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ABSTRACT

One of the contributing factors to climate change is the release of gases, particularly
carbon dioxide (CO2), which is amplified by the expanding E-commerce industry. E-
commerce enterprises heavily depend on recommender systems as a means to incen-
tivize consumers towards making product purchases. This master’s thesis investigates
the positive impacts of presenting information regarding carbon dioxide (CO2) emis-
sions values on user behavior and recommendation accuracy within sustainable rec-
ommender systems. Through the creation of a new dataset, CarEmissions, this study ex-
plores whether displaying emission values influences sustainable choices in recommen-
dations. Findings demonstrate that recommendation models trained without CO2 val-
ues consistently outperform those with CO2 values, enhancing both accuracy and green-
ness. This suggests that the inclusion of CO2 values introduces variability to user ratings,
thereby influencing recommendation outcomes. Furthermore, this research examines
correlations between user demographics, knowledge, and ratings, revealing insights into
the lack of significant links. Additionally, it assesses the differences in recommendation
quality between datasets with and without CO2 values, highlighting the advantages of
omitting CO2 values in enhancing recommendation performance. While considering
the limitations inherent to domain-specific data and convenience sampling, the the-
sis outlines avenues for refining data collection and exploring automated strategies for
balancing recommendation accuracy and greenness. By advancing the understanding
of user behavior and ethical considerations in sustainable recommender systems, this
study contributes to the evolving landscape of technology-driven sustainable consump-
tion.
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1
INTRODUCTION

Awareness around climate change has been a significant concern for several decades,
with the first published study dating back to 1896 by Arrhenius [1]. With increased glob-
alization over the past years, we as consumers have seen the number of products avail-
able to buy skyrocket, but consuming items from the other side of the globe comes at a
cost. Every part of the consumption process affects the CO2 levels, from manufacturing
to transportation pollution. In recent years, e-commerce has been on the rise, growing
by nearly 7% since 2019 [2]. Despite the convenience and time-saving benefits it offers
consumers, the rapid growth of e-commerce has significant environmental repercus-
sions. The increased emissions and pollution resulting from the extensive operations
of online retail platforms pose a serious concern. A prominent example is Amazon, the
e-commerce giant, which alone accounted for a substantial carbon footprint of 71.54
million metric tons CO2 equivalent in 2021 [3].

Simultaneously, with e-commerce comes the task of recommendation. The listed items
feature huge collections from myriads of producers. With this enormous amount of op-
tions, it becomes the task of the recommender system to narrow down items of inter-
est to consumers. Recommender systems in e-commerce help turn browsers into buys,
promote cross-selling of items, and gain loyalty by creating a personalized value add to
the website [4]. Well-curated recommendation systems can cause up to a 35% lift in
the number of items purchased by users [5]. We believe this is where we can influence
consumers’ decisions towards being more conscious about their purchases and, by ex-
tension, the environment.

As the awareness of climate change continues to gain prominence globally, more indi-
viduals are embracing lifestyle modifications and adopting environmentally conscious
consumption patterns in their daily routines. Few studies exist in the domain of green
recommender systems, and even fewer tackle the problem at the consumer level. This
study investigates the potential influence of disclosing product footprint information on
users’ perceptions and evaluations of the products. With this data, we then train to eval-
uate the performance of various recommendation algorithms and use the best to nudge
users to make more responsible decisions.
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2 1. INTRODUCTION

In this thesis, the main research question is: What are the implications of showing prod-
uct CO2 emission values to users for promoting sustainable choices through recom-
mendations?. To cover all grounds, we answer the following sub-questions:

1. Is there a significant relationship between user demographics and knowledge, and
ratings provided to items?

2. Does the greenness and accuracy of products recommended differ between the two
datasets (CO2 displayed vs. No CO2) displayed?

In the initial phase of our research, we develop a comprehensive platform for data
collection and dissemination, leading to the creation of the CarEmissions dataset. This
dataset holds distinct user-item interactions encompassing items with and without CO2

information displayed, thereby resulting in three separate datasets, namely CarEmissionsCO2,
CarEmissionsNoCO2, and CarEmissionsAll. A noteworthy attribute of the dataset is that
10% of its contents consist of identical user-item interactions, wherein one instance in-
cludes the display of CO2 values, and the other does not. This design facilitates a within-
subjects study, enabling us to gain novel insights into the impact of CO2 information dis-
closure. We compare several widely used recommender systems and user study datasets
to ensure the dataset’s validity.

Secondly, we analyze the dataset and observe any patterns in user demographic data.
We also conduct a lasso regression to determine whether there is any correlation be-
tween demographic and product attributes and the rating an item receives. A statistical
analysis of the 10% overlap group is also conducted.

Thirdly, we benchmark the accuracy and greenness of the current recommender sys-
tem algorithms on the new dataset. The algorithms evaluated include global average,
user-based knn, item-based knn, SVD, SVD++, co-clustering, and SLIM. SVD is the over-
arching best-performing algorithm in terms of accuracy and greenness.

Finally, to test if the greenness of recommendations can be increased, we utilize the
nudging method of re-ranking recommendations [6]. In making these recommenda-
tions as green as possible, we also focus on their effect on the recommendations’ accu-
racy.

This thesis is organized as follows. First Chapter 2 presents the background informa-
tion. Chapter 3 then investigates the current literature related to our study. In Chapter
4, we discuss the properties of the CarEmissions dataset, and Chapter 5 focuses on the
creation, analysis, and correlation of the dataset. Chapter 6 evaluates the greenness of
commonly used recommendation algorithms and presents the results of the nudging
strategy employed. Finally Chapter 7 concludes the thesis.



2
BACKGROUND

This chapter presents the background knowledge that will be utilized in this thesis. Sec-
tion 2.1 gives the various recommender algorithms and how they can be evaluated. Sec-
tion 2.1.3 presents the strategy to nudge towards greener recommendations [6]. Section
2.2 shows the working of group lasso regression, and finally, Section 2.3.1 explains strat-
ified sampling.

2.1. RECOMMENDER SYSTEMS
Giving and receiving recommendations from others is a crucial way we interact. Whether
it is a restaurant to dine at, a movie to watch, or a new piece of clothing to buy, we ask
the people we trust to guide us through the massive amounts of items available. Rec-
ommender systems provide an automated alternative for this [7]. These recommender
systems aim to deliver the right content to the right person [8]. Similar to other machine
learning tasks, recommendations are inherently predictions. Provided a set of users and
a set of items, the goal of the recommender systems is to predict how relevant a specific
item would be to a particular user. To train such recommender systems, known user-
preference data is required. This user-preference data can fall into two categories, either
implicit or explicit. Implicit data is inferred from user behavior such as clicking activity
or time spent on a product page [8]. We will use explicit data in this thesis when a user
rates an item, resulting in a user-item interaction.

Since no recommendation serves all customers best, several distinct recommendation
techniques exist to be explored. These can be classified into two groups, namely rating-
based and ranking-based recommender systems.

Rating-based. This goal of rating-based recommendation tasks is to predict the rating a
user would give to a particular item [9]. These recommendation tasks learn from known
rating data and aim to predict the rating for unseen user-item interactions. After the
ratings have been predicted, recommendations are generated for a user by finding the
items with the higher predictions.

Ranking-based. Instead of predicting numerical ratings, the goal of ranking-based sys-
tems is to predict the ranked lists that are ordered on the predicted utility for the user.

3
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These systems are helpful when the users only consider a limited number of recommen-
dations. Rankings can often be generated by ordering items from highest to lowest based
on their predicted rating.

2.1.1. RECOMMENDER SYSTEM ALGORITHMS

Following is the explanation of commonly-used algorithms that will be explored later in
the thesis.

Global Mean. The method consists of using the global mean of all ratings in the training
set and the prediction of every interaction in the test set. This simplistic strategy is often
used as a baseline for comparison.

User/item-knn. Nearest neighbours algorithms utilize similarities between users and
items to predict ratings [8]. To predict a rating for each user-item interaction, the k-
nearest neighbor algorithm for users identifies the k most similar users to the target
user. It then calculates a weighted average based on these users’ ratings of the item in
question. Conversely, the item-knn algorithm operates similarly but instead focuses on
finding k similar items. In Equation 2.1, the formula for a user-based knn prediction for
rating r̂u,i is displayed. Here u is the user, i is the item, N is the k most similar users
to u, and sim() is a similarity measure. An often-used similarity measure is the cosine
similarity [10].

r̂ui =
∑

v∈N k (u) sim(u, v) · rvi∑
v∈N k (u) sim(u, v)

(2.1)

Single Value Decomposition (SVD). This method assumes that we are given a matrix of
ratings R, representing users as rows and items as matrix columns. This matrix can then
be decomposed into lower dimensional matrices as shown in Equation 2.3 [11], [12].
Here U is an orthogonal left singular matrix, which represents the relationship between
users and latent factors, S is a diagonal matrix that describes the strength of each latent
factor, and V is a diagonal right singular matrix, which indicates the similarity between
items and latent factors. The SVD decreases the dimension of R by extracting its latent
features.

R = USVT (2.2)

When the original matrix is reduced from rank r to rank n, where n < r , we can repre-
sent the resulting matrix as:

Rn = Un Sn VT
n (2.3)

The reduced matrix Rn serves as the closest rank approximation to the original matrix
R [11]. Now the unknown ratings can be predicted by filling in the missing values in the
original matrix using a technique like taking the mean of known ratings. By imputing
these missing values, SVD can generate predictions for unknown ratings and provide
recommendations based on them. A point of note is that due to data imputation, noise
is introduced into the data because these values are treated as actual ratings [13].
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Additionally, SVD does not consider the structural biases in the data. An example is
when the same rating value carries a different level of importance for users. This might
cause some users to give structurally lower or higher ratings than others. These SVD
limitations are addressed using the Improved Regularized SVD (IRSVD) in Equation 2.4.

r ′
u i = bu +bi +pT

u qi (2.4)

Here, we remove the need for imputing ratings by factorizing the rating matrix into two
latent feature matrices, namely pT

u and qi . The latent matrices of the users and items are
learned by minimizing the loss of the generated predictions, and a form of gradient de-
scent is used to find the parameters that optimize the model [14]. The bias terms bu for
user u and bi for item i are introduced to identify the portion of ratings that individual
user or item biases can explain. This thesis uses the IRSVD method for benchmarking
purposes. For simplicity, this will be referred to as SVD [15], [14].

SVD++. As SVD only considers the values of known ratings to predict unknown ones, a
crucial point of information can be added. A user-rated item (regardless of its value) may
also provide useful information [16]. This indicates the item was important enough for
the user to interact with.

r ′
u i =µ+bu +bi +qT

i

(
pu +|N (u)|− 1

2
∑

j∈N (u)
y j

)
(2.5)

Here the parameters are the same as IRSVD, with new introductions such as µ, which
represent the global bias, N (u), which is a set of item that user u has rated, and y j , which
are the latent factors of the items in N (u).

