
Delft University of Technology
Master of Science Thesis in Embedded Systems

Energy Consumption and Scalability of
Transmitting Firmware Updates Over LoRa

Stan van Nieuwamerongen

Embedded
Networked
Systems

Energy Consumption and Scalability of

Transmitting Firmware Updates Over LoRa

Master of Science Thesis in Embedded Systems

Embedded and Networked Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Stan van Nieuwamerongen
S.T.vannieuwamerongen@student.tudelft.nl

stan@dotline.nl

25th of August 2021

mailto:S.T.vannieuwamerongen@student.tudelft.nl
mailto:stan@dotline.nl

Author
Stan van Nieuwamerongen (S.T.vannieuwamerongen@student.tudelft.nl)
(stan@dotline.nl)

Title
Energy Consumption and Scalability of Transmitting Firmware Updates Over LoRa

MSc Presentation Date
27th of August 2021

Graduation Committee
Dr. Przemys law Pawe lczak Delft University of Technology
Dr. Jérémie Decouchant Delft University of Technology
Thijs Buuron TWTG

mailto:S.T.vannieuwamerongen@student.tudelft.nl
mailto:stan@dotline.nl

Abstract

The rapid growth of LoRa sensor networks lead to more and more maintenence
challenges. One of them is wirelessly updating the firmware, especially for the
ones that are hard or dangerous to reach. Is it feasible to do a firmware update
over LoRa, and what is its additional power consumption of the wireless sensors?
In this thesis a LoRa Class B Firmware Update Over The Air (FUOTA) is
implemented and evaluated. Up to 100 end-devices are used to research the
scalibilities and power consumption of the end-devices. The focus is mainly on
the tranmission of the firmware itself rather than installing the firmware on the
end-devices.

This study introduces a power consumption model based on measurements
of real hardware. After that, experiments are performed to evaluate the packet
losses when scaling up the number of end-devices. These experiments show that
the setup time increases with the number of end-devices due to the duty cycle
restriction of the gateway. Antother experiment, focusing on end-devices that
are part of the network but do not need to be updated, shows these end-devices
suffer in terms of packets loss due to packet blockings during a firmware update.

The extra setup time needed when scaling up the number of end-devices
causes higher power consumption when more devices needs to be updates. To
reduce the energy consumption during this setup phase, an improvement to the
communciation protocol is presentated at the end of this thesis. It reduces the
number of times receive windows are opened while nothing is send.

iv

Acknowledgement

My special thanks goes to Dr. Przemys law Pawe lczak who has guided me during
my master thesis. His calm and flexible way of guidance helped was of big help.
The regular meetings help me stay on track and his comments on my thesis
where of great help. Thank you very much.

I want to thanks Thijs Buuron for working with me and the useful brainstorm
session. It was a pleasant to be working with you.

I would like to express my sincerest thanks to my exam committee Dr.
Przemys law Pawe lczak, Dr. Jérémie Decouchant, and Thijs Buuron for tak-
ing the time to read through my thesis.

I am extremely grateful to my parents for there love and support during the
less fun times of my master thesis. I am also grateful to my friends who helped
me relax and take some time of.

Stan van Nieuwamerongen

Delft, The Netherlands
25th August 2021

v

vi

Contents

1 Introduction 1
1.1 LoRa and LoRaWAN . 2

1.1.1 LoRa . 2
1.1.2 LoRaWAN . 3

1.2 Problem Statement and Motivation 5
1.3 Research Questions . 6
1.4 Contribution . 7

2 Background and Related Work 9
2.1 Related Work . 9
2.2 How To Perform FUOTA With LoRaWAN? 10

2.2.1 LoRaWAN Packages . 10
2.2.2 Multicast . 10
2.2.3 Firmware Fragment Transmission 11
2.2.4 Class B versus Class C . 11
2.2.5 FUOTA Implementation Used for Evaluation 12

2.3 LoRaWAN Class B . 12
2.3.1 Beacons . 13
2.3.2 Ping-Slots . 13
2.3.3 Class B Beacon and Ping-Slot Blocking 14

3 Experiments and Results 15
3.1 Experiment Phases and Communication 16

3.1.1 Initial Phase . 16
3.1.2 Beacon Acquisition Phase 18
3.1.3 Multicast Phase . 18

3.2 FUOTA Experimental Setup . 18
3.2.1 End-Devices . 20
3.2.2 Gateway . 21

3.3 Power Consumption of Firmware Update Over The Air (FUOTA)
over LoRa . 22
3.3.1 Power Consumption Microcontroller Model 22
3.3.2 Power Consumption Radio Module Model 24
3.3.3 FUOTA Power Consumption Model 25

3.4 Scalability of FUOTA . 26
3.4.1 Number of FUOTA setup uplink messages 27
3.4.2 Number of received multicast messages during FUTOA . 28
3.4.3 Beacon Acquisition Phase Duration 29

vii

3.5 Impact on Non-FUOTA Devices for Different Firmware Sizes and
Ping-Slot Periodicities . 30
3.5.1 Results . 31

3.6 Feasibility of FUOTA over LoRa 32
3.7 Extend the LoRaWAN Fragment Data Block Transport Package 33

4 Conclusion 37

A LoRaWAN 1.0.3 Commands 43
A.1 DeviceTime command (DeviceTimeReq, DeviceTimeAns) 43
A.2 PingSlotInfo commands (PingSlotInfoReq, PingSlotInfoAns) . . . 44
A.3 Remote Multicast Setup Commands (McGroupSetupReq, Mc-

GroupSetupAns, McClassBSessionReq, McClassBSessionAns) . . 44

viii

Acronyms

ADR Adaptive Data Rate

BW Bandwidth

CSS Chirp Spread Spectrum

CR Code Rate

FUOTA Firmware Update Over The Air

MAC Medium Access Control

SF Spreading Factor

1

Chapter 1

Introduction

The rapid growth of wireless sensor networks leads to the development of many
new devices every day. With more devices, maintenance of the network and the
devices itself becomes a bigger challenge. Keeping the firmware of a wireless
sensor up-to-date is challenging, especially at places that are hard or dangerous
to reach. To make the process of updating wireless sensors easier, Firmware
Update Over The Air (FUOTA) is one of the best solutions. FUOTA makes
it possible to send firmware updates wirelessly to devices without the need to
physically reprogram each device separately.

In this thesis we research the energy impact of sending a firmware update
over LoRa. LoRa is a popular wireless technology mainly implemented in bat-
tery powered wireless sensors due to its long-rang and low-power characteristics.
The main focus lies on the transmission of the firmware itself rather than the
installation of the firmware. We look at different energy consuming events dur-
ing FUOTA and how they change when more devices are added or when the
firmware size increases. The purpose of this thesis is to give a better understand-
ing of the power consumption during FUOTA, and to estimate the decrease in
battery life.

The thesis is divided into four parts. The remainder of this chapter gives
an introduction to LoRa/LoRaWAN and describes the research questions and
motivation. Chapter 2 provides additional background knowledge needed for
the remaining of the thesis. Answers to the research questions can be found in
Chapter 3, where multiple experiments are performed on real hardware. This
chapter also discusses the feasibility of FUOTA, and a small improvement over
the existing communication protocol is given. Lastly the conclusion can be
found in Chapter 4.

1

Figure 1.1: LoRa and LoRaWAN stack. LoRa operates at the licence
free ISM (Industrial, Scientific, and Medical) frequency bands, which
differ for Europe (EU), United States (US), Asia (AS) and other
continents. Figure taken from [9].

1.1 LoRa and LoRaWAN

LoRa and LoRaWAN together form a wireless communication stack designed
for long range and low power consumption. Typically, LoRa is found in low
throughput battery powered sensor devices. LoRa describes the physical layer,
where LoRaWAN describes the Medium Access Control (MAC) layer [9]. Fig-
ure 1.1 shows the structure of the LoRa/LoRaWAN stack. No dedicated fre-
quency bands are assigned to LoRa, therefore it operates in the licence free
ISM (Industrial, Scientific, and Medical) frequency spectrum. For example, in
Europe the 868 MHz frequency band is part of the ISM frequency bands.

1.1.1 LoRa

LoRa is a modulation technique designed by Semtech [27] for low-power, long-
range communication purposes. The communication distance can go from five
kilometers in an urban environment to fifteen kilometers in open field [9]. To
ensure the low-power characteristics, a compromise needs to be made between
data rate and the power consumption. Typically, the data rate of LoRa is
defined in bytes per second, which should be just enough to send small amounts
of sensor data a few times a day.

LoRa uses a technique called Chirp Spread Spectrum (CSS) modulation. This
technique spreads the data over the complete available bandwidth to make it
more robust against noise. This makes LoRa better suitable for long range
communication. Initially, CSS was developed for radar systems in the 1940’s.
However, in the last 20 years the interest to use this spreading spectrum within
wireless communication has increased due to its low power characteristics [10].

