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Estimating user interaction strength in
online networks

Adele L. Jia, Boudewijn Schoon, Johan A. Pouwelse, and Dick H.J. Epema
Parallel and Distributed Systems Group

Department of Computer Science, Delft University of Technology, the Netherlands
Email: adele.lu.jia@gmail.com

Abstract—Online networks like Facebook and BitTorrent are
based on user interactions such as wall posts and content
exchange. In such systems, user relationships can be used to
enhance security and promote cooperation, but in order to
be meaningful, these relationships should be based on user
interaction strength instead of “binary” friendships. To d ate,
several centralized schemes forestimating user interaction strength
have been proposed. In contrast, we present the design, deploy-
ment, and analysis of the UISE scheme for User Interaction
Strength Estimation for both centralized and decentralized online
networks.

Among the strong points of UISE is that it captures both
direct and indirect user interactions, that it scales with only
partial information dissemination in decentralized systems, and
that it can be easily incorporated into distributed systems. We
apply UISE to detect user interaction patterns based on wallposts
in Facebook and we derive patterns that resemble those often
observed in the offline human society. We further apply UISE
to devise the first distributed scheme for online time estimation
and we implement it into Tribler, a distributed online network
for media and social applications like file sharing, streaming,
and voting. We demonstrate the accuracy and the scalability
of UISE with different information dissemination protocol s and
user behaviors using simulations, emulations, and a real-world
deployment.

I. I NTRODUCTION

Online networks are complex distributed computer systems
that involve potentially large numbers of humans with their
inputs and decisions. Typical examples of online networks
include email, Facebook, LinkedIn, Wikipedia, eBay, and
BitTorrent-like Peer-to-Peer (P2P) systems. They have become
popular and powerful infrastructures for communication and
they provide various mechanisms for users to interact. For
instance, in Facebook, users post messages on their friends’
walls and comment on their friends’ photos; in Wikipedia,
users collectively edit articles in their areas of expertise; and
in BitTorrent, users upload to and download from each other
to share the contents of their common interests. In this paper,
we devise a framework for expressing user interactions and
their strengths that is both generic and can be applied to a
wide range of systems and applications.

The patterns and strengths of user interactions are promi-
nent in online networks. In BitTorrent, user interactions can
be used to design contribution incentive policies. Through
estimating user interaction strength in terms of the amounts or
durations of uploads, system designers can make users favor
the highly active users for future uploads. As another example,
distributed systems often rely on importing trust relationships

from social networks like Facebook to enhance security, to
promote cooperation, and to improve item recommendation
[14], [15], [19], [20]. Instead of leveraging statical “binary”
friendships, users would be much better off by estimating their
interaction strengths with others and by trusting the ones with
whom they have interacted frequently. Finally, sociologists
often rely on user interactions for identifying social ties[8],
[18], and therefore a proper estimation of user interaction
strength is essential.

The importance of user interactions in online networks
leads to the question:How can we estimate user interac-
tion strength? Previous work addressing this issue [2], [16],
[17], [18] is insufficient. First, they have focused only on
online social networks like Facebook. Secondly, they have
only consideredbinary and direct user interactions, simply
indicating whether a user has directly interacted with another
user or not. Thirdly, they are based on centralized algorithms
that are not scalable given the astounding growth of online
networks—by now, Facebook has exceeded a billion users
and BitTorrent is serving hundreds of millions of users. To
remedy these, in this paper we propose a distributed User
Interaction Strength Estimation (UISE) scheme that has a more
fine-grained notion of user interaction and that is applicable to
a more general category of online networks. Specifically, we
make the following contributions.

As a model for representing user interaction histories,
we introduce thebitmap-based user interaction graph, based
on which UISE estimates user interaction strengths. UISE
captures the frequencies of both direct and indirect interac-
tions and can be easily incorporated into distributed systems
(Section III).

We apply UISE to detect user interaction patterns in online
networks. We take Facebook as an example and we derive
patterns resembling those often observed in the offline human
society (Section IV). We further apply UISE to derive a scheme
for estimating the time users are online in fully distributed
systems. We have implemented this application into Tribler
[12] and we demonstrate the scalability and the accuracy of
UISE through simulations, emulations, and Internet deploy-
ment (Sections V-VIII).

As it turns out, in order to maintain the accuracy of
UISE, its requirement for the coverage of global information
decreases with the population size, thus allowing UISE to
achieve good scalability in a self-organized manner. Further,
although a user only possesses a partial view of the system,
with UISE he can derive a ranking of users according to his



estimations of their interaction strength that highly resembles
the ranking derived from the global view. Thus, UISE achieves
the most important goal of estimating user interaction strength,
i.e., differentiating users with different levels of activity.

