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Abstract—Online networks like Facebook and BitTorrent are
based on user interactions such as wall posts and content

from social networks like Facebook to enhance security, to
promote cooperation, and to improve item recommendation

exchange. In such systems, user relationships can be used to [14], [15], [19], [20]. Instead of leveraging statical “liry”

enhance security and promote cooperation, but in order to
be meaningful, these relationships should be based on user
interaction strength instead of “binary” friendships. To d ate,
several centralized schemes foestimating user interaction strength
have been proposed. In contrast, we present the design, degt
ment, and analysis of the UISE scheme for User Interaction
Strength Estimation for both centralized and decentralizel online
networks.

Among the strong points of UISE is that it captures both
direct and indirect user interactions, that it scales with aly
partial information dissemination in decentralized systens, and
that it can be easily incorporated into distributed systems We
apply UISE to detect user interaction patterns based on walposts
in Facebook and we derive patterns that resemble those often
observed in the offline human society. We further apply UISE
to devise the first distributed scheme for online time estimgon
and we implement it into Tribler, a distributed online network
for media and social applications like file sharing, streanmg,
and voting. We demonstrate the accuracy and the scalability
of UISE with different information dissemination protocols and
user behaviors using simulations, emulations, and a real-ovld
deployment.

I. INTRODUCTION

Online networks are complex distributed computer systems

friendships, users would be much better off by estimatimgy th
interaction strengths with others and by trusting the oniés w
whom they have interacted frequently. Finally, socioltgyis
often rely on user interactions for identifying social tig},
[18], and therefore a proper estimation of user interaction
strength is essential.

The importance of user interactions in online networks
leads to the questionHow can we estimate user interac-
tion strength? Previous work addressing this issue [2], [16],
[17], [18] is insufficient. First, they have focused only on
online social networks like Facebook. Secondly, they have
only consideredbinary and direct user interactions, simply
indicating whether a user has directly interacted with heot
user or not. Thirdly, they are based on centralized algmsth
that are not scalable given the astounding growth of online
networks—by now, Facebook has exceeded a billion users
and BitTorrent is serving hundreds of millions of users. To
remedy these, in this paper we propose a distributed User
Interaction Strength Estimation (UISE) scheme that has@mo
fine-grained notion of user interaction and that is applieab
a more general category of online networks. Specifically, we
make the following contributions.

As a model for representing user interaction histories,

that involve potentially large numbers of humans with theirye introduce thebitmap-based user interaction graph, based
inputs and decisions. Typical examples of online networkn which UISE estimates user interaction strengths. UISE
include email, Facebook, LinkedIn, Wikipedia, eBay, andcaptures the frequencies of both direct and indirect iotera

BitTorrent-like Peer-to-Peer (P2P) systems. They haverec

tions and can be easily incorporated into distributed syste

popular and powerful infrastructures for communicatiom an (Section I11).

they provide various mechanisms for users to interact. For

instance, in Facebook, users post messages on their friends We apply UISE to detect user interaction patterns in online
walls and comment on their friends’ photos; in Wikipedia, networks. We take Facebook as an example and we derive

users collectively edit articles in their areas of expertand

patterns resembling those often observed in the offline huma

in BitTorrent, users upload to and download from each otheBociety (Section IV). We further apply UISE to derive a sceem
to share the contents of their common interests. In this papefor estimating the time users are online in fully distribite
we devise a framework for expressing user interactions anglystems. We have implemented this application into Tribler
their strengths that is both generic and can be applied to H2] and we demonstrate the scalability and the accuracy of

wide range of systems and applications.

UISE through simulations, emulations, and Internet deploy
ment (Sections V-VIII).

The patterns and strengths of user interactions are promi-

nent in online networks. In BitTorrent, user interactiorsc

As it turns out, in order to maintain the accuracy of

be used to design contribution incentive policies. ThroughJISE, its requirement for the coverage of global informatio

estimating user interaction strength in terms of the an®ant

decreases with the population size, thus allowing UISE to

durations of uploads, system designers can make users favachieve good scalability in a self-organized manner. Fuyth
the highly active users for future uploads. As another examp although a user only possesses a partial view of the system,

distributed systems often rely on importing trust relasioips

with UISE he can derive a ranking of users according to his



estimations of their interaction strength that highly rabees (i)

the ranking derived from the global view. Thus, UISE achgeve S
the most important goal of estimating user interactionsitie,
i.e., differentiating users with different levels of adty @ PP
(a) Undirected (b) Directed

