡 + 𝑊 tan𝜙

𝐶𝑑
(4.9b)

Where 𝑥 is the position at time 𝑡, 𝐶𝑑 is the drag coefficient, 𝑚 is the mass, 𝑊 is the weight (𝑚 ⋅ 𝑔)
and 𝜙 is the attitude angle corresponding to the direction (pitch for forward prediction, roll for lateral
prediction). Furthermore, constants 𝑐1 and 𝑐2 are calculated from the initial position and velocity:

𝑐1 = (�̇�0 −
𝑊 tan𝜙
𝐶𝑑

) 𝑚
−𝐶𝑑

(4.10a)

𝑐2 = 𝑥0 − 𝑐1 (4.10b)

See Figure 4.2. The optimal bang-bang motion from one position to a target position, starting and
ending at rest, consists of an acceleration phase, a switching phase and a deceleration phase. When
it is assumed that the switching phase is instantaneous a complete prediction can be made by splitting
the trajectory in two parts. The first part is valid for the acceleration phase and the second part for the
deceleration phase. The constants for the second phase are calculated from the states at the switching
time from the first stage.

0 1 2 3 4 5 6

t[s]

0

10

20

30

40

50

60

70

y
[m

]

Segment 1: Acceleration
Segment 2: Braking

Figure 4.2: One-dimensional bang-bang maneuver trajectory.

Moreover, the values of 𝜃 and 𝜙 depend on which direction is being predicted. Since the 𝑥 and 𝑦
directions are being treated as having uncoupled dynamics in the prediction model. In the case 𝑥 is
the saturation dimension 𝜃 becomes the saturated value (even if the quadcopter has not reached this
state yet in the simulation) and 𝜙 becomes the value of the roll angle in the simulated quadcopter’s
state. The opposite is true in case 𝑦 is the saturation dimension.
This is done to correctly take the available thrust into account in case the quadcopter is excited in both
roll and pitch.

4.2. Bang-Bang Controller 57

4.2.2. Switch Time Solver
The optimal switching time is calculated iteratively adjusting the switch time from an initial guess. Due
to the analytical nature of the dynamic model it is not necessary to discretize and propagate the pre-
diction trajectory.
It can be seen in Equation 4.9 that the time cannot be solved for position 𝑥 analytically. However, it
can be solved for velocity �̇�. Therefore, the switching time is optimized as follows:
In each iteration the time at which the desired speed is reached during the deceleration phase is calcu-
lated explicitly from Equation 4.9b. That time is substituted in the position equation to find the position
at which the desired speed is reached. Subsequently, the prediction time is adjusted in a bi-section
algorithm based on whether this position is above or below the target position. In other words, the
switching time is adjusted based on whether the prediction trajectory started braking too early or too
late. The algorithm is stopped when the position error comes below a threshold value. Algorithm 1
summarizes this process.

Algorithm 1
𝑡0 ← 0
𝑡1 ← initial guess
𝐸𝑡 ← error threshold
𝑦𝑑 ← desired position
while 𝐸 > 𝐸𝑇 do
𝑡𝑠 ←

𝑡0+𝑡1
2

𝑡𝑡 ← get_time_from_desired_speed(𝑣𝑑)
𝐸 ← get_position(𝑡𝑡) − 𝑦𝑑
if 𝐸 > 0 then
𝑡1 ← 𝑡𝑠

else
𝑡0 ← 𝑡𝑠

end if
end while

Figure 4.3 illustrates typical results of this algorithm for a generic quadcopter. In this case the quad-
copter starts from rest and is desired to come to rest 30 meters ahead. The predicted trajectory of each
iteration is shown. It can be seen that the iterations converge to a switching time of 1.9 seconds, as
indicated by the vertical dotted lines.

Per iteration only evaluations of the speed and position at the switching instant and at the target position
are required.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
time [s]

0

20

40

60

80

100

po
si

tio
n

[m
]

Figure 4.3: Bisection switching time optimization

Note that by using this method the switching time can only converge to a value that is larger than
zero. It has been decided that the controller should switch between acceleration and braking when the

58 4. Lightweight Optimal Control

switching time has converged close to zero. In section 4.5 attention is given on making this decision
adaptive to compensate for the loss of time and deceleration caused by neglecting rotational dynamics
in the prediction model.

4.2.3. Lateral Control
The lateral motion is controlled in a different way than the saturation direction. That is, the same
prediction model is used, but no bang-bang motion is predicted. Instead, using the same bisection
approach as for the switch time optimizer, the attitude angle is iteratively adjusted instead of the switch
time. The goal is to reach the target position exactly at the time of arrival that is obtained from the
prediction of the saturation direction. In this way only a bare minimum of the available is thrust is
used to correct the lateral position error (which is smaller than the saturation direction position error)
reserving more power to correct the position error in the saturation direction.

4.2.4. Braking
Because the prediction model will not match the real-life trajectory perfectly there is a chance that the
algorithm will instruct the quadcopter to brake too early, and make it unable to reach the target. When
no measures are taken the MPC will respond with fast switching bang-bang maneuvers to correct this.
This will render the quadcopter highly unsteady, especially when close to the target where small inac-
curacies will result in saturated responses nonetheless.

In order to avoid this an optimizer has been implemented that, similarly to the later controller in sub-
section 4.2.3, will optimize the attitude angle during braking. The result will be that in the case the
quadcopter started braking too early it will continue to brake at a smaller angle. On the other hand,
if the quadcopter started braking too late, it is impossible to brake harder because it is assumed that
bang-bang accelerates and decelerates with a maximum force. The quadcopter will likely overshoot
its target.

4.3. Matlab Simulations
To test the suggested controller different simulations have been set up. First, a relative simple sim-
ulator has been developed in Matlab. The dynamical model is a simple Newtonian model in which
the aerodynamic drag is calculated similarly as in the prediction model. The altitude is controlled by a
PID controller with a feedforward term and a PID controller controls the angular rate and the angular
acceleration is approximated with a time delay: �̈� = 1

𝜏 (�̇�desired − �̇�).
The bang-bang controller has been implemented in the simulator and allows to simulate flight from way-
point to waypoint. Subsection subsection 4.3.1 contains the initial observations that were discovered
while testing the principles of the controller.

4.3.1. Simulation Observations
To test the principals of the model-predictive bang-bang controller a number of simple flight plans have
been implemented in the simulator. The plans consists of straight flights and skewed flights at different
desired velocities and saturation angles. The simulations demonstrated how well the controller func-
tions work for control in the saturated direction, lateral direction or a combination, while varying control
parameters such as desired speeds. Moreover, it will become obvious to which extend the prediction
model matches the ’true’ model of the quadcopter.

Straight Flight:
A comparison for straight flight can be seen in Figure 4.4. In this flight the quadcopter starts from rest
and should fly straight 15 meters forward and pass that waypoint with a certain desired velocity. The
plots show the desired and actual pitch values and velocity for four separate flights. The differences
between the flight are that the desired velocity at the target is either 0 or 10 m/s. Moreover, to demon-
strate the influence of neglecting the rotational dynamics in the prediction model, flights have been
simulated with a high and low gain attitude controller.

The simulation stops when the target position has been reached. So the final velocity in the plot is
desired to match the desired velocities as close as possible.

4.3. Matlab Simulations 59

0 0.5 1 1.5 2

Time [s]

-60

-40

-20

0

20

40

60

P
itc

h
an

gl
e

[d
eg

]

0 m/s desired

Pitch Command - low gain
Pitch - low gain
Pitch Command - high gain
Pitch - high gain

0 0.5 1 1.5 2

Time [s]

-60

-40

-20

0

20

40

60
10 m/s desired

0 0.5 1 1.5 2

Time [s]

-5

0

5

10

15

S
pe

ed
 [m

/s
]

low gain
high gain
target speed

0 0.5 1 1.5 2

Time [s]

-5

0

5

10

15

Figure 4.4: Straight Trajectory - Comparison between low- and high-gain inner loop

It can be seen that there is a significant difference between the low gain and high gain results. Although
not perfect, the high gain trajectory matches its desired velocity at the target much closer than the low
gain variant. This is caused by the fact that the actual deceleration of the quadcopter does not match
the predicted deceleration because the pitch angle does not transfer to the desired pitch angle fast
enough when starting to brake. In the low gain + 10 m/s case the pitch angle has barely changed 30%
before the quadcopter has already passed the waypoint.

Moreover, it can be seen for both the low and high gain cases that when the desired velocity is high the
velocity error is smaller than when it is low. This is because at higher velocity the predicted deceleration
will match the actual deceleration more closely due to the fact that the aerodynamic drag has a larger
contribution to the total deceleration and the simulation model and prediction model use the same
aerodynamic model. The aerodynamic model only depends on velocity and not on attitude. So there
is no mismatch caused by neglecting the rotational dynamics in the prediction.
This will likely not be the case in higher fidelity simulation models because then the aerodynamic drag
is also dependent on the surface area that is projected normal to the velocity direction. Which means
that in that case the drag is dependent on the attitude.

