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Abstract—In the field of music technology, the ability to e(c:arr:loer(;gy rn:(acy ase; use
connect body movements with music generation has led to highly Wearable-devices 7 <
engaging applications. Many existing solutions use cameras or mmWave radar 7 7

wearable devices to capture physical movements and translate
them into commands for a music generation tool. While the
camera-based systems are privacy-invasive and demand good
lighting conditions, the wearable devices adversely impact the
fluidity of movements. We propose WaveTune, a privacy-friendly
and device-free interface for creating music beats through body
gestures. Wavetune has the following components: (i) a millimeter-
wave radar as the frontend sensor that captures body move-
ments, (ii) a gesture recognition algorithm that performs gesture
delimitation and identification in real-time, and (iii) a music
generation component that maintains a seamless and pleasant
experience. WaveTune also provides an option to continuously
map random dynamic movements into musical parameters to
encourage further interaction. We recruited 24 users to train
and test WaveTune’s ability to map body gestures to musical
commands. To the best of our knowledge, WaveTune is the first
mmWave system that allows a layered composition of music beats.

1. INTRODUCTION

There has been a long-standing interest to interact with mu-
sic through physical movements. ‘The Hands’ project proposed
music generation through body motion way back in 1984 [1].
Controlling and generating music through motion adds a visual
element to the sound, making the performance more expressive
and impactful. Existing approaches for translating motion into
music include: (a) Camera-based systems and (b) Wearable
devices. For instance, the LEAP Motion Controller uses a
camera to infer physical movements [2]. This approach offers
a natural and intuitive way to interact with music. On the
other hand, Mi.Mu Gloves [3] and SOMI-1 [4] use wearable
sensors to capture motion. In both of these approaches, the
movements are translated into commands that alter specific
musical parameters.

Limitations of current approaches. Camera-based solu-
tions, however, demand optimal lighting conditions and un-
obstructed line-of-sight. Furthermore, they could be perceived
as intrusive since they capture full body images, potentially
compromising the privacy of people in the scene [5]. On the
other hand, wearable devices preserve privacy at the expense
of using body-mounted devices. The use of wearable devices
could impact the spontaneity and aesthetics of movements.
Furthermore, using interfaces such as Mi.Mu Gloves requires
an extensive calibration process and familiarity with the system
to master fine movements and understand their impact on the
generated music [6].

TABLE I: Comparison of sensors for music generation.

Sensor Gesture Recognition Music Generation

Algorithm Block

Fig. 1: WaveTune’s components. [Images generated using
Image Creator from Microsoft Bing.]

A novel approach to simultaneously address the challenges
of privacy and fluidity has been explored in O Soli Mio [7]. The
platform uses a millimeter wave (mmWave) radar to capture
physical movements. The radar represents objects within its
range as point clouds. Unlike cameras, these point clouds do
not provide fine-grained information about people, but together
with machine learning methods, the point clouds can be used
to identify gestures that modify music tones.

Soli Mio inspires our work since it provides privacy, but
it has two shortcomings. First, there is not much flexibility
for music composition. Soli Mio uses conventional machine
learning methods that can recognize only one gesture. Having
a single command limits interaction because users can only
modify one parameter, such as the tempo. Music, however, has
multiple layers (melody, drums, tempo), and exploring these
layers requires a richer set of gestures. Second, Soli Mio is not
open source. It uses a radar system exclusively integrated with
Google products such as Pixel Phones and Nest [8]. To unleash
the potential of a tool that composes music with body gestures,
it is desirable to have an open-source project that builds upon
proven state-of-the-art methods for gesture recognition and
music composition.

As summarized in Table I, mmWave sensors provide privacy
and ease of use compared to camera-based and wearable-based
approaches, but the SoA (Soli Mio) allows minimal levels of
music interaction.

Contribution. We propose an alternative to create richer
musical beats. Our system, called WaveTune, generates beats
through body gestures in a layer-by-layer fashion. For example,
a user can add a layer of percussion to an existing melody or
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add a bass layer to an underlying rhythm. WaveTune enables
this layered composition by recognizing body movements and
translating them into instructions for a music generation tool.

We envision WaveTune as a platform that encourages people
to create music beats in a playful manner. For example,
nowadays, many artists first create beats with music tools and
then add lyrics. With WaveTune, schools could have more
engaging music lessons, where children use body movements
to create a beat, learning in that way the basics of modern
music composition without invading the children’s privacy with
cameras or wearables.