II. U SER INTERACTIONS AND DESIGN CONSIDERATIONS

User interaction strength is reflected by two aspects: the
frequency of interactions and the intensity of each interaction.
In this paper, we do not consider the latter aspect in order
to avoid evaluating the strengths of words, such as to decide
which comment should get a higher weight, “Happy birthday”
or “You look nice”. Rather, in this paper we define user
interaction strength as thefrequency that two users interact,
and we propose a model for estimating user interaction strength
based on this definition. In this context, the following three
issues are addressed.

Partial history versus full history of user interactions.
A properly selected partial history of user interactions ismore
suitable for estimating user interaction strength than a full
history, because user interactions in online networks change
rapidly over time. In Facebook, only 30% users consistently
interact from one month to the next [16], and in BitTorrent,
users who directly download from each other for one file rarely
meet again—the so-calledproblem of low rendezvous. With
this rapid change, stale interactions are no longer meaningful
for inferring user relationships.

Direct versus indirect interactions. Indirect interactions
are formed when users are linked through a sequence of
interactions, such as in Facebook when a user posts on another
user’s wall who in turn posts on a third user’s wall and so on,
and in BitTorrent when a user uploads to another user who
further uploads to a third user and so forth. Indirect interactions
should also be included in the estimation of user interaction
strength, for two reasons. First, when direct interactionsare
relatively scarce, such as in BitTorrent-like P2P systems where
the problem of low rendezvous exists, indirect interactions
provide supplementary information for inferring user relation-
ships. Secondly, a group of direct and indirect interactions
that happen within a short time frame may indicate offline
relationships. In the Facebook example, the corresponding
users could have participated in some offline event togetherand
are sharing their experiences. Indirect interactions thathappen
widely apart in time, however, are of limited use.

We provide two options to control the level of indirect
interactions to be included in the estimation of user interaction
strength. The first is adistance limit in terms of the number
of hops between interacting users. The second is aneligible
period. Only indirect interactions that happened together with
related direct interactions within this eligible period are in-
cluded, e.g., when a user exchanges messages with another
user who further exchanges messages with a third user, the
first and third users are only linked when these interactions
happened within, say one week. The distance limit and the
length of the eligible period are tunable parameters, so that
our design will be applicable to different applications. For
example, researchers analyzing social ties can leverage our
design to include different levels of indirect interactions in
their models [8], [18].

(a) Undirected (b) Directed

Fig. 1. Examples of user interaction graphs

Fig. 2. Per-cycle user interaction graphs generated from Fig. 1(a).

Scalability. As an online network evolves, users involve
in a huge number of interactions, which have to be collected
and analyzed to estimate user interaction strengths. Doingso
at central servers is neither scalable nor practical. Instead, we
propose a decentralized approach in which the collection of
interaction records and the estimation of interaction strengths
are performed by the end users.

III. D ESIGN DESCRIPTION

In this section, we introduce the basic design of UISE, a
user interaction strength estimation scheme that addresses the
issues listed in Section II.

A. Representing user interaction history

In UISE, users collect the whole or parts of the interaction
histories of other user pairs through central servers or dis-
tributed information dissemination. The interaction histories
received by a user are incorporated into itsbitmap-based
user interaction graph (UIG), a model that we introduce to
represent user relationships based on their interactions.Users
build individual UIGs unless they can obtain full knowledge
of the system, for example, through central servers. Therefore,
a UIG reflects a user’s local view of the system.

In a UIG, a vertex represents a user and the edge between
two vertices represent the interaction history of the usersit
connects. The interaction history is reflected by the label of
the edge, which is a string called theinteraction bitmap,
or simply bitmap. To capture the interaction frequency, we
abstract time into cycles where one cycle represents a certain
unit of time such as 30 minutes. We keep the interaction history
in a time-based (cycle-based) sliding window fashion, with
the window size being equal to the length of the kept history.
When two users have directly interacted in a particular cycle,
the corresponding bit in their bitmap is set to 1 (otherwise it
is set to 0). As time evolves, their interaction bitmap becomes
a binary string and the number of “1”s shows how frequently
they have recently interacted.