II. USER INTERACTIONS AND DESIGN CONSIDERATIONS ) ) )
Fig. 1. Examples of user interaction graphs

User interaction strength is reflected by two aspects: the

frequency of interactions and the intensity of each intiéoac (D) (i) (i)
In this paper, we do not consider the latter aspect in order ‘
to avoid evaluating the strengths of words, such as to decide @ O @ © G © ®
cycle 1 cycle 2 cycle 3 cycle 4

which comment should get a higher weight, “Happy birthday”

or “You look nice”. Rather, in this paper we define usergig o
interaction strength as thieequency that two users interact,

and we propose a model for estimating user interactiongtinen

based on this definition. In this context, the fO”OWing thre Sca|ab|||ty As an online network evolves, users involve
issues are addressed. in a huge number of interactions, which have to be collected
and analyzed to estimate user interaction strengths. D&xng
at central servers is neither scalable nor practical. dusteve
propose a decentralized approach in which the collection of
interaction records and the estimation of interactionngjties

are performed by the end users.

Per-cycle user interaction graphs generated fram Ha).

Partial history versus full history of user interactions.
A properly selected partial history of user interactionsisre
suitable for estimating user interaction strength than & fu
history, because user interactions in online networks gaan
rapidly over time. In Facebook, only 30users consistently
interact from one month to the next [16], and in BitTorrent,
users who directly download from each other for one file sarel Ill.  DESIGN DESCRIPTION

meet again—the so-callegroblem of low rendezvous. With In this section, we introduce the basic design of UISE, a

]Eh|s_ r?plc_i change, slta_le mtt_l(_eractlons are no longer me&ning \,qer interaction strength estimation scheme that addrésee
or inferring user relationships. issues listed in Section I1.

Direct versus indirect interactions. Indirect interactions
are formed when users are linked through a sequence @ Representing user interaction history
interactions, such as in Facebook when a user posts on anothe
user’s wall who in turn posts on a third user’s wall and so on,
and in BitTorrent when a user uploads to another user wh
further uploads to a third user and so forth. Indirect intéoms
should also be included in the estimation of user interactio
strength, for two reasons. First, when direct interactiares
relatively scarce, such as in BitTorrent-like P2P systerhere
the problem of low rendezvous exists, indirect interaction
provide supplementary information for inferring user tiela-
ships. Secondly, a group of direct and indirect interagtion

that happen within a short time frame may indicate offine  |n a UIG, a vertex represents a user and the edge between
relationships. In the Facebook example, the correspondingvo vertices represent the interaction history of the users
users could have participated in some offline eventtogetheér connects. The interaction history is reflected by the lalfel o
are sharing their experiences. Indirect interactionsita@pen the edge, which is a string called thateraction bitmap,
widely apart in time, however, are of limited use. or simply bitmap. To capture the interaction frequency, we
abstract time into cycles where one cycle represents aircerta
. L . ; S L unit of time such as 30 minutes. We keep the interaction hyisto
interactions to be included in the estimation of user ird8ea i, "5 time_hased (cycle-based) sliding window fashion, with
strength. The f|rst_ IS .'ﬂhstance limit in terms of the_ n_u_mber the window size being equal to the length of the kept history.
of hops between interacting users. The second igl@ible  \yhen 1o users have directly interacted in a particulareycl
period. Only indirect interactions that happened together W'ththe corresponding bit in their bitmap is set to 1 (otherwise i

related direct interactions within this eligible perioohain- is set to 0). As time evolves, their interaction bitmap beesm
cluded, e.g., when a user exchanges messages with anott}jl f

er: : wqn
user who further exchanges messages with a third user, tf{ﬁg;,nﬁ;)\//:tg]c%ggf imgrgggger of *1"s shows how frequently
first and third users are only linked when these interactions '
happened within, say one week. The distance limit and the User interactions can be undirected (e.g., wall posts in
length of the eligible period are tunable parameters, sb tha=acebook) or directed (e.g., uploads and downloads in Bit-
our design will be applicable to different applications.r Fo Torrent). Fig. 1 shows examples of UIGs for undirected and
example, researchers analyzing social ties can leverage odirected user interactions, respectively, with a windoze of
design to include different levels of indirect interackom 4. When Fig. 1(a) is derived from wall posts in Facebook, it
their models [8], [18]. specifies that uselisand;j have chatted on each other’s wall in

In UISE, users collect the whole or parts of the interaction
istories of other user pairs through central servers or dis
ributed information dissemination. The interaction bigts
received by a user are incorporated into fi$map-based
user interaction graph (UIG), a model that we introduce to
represent user relationships based on their interactldsets
build individual UIGs unless they can obtain full knowledge
of the system, for example, through central servers. Thezef
a UIG reflects a user’s local view of the system.