Overall, WaveTune makes the following contributions.
1) A beat generation tool that does not require wearable
devices or cameras [Sections II and III]. WaveTune protects
user privacy while retaining movement fluidity. WaveTune’s
components, shown in Figure 1, consist of (i) a radar sensor
to capture cloud points, (ii) a gesture recognition algorithm that
maps cloud points into commands, and (iii) a music controller
that maps commands to different musical layers.
2) An optimized algorithm to recognize gestures for beat
composition [Section IV]. We analyze the state-of-the-art to
identify the best gesture recognition algorithm and modify it
to suit the needs of music composition. Our algorithm filters
irrelevant gestures, identifies the beginning and end of the
desired gestures, and decodes them in real time.
3) A controller that creates beats on a layer-per-layer basis
[Section V]. The controller maps gestures to musical com-
mands and its design focuses on continuity and ease of use.
To be pleasant, a musical experience should not be intermittent
but fluid (continuous) and to be easy to use, the programming
language and protocol need to be rich but simple.
4) A detailed evaluation of WaveTune [Section VI]. We gather
24 users of different ages and genders to demonstrate that
WaveTune can detect the intended gestures with 93.5% accu-
racy. We also provide a video at https://youtu.be/mvcjfo-Iffs,
where we demonstrate WaveTune. We encourage the reader to
watch the video at this point to attain a better understanding of
the remainder of the paper. Our system will be made publicly
available.

II. SYSTEM OVERVIEW

A layered approach for music generation. In traditional
musical settings, such as those in an orchestra, multiple instru-
ments work together to produce a rich and harmonious compo-
sition. Instruments like violins often carry the melody, trumpets
provide highlights, and percussion instruments establish the
rhythm. Each instrument or group of instruments contributes to
a unique layer in the composition. When these layers intertwine
harmoniously, they together generate a musical beat. Digital
Audio Workstations (DAWSs) are essential tools in modern
music production and they adopt this multi-layered approach.
For example, in the case of Ableton Live — a widely-used
DAW, users can assign separate tracks to different instruments
or sounds, and then craftily, modify or merge these tracks to
achieve the desired musical composition.

We adopt a similar approach of using layers for music
beat generation. Our current implementation focuses on three
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(b) Point cloud for the Stop Ges-

(a) Office scenario ture.

Fig. 2: WaveTune operation: A person performs gestures in
front of a mmWave radar that are transformed into a musical
track.

Change
Melody
Track

~> |ndicates transitions due to Mode change gesture (MC1, MC2, MC3)
=== ¥» Indicates transitions due to Track change gesture (TC1, TC2)
»  Indicates transitions due to Stop gesture (S1, S2)

¥ Indicates transitions triggered without gestures (R)

Fig. 3: State transition diagram

layers: Melody, Drums, and Dynamic. WaveTune is inherently
flexible and can be expanded to include additional layers. Each
layer in WaveTune operates as a distinct mode, with transitions
between modes triggered through gestures. Next, we describe
in detail how users compose music with WaveTune.

System setup and Music composition We evaluate Wave-
Tune in two different environments, an office space and a
living room, the office space is shown in Figure 2. The radar is
mounted at a height of 1.2m using a tripod with an elevation
angle of 0 deg. On the floor, we place a small elliptic area,
around 60 cm x 40 cm, where the user should stand. The elliptic
area is at a distance of approximately 1.5 m. The user can stand
on any part of the elliptic area but facing the radar.

The radar captures the movements as a point cloud and
transmits it over a serial port to a computer. The computer runs
the gesture recognition algorithm and the music controller. The
gestures interpreted by the algorithm are relayed as commands
to the music controller that creates the music layer-by-layer.
An external speaker is used to play the composed music beat
in real-time. The music composition process is captured by the
state transition diagram in Figure 3 and it is explained next:
1) Standby mode. After starting the system, the radar begins
gathering cloud points. The gesture recognition algorithm
ignores all movements, except the Mode change (MC) gesture,
shown in Figures 4a. Once this gesture is provided, the
controller starts the music composition process.

2) Melody mode. Once the MC gesture is provided (transition
MCT1 in Figure 3), the controller starts playing the first melody
from a list of preset melodies. The user can navigate through
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(c) Stop gesture.