Skewed Flight
In Figure 4.5 the resulting trajectory can be found if the quadcopter is ordered to fly to a waypoint which
lies 10 meters ahead and 5 meters to the right from its starting position. The desired heading remains
fixed to the positive X direction.

The desired velocity has been set to 0 in the X-direction. The quadcopter passes the target waypoint
with a distance of 42 cm, but the velocity does not reach the desired target velocity of 0. From the roll
commands it can be seen that the lateral control is stable during the acceleration phase, but fluctuates
when the braking phase starts.

From this figure it can also be seen that assuming decoupled translational dynamics for the path pre-
dictor has only a small effect on the prediction accuracy. This can be concluded from the fact that
the predicted roll angle is more or less constant during the acceleration phase. Which implies that the
lateral dynamics of the quadcopter matches the predicted lateral trajectory.

60 4. Lightweight Optimal Control

Figure 4.5: Resulting states and trajectory of a skewed maneuver

Prediction Stability
An effective measure to indicate how well the quadcopters follows the predicted trajectory is the es-
timated time-of-arrival. Which is calculated from Equation 4.9b. If the quadcopter would follow the
prediction exactly, the predicted time-of-arrival would be constant. In Figure 4.6 the calculated time-of-
arrival for the skewed flight can be seen. From this it becomes clear that the time of arrival increases
when the pitch angle changes at the start and at the switching instant. The smaller fluctuations during
the stable part are caused by the simulation’s time-step-size, which governs the stopping rule of the
bisection optimization.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time [s]

2.04

2.06

2.08

2.1

2.12

E
T

A
 [s

]

Predicted Time of Arrival

Figure 4.6: Estimated time of arrival through out the flight

4.4. Trajectory Comparisons 61

4.4. Trajectory Comparisons
To evaluate the feasibility of the suggested controller time-optimal control comparisons have beenmade
with approximated time-optimal trajectories. To this end the ICLOCS toolbox for MATLAB was used
[90]. This toolbox uses direct collocation to solve OCPs. The same dynamic model as in section 4.3
was used to simulate four different types of trajectories. In subsection 4.3.1 no rotational inertia has
been implemented in the dynamical model and no limits on the rotational rates were applied, conse-
quently the optimal control solution will yield infinitely high rotational rates. Therefore the upper and
lower limits of the pitch and roll rates were set to ±360∘.

Additionally, trajectories that are optimized for minimum snap were calculated as well. Note that the
minimum-snap methods described in subsection 3.3.1 were derived from different dynamical models.
So those approaches could not be implemented directly for a fair comparison. Instead minimum snap is
approximated in ICLOCS by numerically adding snap to the cost function. In ICLOCS it was not possible
to incorporate snap continuity between multiple waypoints so it can be assumed that the resulting
trajectories do not approach the theoretical minimum-snap optimality.
Finally, a high-gain PID controller was simulated too. This simple controller uses one set of gains which
is used for all maneuvers. Both the PID and Bang-Bang base their desired heading on the position error
such that the quadcopter is always pointing towards the waypoint.
An overview of the relevant simulation settings can be found in Table 4.1. Themass and drag coefficient
are based on the Parrot Bebop quadcopter.

Setting Value
Mass 0.452[kg]
Max 𝑇

𝑊 3 [-]
Max roll and pitch rate 360 [∘/s]
Max yaw rate 180 [∘/s]
𝐶𝐷 0.57

Table 4.1: Simulation Settings

4.4.1. Straight Flight
The first set of maneuvers consist of longitudinal flights only. The first maneuver consists of only one
waypoint that lies 10 meters in front. Figure 4.7a shows the resulting trajectories, thrust inputs and
resulting pitch angles.

It can be seen that both the bang-bang and minimum-time give bang-zero-bang inputs to the pitch rate.
The minimum-time controller also gives a bang-zero-bang input to the thrust whereas the bang-bang
and PID controller scales the thrust with the pitch angle for perfect altitude control.
Although, the bang-bang controller reaches the waypoint the second-fastest, it shows some overshoot.

In the second test the waypoint is now located at an altitude of 5 meters. Since the prediction model
of the bang-bang controller assumes constant altitude for predicting the thrust it is expected that the
performance will deteriorate in this setting.
Figure 4.7b shows the resulting trajectories. Because of the high saturation angles the bang-bang
controller struggles to reach the desired altitude. The optimal-time solution decreases the pitch angle
about a second earlier to trade in forward velocity for more vertical velocity.
Interestingly, despite that the minimum-snap and minimum-time trajectories look very similar, the pro-
files of the thrust and pitch angle look very different.

4.4.2. Longitudinal + Lateral Flight
The final set tests are calculated to test to what extend decoupling the longitudinal and lateral pre-
dictions in the bang-bang controller affect the performance with respect to the other controllers. Here
the quadcopter is simulated to fly through two waypoints: the first 10 meters ahead and the second 5
meters to the right of the first one.

62 4. Lightweight Optimal Control

0 0.5 1 1.5 2 2.5 3
0

5

10

15

[N
]

Thrust

0 0.5 1 1.5 2 2.5 3
-150

-100

-50

0

50

100

[D
eg

]

Pitch Angle

(a) Constant Altitude

0 0.5 1 1.5 2 2.5 3
0

5

10

15

[N
]

Thrust

0 0.5 1 1.5 2 2.5 3
-100

-50

0

50

100

150

[D
eg

]

Pitch Angle

(b) Variable Altitude

Figure 4.7: Longitudinal trajectory comparisons

Just as in the longitudinal test it is desired for the quadcopter to be at rest at the final waypoint. However,
the bang-bang controller requires a desired velocity for the first waypoint as well in order to optimize
for a switching time. This value has been chosen to be equal to the velocity at the first waypoint from
the optimal-time solution. It is expected that this velocity will be too high because the optimal-time
solution optimizes for the complete trajectory and will likely pass through the first waypoint at an angle
that points closer to the final waypoint. The bang-bang controller on the other hand only predicts in
straight lines.

The first comparison can be found in Figure 4.8a. The minimum-time trajectory takes the form of a con-
tinuous turn, first rolling to the left to better line up for the final waypoint. As expected, the bang-bang
controller overshoots the first waypoint by a lot before turning and flying to the final waypoint.

Finally, for the final trajectories the first waypoint is set 5 meters higher in altitude. Which will result in
a similar trajectory to Figure 4.8b for the PID and Bang-Bang controller while flying towards the first
waypoint. However, while flying to the final waypoint the altitude controller will give less thrust to lower
the altitude. The optimal-time solution on the other hand will keep the thrust saturated and use more
extreme pitch and roll angles to control the altitude such that all power is available to keep accelerating
or decelerating, which was also demonstrated by Hehn, Ritz, and D’Andrea [91].

Figure 4.8b shows the resulting trajectories. It can be seen that the time-optimal solution indeed keeps

4.5. Transition Compensation 63

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

5

10

15

[N
]

Thrust

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time [s]

-100

-50

0

50

100

[D
eg

]

Pitch Angle

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time [s]

-100

-50

0

50

100

D
eg

Roll Angle

(a) Constant altitude

0 1 2 3 4 5 6
0

5

10

15

[N
]

Thrust

0 1 2 3 4 5 6

Time [s]

-100

0

100

200

[D
eg

]

Pitch Angle

0 1 2 3 4 5 6

Time [s]

-100

-50

0

50

100

D
eg

Roll Angle

(b) Variable Altitude

Figure 4.8: Longitudinal + lateral trajectory comparisons

the thrust saturated throughout the entire flight. Its pitch angle going as high as 130∘. Since the PID
and Bang-Bang only takes one waypoint in account at a time the first part of the trajectory looks similar
to Figure 4.8b. During the last phase the Bang-Bang controller still suffers from the overshoot of the
first phase and cannot accelerate towards the final waypoint while the thrust is zero during the descent.

4.5. Transition Compensation
From the results in Figure 4.3.1 and section 4.4 it could be seen that the largest prediction inaccuracies
are caused by neglecting the rotational dynamics in the prediction model, resulting in large positional
overshoots. In this section steps are being taken in developing an adaptive method to compensate for
these inaccuracies and improve trajectory prediction.

64 4. Lightweight Optimal Control

The prediction trajectory can be improved if it is known how much time, velocity and speed are being
lost during the transition from accelerating to braking. Since these dynamics are not included in the
prediction model. By compensating for these losses to the second section (the braking section) of the
predicted trajectory a more accurate path can be calculated.

However, these losses are not known beforehand and are likely to vary with the state of the quadcopter
at the switching instant. Therefore, the intention is to create a dataset that summarizes how much time,
position and speed are lost during the rotational motion. This done bymeasuring howmuch time it takes
to switch from one extreme saturation angle to the other, and what the position and speed difference
is at the end of the rotation. Subsequently, a model is derived to estimate what compensation values
should be added to improve the prediction to the next waypoint. The end result is that the switching
time will converge to a better value when the compensation measures are in place. Moreover, by con-
tinuously measuring the remaining losses during flight the model can be improved on-line.

