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SUMMARY

F Or reservoir characterization, the subsurface heterogeneity needs to be qualified in
which the distribution of lithologies is an essential part since it determines the loca-

tion and migration paths of hydrocarbons. Preliminary analysis of well-log data could
help to identify various lithologies in a one-dimensional direction (depth), while the lat-
eral information is missing because of the sparse locations. On the other hand, a larger
areal coverage of the target reservoir could be provided by seismic data, and from the
inversion thereof, inferences of lithologies could be made.

However, just like other geophysical inversions, translation of seismic inversion re-
sults to these categorical variables (lithologies) is a non-unique problem, which means
that different lithologies could produce the same, or similar, property responses. In or-
der to mitigate this problem, geological prior information should be introduced in the
sense of Bayes’ theorem. Thus, the main motivation for this thesis is to investigate the
usage of geological prior information in the classification of reservoir lithologies from
properties obtained from seismic inversion. Different methods have been tried in this
process in order to fully understand their performances and to make comparisons.

A new detailed synthetic model has been built in which more focus is put on the
reservoir and non-reservoir lithologies, as a virtual asset that has been used to assess
the performance of the seismic inversion method since the inversion results are used
as inputs for the determination of lithologies. Instead of using seismic attributes such
as AVO attributes or acoustic impedance obtained from inversion, the full-elastic wave-
equation based inversion scheme applied here can provide a high resolution properties
and geometries in the subsurface. This is because of the non-linear character of the
wave-equation based inversion, which takes the full elastic wave propagation into ac-
count, including internal multiple scattering as well as multiple mode-conversions.

A new Markov Chain method (A-CMC) has been developed in order to take the lay-
ers’ dips into account during simulation of lithologies. Structural interpretation of the
seismic data, or of the inversion results, could provide general information such as the
dipping direction and angles which are essential inputs for the simulation.

In the simulation of the Markov Chain model (A-CMC), seismic interpretation is used
only as a guidance for subsurface structures. The Hidden Markov Models (HMMs) are
then applied to classify the lithologies with the properties from seismic inversion as in-
puts, while honouring the geological depositional processes contained in the Markov
Models. This means that data samples in the subsurface have not been treated indepen-
dently, but a relationship between adjacent pixels in the subsurface has been introduced
by the use of a transition matrix. The greatest advantage of using the seismic inversions
as inputs is that the location limitation from well-logs can be overcome and 2-D sections
or 3-D cubes of lithologies can be produced.

ix
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A disadvantage of HMMs is that only the vertical coupling is considered and the lat-
eral information is missing. The new Markov Random Field (MRF) method could en-
force dependencies vertically as well as horizontally. Profile Markov matrices should be
designed in order to reflect the geological prior information.

Through the comparison with other statistical methods such as k-Means or Fuzzy
Logic, I found that the approaches that make use of geological prior information out-
perform the methods that do not. In order to construct the prior information, be it a
transition matrix or profile Markov matrices, geological understanding of the regional
settings is needed and cored wells should be used.

Both in the simulation and in the prediction of lithologies, seismic data, with, or
without inversion, plays a role. Because the quality of the seismic data is very critical for
the accuracy and resolution of the seismic inversion, and therefore crucial for the lithol-
ogy prediction process, high quality state-of-the-art seismic acquisition and processing
are important for successful application of my method.



SAMENVATTING

V Oor reservoir karakterisering moet de heterogeniteit van de ondergrond worden be-
paald. In dit proces is de distributie van lithologieën een essentieel onderdeel, om-

dat deze de locatie en migratiepaden van de koolwaterstoffen bepaalt. Een analyse van
well-log data kan helpen om verschillende te identificeren in een eendimensionale rich-
ting (diepte), terwijl laterale informatie ontbreekt als een gevolg van het feit dat de put-
locaties ver uit elkaar liggen. Aan de andere kant kan seismische data zorgen voor een
bedekking van de gehele oppervlakte van het doelgebied en uit de inversie van de seis-
mische data, gevolgtrekkingen ten aanzien van de lithologieën kunnen worden gemaakt.

Echter, het vertalen van de resultaten van seismische inversie resultaten in categori-
sche variabelen (lithologieën) is een niet uniek probleem wat betekent dat verschillende
lithologische kenmerken dezelfde of vergelijkbare responsies in termen van gesteente
eigenschappen kunnen geven. A-priori geologische informatie kan geïntroduceerd wor-
den volgens de theorie van Bayes. De belangrijkste motivatie voor dit proefschrift is om
het potentiele nut te onderzoeken voor het gebruik van geologische a priori informatie
in de classificatie van reservoir lithologieën. Verschillende methoden worden gebruikt
om dit proces beter te begrijpen en de resultaten te kunnen vergelijken.

Er is een nieuw, gedetailleerd synthetisch model gebouwd waarin meer aandacht is
besteed aan de reservoir- en niet-reservoir lithologieën, omdat de inversie resultaten
worden gebruikt als input voor het bepalen van lithologieën. In plaats van gebruik te
maken van seismische attributen, zoals AVO en de akoestische impedantie verkregen
door inversie, levert een inversie schema gebaseerd op de volledig elastische golfver-
gelijking een hoge resolutie van eigenschappen en geometrieën in de ondergrond op.
Dit is het gevolg van het niet-lineaire karakter van deze inversie die de volledige elas-
tische golfpropagatie, inclusief meervoudige reflecties en conversies van longitudinale
naar transversale golven, beschrijft.

Een nieuwe Markov Chain methode (A-CMC) is ontwikkeld om rekening te houden
met de inclinatie van de lagen tijdens de simulatie van lithologieën. Structurele interpre-
tatie van seismische data, of van de resultaten van seismische inversie, kan informatie
geven over azimut en inclinatie van de lagen, wat essentiële input is voor de simulatie.

Structurele seismische interpretatie wordt alleen gebruikt als richtlijn voor onder-
grondse structuren in de simulatie van het Markov Chain model (A-CMC). De seismische
inversie resultaten dienen als input voor de Hidden Markov Models (HMMs) methode
om lithologieën te classificeren, waarbij rekening wordt gehouden met de geologische
depositionele processen. Er wordt een transitie matrix geïntroduceerd die de afhanke-
lijkheid van de lithologieën van nabijgelegen punten in de ondergrond beschrijft. Het
gebruik van seismische inversies als invoer heeft als grootste voordeel dat de plaatsings-
limitatie van boorgaatmetingen kan worden ontlopen en 2-D secties en 3-D volumes van
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de lithologie kunnen worden geproduceerd.

Een nadeel van HMMs is dat alleen de verticale koppeling wordt meegenomen en
laterale informatie ontbreekt. De nieuwe Markov Random Field (MRF) methode kan
verticale en horizontale afhankelijkheid opleggen. Profile Markov matrices moeten ont-
worpen worden die deze geologische a priori informatie reflecteren.

Als mijn methode met andere statistische methode vergelijken, zoals k-Means of
Fuzzy Logic, blijkt dat de benaderingen die geologische a priori informatie in beschou-
wing nemen duidelijk beter werken dan de benaderingen die dit niet doen. Geologisch
begrip van de regionale omgeving is essentieel en boorkernen uit putten moeten be-
keken worden om a priori geologische informatie in te kunnen bouwen in de transitie
matrix of in de profile Markov matrices.

Seismische data en de inversie daarvan spelen een belangrijke rol in de simulatie en
in de voorspelling van lithologieën. De kwaliteit van de seismische data is zeer belangrijk
voor de nauwkeurigheid en de resolutie van de seismische inversie en daardoor voor de
betrouwbaarheid van de lithologie predicties. Daarom zijn geavanceerde acquisitie en
verwerking van data van groot belang voor succesvolle toepassing van mijn methode.
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1.1. GEOLOGICAL PRIOR INFORMATION

While the industry suffers from the drop in oil price because of weak demands and rising
supplies since 2015, geophysicists also suffer from the problem of non-uniqueness in
inversion for a very long time. On the other hand, geological information is available
and could be brought in to mitigate this problem.

In general, geological information can be “provided as a prior component of the solu-
tion i.e. information that exists before the solution is formed and which is incorporated
into the solution. Such information is termed as geological prior information” (Wood
& Curtis, 2004). This kind of information can be derived from well logs, general knowl-
edge of geological settings, similar oil reservoirs, previous experiences or observations
of other people etc.. For example, the data from well logs can provide initial or start-
ing property models for full-waveform inversion, while general knowledge of geological
settings can regulate the inversion outputs in order to exclude unrealistic results, espe-
cially during the lithology classification process, for example that a water sand cannot
be on top of a gas or oil sand in a continuous reservoir. Previous experiences can be
formalized as empirical rock physical models which are potentially important tools for
reservoir characterization. Such models can be based on outcrop analogues when the
subsurface properties cannot be characterized adequately.

1.2. BAYES’ THEOREM

In order to address the non-uniqueness and uncertainty which exists in geophysical in-
version problems (Buland & Omre, 2003), the process can be carried out by Bayes’ theo-
rem (Bayes, 1763) in the probability domain. The inversion problem of non-uniqueness
can be overcome by using a priori information on the parameters (Duijndam, 1988a,b).
If this is done in the form of Bayesian inference, then the prior information will be prob-
abilistic.

The procedure of Bayesian inversion consists of combining the prior information
with the information included in the data in order to derive a refined statistical distri-
bution, i.e. a posterior model distribution (Duijndam, 1988a,b; Scales & Snieder, 1997;
Tarantola, 2005; Tarantola & Valette, 1982). The solution of the inverse problem will not
be limited to a single set of predicted parameters but is represented by a probability den-
sity function (PDF) in the model space (Buland & Omre, 2003). The posterior PDF is the
result after the data and the prior information have been assimilated. The reason for
using the data is that a posterior information helps constraining the model more tightly
than the prior model distribution alone (Scales & Snieder, 1997).

In geophysics, usually, the prior information can come from the analysis of other
datasets such as the well logs, petrophysical experiments, core data etc.. In non-linear
full-waveform inversion (Gisolf & van den Berg, 2010; Lam et al., 2007; Tarantola, 1984),
a detailed and high-resolution geological model can provide good prior information for
the inversion. One can then analyze the uncertainty of posterior results to see how cred-
ible they are (Gouveia & Scales, 1998).

The simplest form of Bayes’ theorem is as follows:
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Pr(B |A) ∝ Pr(A|B)Pr(B) (1.1)

where Pr(B) is the probability of event B , Pr(A|B) and Pr(B|A) are the conditional
probabilities of the A, B events given that the B , A events happen respectively.

The whole procedure of Bayes’ theorem in equation 1.1 can be demonstrated in Fig-
ure 1.1 in which the inversion of density and compressional velocity is performed. It can
be seen that by integrating the prior information, the posterior result has been narrowed
down.

Figure 1.1: A schematic diagram of Bayes’ theorem. The posterior PDF (Pr(B|A)) is proportional to the product
of the prior PDF (Pr(B)) and the likelihood function (Pr(A|B)).

1.3. GEOLOGICAL MODELLING

As one type of geological prior information, reservoir models can provide help and guid-
ance during the inversions as well as in the reservoir simulations. The theory of sequence
stratigraphy is important in the construction of these models (Catuneanu et al., 2011;
Van Wagoner, 1995, 1998). Because of the limited subsurface information available, one
is often unable to determine a model which reflects the true stratigraphy and structure of
the target. This calls for probabilistic approaches that should provide the degree of un-
certainty associated with spatial reservoir characteristics (O‘Byrne & Flint, 1993). With
the help of high-resolution sequence stratigraphy, the accuracy of a particular model can
be improved, with the elements of the model being assigned probabilities close to 1.0
for geometries and spatial positions on which interpreters generally agree upon. Such a
constraint provided by sequence stratigraphy and probabilistic modelling can be spelled
out in the form of the Bayes inversion theorem (Ulrych et al., 2001), whereby one would
not only indicate the result of the problem by incorporating the prior information, but
also its uncertainty. In other words, sequence stratigraphy and other geological informa-
tion such as well logs will be the prior knowledge in the Bayesian approach of reservoir
modelling.

In reservoir modelling, geometrical data such as vertical sequences are used to fit
the information of the subsurface, which raises concerns on the appropriateness. The



1

4 1. INTRODUCTION

sequence stratigraphic interpretation is already based on observations from the subsur-
face, such as well logs or cores, and may thus lead to circular reasoning. Many attributes
essential to reservoir characterization and engineering can be predicted from sequence
stratigraphy, such as petrophysical properties, the degree of lithological heterogeneity,
facies associations, and 3-D continuities and geometries of strata (Cross et al., 1993).
Thus, sequence stratigraphy provides also a 2-D and 3-D geometric framework. It can
be implemented in the following two ways: (1) Through a high-resolution correlation
process to obtain a more accurate representation of rock properties in spatial and tem-
poral contexts; (2) Through the relationship between changes in accommodation space
and the different stratal architectures and their associated facies preserved in the strati-
graphic record (Cross et al., 1993).

Another way for the stratigraphic analysis to contribute to reservoir characteriza-
tion and modelling is the transformation or conversion of information in one dimen-
sion such as well logs to 3-D predictions of stratigraphy. This means that informa-
tion collected at one scale can help to establish the 3-D distributions of properties at
other scales, which makes the predictions of the stratal geometries and petrophysical
attributes, facies compositions and arrangements more accurate as the temporal res-
olution increases. The development of combined statistical and empirical methods in
forward and inverse stratigraphic modeling is believed to have the potential to lead to
more realistic and accurate predictions of the inter-well population of reservoir param-
eters (Cross et al., 1993).

By incorporating seismic data that provide continuous 3-D images, the sparseness
of well control information can be partially overcome. Constrained simulations of mod-
els using geostatistical methods can produce high-resolution 3-D realizations (Haas &
Dubrule, 1994).

1.4. THESIS OBJECTIVES

The main objective of this thesis is to bring geological prior information into geophysical
inversions in order to produce better results. The output of the inversion is a distribution
of the reservoir lithologies that are important for reservoir characterization, stratigraphic
interpretations and inputs for reservoir simulations. Different methods have been intro-
duced and compared with each other as well as in different dimensionalities (1-D vs.
2-D). As a rule in Bayes’ theorem, all geological prior information had to be transformed
into the probabilistic domain which is not easily to be done, since different geologists
may have different interpretations and different probabilistic functions will have to be
assigned. However, this problem is considered a topic aside or, at the very least, has
been limited to a minimum, since the focus is on how geological prior information can
help geoscientists and to what degree inversion results will be improved by it.

1.5. THESIS OUTLINE

This thesis starts with building a detailed geological and petrophysical model of the
Book Cliffs model, previously described by Hodgetts & Howell (2000) and developed by
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Tetyukhina et al. (2014). This geological model (Figure 1.2) includes eight depositional
environments on which a non-linear acoustic full-waveform inversion has been applied
to retrieve the media parameters.

Figure 1.2: The fluvio-deltaic Book Cliffs model proposed by Tetyukhina et al. (2014) with the eight depositional
environments termed “lithotypes”. For details refer to the original publication.

However, the geological model by Tetyukhina et al. (2014) is relatively coarse. A more
detailed model has been built for this study (Chapter 2) in order to include small reser-
voir units, i.e. sub-units within the eight lithotypes, that, however, may differ drastically
in their reservoir properties. This model then serves as a basis for an iterative elastic
wave-equation-based inversion scheme in order to retrieve the rock properties and layer
geometries of the initial model.

In Chapter 3, the goal of simulating reservoir lithologies between cored wells is pur-
sued with a new scheme of Coupled Markov Chain models. The dips of lithological layers
are taken into considerations with searching angles during the Monte Carlo simulations.
Seismic inversion results are used to provide information on the subsurface structures
as well as the construction of horizontal matrices. They, however, have not been utilized
to their fullest since they are connected to the types of lithologies intrinsically. As a kind
of prior information in the simulation process, they have not been implemented in the
sense of Bayes’ theorem either.

Chapter 4 approaches the problem of lithological classification in which seismic in-
version results are used for guidances. Since the reservoir lithologies are correlated with
well log data and seismic inversion data, lithologies are attempted to be inferred based
on them. Differing from other approaches, here the seismic inversion results are pro-
posed as inputs thereby avoiding the location bias if only wells are used. The verti-
cal transitions between lithologies are constrained through the application of Hidden
Markov Models (HMMs) during the classification process.

Since in Chapter 4 the horizontal coupling is missing in HMMs, the Hidden Markov
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Random Field (HMRF) is introduced in Chapter 5 as a 2-D lithology classifier. The Gibbs
priori as well as the profile Markov matrix are used as geological prior information with
the goal of guiding the vertical and horizontal continuities and the preferential transi-
tions.

In Chapter 6, finally, the general conclusions are summarized.
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2
A HIGH-RESOLUTION GEOLOGICAL

AND PETROPHYSICAL MODEL AND

ITS INVERSION RESULTS BASED ON

RESERVOIR-ORIENTED ELASTIC

WAVE-EQUATION

Summary
A previous geological and petrophysical model of the fluvio-deltaic Book Cliffs outcrops
contained eight lithotypes, within each of which a number of lithologies were grouped.
While this model was an adequate representation of the overall depositional architec-
ture, for reservoir-geological purposes the potential reservoir and non-reservoir lithologies
needed to be separated. Here, a new and more detailed geological model is presented in
which more differentiation is put on the potential reservoir lithologies. This new model
contains twelve lithologies with layers down to one meter in thickness. Assuming a burial
depth of three kilometers and an average clay content, representative rock physical proper-
ties are assigned to lithologies based on published data. After the model thickness has been
stretched by a factor of four in order to represent a more realistic reservoir, a full-waveform
forward seismic response is modelled. These data are used as inputs to an iterative elastic
wave-equation based inversion scheme with the goal to retrieve the rock properties and
layer geometries. The results of this conceptual study show that sandstone units in the
shoreface and distributary channels, which are potential reservoirs, are successfully iden-
tified. The recovery of medium parameters has a high resolution because the nonlinear

This chapter has been published in Petroleum Geoscience.
Doi: https://doi.org/10.1144/petgeo2015-076
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relationship between rock properties and the seismic data has been exploited.
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2.1. INTRODUCTION

In the hydrocarbon industry, it is important to maximize the seismic resolution during
acquisition in order to be able to utilize these data in the following processing steps such
as inversion. A high-resolution geological and petrophysical synthetic model can pro-
vide a good basis to analyze and test the limits of a reservoir-oriented wave-equation
based inversion scheme.

In a previous study carried out by Tetyukhina et al. (2014) a relatively detailed geolog-
ical model has been built based on the Book Cliffs outcrops. Eight depositional environ-
ments, termed lithotypes, were distinguished and a non-linear acoustic full-waveform
inversion has been applied to the synthetic data in order to retrieve the medium param-
eters such as bulk rock density and compressibility.

However, the geological model presented in Tetyukhina et al. (2014) is considered
relatively coarse from a reservoir-geological perspective. A more detailed model is
needed in order to do justice to the inherent variations within the lithotypes. For exam-
ple, the offshore transition zone is very heterolithic and the ratio between sandstones
and mudstones is moderate (0.35-0.75; Van Wagoner, 1995). This heterolithic nature
is caused by the cyclic interbedding of muddy siltstones and fine-grained sandstones.
From a reservoir-geological point of view, this unit contains therefore reservoir and non-
reservoir lithologies in the same lithotype and lumping them into one unit is not appro-
priate for static reservoir modelling in which more details are needed.

For this reason, the previous model needs to be refined in order to make it more
realistic with regard to its internal architecture. By analyzing the forward seismic data
based on a more detailed geological and petrophysical model, interpreters can under-
stand which geological information may be extracted, and which ones may not, with
the knowledge of layer thickness and wavelength of the seismic data. Such an improved
model can also serve as a benchmark for an elastic wave-equation based inversion sche-
me, by allowing to analyze the resolution and accuracy of the methodology. In this chap-
ter, a high-resolution geological model is presented that serves this purpose.