We provide two options to control the level of indirect



() (i interaction records obtained through dissemination, essen

S %, s> %, builds its ownlocal UIG. Further dividing a local UIG based
on cycles gives théocal per-cycle UIGs. A local UIG is a
@ o110 O, @ o100 © subset of theglobal UIG, in terms of the vertices, the edges,
(a) Global UIG (b) Local UIG of useri and the interaction bitmaps. The global UIG can only be

obtained when the underlying dissemination protocol acse
Fig. 3. An example of the global and local user interactioapbs (UIGs) a 100% coverage. In this paper, the 1%0coverage case is
used as the baseline for performance evaluation.

cycles 1 and 3. When the example is derived from the upload Fi9- 3 shows an example of the global and local UIGs.
and download interactions in BitTorrent, Fig. 1(b) spesifie Not|ce that uset did not receive the interaction record between

that useri has uploaded to usérin cycles 2 and 4. j andk for cycle 3. Therefore, in its local UIG (Fig. 3(b)),
the interaction bitmap betwegnand is 0100, instead of the

L . . ground truth 0110.
B. Estimating user interaction strength

Until now, we have introduced the basic design of UISE.

To calculate the interaction strength, i.e., the frequéhay |, the following sections, we demonstrate and evaluate two
two users interact (directly or indirectly), we perform by examples of its application. In Section IV, we apply it to

cycle examinations. First, a UIG is divided into a number ofyetect user interaction patterns in Facebook, a centdalize
per-cycle UIGs. Then, for each of these per-cycle UIGS, angpjine social network. In Sections V-VIIl, we apply it to
algorithm for finding connected components or reachability  gerive a decentralized scheme for estimating the oniineim

is applied when the interactions are undirected or directedy¢ sers and we evaluate its performance through simugtion
respectively: if two users are connected (or one is reaehabl,,jations. and Internet deployment.

from the other) in a per-cycle UIG, they are considered as

having interacted in that cycle. Finally, the ratio betwela

total number of these recognized cycles and the window size IV.  INTERACTION PATTERN DETECTION
gives their interaction strength. As an example, Fig. 2 show
the per-cycle UIGs derived from Fig. 1(a). Here, an alganith
for finding connected components is applied: useend j
have interacted directly in cycles 1 and 3, and indirectly in
cycle 2. Therefore, their user interaction strength isnestied ~ A. Applying to interaction pattern detection

to be3/4 = 0.75. We takewall posts in Facebook as the example of user
The requirement for being in the same connected compdhteractions. In Facebook, each user can post messages on th

nent or being reachable serves two purposes. First, itfigeci walls of his friends. [16] published the entire wall posttbiges

that only indirect interactions that happened togetheh wit of 60,290 users in the New Orleans network until Jan 22, 2009.

related direct interactions within the same cycle are idetlin ~ We select their data of the last year—Jan 23, 2008 to Jan 22,

the estimation. Secondly, when UISE is applied in a distébu  2009—as the user behavior imported into our experiment. In

system, it alleviates the potential manipulations of malis  total, 44,397 users and 876,993 posts are included.

users, since users o_nly trust the_bltmaps that can link back We set the cycle size to one week and we divide the data
to themselves in their UIGs. During the calculation of user.

interaction strength, we also provide the option of a distan :;3 m’g gztitrézot(;e ;gstggtoﬁ] asdéigm('vr;gedkgti égi?k?/vﬁ;?)a
limit in terms of the number of hops between interacting siser essace is osttoed on a W%” in some week thé WO USErs
This limit is a tunable parameter for specifying the range Ofir;l]volve% are gonsidered as having directly interacted, trd
:ir:,gi'treo? c;?]teerhaggogﬁliodﬁg C'?frllltjg rz(it:gnt?zr%a:ﬁg:aggg:tm corresponding blt_ in their interaction bitmap is set fromoO t

' 1. As Facebook is centralized, we can obtain the interaction

The connected components in an undirected graph and tHétmaps of all user pairs. For each user (called éveuating

reachability in a directed graph can be computed in lingaeti user), we calculate its user interaction strength (UIS) with
(in terms of the numbers of the vertices and edges of the yrapiall other users (called thevaluated users) based on the two
using either breadth-first search or depth-first search. [L0parts of the data, and we refer to the results as UIS80 and
Thus, UISE achieves linear time complexity for estimatisgru ~ UIS20, respectively. We group the evaluated users based on
interaction strength and it captures the frequency of bottctl  the value of their UIS80. We use UIS80 to demonstrate the
and indirect interactions. user interaction pattern and we use the ratio between UIS20
and UIS80 (represented as UIS20/UIS80) to demonstrate the
evolution of the user interaction.