Figure 4.9 demonstrates what a compensation case could look like. In this example it is assumed that
during the rotation 1 m/s in velocity, 2 m in position and 0.3s in time are lost. When comparing to the
uncompensated trajectory it can be seen that as result the quadcopter is instructed to brake at 1.4
seconds instead of at 1.5 seconds.

0 0.5 1 1.5 2 2.5

Time [s]

0

5

10

15

X
 [m

]

Predicted Position

without compensation
with compensation
switching times

Figure 4.9: Predicted position with and without transition compensation applied.

One issue that arises is that, in order to avoid unreliable results, the optimization should be turned off
during the transition from accelerating to braking. Otherwise the controller will immediately start opti-
mizing the angle, as described in subsection 4.2.4. This optimization is based on the predicted braking
trajectory that does not take into account the transition, which will yield inaccurate results.
This implies that the quadcopter is practically flying blind during this period which can be hazardous in
real-life scenarios.

In Figure 4.10 the results of three different simulations can be found. In each case the quadcopter is
controlled to fly straight to a target 15 meters ahead and try to reach the target at zero speed. In the
first scenario no compensation is added. In the second scenario a compensation of -0.128 seconds is
added. Which was the result of measuring the rotation losses in the no compensation scenario. The
compensation periods are indicated by the dashed vertical lines.
The final scenario is one with -0.6 seconds compensations which much more than the measured com-
pensation.

It can be seen from the final velocity values that in uncompensated case the quadcopter start braking
too late and is unable to reach the zero velocity.
Even in the compensated cases zero velocity is never reached exactly at the target position. But it
comes close. The overcompensated case brakes too early and even starts accelerating again after the

4.6. Discussion of the Preliminary Results 65

0 0.5 1 1.5 2
time [s]

-60

-40

-20

0

20

40

pi
tc

h
an

gl
e

[d
eg

]
No compensation

0 0.5 1 1.5 2
time [s]

0

5

10

15

sp
ee

d
[m

/s
]

final speed:5.4

0 0.5 1 1.5 2
time [s]

-60

-40

-20

0

20

40

pi
tc

h
an

gl
e

[d
eg

]

With compensation

0 0.5 1 1.5 2
time [s]

0

5

10

15

sp
ee

d
[m

/s
]

final speed:0.6

0 0.5 1 1.5 2
time [s]

-60

-40

-20

0

20

40

pi
tc

h
an

gl
e

[d
eg

]

With overcompensation

0 0.5 1 1.5 2
time [s]

0

5

10

15

sp
ee

d
[m

/s
]

final speed:0.7

Figure 4.10: Resulting pitch angle and speed for different levels of transition compensation.

transition. The final velocity is close to the correctly compensated case but the target is reached at a
later time.

4.6. Discussion of the Preliminary Results
In section 4.1 a bang-bang controller has been suggested as a solution to approaching time-optimal
control while maintaining low computational effort to solve for optimal control inputs. This approach is
based on the fact that the time-optimal solution to an unconstrained OCP has either a bang-bang or
bang-singular-bang shaped control input. Which can be proven using PMP as shown in section 4.1.
An important consequence of this result is that the OCP reduces to a problem in which only the switch-
ing times will need to be solved. This is already beneficial to reducing the computational effort of the
solving method.

Subsequently, a path predictor was created to calculate the position and velocity trajectories the quad-
copter would fly towards its target. A key feature of this predictor is that the position and its derivatives
can be evaluated analytically. No state propagation is required. Which again is in favor of computa-
tional efficiency.

4.6.1. The Effects of Simplifications
However, some simplification had to be introduced in order for the differential equations to be solved
analytically. First, a simple, two-dimensional quadcopter was used to approximate all forces acting on
the quadcopter. In this model it was assumed that drag is only linearly proportional with the body’s
velocity. Furthermore it is assumed that the thrust and attitude angle are known and constant. This
resulted in assuming that the thrust would always counteract the drones weight to maintain a constant
altitude.
Furthermore, because of the constant angle assumption it was impossible to use the predictor to cal-
culate the dynamics at the switching instances. Therefore these dynamics where neglected and it was
assumed that the transition from one saturated attitude angle to the other happens instantly.
Finally, because a two-dimensional dynamic model with constant altitude has been used, it is assumed
that the translational dynamics are decoupled in the longitudinal, lateral direction, and vertical direction

66 4. Lightweight Optimal Control

which is similar to the work of Hehn and D’Andrea [40]. In fact, the path predictor does not take into
account the vertical dynamics at all.

Decoupled Translational Dynamics
The results of section 4.3 show that in simulation the quadcopters flight deviates the most from the
prediction during the transition phases. Which can be expected because the MATLAB simulation uses
a dynamical model that can be considered as a 3-dimensional version of the model used by the path
predictor with added rotational dynamics. Which is a flaw of the analysis. However, since the 3-
dimensional model does not decouple the longitudinal and lateral dynamics it can still be used to con-
clude that the decoupled dynamics assumption of the path predictor does only have a small effect on
the prediction quality.

Moreover, the path predictor derives the available thrust from the assumption that altitude is constant
throughout the flight. Consequently, the comparisons performed in section 4.4 have shown that the
bang-bang controller can only approach the ’true’ time-optimal trajectory when the waypoints are all on
the same altitude. In cases where the quadcopter has to change its height the path predictor is unaware
of the vertical motion of the quadcopter and the actual available thrust. Simulations have shown that
the trajectory quality degrades significantly compared to the trajectories of true time-optimal and even
PID control.
Also in the constant altitude simulations it can be seen that the time-optimal solution is in fact a trajectory
that is not constant in altitude, but one that keeps the thrust saturated and uses the attitude to control
attitude angle and acceleration simultaneously. While the bang-bang controller only saturates thrust
when the attitude angle is saturated.

Constant Angle Assumption
This shows also that the constant angle assumption will contribute to deviating from true time-optimality.
In addition to the fact that in the time-optimal solution the attitude angle is not constant, there is also
an issue of determining the value of the constant angle. When flying in a straight line this value be
derived of the maximum thrust-over-weight ratio the quadcopter can provide. However, this means
that all available thrust is used to accelerate in one direction and keep the vertical acceleration at zero.
As a result there is no thrust left to compensate for tracking errors and to control the lateral direction as
well. Therefore, in practice the constant angle has to be smaller in order to have some ’spare thrust’
available. But it is unknown how much spare thrust is sufficient, and each Newton of unused thrust is
a step away from time-optimality.

Instantaneous Transition Assumption
Furthermore, from Figure 4.6 it became clear that a large cause for prediction inaccuracy comes from
the assumption of instantaneous change of attitude angles at the switching instances. In simulation
rotational dynamics are included whereas the predictor cannot take those into account. During the
transition there is less thrust available for acceleration or braking. Which is especially a problem when
finding the optimal braking switch time. The optimal braking switch time the latest instance the quad-
copter can brake and still reach its target with the desired speed. The predictor does not know that
time is lost during the transition before the thrust is available for braking and will always predict optimal
switching time too far into the future. Resulting in overshooting the target.
Fortunately, the method of predicting the transition dynamics which was presented in section 4.5 shows
promise in mitigating this problem and will be further investigated in the main thesis phase.

4.6.2. Computational efficiency
It can be seen that some severe simplifications had to be made to minimize the required computa-
tional power of the solver. Which in fact has become significantly efficient. The solver uses a bisection
scheme to iterate the switching time based on the path predictions. For the saturation direction only
four evaluations will need to be made per iteration. That is, position and velocity at the switching time
and at the time of arrival. For the secondary direction only the position needs to be evaluated at the
time of arrival per iteration.

4.6. Discussion of the Preliminary Results 67

The total number of iterations required depends on the initial guesses and the set thresholds. Simu-
lations experiments have shown that the switch time optimizer requires on average 9 iterations for the
switching time to converge to a precision of < 0.01𝑠. The angle optimizer for the secondary direction
requires on average 12 iterations for it to converge to a value with a precision of < 0.01∘. This comes
down to a total of only 4⋅9+1⋅12 = 48 path value evaluations for calculating the optimal switching time
and secondary attitude angle. The MATLAB code (which also include a lot of unnecessary operations
for debugging and analysis purposes) requires around 1ms for the entire optimization function to run
on a consumer desktop computer (i7-3770k 4.2GHz quadcore CPU, 16GB RAM). Which is more than
sufficient to run in real-time and be implemented as an MPC. This results shows great promise that the
optimizer will be able to run fast enough onboard a quadcopter. Which will be further investigated in
the main phase of the thesis.

Bibliography
[1] What is Drone Racing? 2020. URL: https://thedroneracingleague.com/ (visited on

12/03/2020).
[2] Lockheed Martin Corporation. AlphaPilot — Lockheed Martin AI Drone Racing Innovation Chal-

lenge. 2019. URL: https://www.lockheedmartin.com/en-us/news/events/ai-
innovation-challenge.html (visited on 01/30/2020).