Co-clustering. This collaborative filtering technique is used to group similar users and
items based on their ratings [17]. The co-clustering approach is based on the idea that
users with similar preferences may also have similar item preferences and vice versa.

r̂ui =Cui +
(
µu −Cu

)
+

(
µi −Ci

)
(2.6)

Users are assigned to cluster Cu , and items are assigned to cluster Ci and co-clusters
Cui . Using these, predictions can be generated using the Equation 2.6, Cui , Cu , and Ci ,
indicate the average ratings of those clusters.

SLIM. This technique aims to train a linear model that predicts the relevance of items
for users based on their interactions and item-item similarities. The key idea is to ex-
ploit the sparsity of the user-item matrix to learn a sparse linear model that captures the
underlying relationship [18].

r̂ui = rT
u wi (2.7)

For user u and item i , ru,i is defined in Equation 2.7. Here matrix W needs to be cal-
culated, which is a sparse matrix of aggregation coefficients whose i-th column corre-
sponds wi and each row rT

u represents the recommendation scores on all items for user
u. Norm regularization introduces sparsity into the solution to calculate W effectively.
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2.1.2. RECOMMENDER SYSTEMS EVALUATION

The next step after training recommender systems and receiving their predictions is to
assess the quality of the recommendations. A commonly used goal for determining per-
formance is accuracy. Accuracy metrics are an efficient way of computing performance
and tuning a model’s hyper-parameters. This thesis will use the metrics mentioned in
this section to evaluate recommender systems.

RMSE. This metric operates on the rating values produced by the model to measure the
accuracy [19]. Equation 2.8 R̂ signifies all the predicted ratings. Here the error between
the real and predicted value is calculated and squared for each interaction and then di-
vided by the number of interactions. This entire term is then squared.

RMSE =
√∑

r̂ui∈R̂ (rui − r̂ui )2

|R̂| (2.8)

By calculating the RMSE, we obtain the root of the mean of the squared errors between
the predicted and the real values. The root of the term is taken to penalize large residual
terms.

NDCG. This metric measures the relevance and order of items presented in a predicted
ranked list. The NDCG aims to consider both the relevance of items and their positions
in the list.

DCG = 1

m

m∑
u=1

∑
j∈Iu ,v j ≤L

2r elu j −1

log2(v j +1)
(2.9)

Equation 2.9 presents the discounted cumulative gain (DCG) for useru, a set of items
Iu , and a predicted recommendation list of length L. The DCG is calculated as the sum of
the relevance scores of the items at each position, discounted logarithmically based on
their position. The next step is estimating the ideal discounted cumulative gain (IDCG),
representing the maximum achievable DCG value for the given list length L. This can
be done by calculating the DCG of the list of recommendations ordered by ground-truth
rankings. The final normalized discounted cumulative gain is obtained by dividing the
DCG with the IDCG (Eq. 2.10).

N DCG = DCG

I DCG
(2.10)

GNDCG. This metric is a recent introduction in the field of green recommender sys-
tems [6]. With greenness normalized discounted cumulative gain (GNDCG), we aim to
measure the greenness of the recommendation lists produced by algorithms.

GDCG = 1

m

m∑
u=1

∑
j∈Iu ,v j ≤L

2g j −1

log2(v j +1)
(2.11)

Equation 2.11 shows the modification performed on DCG. Here vi is the rank of item i .
The numerator indicates the 2gi where gi represents the greenness of item i . The green-
ness of the item is taken as an exponent to place a stronger emphasis on recommending
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green recipes higher in the list. Similarly to NDCG, this metric is normalized by divid-
ing the GDCG with IGDCG, which represents the ideal greenness discounted cumulative
gain. IGDCG can be found by applying DCG on the list of recommendations ordered by
ground truth greenness of items.

2.1.3. NUDGING STRATEGY

This approach proposed by [6] involves a weighting model that considers predictions
made for the test set. These predictions are then combined with the greenness value
associated with each item during the interaction. The result is a weighted utility value,
which considers both the model’s predictions and the greenness of the items. The nudg-
ing strategy is defined by equation 2.12, which outlines the key components: µu,i repre-
sents the utility of the interaction, r̂u,i corresponds to the predicted rating for the interac-
tion (u, i), and gi signifies the greenness value of item i . The parameterα is introduced to
control the weighting between these factors. This parameter allows for a flexible balance
between the two components. It is worth noting that α can be assigned a value between
0 and 1, which determines how much each factor influences the overall calculation.

µu,i =αr̂u,i + (1−α)gi (2.12)

The nudging method utilizes predictions generated by the best-performing models.
However, only the NDCG and GNDCG metrics will be employed when evaluating this
method. This choice is driven by the combination of predictions, and greenness values
cannot be directly compared to other approaches that rely solely on ratings.

2.2. GROUP LASSO REGRESSION
Lasso (least absolute shrinkage and selection operator) regression, formally known as L1
regularization, is a popular statistical modeling technique to estimate the relationships
between variables [20]. The main idea behind the lasso regression model is to find a
balance between the model’s simplicity and accuracy. In the case of this thesis, lasso
regression will be used for feature selection.

y =β0 +β1x1 +β2x2 + ...+βp xp (2.13)

The lasso model starts with a standard linear regression, which assumes a linear re-
lationship between independent variables [21]. Equation 2.13 depicts linear regression
where y is the dependent variable, the β values are the parameters to be estimated, and
the x values are the independent variables.

n∑
i=1

(yi −
∑

j
xi jβ j )2 +α

p∑
j=1

(|β j |) (2.14)

The goal of the lasso algorithm is to minimize the value of Equation 2.14. The first
part of the equation is the residual sum of squares, and the second part introduces an
additional penalty term based on the absolute values of the coefficients. Here the L1
regularization term is the sum of the absolute values multiplied by α. This α parameter
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controls the amount of regularization applied. Choosing α is crucial as larger values
push the coefficients to zero, whereas smaller values reduce the regularization effect,
making the model closer to linear regression.

This study will use an extension of the lasso model, namely group lasso regression.
Group lasso aids in feature selection by letting the researchers predefined groups of in-
dependent variables related in the regression model [22]. In traditional lasso, each model
feature is treated independently without considering their relationship. Group lasso ad-
dresses this limitation by grouping related features and applying regularization at the
group level [23]. It encourages sparsity within each group and across the groups, pro-
moting the selection of entire groups of features rather than just individual coefficients.

2.3. SAMPLING PIPELINE

2.3.1. STRATIFIED SAMPLING

For this research, when collecting user-item interaction regarding cars, we are faced with
the challenge that the population size of the cars dataset is too large to perform a com-
plete analysis on. For this reason, we use stratified sampling to take a sample size of the
population.

Stratified random sampling involves dividing the population into homogeneous groups
based on specific characteristics referred to as strata [24]. You can choose to stratify
based on multiple characteristics as long as every subject is in one stratum only. Each
stratum is then sampled using proportionate sampling. This means that the sample
size of each stratum is equal to the subgroup’s proportion in the population as a whole.
Hence subgroups that are less represented in the more significant population will be less
represented in the sample.

Z 2(p)(1−p)

e2 (2.15)

Finally, we can decide on a sample size, which must be large enough to draw statistical
conclusions. Equation 2.15 is used to determine a large enough sample size, where Z is
the Z-score of your desired confidence interval, p is the standard deviation, and e is the
margin of error. A visual depiction of the sampling process is shown in Figure 2.1

Figure 2.1.: Visualization of stratified sampling.
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2.3.2. MANN-WHITNEY U TEST

Mann-Whitney U test is a non-parametric test used to compare two population means
and to test whether two sample means are equal or not [25] [26]. A non-parametric test
implies that no assumptions of normality are made related to the distribution of the val-
ues. The test’s null hypothesis is that there is no difference (in terms of central tendency)
between the two populations. Following that, the alternative hypothesis is that there is a
difference between the two populations.

U =
n∑

i=1

m∑
j=1

S(Xi Y j ) (2.16)

To calculate the Mann-Whitney U test for two independent samples, the rankings of
the individual values combined from both groups must be determined first. The rank-
ings are then added up for the two groups and divided by the number of samples in that
groups to determine the average rank. This is shown in Equation 2.16. The difference
between the average rank of the groups shows us whether there is a possible difference
between the variable. After the mean and dispersion have been estimated, the p-value
for the test can be calculated using the U statistic. A p-value lower than 0.05 means the
null hypothesis can be rejected.





3
LITERATURE REVIEW

In the previous chapter, we presented the background knowledge used in this thesis.
This chapter provides an overview of the literature related to this thesis. Section 3.1
focuses on the recent trends and literature related to climate change and e-commerce
activities. Section 3.2 covers popular techniques in AI used to tackle various domains
of sustainability. Section 3.3 explores the different evaluation techniques, and Section
3.4 compares them. Section 3.5 delves into some novel recommender system evaluation
techniques. Section 3.6 concludes the chapter.

3.1. CLIMATE CHANGE & E-COMMERCE
Climate change, a critical environmental challenge, refers to long-term alterations in
Earth’s climate patterns, predominantly caused by human activities, such as burning fos-
sil fuels, deforestation, and industrial processes [27]. Climate change can be measured
through anthropogenic greenhouse gas increases, such as atmospheric carbon dioxide
(CO2). The global atmospheric concentration of CO2 has increased from a pre-industrial
value of 280 ppm to 421 ppm as measured in 2022 [28]. Climate change adaptation and
mitigation have been a crucial research topic since the beginning of the century.

E-commerce, the electronic buying, and selling of goods and services, has witnessed
exponential growth in recent years. The digital marketplace offers unparalleled conve-
nience, enabling consumers to shop from the comfort of their homes and businesses to
expand their reach [29]. The relationship between e-commerce and climate change has
gained considerable attention from researchers and policymakers. As the digital retail
sector grows exponentially, concerns have arisen regarding its environmental implica-
tions [30].

The environmental footprint of this industry is spread through various stages of the
process. The primary contribution is transporting goods globally, which generates sig-
nificant emissions due to individual decentralized shipments [31]. Packaging materials
used to protect and deliver the product generate further waste and consumer energy
[32]. Additionally, storing large amounts of data regarding users and products is another
energy-intensive process contributing to the sector’s overall footprint. Understanding
the environmental implications of e-commerce in the context of climate change is cru-
cial for developing sustainable solutions. For this reason, this thesis focuses on how the
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climate impact of e-commerce can be reduced by exploring the path of sustainable rec-
ommendations to users.

3.2. SUSTAINABILITY IN ARTIFICIAL INTELLIGENCE
Throughout recent years, there have been many ways in which Artificial Intelligence is
being used to combat climate change. Across many domains of the field, a nudging to-
wards sustainability can be found.

3.2.1. COMPUTER VISION

The field of computer vision aims to enable models to interpret and understand visual
information from images or videos [33]. In the sustainability domain, this technology
has seen increasing demand in the AgTech industry [34]. Computer vision analyzes crop
health and detects diseases, pests, and nutrient deficiencies in plants [35][36]. These ca-
pabilities allow farmers to take early targeted action instead of applying chemicals across
the fields, reducing negative impacts on soil, water, and other organisms [37].