User interactions can be undirected (e.g., wall posts in
Facebook) or directed (e.g., uploads and downloads in Bit-
Torrent). Fig. 1 shows examples of UIGs for undirected and
directed user interactions, respectively, with a window size of
4. When Fig. 1(a) is derived from wall posts in Facebook, it
specifies that usersi andj have chatted on each other’s wall in



(a) Global UIG (b) Local UIG of useri

Fig. 3. An example of the global and local user interaction graphs (UIGs)

cycles 1 and 3. When the example is derived from the upload
and download interactions in BitTorrent, Fig. 1(b) specifies
that useri has uploaded to userk in cycles 2 and 4.

B. Estimating user interaction strength

To calculate the interaction strength, i.e., the frequencythat
two users interact (directly or indirectly), we perform cycle by
cycle examinations. First, a UIG is divided into a number of
per-cycle UIGs. Then, for each of these per-cycle UIGs, an
algorithm for finding connected components or reachability
is applied when the interactions are undirected or directed,
respectively: if two users are connected (or one is reachable
from the other) in a per-cycle UIG, they are considered as
having interacted in that cycle. Finally, the ratio betweenthe
total number of these recognized cycles and the window size
gives their interaction strength. As an example, Fig. 2 shows
the per-cycle UIGs derived from Fig. 1(a). Here, an algorithm
for finding connected components is applied: usersi and j
have interacted directly in cycles 1 and 3, and indirectly in
cycle 2. Therefore, their user interaction strength is estimated
to be3/4 = 0.75.

The requirement for being in the same connected compo-
nent or being reachable serves two purposes. First, it specifies
that only indirect interactions that happened together with
related direct interactions within the same cycle are included in
the estimation. Secondly, when UISE is applied in a distributed
system, it alleviates the potential manipulations of malicious
users, since users only trust the bitmaps that can link back
to themselves in their UIGs. During the calculation of user
interaction strength, we also provide the option of a distance
limit in terms of the number of hops between interacting users.
This limit is a tunable parameter for specifying the range of
indirect interactions to be included in the calculation. With a
limit of one hop, only direct interactions are included.

The connected components in an undirected graph and the
reachability in a directed graph can be computed in linear time
(in terms of the numbers of the vertices and edges of the graph)
using either breadth-first search or depth-first search [10].
Thus, UISE achieves linear time complexity for estimating user
interaction strength and it captures the frequency of both direct
and indirect interactions.

C. Incorporating into distributed systems

We now show how UISE can be incorporated into a
distributed system without central servers. We assume that
in a distributed system, users can obtain information through
the dissemination protocol provided by the system. In UISE,
after two users have directly interacted for the first time
in a particular cycle, they generate aninteraction record,
and disseminate this record into the system. Based on the

interaction records obtained through dissemination, eachuser
builds its ownlocal UIG. Further dividing a local UIG based
on cycles gives thelocal per-cycle UIGs. A local UIG is a
subset of theglobal UIG, in terms of the vertices, the edges,
and the interaction bitmaps. The global UIG can only be
obtained when the underlying dissemination protocol achieves
a 100% coverage. In this paper, the 100% coverage case is
used as the baseline for performance evaluation.

Fig. 3 shows an example of the global and local UIGs.
Notice that useri did not receive the interaction record between
j and k for cycle 3. Therefore, in its local UIG (Fig. 3(b)),
the interaction bitmap betweenj andk is 0100, instead of the
ground truth 0110.

Until now, we have introduced the basic design of UISE.
In the following sections, we demonstrate and evaluate two
examples of its application. In Section IV, we apply it to
detect user interaction patterns in Facebook, a centralized
online social network. In Sections V-VIII, we apply it to
derive a decentralized scheme for estimating the online times
of users and we evaluate its performance through simulations,
emulations, and Internet deployment.

IV. I NTERACTION PATTERN DETECTION

In this section, we apply UISE to detect user interaction
patterns in online networks.

A. Applying to interaction pattern detection

We takewall posts in Facebook as the example of user
interactions. In Facebook, each user can post messages on the
walls of his friends. [16] published the entire wall post histories
of 60,290 users in the New Orleans network until Jan 22, 2009.
We select their data of the last year—Jan 23, 2008 to Jan 22,
2009—as the user behavior imported into our experiment. In
total, 44,397 users and 876,993 posts are included.

We set the cycle size to one week and we divide the data
into two parts: the first80% as training data (weeks 1-43)
and the latter20% as testing data (weeks 44-54). When a
message is posted on a wall in some week, the two users
involved are considered as having directly interacted, andthe
corresponding bit in their interaction bitmap is set from 0 to
1. As Facebook is centralized, we can obtain the interaction
bitmaps of all user pairs. For each user (called theevaluating
user), we calculate its user interaction strength (UIS) with
all other users (called theevaluated users) based on the two
parts of the data, and we refer to the results as UIS80 and
UIS20, respectively. We group the evaluated users based on
the value of their UIS80. We use UIS80 to demonstrate the
user interaction pattern and we use the ratio between UIS20
and UIS80 (represented as UIS20/UIS80) to demonstrate the
evolution of the user interaction.