In this section, we apply UISE to detect user interaction
patterns in online networks.

C. Incorporating into distributed systems

We now show how UISE can be incorporated into a
distributed system without central servers. We assume that’
in a distributed system, users can obtain information thhou We first show the UISs of a highly active user in Fig. 4.
the dissemination protocol provided by the system. In UISEWe consider a user to be active in a particular week if he has
after two users have directly interacted for the first timeexchanged at least one message with another user. In twtal, t
in a particular cycle, they generate anteraction record, highly active user has been active in 53 out of 54 weeks and
and disseminate this record into the system. Based on theas exchanged 2,083 messages with 25 of his friends.

Results
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Fig. 4. Interaction pattern of a highly active Facebook (e vertical axes

are in log-scale) Fig. 5. Interaction pattern of all Facebook users with th@imum, the
maximum, the median, and the 25th and 75th percentiles (¢htcal axes
are in log-scale)

For the first step, we do not consider the distance limit,

i.e., the limit of the number of hops between interacting sise

Fig. 4(a) (represented by triangles) shows that this highl

active user interacts intensively with only a small groupe t

number of users in the UIS80 groups decreases dramatical

with increasing values of UIS80. A similar phenomenon is . - L N

often observed in human society where people tend to irtteraé™ APPIYing to distributed online time estimation

frequently with relatively small groups and occasionallighw In this application we takeendezvous as the example

the people outside those groups [9]. The small group coul@f user interactions. Rendezvous means that two users meet

be friends, with whom people interact directly, or friends o online through, for example, a Skype video call, a BitTotren

friends, with whom people build bonds through, for example,inquiry of available files, or simply a keep-aliy@ng. It is

sharing gossips with friends. On the other hands, Fig. 4(bjhe most fundamental user interaction in online networks.

shows that the average value of UIS20/UIS80 decreases witpplying UISE, when two users meet in a particular cycle,

increasing values of UIS80 until UIS80 equals 0.25, andsstaythey generate an interaction record and disseminate ittfireto

stable (at a little bit less than 1) afterwards. This inddsahat  system. Based on the records received through dissenmnatio

the interactions between the evaluating user and the ustirs w a useri builds its local per-cycle UIGs. If in any of these UIGs

whom it has high (low) interaction strengths in the figst% a userj is in the same connected componeni asrecognizes

of the year tend to stay stable (become more intense) in thgto be online in that cycle. The number of these recognized

latter 20% of the year, It can be conjectured that the samecycles gives;’s online time as estimated by and the user

dynamic holds in offline social relationships. interaction strength betweenand j computed as the number

To evaluate the influence of indirect interactions, we haveof these cycles divided by the length of the interactiondist

also performed tests where we consider different distancg'V€s7 S fraction of online time as estimated by

limits. For example, for the result of “within 2 hops” as As discussed in Section 1lI-B, the requirement for being
shown in Fig. 4, we have only considered the evaluating siserin the same connected component is for maintaining the
friends and friends of friends. We show the results for déffé  security against malicious users, which generates a sfdetef
numbers of hops and we observe a similar tendency as for owf UISE—the accuracy of an evaluating user’s estimations is
original design without a distance limit. limited by its own online time: as we will see, the more active
user is, the more accurate his estimations will be.

In this section, we apply UISE to devise the first distributed
Y%scheme for online time estimation, and we introduce how to
ig/nplement this application into Tribler.

We have tested all users as in the above example and te
results are shown in Fig. 5 (we do not consider a distance limi
here). We find similar user interaction patterns in thesaltes
as the highly active user. We have implemented the distributed online time estima-
tion application with UISE into Tribler [12], a fully distouted
open-source online network for media and social applioatio
like file sharing, streaming, content searching, votingd an

Online time is essential for measuring user activity in bothinterest-based channels. Users in Tribler interact inovesi
centralized and distributed online networks. It reflectergss ways including rendezvous, upload, download, and addition
stickiness to social networks like Facebook, and it impliesally, comment, vote, and spam report in channels they join.
a user’s contribution level in P2P systems like BitTorrent.Fig. 6 shows the general architecture of the Tribler system.
Nevertheless, online time is often recorded by centralessrv Tribler uses the BitTorrent protocol for P2P file sharing and

B. Implementing into Tribler

V. DISTRIBUTED ONLINE TIME ESTIMATION
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L pittorrent ||| (spamreport] (comemsemen] (o) OPSETVEd in many distributed systems [4]. We do not consider

< / population turnover in synthetic user behavior. Insteatgr!

in Sections VII and VIII we use user behavior generated from

measurements where population turnover is naturally degdu

W . J Let (Son, Sory) represent the average online and offline session
lengths. We consider two classes of peers: (i) active pelass

E A, with (8, 2) cycles, and (ii) less active peers, class Bhwit

""" (2, 8) cycles.