Introduced by Tarantola (1984), seismic full-waveform inversion (FWI) is becoming
feasible because of progress in seismic data acquisition and increased computing power.
With the introduction of multicomponent digital acquisition sensors, P- and S-wave data
are recorded that help to identify the subsurface anisotropies, expressed by the time
shifts caused by shear-wave splitting (Stotter & Angerer, 2011). Examples of successful
FWI include Vigh et al. (2014) who used a 4C ocean-bottom cable data set with large off-
sets from the Gulf of Mexico to delineate the geology in terms of the elastic velocity fields.
Kamath & Tsvankin (2013) performed an elastic FWI in VTI (transversely isotropic with
a vertical symmetry axis) media to estimate the interval vertical P- and S-wave velocities
as well as the Thomsen parameters. Butzer et al. (2013) presented a computationally ef-
ficient implementation of 3-D elastic FWI and showed that this technique is capable of
inverting the 3-D scattered waves and reconstructing 3-D geological structures.

Differing from the elastic FWI mentioned above, the 1.5-D non-linear inversion sche-
me used here is based on the integral representation of the full elastic wave equations
and the number of iterations determines the order of multiples that are being used. The
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method takes transmission effects and multiple internal scattering into account. With
PP and PS data as inputs, the elastic parameters compressibility, bulk rock density and
shear compliance are inverted simultaneously instead of the first two in the acoustic
inversion (Tetyukhina et al., 2014).

Our approach addresses topics in geology, petrophysics and geophysics. Here the
new geological model is presented first, after which it is populated with petrophysical
properties. Seismic forward modelling and the new elastic inversion scheme are subse-
quently performed in order to retrieve the geological units and their elastic properties.
Analysis of the results then offers insights into the viability and accuracy of the method.

2.2. GEOLOGICAL MODELLING

The Book Cliffs in Utah (USA) are well-studied outcrops of which several detailed
high-resolution sequence-stratigraphic interpretations have been published (Hodgetts
& Howell, 2000; O‘Byrne & Flint, 1993; Pattison, 1995; Taylor & Lovell, 1995). They pro-
vide an excellent and, from a reservoir-geological point of view, representative dataset
for testing seismic forward modelling and inversion schemes.

In the study of Tetyukhina et al. (2014) eight different lithotypes have been defined
based on their depositional environments (Figure 1.2). Some of these lithotypes, how-
ever, have large internal variations of their reservoir properties, which makes the model
less suitable if detailed rock properties are required, specifically for those that may form
potential oil or gas reservoirs. For a more detailed model, sequence stratigraphic prin-
ciples are used here, because these tie changes of stratal stacking patterns to the vary-
ing accommodation space and sediment supply, providing therefore an understanding
of the geometric relationship and architecture of the sedimentary strata (Catuneanu
et al., 2011). Three different types of sequence stratigraphic units, i.e. sequences, sys-
tems tracts and parasequences, form the main framework of sequence stratigraphy
(Catuneanu et al., 2011). They are principally defined based on their scales, stacking
patterns and bounding surfaces. In the Book Cliffs, previous workers have identified
five and three parasequences in the Kenilworth and Aberdeen Members, respectively, in
which different systems tracts have been assigned based on their positions within the
sequence and other interpretations (Balsley, 1983; Howell & Flint, 2003; Taylor & Lovell,
1995). Ainsworth & Pattison (1994) and Pattison (1995, 2005) alternatively distinguished
nine cycles or parasequences in the Kenilworth Member (Figure 2.1).

In this chapter, the nine-fold parasequence scheme is adopted (Pattison, 2005).
The stratal stacking patterns of the parasequences 1 to 5 in the nine-fold scheme ex-
hibit aggradational to progradational features of the highstand systems tract (HST),
while parasequences 6 to 8 are progradational sets of the lowstand systems tract (LST)
(Ainsworth & Pattison, 1994; Pattison, 1995, 2005). The uppermost parasequence 9 is
part of the transgressive systems tract (TST), which exhibits a retrogradational stacking
pattern (Figure 2.2). The three parasequences in the underlying Aberdeen Member dis-
play an aggradational stacking pattern of the highstand systems tract (Hodgetts & How-
ell, 2000). The different parasequences are separated by coal seams in the coastal plain
and by claystones in the shoreface environment (Kamola & van Wagoner, 1995) (Figure
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2.2).

Figure 2.1: A schematic stratigraphic cross-section of the Kenilworth Member. The five-fold subdivision of
Taylor & Lovell (1995) is indicated on the left, while the nine-fold subdivision of Pattison (1995) is indicated by
numbers on the cross-section (modified from Hampson, 2000).

Figure 2.2: The different parasequence units and systems tracts in the Kenilworth and Aberdeen Members
(HST-Highstand Systems Tract; LST-Lowstand Systems Tract; TST-Transgressive Systems Tract). The numbers
on the horizontal axis indicate the CMP locations (IV stands for incised valley).

First, the previous model (Tetyukhina et al., 2014) has been separated into two parts,
the marine and non-marine part, based on the position of the strata and their clay
contents, which will influence the rock properties in the petrophysical model. Within
each parasequence of the different systems tracts in the shoreface or marine part, dif-
ferent grain size trends occur. For example, in the HST and LST the trends are mainly
coarsening-upward, while they are fining-upward in the TST (Van Wagoner et al., 1988).
This interpretation enables us to divide the lithology of one single parasequence into
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smaller units or lithologies. In the parasequences of the HST and LST the sequences
include from bottom to top siltstones (SS), very fine-grained sandstones (VFS), fine-
grained sandstones (FS), and medium-grained sandstones (MS), while in the fining-
upward parasequences of the TST the inverse occurs. Because of erosion or non-
deposition not all these lithologies will be present in each parasequence. For the incised
valley in the middle of the model (Figure 2.2), the lower part consists of (non-marine)
fluvial sandstones, whereas the upper part is filled with interbedded marine sandstones
and claystones which were probably deposited during the early base level rise (Pattison,
1995).

These vertical trends, however, only apply in the marine part; in the non-marine
coastal plain the trends are more complex (Coleman & Prior, 1982). Here the parase-
quences were divided into crevasses (mainly composed of fine-grained sandstones or
siltstones), lagoonal deposits (siltstones and fine-grained sandstones), and interdis-
tributary deposits (very fine-grained sandstones and fine-grained sandstones). The dis-
tributary channels of the coastal plain often demonstrate a fining-upward trend with
coarse-grained sandstones (CS) occurring at the bottom and very fine-grained sand-
stones at the top. This differentiates them from the incised valleys in the shoreface suc-
cessions. The new refined 2-D model is shown in Figure 2.3 (Feng et al., 2015b).

Figure 2.3: The new 2-D lithology model. Different colors represent different lithologies (CS: Coarse-grained
sandstones; MS: Medium-grained sandstones; FS: Fine-grained sandstones; VFS: Very fine-grained sand-
stones; SS: Siltstones). The numbers on the horizontal axis indicate the CMP locations.

Partitioning the model into a marine and a non-marine part is done because in the
marine lithologies the clay content is generally higher than that in the non-marine coun-
terparts. With increasing grain size, the clay content decreases in the marine as well as
the non-marine part. Thus, the clay content in the fine-grained sandstones of the ma-
rine part is higher than that in the same lithology of the non-marine part, and the clay
content in the fine-grained sandstones is lower than that in the very fine-grained sand-
stones, whether marine or non-marine. This strategy of varying the clay content affects
the rock physical properties which are discussed in the following sections.
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2.3. PETROPHYSICAL MODELLING

The new geological model (Figure 2.3) contains numerous details in the internal archi-
tecture and sub-layers for which rock physical properties such as bulk rock density and
velocity need to be assigned in order to be able to perform the seismic forward mod-
elling. Because this model is different in character from the previous model, one cannot
apply the same properties (Hodgetts & Howell, 2000; Tetyukhina et al., 2014). The dif-
ferent lithologies contain at least some amounts of clay, and thus a sand-shale mixture
model is used which has been developed at Stanford University over the last few decades
(Han et al., 1986; Marion et al., 1992; Mavko et al., 2009; Nur et al., 1998). The clay content
affects the rock properties in two ways: if its volume fraction is lower than the porosity
of pure sand, the compressional velocity increases with the volume fraction of clay while
the porosity decreases; if, on the contrary, the volume fraction of clay is higher than the
porosity of pure sand, i.e. the rock is shaley matrix-supported, the compressional ve-
locity decreases with the increasing volume fraction of clay while the porosity increases.
This phenomenon can be explained as follows: If the volume fraction of clay is less than
the porosity of pure sand (c ≤ φs ), the clay particles fill the pore space as a solid, which
would otherwise be filled with a fluid, thereby stiffening the material and increasing the
velocity of the mixture as the volume fraction of clay increases. If the volume fraction of
clay is higher than the porosity of pure sand (c > φs ), the sand grains will become “sus-
pended” in the clay matrix, and, since the velocity of clay is slower than that of pure sand,
an increase in the volume fraction of clay causes the velocity of the mixture to decrease
(Marion et al., 1992). But, since clay mixtures are porous, the porosity increases as the
volume fraction of clay increases.

According to Eberhart-Phillips et al. (1989) and Marion et al. (1992), the resulting
density and velocities for a water-filled rock can be calculated with the following empir-
ical equations:

For the bulk rock density, if c ≤φs , φ=φs − c(1−φsh)

ρ = (1−φs )ρs + c(1−φsh)ρc +φρw (2.1)

if c >φs , φ= cφsh

ρ = (1− c)ρs + c(1−φsh)ρc +φρw (2.2)

For velocities,

VP = 5.77−6.94φ−1.73
p

c +0.446(Pe −e−16.7Pe ) (2.3)

VS = 3.70−4.94φ−1.57
p

c +0.361(Pe −e−16.7Pe ) (2.4)

Where c is the volume fraction of clay; φs ,φsh ,φ are the porosities of pure sand, pure
shale and the sand-shale mixture, respectively (φsh does not include the bound water);
ρs , ρc , ρw , ρ are the densities of sand (quartz), clay, water and the mixture, and Pe is
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the effective pressure. Because these equations include shale-sand mixtures, they are
appropriate for building a conceptual rock-physical model of the Book Cliffs.

After the determination of these parameters in equations 2.1 to 2.4 following Fisher
et al. (2007); Hamilton (1980); Manger et al. (1963); Marion et al. (1992); Storvoll et al.
(2005) and adjusting for which accounts for the depth of the model, assuming here to
have a top at 3 km depth (ρs is 2.65 g/cc; ρc is 2.35 g/cc; ρw is 1.00 g/cc;φs and c take dif-
ferent values for different lithologies; φsh and Pe are kept constant for the sand- and the
shale-supported lithologies respectively) (Eberhart-Phillips et al., 1989; Hofmann et al.,
2005), the resulting relationships between bulk rock density, porosity, clay content and
velocity are shown in Figure 2.4.

Figure 2.4: The relationships between P-velocity, clay content by volume fraction, porosity (φ) and bulk rock
density of different lithologies in the sand-shale mixture model. Note that for each lithology except for the
coarse-grained sandstones there are two values i.e. for the marine and non-marine parts respectively.
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These graphs show the trend reversals at the critical levels of clay content and poros-
ity. Thus, for example, in Figure 2.4c, the bulk rock density increases with decreasing
grain size due to a decrease in porosity, as seen in Figure 2.4d, but decreases towards the
claystone points. This means that the porosity exerts more control than the clay content
on the bulk rock density because less porosity will lead to more sand even though the
volume fraction of clay increases at the same time.

Finally, the entire 2-D geological model is populated with these rock properties, i.e.
bulk rock density, P-velocity and S-velocity that have been defined by equations 2.1 to
2.4. The resulting 2-D petrophysical model is shown in Figure 2.5.
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Figure 2.5: The petrophysical properties of the new geological model (Figure 2.3) in terms of bulk rock density,
VP , VS . The horizontal width is 52 km approximately and has 2099 CMPs in total.
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2.4. SEISMIC MODELLING

The synthetic seismic data can be considered as a bridge that links the outcrop to surface
seismic data from analogous subsurface formations because they can offer insights into
whether certain geological features can potentially be recognized from seismic data or
not. In addition, forward modelling may also help to analyze artefacts observed in real
seismic data (Coleman et al., 2000; Stafleu et al., 1994).

Here the same method is used as by Tetyukhina et al. (2014), which is the Kennett
invariant embedding method (Kennett, 2013). This method is able to incorporate all the
internal multiples as well as the wave-mode conversions and transmission effects. In
order to simulate more realistic actual reservoir situations and increase the detectability
of different parasequences, the vertical thickness of the entire model has been multiplied
by a factor of four, resulting in the dimensions of 520 m in thickness and approximately
52 km in width. This model is suitable for the Kennett method because of the almost
horizontal layers which satisfy the local 1-D assumption (notice that all model figures
are highly exaggerated vertically; in reality, the layer dips are mostly well below 1°). The
vertical discretization of the model parameters is 0.4 m and the time sampling is 4 ms in
the traces. The horizontal sampling interval is 25 m and in total there are 2099 common
mid-points (CMPs). The wavelet used is a zero-phase band-pass filter with trapezium
corner frequencies of 6-12-60-80 Hz (Figure 2.6) (Tetyukhina et al., 2014). The incidence
angles range from 0° to 45° at the highest compressional velocity in the entire model
with a set of 10 plane waves at each CMP or trace location. White random noise has
been added with a signal-to-noise ratio (SNR) of 30 dB.

Figure 2.6: The zero-phase wavelet together with its amplitude spectrum used in the forward modelling with
trapezium corner frequencies of 6-12-60-80 Hz. Edges of the wavelet have been tapered.

The synthetic seismic data are generated directly at the top of the objective sequence.
This acquisition setup is equivalent to migrating surface data, converting offsets to an-
gles, and de-migrating the migrated data over the target interval to the target boundary
marking the top of the model. We opted for modelling the synthetic data at the top of
the model in order to set a benchmark for the resolving power of the inversion, without
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being side-tracked by data processing issues, substantial though they may be.

The top and bottom of the model have been tapered during the forward modelling
which means that the differences in properties of the top and bottom boundaries be-
tween the actual and the background media have been gradually minimized to zero in
order to avoid reflections from the truncations of the properties.

The synthetic seismic data are calculated for every location separately. The outputs
of the Kennett forward modelling are separate PP and PS records in the Radon domain
(τ/p) which are used as inputs for the elastic wave-equation based inversion later (Figure
2.7). Figure 2.8 is showing the PP data only for normally incident plane waves. These data
can be used to interpret the stacking pattern and the architecture of the parasequences.
The coals, for example, are clearly imaged because of their relatively large impedance
contrasts with the surrounding lithologies. The clinoform geometries of the different
parasequences exhibit fairly strong amplitudes that can be traced from the offshore to
the shoreface and even to the coastal plain environment. The distributary channels can
also be distinguished well, which is relevant because they represent important potential
reservoir units. The incised valleys are not as easily recognized as before (Tetyukhina
et al., 2014) mainly because there are now more sub-layers and the amplitudes of the
various reflectors are interfering with each other constructively or destructively (Feng
et al., 2015b).

Figure 2.7: The synthetic PP and PS data in the Radon domain (The range of p is from 0 to 1.6e-04). Here, only
the data at CMP = 1000 are shown.
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Figure 2.8: The synthetic seismic data (PP) based on the whole 2-D petrophysical model (Figure 2.5). Here data
for normal incident plane waves are shown as a function of the CMP.

2.5. ELASTIC WAVE-EQUATION BASED INVERSION

The inversion algorithm we use was developed by Gisolf & van den Berg (2010a,b), and
has been applied by Tetyukhina before but only in an acoustic mode (Tetyukhina et al.,
2014). Here the inversion scheme has been extended to elastic, which means that wave-
mode conversions will also be taken into account in the inversion process. Because the
inversion scheme is based on the full elastic wave equations, it takes all internal mul-
tiple scattering, with mode conversion, into account, allowing recovery of broadband
properties and providing potentially a high resolution (Gisolf et al., 2014).

The main goal of the elastic wave-equation based inversion is to retrieve relevant
reservoir properties, and for this the overburden effects would have to be compensated
for. Since the synthetic data have been generated for the target interval only, there is no
need to remove the overburden in this particular case. However, in real reservoirs, exten-
sive pre-processing will be required to achieve this (Gisolf et al., 2014). For example, the
wavefield recorded at the surface should be back-propagated (re-datumed) to the top of
the objective interval through an overburden that describes the kinematics sufficiently
well, or the pre-stack migrated data are de-migrated to the target boundary. The off-
set should be converted to ray-parameters using a layered overburden model since the
inversion is carried out in the Radon domain (τ/p). In either case, the target-oriented
inversion of field data has to rely on the demigration/re-datuming process to deliver
suitable input data for the inversion.

The inversion is based on the integral representation of the full elastic wave equa-
tions, the so-called scattering integral (Fokkema & van den Berg, 2013). The total wave-
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field is calculated in the full inhomogeneous medium, rather than in a constant back-
ground medium. The P and S velocities are broken down into elastic moduli, notably
the compressibility κ= 1/K (with K being the bulk modulus), and the shear compliance
M = 1/µ (with µ being the shear modulus):

VP =
√

1

ρ
(

1

κ
+ 4

3M
) (2.5)

VS =
√

1

Mρ
(2.6)

Instead of inverting for κ, M and ρ, the contrast functions based on the backgrounds
(κ0, M0, ρ0) are solved at every location:

χκ(z) = κ(z)−κ0(z)

κ0(z)
(2.7)

χM (z) = M(z)−M0(z)

M0(z)
(2.8)

χρ(z) = ρ(z)−ρ0(z)

ρ0(z)
(2.9)

The backgrounds are smooth media in which the incident field and Green’s func-
tions are calculated (Haffinger, 2013) and which represent the prior knowledge before
the inversion. In our synthetic exercise, we can obtain realistic backgrounds by strongly
smoothing the true properties with the help of a high-cut filter (0-4 Hz). The results are
shown in Figure 2.9. Although having backgrounds that describe the kinematics rea-
sonably well is important, the non-linear inversion is able to reduce the dependency on
the background models (Haffinger, 2013). In real cases, the background models can be
obtained from the migration velocities, well logs or even empirical rock physical consid-
erations.

The inversion approach is based on a local 1-D earth model with a 2-D pre-stack
plane wavefield of (τ/p) PP and PS gathers (Figure 2.7) (Gisolf et al., 2014). Since the
model (Figure 2.5) is 52 km approximately in width and 520 m in thickness, meaning
that the layers are almost horizontal, this approach seems suitable, both for modelling
the synthetic data and for the inversion.

Because the seismic data and the inversion are based on the full wave equations, the
data are non-linear in the elastic properties to be estimated. We solve this using an iter-
ative scheme where we alternately determine the total wavefield in the object from our
best knowledge of the properties, and determine the updated properties from the data
and our current best knowledge of the total wavefield in the object. The first estimate of
the total field is the incident field that propagates in the background models (Figure 2.9).
This is a well-known linearization of the problem called the Born approximation. With
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Figure 2.9: The smooth background models for compressibility, shear compliance and bulk rock density (from
top to bottom).

this total field estimate we invert the data, leading to a first estimate of the properties in
the object. Together with the wave equations these are used to calculate an update of the
total wavefield that now contains first-order scattering. With this new version of the total
wavefield a new inversion of the data is undertaken, leading to a better estimate of the
properties, etc. (Figure 2.10). The order of the multiples accounted for in the data will be
determined by the number of iterations. The iteration will stop when neither the prop-
erties nor the total wavefield change significantly (Gisolf & Vershuur, 2010; Tetyukhina
et al., 2014).
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Figure 2.10: The schematic flow chart of the iterative scheme (Gisolf et al., 2014). The starting point of the
iteration is the calculation of the incident wavefield in the background, then the property contrasts are solved
in the inner loop by linear inversion based on the best estimate of the total field. The update of the total field
is carried out in the outer loop. In this way, the non-linear relationship is honoured between the seismic data
and medium properties.