B. Results

We first show the UISs of a highly active user in Fig. 4.
We consider a user to be active in a particular week if he has
exchanged at least one message with another user. In total, the
highly active user has been active in 53 out of 54 weeks and
has exchanged 2,083 messages with 25 of his friends.
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Fig. 4. Interaction pattern of a highly active Facebook user(the vertical axes
are in log-scale)

For the first step, we do not consider the distance limit,
i.e., the limit of the number of hops between interacting users.
Fig. 4(a) (represented by triangles) shows that this highly
active user interacts intensively with only a small group: the
number of users in the UIS80 groups decreases dramatically
with increasing values of UIS80. A similar phenomenon is
often observed in human society where people tend to interact
frequently with relatively small groups and occasionally with
the people outside those groups [9]. The small group could
be friends, with whom people interact directly, or friends of
friends, with whom people build bonds through, for example,
sharing gossips with friends. On the other hands, Fig. 4(b)
shows that the average value of UIS20/UIS80 decreases with
increasing values of UIS80 until UIS80 equals 0.25, and stays
stable (at a little bit less than 1) afterwards. This indicates that
the interactions between the evaluating user and the users with
whom it has high (low) interaction strengths in the first80%
of the year tend to stay stable (become more intense) in the
latter 20% of the year, It can be conjectured that the same
dynamic holds in offline social relationships.

To evaluate the influence of indirect interactions, we have
also performed tests where we consider different distance
limits. For example, for the result of “within 2 hops” as
shown in Fig. 4, we have only considered the evaluating user’s
friends and friends of friends. We show the results for different
numbers of hops and we observe a similar tendency as for our
original design without a distance limit.

We have tested all users as in the above example and the
results are shown in Fig. 5 (we do not consider a distance limit
here). We find similar user interaction patterns in these results
as the highly active user.

V. D ISTRIBUTED ONLINE TIME ESTIMATION

Online time is essential for measuring user activity in both
centralized and distributed online networks. It reflects user’s
stickiness to social networks like Facebook, and it implies
a user’s contribution level in P2P systems like BitTorrent.
Nevertheless, online time is often recorded by central servers.
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Fig. 5. Interaction pattern of all Facebook users with the minimum, the
maximum, the median, and the 25th and 75th percentiles (the vertical axes
are in log-scale)

In this section, we apply UISE to devise the first distributed
scheme for online time estimation, and we introduce how to
implement this application into Tribler.

A. Applying to distributed online time estimation

In this application we takerendezvous as the example
of user interactions. Rendezvous means that two users meet
online through, for example, a Skype video call, a BitTorrent
inquiry of available files, or simply a keep-aliveping. It is
the most fundamental user interaction in online networks.
Applying UISE, when two users meet in a particular cycle,
they generate an interaction record and disseminate it intothe
system. Based on the records received through dissemination,
a useri builds its local per-cycle UIGs. If in any of these UIGs
a userj is in the same connected component asi, i recognizes
j to be online in that cycle. The number of these recognized
cycles givesj’s online time as estimated byi, and the user
interaction strength betweeni andj computed as the number
of these cycles divided by the length of the interaction history,
givesj’s fraction of online time as estimated byi.

As discussed in Section III-B, the requirement for being
in the same connected component is for maintaining the
security against malicious users, which generates a side effect
of UISE—the accuracy of an evaluating user’s estimations is
limited by its own online time: as we will see, the more active
a user is, the more accurate his estimations will be.

B. Implementing into Tribler

We have implemented the distributed online time estima-
tion application with UISE into Tribler [12], a fully distributed
open-source online network for media and social applications
like file sharing, streaming, content searching, voting, and
interest-based channels. Users in Tribler interact in various
ways including rendezvous, upload, download, and addition-
ally, comment, vote, and spam report in channels they join.
Fig. 6 shows the general architecture of the Tribler system.
Tribler uses the BitTorrent protocol for P2P file sharing and



Fig. 6. The Tribler system

the Libswift protocol for P2P streaming. Libswift [11] is an
IETF (Internet Engineering Task Force) standard protocol pro-
posed by the Tribler group. We have implemented UISE into
Tribler, where the underlying peer sampling and information
dissemination is supported by Dispersy [21]. The estimations
can be fed back to applications for policy design, such as in
file sharing to reciprocate active users with priority for future
downloads; they can also be visualized in the user interfaceto
psychologically motivate users to contribute.