Fig. 4: Gestures in WaveTune that act as commands to transition through the state machine.

this list using the Track change (TC1) gesture until s/he finds
the desired melody.

3) Drum mode. Once the desired melody is found, the user
can switch to the Drum Mode by performing again the Mode
change gesture (transition MC2 in Figure 3). In Drum mode,
the user can choose a specific drum rhythm, from a collection
of preset drum tracks, using the track change gesture (transition
TC2).

4) Dynamic mode. The dynamic mode is accessed by per-
forming the mode change gesture (transition MC3). In this
mode, gesture recognition is disabled for 15s because the
goal is to introduce musical effects. The frequency effect of
the composed tracks (melody and drums) is modified based
on how fast the user moves the arms. The frequency effect
can make a sound warmer or more resonant, impacting the
perception of music. The dynamic mode offers users the ability
to enhance the expressiveness and feel of their compositions
through random body motions.

5) Calibration mode [Optional]. Since the dynamic mode
makes use of movement velocity, we provide an optional
calibration mode before the standby mode. This optional mode
helps WaveTune personalize the user experience with a more
fine-tuned mapping between the frequency effect and the arm
movements.

6) Stopping music composition. After the dynamic mode ends,
WaveTune transitions back to the Melody mode (transition R).
The user can then continue to transition between the Melody,
Drum, and Dynamic modes through mode change gestures. If
a user performs a Stop gesture (S) anytime in Melody mode
or Drum mode, the system goes back to the standby mode
(transitions S1 and S2).

Gestures act as commands to the music generation tool,
and from the description of the state diagram, we observe
that WaveTune requires three gestures: mode change, track
change and stop, plus a dynamic mode. To define these three
gestures, we select options that are intuitive and easy to
perform. Figures 4a, 4b, and 4c describe the mode change,
track change, and stop gestures respectively.

III. SENSOR SETUP AND DATA CAPTURE

In this section, we describe what frequency and radar
parameters are better suited for WaveTune.

Operating frequency and off-board processing. For Wave-
Tune, we choose the IWR1443 sensor from Texas Instru-
ments (TI) which operates in the 77 GHz - 81 GHz range. The
IWR1443 has 3 transmitters and 4 receivers and provides
three important advantages for our application compared to
other alternatives [9]: (i) fine angular resolution, enabling more
detailed cloud points, (ii) lower latency, facilitating timely
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responses, and (iii) as it will be described later, two SoA
platforms for gesture recognition utilize the same sensor,
Pantomime [10] and Tesla-Rapture [11], validating the sensor’s
strengths for capturing gestures.

Parameter configuration. Radar sensors have multiple
parameters that usually trade off range versus granularity.
Our objective is to get a distinct and dense point cloud that
aids gesture recognition. Table II provides the configuration
parameters of our setup. Considering the radar’s field of view,
an approximate distance of 1.5 m from the sensor is sufficient
to capture gestures from people of different heights. Also,
from our initial experiments, we determined that the maximum
gesture velocity is lower than 5m/s. Accordingly, we set the
maximum unambiguous range to 2.5m and the maximum
radial velocity to 6.9 m/s. With those values, the range and
velocity resolutions are set to 0.047 m and 0.87 m/s.

After a scan, the radar embeds the point clouds into a
single frame together with additional information such as frame
number and checksum. Given that gestures take a few seconds,
WaveTune needs to collect successive frames to capture the
entire gesture and classify it. This process is presented in the
next section.

Parameter Value
Operating Frequency 77 GHz
Range Resolution 0.047 m
Maximum Unambiguous Range | 2.5 m
Maximum Radial Velocity 6.9 m/s
Radial Velocity Resolution 0.87 m/s
Frame Rate 30 fps
Range Detection Threshold 15 dB

TABLE II: Key mmWave radar parameters.
IV. GESTURE RECOGNITION ALGORITHM

The transitions across various modes in WaveTune are
enabled by gestures. Thus, the gesture recognition algorithm
plays a critical role. WaveTune performs gesture recognition
in two steps: first, by identifying the start and end of a gesture,
and second, by determining the type of gesture. The first step
is performed by the delimiter identification algorithm, whereas
we use a neural network model to determine the gesture.