Applying this scheme to all the input gathers of the pre-stack PP and PS data in the
Radon (τ/p) domain, inversion results are obtained as shown in Figure 2.11 in terms of
the dimensionless contrasts in compressibility, shear compliance and bulk rock density
(χκ, χM , χρ). The left plots are unfiltered, i.e. in the broad spatial bandwidth range
generated by the inversion, while the ones on the right have been spatially filtered to the
equivalence of the seismic temporal bandwidth by using a spatial band-pass filter.
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Figure 2.11: The true and inverted results for the contrasts in compressibility, shear compliance and bulk rock
density (χκ, χM , χρ ) (Equations 2.7 to 2.9). The left plots are unfiltered while the right ones have been filtered
to the spatial equivalence of the seismic wavelet bandwidth (0.0028-0.0056-0.0279-0.0372 1/m).
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In order to compare these results with the petrophysical properties, they are con-
verted to the compressional and shear velocities (VP , VS ) as well as the bulk rock den-
sities (ρ) (Figure 2.12). These results show that the inversion successfully recovers the
properties and geometries for the whole section. The small sandstone units in the
shoreface section, which are important potential reservoir targets, are well detected on
the inversion results. The incised valleys, on the other hand, are less easy to be identi-
fied, compared with the previous study (Tetyukhina et al., 2014), an effect caused by the
interfering sub-layers within them. It is noticeable that the inversion result for the con-
trast of shear compliance (χM ) is better than that for the compressibility (χκ), because
we are using PS as well as PP data. Both elastic properties are predicted considerably
better than the density (χρ), mostly because the latter shows only relatively small vari-
ations that are difficult to recover. However, the coals, whose bulk rock density differs
substantially from the rest, are adequately resolved in the density inversion result. The
same can be seen for some of the sandstone units in the shoreface area.
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Figure 2.12: The true and inverted results for the compressional and shear velocities, as well as the bulk rock
density (VP , VS , Vρ ) (Equations 2.5 and 2.6). The left plots are unfiltered while the right ones have been filtered
to the spatial equivalence of the seismic wavelet bandwidth (0.0028-0.0056-0.0279-0.0372 1/m).
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2.6. DISCUSSION AND CONCLUSION

In this chapter, we present a new geological and petrophysical model of the Book Cliffs
outcrop model, based on sequence stratigraphic and rock physical principles. Com-
pared with the previous model by Tetyukhina et al. (2014), this new model has more de-
tails and includes a distinction between reservoir and non-reservoir lithologies. There-
fore, it is considered to be a more realistic reservoir analogue for seismic modelling and
inversion studies.

The reservoir-oriented elastic wave-equation based inversion scheme can take care
of the internal multiple scattering energy as well as the wave-mode conversions, which
makes the recovery of high-resolution, broadband properties possible. It can be seen
that the three different medium parameters, compressibility, shear compliance and bulk
rock density, have been recovered quite successfully, although with some differences in
quality. Since the value range for bulk rock density for the different lithologies is much
smaller than those for the two elastic medium parameters and the incidence angle is not
very wide (0° - 45°) in the forward modelling, the inversion result of bulk rock density is
of lesser quality than the other two. This is, for example, demonstrated by the distribu-
tary channel in the coastal plain (Figure 2.11), where the images of compressibility and
shear compliance are clearer than that of bulk rock density. This is also true for the ge-
ometries of different lithologies, like the coals in the coastal plain and sandstones in the
shoreface. Since the PS data are also used for the inversion, this results in a good retrieval
of the shear compliance. In a real case, this kind of data will be, however, rarely available.
Nevertheless, according to Haffinger et al. (2015), a good recovery of shear compliance
can still be expected.

Other inversion procedures (Kamath & Tsvankin, 2013; Vigh et al., 2014) convert the
seismic data to compressional and shear velocities as well as bulk rock density. How-
ever, if the bulk rock density result is inadequate, good images of compressional and
shear velocities are difficult to achieve in this method. Therefore, we choose to invert
for the compressibility and shear compliance, since they are better reservoir indicators.
Especially in 4D or time-lapse inversion, compressibility and shear compliance can help
to identify property changes in the reservoir because of their complementary property
behavior (Feng et al., 2015a; Gisolf & van den Berg, 2010b).

This inversion scheme is target (reservoir) oriented, which means the data have been
brought down to the target level by migration, or re-datuming. In this conceptual study,
this problem has been avoided by generating the synthetic seismic data directly at the
top boundary of the target model. In real data projects, re-datuming can be achieved by
local demigration of the migrated input data to a target horizon.

In migration/demigration processes, all internal scattering over the target interval is
preserved. Multiples generated in the overburden that leak into the primary target time
window should be removed. However, in this chapter the emphasis is on the extraction
of quantitative geological information from seismic data and not so much on the details
of preparing the seismic data for the inversion step. For a detailed discussion of all the
challenges in the pre-processing steps for providing suitable data sets to inversion, we
refer to the work by Gisolf et al. (2014), Haffinger (2013) and Haffinger et al. (2015).
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We have used a 1.5-D assumption in both the forward modelling and the inversion
approach, which means the layers are locally horizontal to sub-horizontal (dips are well
below 0.5 degrees in the coastal plain and below 1 degree in the shoreface units). In this
synthetic case, this approach seems suitable because of the very large horizontal width
and small vertical thickness. Lateral heterogeneity of the properties is nonetheless well
captured with this locally 1.5-D approach. In real cases, it is considered unlikely that
within a 500 m thick sedimentary sequence there would be strong changes in local dip
over short vertical distances, unless there are structural deformations involved. Later-
ally, locations 25 m apart are here treated completely independently. This approach may
therefore be mostly suitable on passive continental margins with relatively young sedi-
ments.

As an extension of this research, the relationship between the rock properties (bulk
rock density, compressibility, shear compliance) and the reservoir parameters (poros-
ity, clay content, hydrocarbon saturation) will be investigated with the goal to make the
method more directly applicable to the reservoir characterization (following chapters).
Thus this model may become a virtual asset that can be used to assess the advantages
and limitations of various inversion methods.
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3
SIMULATING RESERVOIR

LITHOLOGY BY AN ACTIVELY

CONDITIONED MARKOV CHAIN

MODEL (A-CMC)

Summary
Coupled Markov Chain models can be used to simulate reservoir lithologies between wells,
by conditioning them on the observed data in the cored wells. However, with this method,
only the state at the same depth as the current cell is going to be used for conditioning,
which may be a problem if the geological layers are dipping. This will cause the simulated
lithological layers to be broken or to become discontinuous across the reservoir. In order to
address this problem, an actively conditioning process is proposed here, in which a toler-
ance angle is predefined. The states contained in the region constrained by the tolerance
angle will be employed for conditioning in the horizontal chain first, after which a cou-
pling concept with the vertical chain is implemented. In order to use the same horizontal
transition matrix for different future states, the tolerance angle has to be small. This allows
the method to work in reservoirs without complex structures caused by depositional pro-
cesses or tectonic deformations. Directional artefacts in the modelling process are avoided
through a careful choice of the simulation path. The tolerance angle and dipping direction
of the strata can be obtained from a correlation between wells, or from seismic data, which
are available in most hydrocarbon reservoirs, either by interpretation or by inversion that
can also assist the construction of horizontal probability matrix.

This chapter is under revision for publication in Journal of Geophysics and Engineering.
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3.1. INTRODUCTION

Characterization of subsurface heterogeneity is important for exploration and develop-
ment of hydrocarbon reservoirs, because the distribution of lithologies determines the
location and migration paths of the hydrocarbons. While borehole logs in vertical wells
provide sufficient information of subsurface lithologies in a 1-D direction (depth), they
provide little information on their lateral distribution. Additionally, in most cases, the
density of borehole logs is relatively sparse compared with the total volume of the reser-
voir.

A variety of methods are available that can be used to solve this problem (Carle &
Fogg, 1996; Haldorsen & Damsleth, 1990). Among them, the Markov Chain is a promising
tool to describe the spatial structure (Carle et al., 1998; Davis & Sampson, 1986; Parks
et al., 2000; Sartore et al., 2016; Weissmann et al., 1999). Carle & Fogg (1997) modelled
the spatial variability for categorical variables with a multidimensional Markov Chain
in which the transition rate matrices of 1-D continuous-lag Markov Chain models are
interpolated laterally in order to obtain a 3-D Markov Chain. Lin & Harbaugh (1984)
modelled lithological or sedimentological structures with 2-D and 3-D Markov Chains.

Other types of methods such as multiple-point statistics (Daly & Caers, 2010; Stre-
belle, 2002; Tahmasebi et al., 2012) and Markov Random Fields (Rimstad et al., 2012;
Ulvmoen & Hammer, 2010) or its sub-class — Markov mesh models (Kjønsberg & Kolb-
jørnsen, 2008; Stien & Kolbjørnsen, 2011) could produce good results when the require-
ment of training images or randomly sampled data points are satisfied which may not
be the case in some of the reservoirs since there are only several cored wells. On the
other hand, even though the training images may exist, there is no inbuilt mechanism to
ensure that they are in any way consistent with well data (Daly & Caers, 2010).

In order to perform simulations conditioned by the observed data such as cored wells
only, an extension of the Coupled Markov Chain model (CMC) developed by Elfeki &
Dekking (2001) makes it possible to perform such conditional simulations on any num-
ber of wells in defining the future states. In fact, any number of wells can be included in
the conditional simulation which makes the method practical.

In CMC, the information of the top or bottom boundary needs to be known before-
hand in order to initiate the simulation. Hence, this scheme becomes unsuitable for
reservoirs at depth of which the boundary properties are not known. Another draw-
back is that future states are not used for conditioning fully in the horizontal chain of
CMC. For example, only the future state at the same row as the current simulating cell
is employed. In real reservoirs, layers often dip to some degree due to depositional or
tectonic processes. After transforming the geological cross-section into the grid cell do-
main needed for the Monte Carlo simulation, future states may not be at the same row
as the simulating cell. This can make the simulation discontinuous in the middle part of
the profile. In this chapter, a new scheme is proposed to use all future states for actively
conditioning, through a tolerance angle. This allows the dipping of geological layers to
be taken into account and more continuous simulation results can be obtained.

As the start of the simulation, the top or bottom boundary is simulated first using
the horizontal Markov Chain model, in which the concept of actively conditioning is
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embedded.

Firstly, a short review of the two-dimensional Coupled Markov Chain theory will be
presented, then the new Markov Chain scheme is proposed, with applications to a very
simple synthetic example and parts of the complex Book Cliffs model (Chapter 2), as
case studies. The results will be evaluated in the Discussion section, followed by the
Conclusion.

3.2. TWO-DIMENSIONAL COUPLED MARKOV CHAIN (CMC)
Elfeki & Dekking (2001) presented a two-dimensional Coupled Markov Chain (CMC)
model in which the simulated state is conditional upon the future state using the fol-
lowing numerical expression:

Pr(Zi , j = Sk |Zi , j−1 = Sl , Zi−1, j = Sm , Zi ,N x = Sq )

= ph
lk p

h(N x− j )
kq pv

mk∑N
f =1 ph

l f p
h(N x− j )
f q pv

m f

k = 1, · · · , N

(3.1)

Here Zi , j is a random variable taking a value in the state space {S1,S2, · · · ,SN } with
N states in the system; i , j are row and column numbers in the cell domain of size
(N z ×N x); the superscripts h and v represent the chains in the horizontal and vertical

directions; ph(N x− j )
kq is the (N x− j )th step horizontal transition probability; pv

mk denotes

the vertical probability of transition from state Sm to state Sk .

In this method, the top or bottom boundary is needed in order to start the simu-
lation. However, this kind of information is often missing in subsurface reservoirs. This
problem can be addressed simply by using the horizontal probability matrix first in order
to obtain the top or bottom states:

Pr(Zi , j = Sk |Zi , j−1 = Sl , Zi ,N x = Sq ) = ph
lk p

h(N x− j )
kq

p
h(N x− j+1)
l q

i = 1or N z;k = 1, · · · , N

(3.2)

However, equation 3.2 only considers the future state of the well at the top or bottom
of the interval. This equation will later be modified slightly in order to account for the dip
in the layers (equation 3.16 in Appendix A). Similarly, equation 3.1 only takes the future
state at the same row as the current cell. After generating stochastic realizations of a sim-
ple example with two wells and two dipping lithologies, the geological layer (lithology A)
turns out to be discontinuous as shown in Figure 3.1.

In this example, two cored wells are located at the beginning and the end of the
model (CMP=1 and 100, respectively; CMP is the common midpoint in seismic acquisi-
tion). The vertical probability matrix is estimated from the cored wells and the horizontal
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Figure 3.1: Truth (a) and the stochastic simulation result (b). 100 realizations have been generated and the
indicator function is used (Elfeki & Dekking, 2001). The vertical and horizontal sampling intervals are 5 m and
25 m respectively.

probability matrix is calculated from the geological profile or the truth. The standard for
the sampling interval is to take the value of the minimum length and thickness of the
geological units (Qi et al., 2016). The horizontal probability matrix is used to generate
states of the top or bottom boundary first, which is missing in this synthetic case and the
following examples. The arrows (Figure 3.1b) indicate the directions of the simulation
path, i.e. towards the right while downward.

In the following examples this basic configuration will be kept the same or similar,
only cored wells are available in the cross-section, or together with seismic inversions.
Different arrows represent different paths during the simulation. The vertical and hor-
izontal matrices are calculated from wells and geological profiles or by the application
of Walther’s Law (Middleton, 1973), with the horizontal matrix being used to generate
the boundary states first. After realizations or simulations, the final output image shows
the lithology which appears most frequently at every cell as the indicator function used
by Elfeki & Dekking (2001). In order to have a stable result, the number of simulations
should be large enough which will increase the computation time on the other hand.
After testing, it will be kept to be 100 to balance the time and stability.

3.3. ACTIVELY CONDITIONED CMC (A-CMC)
In the new scheme of actively conditioned CMC, in the following termed A-CMC, future
states in the cored wells are taken into account over a predefined tolerance angle range.
A sketch of this methodology is shown in Figure 3.2.

In the beginning, the states in the interval between the predefined tolerance angle
(α) of the cored well at the right boundary are employed for conditioning (Figure 3.2a).
As the current cell is moving towards the right, the number of cells to be searched is get-
ting smaller which means fewer future states will be used (Figure 3.2b). As it gets closer
to the right boundary, the number of cells to be searched as future states continuously
decreases until finally only one cell with a future state at the same row with the current



3.3. ACTIVELY CONDITIONED CMC (A-CMC)

3

37

cell is being found (Figure 3.2c). This means that A-CMC becomes CMC at this stage.
Since the tolerance angle is small, the probability matrices for different future states to
be used for conditioning are nearly identical to the horizontal one (see Appendix B).

Here the vertical and horizontal sampling intervals are 5 m and 25 m respectively, so
the tolerance angle should be smaller than 11° (tan11° ≈ 5

25 ) in order to have only one
future state for conditioning at the end of each row in the simulation process. For most
reservoirs, the horizontal extent of the lithologies is typically much larger than the ver-
tical thickness, which allows a coarser horizontal sampling interval to be used. Hence,
the tolerance angle has to be small enough so that only one future state is used for con-
ditioning at the end of each row, and also for the validation in the usage of the same
horizontal probability matrix (see Appendix B). At the same time, the dipping geometry
of the geological layers should be considered as well in the selection of a tolerance angle.

Figure 3.2: A schematic view of the A-CMC. See text for explanations.

Before testing this new scheme by applying equation 3.15 and equation 3.16 in Ap-
pendix A, a metric needs to be defined to assess the quality of the simulation results, in
addition to comparing them with the geological profile by a simple subjective observa-
tion. The Confusion Matrix (Kohavi & Provost, 1998) and Matthews Correlation Coeffi-
cient (MCC) (Jurman et al., 2012; Matthews, 1975) are proposed as a visual inspection
and numerical index, respectively.

Confusion Matrix shows the true and predicted classes in which each column rep-
resents the prediction and each row the truth. It summarizes the result in terms of the
number of samples in which the diagonal values of the matrix are the numbers of correct
predictions.

Matthews’ Correlation Coefficient(MCC) is a numerical quantifier of the Confusion
Matrix that can be used, because most of the time it is not easy to carry out a visual
inspection of the table of a Confusion Matrix. The mathematical expression of MCC is as
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follows:

MCC =
∑N

k,l ,m=1(CkkCml−Cl kCkm)√∑N
k=1

[(∑N
l=1 Clk

)(∑N
f ,g=1, f 6=k Cg f

)]√∑N
k=1

[(∑N
l=1 Ckl

)(∑N
f ,g=1, f 6=k C f g

)] (3.3)

in which Ckm is the element from the k th row and mth column of the Confusion
Matrix C .

MCC values fall inside the interval [-1,1], where 1 represents a perfect classification
and -1 means all values in Confusion Matrix are zeros except for two symmetrical ele-
ments. When all elements are equal or zeros except for one column, MCC equals to 0.
The following examples illustrate this:

C =
 6 0 0

0 6 0
0 0 6

 C =
 0 0 9

0 0 0
9 0 0

 C =
 2 2 2

2 2 2
2 2 2

 C =
 6 0 0

6 0 0
6 0 0


MCC = 1 MCC =−1 MCC = 0 MCC = 0

3.4. SIMPLE SYNTHETIC EXAMPLE

In order to test our method, the simple synthetic model in Figure 3.1a is used again, with
one dipping layer and the tolerance angle being set to different values. Figures 3.3a to
3.3d show the simulated results after using equation 3.15 and equation 3.16 of the A-
CMC as shown in Appendix A.

It shows that with increasing tolerance angles more information of the right-hand
side well is used for conditioning. In Figures 3.3a and 3.3b, the lithology A is not con-
nected because the tolerance angle is too small. As the tolerance angle keeps increasing,
lithology A is becoming more continuous (Figures 3.3c and 3.3d). However, there is a
thinning effect at the right-hand side that is caused by the gradual move-away from the
left well and directional artefacts from the previous top and left states.
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Figure 3.3: Simulated results of A-CMC under different tolerance angles: (a) 0.5°; (b) 1°; (c) 2°; (d) 4°. Two cored
wells are located at CMP=1 and CMP=100. The truth is shown in Figure 1a. The simulation path is towards the
right while downward as indicated by arrows.
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In order to quantify these results, the Confusion Matrix and the MCC are calculated
and displayed in Figure 3.4.

Figure 3.4: Confusion matrices for different tolerance angles: (a) 0.5° (MCC = 0.4610); (b) 1° (MCC = 0.5719); (c)
2° (MCC = 0.7370); (d) 4° (MCC = 0.7111). The percentages under the data number are for all samples.

The MCC is increasing with increased tolerance angles up to 2° while it decreases
slightly for 4°. The reason for this is that when the tolerance angle is too large, more
future information is used for conditioning which will include some unwanted informa-
tion.
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3.5. COMPLEX SYNTHETIC EXAMPLES (BOOK CLIFFS)
The synthetic model presented before is very simple with only one dipping layer. In
this section, the geological model created by Feng et al. (2017) (Chapter 2) is used as a
more complex example to test the approach proposed here. The Book Cliffs outcrops in
Utah (USA) are a well-studied reservoir analogue, and detailed high-resolution sequence
stratigraphic interpretations have been proposed (O’Byrne & Flint, 1991; O‘Byrne & Flint,
1993; Taylor & Lovell, 1991). Tetyukhina et al. (2014) developed a 2-D reservoir and petro-
physical model for a part of the Book Cliffs section. Based on sequence stratigraphic
principles, Feng et al. (2017) added more details, which makes the new model suitable
for reservoir-geological purposes such as seismic inversion and reservoir characteriza-
tion. The model is synthetic but of considerable realistic complexity, simulating a fluvio-
deltaic sequence. Here only parts of this model are used, focusing on those where there
are dipping layers.

3.5.1. BOOK CLIFFS MODEL I

Figure 3.5 shows part of an incised valley cutting into floodplain deposits in the lower-
middle part of the Book Cliffs model (Figure 2.3). The cross-section is 2.5 km in length
and 100 m in thickness.