VI. SIMULATION

In order to evaluate the performance of UISE, we take dis-
tributed online time estimation as the example. The advantage
of online time is that it is a metric with a ground truth—by
comparing the real and the estimated online times, we can
assess the accuracy of UISE. We address three questions: how
well does UISE perform for different information dissemina-
tion protocols; how well does it perform for different user
behaviors; and how well does it perform in the real world.

To answer the first question, in this section we run simula-
tions with generic information dissemination, which allowus
to explore the accuracy and scalability of UISE under different
dissemination protocols by tuning the coverage. To answer
the second question, in Section VII we run emulations of
UISE under various real-world user behaviors. To answer the
last question, in Section VIII we report measurement results
derived from the Internet-deployed Tribler system.

A. Basic simulation model

Synthetic user behavior: At any time, a peer1 can be
either online or offline. When an online session ends, it starts
an offline session immediately, and vice versa. The online
and offline session lengths follow exponential distributions, as

1From here, we useuser and peer alternatively to refer to the functioning
agent in our experiments.
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Fig. 7. Comparison between the real and estimated fractionsof online time

observed in many distributed systems [4]. We do not consider
population turnover in synthetic user behavior. Instead, later
in Sections VII and VIII we use user behavior generated from
measurements where population turnover is naturally included.
Let (Son, Soff ) represent the average online and offline session
lengths. We consider two classes of peers: (i) active peers,class
A, with (8, 2) cycles, and (ii) less active peers, class B, with
(2, 8) cycles.

Synthetic peer discovery and record dissemination:We
abstract peer discovery and record dissemination into constant
probabilities,P1 and P2, respectively, and we apply them in
every cycle to specify the probability that any two online peers
meet and generate an interaction record, and the probability
that an interaction record is received by a third peer. In thereal
world these probabilities should be dynamic, nevertheless, by
assuming a constant probability and setting different values to
it, we can analyze the performance of UISE for different peer
discovery and dissemination protocols.

Simulation setup: We run each simulation for 336 cycles,
i.e., 168 hours (7 days) when one cycle represents 30 minutes
in the real implementation2. Unless otherwise stated, we con-
sider 250 peers in class A and 250 in class B, and we setP1 to
20% andP2 to 50%. Based on the synthetic user behavior and
record dissemination, each peer gradually collects interaction
records and builds its local UIG. At the end of the simulation,
it estimates its user interaction strength with every otherpeer,
which, as specified in Section V-A, is equal to its estimationof
the fraction of online time of another peer. By comparing this
estimation with the real fraction of online time, we evaluate
the accuracy and scalability of UISE.

B. Accuracy

We first show in Fig. 7 the comparison between the real
and estimated fractions of online times, where the latter is
represented by the user interaction strengths (UISs) between
the evaluating and evaluated peers. In Figs. 7(a) and 7(b), the
evaluated peers are ranked according to their UISs with an
evaluating peer in class A and in class B, respectively. We see
that the peer in class A achieves more accurate estimations
than the peer in class B. Peers in class B only stay online for
SB

on/(SB
on +SB

off) = 20% of the time and therefore they meet
few peers to build their local views. As stated in Section V-A,
this is a compromise for maintaining the security.

We use the Spearman Ranking Correlation Coefficient
(SRCC) [13] to assess the accuracy of the peer ranks estimated

2We will give the reason later in Section VII-B
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by each peer. In brief, SRCC measure the monotonic depen-
dence between two variables. For each evaluating peer, first,
we rank its evaluated peers based on its online-time estimations
for them; then, in the order of this ranking, we generate two
variables—a list of the real online times and a list of the online-
time estimations; finally, we calculate the SRCC of these two
variables. In this way, we can assess the correlation between
the local rank of peers at the evaluating peer and the global
rank of peers based on their real online times. For the two
examples shown in Figs. 7(a) and 7(b), the SRCCs are 0.7968
and 0.7812, respectively. Fig. 8 shows the CDF of the SRCC
achieved by peers in class A and in class B. We see that their
local ranks of peers resemble the global one. One important
application of online time estimation is to differentiate users
with different levels of activity. Then, only the rank of users is
needed and a design that achieves an accurate rank, like UISE,
will be suitable.