Communication messages are encoded in q so-called chirp signals. An up-
chirp signal increases the frequency over time, where a down-chirp signal reduces
the frequency over time. At the start of each message a so-called preamble is
sent, which contains a few up-chirps followed by two down-chirps. After the
preamble, data is sent using up-chirps. Each chirp contains one symbol; how
many bit can be encoded in one symbol depends on the Spreading Factor (SF)
and the Bandwidth (BW). The LoRa regional parameters for Europe [8] states

2

Data rate Spreading factor Bandwidth (kHz) Bitrate (Bits/s)
0 12 125 250
1 11 125 440
2 10 125 980
3 9 125 1760
4 8 125 3125
5 7 125 5470
6 7 250 11 000

Table 1.1: Data rate configuration for the 863-870 MHz licence free fre-
quency band in Europe [8].

that the bandwidth 125 kHz and 250 kHz can be used in combination with SF12
to SF7. The combination of the SF and bandwidth is defined as data rate, and
can be found in Table 1.1

The SF used for LoRa are inherently orthogonal [9]. This means that dif-
ferent spreading factors do not create independent channels. Although signals
modulated with different SFs do not interfere, they do appear as noise to each
other. When sending multiple messages simultaneously over the same channel
with the same SF, they might collide. However, one of the messages may survive
if its signal is more than 6 dB stronger.

1.1.2 LoRaWAN

Above the LoRa physical layer is LoRaWAN (illustrated in yellow in Figure 1.1).
LoRaWAN implements the medium access (MAC) protocol, including security,
and joining and rejoining the network. Advanced routing protocols are not ne-
cessary because LoRa devices use simple ALOHA-like multiple access technique
and only communicate with one or multiple gateways. The lack of complexity
makes it possible to maintain the low-power characteristics because the num-
ber of MAC messages are limited. However, this also results in reliability and
scalability issues.

LoRaWAN can operate in three different classes: class A, B, and C, illustrated
in Figure 1.2. Starting with class A which is the default class and should be
implemented by all LoRa enabled devices. During class A, the end device is in
sleep mode most of the time, it only awakes for specific device-related processes
or when it needs to send a message to the gateway. When the end-device is in
sleep mode, it is not possible to send downlink messages (messages sent from the
gateway to end-device) to the end-device. Only when the end-device sends an
uplink message (messages send from end-device to gateway), two small downlink
receive windows will be opened which can be used by the application server to
send messages to the device. This means that downlink messages can only be
send after the end-device sends a uplink message. This class is the most energy
efficient class and is required to be implemented by the end-device. The other
two classes are optional.

In Class B, receive windows are not only opened after every uplink message,
they also open periodically, for example each 16 seconds. These periodical
receive windows are called ping-slots. During each ping-slot a downlink message
can be received by the end-device. To make sure ping-slots are synchronized

3

RX

Wait Wait Wait

1 second

2 seconds

Time

Class A

Receive window (RX)

Time

Class C

Time

Class B

B
ea

co
n

P
in

g-
sl

ot

B
ea

co
n

Beacon period (128 s)

P
in

g-
sl

ot

P
in

g-
sl

ot
Ping-period

Uplink
message

Uplink
message

Uplink
message

Receive
Window 1

(RX1)

Receive
Window 2

(RX2)

Uplink
message

Figure 1.2: LoRaWAN operational classes.

with the gateway, the gateway sends beacons every 128 seconds. The end-device
will schedule the ping-slots based on the time it has received a beacon. In this
way, the gateway can send downlink messages at the exact same time as the
end-device opens a receive window.

Considering Class C, this class keeps the receive window open at all times
except when it is sending an uplink message. This means as long as the end-
device is not sending any data, it can always receive a downlink message. This
class is mainly implemented in devices connected to a constant power supply
because it uses significantly more energy than the other two classes, which makes
it unsuitable for battery powered devices.

It is possible to switch between classes at run-time. For example, if a firmware
update needs to be sent, a device might temporarily switch to class B or class
C until the firmware update is done.

Network Architecture

Figure 1.3 illustrates a typical LoRa network from end-to-end [9]. Starting with
the end-devices, typical battery embedded sensors, they are connected to one
or multiple gateways via a wireless LoRa connection. The Gateway forwards all

4

Figure 1.3: Overview of a typical LoRa network. The blue circles on
the left are the LoRa enabled end-devices, they are wireless connected
via LoRa with one or more gateways. The gateways forwards all the
packets between the end-device and the network server. The green
dotted lines between the servers are internet connections, which can
be wired or wireless. Figure taken from [9].

the packets between the end-devices and the Networks Server using the Internet.
Usually there is only one Network Server, which manages the entire network and
adapts it to changes in the network. It handles device addressing, MAC layer
requests from the end-device, forwarding application level packets to the applic-
ation server, and it checks the integrity of each incoming message. The Join
Server manages the over-the-air activation of each end-device. Typically only
one join server is present in the network. Next is the Application Server; there
can be multiple Application Servers in one network. The Application Server
handles all the application level messages and their end-to-end encryption. For
example, it can receive sensor values from an end-device and forward it to a
database or a user interface.

1.2 Problem Statement and Motivation

Many companies decided to use LoRa as communication protocol for their wire-
less sensors because of its low-power long-range characteristics. However, as
Stan Lee once wrote in one of his Spiderman comics: “With great power comes
great responsibility”. Or actually in our case: ”With low-power comes great
responsibility”. In fact, the low-power capability of LoRa can result in sensors
that can be powered for multiple years on a single battery. That leaves us with
the responsibility to maintain the security of the device by keeping these sensors
up-to-date. Code is never 100 % bug free, it is almost certain that bugs will be
discovered while the sensors are already deployed in the field. The ability to

5

updating sensors in the field will significantly improve the security of the device.
Additionally, the ability to update deployed devices makes it possible to shorten
the pipeline as mistakes can be corrected after deployment. This might result
in an overall cost reduction once implemented correctly.

Many implementations for FUOTA are known already. For example, wireless
earbuds can easily be updated with a smartphone using bluetooth or smart
lighting can be updated over-the-air with ZigBee. Although the LoRa-Alliance
has described a proposal on how to implement FUOTA [3], [32] has given a
demonstration, and [19] provides example code, the number of actual deployed
implementations are limited.

There can be many reasons why the number of implementations are still so
limited. One of the main reasons is the low data rate of LoRa, typically in order
of bytes per second. These low data-rates make it possible to transmit data over
a long distance with an extremely small amount of power. However for FUOTA,
a relatively large amount of bytes needs to be sent over the air, up to hundreds
of bytes. Additionally, in Europe, one device is only allowed to transmit 1 %
of the time, making it even more challenging to implement FUOTA. Because
of these limitations, it is important to limit the number of downlink messages
as much as possible. The fact that end-devices are at sleep most of the time
to save battery, does require them to synchronize their sleep cycle to overcome
the need of transmitting the same data multiple times to different devices. This
extra complexity is also one of the main reasons why LoRa is not a popular
protocol for FUOTA.

For these reasons, many companies have decided to move away from LoRa.
However, for some of them, this is not an option as they have already im-
plemented LoRa, or other protocols do simply not provide the specifications
required. It has already been demonstrated to be possible within a small setup
[32], leaving the question if it can be scaled-up to large production networks.
This directly results in the motivation for this thesis.

1.3 Research Questions

Below the research question with the corresponding subquestions for this thesis
are described. The subquestions needs to be answered before answering the
main questions and play an important role in defining which experiments to
perform.

1. What is a reliable model to estimate the energy consumption of
a firmware update?

(a) What different energy consuming events occur during a firmware up-
date?
The simplicity of LoRa makes it easy to estimate the power con-
sumption based on different events. These events can for example be
transmitting data, opening a receive slot, sleep mode and idle mode.
Of course the energy consumption of these events depends on differ-
ent configurations like data rate and message size. The expectation
is that only transmission and reception time are worth measuring, as
most of the microcontrollers used for LoRa are extremely low-power
and almost consume nothing compared to the radio model.

6

(b) What power model can be used to estimate the power for each event?
Different energy models are presented [25] [33] and chip manufactur-
ers offer detailed power consumption sheets (for example the SX1276
radio module [11]). Is it possible to link these models to different
event? Or in other words, is it possible to accurately estimate the
power consumption based on these events? It is likely that the power
consumption can easily be calculated based on the number of up and
downlink messages, without having to actually measure the power.
Most manufacturers actually provide detailed power consumption in-
formation that can be used to make these calculations.

2. What is the increase in packet losses during a firmware update?
Packet losses increase the number of up and downlink messages that need
to be sent, which directly increase the power consumption of the devices.
When the power model in Question 1 is found, the number of expected
up and downlink messages (based on different parameters) can be used to
estimate the total power consumption of an end-device during a firmware
update.

(a) How many more FUOTA related packets need to be sent when scal-
ing up the number of devices? The devices that need to be up-
dated receive multiple unicast messages from the gateway to setup
the FUOTA process. What is the impact, in terms of FUOTA related
packet losses, when increasing the number of to-be-updated devices.
How many more packets need to be sent in order to successfully setup
FUOTA for all devices?

(b) What is the increase in packet losses for devices in the network that
are not being updated?
Some devices in the same network might not need to be updated,
these devices should still be able to send data to the server. However,
when other devices in that network are being updated at the same
time, does this increase the packet losses of the other devices, and
how does that relate to the transmitted firmware size and number
of devices? It is likely that more packets are lost when increasing
the number of devices that needs to be updated, especially for the
downlink messages due to the duty cycle restriction.