A. Delimiter identification algorithm

We design a method to automatically identify the beginning
and end of gestures to maintain the fluidity of movements. A
valid movement is detected by reading the velocity information
in the point cloud. A frame having at least three points with
non-zero velocity is considered a valid frame, whereas other
frames are designated as idle.

Tracking a gesture starts after receiving a valid frame.
The goal is to capture N valid frames while ignoring any
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intermediate idle frames. In practice, this translates to using
the frames with richer information, when the person is actually
moving. The sensor is set to 30fps and we estimate that the
average time of a gesture is around 3 seconds. Note that in a 3-
second window, we can have 90 frames, both valid and idle, but
we only consider the first N valid frames. Our analysis shows
that 50 frames is an optimal value, ensuring that the entire
gesture is captured without introducing excessive redundancy
or risking data loss. Figure 2b shows an example of 50 active
frames related to the Stop gesture.

After 50 valid frames are detected, the data is sent to the
algorithm for gesture recognition. While the gesture is being
recorded, a counter keeps track of the number of valid and
idle frames. An idle duration greater than twenty consecutive
frames indicates that the event was not triggered by a gesture
but by incidental movement. In this case, we discard the
recorded frames and start all over again. The neural network
model requires a uniform input structure, but the sampled
frames generally contain varying numbers of points. The
method to guarantee a uniform input is described next.

B. Data preprocessing

State-of-the-art studies in gesture recognition have reported
that using 32 frames per gesture, with 32 points per frame,
provides the best input to maximize the accuracy of a neural
network model [11]. We, thus, follow these guidelines. To
map 50 frames into 32 frames, we divide the original frames
into 18 groups of two frames and 14 individual frames. The
cloud points in the groups of two are merged into a single
frame, having a total of 32 frames (18 merged frames and 14
original frames). After having 32 frames for each gesture, each
frame undergoes point resampling to have a uniform number
of points in each frame. For frames with fewer than 32 points,
Agglomerative Hierarchical Clustering (AHC) is employed for
upsampling. Conversely, for frames with more than 32 points,
the K-means algorithm is used for downsampling.

C. Neural network model

After a valid gesture is detected, the neural network model
takes over the identification step. WaveTune’s goal is not to
create a new gesture recognition algorithm but to identify the
best candidate in the SoA and optimize it to work seamlessly
with a music controller. Next, we describe our analysis of the
SoA in point cloud processing to identify the most appropriate
architecture for WaveTune.

Neural network models for point cloud processing: Point-
Net is a pioneering work in point cloud processing [12]. Instead
of using standard images for object recognition, Pointnet uses
point clouds, thus reducing the volume of data processing.
PointNet however does not take advantage of the temporal
evolution of frames and is more suitable for static object
identification. PointLSTM [13] and Pantomime [10] further
enhance point cloud recognition by exploiting the tempo-
ral evolution of events. However, both approaches require
high computational resources, affecting real-time applicabil-
ity in resource-constrained environments. Tesla-Rapture [11]
includes temporal properties but also provides a lightweight
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Metric/Aspect Tesla-Rapture WaveTune

Input Dimension [1024, 3] [1024, 3]

Initial Processing STN (Spatial STN
Transformer)

MPNN Input [n X 2 x 3] [n X 2 x 3]

MPNN Output n X 64 n X 32

MPNN MLP Sequence [6, 64, 64, 64] [6, 32, 32]

Attention Input Features 64 32

Number of Attention Heads 8 4

Linear Transformation (In/Out) 64 — 1024 32 — 256
Final Classification MLP Sequence | [1024, 512, 256] [256, 128, 64]
Dropout in Final MLP 0.5 0.4
Trainable Parameters 1.556M 0.859M

TABLE II: Model comparison: Tesla-Rapture and WaveTune.

model. Next, we describe the Tesla-Rapture model and the
changes made to suit our application.

Tesla-Rapture and WaveTune adaptations: Figure 5
shows the Tesla-Rapture model and the blocks modified to
create WaveTune. TeslaRapture takes a collection of point
cloud samples referred to as Batch. As stated before, the
SoA has identified that 32 (frames) x 32 (points) = 1024
(points) are the best Batch size, and hence, we use the same
format. Each point in the Batch provides its corresponding
3D coordinates (x, y, z). The 1024 x 3 values represent the
raw spatial data provided as input to the model. The TFNeT
module performs standardization to account for differences in
orientation or position. Until this point, there is no difference
between TeslaRapture and WaveTune.