C. Accuracy under partial information

To test the accuracy of UISE under partial information,
we first varyP1 and P2 in such a way thatPC = P1 × P2

is constant (equal to10%). PC represents the probability of
establishing an edge between two peers in a local per-cycle
UIG of a third peer. Intuitively, it decides the third peer’s
estimations for others. In Fig. 9 we show the user interaction
strengths (estimated fractions of online time) averaged over
the classes of evaluating (“from” in the figure) and evaluated
(“to” in the figure) peers. We find that, consistent with our
intuition, the estimations stay stable for different values of P1

and ofP2 while PC is constant. This allows us to analyze the
influence ofPC without exploring extensive combinations of
P1 and P2—We keepP1 constant (equal to 1) and varyP2

in such a way thatPC is decreased from 100% to 0.1%. In
Fig. 10 we show the user interaction strengths averaged over
classes. We find that whenPC is at least equal to5%, i.e., when
peers hold at least5% of the total information, the estimations
stay stable. Further reducingPC results in noticeable decreases
of estimations, nevertheless, UISE still achieves a decentuser
rank: on average, peers in class A are correctly estimated as
more active than peers in class B.

D. Scalability

In this section we test the scalability of UISE under
different populations. LetN(t) represent the number of online
peers at cyclet. At the end of the simulation, for cyclet, each
peer will receiveN(t)(N(t)−1)PC records and will generate
N(t)(N(t) − 1)PC edges in its local per-cycle UIG. To test
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Fig. 12. Comparison between the original FileList trace andour sample.

the scalability, when the population increases, we decrease PC

in such a way thatN(t)(N(t) − 1)PC is constant.

In UISE, an evaluating peer recognizes another peer to be
online at cyclet if they are in the same connected component
in its local per-cycle UIG for cyclet. In graph theory, for a
random graph withn vertices to be connected, the expected
number of edges needed is less thann lnn [10]. Therefore, the
basic condition for a peer to correctly recognize all the peers
online at cyclet is:

N(t)(N(t) − 1)PC ≥ N(t) ln(N(t)) ⇒ PC ≥
ln(N(t))

N(t) − 1
.

As ln(N(t)) increases very slowly withN(t), the required
value for PC decreases strongly with the population. Thus,
UISE achieves good scalability in a self-organized manner.

The simulation result confirms the above analysis. Fig. 11
shows that the average user interaction strengths (estimated
fractions of online time) stay stable while we increase the
population and decreasePC accordingly.

VII. E MULATION

In this section we evaluate the performance of UISE for
different user behaviors. As we have tested different dissemi-
nation protocols in Section VI, we now release the assumption
of a generic information dissemination and we test UISE
under Tribler’s dissemination protocol based on emulations.
Due to the limit of space, we only show results with user
behaviors generated from measurement traces. More results
about different churn patterns of users can be found in our
technical report [7].
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(a) Evaluating peer always online
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(b) Evaluating peer with an availabil-
ity of 90%
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(c) Evaluating peer with an availabil-
ity of 50%
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(d) Evaluating peer with an availabil-
ity of 10%

Fig. 13. Comparison between real and estimated fractions ofonline time for FileList trace

A. Emulation setup

The emulation is performed on an anonymous cluster that
contains 23 nodes, each of which has two 2.4 Ghz quad-core
processors and 24 GBytes of memory. The nodes are connected
by a 10 Gb/s QDR Infiniband interconnect. We import the
online and offline behaviors of users from measurement traces
generated from the FileList BitTorrent community [1]. These
traces contain uptime and downtime of every user that was
online at least once during the measurement period. In total,
we captured 63,548 users in 7 days, from which we randomly
select 500 users for our emulations. Fig. 12 shows the CDFs
of the average online session length and the total online time
for the original trace and our sample. We see that our sample
represents the original trace well. Further, as94% of the online
sessions are longer than one hour, we set the cycle size to 30
minutes in the real implementation, so as to capture most of
the online sessions.

In our emulation, peers run Tribler’s dissemination proto-
col: they meet, generate and disseminate interaction records,
and store the records received from dissemination in their local
SQLite databases. At the end of each emulation, they estimate
their user interaction strengths with others, which give their
estimations of the fractions of online time of others. We set
the cycle size to 2 minutes and we run each emulation for 10
hours, resulting in interaction bitmaps of10×60/2 = 300 bits.
The small cycle size and short emulation time are compromises
for the time consumption of the cluster. This parameter setting
represents a running time of 7 days when the cycle size is set
to 30 minutes in the real world implementation.

