
Optimisation
Models for Merging
Ambulance Regions
in the Netherlands

L.J. Zwep
Source: Piccell (2015). London ambulance blurred motion - Stockfoto [Photograph]. Retrieved from https://www.gettyimages.nl.





Optimisation
Models for Merging
Ambulance Regions
in the Netherlands

by

L.J. Zwep
to obtain the degree of Bachelor of Science

at the Delft University of Technology,
to be defended publicly on Thursday July 4, 2019 at 10:00 AM.

Student number: 4581733
Project duration: April 15, 2019 – July 4, 2019
Thesis committee: Dr. ir. J. T. van Essen, TU Delft, supervisor

Dr. ir. R. van der Toorn, TU Delft
Drs. E. M. van Elderen TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Preface

This bachelor thesis has been written as part of the Bachelor programme in Applied Mathematics at Delft
University of Technology and was supervised by dr. ir. J. T. van Essen at the department of optimisation.

The research presents two integer linear programs. With the use of symmetry breaking constraints and
a heuristic method, the integer linear programs are applied on a data set containing all data points of the
Netherlands. For more information about the programs and the data set that are used, feel free to contact
me.

I would like to thank my supervisor dr. ir. J. T. van Essen for her help and support during the whole project.
Next to that, I would like to thank dr. ir. R. van der Toorn and drs. E. M. van Elderen for joining my thesis
committee and taking the time to read and review the report.

L.J. Zwep

Delft, July 2019

iii





Abstract

This thesis focuses on optimising the Emergency Medical Services (EMS) in the Netherlands. In the cur-
rent situation, the Netherlands is divided into 24 independent regions in which ambulances operate. These
regions can be merged in order to reduce response time and increase efficiency. Different models are pre-
sented in which these regions are merged in an optimal way. The thesis starts with an explanation of the
current regional system within the Netherlands. Next, two models following from existing literature are dis-
cussed. These two models are used as a basis for new models that optimise the merging of regions. Then, the
results are discussed, which are in line with the assumption that merging regions leads to a better coverage
and a reduction in the number of ambulances needed.

Keywords: ambulances, merging regions, modeling and optimisation, Integer Linear Programming
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1
Introduction

In the case of an emergency call, it is of vital importance that urgent action is taken. The chance that a patient
who was involved in an accident will survive depends to a large extent on how quickly an ambulance can
arrive [10]. An important aspect of arriving somewhere quickly is starting from the right place. If you start
close to the accident, this logically reduces the total travel time. But now the question arises what the best
place is to leave from. The goal is to place the ambulance base locations in a way that the biggest population
can be reached as soon as possible.

In operations research, the distribution of ambulances is being discussed by multiple scientists. TU Delft
and the Center for Mathematics and Computer Science (CWI) worked together to find the optimal placement
of the locations of ambulances in the Netherlands [1]. While working on this optimisation, the Netherlands
was divided into 25 Regional Ambulance Services (RAVs). A RAV is by law the legal person that is responsible
for all actions in the event of an ambulance call, both in the emergency room and when performing ambu-
lance care [2]. The Netherlands currently has 24 RAVs, all of which operate independently of each other.

The optimisation of ambulance locations in the Netherlands is always within these RAVs, because the am-
bulances do not serve outside their own RAV. However, the response time of calls at the boundary of a region
is on average higher than at the centre of a region [14]. Therefore, it would be better to have as few border ar-
eas as possible, so equivalently, as few borders as possible. If regions were to work together, more calls could
be answered with fewer ambulances. Thus, merging these RAVs saves costs, and more importantly, ensures
better care provision.

However, merging RAVs is not desirable from an organisational point of view. The RAVs are separate bod-
ies whose merger would cost a lot of time and money. That is why not all of the Netherlands can suddenly be
merged into one RAV.

So, if merging does takes place, it is very important that it is properly determined which RAVs will be
merged. This research focuses on this. Therefore, the research question for this research is:
“What is the merger of RAVs within the Netherlands while taking the coverage and efficient deployment of
ambulances into account? "
With the sub-questions:

• “What are the disadvantages of merging an RAV?"

• “With a limited number of new RAVs, which existing RAVs must be combined to achieve an optimum?"

• “What are the benefits of this merger in terms of coverage and efficient deployment of ambulances?"

In the report, Chapter 2 discusses the properties of a RAV in more detail, specifically why merging them is
hard in practice. In Chapter 3, an overview of mathematical models for optimally locating emergency medical
services are presented. Chapter 4 presents the mathematical models developed for this research. In Chapter
5, the results of the research are shown and analysed. At last, in Chapter 6, the research is concluded and
discussed.
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2
Properties of RAVs

As stated earlier, the RAVs work independently. This means that it is a stand-alone organisation. This has the
consequence that merging RAVs entails many disadvantages.

Every RAV has its own form of management. For instance, the RAV Gooi en Vechtstreek is part of the Re-
gio Gooi en Vechtstreek, which has its own Executive and General Board. The RAV Flevoland is part of the
Flevoland GGD with a corresponding GGD board [8]. To merge these two RAVs, one or both forms of gover-
nance must be adjusted.

In addition, every RAV has its own locations with a staff department for care, policy, scheduling, educa-
tion, quality, technical management and fleet management. A merge ensures that certain jobs will fall dou-
ble, which may lead to forced dismissal. In addition, there different control rooms for every RAV. However, the
‘Control room of the future’ plan stipulates that by 2021 there must be a change from 25 to 10 control rooms,
so there is already a need to merge here [12].

Another reason that makes merging problematic is the role of health insurers in ambulance care. In the
Netherlands, health insurance companies are responsible for financing ambulance care. The Dutch Health-
care Authority (NZa) specifies how health insurers should distribute the national macro budget [2]. It differs
per RAV which health insurers provide payment for ambulance care. Table 2.1 shows an overview of the RAVs
and their responsible health insurers. If two RAVs are merged with different health insurers responsible for
their budget, then there must be a completely new distribution of the budget and a change in financing.
Therefore, this is extra problematic and this must be considered when merging the RAVs.

Finally, there is the problem that the Temporary Ambulance Care Law (TWAZ) states how the RAVs are
running. The TWAZ tells us that the RAVs are the only ones allowed to provide ambulance care in their re-
gion [16]. Therefore, the merging of RAVs requires adjustments to be made by the ministry, with high costs in
terms of time and money due to a lot of bureaucracy.

In summary, there are five points which make a merger between RAVs not desirable from an organisa-
tional point of view. Namely:

1. Own management

2. Own office locations and staff

3. Own control rooms

4. Own health insurance companies

5. Determined by law

Despite these factors, it is possible to do merge the RAVs. As can be seen in Table 2.1, RAV 13 is missing.
This is because RAVs 11 and 13 have already been merged. In figure 2.1, you can find the current distribution
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8 2. Properties of RAVs

of RAVs in the Netherlands. As can be seen, 11 and 13 are put into the same RAV.