To exploit temporal correlation, TeslaRapture uses a Tempo-
ral Graph K-NN algorithm. This graph connects cloud points
with their nearest neighbors in previous frames. The value of
k is a critical factor that determines how far in time the point
clouds would be linked. A value of one indicates that each
point cloud is connected only to its next successive frame
whereas larger values create more complex graphs for longer
durations. Since, for our application, there is no performance
benefit in adding complexity (bigger k) as shown in Figure 7a,
we set k=2. Our high-performing low-complexity graph is
obtained because we need fewer features, which increases the
inter-gesture distance.

The remaining blocks of the original model need to be
optimized to suit WaveTune. By means of MLP (Multi-Layer
Perceptron), the network learns the representation of the data
and extracts features from the graph. We retain the core
architecture but simplify the MLP configuration from [3x2,
64, 64, 64] to [3x2, 32, 32]. We also reduce the number of
attention heads from 8 to 4, which implies that we aggregate a
lower number of features. At this stage, the graph generation
is complete. In the subsequent linear transformation stage,
which is used to represent the gesture as a fixed-size vector,
an MLP followed by a max-pooling is performed. We modity
the MLP size from 1024 to 256, thus reducing the feature size
to 25% of the original design. Accordingly, the subsequent
MLP layers that compute the class probabilities also change
from [1024, 512, 256] to [256, 128, 64]. Our steps follow an
approach of aggressively scaling down the feature size at each
layer. Table III compares the configurations of WaveTune and
Tesla-Rapture. Overall, our configuration reduces the number
of trainable parameters by half. In Section VI, we analyze the
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Fig. 5: Architecture of Tesla-Rapture. The shaded blocks had to be optimized for WaveTune.

impact that our configuration has on the model’s accuracy.
V. MUSIC GENERATION BLOCK

While there are several studies on gesture recognition with
mmWave radars, there are virtually no studies exploiting these
sensors for music beat composition. The only study we are
aware of is O Soli Mio [7], which as described before is limited
to controlling a single parameter with a single gesture.

The reason why no gesture recognition algorithm has been
mapped to beat composition is that deep expertise in musical
elements is required to provide a rich and pleasant musical
experience. Music is structured in bars and beats, which the
gesture recognition algorithm can not comprehend. The music
generation block must be intelligent enough to wait for the
current bar or loop completion before acting on the commands.
Otherwise, the composed music track would sound terrible.
To develop our music generation block, we require (i) a
music generation tool that embeds the concepts of bars and
beats to provide a pleasant experience, (ii) an interface that
connects seamlessly the gesture recognition algorithm and the
music composing tool, and (iii) a musical protocol that can
be efficiently used by both, the musical generation tool and
the algorithm. These three components are essential for music
generation.

A. Music generation tool

WaveTune’s aim is to create a flexible and scalable interface
that can be used for further enhancements. Thus, firstly, it must
provide fine control programmability. This implies support for
Application Programming Interfaces (APIs) to tune different
musical parameters in real-time such as reverb and filter cut-
off frequency. Secondly, it must offer a comprehensive list
of features capable of creating complex compositions. This
necessitates support for extensive soundbanks and knowledge
of musical elements such as bars and beats.

We explore various tools, as detailed in Table IV. Algorith-
mic Composition Tools, despite their effectiveness in complex
composition creation, fall short on integration support. On the
other hand, Python-based Libraries offer a smoother integration
with gesture algorithms but compromise real-time multitrack
support, limiting the musical experience. Among the options,
Digital Audio Workstations (DAWSs) stand out, providing an
industry-standard platform with extensive feature sets and
robust integration capabilities. Specifically, we choose Ableton
Live, a DAW commonly used by professional musicians.
Choosing Ableton Live for music generation in WaveTune
facilitates a smooth interaction with the gesture recognition
system, a rich musical output with various options, and enables
real-time music creation.
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B. Music controller

The music controller has two primary responsibilities, (a)
enabling a reliable layer-by-layer beat generation by imple-
menting the state machine described in Figure 3, and (b)
providing a low-latency interface especially during the dy-
namic mode when the gesture recognition is disabled and
the movements need to be mapped to musical parameters
instantaneously.