[3] Richard Bellman. Dynamic programming. Dover Publications, 1957. ISBN: 9780486428093.
[4] Lev Semenovich Pontryagin. Mathematical theory of optimal processes. Routledge, 2018.
[5] Donald E Kirk. Optimal control theory: An introduction. Vol. 1. Dover Publications, 1998, pp. 86–

90. ISBN: 9780486434841.
[6] RE Kalman. “The theory of optimal control and the calculus of variations”. In: Mathematical opti-

mization techniques. University of California Press Los Angeles, CA, 1963, pp. 309–331.
[7] John T. Betts. “Survey of numerical methods for trajectory optimization”. In: Journal of Guidance,

Control, and Dynamics 21.2 (1998), pp. 193–207. ISSN: 07315090. DOI: 10.2514/2.4231.
[8] Francesco Biral, Enrico Bertolazzi, and Paolo Bosetti. “Notes on numerical methods for solving

optimal control problems”. In: IEEJ Journal of Industry Applications 5.2 (2016), pp. 154–166.
ISSN: 21871108. DOI: 10.1541/ieejjia.5.154.

[9] Marco Frego. “Numerical Methods for Optimal Control Problems with application to autonomous
vehicles”. In: PhD dissertation (2014), pp. 1–84. URL: http://eprints- phd.biblio.
unitn.it/1227/1/MFT.pdf.

[10] Anil V. Rao. “A survey of numerical methods for optimal control”. In: Advances in the Astronautical
Sciences. 2010. ISBN: 9780877035572.

[11] Warren B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimensionality:
Second Edition. 2011. ISBN: 9781118029176. DOI: 10.1002/9781118029176.

[12] Fei YueWang, Huaguang Zhang, and Derong Liu. “Adaptive dynamic programming: An introduc-
tion”. In: IEEE Computational Intelligence Magazine (2009). ISSN: 1556603X. DOI: 10.1109/
MCI.2009.932261.

[13] Asma Al-Tamimi, Frank L. Lewis, and Murad Abu-Khalaf. “Discrete-time nonlinear HJB solution
using approximate dynamic programming: Convergence proof”. In: IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part B: Cybernetics 38.4 (2008), pp. 943–949. ISSN: 10834419.
DOI: 10.1109/TSMCB.2008.926614. URL: http://ieeexplore.ieee.org/document/
4554208/.

[14] John T. Betts. Practical Methods for Optimal Control and Estimation Using Nonlinear Program-
ming. 2010. DOI: 10.1137/1.9780898718577.

[15] H. Kwakernaak and R. Sivan. “Linear Optimal Control Systems”. In: IEEE Transactions on Auto-
matic Control (1974). ISSN: 15582523. DOI: 10.1109/TAC.1974.1100628.

[16] Philipp Foehn and Davide Scaramuzza. “Onboard State Dependent LQR for Agile Quadrotors”.
In: Proceedings - IEEE International Conference on Robotics and Automation (2018), pp. 6566–
6572. ISSN: 10504729. DOI: 10.1109/ICRA.2018.8460885.

[17] Arthur E. Bryson, Yu-Chi Ho, and George M. Siouris. “Applied Optimal Control: Optimization,
Estimation, and Control”. In: IEEE Transactions on Systems, Man, and Cybernetics (2008). ISSN:
0018-9472. DOI: 10.1109/tsmc.1979.4310229.

[18] Warren B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimensionality:
Second Edition. 2011. ISBN: 9781118029176. DOI: 10.1002/9781118029176.

[19] IROS 2019 - Macau. 2019. URL: https://www.iros2019.org/ (visited on 05/26/2020).

69

https://thedroneracingleague.com/
https://www.lockheedmartin.com/en-us/news/events/ai-innovation-challenge.html
https://www.lockheedmartin.com/en-us/news/events/ai-innovation-challenge.html
https://doi.org/10.2514/2.4231
https://doi.org/10.1541/ieejjia.5.154
http://eprints-phd.biblio.unitn.it/1227/1/MFT.pdf
http://eprints-phd.biblio.unitn.it/1227/1/MFT.pdf
https://doi.org/10.1002/9781118029176
https://doi.org/10.1109/MCI.2009.932261
https://doi.org/10.1109/MCI.2009.932261
https://doi.org/10.1109/TSMCB.2008.926614
http://ieeexplore.ieee.org/document/4554208/
http://ieeexplore.ieee.org/document/4554208/
https://doi.org/10.1137/1.9780898718577
https://doi.org/10.1109/TAC.1974.1100628
https://doi.org/10.1109/ICRA.2018.8460885
https://doi.org/10.1109/tsmc.1979.4310229
https://doi.org/10.1002/9781118029176
https://www.iros2019.org/

70 Bibliography

[20] Hyungpil Moon et al. “The IROS 2016 Competitions [Competitions]”. In: IEEE Robotics and Au-
tomation Magazine 24.1 (2017), pp. 20–29. ISSN: 10709932. DOI: 10.1109/MRA.2016.
2646090.

[21] International Micro Air Vehicles, Conferences and Competitions. 2019. URL: http://www.
imavs.org/ (visited on 11/02/2020).

[22] Mark W Mueller, Markus Hehn, and Raffaello D’Andrea. “A computationally efficient algorithm
for state-to-state quadrocopter trajectory generation and feasibility verification”. In: IEEE Inter-
national Conference on Intelligent Robots and Systems. IEEE, 2013, pp. 3480–3486. ISBN:
9781467363587. DOI: 10.1109/IROS.2013.6696852.

[23] Daniel Mellinger and Vijay Kumar. “Minimum snap trajectory generation and control for quadro-
tors”. In: Proceedings - IEEE International Conference on Robotics and Automation. IEEE, 2011,
pp. 2520–2525. ISBN: 9781612843865. DOI: 10.1109/ICRA.2011.5980409.

[24] Charles Richter, Adam Bry, and Nicholas Roy. “Polynomial trajectory planning for quadrotor
flight”. In: International Conference on Robotics and Automation Isrr (2013), pp. 1–16. URL:
http://www.michigancmes.org/papers/roy7.pdf.

[25] Michiel J. Van Nieuwstadt and Richard MMurray. “Real-time trajectory generation for differentially
flat systems”. In: International Journal of Robust and Nonlinear Control 8.11 (1998), pp. 995–
1020. ISSN: 10498923. DOI: 10.1002/(SICI)1099-1239(199809)8:11<995::AID-
RNC373>3.0.CO;2-W.

[26] Charles Richter, Adam Bry, and Nicholas Roy. “Polynomial trajectory planning for aggressive
quadrotor flight in dense indoor environments”. In: Springer Tracts in Advanced Robotics 114.Isrr
(2016), pp. 649–666. ISSN: 1610742X. DOI: 10.1007/978-3-319-28872-7_37.

[27] Mattia Landolfi et al. “Autonomous Guidance Navigation and Control for Agile Quadrotors Using
Polynomial Trajectory Planning and L 1 Adaptive Control”. In: 2017 25th Mediterranean Confer-
ence on Control and Automation (MED) 3 (2017), pp. 1041–1046. DOI: 10.1109/MED.2017.
7984255.

[28] Francesca Baldini et al. “Fast Motion Planning for Agile Space Systems with Multiple Obstacles”.
In: 2016, pp. 1–14. DOI: 10.2514/6.2016-5683.

[29] Steven M. LaValle. “Rapidly-Exploring Random Trees: A New Tool for Path Planning”. In: In
(1998). ISSN: 1098-6596. DOI: 10.1.1.35.1853. arXiv: arXiv:1011.1669v3.

[30] Steven M. LaValle and James J. Kuffner. “Randomized kinodynamic planning”. In: International
Journal of Robotics Research (2001). ISSN: 02783649. DOI: 10.1177/02783640122067453.

[31] Bitcraze AB. URL: https://bitcraze.io.
[32] Bryan Penin et al. “Vision-based minimum-time trajectory generation for a quadrotor UAV”. In:

IEEE International Conference on Intelligent Robots and Systems 2017-Septe (2017), pp. 6199–
6206. ISSN: 21530866. DOI: 10.1109/IROS.2017.8206522.

[33] Steven G. Johnson. The NLopt nonlinear-optimization package. URL: http://github.com/
stevengj/nlopt.

[34] Davide Falanga et al. “PAMPC: Perception-Aware Model Predictive Control for Quadrotors”. In:
IEEE International Conference on Intelligent Robots and Systems (2018), pp. 5200–5207. ISSN:
21530866. DOI: 10.1109/IROS.2018.8593739.

[35] Gao Tang, Weidong Sun, and Kris Hauser. “Learning Trajectories for Real- Time Optimal Con-
trol of Quadrotors”. In: IEEE International Conference on Intelligent Robots and Systems. 2018,
pp. 3620–3625. ISBN: 9781538680940. DOI: 10.1109/IROS.2018.8593536.

[36] Shuo Li et al. “Aggressive Online Control of a Quadrotor via Deep Network Representations of
Optimality Principles”. In: (2019). arXiv: 1912.07067. URL: http://arxiv.org/abs/1912.
07067.