Table 2.1: The 25 RAVs and their responsible health insurers. Source: Nederlandse Zorgautoriteit, Normoverschrijdingen responstijden
ambulances, 2016

Number Region Health insurer 1 Health insurer 2
1 Groningen Menzis ZK
2 Fryslan DFL VGZ
3 Drenthe ZK VGZ
4 IJsselland ZK VGZ
5 Twente Menzis VGZ
6 Noord- en Oost-Gelderland Menzis ZK
7 Gelderland Midden Menzis VGZ
8 Gelderland-Zuid VGZ CZ
9 Utrecht ZK VGZ
10 Noord-Holland-Noord VGZ ZK
11 Amsterdam-Waterland ZK VGZ
12 Kennemerland ZK VGZ
14 Gooi en Vechtstreek ZK VGZ
15 Haaglanden CZ Menzis
16 Hollands Midden Z&Z ZK
17 Rotterdam-Rijnmond ZK DSW
18 Zuid-Holland-Zuid VGZ CZ
19 Zeeland CS VGZ
20 Midden en West-Brabant VGZ CZ
21 Brabant-Noord VGZ CZ
22 Brabant-Zuidoost VGZ CZ
23 Limburg-Noord VGZ CZ
24 Limburg-Zuid CZ VGZ
25 Flevoland ZK VGZ

Figure 2.1: Map of the current 24 RAVs in the Netherlands. Source: J. W. van Aalst (2015). Kaart van de RAV-regio’s, 2015 [map]. Retrieved
from http://www.imergis.nl



3
Literature overview of ambulance location

models

In this chapter, two of the most frequently used ambulance location models are given as a basis for the re-
search. Xueping et al. [17] states that all the models made for ambulance covering can be divided into three
broad groups. First, we have covering models, which guarantee the coverage within a given time standard.
Second, we have p-median models, which minimise the total mean distance to all the demand locations.
Third, we have p-centre models, which minimise the maximal distance regarding all demand locations.

This literature overview considers two of the basic covering models. We only discuss the models that are
used in this research. A broader overview of ambulance location models can be found in the review paper of
Xueping et al. [17] and the comparison paper by Van den Berg et al. [15].

In order to introduce the mathematical models, it is of importance to introduce some notation.

Notation Type Meaning
I Set All demand locations
J Set All potential base locations
Ji Set All j ∈ J such that t j i < r
t j i Parameter Travel time from j ∈ J to i ∈ I
r Parameter Maximal time to reach a demand location i
p Parameter Amount of ambulances that can be placed
di Parameter Weight of location i
x j Binary variable 1 when there is an ambulance at base location j

0 otherwise
yi Binary variable 1 when demand location i is covered

0 otherwise

3.1. Maximum Covering Location Problem (MCLP)
Having this notation clear, we can present the first model, the Maximal Covering Location Problem (MCLP).
This is a model designed in 1974 by Church and ReVelle [4] and later discussed in an abundance of litera-
ture ([1], [14], [17], [15]). MCLP is a model which maximises the population that can be reached within a
predetermined time limit given p ambulances.

Maximise
∑
i∈I

di yi

such that
∑
j∈Ji

x j ≥ yi ∀i ∈ I∑
j∈J

x j = p

yi , x j ∈ {0,1} ∀i ∈ I , j ∈ J

(3.1)

9



10 3. Literature overview of ambulance location models

The objective function maximises the number of locations covered while taking their weights into ac-
count. The first constraint makes sure that yi only gets value 1 if there is an ambulance placed within a
travelling time less than r . The second constraint makes sure that exactly p ambulances are placed.

3.2. Maximum Expected Covering Location Problem (MEXCLP)
A major disadvantage of MCLP is that it assumes that at an ambulance is always available. This is of course
not something that could be assumed as ambulances depart from their base location when they respond
to a call. That is why Daskin [6] introduced the Maximum Expected Covering Location Problem (MEXCLP)
in 1983. This model considers how busy the ambulances are. To this end, they introduce the parameter q
which is the probability that an ambulance is busy. The binary variable yi r now indicates whether demand
location i is covered by at least r ambulances. Then, the expected coverage with r ambulances becomes
Er = 1− qr . This is equal to the probability of at least one success in r independent Bernoulli experiments
[14]. The marginal coverage of the r th ambulance is then Er −Er−1 = qr−1(1−q). The model also considers
the possibility to place more than one ambulance at a base location. Consequently, x j changes from a binary
variable into an integer variable.Therefore, the model is as follows.

Maximise
∑
i∈I

p∑
r=1

di (1−q)qr−1 yi r ,

such that
∑
j∈Ji

x j ≥
p∑

r=1
yi r , ∀i ∈ I∑

j∈J
x j ≤ p,

x j ∈N, ∀ j ∈ J
yi r ∈ {0,1}, ∀i ∈ I ,r = 1, . . . , p.

(3.2)

MEXCLP is preferred over other models such as MCLP but also Maximum Availability Location Problem
(MALP) [11] and Double Standard Model (DSM) [9] due to better coverage, quicker response time, and for
most of the models, also shorter computation time [15].

So, from many models, two models have been discussed, MCLP and MEXCLP. MCLP is a basic model
where there are only a few constraints and where many assumptions are made in advance. This makes it an
easy model, but not a realistic one. A more realistic model is MEXCLP, because it considers how busy the
ambulances are. These models are used often in the literature and both form a good basis for an extension.



4
Merging ambulance regions problem

Now that the basic covering models have been explained, we are able to reconstruct these models into models
that can solve the given problem. This chapter presents four different models: two based on MCLP and two
based on MEXCLP, which all give a solution to the merging of ambulance regions problem. There are two
different formulations presented for each of the problems: one based on putting RAVs into main regions and
one based on directly merging the RAVs.

4.1. MCLP
As stated above, two of the models are based on MCLP. This is due to the fact that this model is really basic,
so it does not have a lot of constraints at prior. This is because it has a lot of assumptions taken into account,
which makes it easy to modify the model itself. Next to that, the computation time of MCLP is significant low
[15], which is preferable as there is quite an amount of data used as input.

4.1.1. First formulation
The objective of the considered problem is to merge the RAVs in the Netherlands optimally, under the condi-
tion that there is still a pre-determined number of RAVs left. This condition is necessary, due to the fact that
the optimal solution will otherwise always be to merge all the RAVs into one. This would not be preferred due
to the reasons given in Chapter 2.

MCLP has no features at all that have to do with regions. To this end, some new parameters and variables
have to be introduced. First, there is the set containing all the RAVs, which is called K . Every demand location
j ∈ J is pre-assigned to a RAV k ∈ K . If two RAVs are merged, they are put into the same so called main region.
The set H contains all the main regions h ∈ H .