For a reliable state-machine implementation, we design a
controller that maintains two-way communication with the
music generation tool. A new command is issued to the
tool only after confirming its current state of operation. For
example, if the tool is currently playing Track-1 in the Drum
mode and there is a command to switch to the next track,
the music controller reads the current tracks for melody and
drum, maintains the melody and increments the drum track.
The music controller is also responsible for the interactive
music generation during the Dynamic mode. Specifically, the
controller extracts the velocity component from points within
a frame. The average value of the velocity is computed and
mapped to a parameter called ‘Filter cutoff frequency’. Slow
hand movements decrease the knob value, producing a more
subdued effect, while faster movements increase it, intensifying
the sound. The impact of the movements is felt instantaneously,
promoting highly engaging interactions.

C. Protocol

The music controller interfaces with the music generation
tool through an industry-standard protocol. To enable future
WaveTune’s enhancements and compatibility with the industry
standard DAWSs, our analysis of existing protocols is limited to
two widely used alternatives: Musical Instrument Digital In-
terface (MIDI) and Open Sound Control (OSC). MIDI, which
operates on a serial communication model, is a longstanding
standard. OSC is a more recent protocol designed to address
some of MIDI’s limitations. First, unlike MIDI, OSC transmits
data over networks enabling wireless communication from
various devices. Second, it has low-latency communication,
making it ideal for real-time performances [20]. Third, OSC
offers a finer control resolution of musical parameters, which
is advantageous in our design to map small changes in velocity
into musical perception during the Dynamic mode. Due to the
above reasons, we chose the OSC protocol.

In summary, the careful analysis done prior to selecting
the best music generation tool and protocol, and the flexible
and reliable design of our controller, are the key reasons why
WaveTune can provide a melodious musical experience.
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Choices Examples Features

Limitations

Algorithmic composition
tools

SuperCollider [14],
Sonic Pi [15], MAX [16]

Capable of generating complex
and detailed compositions

Limited integration support,
Limited soundbanks

FluidSynth [17],

Python based libraries Pyo [18], Mido [19]

Easy to integrate with
gesture processing algorithm

Lack flexibility and control such as
support for simultaneous multitrack
playback and real-time parameter control

Digital audio workstations

(DAWSs) Ableton Live

Industry standard tools, Wide options
and Integration support

Complexity

TABLE IV: Alternatives for music generation

Environment 1 Environment 2

Area Office space: 5m x 3m | Residential room: 10m x 10m

14 adults (8 males,

Volunteers 6 females) + 2 children

5 adults (3 males, 2 females)

Height range | 130 cm - 185 cm 150 cm - 170 cm

TABLE V: Characteristics of the evaluated scenarios.
VI. EVALUATION

Data collection. We test WaveTune in two different environ-
ments. We got an Ethics approval from our institution to per-
form the experiments. Table V presents the characteristics of
the environments and volunteers. Figure 2a shows the picture
of Environment-1. We collected a total of 3350 gesture samples
from 21 volunteers. The number of samples is balanced among
the gestures. In addition to performing the three valid gestures,
the participants also performed several undefined movements
labeled as random gesture. Thus, we train the neural network
model to classify four gestures, three classes derived from valid
gestures and one from random movements. Contrary to most
gesture recognition studies where the input is guaranteed to
be a valid gesture, in our case, classifying (and discarding)
random gestures is central to providing a pleasant experience.

Data augmentation. The point cloud data goes through
the preprocessing stage presented in Section IV-B before the
neural network model classifies it. Further, we perform a data
augmentation step, which is customary in many studies. We
generate additional frame samples by adding Gaussian noise
with a standard deviation of 0.01; and performing random
scaling to the collected data, from 0.8x to 1.25x with a uniform
distribution. Data augmentation adds resilience to the model,
helping it perform better under noise and minor variations.
For every original frame, we create three new augmented
frames using the added Gaussian noise and random scaling.
We only perform data augmentation on the training set (not
for validation or testing). Thus, our training dataset has in the
end more than 10,000 data points including the original and
augmented samples.