(c) What is the increase in firmware packet losses when scaling up the
number of devices?
When only a part of the network need to be updated, the other
devices are still sending messages. Do these messages increase the
number of lost firmware packets sent to the devices that are being
updated? If so, this would require extra firmware packets to be sent,
thus increasing the power consumption of the end-device.

1.4 Contribution

In this thesis, we are going to evaluate the efficiency and scalability of trans-
mitting firmware updates over LoRa Class B on real hardware. As far as the
author his knowledge, the power consumption of a firmware update over LoRa
Class B and its scalability has not been evaluated using real hardware.

7

The following key contributions are made:

• Simple power consumption model to estimate the power consumption of
an end-device.

• Evaluation of the scalability of FUOTA on real hardware with 100 end-
devices.

• Evaluation of the impact on the network during a firmware update. For
both the end-devices that are being updated and the end-devices that are
not.

• Feasibility of the firmware update over LoRa based on a real live example.

• Small change to the LoRaWAN communication protocol to improve the
power consumption of the end-devices.

During the evaluation, there will be no changes made in the standard proposed
method to perform LoRa firmware updates [3], and predefined packages by
the LoRa Alliance will be used for communication. Extra code for advance
logging and to make class B on the end-devices work is built for the end-devices.
Additionally, a FUOTA application server is built to schedule firmware updates
at different times and gather the logs from the end-devices.

8

Chapter 2

Background and Related
Work

2.1 Related Work

The number of papers available on LoRaWAN Firmware Updates is limited,
especially with a LoRa Class B implementation. Ruckebusch et al. (2018)
[25] presents the energy cost distribution between uplink messages, downlink
messages and firmware installation. Although the energy cost for transmission
is much higher than then the energy cost for reception and installation, the most
energy is spent on receiving data. This indicated that the number of uplink
messages is limited per firmware update. However they do not provide any
information about the protocol used for the firmware update. While Ruckebusch
et al. indicates the high energy consumption for RX, the research of Guinee
(2019) [16] focuses mainly on reducing the uplink messages. They state that
the uplink message is the most energy hungry. While this seem true, based on
the numbers presented by Ruckebusch et al. and Abdelfadeel et al. (2020) [1], it
can be discussed if focussing on the already limited number of uplink messages
is worth the effort, especially in comparison with the large number of downlink
messages.

The most important reason to use multicast for sending firmware updates
is given in a simple example calculation in the introduction of [25], therein
authors show that multicast is the only feasible option for firmware update for
larger networks (e.g 100 nodes). Multicast can only work in Class B or Class
C mode [21], therefore, [25] does not even discuss the possibility to use class A
communication for firmware updates. They compare class B with class C and
conclude that class B reduces the energy cost significantly compared to class
C. Additionally, they conclude that the transmission time of a full firmware
update increases by 17 % for class B communication. However, the huge energy
saving does outweigh the transmission time increase. In addition, [25] showed
that when using a ”stupid” algorithm (with no form of scheduling) the time and
energy usage increase linearly with the number of end-devices in the network.
The biggest reason for this is the duty cycle limitation, which is limited to 1 %
in Europe. The more end-devices in the network the more multicast group
messages the base station has to send to each end-device. This results longer

9

wait times because the duty cycle limit is quickly reached. Therefore, for larger
networks a better initial phase algorithm needs to be designed.

Not FUOTA related, Shiferaw et al. [29] studied the scalability of LoRaWAN
Class B Multicast. They introduced the term Beacons-blocking where Class B
beacons (time synchronization messages) are blocked by other messages. Ad-
ditionally they showed that a higher data rate increases the throughput, but
reduces the capacity. Lastly they showed that when using Class B alongside
Class A, the conflicts between the two increases when the periodicity at which
Class B messages are sent increase. For FUOTA it is possible to prioritize Class
B over Class A, however this would result in packet losses for Class A devices
and vica versa.

All the results on the papers above are based on simulations. Except for a
FUOTA Class C demonstration by Stokking et al. no other actual results based
on real hardware was found.

Research related to the power consumption of Class A end-devices has been
done by Casals et al. [7] where they present a power consumption module based
on measuring real hardware. A good overview of the power consumption for dif-
ferent events is given. For example the power consumption during transmission,
reception and sleep. These results will later in this thesis be used to define the
FUOTA power consumption model.

2.2 How To Perform FUOTA With LoRaWAN?

There is no standardized way to perform firmware updates over LoRa yet. The
LoRa Alliance has published a document about FUOTA [3] where they describe
different application layer packages that can be used to realize FUOTA. Based on
this document, Semtech has created a test implementation using these packages
[28]. Other than that, there are no guidelines on how to perform LoRa FUOTA.

2.2.1 LoRaWAN Packages

LoRaWAN packages are collections of LoRaWAN messages implementing a spe-
cific functionality. Examples of LoRaWAN packages defined by the LoRa Alli-
ance are the LoRaWAN Remote Multicast Setup package [21], LoRaWAN Frag-
ment Data Block [20] package and LoRaWAN Application Layer Clock Syn-
chronization package [34]. The first two of these packages are used for FUOTA
and will be described in more detail below.

2.2.2 Multicast

Theoretically it would be possible to send firmware updates to each end-device
using unicast. However, if 100 devices need to be updated with the same firm-
ware update, a lot of the same packets have to be sent 100 times to different
devices. A much more convenient way would be using multicast, where a packet
can be sent to all the devices at once. When a device operates in Class A mode,
it is not possible for end-devices to transmit at the same time or the messages
will collide. This means that no end-devices will open a receive window at the
same time making multicast impossible. Therefore, multicast in LoRa is only
possible in Class B or Class C mode [21]. Another advantage of using Class B

10

or Class C is that no uplink messages are required before a downlink message,
this will result in a much more energy efficient implementation.

The LoRa-Alliance has described an application layer package called LoR-
aWAN Remote Multicast Setup [21] for remotely setting up a multicast session.
During this session end-devices switch to Class B or Class C mode and firmware
fragments can be sent to the end-devices using multicast. The session ends at
a specified timeout to overcome that a end-device stays too long in Class B or
Class C mode. Additionally, it is possible with this packet to configure multicast
groups remotely. It is not required to configure a multicast group remotely, it
is also possible to hard code the multicast configuration (like address and en-
cryption keys) into the device. However, this would mean that a device cannot
be removed or re-added from/to that multicast group.

2.2.3 Firmware Fragment Transmission

Firmware data needs to be sent in fragments to the end-devices because the
maximal allowed payload size in Europe is 242 bytes (for a data rate higher
than DR3) [8]. The problem with sending fragmented data using multicast
is that each end-device might randomly lose some packets. For example 1000
devices lose 10 % of the packets. This means that one packet will be received by
900 devices. The server has to send the packet again to 100 devices where again
10 % loses the packet. When continuing, this results in that one packet is sent
four times to be received by all the end-devices. To overcome this problem the
LoRa-Alliance has introduced the LoRaWAN Fragmented Data Block Transport
package [20] which uses forward error correction (FEC) to solve this problem.
This technique is outside the scope of this thesis, however the Appendix of [20]
gives a good explanation of a FEC technique that can be used.

The basic idea of the LoRaWAN Fragmented Data Block Transport package
is to initialize a fragment data session. When setting up this session, the server
tells each end-device how many fragments it can expect. Once all the data
fragments are send, it asks each device to give a status on how many of the
packets it has received. Base on there responses the server can send redundancy
packets to fill the ”gaps”.

2.2.4 Class B versus Class C

The difference between Class B and Class C communication has already been
described in Section 1.1.2. It is clear that class B is more energy efficient than
class C. It can be argued that the extra effort of implementing class B outweighs
the power savings. However, in Europe one device is only allowed to send 1 %
of the time, if a class C implementation is chosen, 99 % of the time the receive
window is open for nothing. Leaving the receive window unnecessary open would
not be a big issue if that would not increase the power consumption. However,
looking for example at the SX1276, the power consumption during a receive
window is significantly more than when the chip is idle. Work of [1] supports
this observation, the authors claim that using class B is 550 times more power
efficient than using class C multicast. Another reason why class B is interesting
to research, is because not many working class B FUOTA implementations
are known. Creating a class B FUOTA implementation might benefit others,
especially those who want to implement a more energy efficient FUOTA method.

11

Time
PingPeriod 1024

30.72 seconds

Beacon window

4096 available

(122.88 seconds)

Beacon reserved Beacon guard Ping slotPing slot receive window

receive slots

Figure 2.1: Distribution of ping-slots between two LoRa beacons. In
total 4096 ping slots can be assigned. In this example 4 ping-slots are
used as a receive window.

2.2.5 FUOTA Implementation Used for Evaluation

For evaluation, the final implementation uses Class B multicast to transmit the
firmware data, and uses the LoRaWAN Multicast Setup package to setup the
multicast group plus the necessary encryption keys. The LoRaWAN Fragmented
Data Block Transport package is not going to be used because installing the
firmware data on the devices is out of the scope of this thesis. To synchronize
the time of the end-devices with the time of the gateway, the DeviceTimeReq and
DeviceTimeAns messages are used which are part of the LoRaWAN specification
[2].