Recycling is another domain of sustainability practice in which computer vision so-
lutions are being used. Sorting through various objects is a task in which vision-based
models excel. Automated recycling systems such as TrashNet [38] can sort metal, glass,
plastic, cardboard, and trash with a success rate of 86.7%

3.2.2. MACHINE LEARNING

Machine learning encompasses algorithms and statistical models that allow machines
to learn from data patterns and make predictions without explicit programming [39].
Machine learning models are currently utilized to enable sustainable change in elec-
trical systems. Electrical systems are responsible for approximately 25% of all human
emissions [28]. Various prior studies facilitate the integration of low-carbon electric-
ity sources such as solar panels and wind turbines by forecasting supply and demand
[40][41][42]. Other studies are also exploring the potential of machine learning in devel-
oping new energy storage materials [43][44].

Reducing GHG emissions from various transportation systems is another application
of machine learning for sustainability. Models can be used to identify, understand and
forecast traffic patterns that reduce emissions produced by idle vehicles [45][46]. Other
solutions for optimizing vehicle-sharing facilities such as Uber [47]. Shifting to more
sustainable transportation modes has been highly researched and includes understand-
ing user preferences and looking for ways to stimulate the use of low-emission options.
To best understand user preferences, some works provide automated solutions based
on user GPS and social media data [48][49]. Other works promote low-emission public
transport options by forecasting traveling and arrival times of different transport models
to improve their usability [50][51].

The development and upkeep of buildings are another significant focus in the dis-
cussion of sustainable emissions. Research here focuses on reducing emissions when
building new structures and reducing the emissions of current facilities. Research here
explored methods of forecasting the energy demand of buildings to consciously improve
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energy use [52][53]. Smart home options have also been researched to predict whether
rooms are occupied to use heating and lighting systems more efficiently [54].

These examples only cover a portion of the sectors where machine learning techniques
are being used to encourage sustainability. [55] presents a comprehensive overview of
the overlap between machine learning and climate change.

3.2.3. RECOMMENDER SYSTEMS

Merging sustainability into recommender systems is a field of research that has been
starting to get a grip in recent years. As consumers become more aware of the conse-
quences of buying through unsustainable means, a significant shift in consumer mind-
set has occurred. [56] proposed an energy-efficient transportation recommender system
that leverages location traces to optimize taxi pickup points and parking positions. This
system aims to reduce energy consumption in urban mobility. Furthermore, [57] con-
ducted a comprehensive survey exploring the role of recommender systems in smart
cities’ sustainability efforts. This research showcases diverse applications, such as pro-
moting local businesses offering healthy food options and supporting local farms. In
the context of traffic management in urban cities, some systems suggest lane-switching
decisions based on urban congestion while encouraging greener mobility options like
cycling facilities and vehicle-sharing services.

Sustainable recommender systems have also made inroads in the travel and tourism
domain. A study showcases a travel-based recommender system that tailors recommen-
dations to tourists’ diverse interests while prioritizing sustainable travel and transport
methods when suggesting destinations and activities [58]. Additionally, [59] conducted
a comprehensive review of recommendation systems for e-tourism, highlighting their
potential to foster sustainable practices within this industry.

Sustainability considerations extend beyond travel to digital marketing, as showcased
by [60] [61]. Their recommendation system for sustainable fashion products demon-
strates a novel approach that prioritizes the ecological impact of products, encourag-
ing consumers to make more conscious and environmentally friendly choices. Another
noteworthy method, as presented by [62], introduces a flexible probabilistic framework
to identify sustainable products and customers, enabling personalized and sustainable
recommendations for future purposes. Overall, these studies collectively emphasize the
multifaceted efforts made in designing recommender systems that align with sustain-
ability goals, spanning various domains and applications.

3.3. RECOMMENDER EVALUATION

3.3.1. OFFLINE EVALUATION

Offline evaluations are attractive in the recommender systems community as they re-
quire no real user interaction; simply a dataset suffices [63]. The type of evaluation is
often the first point of entry to assess the quality of recommendations produced by rec-
ommender algorithms. Recommendation tasks from various domains such as recipe
recommendation [64] [65], movie recommendation [66], music recommendation [67]
[68] [69]. Likely many others use offline recommendation as their primary and sole form
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of assessing the validity and performance of recommendation algorithms.

Due to recommendation inherently being a prediction task, like many other machines
learning evaluation strategies, offline evaluation also has a strong focus on accuracy
metrics [70]. These include but are not limited to precision, recall, mean squared error
(MSE), normalized discounted cumulative gain (NDCG) [71][70][63].

In recent years, the community has heavily criticized the approach of solely using
accuracy metrics. [72] even goes as far as to say that focusing on accuracy alone has
kept progress stagnant and hurt the development of recommender systems in some in-
stances. As a result, many researchers have been attempting to look beyond accuracy
metrics and into other forms of offline validation for recommendation algorithms. [73]
work along with others propose evaluation metrics such as diversity, novelty, serendipity,
and coverage to re-rank initial ‘accurate’ recommendations, to preserve some accuracy,
but also go beyond [73], [71].

3.3.2. ONLINE EVALUATION

Online evaluation is another type of recommender validation technique that can be seen
in research. Argued to be the most accurate form of testing your algorithms, online eval-
uation aims to test recommender systems in their deployed environment without user
knowledge about the evaluation being conducted [63]. This type of evaluation study is
often only in the scope of prominent corporations, with large monetary stakes as incen-
tives. These online controlled experiments are utilized to make data-driven decisions. A
few examples of well-known companies that conduct such experiments are Spotify [74],
Microsoft [75], Netflix [76] etc.

Often the goal of online evaluation is to be used in the context of A/B testing, where
two variants of a recommendation algorithm are being tested. A study compared the
performance of different recommendation strategies on a music streaming platform us-
ing A/B testing [77]. The study found that personalized recommendations significantly
improved user engagement and retention. This study describes one of the various ex-
amples.

The most popular metric in recommendation online evaluation consists of CTR (click-
through rate), defined as the number of page views [63]. Other niche metrics include
CPC (cost per click), namely total spend divided by the number of clicks, and RPM (rev-
enue per thousand impressions), which is revenue divided by number of page reviews
times 1000.

Claimed to be the best evaluation practice, critiques on A/B testing practices have not
failed to emerge. Researchers have published several papers [78][79] highlighting the
pitfalls of trusting online evaluation results. They claim that the “statistical theory of
controlled experiments is well understood, ... and the difference between theory and
practice is great." Minor instrumentation issues can often render metrics such as CTR
brittle and unreliable. A similar study by [80] identifies common pitfalls of A/B testing in
the automotive sector, which include blind adoption of good results, unclear selection
of evaluation metrics and undetermined period/length of experiment.
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3.3.3. USER STUDIES

Often used interchangeably with online evaluation, user studies refer to experiments de-
signed to evaluate the performance of a recommender system from a user’s perspective
[63]. User studies typically contain a much smaller number of participants than online
evaluation techniques. A survey by [81] reported that only approximately 25% of user
studies included more than 50+ participants. Despite this, the advantage of conducting
user studies lies in the rich user data the studies can collect. When conducting such a
study, users know that data is being collected. Hence demographical questions can be
asked with consent, along with explicit questions about user satisfaction and user per-
ception of the system [81].

User studies can reveal fruitful findings, examples of which include: users value trans-
parency (understanding system logic) of the recommender system, longer descriptions
of products correlate more with perceived usefulness of item [82], users may prefer inclu-
sion of some recommendations from their social network in the working of an automatic
recommendation algorithm [83].
Self-Selection Bias. User studies come with their own challenges, with the main con-
cern being the population sample. User studies often feature convenience samples from
the population, which refers to samples drawn from part of the population close to hand
[84]. In the study [85] where users were selected by means of sending out emails to a
mailing list, convenience sampling can cause self-selection bias. Similarly, in the re-
search by [83], participants were once again recruited through mailing lists and other
shared community pages to evaluate book-recommendation algorithms. Results of user
studies with samples obtained through self-selection have the risk of not being general-
izable to the entire desired population.
Consumption Factor. Unlike online evaluation, in many cases, participants of user stud-
ies do not consume or experience the item being recommended. This results in the am-
biguity of whether study participants would behave the same way and provide the same
answers and ratings as when consuming the item. To analyze and mitigate such a factor,
[86] introduced a user sincerity measure. In the study, recommended items and links to
their reviews were provided, and user sincerity was calculated by measuring five implicit
feedback components: visiting product reviews, time spent on reviews, printing or not
the reviews, saving or not the reviews, and emailing or not the reviews. Based on the
weighted factors, insincere users were removed from the study.

Along the same lines, [87] investigated the effect of actually consuming recommended
songs in a user study by conducting a pre and post-consumption assessment of recom-
mendations. Results of the survey show that user typically underestimated their liking.
The study suggests that presenting adequate information about the item can help miti-
gate the consumption factor.

3.4. COMPARISON OF EVALUATION TECHNIQUES
Now that we have an overview and associated research of all three prominent evalu-
ation techniques used for recommender system validation, this section will dive deep
into how they compare. Studies comparing evaluation techniques are commonplace as
researchers want to evaluate their methods through multiple means.
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3.4.1. OFFLINE VS. ONLINE & USER STUDIES

The first point of comparison is frequently between offline evaluation techniques and
online/user studies. The overarching idea behind offline evaluation is not to produce
great metrics results but to have the results be translatable to a natural environment with
actual users [63]. A leading researcher in this area has published many studies conduct-
ing comparative analyses of offline and online evaluations in the domain of research pa-
per recommendation [88] [89]. The experiments evaluate a set of recommendation algo-
rithms using offline and online evaluation to examine whether the results are correlated.
Results show that the correlation between offline and online assessment is mediocre at
best and concludes that offline evaluation lacks predictive power due to the ignorance
of human factors.

In another study [81], a survey on 80 recommendation approaches was conducted. It
was revealed that 21% of the approaches were never evaluated, and out of the estimated
procedures, 70% were compared against simple and often outdated baselines instead of
comparing against state-of-the-art techniques. The study’s conclusions show that due
to this and other shortcomings, it becomes challenging to determine which approaches
are the most promising.

Coming back to the issue of the predictive power of offline evaluations, [90] claim after
comparing algorithms across four dimensions (offline, online, time and non-algorithmic
factors), that offline performances were not predictive of online in “the absolute and rel-
ative sense." An analogous study reporting the live evaluation of news recommendations
determined that the relative performance of offline data was precisely reversed in the live
system evaluation.

Contradictory to the research above, studies such as [91], [92] reports that Recom-
mender systems with high offline scores were also the ones preferred by users and have
relative predictive strength in the real world setting. Many such opposing claims can
be seen in the recommender system research community. Speculation on the matter
by [88] suggests that this phenomenon occurs due to sub-optimal dataset quality and
differentiating domains, which recommender algorithms can be sensitive to.