[37] Elia Kaufmann et al. “Deep Drone Acrobatics”. In: arXiv (2020). ISSN: 23318422. DOI: 10.
15607/rss.2020.xvi.040. arXiv: 2006.05768. URL: http://arxiv.org/abs/2006.
05768.

https://doi.org/10.1109/MRA.2016.2646090
https://doi.org/10.1109/MRA.2016.2646090
http://www.imavs.org/
http://www.imavs.org/
https://doi.org/10.1109/IROS.2013.6696852
https://doi.org/10.1109/ICRA.2011.5980409
http://www.michigancmes.org/papers/roy7.pdf
https://doi.org/10.1002/(SICI)1099-1239(199809)8:11<995::AID-RNC373>3.0.CO;2-W
https://doi.org/10.1002/(SICI)1099-1239(199809)8:11<995::AID-RNC373>3.0.CO;2-W
https://doi.org/10.1007/978-3-319-28872-7_37
https://doi.org/10.1109/MED.2017.7984255
https://doi.org/10.1109/MED.2017.7984255
https://doi.org/10.2514/6.2016-5683
https://doi.org/10.1.1.35.1853
https://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.1177/02783640122067453
https://bitcraze.io
https://doi.org/10.1109/IROS.2017.8206522
http://github.com/stevengj/nlopt
http://github.com/stevengj/nlopt
https://doi.org/10.1109/IROS.2018.8593739
https://doi.org/10.1109/IROS.2018.8593536
https://arxiv.org/abs/1912.07067
http://arxiv.org/abs/1912.07067
http://arxiv.org/abs/1912.07067
https://doi.org/10.15607/rss.2020.xvi.040
https://doi.org/10.15607/rss.2020.xvi.040
https://arxiv.org/abs/2006.05768
http://arxiv.org/abs/2006.05768
http://arxiv.org/abs/2006.05768

Bibliography 71

[38] Efe Camci and Erdal Kayacan. “Learningmotion primitives for planning swift maneuvers of quadro-
tor”. In: Autonomous Robots 43.7 (2019), pp. 1733–1745. ISSN: 15737527. DOI: 10.1007/
s10514-019-09831-w. URL: https://doi.org/10.1007/s10514-019-09831-w.

[39] Antonio Loquercio et al. “Deep Drone Racing: From Simulation to Reality With Domain Random-
ization”. In: IEEE Transactions on Robotics (2019), pp. 1–14. ISSN: 1552-3098. DOI: 10.1109/
tro.2019.2942989. arXiv: 1905.09727. URL: http://arxiv.org/abs/1905.09727.

[40] Markus Hehn and Raffaello D’Andrea. Quadrocopter trajectory generation and control. Vol. 44.
1 PART 1. IFAC, 2011, pp. 1485–1491. ISBN: 9783902661937. DOI: 10.3182/20110828-6-
IT-1002.03178. URL: http://dx.doi.org/10.3182/20110828-6-IT-1002.03178.

[41] Richard F. Hartl, Suresh P. Sethi, and Raymond G. Vickson. “Survey of the maximum principles
for optimal control problems with state constraints”. In: SIAM Review 37.2 (1995), pp. 181–218.
ISSN: 00361445. DOI: 10.1137/1037043.

[42] H. Maurer and N. P. Osmolovskii. “Second order optimality conditions for bang-bang control
problems”. In: Control and Cybernetics 32.3 SPEC. ISS. (2003), pp. 555–584. ISSN: 03248569.

[43] Stephen K. Lucas and C. Yalçin Kaya. “Switching-time computation for bang-bang control laws”.
In: Proceedings of the American Control Conference 1 (2001), pp. 176–181. ISSN: 07431619.
DOI: 10.1109/ACC.2001.945537.

[44] Zhaolong Shen and Sean B. Andersson. “Minimum time control of a second-order system”. In:
Proceedings of the IEEE Conference on Decision and Control 2.1 (2010), pp. 4819–4824. ISSN:
01912216. DOI: 10.1109/CDC.2010.5717016.

[45] Markus Hehn, Robin Ritz, and Raffaello D’Andrea. “Performance benchmarking of quadrotor
systems using time-optimal control”. In: Autonomous Robots 33.1-2 (2012), pp. 69–88. ISSN:
09295593. DOI: 10.1007/s10514-012-9282-3.

[46] Matthias Faessler, Davide Falanga, and Davide Scaramuzza. “Thrust Mixing, Saturation, and
Body-Rate Control for Accurate Aggressive Quadrotor Flight”. In: IEEE Robotics and Automation
Letters 2.2 (2017), pp. 476–482. ISSN: 23773766. DOI: 10.1109/LRA.2016.2640362.

[47] Yuki Kawai and Kenji Uchiyama. “Design of frequency shaped LQR considering dynamic char-
acteristics of the actuator”. In: 2016 International Conference on Unmanned Aircraft Systems,
ICUAS 2016 (2016), pp. 1235–1239. DOI: 10.1109/ICUAS.2016.7502630.

[48] Ban Wang, Khaled A. Ghamry, and Youmin Zhang. “Trajectory tracking and attitude control of an
unmanned quadrotor helicopter considering actuator dynamics”. In:Chinese Control Conference,
CCC. 2016. ISBN: 9789881563910. DOI: 10.1109/ChiCC.2016.7555068.

[49] Matthias Faessler et al. “Automatic re-initialization and failure recovery for aggressive flight with a
monocular vision-based quadrotor”. In: Proceedings - IEEE International Conference on Robotics
and Automation. 2015. DOI: 10.1109/ICRA.2015.7139420.

[50] Matthias Faessler, Antonio Franchi, and Davide Scaramuzza. “Differential Flatness of Quadrotor
Dynamics Subject to Rotor Drag for Accurate Tracking of High-Speed Trajectories”. In: IEEE
Robotics and Automation Letters 3.2 (Dec. 2017), pp. 620–626. ISSN: 23773766. DOI: 10.
1109/LRA.2017.2776353. arXiv: 1712.02402. URL: http://arxiv.org/abs/1712.
02402%20http://dx.doi.org/10.1109/LRA.2017.2776353.

[51] Ezra Tal and Sertac Karaman. “Accurate Tracking of Aggressive Quadrotor Trajectories Using
Incremental Nonlinear Dynamic Inversion and Differential Flatness”. In: Proceedings of the IEEE
Conference on Decision and Control 2018-Decem (2019), pp. 4282–4288. ISSN: 07431546. DOI:
10.1109/CDC.2018.8619621. arXiv: 1809.04048.

[52] Ewoud J.J. Smeur, Qiping Chu, and Guido C.H.E. De Croon. “Adaptive incremental nonlinear
dynamic inversion for attitude control of micro air vehicles”. In: Journal of Guidance, Control,
and Dynamics 39.3 (2016), pp. 450–461. ISSN: 07315090. DOI: 10.2514/1.G001490. URL:
http://resolver.tudelft.nl/uuid:31536cfa-89e1-4d44-873e-f2f398bd69ca.

[53] Giuseppe Loianno et al. “Estimation, Control, and Planning for Aggressive Flight with a Small
Quadrotor with a Single Camera and IMU”. In: IEEE Robotics and Automation Letters 2.2 (2017),
pp. 404–411. ISSN: 23773766. DOI: 10.1109/LRA.2016.2633290.

https://doi.org/10.1007/s10514-019-09831-w
https://doi.org/10.1007/s10514-019-09831-w
https://doi.org/10.1007/s10514-019-09831-w
https://doi.org/10.1109/tro.2019.2942989
https://doi.org/10.1109/tro.2019.2942989
https://arxiv.org/abs/1905.09727
http://arxiv.org/abs/1905.09727
https://doi.org/10.3182/20110828-6-IT-1002.03178
https://doi.org/10.3182/20110828-6-IT-1002.03178
http://dx.doi.org/10.3182/20110828-6-IT-1002.03178
https://doi.org/10.1137/1037043
https://doi.org/10.1109/ACC.2001.945537
https://doi.org/10.1109/CDC.2010.5717016
https://doi.org/10.1007/s10514-012-9282-3
https://doi.org/10.1109/LRA.2016.2640362
https://doi.org/10.1109/ICUAS.2016.7502630
https://doi.org/10.1109/ChiCC.2016.7555068
https://doi.org/10.1109/ICRA.2015.7139420
https://doi.org/10.1109/LRA.2017.2776353
https://doi.org/10.1109/LRA.2017.2776353
https://arxiv.org/abs/1712.02402
http://arxiv.org/abs/1712.02402%20http://dx.doi.org/10.1109/LRA.2017.2776353
http://arxiv.org/abs/1712.02402%20http://dx.doi.org/10.1109/LRA.2017.2776353
https://doi.org/10.1109/CDC.2018.8619621
https://arxiv.org/abs/1809.04048
https://doi.org/10.2514/1.G001490
http://resolver.tudelft.nl/uuid:31536cfa-89e1-4d44-873e-f2f398bd69ca
https://doi.org/10.1109/LRA.2016.2633290

72 Bibliography

[54] Friedrich Fraundorfer and Davide Scaramuzza. “Visual odometry: Part I: The First 30 Years and
Fundamentals”. In: IEEE Robotics and Automation Magazine (2011). ISSN: 10709932.