A. Model size, Complexity, Optimal parameter, and Accuracy

As described before, one of our main goals is to make the
gesture recognition model as lightweight as possible, without
sacrificing performance. First, we present the results about
complexity and later about accuracy. Figure 6a and Figure 6b
compare the number of parameters and the memory footprint
of WaveTune with other SoA models. The performance data
for models other than WaveTune is taken from what has
been reported in prior studies [11]. We observe that the
lower number of parameters in WaveTune —nearly 45% lower
than Tesla-Rapture and 30% lower than PointLSTM- lead
to smaller memory footprints. Similarly, Figure 6¢ confirms
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that WaveTune also has the lowest computational demands.
The systematic scaling down of the architecture layers, to
recognize only the gestures of interest for WaveTune, helps
to significantly reduce the memory footprint and computing
operations.

As described earlier, the value of k during graph generation
is a critical parameter. The aim is to select the lowest values
without compromising on the accuracy. Figure 7a plots the
accuracy for varying values of k. We observe that the accuracy
stays at 93.46% even when k is varied from 2 to 6. Since, in
our case, increasing k increases complexity without improving
accuracy, we conclude that k=2 is an optimum value for
WaveTune.

Having validated the low complexity of WaveTune, we now
benchmark its accuracy compared to the original architecture
on the WaveTune dataset. We randomly split our data into
training, validation, and testing in a 60:20:20 ratio. WaveTune
achieves an accuracy of 93.46% against the 93.79% accuracy
for Tesla-Rapture, showing comparable performance. Thus,
the drastic reduction of model parameters does not cause a
deterioration in accuracy for our application. Figure 8 shows
the confusion matrix across different gestures. We note that
the Track Change gesture, which we perceive to be one of
the simple gestures, has the lowest probability of correct
identification. We conjecture that random movements may have
more resemblance with simple gestures, such as Track Change.
Thus, the model has a slightly higher difficulty differentiating
them.

B. Performance with new participants

In a real scenario, WaveTune will face new users, who do
not provide any training data. To test WaveTune’s resilience
to unseen participants, we split the participant’s data into five
groups: four groups of four and one group of five. Each group
contains participants from both environments. We perform the
training and validating phases of the WaveTune model with the
data from four groups, and perform the testing phase with the
data from the fifth group. We repeat this process for the five
different combinations, each time keeping a different group for
testing. Figure 7b summarizes the results from this experiment.
We see that while the accuracy is between 85% and 95% for
all combinations, for two of the combinations (labeled as I
and V), the accuracy is slightly lower compared to others.
Combinations I and V have a young child with lower height
characteristics in their test group, which impacts the accuracy
adversely. Thus, we conclude that while WaveTune can adapt
to new users, it performs better if users with a similar age and
height are considered in the training and validation stages.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 23,2024 at 09:00:21 UTC from IEEE Xplore. Restrictions apply.



s (Millions)

Size (MB)

(a) Number of parameters.

100

(b) Memory footprint.
Fig. 6: Complexity comparison between WaveTune and state-of-the-art approaches.

(c) Computational complexity.

100

93.46 93.46 93.46

80 80

60 60

40 40

Accuracy (%)
Accuracy (%)

20 20

0 0

A

~
Value of k

(a) Different k values

N
Combination

(b) Testing new participants.

100
91,
80
60

40

Accuracy (%)

20

0
Q N N - N
Combination

z

(c) Testing a new environment.

Fig. 7: WaveTune accuracy under different parameters, new users, and new scenarios.

True label

w
@

3.42 2.05

RG

¢ <<

Predicted label
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C. Performance in different environments

A new environment implies potential differences in the
intensity of received signal, noise, and reflections due to
stationary objects that the model is not aware of. To analyze
this case, we initially train and validate the model with
users coming only from Environment-1 and test it with users
from Environment-2. After that, we add training data from
Environment-2 but in an increasing manner. First, we split
the users of Environment-2 into four groups, three groups
with two users each and one group with the remaining user.
Then, we add the first group to the training data and test the
system with the remaining three groups. After that, we add
the second and third groups to the training phase and test the
system with the remaining groups. In this way, we gradually
increase the number of training samples of Environment-2,
simulating a scenario of improving levels of environment
familiarity. Figure 7c summarizes the results. We observe that
the accuracy is only 52% when the model does not have
any training samples from the new environment. However, it
improves considerably to 89.5% when the first group is added
(combination II) and reaches 95.25% when the second and
third groups are added (combination 1V). This indicates that
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while the performance of WaveTune is adversely impacted
when placed in a new environment, a small amount of training
data can significantly improve its accuracy.