2.3 LoRaWAN Class B

In class A only two receive windows are opened after each uplink message. The
remaining time the device is in sleep mode and cannot receive any downlink
message. For most sensor-based applications this is enough, however for sending
lots of data to the end-device, for example a firmware update, a lot of uplink
messages are needed in order to receive all the data. For battery-powered devices
this causes a problem because sending uplink messages are generally power
consuming. Class B offers the solution by opening more receive windows at a
periodic interval without the need of an uplink message. These periodic receive
windows are called ping-slots. To make sure that a downlink message is sent at
the same time as an end-device opens a ping-slot, time synchronization between
all devices and gateways is needed. This is done by the gateway by sending
a beacon that the end device will use as a timing reference. In between two
beacons, ping-slots can be scheduled at 4096 places. The fastest periodicity to
open ping-slots is everyone seconds. Figure 2.1 illustrates one beacon period
(the time between two beacons) with four of the 4096 ping-slots used as receive
window.

12

2.3.1 Beacons

Beacons are scheduled ever 128 seconds since GPS epoch (i.e. January 6th
1980 at 00:00:00 UTC). To know when the beacons will arise, the end-device
sends a DeviceTimeReq to the gateways. This message is part of the LoRaWAN
specifications [2] and asks the gateway for current time. When a DeviceTimeReq
is received by the gateway, it will respond with a DeviceTimeAns (also part of
the LoRa specifications) containing the seconds since epoch. The end-device will
synchronize its internal clock with the just received timing information, and can
start opening a receive window at the time it expects a beacon. See Appendix A
for more detail about the DeviceTimeReq and DeviceTimeAns message.

Before each beacon receive window a guard period of 3 s is introduced dur-
ing which no ping-slots or uplink messages are allowed to be scheduled. This
protects the beacon receive window from being overwritten by a large up or
downlink message. For the beacon itself 2.12 s is reserved, and again no ping-
slots or uplink messages can be scheduled during this time. That leaves 122.88 s
in between two beacons (called the beacon window) during which ping-slots can
be scheduled.

Although beacons are sent every 128 seconds, it might happen that end-
devices lose some beacons due to movement of the devices or changes in the
environment. If the timing of the end-device is accurate enough this should not
be an issue and the end-device will find one eventually. To increase the chance
of finding a beacon again, [2] states that the beacon receive window should be
enlarged every time it misses a beacon (until a certain maximal receive window
time). Furthermore according to the specifications [2], an end-device should be
able to operate in class B for at least 2 hours without receiving a beacon. If still
no beacon is received after that, it should go back to class A mode.

2.3.2 Ping-Slots

In between two beacons receive windows can be scheduled at 4096 ping-slots (see
again Figure 2.1). Dividing the beacon window time (122.88 s) by the number
of ping-slots results in a ping-slot duration of 30 ms. The number of ping-slots
receive windows (PingNb) and the time in between them (PingPeriod) can be
derived from the ping-slot periodicity (Periodicity) as

PingNb = 27−Periodicity ,

PingPeriod =
212

PingNb
.

The PingPeriod is expressed in the number of ping-slots (of 30 ms each). For
example in Figure 2.1 a Periodicity of 5 is used: PingNb = 27−5 = 4.

To overcome downlink packet collisions between multiple devices with the
same Periodicity, a PingOffset is added to the first ping-slot. The PingOffset
is based on the beacon time and the DevAddr which should be unique for each
device. This results in each device start opening their receive window at a
different time.

13

2.3.3 Class B Beacon and Ping-Slot Blocking

Shiferaw et al. [29] discussed the scalability of multicast class B. One of the main
issues in class B is beacon blocking. By default class B uses the 869.525 MHz fre-
quency sub-band (G3) for both the uplink and downlink messages. In contrast
to the other sub-bands, the G3 sub-band has a duty-cycle restriction of 10 % for
the downlink channel (the uplink channel is still restricted to 1 %), although this
duty-cycle is ten times higher than the other sub-bands, the Gateway cannot
send downlink messages 90 % of the time. If the time-on-air of the pings over-
steps the duty cycle restriction, beacon may not be sent due to the duty-cycle
restriction, resulting in beacon blocking.

Another problem that can occur within class B is ping-slot blocking. Shiferaw
et al. [29] mentioned these blocking problems when sending (large amounts of)
data over class B. A gateway with one antenna can only send an uplink message
or receive a downlink message, not both at the same time. For that reason, a
ping-slot can be blocked when a non-FUOTA device (a device that is not being
updated) sends an uplink message just before a ping-slot opens (devices that are
being updated know when these slots opens, so they do not sent anything right
before a ping-slot). The other way around, uplink messages from non-FUOTA
might not be received by the gateway and downlink messages might not be send
back to the non-FUOTA devices during a ping-slot.

14

Chapter 3

Experiments and Results

The main purpose of this chapter is to answer the research questions based on
experiment results. These research questions mainly focus on the transmission
of the data rather than the installation. Therefore, the experiments performed in
this chapter will only implement the LoRaWAN Remote Multicast Setup package
(see 2.2). Answers to research questions will be written in a bolder font with the
corresponding research question. Additionally, this chapter contains in-depth
information about the experiments and how the answers are found.

The first section gives a detailed description of the communication and states
during the chosen implementation of FUOTA, followed by a section explaining
the experimental setup. Section 3.3 defines the power consumption model used
to estimate the additional power consumption of during a firmware update. This
model can later be used to calculate the actual power consumption of an end-
device during FUOTA. The actual experiments and the corresponding result
to answer the research questions can be found in Section 3.4 and 3.5. This
chapter ends with Section 3.6 where all the experiments and the power model
are combined to evaluate the feasibility of firmware updates over LoRa using a
real firmware example developed by TWTG [36].

15

Idle
Mutlicast

Phase

Beacon
Acquisition

Phase

Start FUOTA
All end-devices

switched to class B

Initial

Phase
Class B session starts

All multicast data send

Figure 3.1: State diagram of the different FUOTA phases for the im-
plementation used for the experiment. A complete FUOTA would
also include sending redundancy packets at the end of the Multicast
Phase.

3.1 Experiment Phases and Communication

In this section we introduce three different phases to make the complete FUOTA
cycle more insightful and easier to reference. Section 2.2.5 already describes the
techniques and LoRaWAN packages used for the FUOTA experiments. Fig-
ure 3.1 shows an overview of the different phases, which will be described in
more detail below. The communication during the phases can be found in Fig-
ure 3.2. Notice that all the messages in italics are part of the Multicast Remote
Setup Package [21], this includes McGroupSetupReq/Ans and McClassBSes-
sionReq/Ans. The exact format of these messages can be found in Appendix A.
Starting with the Initial Phase, where all the end-devices are prepared to go
into multicast mode, four uplink messages are required. However, there is one
additional uplink message sent which is not shown in the figure: pingSlotIn-
foReq to tell the server what ping-slot periodicity is used (see Appendix A).
This uplink message is part of the LoRaWAN 1.0.3 specifications [2]. To sum
up, for the used implementation, the end-device needs to send 5 uplink
messages before entering the multicast state. Except for the Fragment
Data Block Transport package, the implementation follows the LoRa-alliance
FUOTA recommendations [3].

3.1.1 Initial Phase

Before the Initial Phase is started, the McGroupSetupReq needs to be sent to
each device, this message ensures that all the devices are part of the same
multicast group and uses the right encryption keys. The reason why this is not
part of the Initial Phase is because it is also possible to hard code the multicast

16

Gateway End-device

McGroupSetupReq

Arbitrary uplink message

McGroupSetupAns

McClassBSessionReq

Arbitrary uplink message

McClassBSessionAns

Start initial phase (and experiment)

Switched to class B

Start multicast phase

Class B session timeout
(all mutlicast message are sent)

Switch to class B

FUTOA Fragment 1

Start class B phase

Wait for class B session

confirmation

Beacon

FUTOA Fragment N

Switch to class A

End of the multicast phase (and experiment)

DeviceTimeReq

DeviceTimeAns

Multicast message

Unizast message

End-device class switch

Experiment state switch

Figure 3.2: LoRa communication sequence between an end-device and
the gateway during an experiment. Logging uplink messages are not
included. When in class A before an arbitrary uplink message is
required before a downlink message can be sent from the gateway.
The messages in italics are messages part of the Multicast Remote
Setup Package (see Section 2.2.1). This figure shows only one device,
however up to 100 devices will be used for the experiments. Each
unicast message has to be sent one time for each end-device.

17

settings into the end-device. Additionally, the McGroupSetupReq can be sent
days before the actual firmware update if preferred.

The Initial Phase starts when the first McClassBSessionReq is sent to a device,
during this phase all devices operate in class A mode. The McClassBSessionReq
contains a time at which the end-device should start its class B session. All end-
devices will receive the same session time, resulting in each device starting the
class B session at the same time. Once the class B session timer goes off, the
Initial Phase is completed and it moves to the Beacon Acquisition Phase.

Notice in Figure 3.2 that the end-device sends a McClassBSessionAns back
after it receives a McClassBSessionReq, this message is only to inform the Ap-
plication Server that is received the session setup request and that it has started
its timer.

The time each device spends in the Initial Phase is not important in terms
of power consumption, however the number of extra uplink messages are. This
is because the devices stay in class A and operates as normal, only the extra
uplink messages needed for FUOTA add requires extra energy.