[55] David G Low. “Distinctive image features from scale-invariant keypoints”. In: International Journal
of Computer Vision (2004), pp. 91–110. URL: https://www.cs.ubc.ca/%7B~%7Dlowe/
papers/ijcv04.pdf.

[56] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “LNCS 3951 - SURF: Speeded Up Robust Fea-
tures”. In:Computer Vision–ECCV 2006 (2006), pp. 404–417. URL: http://link.springer.
com/chapter/10.1007/11744023%7B%5C_%7D32.

[57] Stefan Leutenegger, Margarita Chli, and Roland Y. Siegwart. “BRISK: Binary Robust invariant
scalable keypoints”. In: Proceedings of the IEEE International Conference on Computer Vision.
2011. ISBN: 9781457711015. DOI: 10.1109/ICCV.2011.6126542.

[58] Ethan Rublee et al. “ORB: An efficient alternative to SIFT or SURF”. In: Proceedings of the IEEE
International Conference on Computer Vision (2011), pp. 2564–2571. DOI: 10.1109/ICCV.
2011.6126544.

[59] Dibyendu Mukherjee, Q. M. Jonathan Wu, and Guanghui Wang. “A comparative experimental
study of image feature detectors and descriptors”. In: Machine Vision and Applications 26.4
(2015), pp. 443–466. ISSN: 14321769. DOI: 10.1007/s00138-015-0679-9.

[60] Martin A Fischler and Robert C Bolles. “Random sample consensus: A Paradigm for Model Fitting
with Applications to Image Analysis and Automated Cartography”. In: Communications of the
ACM 24.6 (1981), pp. 381–395. ISSN: 15577317. DOI: 10.1145/358669.358692.

[61] Friedrich Fraundorfer and Davide Scaramuzza. “Visual odometry: Part II: Matching, robustness,
optimization, and applications”. In: IEEERobotics and AutomationMagazine (2012). ISSN: 10709932.
DOI: 10.1109/MRA.2012.2182810.

[62] Zhengyou Zhang et al. “A robust technique for matching two uncalibrated images through the
recovery of the unknown epipolar geometry”. In: Artificial Intelligence (1995). ISSN: 00043702.
DOI: 10.1016/0004-3702(95)00022-4.

[63] Laurent Kneip, Davide Scaramuzza, andRoland Siegwart. “A novel parametrization of the perspective-
three-point problem for a direct computation of absolute camera position and orientation”. In:
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition. 2011. ISBN: 9781457703942. DOI: 10.1109/CVPR.2011.5995464.

[64] Shuo Li et al. “Visual Model-predictive Localization for Computationally Efficient Autonomous
Racing of a 72-gram Drone”. In: (2019). arXiv: 1905.10110. URL: http://arxiv.org/abs/
1905.10110.

[65] J. Illingworth and J. Kittler. “A survey of the hough transform”. In: Computer Vision, Graphics and
Image Processing (1988). ISSN: 0734189X. DOI: 10.1016/S0734-189X(88)80033-1.

[66] John Canny. “A Computational Approach to Edge Detection”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (1986). ISSN: 01628828. DOI: 10.1109/TPAMI.1986.
4767851.

[67] Chris Harris and Mike Stephens. “A combined edge and corner detector”. In: Proc 4th Alvey
Vision Conference (1988).

[68] Sunggoo Jung et al. “A direct visual servoing-based framework for the 2016 IROS Autonomous
DroneRacingChallenge”. In: Journal of Field Robotics 35.1 (2018), pp. 146–166. ISSN: 15564967.
DOI: 10.1002/rob.21743.

[69] Shuo Li et al. “Autonomous drone race: A computationally efficient vision-based navigation and
control strategy”. In: 1 (2018), pp. 1–2. arXiv: 1809.05958. URL: http://arxiv.org/abs/
1809.05958.

[70] Yann LeCun et al. “Gradient-based learning applied to document recognition”. In: Proceedings
of the IEEE (1998). ISSN: 00189219. DOI: 10.1109/5.726791.

[71] Yann Lecun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Nature 521.7553 (2015),
pp. 436–444. ISSN: 14764687. DOI: 10.1038/nature14539.

https://www.cs.ubc.ca/%7B~%7Dlowe/papers/ijcv04.pdf
https://www.cs.ubc.ca/%7B~%7Dlowe/papers/ijcv04.pdf
http://link.springer.com/chapter/10.1007/11744023%7B%5C_%7D32
http://link.springer.com/chapter/10.1007/11744023%7B%5C_%7D32
https://doi.org/10.1109/ICCV.2011.6126542
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1109/ICCV.2011.6126544
https://doi.org/10.1007/s00138-015-0679-9
https://doi.org/10.1145/358669.358692
https://doi.org/10.1109/MRA.2012.2182810
https://doi.org/10.1016/0004-3702(95)00022-4
https://doi.org/10.1109/CVPR.2011.5995464
https://arxiv.org/abs/1905.10110
http://arxiv.org/abs/1905.10110
http://arxiv.org/abs/1905.10110
https://doi.org/10.1016/S0734-189X(88)80033-1
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1002/rob.21743
https://arxiv.org/abs/1809.05958
http://arxiv.org/abs/1809.05958
http://arxiv.org/abs/1809.05958
https://doi.org/10.1109/5.726791
https://doi.org/10.1038/nature14539

Bibliography 73

[72] Matthew D. Zeiler and Rob Fergus. “Visualizing and understanding convolutional networks”. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics). 2014. ISBN: 9783319105895. DOI: 10.1007/978-3-
319-10590-1_53. arXiv: 1311.2901.

[73] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet classification with deep con-
volutional neural networks”. In: Communications of the ACM (2017). ISSN: 15577317. DOI: 10.
1145/3065386.

[74] Sunggoo Jung et al. “Perception, Guidance, and Navigation for Indoor Autonomous Drone Racing
Using Deep Learning”. In: IEEE Robotics and Automation Letters 3.3 (2018), pp. 2539–2544.
ISSN: 23773766. DOI: 10.1109/LRA.2018.2808368.

[75] Wei Liu et al. “SSD: Single shot multibox detector”. In: Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
9905 LNCS (2016), pp. 21–37. ISSN: 16113349. DOI: 10.1007/978-3-319-46448-0_2.
arXiv: arXiv:1512.02325v5.

[76] Elia Kaufmann et al. “Beauty and the beast: Optimal methods meet learning for drone racing”.
In: Proceedings - IEEE International Conference on Robotics and Automation. Vol. 2019-May.
2019, pp. 690–696. ISBN: 9781538660263. DOI: 10.1109/ICRA.2019.8793631. arXiv:
1810.06224.

[77] Antonio Loquercio et al. “DroNet: Learning to Fly by Driving”. In: IEEE Robotics and Automation
Letters 3.2 (2018), pp. 1088–1095. ISSN: 23773766. DOI: 10.1109/LRA.2018.2795643.

[78] Philipp Foehn et al. “AlphaPilot: Autonomous Drone Racing”. In: (2020). arXiv: 2005.12813.
URL: http://arxiv.org/abs/2005.12813.

[79] Zhe Cao et al. “Realtime multi-person 2D pose estimation using part affinity fields”. In: Proceed-
ings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017. 2017.
ISBN: 9781538604571. DOI: 10.1109/CVPR.2017.143.

[80] Robert Mahony, Vijay Kumar, and Peter Corke. “Multirotor aerial vehicles: Modeling, estimation,
and control of quadrotor”. In: IEEE Robotics and Automation Magazine (2012). ISSN: 10709932.
DOI: 10.1109/MRA.2012.2206474.

[81] Haomiao Huang et al. “Aerodynamics and control of autonomous quadrotor helicopters in aggres-
sive maneuvering”. In: Proceedings - IEEE International Conference on Robotics and Automation
(2009), pp. 3277–3282. ISSN: 10504729. DOI: 10.1109/ROBOT.2009.5152561.

[82] Robert Mahony et al. “Nonlinear complementary filters on the special linear group”. In: Inter-
national Journal of Control 85.10 (2012), pp. 1557–1573. ISSN: 00207179. DOI: 10.1080/
00207179.2012.693951.

[83] Walter T. Higgins. “A Comparison of Complementary and Kalman Filtering”. In: IEEE Transactions
on Aerospace and Electronic Systems AES-11.3 (1975), pp. 321–325. ISSN: 00189251. DOI:
10.1109/TAES.1975.308081.

[84] R. E. Kalman. “A new approach to linear filtering and prediction problems”. In: Journal of Fluids
Engineering, Transactions of the ASME 82.1 (1960), pp. 35–45. ISSN: 1528901X. DOI: 10.
1115/1.3662552.

[85] Tine Lefebvre, Herman Bruyninckx, and Joris De Schutter. “Kalman filters for non-linear systems:
A comparison of performance”. In: International Journal of Control 77.7 (2004), pp. 639–653.
ISSN: 00207179. DOI: 10.1080/00207170410001704998.

[86] Simon J. Julier and Jeffrey K. Uhlmann. “New extension of the Kalman filter to nonlinear systems”.
In: Signal Processing, Sensor Fusion, and Target Recognition VI 3068.July 1997 (1997), p. 182.
ISSN: 0277786X. DOI: 10.1117/12.280797.