3.4.2. ONLINE VS. USER STUDIES

As discussed in previous sections of this literature review, online and user studies differ
in two main categories. First is user knowledge of the fact that they are part of an evalua-
tion, and the second is the sample size of participants. Due to online experiments being
expensive to conduct, academic research in recommender system evaluation often fo-
cuses substitutes this with user studies.

The study [88] concerning research paper recommendation draws to our attention
that user studies strongly correlate with CTR in their research. This indicates that explicit
user satisfaction is a good approximation of the acceptance rate of recommendations in
an online setting. For such studies, user studies can employ convenience samples or
crowd-source to obtain more users in the survey [93].

Across the literature, it has been showcased and agreed upon that the main advan-
tage of user studies is being able to gauge user experience and provide an explanation of
how and why user experience emerges from recommender systems [94][95][96]. Being
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able to ask user’s their explicit opinions about a plan at hand provides researchers with
extra information and resources to understand their own product and algorithm better.
Integrating user feedback and constructing user-centered design has been a highly cru-
cial element in any product design [97] [98] [99]; hence a similar argument follows for
recommender systems.

Having taken into account the importance of user satisfaction in recommender sys-
tems and its low correlation with accuracy metric, [100] proposes a unifying framework
called ResQue, which asks users to assess the following: perceived system qualities, user
beliefs as a result of these qualities, subjective attitudes, and moral intentions. The au-
thors of the questionnaire did not stop at this but further went on to validate the use of
these questions by conducting user studies with them. This tested the internal consis-
tency and reliability of the model [100].

3.5. NOVEL EVALUATION METHODS
Through the years, novel evaluation techniques within offline and online evaluations
have emerged to address various gaps in the recommender evaluation field. Advancing
away from accuracy, many recent offline evaluation procedures search for new metrics
to depict user behavior best. Sincerity is a metric proposed by [86], which tries to capture
real intention during user studies. This metric helps to filter out users in studies that are
simply not sincere in their rating, thus corrupting the collected data. Another study [101]
suggested the creation of a performance metric, P , that was developed to measure the
global execution of the recommender system and the nearness to its actual goal. This
is derived directly from the general objective of recommender systems and is defined as
the final performance of the recommender system over the number of sessions. Here
performance refers to whether the recommendation is followed or is deemed attractive
to the user.

Along the same lines of validating offline recommender evaluations, [87] tested the
effect of actually consuming the item being recommended rather than just looking at
it on a screen, and [92] used eye-gaze tracking as an implicit indicator to validate their
offline experiments. On the other hand over arching studies by [102] and [100] suggest
frameworks and offer tools to redefine the evaluation research completely. A framework
by [102] can conduct entire offline evaluations consisting of 13 splitting methods, 8 fil-
tering approaches, 51 different hyperparameter optimization strategies, 50 models, and
36 metrics. The aim is to let researchers quickly test their models by configuring a simple
file.

3.6. CONCLUSION
The literature review explores the relationship between climate change and e-commerce,
focusing on sustainability in the context of artificial intelligence (AI) applications. This
discussion highlights the growing concern regarding the environmental impact of the
e-commerce industry and how AI can contribute to mitigating climate change. Integrat-
ing AI, particularly in computer vision and machine learning, offers promising solutions
in various domains, such as agriculture, recycling, energy systems, and transportation,
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leading to more sustainable practices.
The review also emphasizes the emerging field of sustainable recommender systems,

which align with consumers’ growing awareness of sustainable consumption. Sustain-
able recommender systems can nudge users towards making eco-friendly choices, lead-
ing to reduced environmental footprints in various sectors like transportation, tourism,
and digital marketing. The discussion points out that user studies and online evalua-
tions provide valuable insights into user experience and preference, allowing for a better
understanding of recommender system performance from the user’s perspective.

However, it is crucial to acknowledge the limitations and challenges of different eval-
uation techniques. Offline evaluations may not always reflect real-world user behavior,
and online assessments can be expensive and prone to biases. User studies, while pro-
viding valuable feedback, may suffer from self-selection bias and may not capture actual
consumption behavior. Researchers are continually exploring new evaluation methods,
including sincerity metrics, eye-gaze tracking, and comprehensive evaluation frame-
works, to address these limitations and improve the accuracy and reliability of recom-
mender system evaluations. Overall, the literature review reveals the immense potential
of AI and recommender systems in driving sustainable practices in e-commerce and var-
ious other domains.
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CAREMISSIONS DATASET

In the previous chapter, we discussed the literature related to the thesis. In this chap-
ter, we discuss the CarEmissions dataset created. Section 4.1 justifies using the dataset.
Section 4.2 gives an overview of the created dataset. Section 4.3 analyzes the created
dataset. This includes comparison to other datasets and interaction and user properties
of the dataset. Lastly, Section 4.4 concludes this chapter.

4.1. INTRODUCTION

Datasets are an essential part of developing and evaluating recommender systems. To
assess whether recommendations are green and sustainable, we must look at the rec-
ommendation algorithms that generate them. The first paper in the field to enhance a
dataset containing user-item preferences and the CO2 footprints of the items was pub-
lished earlier this year [6]. The CO2 footprints of the items were added later, meaning the
users providing the ratings did not know this information. In this thesis, we want to go a
step further and determine how providing users with the CO2 emissions of items affects
the rating they give them and whether this can result in a greener recommender system.

We collect user preferences for a particular item category to create this dataset. The
item category is cars from different brands for the following numerous reasons. Firstly,
the initial cars dataset obtained contains the CO2 emission value in terms of g/km (grams
emitted per kilometer driven). This means that emission value is not gathered based on
third-party information but is provided by the manufacturer. Secondly, a study [103] has
shown that information such as CO2 emissions can influence the consumer’s choice of
vehicle. This justifies the practical relevancy of the dataset, which is an essential factor
for the RecSys research.

4.2. DATASET OVERVIEW

The final dataset consists of 136 users and 396 cars. There are a total of 9650 user-item
interactions in the dataset. We collected the dataset over two months, from April 2023
to June 2023. Around 48.4% of the interactions are with cars when the CO2 emissions
are not displayed, and 51.6% of the interactions where the CO2 emissions are shown.
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The dataset also contains the age and gender information for each user. Level of edu-
cation, field of work, country of origin, retention of driving license, access to car, main
reasons for car use, knowledge of vehicles, and importance of emissions were kept as
optional. Hence these fields exist for some users and are omitted for some. The subset
of the data where CO2 emissions are displayed will be referred to as CarEmissionsCO2,
and similarly, the other subgroup where emissions are not shown will be referred to as
CarEmissionsNoCO2. Finally, the overall dataset is CarEmissions.

4.3. ANALYSIS
This section features an analysis of the curated dataset. This analysis consists of an initial
comparison with other RecSys datasets such as Movielens100k, Movielens1M, BookCross-
ing, and RecipeEmissions. Furthermore, as the CarEmissions dataset features two differ-
ent kinds of ratings, namely when CO2 is or is not displayed, we also delve into how their
values compare in the dataset.

4.3.1. DATASET COMPARISON

Table 4.1 compares the properties of commonly benchmarked recommender system
datasets. We include all three versions of the CarEmissions dataset. This is because the
same user-item interaction could exist in both the CO2 and the No CO2 dataset; hence
they form two individual and distinct datasets.

The CarEmissions dataset has a smaller number of users and items on average. This,
however, is fine for the dataset due to the number of interactions. Due to a high rela-
tive number of interactions, the CarEmissions dataset can achieve a significantly lower
sparsity than the other datasets. The sparsity of the CO2 and the NoCO2 dataset are com-
parable to those of MovieLens100k.

The CarEmissions dataset has a mean rating lower than the other datasets, except
for Book-Crossing. This is because the CarEmissions dataset stands out from the other
datasets in how the data was collected. Here all users were asked to rate each car they
came into contact with, whereas in the other datasets leaving ratings was optional. This
causes a positivity bias in the other datasets, with users only likely to leave a rating if
they enjoy the particular recipe, movie, or book. This bias is avoided in the CarEmis-
sions dataset, thus making it more robust. This might influence the accuracy metrics
such as RMSE and NDCG more negatively when compared to the other datasets. The
RMSE for CarEmissions is likely to be higher because there is more spread in the training
data.

Finally, looking at the median interaction per item, and user, we can see that the CarE-
missions dataset is highly comparable to the MovieLens100k. They both have a more
significant number of interactions per user and item, which will aid in the training phase
of the recommendation algorithms. From this, we can conclude that although the CarE-
missions dataset differs in some aspects, this is due to justifiable reasons which do not
interfere with the validity of the dataset for the recommender system study.

Table 4.2 displayed the properties of other popular RecSys user study datasets. The
respective papers did not report values missing in the table. The table shows that the
number of users in CarEmissions is comparable to other user studies. The number of
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CarEmissions
(All)

CarEmissions
(CO2)

CarEmissions
(No CO2)

Recipe Emissions Movielens100k Movielens1M Book-Crossing

# of users 130 111 116 32090 943 6040 105283
# of items 396 396 396 5595 1682 3706 340556
# of interactions 9971 5229 4742 247219 100000 1000209 1149780
sparsity NA. 88.11% 89.67% 99.86% 93.70% 95.53% 99.99%
minimum rating 1 1 1 0 1 1 0
maximum rating 5 5 5 5 5 5 10
mean rating 2.56 2.52 2.6 4.5 3.53 3.58 2.87
median interactions
per item

25 13 12 27 27 124 1

median interactions
per user

65 32 34 3 65 96 1

Table 4.1.: Properties of commonly benchmarked recommender datasets.

final user-item interactions and median interactions per user is much higher in CarE-
missions than in its counterparts. This is because in CarEmissions users decide how
many items to rate, whereas, in other datasets, the researchers determine the number
of items. The mean rating given to items could not be compared, as many user study
datasets conducted a ranking rather than a rating task. The ranking task refers to rank-
ing the items provided in your preferred order.

CarEmissions
(All)

CarEmissions
CO2

CarEmissions
No CO2

Sohail et al. [86] Ricci et al. [91] McNee et al. [104] Loep et al. [87]

# of users 136 122 116 10 158 138 40
# of items 396 396 396 50 - 24,000 -
# of interactions 9650 4984 4666 500 790 1380 200
Task performed Rating Rating Rating Ranking Ranking Ranking Rating
Median interactions
per item

24 12 12 10 - - -

Median interactions
per user

60 30 31 50 5 10 5

Table 4.2.: Properties comparison of most popular recommender systems user study
datasets.

Figure 4.1 shows the user engagement distribution across the datasets. This figure was
split into CarEmissions and other datasets for readability purposes. These figures show
that all datasets, including CarEmissions, present a long-tail distribution. This implies
that the majority of the users occur in a small number of interactions. CarEmissionCO2

and CarEmissionNoCO2 depict a more significant spread in the distribution, indicating
a more considerable variance in items rated by different users. Like Movielens, CarE-
missions is also a dense dataset with more users with an average number of items rated
around 30 to 40.