3 BitTorrent systems

G-g

Synthetic peer discovery and record disseminationWe
abstract peer discovery and record dissemination intotanhs
probabilities, P, and P», respectively, and we apply them in
the Libswift protocol for P2P streaming. Libswift [11] is an €Very cycle to specify the probability that any two onlinege
IETF (Internet Engineering Task Force) standard protocol p Meet and generate an interaction record, and the prolyabilit
posed by the Tribler group. We have implemented UISE intghat an interaction record is received by a third peer. Iméta
Tribler, where the underlying peer sampling and informatio World these probabilities should be dynamic, neverthelegs
dissemination is supported by Dispersy [21]. The estinmatio 2SSuming a constant probability and setting dlﬁergntwm
can be fed back to applications for policy design, such as i, We can analyze the performance of UISE for different peer
file sharing to reciprocate active users with priority fotuie ~ discovery and dissemination protocols.
downloads; they can also be visualized in the user intettiace Simulation setup: We run each simulation for 336 cycles,

Fig. 6. The Tribler system

psychologically motivate users to contribute. i.e., 168 hours (7 days) when one cycle represents 30 minutes
in the real implementatidn Unless otherwise stated, we con-
VI. SIMULATION sider 250 peers in class A and 250 in class B, and weé’sé&b

20% andP, to 50%. Based on the synthetic user behavior and
Tecord dissemination, each peer gradually collects intena
records and builds its local UIG. At the end of the simulation

In order to evaluate the performance of UISE, we take dis
tributed online time estimation as the example. The adgmnta

of online time is that it is a metric with a ground truth—by i egtimates its user interaction strength with every ofresr,

comparlr;]g the real ar]ldurgeE G@t'm‘rggd onllhne times, we _Cﬁﬂ/hich, as specified in Section V-A, is equal to its estimatbn
assess the accuracy o - We address three questions: NQW 4 ction of online time of another peer. By comparing thi

well does UISE perform for different information dissemina ggimation with the real fraction of online time, we evatiat
tion protocols; how well does it perform for different user . accuracy and scalability of UISE '

behaviors; and how well does it perform in the real world.

To answer the first question, in this section we run simulag Accuracy
tions with generic information dissemination, which allow '
to explore the accuracy and scalability of UISE under déffer We first show in Fig. 7 the comparison between the real
dissemination protocols by tuning the coverage. To answeand estimated fractions of online times, where the latter is
the second question, in Section VII we run emulations ofrepresented by the user interaction strengths (UISs) leetwe
UISE under various real-world user behaviors. To answer théhe evaluating and evaluated peers. In Figs. 7(a) and H@®), t
last question, in Section VIII we report measurement resultevaluated peers are ranked according to their UISs with an
derived from the Internet-deployed Tribler system. evaluating peer in class A and in class B, respectively. Ve se
that the peer in class A achieves more accurate estimations
than the peer in class B. Peers in class B only stay online for
S5 /(S5 + 82 ;) = 20% of the time and therefore they meet
Synthetic user behavior: At any time, a peércan be few peers to build their local views. As stated in Section V-A
either online or offline. When an online session ends, itstar this is a compromise for maintaining the security.
an offline session immediately, and vice versa. The online

and offline session lengths follow exponential distribngipas We use the Spearman Ranking Correlation Coefficient
(SRCC) [13] to assess the accuracy of the peer ranks estimate

A. Basic simulation model

1From here, we useser and peer alternatively to refer to the functioning
agent in our experiments. 2We will give the reason later in Section VII-B
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P, and Ps. Pc tions and values of’~

by each peer. In brief, SRCC measure the monotonic depen
dence between two variables. For each evaluating peer, first 08
we rank its evaluated peers based on its online-time estinsat  , os
for them; then, in the order of this ranking, we generate two S, |
variables—a list of the real online times and a list of therweH