3.1.2 Beacon Acquisition Phase

This phase starts when the class B session starts. Each device will search for
a beacon, once received it will inform the Application server that it has suc-
cessfully switched to class B. Once all devices are switched to class B the next
Multicast Phase will start.

In contrast to the Initial Phase, the Beacon Acquisition Phase does add addi-
tional power consumption because end-devices will switch to class B which has
a higher power consumption than the regular class A.

3.1.3 Multicast Phase

During the Multicast Phase, each end-device operates in class B mode and the
Experiment Server will start sending the FUOTA multicast messages. Earlier
during the Initial Phase, not only a session start time has been sent to the
devices, also a session end time (timeout) has been sent. Once the session ends,
all end-devices switch back to class A and the Multicast Phase ends. The session
timeout is calculated based on the number of multicast messages that needs to
be sent to the end-devices.

3.2 FUOTA Experimental Setup

For the experiments, a simple setup is built with one gateway and multiple end-
devices. Even though the setup is simple, it simulates a real-time scenario in
terms of LoRa network. Figure 3.3 illustrates the setup with one gateway. A
maximal of N = 100 end-devices are connected to the gateway. More detailed
information about each block can be found in the following sections.

18

Raspberry Pi 3 B+

Dragino PG1301 Radio

Gateway

end-device end-device

end-device

end-device....

....

....

end-device end-device

N = 10

100 cm

M = 10
75 cm

....

GPS antenna 1575.42 MHz

LoRa antenna 868 MHz

2 meters

Physical device
Wireless bi-directional LoRa
connection 868 MHz

Legend

Figure 3.3: Experiment setup with a total number of M × N = 100
devices. There is no space in between the end-devices. The stan-
dalone gateway does not require additional connections during an
experiment. To readout the experiment data, an Ethernet connec-
tion can be established with the Raspberry Pi. See Section 3.2.2 and
Section 3.2.1 for more detail about the gateway and end-devices.

19

STM32F070CR microcontroller

SX1276 Radio module

TCXO (external clock)

On-board 868 Mhz antenna

7.5 cm

10 cm

Front

Back

12.96 Wh Saft LS17500 Battery

Figure 3.4: The font and backside of the end-device developed by
TWTG [36] and used for the experiments. The end-device is powered
by a 12.96 W h Saft LS17500 battery [26].

3.2.1 End-Devices

Hardware

The hardware for the end-device is developed by TWTG [36] and consists of
the STM32F070CR microcontroller [31] in combination with the SX1276 radio
module [11]. For accurate timing a TCXO[17] is used. Figure 3.4 shows the
dimension of the end devices and the location of the components on the PCB.

Software

The software is based on the LoRaMac-node example by Semtech [28]. Additions
are made to make class B multicast working, to add logging, to make it work
on the STM32F070CR microcontroller, and to schedule experiments.

20

Semtech
Packet

Forwarder
(v1.0.1 [12])

Chirpstack
Network
Server

(v3.11.0 [5])

Chirpstack
Applicaton

Server
(v3.13.2 [6])

Postgresql
Database

(v13.3 [14])
Experiment

server

Existing software Software developed for this thesis TCP communication

Figure 3.5: Overview of the software running on the Raspberry Pi 3
B+.

3.2.2 Gateway

The gateway is a standalone gateway, which means that no external connections
are needed to the gateway. Only to read out the experimental data, the gateway
can be connected to the Internet using an Ethernet cable.

Hardware

The gateway consists of a Raspberry Pi 3 B+ [14] in combination with the
Dragino PG1301 LoRa transmitter/receiver [12]. The PG1301 has a built-in
GPS receiver for accurate timing. An SPI connection between the Raspberry Pi
and the PG1301 is used to communicate with the radio module of the PG1301,
and a UART connection is used to readout the GPS data.

Software

To make the gateway standalone, the whole software stack is located on the
Raspberry Pi. This includes the gateway Packet Forwarder, Network Server and
the Application Server (see Section 1.1.2). A modified version of the Semtech
Packet Forwarder [13] is used for the packet forwarder. This piece of software is
responsible for forwarding all the LoRaWAN packets between the end-devices
and the network server. Additionally, it is responsible for scheduling the Class
B beacons and ping-slots. The Packet Forwarder is the only software com-
munication communicating with the radio module. Chirpstack is used for the
Application Server [5] and the Network Server [6]. The communication between
these software components is done using an internal TCP connection.

An additional piece of software is written to control the experiment. This
software tells the Application Server which (multicast) message it has to send
during a FUOTA experiment. It controls which end-device is part of the exper-
iment and which should go to sleep. Additionally, it keeps track of the state of
each end-device and stores this information in a Postgresql database [15]. This
is also where the Application Server stores all the received uplink messages from
each end-device.

An overview of these software components running on the Raspberry Pi can
be found in Figure 3.5.

21

0 1 2 3 4
Time (seconds)

0

20

40

60

80

100

C
ur

re
nt

 (
m

A
)

(a) Uplink message with two corres-
ponding receive windows

0 2 4 6 8
Time (seconds)

6

8

10

12

14

16

18

20

22

C
ur

re
nt

 (
m

A
)

(b) Empty ping-slot (left peek) and
beacon reception (right peek).

Figure 3.6: Snapshot of the power consumption of the STM32F070CB
microcontroller [31] in combination with the SX1276 radio module
[11] during different events.

3.3 Power Consumption of FUOTA over LoRa

Let us start with answering research question 1.a and 1.b in Section 1.3, the
individual components that draw power need to be investigated. In the case
of FUOTA there are a few components that draw power: the radio module,
microcontroller and (external) memory to store the firmware update. Additional
sensors, ADC or LEDs are not used during a firmware update so they do not
need to be considered.

Storing data on external flash or in the EEPROM does also require extra
power, however in this study this will not be considered because the firmware
data is not stored and installed on the device. Comparing it with the radio mod-
ule, storing data typically does not add much to the overall power consumption.

Shnayder et al. [30] considered simulating the power consumption for large-
scale sensor networks. This paper confirms the different components that draw
power from the battery. They provided a table with the power consumption for
each component in different modes. Such a table will also be provided for the
hardware used for this experiment.

3.3.1 Power Consumption Microcontroller Model

During FUOTA, the microcontroller used for experiments (STM32F070CB [31])
operates in two modes, sleeping mode and operating mode. When receiving and
transmitting data, the microcontroller runs in operation mode, all the other
time it is in sleep mode. After all the firmware data is received, the installation
process will start. The power consumption during installation will not be added
to the power consumption model because it is out of the scope of this thesis.

For simple microcontrollers such as the STM32F070CB, power consumption
during different modes is almost constant. Especially in sleep mode where gener-

22

ally only the clock is activated. In operation mode, the power consumption does
depend on the instructions executed by the microcontroller, however as long as
these instructions are not memory access instructions, the difference between
them is negligible [30]. Therefore the power consumption during operation mode
can be seen as constant.

Based on two different modes we define de power consumption of the micro-
controller as

Emic = TsleepPsleep + TopPop ,

where Tsleep and Top are the time spent in sleep mode and operation mode
respectively, and Psleep and Pop are the power during sleep mode and operation
mode, respectively. Psleep and Pop can be found in the datasheet of the used
microcontroller.

When the microcontroller exits the sleep mode, it needs a few milliseconds of
processing before it can start transmitting or receiving, and afterwards it needs
a few milliseconds to enter the sleep mode. These processing times will be added
to the power consumption model. We define Top as

Top = Trx + Tr + Tt + Tp ,

where Trx is the total time of the receive windows opened during the firmware
update (both class A receive windows and class B ping-slots). When data is
received Tr adds the extra time needed to receive the data. Tt is the total
time transmitting data, and Tp is the processing time before and after each
transmission and reception. When operating at a frequency of 32 MHz, for the
STM32F070 Tp is on average 18 ms for each transmission and 12 ms for each
time the microcontroller opens the receive window.

Next, we define Tsleep as

Tsleep = TFUOTA − Top

where TFUTOA is the total time of a firmware update, including the Initial Phase
and Beacon Acquisition Phase. Top is again the total time the microcontroller
spent in operation mode.

23

Mode Condition Power consumption Unit
Sleep 0.2 – 1 µA
Idle 1.5 µA

Receive
LnaBoost Off, band 1
LnaBoost On, band 1
Bands 2 and 3

10.8
11.5
12.0

mA

Transmit

Power 20 dBm
Power 17 dBm
Power 13 dBm
Power 7 dBm

120
87
29
20

mA

Table 3.1: SX1276 power consumption during different modes. Lna-
Boost is the low noise amplifier which can be turned on or off [11].

3.3.2 Power Consumption Radio Module Model

According to the SX1276 datasheet [11], the radio module can operate in dif-
ferent modes (see Table 3.1). The Standby mode and the Synthesizer mode of
the SX1276 shown in the datasheet are not used and therefore not included in
Table 3.1.

The most power consuming modes, as expected, are the receive and transmit
mode. The idle and sleep modes both consume less than 2 µA. Comparing this
with the low power mode of the microcontroller, it adds less than 1 % to total
power consumption. Therefore to reduce the complexity of the model, power
consumption during this mode is not added to the model.