Figure 3.5: Book Cliffs Model I. MS_non: Medium-grained sandstone (non-marine); FS_non: Fine-grained
sandstone (non-marine); FS: Fine-grained sandstone; VFS: Very fine-grained sandstone; SS: Siltstone. The first
two are distinguished from marine lithologies in other parts of the overall model.

The horizontal and vertical transitional matrices are given in Table 3.1 which can
be obtained by scanning of cored wells and normalizing afterwards, together with the
two sampling intervals. Different lithologies contained in the model are coded with the
numbers 1 to 6 with decreasing grain size (1 for MS_non, 6 for Clay). In order to eliminate
the abrupt changes during the simulation processes since all the transitions are possible
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Horizontal sampling interval = 25 m
Horizontal transition probability matrix

State 1 2 3 4 5 6
1 0.9768 0.0001 0.0132 0.0066 0.0032 0.0001
2 0.0262 0.9734 0.0001 0.0001 0.0001 0.0001
3 0.0001 0.0001 0.9941 0.0001 0.0028 0.0028
4 0.0001 0.0001 0.0001 0.9841 0.0098 0.0058
5 0.0001 0.0132 0.0001 0.0022 0.9843 0.0001

Vertical sampling interval = 5 m
Vertical transition probability matrix

State 1 2 3 4 5 6
1 0.7496 0.2500 0.0001 0.0001 0.0001 0.0001
2 0.0001 0.3333 0.0001 0.0001 0.6663 0.0001
3 0.1111 0.0001 0.6664 0.0001 0.2222 0.0001
4 0.0001 0.0001 0.1000 0.6997 0.0001 0.2000
5 0.1250 0.0001 0.0001 0.3750 0.4997 0.0001
6 0.0001 0.0001 0.0001 0.4996 0.0001 0.5000

Table 3.1: Input dataset for the Book Cliffs Model I.

in reality even though have not been revealed in the wells, all zeros in the transition
probabilities are set to a very small value (0.0001) following Elfeki & Dekking (2005), after
which the entries in the diagonals are modified by pi i = pi i −T ·0.0001 (T is number of
zeros in each row).

Comparing the lithologies in two wells at CMP = 700 and 800 (Figure 3.6) gives an
approximate small tolerance angle of 0.8°.

Figure 3.6: Starting model for simulations with two pseudo wells drilled at CMPs 700 and 800.
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The simulation result after 100 realizations using A-CMC is shown in Figure 3.7, to-
gether with the result of CMC. The simulation path has been chosen to be towards the
left and upward to compensate for directional artefacts.

Figure 3.7: Results of CMC (a) and A-CMC (b). The simulation paths are indicated by arrows. The area inside
the red dashed rectangle shows the major difference between CMC and A-CMC.

Figure 3.7 shows that with the help of a tolerance angle, FS_non is becoming contin-
uous, which is stepwise discontinuous in CMC as indicated by the red dashed rectangle.
SS and MS_non are continuous in both methods, which is caused by the larger values in
the diagonal of the vertical transition probability matrix. The slope of MS_non has also
been reproduced better than in CMC (Figure 3.7b).
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For the clay, there is no conditioning information in the left well (CMP = 700) and
therefore it cannot be simulated continuously at the top, nor does it appear at depths
between 410 m and 420 m in both results.

The Confusion Matrix indicates that the new scheme (A-CMC) is numerically better
than the old one (CMC) (Figure 3.8). The data samples are more compact and most of
the values in the diagonal show higher values, especially for FS_non. However, FS has
not been simulated better, based on the evaluation of confusion matrix, since in CMC
(Figure 3.8a) all of FS has been simulated correctly while it is more distributed in A-CMC
(Figure 3.8b). After comparing the simulated result (Figure 3.7a) with the truth (Figure
3.5), it can be realized that the fact that FS has been simulated correctly in terms of data
samples in CMC is due to the compensation at different depths.

Figure 3.8: Confusion matrices of the two schemes: (a) CMC (MCC = 0.5600); (b) A-CMC (MCC = 0.6674).

3.5.2. BOOK CLIFFS MODEL II

The second example is also from the improved Book Cliffs model (Figure 2.3) and fea-
tures different lithologies at depths between 30 m and 160 m (Figure 3.9). The lithologies
are coded by numbers from 1 to 4 according to decreases in grain size (1 for FS_non, 4
for Clay_non), with coals being lithology 5.

Instead of having two pseudo wells, one extra well has been assumed to be drilled in
the middle of the cross-section (Figure 3.10). In this case, the simulation will be firstly
performed between CMPs 650 and 750, then 750 and 850 afterwards.

In the above examples, the vertical matrix is estimated from the cored wells which
are usually available in most of the reservoirs. The horizontal matrix is obtained from the
geological profiles or the truth which may be missing (even though it is known here). On
the other hand, geological understandings of the depositional environments as well as
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Figure 3.9: Book Cliffs Model II. FS_non: Fine-grained sandstone (non-marine); VFS_non: Very fine-grained
sandstone (non-marine); SS_non: Siltstone (non-marine); Clay_non: Claystone (non-marine). Note that only
very small proportions of Clay_non are in the upper- and bottom-right corners.

Figure 3.10: Starting model for simulations with three pseudo wells located at CMPs 650, 750 and 850.

the sedimentary structures could provide some hints for the construction of horizontal
matrices. Walther’s Law (Middleton, 1973) states the lithologies that are observed in the
vertical depositional sequence must also be deposited in adjacent transects at another
scale (Elfeki & Dekking, 2005; Parks et al., 2000). With an application of this law, the
lateral variability can be inferred.

Another prior knowledge to implement the new mode of CMC is the predefined tol-
erance angle which is estimated by a comparison of the cored wells before. This proce-
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dure could encounter some problems when same lithologies appear at different depths
in the wells which will make people confused about how to correlate them. Seismic data
or seismic inversion results provide images of the subsurface structures in terms of re-
flection amplitudes or property values which can help to estimate the tolerance angle as
well as the inference of horizontal matrices.

In this example, an effort for the estimation of tolerance angle and construction of
horizontal matrix will be pursued based on the results of full-waveform inversion, or
FWI. In this inversion scheme, all internal transmission effects and internal multiple
scattering/mode-conversion are considered, allowing a recovery of broadband proper-
ties and providing a high resolution (Gisolf & van den Berg, 2010a,b). Figure 3.11 shows
the inversion results in terms of compressibility and shear compliance. Considering the
small interval (130 m) of the cross-section and the highest resolution provided by inver-
sion, the results are pretty good since some thin layers have been detected (Figure 2.11).

Figure 3.11: Inversion results in terms of compressibility (a) (κ = 1/K , with K being the bulk modulus) and
shear compliance (b) (M = 1/µ, with µ being the shear modulus).

Then in order to estimate the tolerance angle based on the inversion results, edges
or boundaries of lithological layers are going to be detected. Either of the inverted prop-
erties (κ and M) (Figure 3.11) could be the input for the edge detection. However, in
order to mitigate the output difference caused by different inputs as well as to utilize
the inversion results to the fullest and to highlight the property behaviors of different
lithologies (Feng et al., 2015, 2017), the parameters of κ and M need to be mixed and the
procedure is (κ− M)/(κ+ M). The mixed result is shown in Figure 3.12, together with
the detected edges. A Canny edge detector is used which is adaptable and can be tai-
lored to recognition of edges under various environments (Canny, 1986). The process of
this detector includes five steps: filtering of the image; calculation of intensity gradients;
non-maximum suppression; determination of potential edges with double threshold;
and edge tracking.

The detected edges in Figure 3.12b shows that the layers are mainly dipping to the
right as indicated by the red lines which is also reflected by the property values (Figure
3.11 and Figure 3.12a) and the dipping angle is 0.2° approximately which is going to be
the tolerance angle in the simulation process. However, some layers show different dip-
ping trends demonstrated by the blue line which will be ignored since only the main
dipping direction should be taken into account.
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Figure 3.12: Mixed result (a) as well as the detected edges of lithological layers (b).

Horizontal sampling interval = 25 m
Horizontal transition probability matrix

State 1 2 3 4 5
1 0.9900 0.0025 0.0025 0.0025 0.0025
2 0.0025 0.9900 0.0025 0.0025 0.0025
3 0.0025 0.0025 0.9900 0.0025 0.0025
4 0.0025 0.0025 0.0025 0.9900 0.0025
5 0.0025 0.0025 0.0025 0.0025 0.9900

Vertical sampling interval = 5 m
Vertical transition probability matrix

State 1 2 3 4 5
1 0.9622 0.0236 0.0094 0.0024 0.0024
2 0.0100 0.9698 0.0001 0.0001 0.0200
3 0.0127 0.0318 0.9553 0.0001 0.0001
4 0.2500 0.2500 0.0001 0.4998 0.0001
5 0.0354 0.0001 0.0044 0.0001 0.9600

Table 3.2: Input dataset for the Book Cliffs Model II.

Based on the estimated small dipping angle (0.2°) and the application of Walther’s
Law (Middleton, 1973), the horizontal matrix and the vertical matrix that is obtained
from the cored wells are shown in Table 3.2.

Diagonal elements of the horizontal matrix are chosen to be large (0.99) since the
dipping is very small (0.2°) and the transition from one lithology to itself is dominant.
For the horizontal changes between different lithologies, there is no information and has
been made all equiprobable according to ph

i j = (1−ph
i i )/(N −1) where N is the number

of lithologies (Elfeki & Dekking, 2005). Zeros in the vertical matrix has been set to 0.0001
in order to eliminate abrupt changes.

After simulations, the results of CMC and A-CMC are shown in Figure 3.13. Com-
pared with the result of CMC (Figure 3.13a), the layers are continuous by using A-CMC
(Figure 3.13b) as indicated by red dashed rectangles which should be the case in reality
(Figure 3.9).
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Figure 3.13: Simulated results of CMC (a) and A-CMC (b).

An indicator function (Elfeki & Dekking, 2001) is selected to display the simulated
results (Figures 3.1b, 3.3, 3.7, 3.13) in which the most occurred lithologies of the 100
simulations at every cell are chosen. The probability maps for different lithologies of
the cross-section are shown in Figure 3.14 in which the point-wise uncertainty can be
assessed. For Clay_non, small areas are shown since it only appears at the upper- and
bottom-right parts.

With an incorporation of a tolerance angle, the point-wise uncertainty of lithologies
has been decreased which leads to more continuous layers (Figure 3.13b).
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Figure 3.14: Probability maps in terms of lithologies by CMC (a) and A-CMC (b).
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3.6. DISCUSSIONS

In the previous 2-D Markov Chain model (CMC), a prior known future state may not be at
the same vertical height in the cell domain, which may result in discontinuous layers in
the simulation. However, in the new method (A-CMC) presented here, a tolerance angle
is defined that assists in the active search of future states to be used for conditioning. The
horizontal chain is conditioned based on different future states, and the vertical chain
is coupled afterwards (see Appendix A). After numerous realizations, a more continuous
distribution of the states (predicted lithologies) can be expected (Figure 3.14).

Another advantage of this new scheme is that slopes in the layers are simulated bet-
ter than before, such as those of MS_non in Model I (Figure 3.7b) and Coal in Model II
(Figure 3.13b), which appear horizontal towards the conditioning well in CMC. The same
effect can also be seen in the examples discussed by Elfeki & Dekking (2001), where more
wells are provided (Figure 4 in Elfeki & Dekking, 2001).

The tolerance angle is assumed to be small in order to use the same horizontal prob-
ability matrix for different future states to be used for conditioning. For reservoirs in
sedimentary environments without strong tectonic activities, the dipping angle of the
stratal layers is usually not more than a few degrees.

In the examples presented here, the tolerance angles are estimated by comparing
the lithologies in the two wells at the leftmost and rightmost and an interpretation of
the seismic inversion results as additional soft data could provide indications of subsur-
face structures (Artun et al., 2005). Alternately, these inversion results can be included
within the simulations as hard constraints since they are closely related to the types of
lithologies which will be discussed in the next chapters of this thesis.

The vertical and horizontal sampling intervals also influence the estimation of tol-
erance angle because there should be one future state to be used for conditioning at
the end of each row in the simulation. For example, if the ratio between the vertical in-
terval (d z) and horizontal interval (d x) is very small, the maximum oblique angle (see
Appendix B) could be smaller than the dipping angle of the geological layers, then the
tolerance angle will be the maximum oblique angle calculated from intervals. That is
why the sampling intervals should be selected not only to suit the embedded lithologi-
cal information but also for the layers’ dips in A-CMC.

In the simulation process, there are two different choices in the vertical (upward and
downward) and horizontal (leftward and rightward) directions, which lead to four dif-
ferent propagation directions for the Markov Chain modelling. The choice of directions
is important because of the directional artefacts appearing in the simulation process
which can be compensated for by the simulation path just like the use of regular sim-
ulation path needed to improve the long-range continuity of patterns in multiple-point
geostatistics (Hu & Chugunova, 2008). With the structural implications from seismic in-
version (Figures 3.11 and 3.12), determination in the choice of simulation directions can
be made. Other selections in the simulation path such as the forward and backward
scheme or the alternate advancing (AA) path (Elfeki & Dekking, 2005; Li, 2007) have not
been considered yet which could be a further study.
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However, in reservoirs without complex structures, A-CMC can describe the facies
architectures with the understanding of the subsurface geometries obtained from seis-
mic interpretation or inversion. For reservoirs with different dip directions of the geo-
logical layers, the dominant one, or the one which has the most significance in reservoir
characterization, has to be selected which shares similarities with the object model sim-
ulations (Daly & Caers, 2010). This is also the rule when choosing the tolerance angle
based on the layers’ dips.

The confusion matrix and the MCC can be calculated only when the ground truth
is known and they will help to quantify the simulation result numerically instead of
visually. Here they have illustrated the improvements of A-CMC over CMC. However,
when reservoir lithologies are simulated in the subsurface where the ground truth is not
known, these tools are inapplicable. However, with an assistance of probability maps
(Figure 3.14), the point-wise uncertainty can be assessed that will not be available in
traditional interpretations in which geological layers are correlated by professional geol-
ogists.

Both horizontal and vertical matrices are needed in the simulation. The diagonal en-
tries in the matrices are related to the lithologies’ lateral extension and thickness, while
the off-diagonal entries are proportional to the horizontal and vertical juxtapositional
tendencies. If the plausible facies proportions, mean lengths, and juxtapositional ten-
dencies, can be estimated, the Markov Chain model of spatial variability can be easily
formulated (Carle, 2000).

While it is straightforward to understand vertical stratal stacking patterns, it is not
easy to obtain the facies extension in the lateral direction from borehole data, not only
because of the typically sparse lateral spacing, but also because of unknown variations
in depositional dips and strikes (Carle et al., 1998). Outcrop analog profiles and horizon-
tal wells may mitigate this problem (Purkis et al., 2012). The principle of Walther’s Law
(Middleton, 1973) has been implemented to estimate the facies frequency in the hori-
zontal direction, with a diagonal ratio considering the subsurface structures revealed by
the seismic inversion. The sensitivity of the dominant values has not been tested here
which has been demonstrated by Elfeki & Dekking (2005).

3.7. CONCLUSIONS

In this chapter, a new approach is presented to incorporate different states to be used in
the conditioning of Markov Chain models, in order to account for the dipping effect of
stratal layers in reservoirs. The new scheme (A-CMC) is an incremental improvement of
CMC in which a tolerance angle is defined and can be extended to 3-D in which three
chains are going to be coupled. Correlations of cored wells and interpretations on seis-
mic inversion results will help the estimation of tolerance angles as well as the construc-
tion of horizontal matrices.

Simulation paths should be carefully chosen in order to make compensations for
the directional artefacts. For reservoirs with very complex structures such as curvilinear
channels, this method is not applicable because of the nullification of the small tolerance
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angle premise and dilemmas in the selection of simulation path and Markov Random
Field or multiple-point geostatistics may be the solution.

The minor role provided by seismic data has been shown and seismic inversions will
be incorporated in order to predict the lithologies in Chapter 4 and Chapter 5.
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3.8. APPENDIX A: ACTIVE HORIZONTAL CONDITIONING WITH

A TOLERANCE ANGLE

Similar as the Coupled Markov Chain model with one conditioned future state in Elfeki &
Dekking (2001), we perform the conditioning process in the horizontal chain first, then
couple it with the vertical chain. The difference with before is that here there are more
than one future states to be conditioned.

In the following, to keep things simple, we assume there are only two given future
states (Sq and Sp ) to be conditioned in the horizontal chain, and the states at the lattice
(Zi , j ) need to be simulated in a two-dimensional domain of cells (N z ×N x). In total, N
geological states have been given and are coded as numbers. The numerical expression
is given by

Pr
(
Zi , j = Sk |Zi , j−1 = Sl , Zi−1, j = Sm , Zi ,N x = Sq , Zi ′,N x = Sp

)
=C ′ Pr

(
Zi , j = Sk |Zi , j−1 = Sl , Zi ,N x = Sq , Zi ′,N x = Sp

) ·Pr
(
Zi , j = Sk |Zi−1, j = Sm

) (3.4)

C ′ is the normalizing constant to exclude the transitions to different states in the two
chains. Zi ,N x and Zi ′,N x are in the well with the future states to be used for conditioning,
if within the range defined by the tolerance angle. The subscripts of i and i ′ mean that
the future states are at different heights in the well. Since the tolerance angle is very
small, the two future states can be supposed at the same vertical height with the current
cell even though they are not, and the same horizontal transition probability matrix (P h)
will be used.

We now define

A = Pr
(
Zi , j = Sk |Zi , j−1 = Sl , Zi ,N x = Sq , Zi ′,N x = Sp

)
(3.5)

and

B = Pr
(
Zi , j = Sk |Zi−1, j = Sm

)
(3.6)

After application of the joint probability theory, equation 3.5 can be rewritten as

A = Pr
(
Zi , j =Sk ,Zi , j−1=Sl ,Zi ,N x=Sq ,Zi ′ ,N x=Sp

)
Pr

(
Zi , j−1=Sl ,Zi ,N x=Sq ,Zi ′ ,N x=Sp

) (3.7)

The probabilities in the numerator and denominator of equation 3.7 can be further
arranged in factors of conditional probabilities and marginal probabilities as:

A = Pr
(
Zi ,N x=Sq |Zi , j =Sk ,Zi , j−1=Sl ,Zi ′ ,N x=Sp

)·Pr
(
Zi , j =Sk ,Zi , j−1=Sl ,Zi ′ ,N x=Sp

)
Pr

(
Zi ,N x=Sq |Zi , j−1=Sl ,Zi ′ ,N x=Sp

)·Pr
(
Zi , j−1=Sl ,Zi ′ ,N x=Sp

) (3.8)

By applying the Markovian rule on the conditional probability and realizing that the
known Zi ,N x and Zi ′,N x are independent of each other, equation 3.8 can be simplified as:
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A = Pr(Zi ,N x=Sq |Zi , j =Sk )·Pr
(
Zi , j =Sk ,Zi , j−1=Sl ,Zi ′ ,N x=Sp

)
Pr

(
Zi ,N x=Sq |Zi , j−1=Sl

)·Pr
(
Zi , j−1=Sl ,Zi ′ ,N x=Sp

) (3.9)

The theory of joint probability and Markovian rule can be applied repeatedly to ob-
tain

A = Pr(Zi ,N x=Sq |Zi , j =Sk )·Pr(Zi ′ ,N x=Sp |Zi , j =Sk )·Pr(Zi , j =Sk |Zi , j−1=Sl )·Pr
(
Zi , j−1=Sl

)
Pr

(
Zi ,N x=Sq |Zi , j−1=Sl

)·Pr
(
Zi ′ ,N x=Sp |Zi , j−1=Sl

)·Pr
(
Zi , j−1=Sl

)
= Pr(Zi ,N x=Sq |Zi , j =Sk )·Pr(Zi ′ ,N x=Sp |Zi , j =Sk )·Pr(Zi , j =Sk |Zi , j−1=Sl )

Pr
(
Zi ,N x=Sq |Zi , j−1=Sl

)·Pr
(
Zi ′ ,N x=Sp |Zi , j−1=Sl

) (3.10)

By substituting the transition probability matrix (Elfeki & Dekking, 2001) for the con-
ditional probabilities in equations 3.5 and 3.10, we get:

A = Pr
(
Zi , j = Sk |Zi , j−1 = Sl , Zi ,N x = Sq , Zi ′,N x = Sp

)
= p

h(N x− j )
kq ·ph′(N x− j )

kp ·ph
l k

p
h(N x− j+1)
l q ·ph′(N x− j+1)

l p

(3.11)

in which ph(N x− j )
kq and ph′(N x− j )

kp are the (N x − j )-step transition probabilities,

ph(N x− j+1)
l q and ph′(N x− j+1)

l p are the (N x − j +1)-step transition probabilities.