:E?in}rn)l':l: 500 08 —sample: 500|
o g —original

0.08
0.06

0.04

. . . . 0.2{ 002 0.2

time estimations; finally, we calculate the SRCC of these two v

variables. In this way, we can assess the correlation betwee % 20 40 60 80 100 120 140 160 % 25_s0 75 100 125 150
the |Oca| rank Of peerS at the evaluating peer and the glObaI Average online session length (hour) Total online time (hour)
rank of peers based on their real online times. For the two (@) CDF of session length (b) CDF of total online time

examples shown in Figs. 7(a) and 7(b), the SRCCs are 0.79
and 0.7812, respectively. Fig. 8 shows the CDF of the SRC
achieved by peers in class A and in class B. We see that their

local ranks of peers resemble the global one. One importa . S
application of online time estimation is to differentiateeus the scalability, when the population increases, we deerfas

with different levels of activity. Then, only the rank of usés in such a way thatv(t)(N(t) — 1)Fc is constant.

ig. 12. Comparison between the original FileList trace aod sample.

will be suitable. online at cyclet if they are in the same connected component
in its local per-cycle UIG for cyclé. In graph theory, for a
C. Accuracy under partial information random graph withn vertices to be connected, the expected

number of edges needed is less thdn »n [10]. Therefore, the

To test the accuracy of UISE under partial information,basic condition for a peer to correctly recognize all therpee
we first vary P, and P, in such a way that’c = P, x P online at cyclet is:
is constant (equal ta0%). Pc represents the probability of
establishing an edge between two peers in a local per-cycle
UIG of a third peer. Intuitively, it decides the third peer’s
estimations for others. In Fig. 9 we show the user interactio N (¢)(N(t) — 1)Po > N(t) In(N(t)) = Po > )
strengths (estimated fractions of online time) averageer ov (t) -1
the classes of evaluating (“from” in the figure) and evaldate
(“to” in the figure) peers. We find that, consistent with our
intuition, the estimations stay stable for different valwé P,
and of P, while P¢ is constant. This allows us to analyze the
influence of Po without exploring extensive combinations of

P, and P,—We keepP; constant (equal to 1) and vady, The simulation result confirms the above analysis. Fig. 11

in such a way that is decreased from 100to 0.7%. In ghows that the average user interaction strengths (estimat
Fig. 10 we show the user interaction strengths averaged ovéfactions of online time) stay stable while we increase the
classes. We find that whd? is at least equal t6%, i.e., when population and decreage- accordingly.

peers hold at least% of the total information, the estimations

stay stable. Further reducirfg: results in noticeable decreases

of estimations, nevertheless, UISE still achieves a degseit VII.

As In(N(t)) increases very slowly withV(¢), the required
value for Po decreases strongly with the population. Thus,
UISE achieves good scalability in a self-organized manner.

. . EMULATION
rank: on average, peers in class A are correctly estimated as
more active than peers in class B. In this section we evaluate the performance of UISE for
different user behaviors. As we have tested different digse
D. Scalability nation protocols in Section VI, we now release the assumptio

of a generic information dissemination and we test UISE
In this section we test the scalability of UISE underunder Tribler's dissemination protocol based on emulation
different populations. LelV (¢) represent the number of online Due to the limit of space, we only show results with user
peers at cycle. At the end of the simulation, for cyclke each  behaviors generated from measurement traces. More results
peer will receiveN (¢)(N(t) — 1) Pc records and will generate about different churn patterns of users can be found in our
N(t)(N(t) — 1)Pc edges in its local per-cycle UIG. To test technical report [7].
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Fig. 13. Comparison between real and estimated fractioreniirie time for FileList trace

A. Emulation setup being in the same connected component in a local UIG).
herefore, its estimation for another user in fact reflelotsrt

. . oncurrent online time. As evaluating peer 4 is only online
contains 23 nodes, each of which has two 2.4 Ghz quad-co 10% of the time, it achieves a low accuracy. Nevertheless,

processors and 24 GBytes of memory. The nodes are connectﬁ estimation for another user can be used to assess their

by a 10 Gb/s. QDR Inf!mband interconnect. We import theavailability to each other—an important issue for disttéul
online and offline behaviors of users from measurementgrace

o T 1 L Btk Sy () Tags e Tt et urscosote gy e o
traces contain uptime and downtime of every user that wag, ., ating peer 4's estimations and its fraction of corentrr
oine st lest e urng ho masurement por. i e o cinrpets:wher e Sisee ey et
select 500 users for our emulations. Fig. 12 shows the CDFsSt'rmmOnS with an equal to 0. ‘
of the average online session length and the total online tim _
for the original trace and our sample. We see that our sample- Preparing for the real world
represents the original trace well. Further9a$; of the online As we found in Section VI-C, UISE achieves good esti-
sessions are longer than one hour, we set the cycle size to 39ations even with limited information. This desirable feat
minutes in the real implementation, so as to capture most ofjiows us to introduce a practical stratetaygeted-generation,
the online sessions. to reduce the number of interaction records to be dissertnat