Figure 4.2 shows how often an item is rated. All datasets present a long-tail distribution
similar to user engagement. This implies that for all recommender datasets, most items
occur in few interactions except for a few. Though giving a long tail, CarEmissionsCO2,
and CarEmissionsNoCO2 have some notable differences from the other datasets. We
observe many points densely clustered between 20 to 40 ratings per car for both datasets.
This happens because the users in the study rate cars at random with a minimum of 20
cars for both CO2 and NoCO2.
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(a) CarEmissions Dataset (b) Other RecSys datasets

Figure 4.1.: User engagement distribution of datasets.

(a) CarEmissions Dataset (b) Other RecSys datasets

Figure 4.2.: Item popularity distribution of datasets.

4.3.2. INTERACTION PROPERTIES

Now, we discuss more in-depth properties of the CarEmissions dataset to understand
the data we are working with. Figure 4.3a displays the distribution of CO2 emissions
of the cars in the CarEmissions dataset. The distribution follows a bell-shaped curve,
indicating a somewhat normal distribution skewed slightly to the left. This means that
most cars are centered around the average to lower emissions spectrum, with a few cars
having very high emissions. It is important to note that the starting value displayed for
CO2 emissions is 140. We do not normalize the emission values between the range of 1-5
to preserve the unit of measurement, which is g/km.

Figure 4.3b shows the time distribution in seconds spent per interaction. The distri-
bution is heavily skewed on the left, indicating that most interactions take 1-10 seconds.
This means that users are very quick at determining what they like about a particular car
and what rating to give. This might imply that most users only look at one or two specific
car characteristics to decide, as 10 seconds is insufficient to register several properties
regarding an item.
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(a) Distribution of emissions
(b) Distribution duration of time (in seconds)

spent per interaction.

Figure 4.3.

Figure 4.4 features the dataset’s rating distribution by frequency and percentage. Fig-
ure 4.4a and 4.4b show that the most frequent rating is 1. We can also observe that when
the CO2 information is displayed, the percentage of 1 given as a rating is higher. This
might indicate that upon seeing the CO2 emissions of a car, participants are more likely
to provide a lower rating. This could be attributed to the fact that even cars with lower
emission values might be perceived as having high emissions, as the emissions data is
not standardized within a range of 1-5. The percentage of 2 and 3 ratings are very similar,
and 5 is the least occurring rating.

(a) Frequency (b) Percentage

Figure 4.4.: CarEmissions rating distribution

Figure 4.5 depicts the emissions distribution of the cars as a function of the ratings
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received. Boxplots clearly show that cars that received a rating of 1 have a higher average
CO2 emissions value. This was confirmed by a one-way ANOVA on the emission values
separated by ratings. The p-value of the resulting ANOVA test was 0.003, making us reject
the hypothesis that the means of the groups are the same. The cars that received the
rating of 3 and 4 tend to have a lower average emissions value. This could indicate that
users are inclined to give higher ratings to cars with lower emissions. It should be noted
that though the rating of 3 and 4 tend to have a lower average emissions value, they
include a significant amount of outliers with high CO2 emission values.

Figure 4.5.: distribution of emissions per rating

4.3.3. USER PROPERTIES

In this section, we analyze the users’ demographic data in CarEmissions. The dataset
features 93 males, 40 females, 2 other, and 1 non-binary. Figure 4.6a shows the age dis-
tribution by different genders in the dataset. The most represented group are males be-
tween the age of 20 and 35. This occurs due to collecting a voluntary convince sample
with the main population being TU Delft students. Various age ranges are also covered,
with virtually no gaps between 18 to 60 years old.

Figure 4.6b displays a bar plot of the field and the highest education level attained by
the participating users. The largest groups are people working in computers & technol-
ogy, and engineering, with master’s degrees. This, once again, is due to the voluntary
sample mainly being obtained through contact with students at TU Delft. The largest
groups are users with bachelor’s degrees in the same fields. Apart from these, there are
1 or 2 users from various domains with varying levels of education. This ensures being
able to generalize the scope of the study to a broader audience.

Figure 4.7 features various bar plots regarding user interaction with cars. This data
was gathered to determine whether there is any correlation between such factors and
car ratings. Most participating users own a license, and most also have car access. The
largest group of users also use a car yearly. This may occur since the study was conducted
in the Netherlands, where the primary mode of transportation for many is a bike. This
might also indicate that users are generally more conscious of the environmental impact
of using a car. Finally, most users indicate they are somewhat familiar with cars. This is
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(a) Age-gender distribution of users in CarE-
missions.

(b) Barplot of field and education level of
users.

Figure 4.6.

desirable as it ensures that users go in with some knowledge before participating in the
study.

Figure 4.7.: Plots regarding general user car usage and knowledge.

4.3.4. 10% OVERLAP

CarEmissions also includes data for the same user-item interaction with and without
CO2 emissions shown to the user. This allows us to directly compare ratings a specific
user gave to a particular item, with only varying the presence of the control variable.
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Figure 4.8 shows the rating distribution for this 10% dataset with CO2 displayed versus
omitted. It can be observed from the plot that the mean rating of the NoCO2 group ap-
pears to be higher than the CO2 group. This shift in mean observed in the figure can be
attributed to the CO2 group receiving higher ratings. We conducted a Mann-Whitney test
to determine whether the population differs significantly from one group to the other.
The p-value of 0.1489 indicates that the population means are not significantly different.

Figure 4.8.: Violin plot depicting the distribution of ratings of the 10% overlap dataset.

4.4. DISCUSSION
We proposed a new recommender system dataset containing user-item ratings with emis-
sion values as a control variable. This dataset can be used for researching green recom-
mender systems. It includes 136 users, 396 cars, and 9650 interactions. The dataset is
intended as an innovative solution for evaluating the greenness of recommender sys-
tems by also considering user perception of emissions. In the remainder of this section,
we discuss our choices and some dataset limitations.

We analyzed the CarEmissions dataset and compared it to several other commonly
used datasets and other user studies from RecSys research. Comparison with other pop-
ular datasets showed similar distributions. Although car emissions show a long-tail dis-
tribution, the ratings are more spread out on a scale of 1 to 5. This is because users do not
choose cars but are shown to them randomly, avoiding item popularity bias. This is likely
to influence the benchmarking experiment. Since the rating values are more spread out,
recommender algorithms might make it harder to accurately predict the rating. This
may result in lower NDCG values when compared with other datasets.

When comparing the dataset to other user studies, we can see that CarEmissions is
comparable in size and scale. The only difference is that many user studies ask their
users to perform a ranking task, whereas it was a rating task for us. This is because most
other user studies evaluated the output of recommendation algorithms, whereas, with
CarEmissions, we aim to train green recommendation algorithms.

A limitation of CarEmissions is scalability. Representing the ’general’ population is
rarely possible when using volunteers for data collection. The analysis showed that most
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users were males from computer and engineering backgrounds. Generalizing results
obtained from such a sample user base may produce untrustworthy results. Since the
sample population does not represent the real-world population, using the dataset with
this knowledge is critical. This issue can be addressed in future work by conducting the
study on a larger scale. An example would be posting the survey on Amazon Mechanical
Turk, such that the population of users is no longer a convenience sample but instead
paid participants from different backgrounds.





5
COLLECTION & CORRELATION

In the previous chapter, we highlighted the properties of CarEmissions. In this section,
we delve into the analysis and correlation model of the dataset. Section 5.1 highlights
the collection process. Section 5.2 explains the lasso regression model created and the
results. Finally, Section 5.3 concludes the chapter.

5.1. DATA COLLECTION
This section describes the creation of the dataset. The conceptual model comes first,
then the experimental design, and finally the reduction of the original car dataset.

5.1.1. ORIGINAL CARS DATASET

According to EU Regulation No. 2019/631, countries are required to record information
for each new passenger car registered in their territory. Each year, each Member State
has to submit all the information related to their new registrations. We obtained this in-
formation regarding all the new passenger cars registered in 2020. This dataset initially
started out with over 7000 cars and contained the following information about each car:
make, model, vehicle class, engine size, cylinders, transmission, fuel type, fuel consump-
tion city (L/100km), fuel consumption highway (L/100km), fuel consumption combined
(L/100km), and CO2 emissions (g/km).

Upon initial inspection of the dataset, many of the cars were very similar, with slight
variations between them. An example of this is the car ’ACURA ILX Compact’ with one
having the engine size of 2.0 and the other of 2.4. Though these differences can be con-
sidered significant, in terms of a recommender study, reducing the number of cars is
an advantage as it aids with the cold start problem. We decided to reduce the number
of cars through the method of stratified sampling discussed in Section 2.3.1. With this
method, we can obtain a sample dataset that best represents the entire car dataset. We
create distinct strata based on the make, model, and vehicle class of the cars and perform
proportionate probability sampling from these. In our sample, we keep approximately
5% of our original data.

To ensure that the distributions of the dataset properties have been preserved, Figure
5.1 shows the density plots of various properties in the dataset before and after the sam-
pling. All of the density distributions have been preserved, with no alarming changes in
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the sample. After conducting the stratified sampling, the change we see in the densities
is that most curves have been smoothed out. In order to go a step further in checking
whether the sample is representative of the population, we conducted a Mann-Whitney
test as detailed in Section 2.3.2. The results of the test did not yield any significant p-
values, implying that the datasets are indeed similar. We also calculated the Wasserstein
distance between the old and new distribution of variables, and the results once again
indicate a negligible change between the two.

Variable Mann-Whitney p-value Wasserstein distance
CO2 Emissions 0.2767 1.2873
Engine Size 0.3253 0.0875
Cylinders 0.0790 0.2064
Fuel Consumption City 0.5688 0.2337
Fuel Consumption Highway 0.3940 0.1337
Fuel Consumption Combined 0.5055 0.1806
Fuel Consumption Mpg 0.5510 0.5273

Table 5.1.: Mann-Whitney test p-values, and Wasserstein distance of variables when
comparing the stratified sample to the original dataset.

Figure 5.1.: Property density plots before and after stratified sampling.

5.1.2. RELATED CONCEPTUAL MODEL

The next goal is to gather user-item interactions data. This section introduces the con-
ceptual model used in the study, which illustrates the information we need from users
and the information that will provide us with a better understanding of their choices. A
conceptual model of the variables in the collection phase can be seen in Figure 5.2. With
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this model, we aim to identify the independent, mediating, moderating, and dependent
variables in the study.

Figure 5.2.: Conceptual model for data collection protocol

Table 5.2 presents all the variables present in the model table. Here, the independent
variable is the one whose effect we are trying to measure on the dependent variable. In
this study, we want to determine whether there is any difference in user rating for cars
given the fact that car CO2 is displayed. The mediating variable refers to variables that
depend on the independent variable and have a direct effect on the dependent variable.
Finally, the moderating variable refers to variables that are likely to influence the ratings
but are uncontrollable by the experimenters. This includes age, gender, level of study,
knowledge of cars, and many others.

5.1.3. EXPERIMENTAL DESIGN

The experimental design of the data collection process has five distinct phases. These
phases will be described in detail in this subsection.