Based on these specifications, the power consumption of the radio module can
be modeled as

Eradio = TtPt + TrPr ,

where Pt and Pr are the power for transmitting and receiving respectively. Tt

and Tr are the time needed for the transmission and reception, respectively.
There are a lot of factors that influence the value of Tt/Tr and Pt/Pr such as

transmission power (SX1276 has four transmission power modes, see Table 3.1),
data rate, bandwidth and code rate. Accoriding to [4], there are 6720 possible
transmission configurations.

The transmission power directly influences Pt/Pr. Although the SX1276 can
transmit with a power up to 20 dBm, the maximal allowed uplink transmit
power in Europe is limited to 16 dBm [8]. This means that only two power
modes of this specific chip can be used. Other radio modules, however, might
allow a larger range of transmission powers. In practice the transmission power
of each device is programmed to be fixed. The reason for this is that the
power consumption can also be manipulated by reducing the data rate and thus
reducing the Tt and Tr. While the LoRaWAN specifications do not specify
any communication to support adaptive power transmission, it does implement
Adaptive Data Rate (ADR) communication.

More parameters are involved in defining Tt and Tr: the SF, bandwidth,
message size and code rate. The code rate is most of the time fixed for the same
reason as the fixed power transmission. The bandwidth and SF on the other
hand depends on the data rate. This leave us with only the message size and
data rate as non-fixed variables, reducing the number of possible configuration

24

Radio Microcontroller
Mode Power (mW) Mode Power (mW)

Transmit 87 Sleep + TCXO on 5.34
Receive 34.5 Operating + TCXO on 21.15

Table 3.2: Power consumption of the radio module (SX1276) and the
microcontroller (STM32F070CB) during different modes. The TCXO
(highly accurate external clock) is always on. The end-device operates
at a voltage of 3 V

significantly.
The time needed for transmission can be calculated as [10, Section 4]

Rb = SF × CR× BW

2SF
bits/s ,

where CR is the code rate, BW the bandwidth and SF the spreading factor.
With the bit rate defined, the actual transmit time can be calculated by

Tt = 8n× 1

Rb
= 8n× 2SF

SF× CR× BW
,

where n > 0 is the number of bytes to transmit.
For Tr almost the same model can be used, however it is highly likely that

the receive window is opened before receiving data. If a receive window would
be 30 ms, in the worst case the total Tr equals the 30 ms + T ′r where T ′r is the
actual time it takes to receive a message. Additionally it is also possible that
no data is received at all. In that case Tr equals the duration of the receive
window (Trx). The model for reception time can be defined as follows:

Tr = Trx + 8n× 2SF

SF× CR× BW

where n ≥ 0 is the number of bytes received. Notice that when n equals zero
Tr = Trx.

3.3.3 FUOTA Power Consumption Model

Now that the energy consuming components are constructed, a complete energy
consumption model can be defined. Table 3.2 shows the power usage of the
microcontroller and the radio module during the discussed modes. The power
consumption of the microcontroller is measured multiple times by using a device
named Otii [23]. Table 3.2 shows the average of these measurements. The
power usage of the radio module is based on the datasheet and verified by the
measurements performed on the microcontroller.

The sizes of each message required during FUOTA are shown in Table 3.3.
Multiplying the time on the air of each message (calculated based on the mes-
sage size and data rate) with the power consumptions in Table 3.2 results in
the additional power consumption. This means the extra power needed for a
firmware update. It is the additional power consumption because the time it is
not sending or transmitting FUOTA related messages it is doing the same as

25

Direction Message Size (bytes)
Downlink McClassBSessionReq 26
Uplink McClassBSessionAns 22
Uplink PingSlotInfoReq 19
Downlink PingSlotInfoAns 16
Uplink DeviceTimeReq 18
Downlink DeviceTimeAns 21
Uplink Class B confirmation (empty message) 18
Downlink Beacon 17
Downlink Multicast firmware message 16 + payload size

Table 3.3: Uplink and downlink messages sent during a FUOTA cycle
and the corresponding sizes.

Data rate
Initial Phase
Energy (mJ)

Beacon Acquisition Phase
Energy (mJ)

Multicast Phase
Energy (mJ)

DR3 12.8 28.3 1915.0
DR4 7.9 18.1 1077.9
DR5 5.3 12.5 616.7
DR6 3.5 8.8 309.2

Table 3.4: Power consumption of an end-device for each phase based
on a firmware update of 10 kB. This is in the ideal situation when no
packets are lost and all devices are switched to Class B at the same
time.

what it would do without a firmware update. This is without taking the energy
needed to store and install the firmware update into account.

Table 3.4 shows the additional power consumption for an update of 10 kB for
each phase. This table shows that, although an uplink message requires more
power, the downlink multicast messages are far more energy consuming due to
the large number of messages.

3.4 Scalability of FUOTA

Before sending the firmware update, each device needs to receive a series of
unicast messages. Scaling up the number of devices will highly likely result in
more packet losses and thus the need to send more uplink messages. Section 3.1
explains that a total number of five uplink messages is needed before stating the
multicast phase. The first regular uplink message is not counted by the system,
therefore the total expected additional uplink messages is four.

When sending a large amount of data, receiving the firmware data consumes
the most power. During the Beacon Acquisition Phase devices partly operate
in class B mode which additionally opens receive windows periodically. The
problem in this phase is that not all the devices switch to class B at the same time
due to possible beacon misses or uplink/downlink message collisions/blocking.
Blocking happens when the gateway has already scheduled a downlink message
during that time, like a beacon or a ping-slot downlink message. When for
example devices I is switch to class B and devices II is not, device I spends

26

Data rate DR3
Code rate 5/4
Firmware fragments 50
Firmware fragment size 50 bytes
Ping-slot periodicity 4 (every 16 seconds)
End-device distance to Gateway <2 meters

Table 3.5: Configuration used in experiments to evaluate the scalability
of FUOTA. These values are fixed through the entire experiment.

more time in class B than device II, resulting in a higher power consumption
for device I. Remember that multicast messages can only be send to the end-
devices once all end-devices are switch to class B, therefore the longer it takes
for a devices to switch to class B, the more energy other devices might use.

To evaluate the scalability of FUOTA multiple experiments are executed. In
these experiments a firmware update cycle, without the actual installation, is
performed with a variable number of devices. Each device logs their uplink and
downlink messages and sends it to the server. Based on these logs, the possible
increase in uplink messages can be determined when the number of devices
increases. Additionally, it should tell us the duration of the Beacon Acquisition
Phase.

The parameter configuration used in the experiments to evaluate the scalab-
ility are shown in Table 3.5. The experiments will be executed with N =
{15, 30, 60, 100} end-devices. Each experiment is repeating twelve times distrib-
uted over different day parts (morning, afternoon, evening, night). Additionally,
at least four of the experiment are performed in the weekends.

The gateway is configured to prioritize Class B over Class A, this means that
the reception or transmission of a class A message can be interrupted by a
scheduled class B downlink message. Therefore, ping-slots will not be blocked,
and the number of multicast messages received by an end-device should not
decrease when scaling up the number of end-devices. The to-be-updated devices
should not experience any up/downlink message blocking as they know when
these ping-slots happen and can schedule their up/downlink messages around
it.

3.4.1 Number of FUOTA setup uplink messages

Figure 3.7 shows a plot of the number of FUTOA setup uplink messages needed
during the Initial Phase. The average number of uplink messages lies close
to the minimal required uplink message of four, this means that most of the
devices only send the minimal required number of uplink messages. However,
by increasing the number of devices, the maximal uplink messages sent by a
end-device increases. Although there are only a few end-devices that have to
send a lot more uplink messages, the number of extra uplink messages needed
for these devices is quite significant. When using 100 devices, at least one device
had to send 11 uplink messages during the Initial Phase resulting in a significant
power consumption increase during the Initial Phase.

Each device sends a message every two minutes with a random deviation of 5
seconds. It is possible that one of the end-devices is constantly blocked by the

27

15 devices 30 devices 60 devices 100 devices
Experiment

0

2

4

6

8

10

12
U

pl
in

k
m

es
sa

ge
s

Average
Maximum

Figure 3.7: Maximal and average uplink FUOTA setup messages
needed by the end-device during the Initial Phase. On average no
significant increase can be seen, however some devices need to send
much more uplink messages during the initial state, resulting in a
significant increase in the power consumption of these devices.

same end-device due to the small deviation. A larger deviation might reduce
the maximal uplink messages needed for that specific end-device.

To answer Research Question 2a: on average the number of up-
link messages stays almost the same when scaling up the number
of devices, however the maximum needed uplink messages increases
when the number of end-devices increases resulting in some end-
devices consuming more power than others.

3.4.2 Number of received multicast messages during FUTOA

During the FUOTA cycle, 50 multicast messages are send to all the end-devices.
Figure 3.8 shows the number of received multicast messages on average during
the four experiments. No correlation can be seen between the received multicast
messages and the number of devices used. This is not unexpected because all
the devices in the network operate in Class B mode, therefore they know when
a ping-slot is scheduled and schedule there uplink messages around it.