In our emulation, peers run Tribler's dissemination proto-N targeted-generation, for each cycle, a user only geeerat
col: they meet, generate and disseminate interaction decor '€cords with theN¢ users that it has observed to be online
and store the records received from dissemination in tbeall  the longest during the past/ cycles, resulting a constant
SQLite databases. At the end of each emulation, they estimafumber of records being generated per user per cycle. We
their user interaction strengths with others, which giveirth Tun eémulations to test its performance, where we use the same
estimations of the fractions of online time of others. We sefSynthetic user behaviors as in Section VI-A. Fig. 15 shows
the cycle size to 2 minutes and we run each emulation for 1g_1e user interaction strengths (est_lmated fractions ofenl
hours, resulting in interaction bitmaps 1 x 60/2 = 300 bits. ~ ime) averaged over classes for different valuesNef (we
The small cycle size and short emulation time are comprasniseSt M = 1 in our emulations). We see that UISE performs
for the time consumption of the cluster. This parameteirgptt Stably whenV' decreases from 10 to 1, indicating that we can
represents a running time of 7 days when the cycle size is sécrease the workload dramatically without deterioratimg
to 30 minutes in the real world implementation. accuracy of the estimation.

The emulation is performed on an anonymous cluster th

B. Results VIIl. REAL-WORD DEPLOYMENT

Fig. 13 shows four examples of comparisons between the We have implemented UISE into Tribler. Due to the limit
real and estimated fractions of online time, where the fatte©f space, in this section, we only report measurements of the
one is represented by the user interaction strengths betwe&Volution of user’s online time and the accuracy of onlimeeti
the evaluated and evaluating peers. In Figs. 13(a), 138¢3)1 estimation. More results about the 0ver|ay structure ared th
and 13(d), the evaluated peers are ranked based on theieon“performar]ce of interaction record generation can be foand i
times estimated by a peer with an availability 0%, 90%,  our technical report [7].

50%, and 10%, respectively. The first three peers achieve
estimations very close to the real fractions of online timigh ~ A. Deployment techniques
an SRCC equal to 0.9998, 0.9945, and 0.9388, respectively. W

can see a clear decrease of the real fractions of online time. In the real world deployment, the cycle size is set to 30

S tes and the interaction history is kept in a sliding vaiwd
when the evaluated peers are ranked based on the estimati g X . X
from these three evaluating users, indicating that theiallo C@Sh'o? with a W'nd(}wuslgg of ’ dtayg. W% adoSth t?eget\e}(ill- c
ranks of peers closely resemble the global one. generation version o as Introduced in section Vil-L,

with N¢ = 5 and M = 1. In addition, we specify that two
Evaluating peer 4 (Fig. 13(d)), however, only achievesusers generate their first interaction record only untiythave

an SRCC equal to 0.6853. The reason is that, as stated s8een each other online for at least two cycles. This effelstiv

Section V-A, in UISE an evaluating peer only trusts theprevents “hit-and-run” users generating records that dre o

interaction records that can link back to itself (reflectegd b limited use.
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Fig. 14. Comparison between fraction of concurfig. 15.  User interaction strength (UIS) undeiFig. 16. CDF of online time of Tribler users.
rent online time and user interaction strength. targeted-generation for different values ;.

Tribler is fully distributed, containing no central serser identified 976, 745, and 217 users to be online for at least one
and hence no records of user behaviors from the global vieweycle; and the SRCCs between their estimations and realenli
To obtain the ground truth for our experiment, we deploytimes are equal to 0.9325, 0.8635, and 0.6446, respectively
log servers and every 5 minutes, each user reports its onlinehough evaluating user 3 (Fig. 17(c)) achieves a low acgurac
activity to one of them, including its identifier, its timastp, as shown in Fig. 18, it achieves accurate estimations of its
the number of interaction records it generated succegséutl  concurrent online time with other peers (with an SRCC equal
the updated information about interaction records of otiser  to 0.9785). Thus, it can successfully identify the userdhwit
pairs it received since last report. In total, for the firstelke whom it is online simultaneously, i.e., the users with wham i
of Tribler's new release, we obtain 2,874 active users withhas collaborated and potentially will collaborate.
unigue identifiers, among which 1,713 users have generated a
least one interaction record. For weeks 2, 3, and 4, we obtain

2,673, 2,905, and 2,884 active users with unique identjfiers IX. RELATED WORK

respectively. To date, a few works have focused on understanding user
interactions in online social networks. Moehal. [2] investi-
B. Evaluation gate the guestbook logs of Cyworld and they show that inter-