The objective function of the model does not need any changes compared to the original MCLP model. It
is still the aim to cover as much demand locations as possible, so the objective function is:

Maximise
∑
i∈I

di yi . (4.1)

The first constraint does need some change. In MCLP, a demand location is covered if a base location has
an ambulance which can reach the demand location within r minutes. For the new model, this is not always
true. This is only true if the demand location and the base location are in the same main region h ∈ H . Hence,
there is a need for a variable which shows whether that is true. Define:

li j h =
{

1, if potential base location j ∈ J and demand location i ∈ I are both in main region h ∈ H

0, otherwise

So, the first constraint becomes the following:∑
h∈H

∑
j∈Ji

x j li j h ≥ yi , ∀i ∈ I . (4.2)

11



12 4. Merging ambulance regions problem

This constraint contains a multiplication of two decision variables, and thus, it is not linear. This will be dealt
with in Section 4.3. To ensure that li j h only gets value 1 if potential base location j ∈ J and demand location
i ∈ I are both in main region h ∈ H , some more constraints need to be added. To check if a demand location
or potential base location is in a certain main region, there is the need to know in which main region each
RAV is. In consequence, it is necessary to introduce another binary variable. This time to check whether RAV
k ∈ K is in main region h ∈ H .

bkh =
{

1, if RAV k is in main region h

0, otherwise

But it is also important to know in which RAV each demand and potential base location is. This infor-
mation is known and is used as input. Therefore, the parameters a j k and αi k are introduced. a j k is 1 if
potential base location j is in RAV k and 0 in all the other cases. αi k is 1 if demand location i is in RAV k, and
0 otherwise. Now, it is possible to set up the constraints such that li j h takes the correct value.∑

k∈K
a j k bkh ≥ li j h , ∀i ∈ I , j ∈ J ,h ∈ H∑

k∈K
αi k bkh ≥ li j h , ∀i ∈ I , j ∈ J ,h ∈ H .

(4.3)

These constraints only work in combination with the objective function and the first constraint. Without the
objective function, li j h could easily be chosen 0 for all i , j and h. But because the objective is to maximise yi ,
and yi can only be 1 if li j h is 1, constraints (4.3) work.

Now, the following step is to limit the number of ambulances that can be placed in each main region.
It is useful to introduce parameter pk , which specifies how many ambulances are available in RAV k ∈ K .
The following constraint ensures that the number of ambulances per main region h ∈ H is at most the total
number of ambulances in all RAVs k ∈ K which are part of main region h ∈ H .

∑
k∈K

∑
j∈J

a j k bkh x j ≤
∑

k∈K
pk bkh , h ∈ H . (4.4)

This constraint is also not linear, so this will also be changed in Section 4.3.

When there is a coverage of 100%, the RAVs can be merged randomly, because it will be optimal in all
cases. This means that two RAVs who are not adjacent might be merged together. This is a situation that
should be prohibited, because it is inefficient to merge RAVs who are not adjacent. To prohibit this, a new
parameter is defined. This parameter makes use of the subscript k1k2 to show that there are two different
RAVs k1,k2 ∈ K taken into account.

tk1k2 =
{

1, if RAVs k1 and k2 are adjacent

0, otherwise

Then by adding a new constraint on bkh , the situation described above will not occur. So, the following
constraint is added to the model.

bk1h +bk2h −1 ≤ tk1k2 , ∀k1 ∈ K ,k2 ∈ K ,h ∈ H . (4.5)

Lastly, there are two constrains regarding the main regions to make the model complete. Each RAV should
be assigned to exactly one main region. At last, it is needed to limit the number of RAVs that can be put in
a main region. This is because of the condition that is presented at the beginning of the chapter. To ensure
this, s is presented, which gives the number of RAVs that can be put into each main region. Now the last two
constraints are as follows.

∑
h∈H

bkh = 1, ∀k ∈ K∑
k∈K

bkh ≤ s, ∀h ∈ H .
(4.6)
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Thus, the complete model is the following.

Maximise
∑
i∈I

di yi ,

such that
∑

h∈H

∑
j∈Ji

x j li j h ≥ yi , ∀i ∈ I∑
k∈K

a j k bkh ≥ li j h , ∀i ∈ I , j ∈ J ,h ∈ H∑
k∈K

αi k bkh ≥ li j h , ∀i ∈ I , j ∈ J ,h ∈ H∑
k∈K

∑
j∈J

a j k bkh x j ≤
∑

k∈K
pk bkh , ∀h ∈ H

bk1h +bk2h −1 ≤ tk1k2 , ∀k1 ∈ K ,k2 ∈ K ,h ∈ H∑
h∈H

bkh = 1, ∀k ∈ K∑
k∈K

bkh ≤ s, ∀h ∈ H

yi ,bkh , x j , li j h ∈ {0,1}, ∀i ∈ I , j ∈ J ,k ∈ K ,h ∈ H .

(4.7)

4.1.2. Symmetry breaking constraints
There can be put an equal number of RAVs in all the main regions. This has as consequence that there is total
symmetry regarding the main regions [7]. For example, if you have four RAVs that need to be merged into
two main regions, then RAVs one and two can be put in main region one and RAVs three and four in main
region two. But in essence this is the same as putting RAVs one and two in main region two and RAVs three
and four in main region one. All this symmetry takes up a lot of computation time and should be reduced
[13]. Therefore, two symmetry breaking constraints were added to the model to reduce computation time.

The first symmetry breaking constraint is used to solve the problem described above. If we only allow to
assign RAVs with index k greater than or equal to the index of main region h, then, in our example, RAVs one
and two can never be put into main region two, because RAV one should always be put into main region one
and if it is being merged with RAV two they will stay in the first main region.

bkh ∀(k,h) : k ≥ h (4.8)

The second symmetry breaking constraint is based on the constraint presented by Denton et al. [7] in their
paper about optimal allocation of surgery blocks. In their article, they create a model in which they assign
surgeries to different operating rooms. This can be translated to assigning RAVs to main regions. We explain
this constraint by means of an example. Say that the first four RAVs are put into the first two main regions.
Then, the fifth RAV can either be put into one of the two main regions which already have other RAVs in it, or
it will be put into another, new main region. If the last case happens, we assume that the fifth region is put
into the third main region, and not in main region 4, 5, etcetera. This is forced with the following constraint:

b53 ≤ b22 +b32 +b42,
b54 ≤ b33 +b43,
b55 ≤ b44.

(4.9)

So b55 can only get value 1 if b44 has value 1, because then all the RAVs are put into four different main regions
and so the fifth RAV can be put in a fifth main region. If this was not the case, and some RAVs were put to-
gether, then the fifth RAV could never be in the fifth main region because then a main region is being skipped.
To make this general, it uses the first symmetry breaking constraint and it results in:

bkh ≤
k−1∑

u=h−1
bu,h−1, ∀(k,h) : k ≥ h. (4.10)

4.1.3. Second formulation
Continuing, another formulation for the problem is presented. This formulation models the same problem
through a different approach. This formulation does not introduce main regions, but directly determines if
two RAVs are merged. To this end, some new notation is needed.
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First of all, a decision variable is needed which states whether two RAVs are merged. The decision variable
is as follows:

fk1k2 =
{

1, if RAVs k1 ∈ K and k2 ∈ K are merged

0, otherwise.

Again, we use MCLP as a basis. This is because the calculation time of MCLP is one of the quickest for all
static ambulance location models [15]. Thus, the objective function stays the same as in Section 4.1.1:

maximise
∑
i∈I

di yi . (4.11)

Then, the first constraint has to make sure that location i ∈ I is only covered, if there is an ambulance at
potential base location j ∈ J which can reach demand location i ∈ I within r minutes and i ∈ I and j ∈ J are
in the same newly merged region. So, to this end, it is needed to know if j is in some k1 that is merged with
k2 which i is in. This leads to the following constraint.∑

k1∈K

∑
k2∈K

∑
j∈Ji

a j k1 x j fk1k2αi k2 ≥ yi , ∀i ∈ I . (4.12)

This constraint has a multiplication of x j and fk1k2 , and thus, it is not linear. This will be resolved in Sec-
tion 4.3.