To test that the gateway indeed prioritizes Class B over Class A, 60 non-
FUOTA devices (devices that are not being updated) are added to the network.
The average number of received multicast messages when adding 60
non-FUOTA devices to the network is 46.6. This shows that the non-
FUTOA devices do not interfere with the firmware update. (Research
Question 2a) However, this means that it is likely that the non-FUOTA devices
will lose packets during the firmware update. The next experiment will test this
hypothesis.

28

15
 de

vic
es

30
 de

vic
es

60
 de

vic
es

10
0 d

ev
ice

s

Experiment

0

10

20

30

40

50

m
ul

tic
as

t m
es

sa
ge

s
re

ce
iv

ed

Figure 3.8: Average received multicast messages per experiment. In
total 50 multicast messages are sent. No clear correlation can be
found between the number of multicast messages received and the
number of devices.

3.4.3 Beacon Acquisition Phase Duration

The longer an end-device stays in the Beacon Acquisition Phase the more ad-
ditional power it uses. Therefore it is important to switch to class B as fast as
possible, decreasing the time it spends in the Beacon Acquisition Phase. Fig-
ure 3.9 shows the average and maximal time an end-device spends in class B
during Beacon Acquisition Phase. More devices in the network results in longer
time spent in class B mode.

To understand what is happening here, it is important to repeat that the
PingSlotReq and DeviceTimeReq messages are send by each end-devices at the
start of the Beacon Acquisition Phase. Only when it received a valid answer to
both messages and found a beacon, it sends a class B confirmation message to
the server. The previous experiment (Section 3.5) showed that uplink message
collisions are (on average) not happening often, even with 100 devices. After
analysing the logs of the gateway, it seems that the duty cycle restriction and
downlink packet blocking causes the problem. When 100 devices all need to
receive two downlink messages at the same time, it takes quite a while before
the gateway can actually send these messages to all of them because it is only
allowed to send 1 % of the time.

To compare the Beacon Acquisition Phase in terms of power consumption,
when using 100 devices, it needs 16 additional beacon periods before it can start
the multicast phase. When a periodicity of 4 is used, this would add a power
consumption 16×9.3 = 148.8 mJ to the end-device that has switched to class B
as first. This is a significant amount comparing it with the power consumption
of the Initial Phase 3.4

29

Time until end-devices switched to class B

15 devices 30 devices 60 devices 100 devices
Experiment

0

500

1000

1500

2000

2500

T
im

e
(s

)

Average
Maximum

Figure 3.9: Average time between first and last devices switched to
class B. There is an extreme increase in time compared to the num-
ber of devices. Most likely due to the duty cycle restriction on the
gateway side, preventing DeviceTimeAns downlink messages.

Data rate DR3
Code rate 5/4
Number of end-devices 10
End-device distance to Gateway <2 meters

Table 3.6: Parameter configuration used for experiments to evaluate
the impact on Non-FUOTA devices.

3.5 Impact on Non-FUOTA Devices for Differ-
ent Firmware Sizes and Ping-Slot Period-
icities

Within an existing network it is possible that not all the devices have to be
updated. The devices that do not need to be updated, called the non-FUOTA
device, continue their normal tasks by sending uplink and receiving downlink
messages once in a while. However, during a FUOTA, the uplink and downlink
messages of these non-FUOTA devices might be blocked due to the transmission
of multicast messages to the FUOTA devices (see 2.3.3), especially because the
gateway prioritizes Class B over Class A. The duty cycle restriction on the
other hand is not expected to be a problem, because class A devices operate on
a different sub-band than class B devices.

To evaluate the impact on non-FUOTA devices, one non-FUOTA device is
sending uplink messages every 1 minutes, after which the gateway responds with
a downlink message. The total uplink messages, and total downlink messages
are counted to see the number of lost packets. The experiments are performed
with the parameters configured as shown in Table 3.6. The impact of different
ping-slot periodicity on the non-acfuota devices is evaluated by executing four

30

25
 B

yte
s

50
 B

yte
s

75
 B

yte
s

10
0 B

yte
s

Experiment

0

2

4

6

8

10

D
on

w
lin

ks
 lo

st
 (

%
)

(a) Fixed periodicity of 4.

2 3 4
Periodicity

0

5

10

15

20

D
on

w
lin

ks
 lo

st
 (

%
)

(b) Fixed firmware fragment size of
100 B.

Figure 3.10: Downlink message losses for non-FUOTA device during
a firmware update. The higher the firmware fragments transmission
time, the higher the packet losses. Sending more bytes in one frag-
ment result in better performance than increasing the periodicity,
due to the extra LoRaWAN header bytes per packet.

experiments of 1.5 hour with different ping-slot periodicities of p = {2, 3, 4}, and
a firmware fragment of 100 bytes. In the same way the impact of the firmware
size is evaluated, only with a fixed periodicity of 4 and a variable firmware size
of s = {25, 50, 75, 100} bytes.

3.5.1 Results

Figure 3.10 shows the results of the experiments. It can clearly be seen that
the non-FUOTA devices suffer in terms of downlink packet losses during a firm-
ware update. When sending firmware data close to the duty cycle restriction,
periodicity 2 with 100 B per fragment, the packet loss is almost 20 %.

Each downlink multicast packet contains an additional 16 B for the LoRaWAN
header (see Tabel 3.3). This means that in general, and also according to the
data in Figure 3.10, it is better to send large messages with a higher periodicity.

To answer Research Question 2b, there is high downlink packet loss
of almost 20 % for non-FUOTA devices when transmitting firmware
with a duty cycle close to the duty cycle restriction of 10 %, reducing
the firmware transmission duty cycle also reduces the packet losses.

This also leads to the recommendation to use a dedicated gateway for firmware
updates. This means that non-FUOTA devices can still be served as normal by
the current gateway while the firmware update is handled by another gateway.
As long as the non-FUOTA devices do not use the Class B sub-frequency band
with a center frequency of 869.525 MHz, there will be no up/downlink message
collisions.

Another possibility with a dedicated gateway is to make it mobile. Using a
mobile gateway makes it possible to update sections of the network by moving
the gateway close to that section. When the gateway is closer to the end-

31

Version Type Description
Image
size (kB)

Delta image
size (kB)

1.0.2 Full image update Base image 120 -

2.0.1
Delta update
(1.0.2 ->2.0.1)

Large update. Main changes:
- Communication protocol
- Code restructuring

119 69

2.0.2
Delta update
(2.0.1 ->2.0.2)

Small security update with bug fixes 119 7.1

Table 3.7: TWTG [36] valve sensor firmware version and the corres-
ponding images size and delta image size. To install version 1.0.2 the
complete image has to be sent, where only the delta images need to
be sent for version 2.0.1 and 2.0.2.

devices, a higher data rate can be used resulting in less power consumption for
each end-device. Although this seems to be a good improvement theoretically,
more research should be done to validate this in practice.

3.6 Feasibility of FUOTA over LoRa

The firmware update size depends on what needs to be updated. [24] And [25]
distinguish firmware update in three levels:

1. Full system update, where everything including the operating system can
be updated.

2. Application Update.

3. MAC update, to update the part responsible for the radio communication.

All three levels can be updated using firmware-based update [25], where the
complete image can be replaced. This can be done by sending a complete new
image to the end-device, however when only a small part of the code is changed,
sending a complete image is an overkill. Better is to send a so-called delta
update (or patch) [18] where only the difference between the old and the new
images will be sent. Even though delta updates are already much smaller than
a complete image update, it can still get pretty large, especially when code is
shifted to another place in the memory. This can happen when new code is
added that does not fit in the current memory arrangement, then parts of the
code need to be rearranged resulting in lots of reference changes and thus a
larger delta image.

At the application and MAC level, more sophisticated methods like dynamic
linking can be used. New applications can be added to memory at run time,
and the symbol lookup table containing all the unresolved references can be
updated.

The evaluation of the feasibility of FUOTA is based on software developed
by TWTG for valve sensors [35]. The software is compiled with Mbed OS [22].
Mbed OS compiles everything into a single image making it only possible to
use firmware-based updates. Therefore, other firmware updated techniques will
not be discussed in this thesis. Table 3.7 shows three different updates. The
first one (version 1.0.2) is a full image update, the complete 120 kB needs to be

32

Data rate Maximal payload size (Bytes)
DR0 - DR2 51

DR3 115
DR4 - DR6 242

Table 3.8: Maximal payload size in bytes per data rate in Europe [8].

sent. The second and the last updates are delta updates where only the delta
image (difference between installed images and updated images) needs to be
sent. From version 1.0.2 to version 2.0.1 is a relatively large firmware update
where the code has been restructured. The update from version 2.0.1 to version
2.0.2 is much smaller as only a few bugs are fixed.

The energy used by each end-device can be calculated using the power model
presented in Section 3.3. To get a realistic calculation of the power consumption
the ideal calculation of Section 3.3 needs to be modified with the results of
Section 3.4. This means that when using 100 devices on average an end-device
spends 1072 s in class B mode without receiving any downlink message, which
adds (when using periodicity 4) a total of 67 empty ping-slot windows to the
calculation. The uplink messages on the other hand does not seem to change
on average so they will be kept at a total of 4. Next, the number of multicast
messages depends on the maximal allowed payload size shown in Table 3.8 and
the firmware (delta) image size. Each multicast message will use this maximal
allowed payload size to minimize the LoRaWAN header overhead. Lastly we
consider a packet loss of 10 %. This means that when a total of 100 packets are
sent, 10 extra redundancy packets need to be sent. Of these 10 packets again
10 % will get lost, so another redundancy packet needs to be send, resulting in
a total of 111 packets that needs to be sent.