[87] John L. Crassidis and F. Landis Markley. “Unscented filtering for spacecraft attitude estimation”.
In: Journal of Guidance, Control, and Dynamics (2003). ISSN: 07315090. DOI: 10.2514/2.
5102.

[88] Manon Kok, Jeroen D. Hol, and Thomas B. Schön. “Using inertial sensors for position and ori-
entation estimation”. In: Foundations and Trends in Signal Processing 11.1-2 (2017), pp. 1–153.
ISSN: 19328354. DOI: 10.1561/2000000094. arXiv: 1704.06053.

https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53
https://arxiv.org/abs/1311.2901
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1109/LRA.2018.2808368
https://doi.org/10.1007/978-3-319-46448-0_2
https://arxiv.org/abs/arXiv:1512.02325v5
https://doi.org/10.1109/ICRA.2019.8793631
https://arxiv.org/abs/1810.06224
https://doi.org/10.1109/LRA.2018.2795643
https://arxiv.org/abs/2005.12813
http://arxiv.org/abs/2005.12813
https://doi.org/10.1109/CVPR.2017.143
https://doi.org/10.1109/MRA.2012.2206474
https://doi.org/10.1109/ROBOT.2009.5152561
https://doi.org/10.1080/00207179.2012.693951
https://doi.org/10.1080/00207179.2012.693951
https://doi.org/10.1109/TAES.1975.308081
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1080/00207170410001704998
https://doi.org/10.1117/12.280797
https://doi.org/10.2514/2.5102
https://doi.org/10.2514/2.5102
https://doi.org/10.1561/2000000094
https://arxiv.org/abs/1704.06053

74 Bibliography

[89] Grzegorz Szafranski et al. “Altitude estimation for the UAV’s applications based on sensors fusion
algorithm”. In: 2013 International Conference on Unmanned Aircraft Systems, ICUAS 2013 -
Conference Proceedings (2013), pp. 508–515. DOI: 10.1109/ICUAS.2013.6564727.

[90] Yuanbo Nie, Omar Faqir, and Eric C. Kerrigan. “ICLOCS2: Try this Optimal Control Problem
Solver before you Try the Rest”. In: 2018 UKACC 12th International Conference on Control,
CONTROL 2018 2.2017 (2018), p. 336. DOI: 10.1109/CONTROL.2018.8516795.

[91] Markus Hehn, Robin Ritz, and Raffaello D’Andrea. “Performance benchmarking of quadrotor
systems using time-optimal control”. In: Autonomous Robots 33.1-2 (2012), pp. 69–88. ISSN:
09295593. DOI: 10.1007/s10514-012-9282-3.

https://doi.org/10.1109/ICUAS.2013.6564727
https://doi.org/10.1109/CONTROL.2018.8516795
https://doi.org/10.1007/s10514-012-9282-3

B
Bang-Bang Prediction Model

B.1. Decoupled Prediction Model

-�

T

W

D

x

z

Tx

Tz

𝑇 = Thrust
𝐷 = Drag = 𝐶𝑑 ⋅ 𝑉
𝑊 = 𝑚𝑔 =weight
𝑚 = mass
𝑔 = gravity
𝜃 = attitude angle
𝑥 = position

Assume perfect constant altitude control:

𝑇𝑧 =𝑊

𝑇 = 𝑊
cos𝜃

𝑇𝑥 =𝑇 sin𝜃 = 𝑊
sin𝜃
cos𝜃 = 𝑊 tan𝜃

(B.1)

Sum of forces:
𝑚 ⋅ �̈� =𝑇𝑥 − 𝐷 = 𝑊 tan𝜃 − 𝐶𝑑 ⋅ �̇�

�̈� =𝑔 tan𝜃 − 𝐶𝑑𝑚 �̇�
(B.2)

Homogeneous equation:

�̈� + 𝐶𝑑𝑚 �̇� =0 (B.3)

75

76 B. Bang-Bang Prediction Model

Characteristic equation:

𝑟2 + 𝐶𝑑𝑚 𝑟 =0

𝑟 (𝑟 + 𝐶𝑑𝑚) =0

𝑟1 = 0, 𝑟2 =
−𝐶𝑑
𝑚

𝑥ℎ =𝑐1 + 𝑐2𝑒
−𝐶𝑑
𝑚 𝑡

(B.4)

Particular equation:
Assume 𝑥𝑝 = 𝐴 ⋅ 𝑡, where 𝐴 is a constant:

𝑥𝑝 =𝐴𝑡
̇𝑥𝑝 =𝐴
̈𝑥𝑝 =0

0 =𝑔 tan𝜃 − 𝐶𝑑𝑚 ⋅ 𝐴

𝐴 =𝑊 tan𝜃
𝐶𝑑

𝑥𝑝 =
𝑊 tan𝜃
𝐶𝑑

𝑡

(B.5)

𝑥 =𝑥ℎ + 𝑥𝑝 = 𝑐1𝑒
−𝐶𝑑
𝑚 𝑡 + 𝑐2 +

𝑊 tan𝜃
𝐶𝑑

𝑡

�̇� =𝑐1
−𝐶𝑑
𝑚 𝑒

−𝐶𝑑
𝑚 𝑡 + 𝑊 tan𝜃

𝐶𝑑

(B.6)

Solve for initial conditions:

�̇�0 =𝑐1
−𝐶𝑑
𝑚 𝑒

−𝐶𝑑
𝑚 𝑡0 + 𝑊 tan𝜃

𝐶𝑑

𝑐1 =(�̇�0 −
𝑊 tan𝜃
𝐶𝑑

) 𝑚

−𝐶𝑑𝑒
−𝐶𝑑
𝑚 𝑡0

𝑥0 =𝑐1𝑒
−𝐶𝑑
𝑚 𝑡0 + 𝑐2 +

𝑊 tan𝜃
𝐶𝑑

𝑡0

𝑐2 =𝑥0 − 𝑐1𝑒
−𝐶𝑑
𝑚 𝑡0 − 𝑊 tan𝜃

𝐶𝑑
𝑡0

=𝑥0 − (�̇�0 −
𝑊 tan𝜃
𝐶𝑑

) 𝑚

−𝐶𝑑𝑒
−𝐶𝑑
𝑚 𝑡0

𝑒
−𝐶𝑑
𝑚 𝑡0 − 𝑊 tan𝜃

𝐶𝑑
𝑡0

(B.7)

In the code we always assume that 𝑡0 = 0 which makes the constants:

𝑐1 =(�̇�0 −
𝑊 tan𝜃
𝐶𝑑

) 𝑚
−𝐶𝑑

𝑐2 =𝑥0 − (�̇�0 −
𝑊 tan𝜃
𝐶𝑑

) 𝑚
−𝐶𝑑

= 𝑥0 − 𝑐1
(B.8)

B.2. Combined Euler Angles
Note that in a 3-dimensional case the thrust components cannot always be represented as in Equa-
tion B.1. In fact, when the quadcopter has rotated both in pitch (𝜃) and roll (𝜙) the lateral thrust compo-
nent in the velocity reference frame must be corrected by

1
cos𝜃 which can be derived by rotating the

thrust component in the body frame back to the velocity frame as shown in Equation B.9:

B.2. Combined Euler Angles 77

[
cos𝜃 sin𝜙 sin𝜃 cos𝜙 sin𝜃
0 cos𝜙 − sin𝜙

− sin𝜃 sin𝜙 cos𝜃 cos𝜙 cos𝜃
] [

0
0
−𝑊

cos𝜃 cos𝜙

] = [
−𝑊 tan𝜃
𝑊 tan𝜙

cos𝜃
𝑊

] (B.9)

C
Flight Experiments Results

Flight experiments have been performed to test the Bang-Bang controller in practice. The experiments
were performed indoors at the TU Delft’s ’Cyberzoo’. The main results of the experiments are dis-
cussed in the paper in Part I. This chapter will summarize all performed experiments in plots, including
the experiments not discussed in the paper.
Where applicable, comparisons between the bang-bang, bang-bang controller with transition compen-
sation and a PID controller are made. section C.1 briefly describes the different sets of experiments
and in section C.2 the relevant results are shown.

C.1. Flight Maneuvers
Several sets of maneuvers have been established to test the controller performance for different as-
pects.

Motion Primitives
This section describes the the experiments that test the controllers’ performance for combinations of
longitudinal and lateral flight. These consists of short flights, governed by two waypoints that are posi-
tioned either longitudinally, laterally or both longitudinally and laterally from each other.

(a) Forward (b) Backward (c) Sideways

(d) Forward-Sideways (e) Forward-Up (f) Forward-Down

Figure C.1: Comparison compositions of the motion primitive maneuvers. Each color represents a single run with a different
controller: Red = PID, Blue = BangBang without compenstation, Green = BangBang with compensation

Figure C.1 shows a compilation of all motion primitive maneuvers that have been performed with the
flights of different controllers. Because each flight should end in rest, the bang-bang controller flights

79

80 C. Flight Experiments Results

switch to a PID controller after the first bang-bang motion has been completed. This is necessary to
avoid endless oscillations around the target position.