Now it is of course of importance that fk1k2 is working correctly. fk1k2 should possess the transitive prop-
erty. So, if k1 is merged to k, and k is merged with k2, then k1 and k2 are also merged. The next constraint
makes sure fk1k2 is working the way it should.

fk1k + fkk2 −1 ≤ fk1k2 , ∀k,k1,k2 ∈ K . (4.13)

After that, the number of RAVs that are merged should be limited. Otherwise, the same problem as earlier
can occur, namely that all the RAVs are merged into one RAV. This is not desired, so it needs to be restricted
with a constraint. Also, in this model, s is the number of RAVs that can maximally be merged into one another.
Now, the next constraint prohibits that this number goes over this limit.∑

k2∈K
fk1k2 ≤ s, ∀k1 ∈ K . (4.14)

Also with this model, it needs to be prevented that, with a coverage of 100%, two RAVs which are not
adjacent are getting merged. By adding a new constraint which only allows fk1k2 to be 1 if tk1k2 is 1, this
cannot happen. So, the following constraint is added to the model.

fk1k2 ≤ tk1k2 , ∀k1 ∈ K ,k2 ∈ K . (4.15)

Then there is the need to put a constraint on the number of ambulances that can be used. For every group
of merged RAVs, the total number of ambulances should be less than or equal to the sum of the number of
ambulances available for the RAVs assigned to this merged group. So, the constraint on the left-hand side
should sum all the ambulances that are used in the merged RAVs and the right-hand side should sum the
number of ambulances that are available in all the merged RAVs. So, the constraint becomes the following:∑

k1∈K

∑
j∈J

a j k1 fk1k2 x j ≤
∑

k1∈K
pk1 fk1k2 k2 ∈ K (4.16)

At last, fk1k2 needs two more constraints to work properly. First, fk1k2 must possess the symmetry prop-
erty. If k1 is assigned to k2, then k2 is also assigned to k1. Second, every RAV is merged to itself. So, for all k
the value of fkk is 1. These two constraints are added to make the model complete.

fk1k2 = fk2k1 ∀k1 ∈ K ,k2 ∈ K
fkk = 1 ∀k ∈ K

(4.17)
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Taking that all into account, the following model is presented:

Maximise
∑
i∈I

di yi ,

such that
∑

k1∈K

∑
k2∈K

∑
j∈Ji

a j k1 x j fk1k2αi k2 ≥ yi , ∀i ∈ I

fk1k + fkk2 −1 ≤ fk1k2 , ∀k1,k2,k ∈ K∑
k2∈K

fk1k2 ≤ s, ∀k1 ∈ K

fk1k2 ≤ tk1k2 , ∀k1 ∈ K ,k2 ∈ K∑
k1∈K

∑
j∈J

a j k1 fk1k2 x j ≤
∑

k1∈K
pk1 fk1k2 , ∀k2 ∈ K

fk1k2 = fk2k1 , ∀k1,k2 ∈ K
fkk = 1, ∀k ∈ K
yi , x j , fk1k2 ∈ {0,1}, ∀i ∈ I , j ∈ J ,k1,k2 ∈ K .

(4.18)

4.2. MEXCLP
As stated before, MEXCLP preforms better than MCLP on a few aspects. First of all, it is more realistic, because
it takes the probability into account that the ambulance is not present at its base location. Also, double and
triple coverage, which is the number of demand locations that is being covered by respectively two and three
ambulances, is better than with MCLP [15]. That is why we transform the models presented in Sections 4.1.1
and 4.1.3, into models with MEXCLP as basis instead of MCLP.

4.2.1. First formulation
MCLP and MEXCLP have different objective functions, as described in Chapter 3. So, the objective function
becomes the one of MEXCLP. Also, the yi changes into yi r as defined in Section 3.2. Next to that, the param-
eter p is all the ambulances that are available, i.e., p = ∑

k∈K
pk . The objective function becomes the following.

Maximise
∑
i∈I

p∑
r=1

di (1−q)qr−1 yi r . (4.19)

The first constraint becomes a combination of the model presented in Section 4.1.1 (left hand side) and
MEXCLP as presented in Section 3.2 (right hand side). This is due to the fact that the condition under which a
demand location i is covered stays the same in the MEXCLP version, but now yi is changed to yi r . Therefore,
we need to sum over all the covering ambulances, as a demand location i ∈ I can be covered with more than
just one ambulance. Taking this into account, the first constraint becomes:

∑
h∈H

∑
j∈Ji

x j li j h ≥
p∑

r=1
yi r , ∀i ∈ I . (4.20)

This constraint is also not linear. This is being resolved in Section 4.3. Lastly, it is important to note that x j

is changed from a binary variable into an integer variable. The consequences of this are discussed later in
Section 4.3.3. All the other constraints are the same as the one with MCLP as basis. The complete model is as
follows:

Maximise
∑
i∈I

p∑
r=1

di (1−q)qr−1 yi r ,

such that
∑

h∈H

∑
j∈Ji

x j li j h ≥
p∑

r=1
yi r , ∀i ∈ I ,∑

k∈K
a j k bkh ≥ li j h , ∀i ∈ I , j ∈ J ,h ∈ H∑

k∈K
αi k bkh ≥ li j h , ∀i ∈ I , j ∈ J ,h ∈ H∑

k∈K

∑
j∈J

a j k bkh x j ≤
∑

k∈K
pk bkh , h ∈ H

(4.21)
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bk1h +bk2h −1 ≤ tk1k2 , ∀k1 ∈ K ,k2 ∈ K ,h ∈ H∑
h∈H

bkh = 1, ∀k ∈ K∑
k∈K

bkh ≤ s, ∀h ∈ H

x j ∈N ∀ j ∈ J
yi r ,bkh , li j h ∈ {0,1} ∀i ∈ I ,k ∈ K ,h ∈ H ,r = 1, . . . , p

4.2.2. Second formulation
Also for the second formulation of the model, a transformation to a model with MEXCLP as basis is made. In
this case, the objective function becomes the same as in Section 4.2.1. Also, the same adjustment is made for
the first constraint. So, taking the left side of the MCLP model and the right side of the MEXCLP model. Thus,
the full model is:

Maximise
∑
i∈I

p∑
r=1

di (1−q)qr−1 yi r ,

such that
∑

k1∈K

∑
k2∈K

∑
j∈Ji

a j k1 fk1k2 x jαi k2 ≥
p∑

r=1
yi r ∀i ∈ I

fk1k + fkk2 −1 ≤ fk1k2 , ∀k,k1,k2 ∈ K∑
k2∈K

fk1k2 ≤ s, ∀k1 ∈ K

fk1k2 ≤ tk1k2 , ∀k1,k2 ∈ K∑
k1∈K

∑
j∈J

a j k1 fk1k2 x j ≤
∑

k1∈K
pk1 fk1k2 , ∀k2 ∈ K

fk1k2 = fk2k1 , ∀k1,k2 ∈ K
fkk = 1, ∀k ∈ K
x j ∈N, ∀ j ∈ J
yi , fk1k2 ∈ {0,1}, ∀i ∈ I ,k1,k2 ∈ K .