Phase 1. Phase 1 introduces the participants to the study. On this landing page, we
vaguely mention the goal of the study and what is expected from the users. Here we in-
troduce all the car properties that the users will encounter with descriptions. Finally, at
the end of phase 1, the users have to sign an informed consent form agreeing to the pri-
vacy and storage methods that this study employs.
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Variable Full Name Type
I CO2 emission displayed or not Independent
E Assigned rating Dependent

P1 User perception of car Mediating
P2 User perception of brand Mediating
A Age Moderating
G Gender Moderating
F Field of expertise Moderating
L Level of education Moderating
D Driving license & car use Moderating
O Country of origin Moderating
P Political view category Moderating

Kc Prior knowledge of cars Moderating

Table 5.2.: Overview of variables in conceptual model

Phase 2. This is the exploratory data collection phase of the study, where they have to
provide some data about themselves. The information asked in this phase directly re-
lates to the conceptual model mentioned earlier in Section 5.1.2. A snapshot of this page
is presented in Figure A.1.

Phase 3 & 4. Due to the sample size being on the smaller side with 136 users, we propose
a within-subjects study. This means that each participant will provide both user-car rat-
ings with CO2 displayed (Phase 3) and user-car ratings without CO2 displayed (Phase
4). To eliminate first-look bias in the study, 50% of the participants will start by rating
cars with CO2 displayed, and move on to rate cars without CO2 displayed, and the other
50% of the participants will do the same. This divides the participants into two distinct
groups. Participants in group A start by rating cars with CO2 displayed (Phase 3). In this
part, they are asked to rate a minimum of 20 items before the button to move on to phase
4 is activated. There is no overlap of cars between phases 1 and 2. Participants in group
B start by rating cars without CO2 displayed (Phase 4). In this part, they are asked to rate
a minimum of 20 items before the button to move on to phase 3 is activated. In phase,
they rate cars with CO2 displayed. There will be approximately be 10% overlap between
cars displayed in phases 3 and 4 in this group. This is to gather any explicit change in
rating of the same car when CO2 is displayed. A snapshot of the user’s front end when
rating a single car is shown in figure A.2.

A 10% overlap is picked to ensure that some cars can be repeated for the same user
while also ensuring this number stays low. If a user is asked to rate multiple cars that
are the same, rating might start to become a frustrating task. This will compromise the
quality of the dataset.

Phase 5. Finally, in the last phase of the study, once the participants have rated the num-
ber of cars they wish to purchase, some final questions regarding their view on carbon
emissions are asked. This is done at the end so as not to introduce any biases during the
study. Figure A.3 displays the questions asked during this phase.
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5.2. MULTIVARIATE LASSO REGRESSION

We will be using group lasso regression, described in detail in Section

5.2.1. VARIABLES

Table 5.3 presents all the variables in the CarEmissions dataset regarding the rating, user,
and item. Given this list of variables, we want to see whether some of them have a strong
correlation with the rating a particular item receives. As already identified in Section
5.1.2, our dependent variable is rating, which means we want to see the effects of various
different variables on the rating variable.

Variable Type Description
Review id Integer Unique for every user-item interaction
User id Integer Unique for every user
Car id Integer Unique for every car
Rating Integer Provided by user to car
CO2 present Boolean Whether CO2 shown or not for particular review
Duration Float Time taken for a review
Age Integer Age of user
Gender Categorical Gender of user
Highest education Categorical Highest education obtained by user
Field of work Categorical User’s field of work
Location Categorical User’s country of origin
License retention Boolean Whether user has license or not
Car access Boolean Whether use has access to car or not
Car use frequency Categorical How often car used by user
Car use reason Categorical Reason for using a car
Knowledge of cars Categorical Familiarity with cars
Important categories Categorical Aspects user deems important when rating a car
Importance emissions Integer Importance of CO2 emission for user
Reason emissions Categorical Reason behind finding CO2 emission important
Start stage Boolean User started w or w/o CO2 emissions first
Maker model Categorical Car brand & model
Vehicle class Categorical Type of vehicle
Engine size Float Car engine size
Cylinders Integer # of cylinders in car
Transmission Categorical Type of gearbox
Fuel type Categorical Type of fuel car consumes
Fuel consumption Float Fuel consumed per 100km
CO2 emissions Integer CO2 emissions in g/km
Car photo Image Photo of car

Table 5.3.: Overview of variables in CarEmissions Dataset
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5.2.2. EXPERIMENTAL RESULTS

The results of the multivariate group lasso regression show no correlation between any of
the variables and rating. The strongest correlation values inspected was -0.007 between
age and rating, and -0.003 between CO2 emissions and rating. The remaining correlation
values of the variables were 0. These correlation values implies that the changes in the
independent variables do not lead to any predictable changes in the rating variable, at
least in terms of linear relationships. To imply moderate correlation between variables,
values need to be at least above 0.3.

These correlation values could have several explanations. Firstly, all users view the
rating scale differently. Some user may be more optimistic with their ratings and provide
higher ratings to items that they like moderately. The opposite could be the case for other
users, which would rarely give a rating of 5. This difference in rating perception makes it
difficult for the model to find correlations between variables.

Another reason could be the subjectivity of users when they answer any self evaluat-
ing questions. Categorical variables in the regression model such as knowledge of cars,
importance emissions, important categories, and reason emissions require users to give
subjective answer to their perceived self knowledge. Studies show that self-evaluation
is often not a reliable measure of our actual knowledge [105]. Perceived self-knowledge
could be higher or lower than reality, depending on various dynamic factors. This causes
a correlation between these categorical variables, making ratings hard to predict.

5.3. DISCUSSION
In this chapter, we presented the data collection process. This process started with tak-
ing a stratified sample of the original car dataset. Then a conceptual model was created
for the user study. The actual user study consisted of five distinct data collection phases.
In these phases, we discussed all the information gathered from the users. We also de-
scribed how the study was designed to take the control variables of CO2 emissions into
account. Then we trained a multivariate lasso regression model to determine any cor-
relations between the independent variables and the rating variables, as presented in
Table 5.3.

5.3.1. DATA COLLECTION

Collecting user data comes with challenges and unexpected problems. One such chal-
lenge was ensuring the sincierty of user ratings. Since participants in this study were not
compensated in any way, the reliability of the data collected from them cannot be en-
sured. Ensuring that the ratings were sincere and a true reflection of their preferences is
an impossible task.

Another challenge is asking users to rate items they did not actually buy. This is an
ongoing problem in many recommender system studies. User ratings and buying be-
haviors might be very different from each other. Consider that a user likes a sports car
and would give it a rating of 5, but in reality, a sports car would never be considered due
to the expense. Taking such a factor into account is very difficult, as we cannot ask users
to purchase items for a study. With this in mind, such user study datasets cannot be a
perfect depiction of user preferences.
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5.3.2. REGRESSION

The group lasso regression conducted showed poor correlation results between the in-
dependent and dependent variables. An important note for this could be that the in-
dependent variables in the data do not follow a linear relationship with the dependent
variable. Multivariate group lasso a linear regression method If the relationship between
variables is polynomial to some degree, our model would fail to capture this. Training
other machine learning models to find correlations is outside the scope of this study but
could be considered for future work.





6
SUSTAINABLE RECOMMENDER

SYSTEM

This chapter contains the core results of this thesis. We benchmark different commonly
used recommender systems in terms of emission rates and accuracy. Section 6.1 focuses
on the experimental setup of the benchmarking experiment. Section 6.2 showcases the
results of the benchmarking. Section 6.3 shows the results of nudging towards greener
recommendations, and finally Section 6.4 concludes the chapter.

6.1. EXPERIMENTAL SETUP
This section describes the experimental setup for benchmarking the different recom-
mendation algorithms. The models will all be individually trained and tuned to CarE-
missions, CarEmissionsCO2, and CarEmissionsNoCO2.

6.1.1. DATA SPLIT

Following the common practice in machine learning algorithms, the dataset will be split
into train and test sets. In order to avoid bias towards the cold-start problems, the test
set only contains users and items that are present in the training set.

The test set, which is approximately 20% of the dataset, is made by sampling a random
interaction from the dataset, and if the user and item from the interaction are present
in the dataset, then only this interaction is moved to the test set. This sample is then
removed from the original dataset, which will go on to be the train set at the end of this
procedure. The final train dataset is 80% of the final dataset.

6.1.2. HYPER-PARAMETER OPTIMIZATION

Hyper-parameter tuning is performed for all three CarEmissions datasets individually.
This is done for all the benchmarked models, namely: ItemKnn, UserKnn, SVD, SVD++,
CoClustering, and SLIM. The global average does not require any hyperparameter tun-
ing. The grid search space for these hyperparameters is derived from another green rec-
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ommender study [6]. The final values for all the hyper-parameters are mentioned in the
Appendix Section B.

6.1.3. GREEN RECOMMENDER EVALUATION

After obtaining the best performing models for each partial dataset, we will utilize the
nudging approach proposed by [6] detailed in 6.3. We focus on the NDCG and GNDCG
values obtained from the nudging scores to effectively assess the performance and ef-
fectiveness of the method within its unique ranking context. NDCG and GNDCG will be
evaluated at 10, 20, and 50 for a cohesive overview. To determine the best trade-off be-
tween prediction and greenness, we will experiment with all values of alpha, inclusive of
0 to 1, with a step size of 1.

6.2. ALGORITHM BENCHMARKING

Table 6.1 shows recommender algorithm performance in terms of NDCG at various lengths.
The underlined scores in the table indicate the best-performing models for each partial
dataset. SVD outperforms every other model for both CarEmissionsCO2 and CarEmissionsNoCO2.
This is followed by SVD++. Item-knn, User-knn, and CoClustering perform the worst in
these partial datasets. The likely cause of this is the higher sparsity of the dataset com-
pared to CarEmissions. In the user-based knn algorithm, predictions for an interaction
with a target item are generated using a predetermined number of similar neighbors.
However, due to the sparsity, it is possible that not all neighbors of the user have rated
the target item. As a result, the estimation relies on a small number of neighbors, or even
a single neighbor, which reduces the accuracy of predictions. The strength of knn algo-
rithms lies in their ability to leverage the combined data of many similar users, and the
same limitation applies to item-based knn algorithms.

Maxtrix factorization methods such as SVD and SVD++ perform better as their factor-
ization strategy allows them to generalize better over the entire interaction matrix. The
same hold for SLIM, which is also a matrix factorization method.

It should be noted that all algorithms perform better when trained on CarEmissionsNoCO2,
than CarEmissionsCO2. This could be because showing CO2 emission value adds an-
other property of the car to the mix. This might be a major influencing factor for some
users but not for others, thus increasing the variance in the ratings matrix. Along with
this, we can also see that the models trained on the entire CarEmissions data outper-
form both the CO2 and NoCO2 partial datasets. This is the main cause of this: double
the amount of training data. By combining both the partial datasets, we increase the
size of the training data. Hence, better results are an expected outcome.