B. Results

Fig. 13 shows four examples of comparisons between the
real and estimated fractions of online time, where the latter
one is represented by the user interaction strengths between
the evaluated and evaluating peers. In Figs. 13(a), 13(b), 13(c),
and 13(d), the evaluated peers are ranked based on their online
times estimated by a peer with an availability of100%, 90%,
50%, and 10%, respectively. The first three peers achieve
estimations very close to the real fractions of online time,with
an SRCC equal to 0.9998, 0.9945, and 0.9388, respectively. We
can see a clear decrease of the real fractions of online time
when the evaluated peers are ranked based on the estimations
from these three evaluating users, indicating that their local
ranks of peers closely resemble the global one.

Evaluating peer 4 (Fig. 13(d)), however, only achieves
an SRCC equal to 0.6853. The reason is that, as stated in
Section V-A, in UISE an evaluating peer only trusts the
interaction records that can link back to itself (reflected by

being in the same connected component in a local UIG).
Therefore, its estimation for another user in fact reflects their
concurrent online time. As evaluating peer 4 is only online
for 10% of the time, it achieves a low accuracy. Nevertheless,
its estimation for another user can be used to assess their
availability to each other—an important issue for distributed
online networks where users collaborate and only the ones
online simultaneously can help each other. In Fig. 14 we show
evaluating peer 4’s estimations and its fraction of concurrent
online time with other peers, where we observe very accurate
estimations with an SRCC equal to 0.9973.

C. Preparing for the real world

As we found in Section VI-C, UISE achieves good esti-
mations even with limited information. This desirable feature
allows us to introduce a practical strategy,targeted-generation,
to reduce the number of interaction records to be disseminated.
In targeted-generation, for each cycle, a user only generates
records with theNG users that it has observed to be online
the longest during the pastM cycles, resulting a constant
number of records being generated per user per cycle. We
run emulations to test its performance, where we use the same
synthetic user behaviors as in Section VI-A. Fig. 15 shows
the user interaction strengths (estimated fractions of online
time) averaged over classes for different values ofNG (we
set M = 1 in our emulations). We see that UISE performs
stably whenN decreases from 10 to 1, indicating that we can
decrease the workload dramatically without deterioratingthe
accuracy of the estimation.

VIII. R EAL-WORD DEPLOYMENT

We have implemented UISE into Tribler. Due to the limit
of space, in this section, we only report measurements of the
evolution of user’s online time and the accuracy of online time
estimation. More results about the overlay structure and the
performance of interaction record generation can be found in
our technical report [7].

A. Deployment techniques

In the real world deployment, the cycle size is set to 30
minutes and the interaction history is kept in a sliding window
fashion with a window size of 7 days. We adopt thetargeted-
generation version of UISE as introduced in Section VII-C,
with NG = 5 and M = 1. In addition, we specify that two
users generate their first interaction record only until they have
seen each other online for at least two cycles. This effectively
prevents “hit-and-run” users generating records that are of
limited use.
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Fig. 14. Comparison between fraction of concur-
rent online time and user interaction strength.
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Fig. 16. CDF of online time of Tribler users.

Tribler is fully distributed, containing no central servers
and hence no records of user behaviors from the global view.
To obtain the ground truth for our experiment, we deploy
log servers and every 5 minutes, each user reports its online
activity to one of them, including its identifier, its timestamp,
the number of interaction records it generated successfully, and
the updated information about interaction records of otheruser
pairs it received since last report. In total, for the first week
of Tribler’s new release, we obtain 2,874 active users with
unique identifiers, among which 1,713 users have generated at
least one interaction record. For weeks 2, 3, and 4, we obtain
2,673, 2,905, and 2,884 active users with unique identifiers,
respectively.

B. Evaluation

Evolution of online time: The dashed blue line in Fig. 16
shows the CDF of online times of Tribler users obtained from
log servers during the first week. Around15% users are online
for more than 7 hours, resulting in an average of more than
one hour per day. Nevertheless,60% users are online for
less than one hour in total. Comparing Figs. 16 and 12(b),
clearly users in FileList are more active than users in Tribler.
FileList constantly monitors user activities through central
servers and it specifies that users with high contribution levels
will be rewarded with the preference for future downloads, and
therefore users are incentivized to stay online longer—UISE
serves exactly the same goal, and moreover, it is performed
in a distributed manner. As a matter of fact, in the current
release of Tribler, users are educated that their activities will be
evaluated through UISE. Though for now the estimated online
times are not utilized explicitly as in FileList, we can already
observe a gradual increase of user’s online time from week 1
to week 4 (Fig. 16). This promising observation indicates that,
being aware of their activities being evaluated, users in Tribler
are becoming more committed—a behavioral change that has
been observed by sociologist and psychologists under similar
circumstances in human society [5].