(4.22)

4.3. Linearisation
Note that the resulting models described above are all non-linear. This means that the regular methods for
solving LP, like the branch and bound method, cannot be applied. This makes that non-linear programs by its
very nature are more difficult to solve [3]. Therefore, there are methods to make a non-linear program linear
to solve it more easily. In order to do this, a new decision variable is introduced. This variable represents the
product of the two decision variables which made the model non-linear. This has to be done separately for
all four models. By replacing the multiplication of the two decision variables with a new decision variable,
the model becomes linear.

4.3.1. First formulation MCLP
For the first formulation of the MCLP model, there are two multiplications of two binary decision variables.
To fix this, chk j and mi j h are replacing bkh x j and x j li j h , respectively, which are defined in the following
manner.

mi j h =


1, if an ambulance is positioned at potential base location j ∈ J

which is in the same main region h ∈ H as location i ∈ I

0, otherwise

chk j =


1, if an ambulance is positioned at potential base location j ∈ J

in RAV k ∈ K assigned to main region h ∈ H

0, otherwise

Following, some constraints need to be added such that the new variables are behaving the same as the
multiplication of the two variables it is replacing. This means that, for example, chk j can be one if and only
if both bkh and x j are one. If either bkh , x j or both are zero, chk j must be zero. By constraining chk j to be
smaller than both bkh and x j , this will always be the case. When both bkh and x j are one, chk j needs to get
the value one. The first two constraints make sure that chk j will not be bigger than one. But now, there is a
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need that chk j cannot be zero if both bkh and x j are one. By adding the constraint that chk j must be more
than the sum of the variables, minus one, we force chk j such that chk j ≥ 1 and chk j ≤ 1, leading to chk j = 1.
Using these three conditions, chk j behaves the same as bkh · x j . Following are the constraints for chk j as well
as for mi j h .

chk j ≤ bkh , ∀ j ∈ J ,k ∈ K ,h ∈ H
chk j ≤ x j , ∀ j ∈ J ,k ∈ K ,h ∈ H
chk j ≥ bkh +x j k −1, ∀ j ∈ J ,k ∈ K ,h ∈ H
mi j h ≤ x j , ∀i ∈ I , j ∈ J ,h ∈ H
mi j h ≤ li j h , ∀i ∈ I , j ∈ J ,h ∈ H
mi j h ≥ li j h +x j −1, ∀i ∈ I , j ∈ J ,h ∈ H .

(4.23)

Taking these constraints into account, the full linear model of the first formulation with MCLP is:

Maximise
∑
i∈I

di yi ,

such that
∑

h∈H

∑
j∈Ji

mi j h ≥ yi , ∀i ∈ I∑
k∈K

a j k bkh ≥ li j h , ∀i ∈ I , j ∈ J ,h ∈ H∑
k∈K

αi k bkh ≥ li j h , ∀i ∈ I , j ∈ J ,h ∈ H∑
k∈K

∑
j∈J

a j k chk j ≤
∑

k∈K
pk bkh , h ∈ H

bk1h +bk2h −1 ≤ tk1k2 , ∀k1 ∈ K ,k2 ∈ K ,h ∈ H∑
h∈H

bkh = 1, ∀k ∈ K∑
k∈K

bkh ≤ s, ∀h ∈ H

chk j ≤ bkh , ∀ j ∈ J ,k ∈ K ,h ∈ H
chk j ≤ x j , ∀ j ∈ J ,k ∈ K ,h ∈ H
chk j ≥ bkh +x j k −1, ∀ j ∈ J ,k ∈ K ,h ∈ H
mi j h ≤ x j , ∀i ∈ I , j ∈ J ,h ∈ H
mi j h ≤ li j h , ∀i ∈ I , j ∈ J ,h ∈ H
mi j h ≥ li j h +x j −1, ∀i ∈ I , j ∈ J ,h ∈ H
yi ,bkh , x j ,chk j , li j h ,mi j h ∈ {0,1}, ∀i ∈ I , j ∈ J ,k ∈ K ,h ∈ H .

(4.24)

4.3.2. Second formulation MCLP
For the second formulation of the model with MCLP used as basis, the same problem arises: the model is not
linear as there is a multiplication of x j and fk1k2 . Because both variables are binary, this can be fixed the same
way as in Section 4.3.1. So, the following decision variable is introduced.

n j k1k2 =


1, if potential base location j in RAV k1 has an ambulance and k1 and k2 are

within the same merged region

0, otherwise

Then, by adding the following constraints, n j k1k2 is replacing x j fk1k2 and it results in a linear model.

n j k1k2 ≤ fk1k2 , ∀k1,k2 ∈ K , j ∈ J
n j k1k2 ≤ x j , ∀k1,k2 ∈ K , j ∈ J
n j k1k2 ≥ fk1k2 +x j k −1, ∀k1,k2 ∈ K , j ∈ J .

(4.25)

So, the linear model is as follows.

Maximise
∑
i∈I

di yi ,

Such that
∑

k1∈K

∑
k2∈K

∑
j∈Ji

a j k1 n j k1k2αi k2 ≥ yi , ∀i ∈ I (4.26)
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fk1k + fkk2 −1 ≤ fk1k2 , ∀k,k1,k2 ∈ K∑
k2∈K

fk1k2 ≤ s, ∀k1 ∈ K

tk1k2 ≤ fk1k2 , ∀k1 ∈ K ,k2 ∈ K∑
k1∈K

∑
j∈J

a j k1 n j k1k2 ≤
∑

k1∈K
pk1 fk1k2 , k2 ∈ K

fk1k2 = fk2k1 , ∀k1,k2 ∈ K
fkk = 1, ∀k ∈ K
n j k1k2 ≤ fk1k2 , ∀k1,k2 ∈ K , j ∈ J
n j k1k2 ≤ x j , ∀k1,k2 ∈ K , j ∈ J
n j k1k2 ≥ fk1k2 +x j k −1, ∀k1,k2 ∈ K , j ∈ J
yi , x j , fk1k2 ,n j k1k2 ∈ {0,1}, ∀i ∈ J , j ∈ J ,k1,k2 ∈ K .

4.3.3. First formulation MEXCLP
The problem of non-linearity is again encountered in the models with MEXCLP as basis. But this time, it is
not two binary variables that are multiplied, but a binary variable and an integer variable. The linearisation
of this models is done by the method from the paper of Coelho [5]. To this end, boundaries for x j need
to be found. These are quite clear, because a base location can have at least zero ambulances and at most
p = ∑

k∈K
pk ambulances, if it owns all the ambulances over all the RAVs. So, the boundaries are 0 ≤ x j ≤ p.

Now that these boundaries are defined, it is possible to replace x j li j h with mi j h and bkh x j with chk j . The
method works as follows: first, two constraints are constructed to ensure that mi j h is smaller than x j li j h . If
one of the two is zero, mi j h also has to be zero. So mi j h has to be smaller than or equal to both x j and li j h .
But it can be maximally p, namely if x j is p and li j h is one. So, it has to be smaller than not just li j h , but
p · li j h . Then it is for sure smaller than the product of the two variables. Now the third constraint make sure
that mi j h becomes large enough. So, if x j and li j h are both greater than zero, the value of mi j h becomes the
value of x j . This could be done by making mi j h greater than or equal to x j − (1− li j h) ·p. But now, if li j h is
zero, then mi j h can be less than zero. To prohibit this, an extra constraint needs to be added in which mi j h

has to be equal than or greater to zero. So, the constraints for mi j h are:

mi j h ≤ p · li j h , ∀i ∈ I , j ∈ J ,h ∈ H
mi j h ≤ x j , ∀i ∈ I , j ∈ J ,h ∈ H
mi j h ≥ x j − (1− li j h) ·p, ∀i ∈ I , j ∈ J ,h ∈ H
mi j h ≥ 0, ∀i ∈ I , j ∈ J ,h ∈ H .