The probability matrices for ph
kq , ph′

kp and ph
l q , ph′

l p are approximately the same and

equal the horizontal transition probability (P h), because of the small tolerant angle (see
Appendix B). This is also why the numbers of steps in ph

kq , ph′
kp and ph

l q , ph′
l p are the same.

Equation 3.6 can be formalized in the same way by using the vertical transition ma-
trix (P v )

B = Pr
(
Zi , j = Sk |Zi−1, j = Sm

)= pv
mk (3.12)

Combining equation 3.11 and equation 3.12, we find

Pr
(
Zi , j = Sk |Zi , j−1 = Sl , Zi−1, j = Sm , Zi ,N x = Sq , Zi ′,N x = Sp

)
=C ′ p

h(N x− j )
kq ·ph′(N x− j )

kp ·ph
lk

p
h(N x− j+1)
l q ·ph′(N x− j+1)

l p

·pv
mk

(3.13)

The normalizing constant can be computed in the same way as in Elfeki & Dekking
(2001), and using the same horizontal matrix (P h) and vertical matrix (P v ), finally we
have
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plm,k|qp = Pr
(
Zi , j = Sk |Zi , j−1 = Sl , Zi−1, j = Sm , Zi ,N x = Sq , Zi ′,N x = Sp

)
= p

h(N x− j )
kq ·ph(N x− j )

kp ·ph
lk ·pv

mk∑N
f =1 p

h(N x− j )
f q ·ph(N x− j )

f p ·ph
l f ·pv

m f

k = 1, · · · , N

(3.14)

Similarly, if there are more than two future states on the state space {S1,S2, · · · ,SD } to
be conditioned, equation 3.14 will be

plm,k|r =
[∏D

r=1 p
h(N x− j )
kr

]
·ph

lk ·pv
mk∑N

f =1

[∏D
r=1 p

h(N x− j )
f r

]
·ph

l f ·pv
m f

k = 1, · · · , N ;r = 1, · · · ,D ;D ≤ N

(3.15)

State space {S1,S2, · · · ,SD } is a subspace of state space {S1,S2, · · · ,SN }.

Similar to the derivation of equation 3.15, in order to account for the dipping effect,
the modification of equation 3.2 is going to be

pl ,k|r =
[∏D

r=1 p
h(N x− j )
kr

]
·ph

lk∏D
r=1 p

h(N x− j+1)
l r

k = 1, · · · , N ;r = 1, · · · ,D ;D ≤ N

(3.16)
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3.9. APPENDIX B: OBLIQUE TRANSITION PROBABILITY MA-
TRIX

In equation 3.15, the probability matrices for ph
kq and ph′

kp are assumed the same, as

long as the condition of a small tolerance angle is satisfied. In the two examples of the
Book Cliffs model (Chapter 2) the truth is already known and, therefore, the transition
probability matrices at different oblique angles can be obtained easily and compared
with the one in the horizontal direction. In real cases this is not possible, because the
truth is not known.

Since there is only one future state to be used for conditioning at the very end of
each row in the simulation process, the tolerance angle α and maximum oblique angle
θmax

o depend on the sampling intervals in the vertical and horizontal directions. The
relationship between tolerance angle α, maximum oblique angle θmax

o and sampling
intervals (d z,d x) is the following:

α≤ θmax
o = tan−1

(
d z
d x

)
(3.17)

In the two Book Cliffs models, d z has been given different values (5 m and 0.4 m),
while d x is the same (25 m). So the maximum oblique angle θmax

o is 11° for the first
example, and 0.9° for the second example, approximately.

Equation 3.17 should be applied first, for the determination of tolerance angle, and
at the same time the dip angle in stratal layers needs to be considered as well.

The Frobenius distance (Ziyan et al., 2006) is proposed as measure for the dissimilar-
ity between the horizontal and oblique matrices:

dF =
√

tr
(
(M1−M2)2

)
(3.18)

where dF is the Frobenius distance, tr is the trace function in linear algebra, and M1
and M2 are the two matrices.

There are two oblique directions, of which one is dipping downward (Figure 3.15a)
and the other is upward (Figure 3.15b).

Figure 3.15: Two oblique directions. (a) downward; (b) upward. Both are viewed from left to right.
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The average distance d av g
F will be the mean of the distances in the upward d up

F and

downward d down
F directions:

d av g
F =

(
d

up
F +d down

F

)
2

(3.19)

Figure 3.16 is showing the distance results of the two Book Cliffs Models (Figure 3.16a
for Model I; Figure 3.16b for Model II). Also, Figure 3.16a is showing the results when con-
ditioning from right to left, while Figure 3.16b is showing the result when conditioning
from left to right. These directions are consistent with the horizontal transition proba-
bility matrices in the Markov Chain model.

Figure 3.16: Distance results in the Book Cliffs models. (a) for Model I; (b) for Model II.

It can be seen that the distances or dissimilarities between the matrices are small,
and even close to zero, when the predefined tolerance angles (0.8° and 0.2°) are used in
Book Cliffs model I and II.
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4
RESERVOIR LITHOLOGY

CLASSIFICATION BASED ON

SEISMIC INVERSION RESULTS BY

HIDDEN MARKOV MODELS:
APPLYING PRIOR GEOLOGICAL

INFORMATION

Summary
Hidden Markov Models (HMMs) have been applied to predict reservoir lithologies using
seismic inversion results as inputs. This approach takes into account the conditional
probabilities between different lithologies, i.e. the vertical transitions in sedimentary se-
quences. These properties are used as prior geological information. In order to relate the
seismic inversion results to the true well-log data, HMMs need to be trained based on the
Expectation-Maximization theory. The application of the resulting model on a synthetic
example from the Book Cliffs (Utah, USA) shows that most lithologies are classified cor-
rectly, even for some thin layers. A comparison with other point-wise methods in which
data samples are treated independently from each other, such as k-Means and Fuzzy Logic
classifiers, leads to the conclusion that the spatial correlation in HMMs allows better litho-
logical predictions, because this prior information reflects the geological depositional pro-
cesses. A real case study with data from the Vienna Basin (Austria) is performed, in which
lithologies in a 3-D cube are obtained based on the seismic inversion results, via trained

This chapter is under revision for publication in Marine and Petroleum Geology.

61



4

62 4. CLASSIFICATION OF RESERVOIR LITHOLOGY BY HMMS

HMMs. While the vertical sequences are shown to be reasonably well predicted, the hori-
zontal continuities are not. This indicates that a future research should focus on the lateral
geological relationships.
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4.1. INTRODUCTION

Lithology classification is one of the most important aspects in reservoir characteriza-
tion, because it is the key to a translation of rock-properties to relevant reservoir param-
eters. The distribution of reservoir lithologies, therefore, is needed to understand and
predict a reservoir’s production performance, through reservoir modeling and simula-
tion. In order to separate lithologies into different classes, data obtained from cores and
well-logs are usually used, which have a high vertical resolution. While these provide
sufficient information on subsurface lithologies in a one-dimensional direction (depth),
they provide little information about the lateral distribution of them. Additionally, in
most cases, the density of boreholes is relatively sparse compared to the total reser-
voir volume. Seismic data, on the other hand, can provide two-dimensional or three-
dimensional information over an area typically covering the extent of the target reser-
voir. It can, therefore, be used to obtain two-dimensional or three-dimensional models
of the relevant reservoir properties. Here we present the results from an effort to extract
reservoir lithologies, from the properties provided by full-elastic wave-equation based
inversion of seismic data.

In general, full-waveform inversion, or FWI, is a challenging data-fitting procedure
based on full-wavefield modelling to extract quantitative information from seismograms
(Tarantola, 1984; Virieux & Operto, 2009). The information from different types of waves
including refractions and diving waves, which used to be considered as noises in normal
seismic data processing, are utilized in this optimization procedure. The goal is to obtain
better seismic velocity models for seismic migration.

FWI became only feasible after a significant increase in computing power and longer
offset seismic acquisition methods became available, because it is computationally in-
tensive and sensitive to the structure of the intermediate/long wavelengths that could
be obtained from long-offset data (Mora, 1987). Pratt et al. (1996) used wide-angle seis-
mic data to reconstruct a higher-resolution two-dimensional velocity model compared
to pre-stack migration and traveltime tomography. Shipp & Singh (2002) used a two-
dimensional elastic wave equation to generate all possible waves, including converted
ones, in order to simulate a complex seismic wavefield in a marine environment. Plessix
(2009) implemented a three-dimensional frequency-domain full-waveform inversion in
which a multiscale approach with an iterative solver is adopted.

In contrast with the methods mentioned above, the scheme of wave-equation based
inversion used here is based on the integral representation of the full-elastic wave equa-
tion. The orders of multiple scattering that are accounted for in the inversion are de-
termined by the number of iterations. All internal transmission effects and internal
multiple scattering/mode-conversion are considered, allowing recovery of broadband
properties and providing a high resolution (Gisolf & van den Berg, 2010a,b). This makes
the inversion results suitable for lithology determination. In the synthetic test presented
here, PP and PS data are used as inputs together and the elastic parameters, such as com-
pressibility, bulk density and shear compliance, are simultaneously inverted for. Since
only PP data are available in the real case study discussed later on in Section 4.4, only
compressibility and shear compliance are the resulting inversion outputs.
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When there are several input properties, lithology determination is a multivariate
problem. Hierarchical agglomerative clustering algorithms can be used to analyze the
dataset, in which the procedure is iterated, based on previously established clusters, un-
til a desired number of lithologies is obtained (Lindberg & Grana, 2015). Typical exam-
ples of such algorithms include discriminant analysis, k-Means clustering, and others
(Friedman et al., 2001). Intelligent systems such as artificial neural networks (ANN) and
genetic algorithms have been proposed by Oldenziel et al. (2000) and Fang & Yang (2015).
In order to take advantage of prior information, Bayes’ theorem is used to calculate the
posterior probabilities. A comparison between Bayes’ classifier and discriminant analy-
sis is given by Li & Anderson-Sprecher (2006). Dubois et al. (2007) tested four different
approaches including Bayes’ classifier, Fuzzy Logic, k-nearest neighbor and ANN in the
Panoma gas field, whereby the ANN outperformed the others. During the classification
process, rock physical models resulting from previous experiences or lab experiments
can be integrated into the Monte Carlo classification in a probabilistic manner to mit-
igate the posterior uncertainty (Grana et al., 2012). Seismic facies have also been clas-
sified by similar methods, in which three-dimensional models can be obtained based
on seismic attributes and the lithologies from well logs at the borehole locations (Avseth
et al., 2010).

The methods mentioned above treat all data samples as independent from each
other, i.e. without any typical vertical patterns as produced by sedimentary processes.
Therefore, these can be described as point-wise approaches (Hammer et al., 2012) and
some geologically, or petrophysically, unlikely transitions between lithologies can be ob-
tained. In order to avoid this problem, a Markov prior model was applied in a Bayesian
framework by Larsen et al. (2006). Hammer et al. (2012) adopted a more realistic Markov
prior model to predict the lithologies and fluid saturations, than Kjønsberg et al. (2010),
by using pre-stack seismic data without increasing the computational complexity.

In the present chapter, a new approach called Hidden Markov Models (HMMs) is
introduced to lithologies classification (Rabiner, 1989). Dymarski (2011) provided an
overview of HMMs and their applications in speech recognition, computer science and
other fields. Eidsvik & Switzer (2002) and Eidsvik et al. (2004) applied HMMs to translate
well-log data into geological attributes. The Expectation-Maximization (EM) algorithm
has been used by Lindberg & Grana (2015) to infer the parameters of HMMs and imple-
ment well-log inversion later. Here, instead of using the well-log data, the seismic inver-
sion results are the inputs into the classification process, in which the prediction can be
made without constraints by the well location. However, the parameters of HMMs need
to be obtained first by training with well logs and seismic inversion results at the same
location, in order to minimize the inversion error or noise.

In the following, the theory of HMMs is first outlined. A training procedure is demon-
strated and performed to obtain suitable parameters. Lithology predictions with seismic
inversion results as inputs are shown in the following, first on a synthetic case, then on a
real data set. The final conclusions include discussions and future plans.
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4.2. METHODOLOGY

The Hidden Markov Models (HMMs) is a sequence classifier with the purpose of allo-
cating a state or lithology to every unit, or data sample, following a sequence rule, or a
Markov process (Figure 4.1). The states, or lithologies, themselves are unobservable, or
hidden, but indirect observations, or measurements, are available that are related to the
states. For example, lithologies in the subsurface cannot be measured, but rock proper-
ties such as velocity, density etc., which depend on the lithologies, can be measured in
wells. HMMs, can predict lithologies from observable measurements. Compared with
other classification methods, the biggest advantage in HMMs is that the Markov prior
knowledge is honored that excludes unlikely transitions such as a water-bearing sand on
top of an oil-bearing sand (Figure 4.1).

Figure 4.1: Comparison between HMMs and other point-wise methods. (a) With vertical coupling. (b) With-
out vertical connection. S1,S2, · · · ,SN are hidden variables or states, while O1,O2, · · · ,ON are observations
(modified from Lindberg & Grana, 2015).

In HMMs, the states, or lithologies that we are trying to infer, follow a Markov process.
It is a stochastic process that has a first-order Markov property: the future only depends
on the present, not on the past. Following Elfeki & Dekking (2001), let Z1, Z2, · · · , ZN be a
sequence of random variables, which take values in the state space {S1,S2, · · · ,SN }. The
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first-order Markov process or property then satisfies:

Pr(Zi = Sk |Zi−1 = Sl , Zi−2 = Sm , · · · , Z1 = Sr )

= Pr(Zi = Sk |Zi−1 = Sl ) = plk

(4.1)

where pl k is the conditional probability of Sk given Sl . In one dimension, the con-
ditional probability can be described by a transition matrix which can be written in a
square form:

P =





p11 · · · p1N

. . .
...

... pi j
...

...
. . .

pN 1 · · · pN N

(4.2)

in which pi j specifies the transition probability from state Si to state S j .

By taking a limit in the step of transitions (n) (Elfeki & Dekking, 2001),

lim
n→∞p(n)

i j =π j (4.3)

a stationary probability of different states can be obtained: π j ( j = 1,2, · · · , N ), which
is assumed to be the initial distributions of states and one of the inputs for HMMs. i
disappears because the stationary probability does not depend on the starting states.

Given a state Sk at depth d , the probability density function of observation data at
the same depth (Od ) is

Pr(Od |Zd = Sk ) = bk (d) (4.4)

Equation 4.4 reflects the dependency relationship in Figure 4.1, indicated by the hor-
izontal arrows, and is called the likelihood function in general. The observations are con-
tinuous variables with Gaussian distributions. B = {bk (d)} denotes the emission proba-
bilities of the observation given all the different states (Rabiner, 1989).

Thus, a complete specification of HMMs parameters for a given model can be de-
scribed by (Lindberg & Grana, 2015; Rabiner, 1989):

λ= (P,B ,π) (4.5)

where P is the transition probability (equations 4.1 and 4.2), B represents the prob-
ability distribution of observational data, while π is the stationary probability, which is
the initial state distribution.
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Three basic problems can be solved by HMMs:

1. Given the model λ and the observation data down to a certain depth O =
O1O2 · · ·Od , how to calculate Pr(O|λ);

2. How to adjust the model parameters λ= (P,B ,π) in order to maximize Pr(O|λ);

3. Given the observation data O =O1O2 · · ·Od and the model λ, how to choose a state
sequence Z = Z1Z2 · · ·Zd that can explain the observations optimally.

Different methods can be invoked to solve these problems, and details can be found
in Rabiner (1989).

In order to apply HMMs to classify lithologies by using seismic inversion results as
inputs, first the model parametersλneed to be estimated from the log data at the well lo-
cation. Then this model will be trained based on the inversion results, i.e. the parameters
are optimized to best describe the observation data. This training step is crucial, because
the inversion results will not always match the log readings and this procedure can take
care of the deviations between them. It is similar to Problem 2, to which Problem 1 is
related, because the probability of observation data given the model will be computed
Pr(O|λ). Then the trained model can be used to predict the lithologies at other locations,
with inversion as the inputs, which is Problem 3. This is the step in which we are trying
to uncover the hidden, or latent part of the model. There are no “correct” predictions
since they are unknown. Different criteria could be introduced to solve this problem to
obtain the most probable sequence of states (Rabiner, 1989).

4.3. SYNTHETIC EXAMPLES

The first application example is the synthetic Book Cliffs model created by Feng et al.
(2017) (Chapter 2), in which more details have been added and more differentiation is
put on the potential reservoir lithologies than in the original model. Figure 4.2 shows
rock physical properties which can be calculated based on the well-logging data and
lithologies at one single CMP (1130) that are used as inputs for the templates of litholo-
gies and initial distributions of the likelihood functions in HMMs. Rock properties in
terms of compressibility (κ = 1/K , with K being the bulk modulus) and shear compli-
ance (M = 1/µ, with µ being the shear modulus) are used for the lithology classification
and will be obtained from seismic inversion.
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Figure 4.2: Rock physical properties and lithologies at one single CMP (1130) based on the pseudo-logs. MS:
Medium-grained sandstones; FS: Fine-grained sandstones; VFS: Very fine-grained sandstones; SS: Siltstones,
and each lithology has been divided into two parts: marine and non-marine (designated by non).

Inputs for HMMs (equation 4.5) can be obtained based on the rock physical data and
the known lithologies in the well. The transition matrix is derived by counting transitions
between different lithologies and then normalizing by the row summations (equation
4.6). Zero entries in the matrices have been set to very small values (0.0001) in order to
avoid abrupt changes or absorbing lithologies (Lindberg & Grana, 2015).

P1130 =

MS_non MS FS_non FS VFS_non VFS SS Clay_non Clay



MS_non 0.6660 0.0001 0.0001 0.3333 0.0001 0.0001 0.0001 0.0001 0.0001
MS 0.0001 0.6660 0.0001 0.3333 0.0001 0.0001 0.0001 0.0001 0.0001

FS_non 0.3333 0.0001 0.6660 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
FS 0.0001 0.0001 0.0001 0.7216 0.0001 0.1667 0.0001 0.0001 0.0001

VFS_non 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.9992 0.0001
VFS 0.0001 0.0001 0.0001 0.0001 0.0001 0.7077 0.0833 0.0001 0.2084
SS 0.0001 0.0001 0.0001 0.0001 0.0001 0.6660 0.3333 0.0001 0.0001

Clay_non 0.0001 0.9992 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Clay 0.0001 0.0001 0.0370 0.1111 0.0001 0.0741 0.0001 0.0001 0.7773

(4.6)

By applying equation 4.3, the initial distributions of different lithologies at this loca-
tion can be calculated (equation 4.7)



4.3. SYNTHETIC EXAMPLES

4

69

π1130 =





MS_non 0.0423
MS 0.0009

FS_non 0.0421
FS 0.2028

VFS_non 0.0001
VFS 0.2962
SS 0.0371

Clay_non 0.0002
Clay 0.3783

(4.7)

The last input is the emission probabilities where the assumption of bivariate Gaus-
sian distributions is made for each lithology.