D. User experience

Until now, our evaluation focused on technical parameters.
To evaluate the user experience, we sought feedback from new
users. We invited three new volunteers, all young adults, who
had not provided any type of data or had any sort of prior
interaction with WaveTune. The evaluation of the new users
was done in Environment-2. After explaining WaveTune to
the new users, we provided a live demonstration, beginning
with the start gesture, transitioning through various modes,
performing track changes, and showing the interactions in the
dynamic mode. The users were provided with the opportunity
to clarify their understanding of gestures. Then, they interacted
with WaveTune for three minutes each, browsing through
different modes. We summarize the user experience findings
in the following points:

¢ During the explanation, most of the questions were about
the Mode Change gesture, which was more difficult to un-
derstand compared to the other gestures. We believe that
this occurs because the Mode Change gesture captures the
fundamental principle of composing music by layers with
modern tools, which is a new concept for most people.

o However, after knowing the gestures and starting the
interaction, they could independently control WaveTune
without much help. The fact that WaveTune relies on a
limited number of gestures helped users learn quickly.

o During the interactions, the Mode Change gesture was
recognized better than the other gestures. In all, 81.48%
of the total 54 gestures were correctly recognized. When
a gesture was not recognized, the user performed it again.

o The mode that the users enjoyed the most was the live
control during the dynamic mode and wanted to spend
more time in it.
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E. Lessons learned

Based on the studies we had with 24 users, we identified
two main lessons, one regarding the musical experience and
the other regarding gesture complexity.

Musical experience. Users enjoy playing with all of Wave-
Tune’s modes, but the most engaging mode is the dynamic one,
which provides the most freedom of movement. Future designs
could focus on providing a richer connection between free
body movements and music composition. For example, two
or more people could be in the field of view of the radar, and
one person could control one layer with her body movements
and the other user could control a different layer with his
movements. In the extreme case, valid gestures may not be
even needed. The radar could compose a song based on free
movements.

Gesture complexity. By design, we minimized the number
of gestures required, which users appreciated. The advantage of
the layered approach is that we can provide a richer experience,
without adding more gestures. For example, before the Melody
mode, we can add an initial layer to select a genre (rock,
pop, classical), and after the drum mode, we could add layers
to highlight specific instruments (piano, guitar, violin). To
increase the experience further, we could add one gesture to
control the speed of each layer and another gesture to jump
directly to the dynamic mode without going through all the
composition layers. Adding more gestures to WaveTune would
not be complex. Since many SoA studies are able to recognize
more than 10 gestures, we would only need to optimize the
model for the final number of gestures. However, our initial
trials indicate that having too many gestures would reduce the
quality of the experience. A richer yet enjoyable composition
would not require adding more than a handful of gestures.

VII. RELATED WORK

There has been a long-standing interest in blending tech-
nology with music, especially gesture-based music generation.
‘The Hands’ project developed in 1984 consists of two con-
trollers attached to the hands [1]. Sensorband further developed
the concept by using ultrasound, infrared, and bioelectric
gestural controls to generate music [21]. More recent works
in gesture-based music generation use ML-based techniques to
learn gestures from a variety of sensors including EMG [22].
All these approaches use wearable sensors, which are valuable
but restrictive tools. The other widely used technology is
camera-based sensing. Togootogtokh et al. [23] introduce a
method for 3D finger gesture tracking and recognition using
depth sensors for real-time music playing. Kritsis et al. [24]
investigate deep learning architectures, specifically LSTM net-
works, for real-time gesture recognition of 3D virtual music
instruments with the Leap Motion Sensor. Leng et al. [25]
presents the ‘Virtual Kompang’, a digital representation of the
traditional Malay percussion instrument, Kompang. However,
these works use camera-based devices. One of our objectives
is to develop a privacy-friendly interface. O Soli Mio is
the only other work we came across that uses mmWave for
capturing gestures and using them for music generation, but
as described in earlier sections, O Soli Mio provides a more
limited experience.

145

VIII. CONCLUSIONS

In this study, we analyze and merge two different areas:
gesture recognition with mmWave radars and modern music
generation tools. Our approach optimizes and connects SoA
methods to provide a novel system for beat composition
that does not require wearables or cameras. We believe that
WaveTune could be a valuable tool to create new musical
experiences in our schools, museums, homes, or cities.
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