(4.27)

This could be done equivalently for chk j . Resulting, the linear version of the model becomes:

Maximise
∑
i∈I

p∑
r=1

di (1−q)qr−1 yi r ,

such that
∑

h∈H

∑
j∈Ji

mi j h ≥
p∑

r=1
yi r , ∀i ∈ I∑

k∈K
a j k bkh ≥ li j h , ∀i ∈ I , j ∈ J ,h ∈ H∑

k∈K
αi k bkh ≥ li j h , ∀i ∈ I , j ∈ J ,h ∈ H∑

k∈K

∑
j∈J

a j k chk j ≤
∑

k∈K
pk bkh , h ∈ H

bk1h +bk2h −1 ≤ tk1k2 , ∀k1 ∈ K ,k2 ∈ K ,h ∈ H∑
h∈H

bkh = 1, ∀k ∈ K∑
k∈K

bkh ≤ s, ∀h ∈ H

chk j ≤ p ·bkh , ∀ j ∈ J ,k ∈ K ,h ∈ H
chk j ≤ x j , ∀ j ∈ J ,k ∈ K ,h ∈ H
chk j ≥ x j − (1−bkh) ·p, ∀ j ∈ J ,k ∈ K ,h ∈ H
chk j ≥ 0, ∀ j ∈ J ,k ∈ K ,h ∈ H
mi j h ≤ p · li j h , ∀i ∈ I , j ∈ J ,h ∈ H
mi j h ≤ x j , ∀i ∈ I , j ∈ J ,h ∈ H
mi j h ≥ x j − (1− li j h) ·p, ∀i ∈ I , j ∈ J ,h ∈ H
mi j h ≥ 0, ∀i ∈ I , j ∈ J ,h ∈ H

(4.28)
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x j ,mi j h ∈N, ∀i ∈ I , j ∈ J ,h ∈ H
yi k ,bkh ,chk j , li j h ,∈ {0,1}, ∀i ∈ I , j ∈ J ,k ∈ K ,h ∈ H .

4.3.4. Second formulation MEXCLP
For the fourth and last model, the same technique is used as in Section 4.3.3 and the model becomes the
following.

Maximise
∑
i∈I

p∑
r=1

di (1−q)qr−1 yi r ,

such that
∑

k1∈K

∑
k2∈K

∑
j∈Ji

a j k1 n j k1k2αi k2 ≥
p∑

r=1
yi r , ∀i ∈ I ,

fk1k + fkk2 −1 ≤ fk1k2 , ∀k1 ∈ K ,k2 ∈ K∑
k2∈K

fk1k2 ≤ s, ∀k1 ∈ K

tk1k2 ≤ fk1k2 , ∀k1 ∈ K ,k2 ∈ K∑
k1∈K

∑
j∈J

a j k1 n j k1k2 ≤
∑

k1∈K
pk1 fk1k2 , k2 ∈ K

fk1k2 = fk2k1 , ∀k1 ∈ K ,k2 ∈ K
fkk = 1, ∀k ∈ K
n j k1k2 ≤ p · fk1k2 , ∀ j ∈ J ,k1,k2 ∈ K
n j k1k2 ≤ x j , ∀ j ∈ J ,k1,k2 ∈ K
n j k1k2 ≥ x j − (1− fk1k2 )p, ∀ j ∈ J ,k1,k2 ∈ K
n j k1k2 ≥ 0, ∀ j ∈ J ,k1,k2 ∈ K
x j ,n j k1k2 ∈N, ∀ j ∈ J ,k1,k2 ∈ K
yi , x j , fk1k2 ∈ {0,1}, ∀i ∈ I , j ∈ J ,k1,k2 ∈ K .

(4.29)





5
Results

In this chapter, an overview is given for all the results that were collected while performing tests with the
models described in Chapter 4. It starts off with a comparison of the different models on a small data set,
to set out the performances of the different models. Based on this comparison, two of the four models are
chosen to continue the research with. These two models are used to perform tests with the data set containing
all the data from the Netherlands and these results are presented.

5.1. Comparison on small data set
To verify that the models work and to compare them with one another, they were tested on a small data set.
The models were implemented in Python 3 and solved with CPLEX 12.9.0 on an Intel Core i3-2310M CPU @
2.10GHz 2.10 GHz with 4.00 GB RAM. The data consists of eight demand locations in a total of four regions.
The travel time in seconds between all the demand locations is given in Table 5.1. The division of the demand
locations in the four regions can be found in Table 5.2.

For the tests, several parameters can be chosen. The number of regions that could be merged with each
other was chosen to be three. This means that either three regions can be merged with each other and one is
left alone, the regions are divided two by two or none of the regions is merged. For generality, all the demand
locations have weight one. All the regions are adjacent to each other, and every region has one ambulance
available, i.e., pk = 1 for all k ∈ K . r is three minutes and q is chosen to be 0.5 for all the four ambulances. In
Table 5.3, the results for the test can be found. The first row gives the single coverage. This is the percentage
of demand locations which get covered by one ambulance. The double coverage has the same notion but
now for two ambulances. Then, the two and four minute threshold is given, which is the percentage of the
demand locations which are covered within two- and four-minutes. Also, the merger of the regions is stated.
Lastly, the calculation time for each of the models in both formulations is given.

Table 5.1: Travel time in seconds between all the data points in the test data set

1011 1012 1013 1014 1015 1016 1017 1018
1011 123 371 411 242 256 198 161
1012 112 338 365 180 145 129 273
1013 360 333 193 268 352 443 506
1014 400 359 184 287 370 469 546
1015 231 174 259 285 165 253 377
1016 245 139 343 368 161 162 357
1017 196 124 434 467 249 157 273
1018 159 268 497 544 366 353 269

21
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Table 5.2: The four regions in the small data set and their possessing demand locations

1 2 3 4
1011 1012 1013 1015
1016 1018 1014 1019
1017

Table 5.3: Results on different criteria for the small data test

Description criterion MCLP MEXCLP

Single coverage 87.5 % 87.5 %
Double coverage 25% 62.5 %
Four min threshold 100 % 100 %
Two min threshold 62.5% 62.5 %
Merged regions (1,2,3) and (4) (1,2,4) and (3)
Calculation time
First formulation

0:00:01.82 0:00:01.91

Calculation time
Second formulation

0:00:00.80 0:00:00.90

5.1.1. Calculation time
The results for the calculation time that are stated in Table 5.3 for the first formulation are the once with both
the symmetry breaking constraints taken into account. These were about 30% as quick as in the model with-
out symmetry breaking constraints. If only the first constraint was added, the model was approximately 20%
as quick as the original model. It was not possible to check the calculation time if only the second symmetry
breaking constraint was taken into account, because it uses the first constraint.