SVD results. Figure 6.2 illustrates the RMSE values for two partial sets of data and
the entire dataset. A lower RMSE value signifies a model with stronger predictive capa-
bilities, as it indicates a closer match between predicted ratings and the actual ground
ratings. By observing the figure, it becomes evident that the model trained on the entire
dataset outperforms the model trained on the partial sets of data. One possible explana-
tion for this superiority is the larger size of the entire dataset, which provides a greater
number of training samples for the model to learn from.
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Algorithm NDCG@10 NDCG@20 NDCG@50
CO2 data Global Average 0.36 0.37 0.37

ItemKNN 0.43 0.45 0.45
UserKNN 0.39 0.39 0.39
SVD 0.45 0.45 0.46
SVD++ 0.43 0.43 0.44
CoClustering 0.38 0.39 0.39
SLIM 0.43 0.43 0.43

NoCO2 data Global Average 0.37 0.39 0.39
ItemKNN 0.47 0.48 0.48
UserKNN 0.46 0.47 0.47
SVD 0.52 0.52 0.53
SVD++ 0.50 0.51 0.52
CoClustering 0.46 0.47 0.47
SLIM 0.48 0.49 0.50

All data Global Average 0.35 0.37 0.38
ItemKNN 0.51 0.53 0.54
UserKNN 0.40 0.42 0.42
SVD 0.57 0.56 0.58
SVD++ 0.53 0.56 0.57
CoClustering 0.55 0.57 0.59
SLIM 0.54 0.55 0.56

Table 6.1.: Average performance in terms of NDCG of popular recommender system al-
gorithms trained on the CarEmissions dataset.

RMSE values for the
best-performing recommender models for partial datasets

In Figure 6.1, we can observe the NDCG and GNDCG values for the trained models,
providing valuable insights into their relative performance. Once again, the SVD model
trained on the entire dataset emerges as the top performer, surpassing the other two
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Algorithm GNDCG@10 GNDCG@20 GNDCG@50
CO2 data Global Average 0.33 0.34 0.34

ItemKNN 0.37 0.38 0.38
UserKNN 0.45 0.45 0.44
SVD 0.42 0.41 0.41
SVD++ 0.41 0.41 0.41
CoClustering 0.43 0.44 0.44
SLIM 0.41 0.41 0.42

NoCO2 data Global Average 0.34 0.35 0.35
ItemKNN 0.37 0.37 0.37
UserKNN 0.47 0.46 0.46
SVD 0.44 0.43 0.43
SVD++ 0.44 0.44 0.44
CoClustering 0.46 0.47 0.47
SLIM 0.38 0.38 0.38

All data Global Average 0.30 0.33 0.34
ItemKNN 0.40 0.40 0.41
UserKNN 0.45 0.44 0.44
SVD 0.48 0.48 0.48
SVD++ 0.47 0.46 0.46
CoClustering 0.45 0.44 0.44
SLIM 0.44 0.44 0.43

Table 6.2.: Average performance in terms of GNDCG of popular recommender system
algorithms trained on the CarEmissions dataset.

models in terms of predictive accuracy. Additionally, the CO2 model exhibits superior
performance compared to the last model in the lineup.

Upon analyzing the results of the three metrics, it becomes evident that the model
trained on the entire dataset showcases the best performance. This can be primarily
attributed to the availability of a larger dataset, which provides the model with a more
comprehensive and diverse range of training samples. With a greater volume of data to
learn from, the model gains a deeper understanding of the underlying patterns and in-
tricacies, resulting in improved predictions. Now, if we remove the model trained on
the entire dataset from consideration and focus solely on the CarEmissionsCO2 and
CarEmissionNoCO2 models, a notable trend emerges. The models trained on CarEmissionsCO2

consistently display higher metric values across the board, suggesting their more reliable
and accurate predictions in comparison to the CarEmissionsNoCO2 models.

6.3. SUSTAINABLE NUDGING RESULTS

Sustainable nudging, as presented in Section 2.1.3, refers to nudging towards greener
recommendations using existing predictions. In this section, we dive into the results of
the nudging experiment.
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Figure 6.1.: NDCG values for best-performing recommender models for partial datasets

6.3.1. EXPERIMENTAL DESIGN

We re-use the predictions generated from the benchmarking process in the previous sec-
tion. We again create rankings by ordering the interactions by their rating predictions.
This means that the techniques of data processing and hyperparameter tuning remain.
We measure performance using the NDCG and GNDCG. To obtain a complete overview
of the influence of α on the predictions, we chose to experiment with values of alpha in
the full range [0, 1], with a step size of 0.1 (i.e., [0, 0.1, 0.2 ... 0.8, 0.9, 1]).

6.3.2. EXPERIMENTAL RESULTS

In this section, we present the results of the nudging method performed. Figure 6.2a
presents the nudging results of different alphas from 0 to 1 with a stepsize of 1. Here the
graph depicts a trade-off between NDCG and GNDCG when varying the alpha parame-
ter. From the results, we can see that NoCO2 and All outperform CO2 in terms of both
NDCG and GNDCG at different alphas. Both NoCO2 and All fluctuate with varying levels
of alpha. Very similar trends can be seen in both Figures 6.2b and 6.2c.

The trade-off between NDCG and GNDCG does not follow a curve, as shown by [6]. For
CarEmissions the trade-off between the two metrics is mostly linear. In Kalivert’s study, it
was mentioned that most items in the user-item matrix had high greenness values. With
such data, it is much easier to obtain a trade-off that maintains accuracy and greenness.
In the case of CarEmissions, the CO2 values of items are normally distributed. Hence, by
looking at the metric trade-off graphs, the final alpha value cannot be concluded visually.

We observe that the slope of the lines in Figure ?? is not 45 degrees, implying that
in certain cases, a possible shift in alpha values may slightly decrease the NDCG while
significantly increasing the GNDCG. Determining the ideal alpha value is beyond the
scope of this thesis, for reasons that will be discussed in Chapter 7.
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(a) SVD@10 (b) SVD@20 (c) SVD@50

Figure 6.2.: SVD performance for CarEmissions datasets.

6.4. DISCUSSION
The study in this chapter aimed to evaluate and compare various recommender sys-
tem algorithms on the CarEmissions dataset. The benchmarking results revealed that
SVD consistently outperformed other models, achieving the highest NDCG scores at dif-
ferent lengths for both CarEmissionsCO2 and CarEmissionsNoCO2. The lower perfor-
mance of ItemKNN and UserKNN on these partial datasets can be attributed to the high
sparsity of the data. The matrix factorization approaches, including SVD, SVD++, and
SLIM, demonstrated superior performance due to their ability to generalize better over
the entire interaction matrix.

Interestingly, the models trained on CarEmissionsNoCO2 consistently outperformed
those trained on CarEmissionsCO2. One potential explanation for this trend is that the
inclusion of CO2 emission values in the recommendations adds an additional variable
that may influence users’ preferences. The variance introduced by CO2 values might
result in reduced prediction accuracy compared to the NoCO2 dataset.

The study also introduced the concept of sustainable nudging, inspired by the work
of [6]. The proposed nudging approach aimed to achieve a trade-off between prediction
accuracy (NDCG) and greenness (GNDCG) by varying the alpha parameter. The results
demonstrated that both CarEmissionsNoCO2 and the combined CarEmissions dataset
(all data) outperformed CarEmissionsCO2 across various alpha values. However, unlike
the results observed in the previous study, the trade-off between NDCG and GNDCG for
CarEmissions followed a more linear pattern. This suggests that CarEmissions contains
more diverse data with various CO2 emission values, leading to a less predictable trade-
off.

In conclusion, the benchmarking results identified SVD as the best-performing algo-
rithm for the CarEmissions dataset. The nudging approach further highlighted the po-
tential for improving the sustainability of recommendations by fine-tuning the trade-off
between accuracy and greenness. The findings offer valuable insights into building more
sustainable recommender systems that take environmental considerations into account
while delivering high-quality recommendations to users. However, the study also em-
phasizes the importance of considering the unique characteristics of the dataset when
implementing sustainable nudging, as different datasets may exhibit different trade-off
patterns between NDCG and GNDCG.
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DISCUSSION

In this chapter, we offer a concise overview of our study and delve into both the cen-
tral research query and its accompanying sub-questions. Furthermore, we address the
constraints and practical factors, concluding our investigation by outlining potential av-
enues for future exploration.

7.1. THESIS SUMMARY
In this thesis, we built the CarEmissions dataset and explored its impact on generating
sustainable recommendations. In Chapter 1, we motivate the work done in this study
and introduce the research questions. In Chapter 2, we explained the background knowl-
edge required for this thesis. Recommendation systems, the various underlying algo-
rithms, and evaluation metrics are presented first. Then we cover the workings of the
strategy used to nudge towards sustainable recommendations. Lastly, we also explain
how lasso regression and stratified sampling are performed. In Chapter 3, we reviewed
existing literature that relates to our work. More precisely, we cover current sustain-
ability trends in e-commerce, how artificial intelligence is being used to address climate
change, and various different aspects of recommender systems and their evaluation.

Chapter 4 introduces the CarEmissions dataset, where we provide an overview of the
dataset and compare it with other widely used datasets in the field of recommender sys-
tems. It can be inferred that the CarEmissions dataset is consistent with other datasets
used for user studies in research and shares similar characteristics with popular recom-
mender system datasets. We also create visualizations of the different properties associ-
ated with users and items found in the dataset.

Moving on to Chapter 5, we delve deeper into the process of collecting and analyzing
data. We discuss the method of reducing the size of the original car dataset through strat-
ified sampling. Additionally, we outline the phases of data collection as experienced by
participants during their involvement in the study. This chapter also sheds light on the
reasoning behind specific design choices made during the study. Finally, we conduct a
group lasso regression to examine the potential correlation between various user demo-
graphics, car-related data, and the ratings assigned to specific cars. The results indicate
that no significant correlations of this nature exist within the dataset.

In Chapter 6 we focus on using the new dataset in recommendation algorithms. We
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compare the performance of global average, user-based knn, item-based knn, SVD, SVD++,
co-clustering, and SLIM algorithms. The results showed that, in terms of NDCG, SVD
outperforms other algorithms. In terms of the greenness of recommendations, no sig-
nificant difference is seen between the algorithms. According to the nudging strategy’s
suggestion for enhancing the greenness of ranked lists of recommendations, we rerank
the recommendations.

7.2. ANSWERS TO RESEARCH QUESTIONS
In this thesis, the main research question was: What are the implications of showing
product CO2 emissions values to users for promoting sustainable choices through rec-
ommendations? We also posed the following sub-questions:

1. Is there a significant relationship between user demographics, knowledge, and rat-
ings provided to items?

2. Does the greenness and accuracy of products recommended differ between the two
datasets (CO2 vs. No CO2) displayed?

To answer the research questions, we developed the CarEmissions dataset as described
in Chapter 4. This dataset can be divided into two distinct parts, namely CarEmissionsCO2

and CarEmissionsNoCO2. One contains car-user interactions with CO2 values displayed
and the other without, respectively. This dataset was created as a base to determine
whether showing the CO2 values of products influences user rating behavior in any way.