. L o actions between friends are highly reciprocated. Viswaeat
Evolution of online time: The dashed blue line in Fig. 16 5 [16] study the evolution of user interactions in Facebook
shows the CDF of online times of Tribler users obtained fromyq they find that user interactions change rapidly over.time
log servers during the first week. Around’ users are online  thege ohservations provide the foundation for designirggul
for more than 7 hours, resulting in an average of more thag,y only considers recent user interactions. Wilsbal. [17]
one hour per day. Nevertheless)% users are online for jnioduce an interaction graph. They show that interaction
less than one hour in total. Comparing Figs. 16 and 12(b)inks exhibit different properties than social links (fniships)
clearly users in FileList are more active than users in €ribl 5,4 are more representative for inferring user relatiqrshi

FileList constantly monitors user activities through caht Neyertheless, their interaction graph is unweighted anesdo
servers and it specifies that users with high contributivel®e 5+ take the interaction frequency into account as we do.
will be rewarded with the preference for future downloads a

therefore users are incentivized to stay online longer—JIS  Another direction of related research is identifying sbcia
serves exactly the same goal, and moreover, it is performeiies. Kahandeet al. [8] propose an approach for identifying
in a distributed manner. As a matter of fact, in the currenthe weak and the strong ties. They focus on supervised
release of Tribler, users are educated that their acsvitiéd be  learning models that require human annotation of link sjtien
evaluated through UISE. Though for now the estimated onlinsuch as top friend nomination. Xiarey al. [18] develop an
times are not utilized explicitly as in FileList, we can @ldy  unsupervised model that represents a range of tie strengths
observe a gradual increase of user's online time from week based on user interactions and profile similarity. However,
to week 4 (Fig. 16). This promising observation indicatest,th they consider only direct and binary interactions. Instead
being aware of their activities being evaluated, usersibl@r  we propose UISE that captures the frequency of both direct
are becoming more committed—a behavioral change that hand indirect interactions, which can be leveraged by these
been observed by sociologist and psychologists underaimil models for identifying social ties. Moreover, while all the
circumstances in human society [5]. above related works are centralized, UISE is applicable in

. . distributed syst .
The accuracy: Fig. 17 shows the comparisons between Istributed systems

the real and estimated fractions of online time of each &ribl There are also studies on leveraging user interactions in
user, where the latter is represented by the user interactiadistributed online networks for policy design. BitTorrefi3]
strengths between the evaluating and the evaluated users. dlients constantly monitor their direct interactions (@guds)
Figs. 17(a), 17(b), and 17(c), the evaluated users are dankavith others and reciprocate the ones from whom they download
based on their user interaction strengths with a user with athe fastest. However, in BitTorrent systems the problenowf |
availability of90%, 50%, and10%, respectively. Similar to the rendezvous exits and direct interactions are insufficiemt f
results of Filelist trace relay in Section VII-B, the acatyaf  inferring user relationships [6]. Meulpoldet al. introduce

the estimation is limited by the availability of the evalingt BarterCast, a distributed reputation system that rankssuse
user: the more active it is, the more accurate its estimationbased on their upload and download activity in P2P file
will be. In total, the three evaluating users have succélgsfu sharing. BarterCast captures both direct and indirect user
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interactions, however, it adopts a MaxFlow-based algorith (7
with a heavy complexity. Instead, UISE adopts an connect-
component-based algorithm and achieves a linear time com-
plexity in terms of the number of user pairs. We have also [8]
applied UISE to derive a distributed scheme for online time
estimation. To the best of our knowledge, this is the firstkvor [9]

that sheds lights on this topic.
[10]

X. CONCLUSION [11]

User interaction is the most important underpinning of[;
online networks, in which hundreds of millions of users
communicate, interact, and share their online lives. Irs thi
paper we propose UISE, a scalable scheme for estimating user
interaction strength in both centralized and distributetine (3]
networks. We have applied UISE to detect user interaction
patterns in Facebook based on wall posts, and we have derivéd!
patterns that resemble the ones often observed in the offli 5]
human society. We have further applied UISE to design an
deploy a decentralized scheme for online time estimatisetha |1,
on rendezvous. In the latter application we shown that UISé
is scalable and stable for different dissemination prdsco
and for different user behaviors. We have incorporated thigL7]
application into Tribler, and we have shown through Intérne
deployment that UISE effectively differentiates users hwit
different levels of activity, and thus, accomplishes thestmo (18]

important goal of estimating user interaction strength. (1]

As future work, we plan to apply UISE to more types of in-
teractions than only wall posts to detect interaction pagend
rendezvous to estimate online times. For instance, wedrtten 2%
explore chats over photos to friendship recommendation and
upload and download to incentive policy design. [21]
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