5.1.2. Results
The results show that, despite the symmetry breaking constraints, the second formulation can be solved to
optimality a lot quicker than the first formulation. This is why we use the second formulation in the remainder
of this thesis. Furthermore, the double coverage is much better for the models with MEXCLP as basis, as was
expected. The choice of RAVs results in the difference in double coverage. Lastly, there is a small difference in
the computation time between the models with a MCLP basis and a MEXCLP basis.

5.2. Data
Tests with two models were executed on a data set containing information about the whole Netherlands to
see the extent to which the merging improves the efficiency of the ambulance care. In order to do the re-
search, the Netherlands had to be divided into small areas. The small areas that are used for this research are
the four-digit postal code zones of the Netherlands. There are in total 3990 four-digit postal codes areas in
the Netherlands. For every area, it is assumed that multiple ambulances can be placed there and that from
there an ambulance call could be executed. So, each demand location is also a potential base location, i.e.,
J = I . The distances between all the four-digit postal codes were provided by my supervisor J. T. van Essen.
These distances are based on a data set with all the driving distances in the Netherlands from Google Maps,
in which a factor of approximately 0.96 is multiplied because the ambulances can go faster than the regular
traffic. Other data was collected from the paper by Van den Berg et al. [15]: the number of ambulances that
are available for each RAV and the busy fraction for each RAV. This data can be found in Table 5.4. For MCLP,
another number of ambulances is used. The reason for this is explained in Section 5.3. For the weights di , we
use the number of people living in each four-digit postal code area i ∈ I .

In the Netherlands, an ambulance call should be present at the demand location within 15 minutes. From
this 15 minutes, 3 minutes are taken for dispatch and chute time. So, to reach a demand location within 15
minutes, 3 minutes are subtracted to make the model realistic. this leaves you with 12 minutes’ travel time.
This is the same as is taken at the research from van den Berg et al. [15], so these results can be compared
with the results in this paper.
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RAV Ambulances Ambulances used Busy
available for MCLP fraction

1 15 8 0.18
2 18 9 0.10
3 13 7 0.17
4 12 6 0.16
5 11 6 0.20
6 14 7 0.21
7 8 4 0.27
8 10 5 0.20
9 15 8 0.30
10 9 5 0.22
11 16 8 0.38
12 8 4 0.31
14 4 2 0.23
15 12 6 0.39
16 10 5 0.30
17 12 6 0.45
18 8 4 0.22
19 18 9 0.09
20 16 8 0.27
21 9 5 0.26
22 9 5 0.28
23 10 5 0.21
24 7 4 0.36
25 8 4 0.20
Total 272 140

Table 5.4: Number of ambulances used for the test runs with MCLP and MEXCLP and the busy fraction

Figure 5.1: The resulting separation of the RAVs. Source: J. W. van Aalst (2015). Kaart van de RAV-regio’s, 2015 [map]. Retrieved from
http://www.imergis.nl, with own edit
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5.2.1. Heuristic method
During the creation of the model, a space limit was reached. To this end, a heuristic is used. The Netherlands
is partitioned into two groups of 12 RAVs. The separation line runs straight through the middle of the Nether-
lands. The two groups in which the Netherlands is divided is as follows: the RAVs 1, 2, 3, 4, 5, 6, 7, 10, 11, 12,
14 and 25 are put together and the RAVs 8, 9, 15, 16, 17, 18, 19, 20, 21, 22, 23 and 24 are together. The partition
of the RAVs is also made visual in Figure 5.1 with a red line separating the two parts.

This partition is made upon the results of different tests with the MCLP model in smaller regions. The
RAVs were partitioned into blocks of four, and within these blocks merges of two RAVs were carried out. First,
it was looked at what was visually a logical separation. As can be seen in Figure 5.1, the areas in the middle
part are 7, 8, 9, 11, 12,14, 15 and 16. The other RAVs are so far north or south that it was clear in which part
they belong. So, a test was done with the four RAVs 10, 11, 12, 25, then 9, 14, 15, 16 and lastly 5, 6, 7, 8. Two
results of the tests were important in this: first, 16 and 9 were put together and 14 and 15 were left alone.
Apparently, the merger of only RAVs 16 and 9 outperforms the two duos you can make with it. This gave the
incentive to put RAVs 9 and 16 in one region and RAV 14 in the other one. Another interesting result was that
7 and 8 were put together, but this resulted in a coverage of only 97.3%, which was one of the lowest of all
quarters that were tested. This lead to the assumption that of the places where a separation needed to be
made, it is logical to do it between RAVs 7 and 8 and not for example between RAVs 9 and 16. This was reason
to separate the Netherlands in the way that is seen in Figure 5.1. After that, it was looked at the distribution of
the ambulances. Both parts have exactly half of the ambulances with this distribution. This was the deciding
factor to choose the separation as stated above.

5.3. MCLP
To start collecting results, tests with the MCLP model using the second formulation were performed. The
model was implemented in Python 3 and solved with CPLEX 12.9.0 on the computer described in Section 5.1
and on an Intel Core i7-6600U CPU @ 2.10GHz 2.606 GHz 2.80 CHz with 8.00 GB RAM. When using the model
with MCLP basis, the single coverage of the Netherlands is on average 100% [15]. So, when running this pro-
gram, the RAVs are put together at random, because it will neither improve nor worsen the result. Merging
the RAVs is used to improve the efficiency, so if areas were to be merged, less ambulances are needed in order
to get a result as high as without the merge. That is why it is chosen to do the research with half the number of
ambulances that is actually available. This to show how much the efficiency improves by merging the RAVs.
In Table 5.4 the number of ambulances per RAV can be found.

Due to the fact that a heuristic is used, we cannot state that the found results are optimal. Especially in
the middle RAVs, it could be better to merge over the border of the separation. To this end, the results are not
claimed to be optimal, but the results can be compared to the current situation.

5.3.1. Duo merging
So, for the first test, it was tested what happens if there could be maximally two RAVs merged with each other.
The next results were found: for the upper half, RAVs 1 and 3, 2 and 4, 5 and 6, 10 and 12 and 11 and 25 were
merged together. RAVs 7 and 14 were left alone. This could also be seen graphically in Figure 5.2. The total
coverage was 97.90%. Over all the 12 RAVs, 71 ambulances were used. For the lower half, RAVs 8 and 18, 15
and 17, 9 and 16, 19 and 20, 21 and 22 and 23 and 24 are merged. This can also be seen in Figure 5.2. The total
single coverage was 99.19%. A total of 69 ambulances were used in the 12 regions. The results in coverage and
the number of ambulances used for this research and for the research of Van den Berg et al. [15] can be found
in Table 5.5

Coverage Ambulances used
Upper half 97.90% 71
Lower half 99.19% 69
Total 98.55% 140
Without merge 100% 272

Table 5.5: Results of the test with the MCLP model
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Figure 5.2: The resulting division of RAV’s after the test with the MCLP model. Source: J. W. van Aalst (2015). Kaart van de RAV-regio’s,
2015 [map]. Retrieved from http://www.imergis.nl, with own edit

If the merges are compared to the health insurances in Section 2.1, all the merged RAVs share at least one
responsible health insurance, except for RAVs 15 and 17. Overall merging could thus be done fairly well with
this merging result.
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5.4. MEXCLP
To continue, tests were done with the model with MEXCLP (second formulation) as basis. In this case, it is
not needed to half the number of ambulances, because it does not have a 100% coverage to begin with. The
number of ambulances per RAV is now the number that is actually available in this RAV. The number of am-
bulances can be found in the second column of Table 5.4, along with the busy fraction for each RAV, which is
in the fourth column of that table.