The parameter sets of HMMs can be trained, or updated, in order to account for the
errors in the inversion results by an iterative Baum-Welch method (or equivalently the
EM expectation-maximization method used by Rabiner (1989) in which the predicted
lithologies and estimated parameters in Gaussian likelihood functions are updated al-
ternately). Here only the means and covariance matrices in the Gaussian likelihood
functions are updated, because not all properties can be resolved fully by the seismic
inversion (Figure 4.3). This is a partially training process. The transition matrices and
initial distributions of different lithologies will be fixed during the training and classifi-
cation process since they are not influenced by the inversion.

Figure 4.3: Truth (red curves) and inversion (blue curves). Rock properties have been resampled to the seismic
grid size (CMP = 1130).
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Figure 4.4 shows the 90% confidence regions of the Bivariate Gaussian likelihood
model (κ, M) for the probability of each lithology, in which the left one is based on the
well data and the right one has been updated according to the inversion results at the
same location. It can be noticed that the shapes of the confidence regions have changed
and some positive correlations between the variables become negative after training,
such as FS_non which is reflected as a change in the shape direction, due to errors in κ

and M of the inversion results (Figure 4.3).

Figure 4.4: 90% confidence regions of the Bivariate Gaussian likelihood model for the distribution of each
lithology. (a) before training, (b) after training.

In order to test HMMs before application, the inversion results at the training lo-
cation are used as inputs to predict the lithologies. The true and predicted results are
shown in Figure 4.5, together with the Maximum a posteriori probabilities (MAP) for
each state at depth.

The most important observation is that the potential reservoir-quality lithologies
(MS, FS whether marine or non-marine parts) are well predicted. Some thin layers such
as Clay_non at the top are also predicted correctly. However, there are some thin layers
missing. For example, Clay at depths 225 m and 275 m, and SS at 320 m, which can be
attributed to the difference between the true and inverted rock properties (Figure 4.3).
The fact that VFS at depth 455 m cannot be detected, is partly attributed to the lower
transition probability from Clay to VFS as well as a small mismatch between truth and
inversion results.
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Figure 4.5: (a) True and predicted lithologies together with the misfit between inverted and true properties in
Figure 4.3 (κ: solid line; M : dashed line). (b) Maximum a posteriori probabilities at CMP = 1130.
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The trained means and covariances of the Gaussian likelihood model and initial dis-
tributions and transition matrices of different lithologies in HMMs can be used to make
predictions at other locations where the inputs are limited to the inversion results only.

The true and inverted properties at another CMP (1140) are shown in Figure 4.6. The
predicted lithologies and MAP probabilities can be seen in Figure 4.7.

Figure 4.6: Truth (red curves) and inversion (blue curves) at another CMP (1140).

It can be see that the predicted results are quite good, because almost all lithologies
have been predicted correctly, as well as the thin layers. There are some misclassified
lithologies such as MS being predicted as MS_non at the top, which is due to the similar-
ity of their properties.
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Figure 4.7: (a) True and predicted lithologies together with the misfit between the inverted and true properties
in Figure 4.6 (κ: solid line; M : dashed line). (b) Maximum a Posteriori probabilities at CMP = 1140.
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In order to compare HMMs with other point-wise methods such as k-Means (Seber,
1984) and Fuzzy Logic (Feng et al., 2016; Saggaf & Nebrija, 2003), the results from these
methods at another CMP (1140) (Figure 4.6) are shown in Figure 4.8. The k-Means ap-
proach only needs the input data without any training procedure while the Fuzzy Logic
used the same data sets as the HMMs.

Figure 4.8: Comparison between HMMs, Fuzzy Logic and k-Means results (CMP = 1140). HMMs: MCC =
0.6989; Fuzzy Logic: MCC = 0.6887; k-Means: MCC = 0.6223. MCC is calculated according to equation 3.3.
Note the differences in the depth range between 150 m and 350 m.

Without taking into account of spatial coupling, the results of k-Means and Fuzzy
Logic tend to be more random, especially in the middle part (150 m - 350 m) where they
predict more thin layers than the HMMs. MCC is also showing that the result of HMMs
is better than the other two.

4.4. FIELD CASE STUDY

In this section, the methodology of HMMs is applied to a dataset from a clastic reser-
voir in the Vienna Basin which is an extensional basin between the Eastern Alps and
the Western Carpathians (Strauss et al., 2006). Vintages of 3-D seismic surveys acquired
in different years have been merged into a single dataset VBSM (Vienna Basin Super
Merge). The data acquisition took place with a vibroseis source. The maximum off-
set was 2 km with target depth of about 1.8 km. The fold of stack was 20 and the data
bandwidth was 10-60 Hz. After pre-processings such as converting of offsets to ray pa-
rameters, de-migration of migrated data to the target boundary marking a top of the
interested interval, seismic-well tie to extract the wavelet etc., these pre-stack seismic
data are used as inputs for the non-linear full-waveform inversion scheme (Gisolf et al.,
2014). Several wells had been drilled in this area reaching the hydrocarbon zone, with
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log-suites including gamma ray, density, resistivity, neutron porosity, compressional and
shear velocities etc. which are the basis of the standard lithological determinations made
in petrophysical evaluation. However, this approach is limited to an application at the
well locations. Therefore, the inverted rock properties from seismic data are proposed
as inputs for the lithology discrimination.

The property values κ and M between the depths of 1700 m and 2200 m have been
selected in a well (Well_01) together with three known lithologies (shale, shaly sandstone
and sandstone) in the same interval (Figure 4.9).

Figure 4.9: Well logs (Well_01) expressed as κ and M , together with predefined lithologies. All values have been
projected onto the vertical direction.

With the property values and lithologies in this well, the input parameters of HMMs
can be obtained (equations 4.8 and 4.9 as well as Figure 4.10).

P =

Shale SH_Sand Sand Shale 0.9805 0.0194 0.0001
SH_Sand 0.0081 0.9838 0.0081

Sand 0.0001 0.0123 0.9876
(4.8)
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π=

 Shale 0.0423
SH_Sand 0.0009

Sand 0.0421
(4.9)

Figure 4.10: 90% confidence regions of the Bivariate Gaussian likelihood model of shale, shaly sandstone and
sandstone in the well.

In equation 4.8, the zero transitional probabilities have been set to 0.0001, because all
the transitions are theoretically possible. The confidence regions in Figure 4.10 indicate
large overlaps between different lithologies, which means it will be difficult to distin-
guish the lithologies if only these properties are considered. In order to set a benchmark
for the classification, property values from the well logs (Well_01) are used as inputs for
HMMs, as well as for k-Means and Fuzzy Logic methods (Figure 4.11).

It can be seen that compared with the other two statistical methods, the result of
HMMs is better (MCC), because almost all lithologies have been classified correctly,
especially in the middle part. Without the geological prior information, which is the
Markov sequence, the statistical or histogram-based approaches (k-Means and Fuzzy
Logic) are unable to incorporate the internal transitional trends between different states,
transitions that are the results of specific sedimentary processes.
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Figure 4.11: Predicted results by three different methods (Well_01). HMMs: MCC = 0.5844; k-Means: MCC =
0.5202; Fuzzy Logic: MCC = 0.4911. MCC is calculated according to equation 3.3.

The ultimate goal here is to use seismic inversion results as inputs for the lithology
classification. The inverted and true properties at the same well location (Well_01) are
shown in Figure 4.12a where it can be seen that inversion quality is not very good, prob-
ably attributable to some pre-processing problems of the pre-stack seismic data such as
a poor seismic-to-well match since the well is deviated while the seismic line is straight
(Figure 4.12b). Unlike in the synthetic case, in which PP and PS data are used for the
inversion (Figures 4.3 and 4.6), the quality of the inverted M is worse than the one of κ
which is due to the fact that only PP data are available here.

Figure 4.12: (a) True (red curves) and inverted (blue curves) rock properties (Well_01). Values in the well (Figure
4.9) have been rescaled. Notice the major difference in the lower part from 1950 m - 2200 m, especially for κ.
(b) Seismic data and synthetic responses based on the well data with the extracted wavelet.
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Only the means in the Gaussian likelihood functions will be updated in the training
process, which is different from the process applied in the synthetic case, because the
quality of the inversion here is much worse. After training, the 90% confidence regions
for each lithology are displayed in Figure 4.13 and the predicted lithologies with the in-
version as inputs are shown in Figure 4.14. Because the inversion does not match the
truth very well, perfectly predicted lithologies cannot be expected, although the predic-
tion is not bad either, especially in the upper part where the misfit is relatively small.

Figure 4.13: 90% confidence regions of the Bivariate Gaussian likelihood model based on the inversion. The
ellipses have been shifted after training, compared to Figure 4.10.

Figure 4.14: Predicted lithologies by HMMs based on the seismic inversion at the training well location
(Well_01). The misfit is calculated as the difference between the inverted and true properties in Figure 4.12a
(κ: solid line; M : dashed line).
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In the next step, the inversion results at another well location (Well_02) which is
about 100 m away from the training well in Figure 4.12a (Well_01), are chosen as a blind
test, in which the log properties have not been used for training beforehand (Figure 4.15).

Figure 4.15: True (red curves) and inverted (blue curves) rock properties at a second well location (Well_02)
used for a blind test.

As expected, the inversion results are worse because of the previously mentioned
problems (poor seismic-to-well match). The true lithologies and the predicted litholo-
gies with the seismic inversion results as inputs, are shown in Figure 4.16. Some sand-
stone units have been successfully predicted, but many thin shale streaks have been in-
correctly classified as shaly sandstone in the lower part (1900 m - 2200 m).
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Figure 4.16: Predicted lithologies by HMMs based on the seismic inversion at a second well location (Well_02)
in which the properties have not been used for training. The misfit is calculated as the difference between the
inverted and true properties in Figure 4.15 (κ: solid line; M : dashed line).

With the inversion results in a 3-D cube (Figure 4.17) as inputs for lithological clas-
sification and predefined parameters such as transitional matrices (equation 4.8), initial
state distributions (equation 4.9) and means as well as covariance matrices (Figure 4.13)
in the Gaussian likelihood model, the predicted lithologies are obtained as shown in Fig-
ure 4.18.

Figure 4.17: Inversion results in a 3-D cube. (a) κ, (b) M .

The predicted layers are continuous in most parts of the cube. At the top, sand
patches are obtained which are also indicated in the inversion results (Figure 4.17). In
order to inspect the internal details, two slices along the inline and crossline directions



4.4. FIELD CASE STUDY

4

81

Figure 4.18: Predicted lithologies in a 3-D cube with seismic inversion as inputs shown in Figure 4.17.

are selected (Figures 4.19 and 4.20). The intersection of the slices is at the (first) training
well location (Well_01).

Figure 4.19: Two slices of the inversion results along the inline and crossline directions. Their intersection is at
the training well location (Well_01). (a) κ, (b) M .

Thus, with the help of the seismic inversion, the limitations of sparse well locations
have been overcome and a cube of lithologies was produced by HMMs, albeit with sig-
nificant uncertainties.
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Figure 4.20: Two slices of the predicted lithologies along the inline and crossline directions. Their intersection
is at the training well location (Well_01).

4.5. DISCUSSION AND CONCLUSION

In this chapter, geological prior information in the form of a transition probability ma-
trix for the vertical coupling between different states, as a Markov sequence, has been
taken into account in the determination of lithologies by HMMs. Compared with other
point-wise classification methods, this model predicts lithologies based on input rock
properties, either from wells, or from seismic inversion. The transition probabilities are
representative for certain typical sedimentary sequences

In contrast to other methods in which the data from well logs are used, here the re-
sults from seismic data are used in order to produce 2-D or 3-D property cubes. In the
approaches proposed by Ulvmoen & Omre (2010) and Ulvmoen et al. (2010), only the
amplitude variation versus offset (AVO) effect has been considered. In the present chap-
ter and Chapter 2, the output from 1.5-D elastic wave-equation based inversion is used.
This type of seismic inversion yields a high resolution properties, because also the inter-
nal multiple scattering energy, as well as multiple wave-mode conversions are taken into
account.

Instead of inverting for velocities and densities, like other methods do, the scheme
adopted here inverts the seismic data for compressibility (κ) and shear compliance (M),
properties that are deemed to relate more directly to the rock types. For example, if
the value of κ is large and M is small, the type of rock could be a sandstone, because
it is more easily compressed due to its often higher porosity, while it is difficult to be
sheared due to its strong rigidity. Conversely, if κ is small and M is large, it could be shale
due to the lower porosity and weak rigidity. These parameters are therefore assumed
to be reasonable reservoir indicators, especially in time-lapse inversion because of the



4.5. DISCUSSION AND CONCLUSION

4

83

complementary property behavior (Feng et al., 2015).

However, these two properties have different inversion qualities, with κ often being
better than M especially when only PP data are available, such as in the field case dis-
cussed here (Figures 4.12a and 4.15). Another aspect is the joint influence of the two
parameters which can be clearly seen from the top slice of the 3-D cube in Figure 4.18,
where some sand patches have been predicted even though the inverted M is large (Fig-
ure 4.17b). A likely explanation for this is that the invertedκ is also relatively large (Figure
4.17a). Another output of seismic inversions — bulk density could be introduced as an
additional input for the classification since it would be related to lithology strongly, even
though it often has a larger uncertainty.

In the synthetic and real examples presented here, two wells have been chosen, in
which the first one is used for training, to obtain the means and/or covariances of the
Gaussian likelihood model, while the initial distributions and transition matrices or co-
variances remain fixed. Therefore, this can be considered as a partially training pro-
cess. HMMs with the predefined and trained parameters are then used to determine the
lithologies at the same location as the well used for training. However, the input datasets
for the classification are the inversion results instead of the well-log data. One advantage
of using the inversion results from 3-D seismic data is that the result is a 3-D lithology
cube (Figures 4.18 and 4.20), compared to having results only at the well locations. A
disadvantage is the lower resolution of the seismic inversion compared to the well logs
(Figures 4.12a and 4.15).

In the synthetic test, the inversion scheme used achieved a reliable prediction of the
rock properties which made the classification of lithologies quite successful (Figure 4.5).
However, it is still significant between the properties, especially for the marine and non-
marine counterparts as demonstrated in Figure 4.4. These results (Figures 4.5 and 4.7)
have less reliable predictions of pairs such as MS and MS_non.

For the real data case study, the seismic-to-well match is poor (Figure 4.12b). There-
fore, the inversion result is not as good as hoped for, even though in the upper part of
the well the match is quite reasonable (Figure 4.12a). Specifically, quite a few sandstone
layers have been predicted correctly even though there is a large overlap between the
properties of the three lithologies (Figures 4.10 and 4.13).

In the cases where the partially trained HMMs are applied to a second well (Figures
4.7 and 4.16) close to the training well location (Figures 4.5 and 4.14), it becomes a fully
supervised learning procedure. The predictions are quite good in the synthetic Book
Cliffs example, even though misclassified lithologies occur such as FS_non at the top
(Figure 4.7), which is attributed to an overestimation of compressibility (Figure 4.6). In
the real study, the prediction at a blind test location is not very good, possibly due to the
reasons given above.

In order to compare the performance of HMMs with other point-wise methods such
as k-Means and Fuzzy Logic inference, the classified results are displayed in Figures 4.8
and 4.11. The k-Means clustering approach only uses the input data at the same loca-
tion and tries to cluster the data points into different groups by minimizing the mean
distances and comparing the means with those of HMMs, which can be viewed as a par-
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tially supervised learning. In Fuzzy Logic, the membership functions are trained based
on the first well (Figure 4.3) and then applied to the second well (Figure 4.6). Thus it is a
fully supervised learning process. Since HMMs take lithological transition probabilities
into account, it is seen to outperform the other two approaches. Unlike with the inver-
sion as inputs in the Book Cliffs case (Figure 4.8), “true” well-log data of the first well are
used for the comparison in order to set a benchmark in the real case example (Figure
4.11).

In all these methods, the number of lithologies to be determined was defined before-
hand for the synthetic as well as for the real case study. In other cases, this information
may be missing, which could be solved by a subtractive clustering method (Bagheripour
& Asoodeh, 2013) that can find an optimal number of clusters based on the similarity of
the input datasets. However, an expert’s intervention is necessary to avoid geologically
meaningless clusters.

To conclude, prior information is used in HMMs, which provides a spatial coupling
between different data points. Thus, the geological depositional process is implicitly
honored in the classification process. The construction of Markov matrices could be
based on a geological understanding of the regional settings which should provide likely
transitions between different lithologies, or it can be based on a simple scan of the cored
wells, if available.

The inversion results from seismic data are used as input, instead of well-log data,
which are locally limited and therefore always sparse. Using this approach, a 2-D section
or a 3-D cube can be produced. However, in HMMs used here only the vertical coupling
is taken into account. Horizontal correlations should be introduced in a next step in or-
der to fully utilize the power of seismic data and make geologically more realistic 2-D or
even 3-D volumes. A Markov Random Field could enforce these dependencies vertically
and horizontally (Chapter 5).
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5
DETERMINATION OF RESERVOIR

LITHOLOGY BY A 2-D HIDDEN

MARKOV RANDOM FIELD MODEL

Summary
In this study, geological prior information is incorporated in the classification of reser-
voir lithologies after the adoption of Markov Random Field (MRF). The prediction of hid-
den lithologies is based on measured observations such as seismic inversion results, which
are associated with the latent categorical variables, based on the distribution of Gaus-
sian assumptions. Compared with other statistical methods such as the Gaussian Mixture
Model (GMM) or k-Means, which do not take spatial relationships into account, the Hid-
den Markov Random Field (HMRF) approach can connect the same, or similar lithologies
horizontally while ensure a geologically reasonable vertical ordering. It is, therefore, able
to exclude randomly appearing lithologies caused by errors in the inversion. The prior
information consist of a Gibbs distribution function and transition probability matrices.
The Gibbs distribution connects the same or similar lithologies which does not need a ge-
ological definition from the outside. The transition matrices provide preferential transi-
tions between different lithologies and an estimation of these matrices implicitly depends
on the depositional environments and juxtaposition rules between different lithologies.
Analogue cross-sections from the subsurface or outcrop studies can contribute to the con-
struction of these matrices by a simple counting procedure.

This chapter is being submitted for publication in a professional journal.
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5.1. INTRODUCTION

The classification of lithologies is an essential step in reservoir characterization and in
the building of a static reservoir model. The definition of lithologies, and the number
and types of lithologies can be provided by geologists. Preliminary analysis of well-log
data will identify various lithologies and most of the time the number of lithologies will
be kept constant afterwards. Other sources of information, such as seismic data, can
provide a larger areal coverage, thus overcoming the limitations provided by sparse well
locations.

Inference of lithologies from seismic data is a challenging task and actually an ill-
posed inverse problem, because a variety of different lithological characteristics may
result in identical or similar seismic responses (Larsen et al., 2006). The Bayesian con-
cept is usually applied to mitigate this problem as applied by Mukerji et al. (2001) and
Houck (2002) who identified lithology/fluid (LF) classes based on amplitude-versus-
offset (AVO) analysis. Buland & Omre (2003) developed a linearized AVO inversion ap-
proach under the Bayesian framework. Subsequently, Buland et al. (2008) proposed a
fast Bayesian inversion approach for 3-D lithology and fluid prediction from prestack
data.

However, the approach mentioned above is point- or location-based, which means
that the spatial coupling between data points is not considered. In order to address this
problem, prior information can be included in which a Markov Chain or a Markov Ran-
dom Field is applied. Eidsvik et al. (2004) translated well-log data to geological attributes
by hidden Markov Chains. Larsen et al. (2006) incorporated a stationary Markov-chain
prior model to simulating vertical continuity of lithology/fluid classes. Ulvmoen & Ham-
mer (2010) compared two algorithms — approximated and exact likelihood models for
the inversion of lithologies and fluids - in which the Markov a priori knowledge is in-
corporated in a Bayesian setting. Ulvmoen & Omre (2010) and Ulvmoen et al. (2010)
adopted a profile Markov Random Field to model the a priori information of the lithol-
ogy/fluid classes in order to improve the resolution in Bayesian lithology/fluid inversion
from prestack seismic data. Hammer et al. (2012) inverted a vertical profile of rock prop-
erties based on seismic amplitude data in which a Markov process prior is included to
guarantee that vertical dependencies are honored. Other reservoir parameters such as
porosity and saturation could also be inferred from seismic data combined with well ob-
servations as has been done by Bosch et al. (2009).