Circular Flight
Additionally, to more closely approach a drone racing scenario, flights with multiple consecutive way-
points have been performed. That is, a set of rectangular positioned waypoints have been established
for this maneuver. Since the bang-bang controller uses a decoupled model to predict paths in straight
lines, it is unable to accommodate changes in heading. Therefore, most flight experiments have been
performed with a fixed heading. Furthermore, the ’saturation’ dimension is automatically varied be-
tween the longitudinal and lateral direction, based on the maximum component of the position error.
That is, if the target position lies straight ahead the saturation dimension lies in the body’s x-axis and
therefore a bang-bang motion is planned in pitch. If the target lies to the left or to the right the saturation
dimension lies to the body’s y-axis and a bang-bang motion is planned for roll.

(a) Bang-Bang (b) PID

Figure C.2: Compositions of single circular runs for the bang-bang controller and PID controller.

Reduced Positional Feedback
The quadcopter’s position is estimated by the Optitrack system. From which the velocity is derived
on-board. For most experiments the Optitrack’s sample rate was set to 120Hz. However, in drone
racing the quadcopter often must estimate its position with expensive on-board solutions that are likely
as accurate, nor as fast as Optitrack. To test the bang-bang controller for lower quality position and
velocity estimations a few tests have been performed in which the positional reporting of Optitrack has
been set to a lower frequency of 10Hz. The related filters still run as fast as the Bebop’s main control
loop (512Hz).
These tests have been performed for the Forward, Forward-Sideways and Circular maneuvers. And
the results can be found in section C.2.
However, even though it can be seen that the controllers perform worse for this scenario. There haven’t
been performed enough flights to establish a statistically significant difference between the Bang-Bang
controller and the PID controller.

Real Thrust Estimation
The final flight experiments concern the case in which the path prediction model is augmented with
an estimated thrust force. In the nominal case this model assumes perfect hovering conditions and
a constant thrust force in which the vertical component perfectly matches the quadcopter’s weight in
opposite direction. However, the real thrust force can be approximated with the thrust command that the
altitude controller produces. This is done by first finding the thrust command value when the quadcopter
is in hover condition (0.56 for the Bebop). It was then assumed that the produced thrust force scales
linearly with the thrust command.
This experiment was only performed with the forward-up and forward-down maneuver.
No significant performance increases were expected because the path predictor assumes constant
thrust during the entire bang-bang maneuver. Using real-time thrust estimations would therefore only
be helpful if the vertical thrust component had a constant offset from the quadcopter’s weight during
the complete maneuver. Which is never the case.
The boxplots in Figure C.7 also show no significant differences between the bang-bang controller with
and without real-time thrust estimations.

C.2. Plots 81

C.2. Plots

BB-C(15) BB(4) PID(10) BB-C-10Hz(2) PID-10Hz(2)

1.3

1.35

1.4

1.45

1.5

1.55

T
im

e
[s

]

Time of Arrival Forward Maneuver

BB-C(15) BB(4) PID(10) BB-C-10Hz(2) PID-10Hz(2)

0

0.2

0.4

0.6

0.8

1

O
ve

rs
ho

ot
 [m

]

Overshoot Forward Maneuver

BB-C(15) BB(4) PID(10) BB-C-10Hz(2) PID-10Hz(2)

0

0.5

1

1.5

2

2.5

3

3.5

E
rr

or
 [m

/s
]

Velocity Error Forward Maneuver

Figure C.3: Forward Maneuver

82 C. Flight Experiments Results

BB-C(12) BB(4) PID(8)

1.35

1.4

1.45

1.5

1.55

T
im

e
[s

]

Time of Arrival Backward Maneuver

BB-C(12) BB(4) PID(8)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

O
ve

rs
ho

ot
 [m

]

Overshoot Backward Maneuver

BB-C(12) BB(4) PID(8)

0

0.5

1

1.5

2

2.5

3

3.5

E
rr

or
 [m

/s
]

Velocity Error Backward Maneuver

Figure C.4: Backward Maneuver

C.2. Plots 83

BB-C(11) BB(5) PID(8)

1.2

1.25

1.3

1.35

1.4

1.45

1.5

T
im

e
[s

]

Time of Arrival Sideways Maneuver

BB-C(11) BB(5) PID(8)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

O
ve

rs
ho

ot
 [m

]

Overshoot Sideways Maneuver

BB-C(11) BB(5) PID(8)

0

0.5

1

1.5

2

2.5

3

3.5

E
rr

or
 [m

/s
]

Velocity Error Sideways Maneuver

Figure C.5: Sideways Maneuver

84 C. Flight Experiments Results

BB-C(15) BB(4) PID(10) BB-C-10Hz(2) PID-10Hz(2)

1.3

1.35

1.4

1.45

1.5

1.55

T
im

e
[s

]

Time of Arrival Forward Maneuver

BB-C(15) BB(4) PID(8) BB-C-10Hz(3) PID-10Hz(2)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

O
ve

rs
ho

ot
 [m

]

Overshoot Forward-Sideways Maneuver

BB-C(15) BB(4) PID(8) BB-C-10Hz(3) PID-10Hz(2)

0

0.5

1

1.5

2

2.5

3

3.5

E
rr

or
 [m

/s
]

Velocity Error Forward-Sideways Maneuver

Figure C.6: Forward-Sideways

C.2. Plots 85

BB-C(7) BB(3) PID(5) BB-C-TH(2) BB-TH(2)

1.2

1.25

1.3

1.35

1.4

T
im

e
[s

]

Time of Arrival Forward-Up Maneuver

BB-C(7) BB(3) PID(5) BB-C-TH(2) BB-TH(2)

0

0.2

0.4

0.6

0.8

1

1.2

O
ve

rs
ho

ot
 [m

]

Overshoot Forward-Up Maneuver

BB-C(7) BB(3) PID(5) BB-C-TH(2) BB-TH(2)

1

1.5

2

2.5

3

3.5

4

E
rr

or
 [m

/s
]

Velocity Error Forward-Up Maneuver

BB-C(7) BB(3) PID(5) BB-C-TH(2) BB-TH(2)

1.45

1.5

1.55

1.6

1.65

T
im

e
[s

]

Time of Arrival Forward-Down Maneuver

BB-C(7) BB(3) PID(5) BB-C-TH(2) BB-TH(2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

O
ve

rs
ho

ot
 [m

]

Overshoot Forward-Down Maneuver

BB-C(7) BB(3) PID(5) BB-C-TH(2) BB-TH(2)

0

0.5

1

1.5

2

2.5

3

3.5

4

E
rr

or
 [m

/s
]

Velocity Error Forward-Down Maneuver

Figure C.7: Forward-Up & Forward-Down

86 C. Flight Experiments Results

BB-C-FY(4) PID-FY(4) BB-C-VY(4) PID-VY(1) BB-C-FY-10Hz(1) PID-FY-10Hz(1)

4

4.5

5

5.5

6

6.5

tim
e

[s
]

Circle Completion Time

BB-C-FY(16) PID-FY(16) BB-C-VY(16) PID-VY(4) BB-C-FY-10Hz(4) PID-FY-10Hz(4)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
is

ta
nc

e
[m

]

Minimum WP Distance Circle

	Acronyms
	List of Symbols
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objective & Research questions
	Planning
	Gantt Chart

	Document Structure
	Scientific Paper
	Literature Review
	Preliminary Results
	Flight Experiment Results

	I Scientific Paper
	II Literature Review
	Optimal Control Theory
	Introduction to Optimal Control
	Discrete case: Bellman Equation
	Continuous-time case: Hamilton-Jacobi-Bellman Equation
	Pontryagin's Minimum Principle
	Solving Optimal Control Problems
	Dynamic Programming
	Direct Methods
	Indirect Methods

	LQR Control
	Chapter Summary

	Drone Racing
	Chapter Outline
	Competitions
	Alphapilot/AIRR
	IROS
	IMAV

	Trajectory Generation
	Minimum-Snap
	Cluttered Environments
	Machine Learning Approaches
	Solving Time-Optimal Principles

	Control
	Trajectory Tracking

	Perception
	Visual Odometry
	Object Recognition

	On-board State Estimation
	Visual Approaches to State Estimation
	Estimating Attitude
	Filtering
	Estimating Position
	Estimating Velocity

	Chapter Summary

	Pontryagin's Conditions for Optimality

	III Preliminary Work
	Lightweight Optimal Control
	Bang-Bang Optimal Control
	Bang-Bang Controller
	Prediction Model
	Switch Time Solver
	Lateral Control
	Braking

	Matlab Simulations
	Simulation Observations

	Trajectory Comparisons
	Straight Flight
	Longitudinal + Lateral Flight

	Transition Compensation
	Discussion of the Preliminary Results
	The Effects of Simplifications
	Computational efficiency

	Bang-Bang Prediction Model
	Decoupled Prediction Model
	Combined Euler Angles

	Flight Experiments Results
	Flight Maneuvers
	Plots