For this part of the research, the Netherlands is partitioned in the same way as in the previous section.
Due to this, it cannot be said that the results are optimal.

5.4.1. Duo merging
First, it was calculated what would happen if maximally two RAVs were merged. The results for this test are
the following: for the upper half, the RAVs 1 and 3, 4 and 5, 6 and 7, 10 and 11 and 14 and 25 were merged
in duos. RAVs 2 and 12 were left alone. The single coverage was 99.74% and the double coverage 92.3%. For
the lower half, the regions 8 and 21, 15 and 17, 9 and 16, 19 and 20 and 22 and 23 were merged. RAVs 18 and
24 were not merged. These merges are presented in Figure 5.3. There was a single coverage of 99.61%. The
double coverage was 94.74%. All available ambulances are used.

If this is compared to the coverage that was found in the research without merging the RAVs, we see that
the coverage is much higher. In Table 5.6, the results for single, double and triple coverage for the MEXCLP
were shown, both with and without merging. The results in the table are the average coverage of the total
coverage of the upper half and the lower half of the Netherlands.

Without merge With merge
Single coverage 99.4 % 99.7 %
Double 91.4 % 93.52 %
Triple 59.1 % 68.71 %

Table 5.6: Results for the MEXCLP model with maximal two RAVs merged

For the health insurance responsibility for the new regions, the same situation has occurred as in Section
5.3. Due to the fact that MEXCLP provides a more profound research result, it is chosen to perform the rest of
the tests only with MEXCLP and not the MCLP model.

5.4.2. Trio merging
Continuing, it is examined what happens if three RAVs could be merged into one another. This does not mean
that the 24 RAVs are merged into 8 regions, but it is reviewed whether it is the best to merge a RAV with one or
two other RAVs or to be left alone. The results are as follows: For the upper half, the RAVs 1, 2 and 3, but also,
4, 5 and lastly, 6, 10, 11 and 12 were merged in trios. The RAVs 14 and 25 and 8 and 21 were merged in a duo.
The RAVs 24 and 13 were not merged. The single coverage is 99.73% and the double coverage 93.46%. For the
lower half of the Netherlands, RAVs 8, 9 and 18 were merged in a trio. RAVs 15 and 17, 19 and 20 and 21, 22
and 23 were merged in duos. RAVs 16 and 24 were not merged. The single coverage is 99.73% and the double
coverage 95.31%. The merging of RAVs is shown in Figure 5.4. The average single, double and triple coverage
for MEXCLP with and without merging is shown in Table 5.7.

Without merge With merge
Single coverage 99.4 % 99.73 %
Double coverage 91.4 % 94.38 %
Triple coverage 59.1 % 69.93 %

Table 5.7: Results for the MEXCLP model with maximal three RAVs merged

For the health insurance responsibility for the new regions, the same situation has occurred as in Section
5.3.
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Figure 5.3: The resulting division of RAV’s after the test with MEXCLP model with maximally two RAVs merged. Source: Source: J. W. van
Aalst (2015). Kaart van de RAV-regio’s, 2015 [map]. Retrieved from http://www.imergis.nl, with own edit
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5.4.3. Quartet merging
Lastly, the results were collected for the case that four RAVs could be merged. But remarkably, the results were
precisely the same as for the tests in which maximal three RAVs would be put together. Apparently, it does
not matter whether to merge the RAVs, which were not yet merged, into another trio.

5.4.4. All results
Table 5.8 shows all the results of the different tests with the MEXCLP model in second formulation.

Without merge With duo merge With triple merge
Single coverage 99.4 % 99.7 % 99.73 %
Double coverage 91.4 % 93.52 % 94.38 %
Triple coverage 59.1 % 68.71 % 69.93 %

Table 5.8: All average results for the MEXCLP model
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Figure 5.4: The resulting division of RAV’s after the test with MEXCLP model with maximal three RAVs merged. Source: J. W. van Aalst,
Kaart van de RAV-regio’s, 2015— www.imergis.nl, with own edit





6
Conclusion and discussion

In this thesis, the different aspects of merging Regional Ambulance Services (RAVs) in the Netherlands have
been studied. RAVs are the regions in which ambulances serve. To increase the efficiency and provide better
ambulance care, the RAVs can be merged. We first looked at why it is complicated to merge the RAVs. After
that, we constructed four different models which determined, in case of a merge, which RAVs should be put
together. These models were tested on a data set containing all the data points from the Netherlands and the
results were presented.

If we look at the results, we start off with the results gained from this research by the MCLP model and
compare these with the results gained from the paper by Van den Berg et al. [15]. In this comparison, we see
that with a bit more than halve the number of RAVs, half of the ambulances are needed to perform approxi-
mately the same. The average coverage is 98.55% for the model where RAVs were merged. So, the coverage is
1.45 percentage point less even although only 51.47% of the number of ambulances were used. So, by chang-
ing from 24 to 13 RAVs, you need approximately halve of the ambulances to perform similar. In this research,
it has not been invested how much ambulances were needed in the model with merger to get the 100% cov-
erage with MCLP. This would have been interesting and is something that can be looked at in future research.

As expected, we see that using the MEXCLP models that allow merging results in a higher coverage than
the one where no merging took place. Especially on the triple coverage, the model is doing better. For the
single coverage, the difference is less big. So apparently, merging the RAVs does mainly mean that the de-
mand locations are covered by more ambulances, not many more demand locations are covered that were
not covered before.

Of course, the results cannot be claimed to be optimal, because a heuristic is used. This is partly because
of a lack of good resources and partly in the way the program was written. In future research, if better re-
sources are available and the code is improved, the results with 24 RAVs can be calculated all at once and the
heuristic would not be necessary. Furthermore, for future research, there are still a lot of different tests that
would be interesting to investigate, like allowing to merge more than four RAVs with each other. In addition,
it could be investigated what happens if you force every RAV to be merged with at least one other RAV, so no
RAV is left alone. Also for future research, the model could be changed into one with another basis, for exam-
ple one of the ARTM and MEXCLP combined models presented by Van den Berg et al. [15]. In this research, it
is not taken into account how quick the ambulance arrives. A location is either covered if it is reached within
15 minutes or it is not. But of course, in real life it is also important to arrive as quick as possible. This could
also be interesting to investigate further.

In the research, the separation of the 24 RAVs into two groups of 12 could have been investigated more
profoundly. Because of a lack of time, the separation was based on just one distribution of foursomes. It
would have been better to check it with different combinations and with different sizes.

Overall, merging RAVs increases the overall coverage and asks less ambulances to fulfil the demand. So,
it can help the ambulance care in the whole Netherlands. On the other hand, merging is organisational not
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preferred, so it would be recommended to merge at most two RAVs together, because then a good balance is
found between increasing health care and realistic implementation.
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