This resulting dataset consisted of 136 users, 396 cars, and a total of 9650 user-item
interactions. The interactions are expressed as numerical ratings between 0 and 5. We
compared the dataset with several, often user recommender and user study datasets.
Along with this, we also collected various user demographic data to analyze any patterns
with respect to ratings given to items.

The answer to the first sub-question is analyzed in Chapter 5. Prior to collection, we
expected to observe some correlation patterns between variables such as age, field of
work, familiarity with cars, and the importance given to emissions with respect to rat-
ings. Through the means of group lasso regression, we were able to investigate the cor-
relation between user demographics and car properties on the rating given to cars. Here
we conclude that there is no significant correlation between demographic variables and
ratings in the CarEmissions dataset.

The second sub-question can be answered by analyzing the overarching results from
Chapter 6. We benchmarked various recommender system algorithms such as global
average, item-knn, user-knn, SVD, SVD++, co-clustering, and SLIM on the CarEmis-
sions dataset. Here we tested every algorithm trained with the entire dataset (CarE-
missionsAll), the part of the dataset where CO2 emission values are displayed to the
user (CarEmissionsCO2), and the part of the dataset where CO2 emission values are
omitted (CarEmissionsNoCO2). Models trained on CarEmissionsAll have the highest
performance. Consistently, across all benchmarked algorithms, we observe that mod-
els trained with CarEmissionsNoCO2 outperform models trained with CarEmissionsCO2

both in terms of greenness and accuracy. The primary explanation for this is that the in-
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clusion of CO2 emission values introduces an additional variable that may influence user
preferences.

To answer the overarching research question, we aim to explore the accuracy green-
ness trade-off and how it can be of interest to the end user receiving recommendations.
Since the SVD algorithm produced the best results in terms of accuracy (NDCG) and
greenness (GNDCG), we used this algorithm to dive deeper into the performance of the
datasets. In Section 6.3, we employ a nudging strategy [6], where the value of the alpha
parameter determines the weighting of greenness vs. accuracy of the recommendations.

We observe that SVD models trained on CarEmissionsNoCO2 once again perform bet-
ter than CarEmissionsCO2. These results might suggest that displaying the CO2 emission
values, causes a higher variance in user-item ratings, thus making it more difficult for
recommender systems to produce relevant recommendations. This does not necessar-
ily imply that displaying emission values cannot be deemed useful. It simply implies that
adding another item property, one as significant as emission values, can greatly impact
user rating behavior in unexpected ways. This causes ratings to become more unpre-
dictable, as users may interpret the same information in different ways.

To answer the main research question, in the case of CarEmissions, displaying emis-
sion values results in less relevant recommendations, both in terms of accuracy and
greenness. This, however, is the first study to explore the effects of CO2 emission values
in a user-study setting. Therefore, the next section identifies some limitations, practical
conditions, and future work.

7.3. LIMITATIONS & FUTURE WORK

In this section, we discuss some of the limitations and practical considerations regarding
this research. We also provide directions for future work.

7.3.1. LIMITATIONS

Being one of the pioneering studies in the field of sustainable recommender systems,
we were required to create our own dataset for this research. The domain of the dataset
is cars, as the CO2 emission values were accurately given by the manufacturers. The E-
commerce market, however, has many more domains; therefore, a direct generalization
is hard to prove.

Furthermore, the users that took part in the study were recruited through a conve-
nience sample of connections. This convenience sample might not be representative of
the general population that makes use of e-commerce recommendation engines. This
also impacts the correlation models in Chapter 5 as demographic data from a conve-
nience sample of 136 users might not contain enough variance to identify patterns.

Lastly, users were simply asked to rate items, which does not imply their intention to
make future purchases. For example, a user may give a 5-star rating to a Porsche Carrera
but have no intention of purchasing it in the near future. Hence, the ratings collection
represents user preference or liking rather than user purchase intention.



7

46 7. DISCUSSION

7.3.2. FUTURE WORK

To further examine the effect of displaying emission values to nudge towards sustainable
recommendations, we argue that it is important to gather more detailed data. It is impor-
tant to separate the effect of providing CO2 information from the effect of simply adding
one additional piece of information. This can perhaps be done by removing a piece of
information and substituting it with CO2 information. The aim is to isolate the effect of
showing emissions information from the effect of showing any additional information.

Moreover, in regards to nudging towards more sustainable recommendations, a trade-
off alpha value was not clear. A method for automatically determining such a trade-
off, generalizable to datasets, would be worth investigating. A possible way to achieve
this could be by using evolutionary algorithm techniques to determine Pareto-optimal
solutions.

Another approach to finding the right alpha trade-off would be to conduct an online
evaluation of the recommendations. This would entail A/B testing recommendations
with users. Each batch of users would test recommendations with a different value of al-
pha and indicate their satisfaction with the recommendations. Such an evaluation setup
at the right scale could prove a big leap in sustainable recommendation research.

Lastly, it is important to expand data collection to a larger scale with various differ-
ent categories for items. Since sustainable recommendation systems are a relatively
new field, gathering more data is arguably the most important task to advance research.
This would help the community of researchers develop innovative solutions without the
worry of creating and benchmarking new datasets.

7.4. BROADER IMPACT
The implications of this thesis extend beyond the immediate topic of sustainable rec-
ommendation systems in the domain of car emissions and have broader significance for
both the scientific community and society at large.

Scientifically, this research contributes to the emerging field of sustainable recom-
mender systems by shedding light on the complex interplay between information pro-
vision, user behavior, and recommendation accuracy. The concept of nudging to pro-
mote sustainable choices in recommendation systems can serve as a foundation for fur-
ther studies exploring behavioral economics and decision-making in the context of e-
commerce and information presentation. Additionally, the dataset creation process and
analysis techniques presented here can serve as a reference for researchers seeking to
conduct user studies and build new datasets in the field of recommender systems.

Beyond the realm of recommender systems, the findings have implications for un-
derstanding user behavior and decision-making in the context of sustainable consump-
tion. The research underscores the challenges of introducing new information variables
to recommendation algorithms and highlights the importance of considering user re-
sponse variability. This insight could inspire further investigations into the psychology of
sustainable choices and the effects of information presentation on user decision-making
in various domains.

From a societal perspective, the thesis raises awareness about the potential unintended
consequences of displaying certain information to users. The results emphasize the
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need for careful consideration when incorporating sustainability-related information
into e-commerce platforms, as it can impact user preferences and influence recommen-
dation outcomes. This has implications for businesses and policymakers aiming to pro-
mote sustainable consumption through technological interventions. Ethical concerns
related to potential biases introduced by the display of CO2 emissions values and their
impact on user behavior should be taken into account when designing and deploying
such recommendation systems.

In conclusion, this thesis contributes to the scientific community by advancing the
understanding of sustainable recommender systems and their implications for user be-
havior and decision-making. The research findings can be extended beyond the spe-
cific domain of car emissions, informing future studies in diverse fields involving user
preferences and recommendation algorithms. Furthermore, the societal implications
underscore the importance of responsible design and implementation of technology to
encourage sustainable choices while raising awareness about potential biases and ethi-
cal considerations.





A
DATA COLLECTION PLATFORM

The user-item interactions data was collected through a website developed and hosted
on a server. The website can be found at ratingcroudsourcing.ewi.tudelft.nl.
Although services such as MTurk and others exist, creating the website allowed for a
smooth participant experience, where they do not have to create any additional accounts
or sign up to take participate. In addition to this, by creating the website in house we
could assure that all the data was securely stored on the TU Delft servers, thus minimiz-
ing privacy risks.

The back end of the website was written in Flask which is a Python framework for web
development. The front end was mainly HTML/CSS with additional JavaScript function-
alities. MySQL server was used for database management and storage.

Figure A.1 shows the initial questions posed to users in order to collect some demo-
graphic data. This includes information such as age, gender, level of education, field of
work/study, country of origin, retention of license, access to car, frequency of car use,
reasons for car use, and familiarity with cars.

In Figure A.2 we can see a snapshot of the user front end when rating a single car.
In this snapshot the CO2 emissions score is provided, but depending on the phase this
information can be omitted. The continue button is only activated once the users have
rated at least 20 cars, indicating they are ready to move onto the next phase. For every
single rating the time spent per user on each car is also recorded. This is to aid in further
analysis of the data gather which will be discussed in the results section.

Finally, Figure A.3 shows the questions posed to users after the survey is finished. This
is to gather some additional information regarding their views on sustainability. These
questions are posed at the end, as to not let users be biased during the study.
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Figure A.1.: Snapshot of exploratory data collection page on the developed website

Figure A.2.: Snapshot of front end when rating a car
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Figure A.3.: Snapshot of data collection in final phase





B
HYPER-PARAMETER SELECTION

This appendix provides the hyperparameter selection on which a grid-search is per-
formed to optimize the algorithms’ performance. Bold values are the selected, most per-
forming, parameters.

k 20 40 60 80 100

Table B.1.: Parameter included in grid search for optimizing Item-knn and User-knn.

CarEmissionsCO2 CarEmissionsNoCO2 CarEmissionsAll
k 40 60 40

Table B.2.: Selected parameter for Item-knn, for each partial dataset.

CarEmissionsCO2 CarEmissionsNoCO2 CarEmissionsAll
k 60 60 40

Table B.3.: Selected parameter for User-knn, for each partial dataset.

Number of Factors Number of Epochs Learning Rate Regularization term
20 20 0.1 0.1
50 50 0.01 0.01
100 80 0.001 0.001
150 100 0.0001 0.0001

Table B.4.: Parameters included in grid search for optimizing SVD and SVD++.
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CarEmissionsCO2 CarEmissionsNoCO2 CarEmissionsAll
Number of Factors 150 150 100
Number of Epochs 150 150 100
Learning Rate 0.01 0.01 0.01
Regularization Term 0.1 0.1 0.1

Table B.5.: Selected parameters for SVD, for each partial dataset.

CarEmissionsCO2 CarEmissionsNoCO2 CarEmissionsAll
Number of Factors 150 150 100
Number of Epochs 100 150 50
Learning Rate 0.01 0.01 0.01
Regularization Term 0.1 0.1 0.1

Table B.6.: Selected parameters for SVD++, for each partial dataset.

Number of User Clusters Number of Item Clusters Number of Epochs
3 3 20
6 6 50
12 12 100
24 24 150

Table B.7.: Parameters included in grid search for optimizing Co-Clustering.

CarEmissionsCO2 CarEmissionsNoCO2 CarEmissionsAll
Number of User Clusters 24 24 24
Number of Item Clusters 3 6 3
Number of Epochs 100 100 50

Table B.8.: Selected parameters for Co-Clustering, for each partial dataset.

L1 Regularization L2 Regularization
0.005 0.005
0.05 0.05
0.5 0.5

Table B.9.: Parameters included in grid search for optimizing SLIM.

CarEmissionsCO2 CarEmissionsNoCO2 CarEmissionsAll
L1 Regularization 0.05 0.05 0.05
L2 Regularization 0.05 0.05 0.05

Table B.10.: Selected parameters for SLIM, for each partial dataset.
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