In this chapter, as in the previous one, instead of deriving the lithologies from
prestack or stacked seismic data, the efforts are geared towards the usage of inversion
results in reservoir description. The wave-equation based inversion scheme can pro-
vide high resolution results because the intrinsic relationship between rock properties
and the seismic data has been fully exploited (Gisolf et al., 2014). This feature makes the
approach suitable as a potential input for the reservoir characterization process.

The 3-D distribution of lithologies in the subsurface is not directly observable, with
only limited information provided by wells. However, indirect observations in the form
of measurements are available that contain information on them. Hidden Markov Mod-
els (HMMs) are trying to uncover these latent states under this concept, but only in 1-D,



5.2. MARKOV RANDOM FIELD

5

91

i.e. vertical direction (Eidsvik et al., 2004; Lindberg & Grana, 2015). Here we present a
new 2-D method, in which the horizontal prior information is also incorporated through
the introduction of Markov Random Field.

The rock properties obtained by the inversion of seismic data are assumed to be
distributed according to multivariate Gaussian functions (Avseth et al., 2010). Thus a
Gaussian Mixture Model (GMM) is used to describe the conditional probabilities of the
inverted properties from seismic data, given the different lithologies.

In this chapter, first a short introduction of the Markov Random Field is given, then
the theory of the GMM-based Hidden Markov Random Field (GMM-HMRF) is described.
Finally, some synthetic examples and a field case study from the Vienna Basin will be
shown together with discussions and some conclusions.

5.2. MARKOV RANDOM FIELD

First introduced by Ising (Ising, 1925), a Markov Random Field (MRF) is an undirected
graphical model and can be described by a group of random variables that possess a
Markov property. This Markov property can be defined by a joint probability distribu-
tion, which is determined by a local conditional distribution. Figure 5.1 illustrates this
concept in which the white node is independent of all other black nodes given the red
nodes.

Figure 5.1: Schematic view of the dependency between nodes.

The following equation describes the conditional distribution of Zn :

Pr(Zn |Zm ,m 6= n) = Pr(Zn |Zm ,m ∈ ε) (5.1)

where Zn can take a value in the set of categorical variables such as lithology, which is
associated with the node n; ε represents the local neighborhood set of nodes that share
an edge with node in the graph.
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However, it is not easy to construct the joint distribution of a MRF based on the lo-
cal conditional distribution of Pr(Zn |Zm ,m ∈ ε). The Hammersley-Clifford theorem pro-
vides necessary and sufficient conditions under which a probability distribution could
be formalized as a MRF, thus it can help to build the equality between the joint distribu-
tion of any MRF and a Gibbs distribution; the joint distribution of a MRF can be defined
by a clique potential (see below) (Besag, 1974; Winkler, 2012). A Gibbs distribution func-
tion describes the frequency distribution of nodes or particles in a network or system
over various possible states and is taking the form:

Pr(Z) = 1
X e−U (Z) (5.2)

in which

U (Z) = ∑
c∈C

Vc (Z) (5.3)

where Pr(Z) is the probability distribution of random variables Z, U (Z) is the energy
function, X is the partition function, c is a clique which is a subset of nodes satisfying
the demand that every node is linked to every other one, and C is the set of c; Vc (Z) can
be referred as clique potential functions (Wang et al., 2017).

5.3. GAUSSIAN MIXTURE MODEL BASED HIDDEN MARKOV

RANDOM FIELD

Similar to HMMs (Eidsvik et al., 2004; Rabiner, 1989), Hidden Markov Random Field
(HMRF) is also trying to uncover the categorical variables that are hidden to the ob-
servers (Figure 5.2). The difference with HMMs is that the theory of the MRF is applied,
which has no limitation in 1-D (depth; see Chapter 4). That is why it is more suitable for
quantifying reservoir properties in 2-D or even 3-D.

Figure 5.2: Hidden Markov Random Field with observable and hidden levels.
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In HMRF, the hidden level is associated with categorical variables in physical space,
while in the observable level the data can be obtained in statistical space. Hence, a
HMRF model is defined as a stochastic process derived by a MRF whose label config-
uration cannot be observed directly (Wang et al., 2017). However, a MRF could generate
measurable datasets that are assumed to honor certain probability distribution func-
tions known as the emission probability functions (Rabiner, 1989; Wang et al., 2017).

In HMRF, according to the Maximum a Posterior (MAP) criterion, the purpose is to
seek the states that satisfy (Wang, 2012; Zhang et al., 2001):

Ẑ = argmax
Z

{Pr(O|Z,θ)Pr(Z)} (5.4)

where Pr(Z) is the prior probability, which is a Gibbs distribution in equation 5.2;
Pr(O|Z,θ) is the joint likelihood probability of the observation O.

A typical characteristic of Pr(O|Z,θ) is the conditional independence (Wang, 2012;
Zhang et al., 2001):

Pr(O|Z,θ) =∏
i

Pr(Oi |Zi ,θZi ) (5.5)

Pr(Oi |Zi ,θZi ) is the emission distribution of the observation Oi , with parameters
θZi . Different probability functions can be applied to describe it, but to keep analyti-
cal tractability, a Gaussian assumption is made (Lindberg & Grana, 2015).

Given the observation data O, for a certain state Zi , which takes a value in the state
space {S1,S2, · · · ,SN }, the Gaussian distribution has the following form with the means
µ j and the covariance matrices σ j :

Pr(Oi |Zi = S j ,θ j ) = f (Oi ;µ j ,σ j ) (5.6)

where θ j = (µ j ,σ j ) which is the specified θZi when Zi = S j and

f (Oi ;µ j ,σ j ) = 1

σ j
p

2π
e
− (Oi −µ j )2

2σ2
j (5.7)

In equation 5.7, the intensity distribution of each state, or lithology to be classified,
is a Gaussian distribution with the parameter sets θ j = (µ j ,σ j ). However, sometimes
it is insufficient to describe the complexity in the distribution of the observation data,
especially for multimodal distributions. Thus a GMM is more powerful than a single
Gaussian function to model the complexity and can be described in the following with
the parameter sets θ j in which there are k components:

θ j =
{
(µ j ,1,σ j ,1,ω j ,1), . . . , (µ j ,k ,σ j ,k ,ω j ,k )

}
(5.8)

where ω j ,k is a mixture weight of the k th component given a specific state S j .
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Accordingly, equation 5.7 will have a weighted probability form:

f (Oi ;θ j ) =∑k
t=1ω j ,t f (Oi ;µ j ,t ,σ j ,t ) (5.9)

Without the spatial correlation of Pr(Z), equation 5.4 will become a degenerated case
of HMRF, in which the GMM is defined and can specified fully by the histogram of the
data (Zhang et al., 2001). After the incorporation of Pr(Z) as a prior, the classification
problem is then approached statistically as well as spatially.

However, the prior Pr(Z) only considers the spatial correlation of the neighbors and
tries to make the same (constant image) or similar (continuous image) prediction with
the contextual constraints (equation 5.4), and it does not need a specification of geolog-
ical knowledge which can be considered as an internal prior. Thus, this is not sufficient
because some unrealistic classifications could happen, such as a water sand on top of a
gas or oil sand in a given reservoir. This could be due to measurement errors or mislead-
ing neighbors (Lindberg & Grana, 2015). Therefore, a MRF matrix as an external prior is
proposed in which another constraint on lithological transitions will be introduced.

Unlike a traditional Markov Chain matrix, which is obtained by the procedure
of counting the transitions and normalizing in a vertical direction (depth) (Elfeki &
Dekking, 2001), this new profile Markov matrix is going to be used, in which the usual
counting and normalizing in the vertical-upward direction will be kept and at the same
time the left and right neighbors in the lateral direction of the future state will be consid-
ered (Ulvmoen & Omre, 2010; Ulvmoen et al., 2010). A detailed description of this prior
matrix P(:,:) for lithologies is provided in the Appendices.

Thus, equation 5.4 has to be formatted in order to take the matrix P(:,:) into account:

Ẑ = argmax
Z

{Pr(O|Z,θ)Pr(Z)P(:,:)} (5.10)

In order to find an estimated Ẑ, equation 5.10 is invoked, in which both the states
and the parameter sets in GMM are unknown, as described above. Furthermore, they
are connected with each other. Different techniques have been introduced to solve this
problem, in which the Expectation-Maximization (EM) method is the one most widely
used (Zhang et al., 2001). The strategy in the EM approach is as follows: Given the current
estimated θ, predict the hidden variables Ẑ; then θ can be updated by maximizing the
expectation of the complete-data likelihood function E[Pr(Z,O|θ)P(:,:)] (Wang et al., 2017;
Zhang et al., 2001). This process will be iterated until certain conditions are met. For the
mathematical details, the readers are referred to Zhang et al. (2001).

5.4. BOOK CLIFFS EXAMPLE

The first example for applying this approach is the synthetic Book Cliffs model created
by Feng et al. (2017) (Chapter 2) in which more details have been added and more differ-
entiation is put on the potential reservoir lithologies than in the original. As a test, only a
subset of the whole 2-D section has been selected, and Figure 5.3 shows the true and in-
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verted properties in terms of κ and M (κ= 1/K , K with being the bulk modulus;M = 1/µ
, with µ being the shear modulus).

Figure 5.3: True and inverted properties of a selected part from the Book Cliffs model. (a) κ; (b) M .

The quality of inversion results is quite good when compared with the truth, since
most geometries have been recovered correctly, as well as the properties, which is due
to the fact that the nonlinear relationship between rock properties and seismic data has
been fully exploited (Gisolf et al., 2014).

Observations from wells are needed for inferring the prior Markov models (Ulvmoen
et al., 2010) as well as for building the lithological templates. As a starting point of the
classification process, two pseudo-wells have been "drilled" at the left- and right-most
locations of the selected section (CMP = 1900 and 2000) (Figure 5.4).

The true and inverted properties at the well locations can be seen in Figure 5.5. Fig-
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ure 5.6 shows 90% confidence regions of the Bivariate Gaussian likelihood model in
terms of κ and M .

Figure 5.4: Two pseudo-wells at CMP = 1900 and 2000. Lithologies are known at the well locations with FS
(fine-grained sandstone), VFS (very fine-grained sandstone), SS (siltstone) and Clay.

Figure 5.5: True (red curves) and inverted (blue curves) properties at CMP = 1900 (a) and 2000 (b). Note that
the values in the wells have been up-scaled to the seismic grid interval.
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From Figure 5.6, it can be seen that there are some overlapping areas between dif-
ferent lithologies, especially for SS and VFS, which makes the differentiation difficult
when only the property values are considered. This Gaussian likelihood model (Figure
5.6) is adopted which is the emission probability of properties given a specific lithology
(Rabiner, 1989) or the termed likelihood function generally (Ulvmoen et al., 2010). How-
ever, in contrast with other statistical methods such as GMM or k-Means (Seber, 1984),
two additional parameter sets are introduced in GMM-HMRF: the Gibbs prior, and the
profile Markov matrix. These ensure that the geological information is implicitly incor-
porated during the classification process. Figure 5.7 displays the cross-section "truth" in
the subsurface. The starting model of the classification is shown in Figure 5.8, which is
derived from a non-iterative histogram-based statistical approach with the two “drilled”
wells as lithological templates and inversion results as inputs (Figures 5.4, 5.5 and 5.6).

Figure 5.6: 90% confidence regions of the Bivariate Gaussian likelihood model for the distribution of each
lithology.

Since only the inverted property values are used, there is no spatial correlation be-
tween the sample points, which makes the prediction unreliable in the form of ran-
domly appearing lithologies, particularly at the layer boundaries. Subsequently the
GMM methodology is applied with the lithological distributions in Figure 5.8 as inputs.
By contrast with the simple histogram-based and non-iterative approach used in Figure
5.8, the GMM clusters sample points into different groups (lithologies) by applying an
iterative procedure called expectation-maximization (EM), as discussed above.
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Figure 5.7: Subsurface cross section in terms of lithologies.

Figure 5.8: Starting model in terms of lithologies.

The EM algorithm finds the maximum likelihood estimates of parameters in prob-
abilistic models in the presence of missing data, which in this context means that the
lithologies are unknown (Lindberg & Grana, 2015). An iterative scheme is performed in
which the expectation step calculates the probability of every sample point belonging to
each lithology, while in the maximization step, it maximizes the means and covariance
matrices according to the probabilities computed in the expectation step. As in Grana &
Della Rossa (2010), the spatial correlation is ignored in the estimation of the parameters
here in which some random states or lithologies still occur, although the result (Figure
5.9) is improved compared with the initial one in Figure 5.8.
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Figure 5.9: Result of GMM with the starting model shown in Figure 5.8.

In order to test the different roles of the prior information, i.e. the Gibbs function
(equation 5.2) and the Markov matrix (Appendix A), results incorporated with the prior
information separately are shown (Figures 5.10 and 5.11). With only the Gibbs prior
used (Figure 5.10), some lithologies are better connected than with the GMM (Figure
5.9). However, some random lithologies still exist such as the SS in the VFS layer in the
upper part and the FS in the lower-middle area has been separated because of locally
connected VFS at the depths between 300 m and 350 m and CMPs between 1925 and
1940.

Figure 5.10: Result of GMM-HMRF incorporated with the Gibbs prior only.

With only the Markov matrix used, the distribution of lithologies is preferential in the
horizontal direction (Figure 5.11) since the transition has been governed by the left and
right neighbors, demonstrated as larger values, that provide information on the lateral
continuity or is under the consideration of layered formations (Appendix A). However,
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Figure 5.11: Result of GMM-HMRF incorporated with the Markov matrix only.

these matrices have to be modified in order to simulate transitions in a given reservoir
which will be discussed in the real case study below.

By applying both prior information, the spatial correlation is considered in the ver-
tical and horizontal directions. Compared with the result by the GMM (Figure 5.9) and
others with either one of the prior information incorporated (Figures 5.10 and 5.11), the
classified lithologies (Figure 5.12) are distributed more orderly and closer to the truth
(Figure 5.7).

Figure 5.12: Result of GMM-HMRF incorporated with both prior information.

5.5. REAL CASE STUDY IN THE VIENNA BASIN

In order to further test the ability of the proposed GMM-HMRF, a real field data set from
the Vienna Basin is used. Vintages of 3-D seismic surveys acquired in different years
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have been merged into a single dataset VBSM (Vienna Basin Super Merge) which are
used as inputs for the non-linear full-waveform inversion scheme proposed by Gisolf
et al. (2014). The inverted rock properties from the seismic data are then used as inputs
for the lithology prediction as illustrated above.

A single cross-section of inverted rock properties (κ and M) has been selected from
the available data set, which is traversed by a logged well in the middle (Figure 5.13).

Figure 5.13: Inverted rock properties (a) κ; (b) M . The black line represents the location of the logged well.
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Due to problems in the pre-processing phase as have been mentioned in Chapter 4,
the inversion result is of suboptimal quality, even though in the upper part of the well
the match is quite reasonable (Figure 5.14).

Figure 5.14: True (red curves) and inverted (blue curves) rock properties at the logged location (Figure 5.13).

In order to perform the new classification methodology, the starting model in the
form of lithologies (Figure 5.15) is obtained by applying the k-Means method (Seber,
1984) and a comparison of Euclidean distances (Deza & Deza, 2009) between the cluster
centroid locations and the known lithologies properties in the well. This is different from
the synthetic example above since there is only one well here and the inversion quality
is lower.

The classified and “true” lithologies at the well location is shown in Figure 5.16 in
which it can be seen that almost all of the thick sandstone units have been predicted well
even though the thin shale streaks have been missed due to the low seismic resolution
and inversion quality (Figure 5.14).
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Figure 5.15: Starting model in terms of lithologies by k-Means (Sand: Sandstone; SH_Sand: Shaly Sandstone).

Figure 5.16: “Truth” and Prediction of k-Means at the well location (Black line in Figure 5.15).
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After applying the proposed GMM-HMRF in equation 5.10 and the profile Markov
matrices in Appendix B, the result is shown in Figure 5.17.

Figure 5.17: Classified result of GMM-HMRF with the Gibbs prior and Markov matrices in Appendix B.

Compared with the result in Figure 5.15, the distributions of lithologies in Figure 5.17
are more compact because of the incorporated priors which try to connect and simplify
the lithology transitions, therefore reducing the “noise” in the lithological model (Figure
5.15). However, there are some “unlikely” transitions such as Sand on top of Shale (Figure
5.18) (this could happen in many geological settings, but here it is assessed as “unlikely”
since it does not occur in the cored "truth" well, as seen in Figure 5.16). The reason for
this is that small (but not zero) transition probabilities (0.0001) have been assigned in
the Markov matrices (Appendix B).
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Figure 5.18: “Truth” and Prediction of GMM-HMRF at the well location (Figure 5.17).

In order to exclude this transition and simulate a typical transition in separated reser-
voirs such as a water sand not overlying an oil or gas sand because of gravity segregation,
Markov matrices are modified to the ones as shown in Appendix C. After applying these
new matrices, the transitions between Sand and Shale have been removed (Figures 5.19
and 5.20).



5

106 5. DETERMINATION OF RESERVOIR LITHOLOGY BY 2-D HMRF

Figure 5.19: Classified result of GMM-HMRF with the Gibbs prior and modified Markov matrices in Appendix
C.

Figure 5.20: “Truth” and Prediction of GMM-HMRF at the well location (Figure 5.19).
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5.6. DISCUSSION

In this study, the spatial correlation during the lithological classification process is taken
into account through the concept of MRF, in which the Gibbs prior and the profile
Markov matrix are incorporated. In contrast to GMM or k-Means, which do not use the
geological spatial prior knowledge, the proposed GMM-HMRF is able to produce better
images of the categorized variables, and each lithology tends to connect with the same
or similar lithology horizontally and vertically based on preferential transitions.

The input data for the classification are the FWI seismic inversion results. Compared
with other inversion methods, FWI can provide high resolution since the nonlinear re-
lationship between the rock properties and seismic data has been exploited by utilizing
wave-mode conversions and multiple scattering. In contrast to rock properties such as
bulk density and acoustic velocity, the compressibility (κ) and shear compliance (M)
are used here because they appear naturally in the elastic wave-equations and are more
closely related to rock types.

However, the classified result shown in Figure 5.12 is not perfect compared with the
truth in Figure 5.7 especially for SS in the upper part, which has been clustered as VFS.
From CMPs 1900 and 2000, the lithology of SS attempts to be continuous in the begin-
ning. However, when moving away from the controlled information of the “drilled” wells,
the wrong prediction of VFS emerges and observations from the wells stand out, which is
due to errors in the inversion results (Figure 5.3) as well as high overlaps in the properties
of lithologies (Figure 5.6). The same problem happens for SS which has been classified
as VFS at the depth 300 m on the left part, even though the starting lithology in the well
(CMP = 1900) is correct. Thus, the classification method highly depends on the quality of
the input dataset and property difference between lithologies, which is also the case for
every other classification method. If the inputs cannot provide a good description of the
subsurface in terms of rock properties and structures, or if the properties of the various
lithologies are highly overlapping, perfect prediction of lithologies cannot be expected,
even with good geological prior information.

Since the EM algorithm converges locally, the initial model including the starting
lithological section and the parameter sets such as means and covariance matrices in
the GMM are important. Compared with the real case, the inversion quality is better
and more "wells" are available in the synthetic example, thus a simple histogram-based
method based on the inverted and known properties at the well locations is used in order
to provide an initial model (Figure 5.8).

The histogram analysis helps to estimate the means and covariance matrices in the
absence of prior information. According to the criteria of classification, the states should
be separated widely from each other in terms of their properties, and at the same time,
the intra-state variances need to be as low as possible (Figure 5.6). Other information
about these parameters should be brought in, such as a regional or empirical model
between the rock properties and lithologies.