The accuracy: Fig. 17 shows the comparisons between
the real and estimated fractions of online time of each Tribler
user, where the latter is represented by the user interaction
strengths between the evaluating and the evaluated users. In
Figs. 17(a), 17(b), and 17(c), the evaluated users are ranked
based on their user interaction strengths with a user with an
availability of90%, 50%, and10%, respectively. Similar to the
results of Filelist trace relay in Section VII-B, the accuracy of
the estimation is limited by the availability of the evaluating
user: the more active it is, the more accurate its estimations
will be. In total, the three evaluating users have successfully

identified 976, 745, and 217 users to be online for at least one
cycle; and the SRCCs between their estimations and real online
times are equal to 0.9325, 0.8635, and 0.6446, respectively.
Though evaluating user 3 (Fig. 17(c)) achieves a low accuracy,
as shown in Fig. 18, it achieves accurate estimations of its
concurrent online time with other peers (with an SRCC equal
to 0.9785). Thus, it can successfully identify the users with
whom it is online simultaneously, i.e., the users with whom it
has collaborated and potentially will collaborate.

IX. RELATED WORK

To date, a few works have focused on understanding user
interactions in online social networks. Moonet al. [2] investi-
gate the guestbook logs of Cyworld and they show that inter-
actions between friends are highly reciprocated. Viswanath et
al. [16] study the evolution of user interactions in Facebook
and they find that user interactions change rapidly over time.
These observations provide the foundation for designing UISE
that only considers recent user interactions. Wilsonet al. [17]
introduce an interaction graph. They show that interaction
links exhibit different properties than social links (friendships)
and are more representative for inferring user relationships.
Nevertheless, their interaction graph is unweighted and does
not take the interaction frequency into account as we do.

Another direction of related research is identifying social
ties. Kahandaet al. [8] propose an approach for identifying
the weak and the strong ties. They focus on supervised
learning models that require human annotation of link strength
such as top friend nomination. Xianget al. [18] develop an
unsupervised model that represents a range of tie strengths
based on user interactions and profile similarity. However,
they consider only direct and binary interactions. Instead,
we propose UISE that captures the frequency of both direct
and indirect interactions, which can be leveraged by these
models for identifying social ties. Moreover, while all the
above related works are centralized, UISE is applicable in
distributed systems.

There are also studies on leveraging user interactions in
distributed online networks for policy design. BitTorrent[3]
clients constantly monitor their direct interactions (uploads)
with others and reciprocate the ones from whom they download
the fastest. However, in BitTorrent systems the problem of low
rendezvous exits and direct interactions are insufficient for
inferring user relationships [6]. Meulpolderet al. introduce
BarterCast, a distributed reputation system that ranks users
based on their upload and download activity in P2P file
sharing. BarterCast captures both direct and indirect user
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(a) Evaluating user with an availability of90%
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(b) Evaluating user with an availability of50%
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Fig. 17. Comparison between real and estimated fractions ofonline time
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Fig. 18. Fraction of concurrent online time versus user interaction strength

interactions, however, it adopts a MaxFlow-based algorithm
with a heavy complexity. Instead, UISE adopts an connect-
component-based algorithm and achieves a linear time com-
plexity in terms of the number of user pairs. We have also
applied UISE to derive a distributed scheme for online time
estimation. To the best of our knowledge, this is the first work
that sheds lights on this topic.

X. CONCLUSION

User interaction is the most important underpinning of
online networks, in which hundreds of millions of users
communicate, interact, and share their online lives. In this
paper we propose UISE, a scalable scheme for estimating user
interaction strength in both centralized and distributed online
networks. We have applied UISE to detect user interaction
patterns in Facebook based on wall posts, and we have derived
patterns that resemble the ones often observed in the offline
human society. We have further applied UISE to design and
deploy a decentralized scheme for online time estimation based
on rendezvous. In the latter application we shown that UISE
is scalable and stable for different dissemination protocols
and for different user behaviors. We have incorporated this
application into Tribler, and we have shown through Internet
deployment that UISE effectively differentiates users with
different levels of activity, and thus, accomplishes the most
important goal of estimating user interaction strength.

As future work, we plan to apply UISE to more types of in-
teractions than only wall posts to detect interaction patterns and
rendezvous to estimate online times. For instance, we intend to
explore chats over photos to friendship recommendation and
upload and download to incentive policy design.
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