In the real case study of the Vienna Basin, the inversion quality is low because of
problems during the processing phase. Thus, a different approach is adopted in the form
of the k-Means to provide the initial model (Figure 5.15). The histogram-based method



5

108 5. DETERMINATION OF RESERVOIR LITHOLOGY BY 2-D HMRF

used in the synthetic example has also been tested but the final result is relatively poor
since only one well is available and low-quality means and covariance matrices are pro-
vided by the poor inversion at the well location which has been discussed in Chapter
4.

The number of lithologies to be classified is determined from the cored wells in the
cross section and has been maintained constant during the classification process in or-
der to facilitate the prediction problem. However, some lithologies in the middle part of
the section may not occur in the wells because of pinch-outs in the layers or 3-D com-
plexities. In the synthetic case, this problem has been avoided since the well locations
can be selected such that all lithologies occur in the two “wells”. In real cases this is not
possible and additional geological knowledge, for example from other fields or well out-
side the line of section, should be used to address this problem.

In the 2-D profile Markov transition matrix, the number of matrices is related to the
number of states or lithologies in the system. If there are N lithologies, there will be
N (N+1)/2 matrices which will not be easy to construct since training images are needed
that may not always be available. In the synthetic and real cases presented here, in order
to make the matrix construction feasible, values in the transitions are more strongly con-
trolled by the neighbors (Appendices) and some unlikely transitions can be set to zero as
simplified by the transitions between Sand and Shale in the real case study (red rectangle
in Figures 5.15, 5.17 and 5.19).

The geological prior information that can be incorporated can be divided into two
groups: One is the Gibbs distribution, which can be obtained from the energy func-
tion (equations 5.2 and 5.3), and the other one is the transition matrix (Appendices).
Different roles played by these two types of prior information have been shown in the
synthetic example, whereby the first one tries to connect lithologies horizontally and
vertically and the second one gives preferential transitions between different lithologies,
while excluding unlikely transitions. The transition matrix can be derived using a general
understanding of the depositional environment and the juxtapositions between differ-
ent lithologies. Application of Walther’s Law (Middleton, 1973) can help in making the
construction of these transition matrices easier. As a further research, different scenarios
in terms of the Markov matrices could be designed in order to gain more confidence.

5.7. CONCLUSIONS

To conclude, in this chapter, geological prior knowledge has been introduced for the
classification of reservoir lithologies by an application of the MRF which could guar-
antee the vertical and horizontal couplings. Compared with statistical or histogram-
based methods, GMM-HMRF can help make the prediction more geologically reason-
able, since lithologies are connected with each other both in the lateral and vertical di-
rections using known preferential probabilities. In this way, a more realistic reservoir
architecture will be obtained.
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5.8. APPENDIX A: PROFILE MARKOV TRANSITION MATRIX IN

SYNTHETIC EXAMPLE

Adopting the idea from Ulvmoen & Omre (2010) and Ulvmoen et al. (2010), the transition
matrices of the 2-D Markov Random Field in the synthetic study are as follows:

PFS,FS =

FS VFS SS Clay


FS 0.9997 0.0001 0.0001 0.0001
VFS 0.9997 0.0001 0.0001 0.0001
SS 0.9997 0.0001 0.0001 0.0001

Clay 0.9997 0.0001 0.0001 0.0001

(5.11)

PFS,VFS =

FS VFS SS Clay


FS 0.4998 0.5000 0.0001 0.0001
VFS 0.4998 0.5000 0.0001 0.0001
SS 0.4998 0.5000 0.0001 0.0001

Clay 0.4998 0.5000 0.0001 0.0001

(5.12)

PFS,SS =

FS VFS SS Clay


FS 0.4998 0.0001 0.5000 0.0001
VFS 0.4998 0.0001 0.5000 0.0001
SS 0.4998 0.0001 0.5000 0.0001

Clay 0.4998 0.0001 0.5000 0.0001

(5.13)

PFS,Clay =

FS VFS SS Clay


FS 0.4998 0.0001 0.0001 0.5000
VFS 0.4998 0.0001 0.0001 0.5000
SS 0.4998 0.0001 0.0001 0.5000

Clay 0.4998 0.0001 0.0001 0.5000

(5.14)

PVFS,VFS =

FS VFS SS Clay


FS 0.0001 0.9997 0.0001 0.0001
VFS 0.0001 0.9997 0.0001 0.0001
SS 0.0001 0.9997 0.0001 0.0001

Clay 0.0001 0.9997 0.0001 0.0001

(5.15)

PVFS,SS =

FS VFS SS Clay


FS 0.0001 0.4998 0.5000 0.0001
VFS 0.0001 0.4998 0.5000 0.0001
SS 0.0001 0.4998 0.5000 0.0001

Clay 0.0001 0.4998 0.5000 0.0001

(5.16)
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PVFS,Clay =

FS VFS SS Clay


FS 0.0001 0.4998 0.0001 0.5000
VFS 0.0001 0.4998 0.0001 0.5000
SS 0.0001 0.4998 0.0001 0.5000

Clay 0.0001 0.4998 0.0001 0.5000

(5.17)

PSS,SS =

FS VFS SS Clay


FS 0.0001 0.0001 0.9997 0.0001
VFS 0.0001 0.0001 0.9997 0.0001
SS 0.0001 0.0001 0.9997 0.0001

Clay 0.0001 0.0001 0.9997 0.0001

(5.18)

PSS,Clay =

FS VFS SS Clay


FS 0.0001 0.0001 0.4998 0.5000
VFS 0.0001 0.0001 0.4998 0.5000
SS 0.0001 0.0001 0.4998 0.5000

Clay 0.0001 0.0001 0.4998 0.5000

(5.19)

PClay,Clay =

FS VFS SS Clay


FS 0.0001 0.0001 0.0001 0.9997
VFS 0.0001 0.0001 0.0001 0.9997
SS 0.0001 0.0001 0.0001 0.9997

Clay 0.0001 0.0001 0.0001 0.9997

(5.20)

P(:,:) is the transition matrix with horizontal neighbors of different lithologies (FS,
VFS, SS, Clay). The vertical transitions between lithologies are controlled by the neigh-
bors which is attributed to the lateral extension of layers.
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5.9. APPENDIX B: PROFILE MARKOV TRANSITION MATRIX IN

THE REAL CASE STUDY

The 2-D Markov matrices in the real case study are as follows:

PShale,Shale =

Shale SH_Sand Sand Shale 0.9998 0.0001 0.0001
SH_Sand 0.9998 0.0001 0.0001

Sand 0.9998 0.0001 0.0001
(5.21)

PShale,SH_Sand =

Shale SH_Sand Sand Shale 0.4999 0.5000 0.0001
SH_Sand 0.4999 0.5000 0.0001

Sand 0.4999 0.5000 0.0001
(5.22)

PShale,Sand =

Shale SH_Sand Sand Shale 0.4999 0.0001 0.5000
SH_Sand 0.4999 0.0001 0.5000

Sand 0.4999 0.0001 0.5000
(5.23)

PSH_Sand,SH_Sand =

Shale SH_Sand Sand Shale 0.0001 0.9998 0.0001
SH_Sand 0.0001 0.9998 0.0001

Sand 0.0001 0.9998 0.0001
(5.24)

PSH_Sand,Sand =

Shale SH_Sand Sand Shale 0.0001 0.4999 0.5000
SH_Sand 0.0001 0.4999 0.5000

Sand 0.0001 0.4999 0.5000
(5.25)

PSand,Sand =

Shale SH_Sand Sand Shale 0.0001 0.0001 0.9998
SH_Sand 0.0001 0.0001 0.9998

Sand 0.0001 0.0001 0.9998
(5.26)
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5.10. APPENDIX C: MODIFIED PROFILE MARKOV TRANSITION

MATRIX IN THE REAL CASE STUDY

The 2-D modified Markov matrices of the real case study are as follows:

PShale,Shale =

Shale SH_Sand Sand Shale 0.9999 0.0001 0
SH_Sand 0.9998 0.0001 0.0001

Sand 0 0.5000 0.5000
(5.27)

PShale,SH_Sand =

Shale SH_Sand Sand Shale 0.5000 0.5000 0
SH_Sand 0.4999 0.5000 0.0001

Sand 0 0.9999 0.0001
(5.28)

PShale,Sand =

Shale SH_Sand Sand Shale 0.9999 0.0001 0
SH_Sand 0.4999 0.0001 0.5000

Sand 0 0.0001 0.9999
(5.29)

PSH_Sand,SH_Sand =

Shale SH_Sand Sand Shale 0.0001 0.9999 0
SH_Sand 0.0001 0.9998 0.0001

Sand 0 0.9999 0.0001
(5.30)

PSH_Sand,Sand =

Shale SH_Sand Sand Shale 0.0001 0.9999 0
SH_Sand 0.0001 0.4999 0.5000

Sand 0 0.5000 0.5000
(5.31)

PSand,Sand =

Shale SH_Sand Sand Shale 0.5000 0.5000 0
SH_Sand 0.0001 0.0001 0.9998

Sand 0 0.0001 0.9999
(5.32)
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In this thesis, several approaches are investigated to determine one of the key reser-
voir parameters — lithology based on the inputs of seismic inversion results. Compared
with well-logging or core data, which have limitations due to their sparse sampling rel-
ative to the reservoir volume, seismic surveys provide a more complete coverage over
the target reservoir. From seismic inversion the rock properties, either as compressional
and shear velocities or as compressibility and shear compliance, can be obtained. These
properties are implicitly related to different rock types. Therefore, in this study, the in-
version results are proposed as inputs for the determination of reservoir lithologies, thus
circumventing the spatial limitations of well data.

However, instead of using the seismic data or inversion results directly, in Chapter
3, a new Markov Chain model (A-CMC) is proposed to simulate the reservoir litholo-
gies based on data obtained from wells. In this method, as an extension of the Coupled
Markov Chain model proposed by Elfeki & Dekking (2005), a search within a predefined
angle is performed in order to account for dips in the stratal lithologies. The angle and
dipping direction can be derived from the interpreted seismic data or using a boundary
detection technique (Canny, 1986). This method has only been applied to the synthetic
and improved Book Cliffs model (Chapter 2) and the results show an improved perfor-
mance compared to the Coupled Markov Chain. The method has yet to be applied to
actual field data.

Subsequently, in an effort to classify reservoir lithologies based on the seismic inver-
sion results and to avoid the spatial limitations of well data, two different classification
methods are proposed in which the main difference is whether the mutual dependencies
between lithologies are considered or not (Chapter 4). As a consequence of sedimentary
depositional processes, reservoir lithologies in the subsurface are often characterized by
typical sequences, and this relationship can be taken into account by Hidden Markov
Models (HMMs). Compared with other point-wise methods such as k-Means and Fuzzy
Logic, the prediction of lithologies by HMMs is better and spurious lithologies are often
eliminated (see e.g. Figure 4.8). In HMMs, only the vertical coupling is considered, but
lithologies are also related horizontally according to typical sedimentary processes.

To address this problem, a 2-D classification method is designed in which the con-
cept of Markov Random Field is adopted (Chapter 5). Two types of prior information are
incorporated in which the first one is the Gibbs function (Besag, 1974; Winkler, 2012) and
the second one is the Markov random matrix (Ulvmoen & Omre, 2010; Ulvmoen et al.,
2010). Together they are abbreviated as GMM-HMRF here. The Gibbs function can be
considered as an internal prior since it tries to connect the same or similar lithologies
spatially and it is only based on the available data. The Markov random matrix, on the
other hand, can introduce geological a priori information obtained from training im-
ages or analogue outcrop sections. Both of these obviously, have to be relevant to the
reservoir being analyzed.

The results predicted by HMMs and GMM-HMRF at the well location (Figure 4.14
and Figure 5.20) are quite different, especially in the lower parts, with more shales sug-
gested by by GMM-HMRF and more sands by HMMs. This is caused by the different
parameters in the likelihood function that are obtained at the well location (1-D) and
from the whole cross section (2-D) respectively. These differences are then also evident
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Methods Dimension Seismic Data Well Data
A-CMC 2-D Weak/Mild Strong
HMMs 1-D Strong Strong

GMM-HMRF 2-D Strong Strong

Table 6.1: Comparison between A-CMC, HMMs and GMM-HMRF and their dependence on seismic and well
data.

across the whole profile.

To conclude, different methods (A-CMC, HMMs, GMM-HMRF) are used in this the-
sis to determine the reservoir lithologies in the subsurface wherein seismic and well data
play different roles (Table 6.1). A-CMC can take dips into account while the seismic can
provide general structural information of the subsurface. With the seismic inversions as
inputs, HMMs predict lithologies in the vertical direction while GMM-HMRF can per-
form a 2-D estimation process.

Geological prior information can be incorporated in all the three methods and can
be derived from local geological knowledge or from training images. Thus, the geologi-
cal processes are implicitly introduced into the estimation process which could improve
the prediction results. The output lithologies are thought to provide constraints for other
reservoir parameters such as porosity and permeability (Mahgoub et al., 2017). Addi-
tionally, the interpretation of trapping mechanisms might be facilitated by the results
(Jennette et al., 2003).



6

118 REFERENCES

REFERENCES

Besag, J. 1974. Spatial interaction and the statistical analysis of lattice systems. Journal
of the Royal Statistical Society. Series B (Methodological), 192–236.

Canny, J. 1986. A computational approach to edge detection. IEEE Transactions on pat-
tern analysis and machine intelligence, 679–698.

Elfeki, A., & Dekking, M. 2005. Modelling subsurface heterogeneity by coupled Markov
chains: directional dependency, Walther’s law and entropy. Geotechnical & Geological
Engineering, 23(6), 721–756.

Jennette, D., Wawrzyniec, T., Fouad, K., Dunlap, D.B., Meneses-Rocha, J., Grimaldo, F.,
Muoz, R., Barrera, D., Williams-Rojas, C.T., & Escamilla-Herrera, A. 2003. Traps and
turbidite reservoir characteristics from a complex and evolving tectonic setting, Ver-
acruz Basin, southeastern Mexico. AAPG bulletin, 87(10), 1599–1622.

Mahgoub, M.I., Padmanabhan, E., & Abdullatif, O.M. 2017. Seismic inversion as a predic-
tive tool for porosity and facies delineation in Paleocene fluvial/lacustrine reservoirs,
Melut Basin, Sudan. Marine and Petroleum Geology.

Ulvmoen, M., & Omre, H. 2010. Improved resolution in Bayesian lithology/fluid inver-
sion from prestack seismic data and well observations: Part I—Methodology. Geo-
physics, 75(2), R21–R35.

Ulvmoen, M., Omre, H., & Buland, A. 2010. Improved resolution in Bayesian lithol-
ogy/fluid inversion from prestack seismic data and well observations: Part II—Real
case study. Geophysics, 75(2), B73–B82.

Winkler, G. 2012. Image analysis, random fields and Markov chain Monte Carlo methods:
a mathematical introduction. Vol. 27. Springer Science & Business Media.



ACKNOWLEDGEMENTS

During the past four years, I have felt great pleasures in Delft and would like to express
gratitude to my promotor Stefan and co-promotor Dries for their invaluable guidance
and continuous support. In the first year, we had lots of discussion about the project
and how to build the detailed Book Cliffs model. I got lots of help from Stefan about
the building of geological and petrophysical models. Every time I had new ideas, Stefan
was very encouraging and helped me to evaluate these ideas to see whether they can be
implemented or not.

I also express my thanks to Dries who helped a lot in geophysics. Every Friday morn-
ing, he came to the office to have the meeting. Even though Dries is already retired, he
still has lots of passions in the research. He tutored me on how to use the FWI codes
which was a very enjoyable process to learn. For the new ideas or concepts of the geo-
logical priors proposed, he was very supportive and tried to help me to incorporate them
into the inversion.

It was a great pleasure to talk with Eric, even though it only happened in one week
before the Delphi Meeting in Houston and Den Haag. But still I am very grateful to your
suggestions for the presentations as well as the comments for the Delphi reports.

Special thanks go to Guy who is my co-promotor in the last two years. We didn’t have
lots of discussions on this project, but still thanks for your reviewing and suggestions on
the thesis and supports during the go-no-go meeting.

As a geologist, I enjoyed a lot to be a part of the Applied Geology section. Thanks Gio-
vanni for the helps and advices. I also thank my colleagues: Kevin, Quinten, Rémi, Thais,
Navid, Santosh, Liang, Rahul, Koen, Helena, Youwei, Cees. And very special thanks go to
Siddharth who is the research partner for the past four years. It was very enjoyable to
work with you all.

I also would like to thank the friends from the Geophysics: Gil, Boris, Joeri, Lisanne,
Iris, Max, Jianhuan, Pawan, Christian, Karlien, Ranjani, Myrna, Bingkun, Lele, Rueben,
Yohei.

As a member of Delphi Consortium, I also enjoyed the meetings with the Delphi
friends: Mikhail, Apostolos, Abdulrahman, Bouchaib, Hussain, Aparajita, Shogo, Jan-
Willem, Özkan, Shan, Aayush, Prabu, Ewoud, Sixue, Matteo, Nick, Alok, Tomohide,
Gabriel. I aslo thank the help from people of Delft Inversion: Panos, Peter, Stefan, Gabrio.
Special thanks go to Jan-Willem and Koen who helped me with the translation of the
summary into Dutch.

This work is sponsored by the DELPHI Consortium under the project of Characteri-
zation and Monitoring of Reservoirs (C&M). The sponsors of this project are also appre-
ciated.

119





CURRICULUM VITÆ

Runhai Feng is from the P.R. of China. He received a bachelor degree from the China
University of Geosciences (Wuhan) in Prospecting Engineering. He then worked as an
assistant engineer in the Jiangsu Geological Bureau for one year. His main responsibili-
ties there included exploration, mapping and reconnaissance. He then went to Nanjing
University for a master degree in Geophysics. His thesis subject was on the inference of
the crustal density structure and the Moho topography in Northeastern China. In 2013,
he joined the Delft University of Technology in order to pursue a PhD degree. His re-
search is sponsored by the Delphi consortium and focuses on reservoir characterization
from seismic data in which geological prior information is utilized to mitigate the litho-
logical uncertainties. After receiving his PhD, Runhai will pursue his studies as a Postdoc
for one year in Delft.

121


	Summary
	Samenvatting
	Introduction
	Geological Prior Information
	Bayes’ Theorem
	Geological Modelling
	Thesis Objectives
	Thesis Outline
	titleReferences

	A high-resolution geological and petrophysical model and its inversion results based on reservoir-oriented elastic wave-equation
	Introduction
	Geological Modelling
	Petrophysical Modelling
	Seismic Modelling
	Elastic wave-equation based inversion
	Discussion and Conclusion
	titleReferences

	Simulating Reservoir Lithology by an Actively Conditioned Markov Chain Model (A-CMC)
	Introduction
	Two-dimensional Coupled Markov Chain (CMC)
	Actively Conditioned CMC (A-CMC)
	Simple Synthetic Example
	Complex Synthetic Examples (Book Cliffs)
	Book Cliffs Model I
	Book Cliffs Model II

	Discussions
	Conclusions
	Appendix A: Active Horizontal Conditioning with a Tolerance Angle 
	Appendix B: Oblique Transition Probability Matrix 
	titleReferences

	Reservoir Lithology Classification based on Seismic Inversion Results by Hidden Markov Models: Applying Prior Geological Information
	Introduction
	Methodology
	Synthetic Examples
	Field Case Study
	Discussion and Conclusion
	titleReferences

	Determination of Reservoir Lithology by a 2-D Hidden Markov Random Field model
	Introduction
	Markov Random Field
	Gaussian Mixture Model based Hidden Markov Random Field
	Book Cliffs Example
	Real Case Study in the Vienna Basin
	Discussion
	Conclusions
	Appendix A: Profile Markov transition matrix in synthetic example
	Appendix B: Profile Markov transition matrix in the real case study
	Appendix C: Modified Profile Markov transition matrix in the real case study
	titleReferences

	General conclusions
	titleReferences

	Acknowledgements
	Curriculum Vitæ