Figure 3.11 on the next page shows the energy consumption for each firmware
update in Table 3.7 when using seven different data rates. Comparing data rate
DR0 with DR6 when sending a firmware update of 120 kB, the difference is
337 J. DR0 used 167 times more power than DR6, considering the same packet
loss.

The battery used for the end-devices has a capacity of 12.96 W h which is
46 656 J. Even when using DR0 the additional power consumption for the firm-
ware update requires 0.73 % of the battery. This makes firmware updates over
LoRa in terms of power consumption feasible.

In Section 3.5 we recommended a dedicated mobile FUOTA gateway. This
recommendation got even stronger based on the results of Figure 3.11. When
using a mobile gateway it is possible to update end-devices in clusters close to
the gateway. This makes it possible to use higher data rates and significantly
reduces the power consumption of an end-device during FUOTA.

3.7 Extend the LoRaWAN Fragment Data Block
Transport Package

In Section 2.2 a way of implementing FUOTA is described. No changes were
made to the LoRaWAN packages used. However, two major problem where
discovered in Chapter 3 when using this implementation: (1) end-devices that

33

DR0 DR1 DR2 DR3 DR4 DR5 DR6
Data rate

10-1

100

101

102

103
E

ne
rg

y
(J

)

v1.0.2 (120 kB)
v1.0.2 -> v2.0.1 (69 kB)
v2.0.1 -> v2.0.2 (7.1 kB)

Figure 3.11: Average FUOTA power consumption for three different
firmware updates, based on a periodicity of 4, a code rate of 5/4, and
a packet loss of 10 %. A logarithmic scale on the y axis is used.

will not be updated suffer from downlink message blocking during FUOTA (2)
the time until each end-device is switched to class B increases with the num-
ber of end-devices, resulting in higher power consumption. In Section 3.5 and
Section 3.6 we recommended using a dedicated gateway to solve this problem.
For the second problem we propose a modification to the LoRaWAN Fragment
Data Block Transport package as described below.

As described in 2.2 the LoRaWAN Fragment Data Block Transport package
manages the transmission of data fragments and the sending redundancy pack-
ets. To setup a data fragments session, the server send a FragSessionSetupReq
to each end-device. This message specifies how many fragments will be sent
during the session.

This FragSessionSetupReq message can be extended to solve the problem of
the long Class B switching time (Beacon Acquisition Phase) when increasing the
number of devices. The time of the Beacon Acquisition Phase is not necessarily
the problem, the number of extra receive windows opened when switched to
Class B mode are. Especially for the devices that switch to Class B early in the
Beacon Acquisition Phase. We propose adding an extra session start time field
to the FragSessionSetupReq message. This session start time indicates when
multicast messages will be transmitted, until then, end-devices can go to sleep.
No unnecessary receive windows will be opened before the multicast messages
are transmitted.

For example, looking at the results in Section 3.4.3, it takes on average 16
extra beacon periods before it can start sending multicast firmware fragments.
This means that an end-device that is switched to class B at the beginning of the
Beacon Acquisition Phase, opens 32× 8 = 256 ping-slot receive windows (when
using periodicity 3) without actually receiving data. By telling the end-devices

34

it has to open these ping-slot receiving windows only after 16 beacon periods
the power consumption can be reduced by 265 mJ. In comparison with a large
firmware update in combination with a low data rate, the power saving does
not seem much, however for smaller updates with a higher data rate it makes
much more difference. For example consider the 7.1 kB firmware update with
a data rate of 3, it only consumes 1.61 J of power. By using the extra session
time, the power consumption is reduced by 16 %.

35

36

Chapter 4

Conclusion

In this thesis we evaluated the efficiency and scalability of transmitting firmware
updates over LoRa. The two main questions were: “What is a reliable model
to estimate the energy consumption of a firmware update?” and “What is the
increase in packet losses during a firmware update?”. The answers are found by
experimenting with a network setup with one gateway and up to 100 end-devices.
For the gateway a Raspberry Pi [14] was used. The end-devices, consisting of
the STM32F070CR microcontroller [31] and a SX1276 radio module [11], were
made by the company TWTG [36].

We divided the FUOTA process in three different phases and measured the
activities during these phases. The first phase is the Initial Phase, where all
the FUOTA setup messages are sent. The second phase is called the Beacon
Acquisition Phase, where each end-device listens for beacons sent by the gate-
way, once received the end-devices switches to class B. When each end-device
is switched, the Multicast Phase starts. In this last phase the actual firmware
data is sent using multicast downlink packets.

The main power consuming events were found to be receiving and trans-
mitting data over LoRa. With a relatively simple power consumption model
the power consumption during the different phases was calculated in the ideal
situation (no packet losses, delays etc.). These calculations showed that even
though sending one uplink message is more power consuming than receiving a
message, the Multicast Phases was the most power consuming phase due to the
large number of received multicast messages.

In terms of scalability, we performed four experiments with different number
of end-devices in the network: 15, 30, 60 and 100 end-devices. We showed that
the average number of uplink messages in the Initial Phase did not increase
much when scaling up the number of end-devices. However, there were a few
end-devices which had to send three times more uplink messages when using 100
end-devices. The poor random implementation of the deviation between each
message might be the cause of this problem. We also showed that the Beacon
According Time significantly increases when using more end-devices. More end-
devices in the network require more downlink messages by the gateway, however
the gateway has a duty cycle restriction of 1 % resulting in long wait times for
some end-devices. During the Beacon Acquisition Phase, end-devices switch to
class B. Once in class B they open a receive window periodically. However, the
Multicast Phase only starts when all the end-devices are switched to class B.

37

All the end-devices in class B during the Beacon Acquisition Phase are opening
receive windows for nothing and therefore consuming extra power.

Based on these results, we proposed a small change to the existing communic-
ation protocol. We propose to add a session start time to FragSessionSetupReq
message. This session start time tells the end-device when to expect the mul-
ticast messages, until then it can go to sleep. This reduces the number of
unnecessary opened receive windows during the Beacon Acquisition Phase and
safe up to 265 mJ when using a periodicity of three.

To evaluate what the impact is on non-FUOTA devices (devices that are part
of the network but not updated), we performed experiments with 10 FUOTA
end-devices and one non-FUOTA end-device. By changing the ping-slot peri-
odicity and firmware fragment size, we concluded that the higher the multicast
firmware transmission duty cycle the more downlink messages meant for the
non-FUOTA devices were lost. When using a duty cycle of 10 %, almost 20 %
of the downlink messages were lost. The duty cycle restriction was not the
problem because the firmware fragments were sent at a different sub-frequency
band. The problem was that the gateway can only send one message at the
time, resulting in lots of conflicts between the firmware downlink messages and
the non-FUOTA downlink messages. Because of these conflicts we recommend
to use a dedicated FUOTA gateway that is responsible for sending the firmware
fragments to the end-devices. In this way other devices o can continue without
any conflicts.

Lastly we evaluated the feasibility of FUOTA over LoRa by using firmware
image developed by TWTG for their wireless Valve sensors [35] as reference.
Three different updated sizes (120 kB, 69 kB and 7.1 kB) were evaluated when
sending with different data rates. The power consumption increases quadratic-
ally with the data rate (lower data rate requires more power). When sending
120 kB with DR0 the total additional power consumption of the firmware update
is only 0.73 % of the battery, considering a battery of 12.9 W h.

38

Bibliography

[1] Khaled Abdelfadeel, Tom Farrell, David McDonald, and Dirk Pesch. How
to Make Firmware Updates over LoRaWAN Possible. In 2020 IEEE 21st
International Symposium on ”A World of Wireless, Mobile and Multimedia
Networks” (WoWMoM), pages 16–25, Cork, Ireland, August 2020. IEEE.

[2] LoRa alliance. LoRaWAN 1.0.3 specification. https://lora-alliance.

org/wp-content/uploads/2020/11/lorawan1.0.3.pdf, 2018. Lase ac-
cessed: Apr 28 2021.

[3] LoRa alliance. FUOTA process summary technical recommend-
ation. https://lora-alliance.org/wp-content/uploads/2020/11/

tr002-fuota_process_summary-v1.0.0.pdf, 2019. Lase accessed: Jan
26 2021.

[4] Martin Bor and Utz Roedig. LoRa Transmission Parameter Selection. In
2017 13th International Conference on Distributed Computing in Sensor
Systems (DCOSS), pages 27–34, Ottawa, ON, June 2017. IEEE.

[5] Orne Brocaar. Chirpstack open-source application server. https://www.

chirpstack.io/application-server/. Lase accessed: Apr 28 2021.

[6] Orne Brocaar. Chirpstack open-source network server. https://www.

chirpstack.io/network-server/. Lase accessed: Apr 28 2021.

[7] Llúıs Casals, Bernat Mir, Rafael Vidal, and Carles Gomez. Modeling the
Energy Performance of LoRaWAN. Sensors, 17(10):2364, October 2017.

[8] LoRa Alliance Technical committee. LoRaWAN 1.0.2 regional para-
meters. https://lora-alliance.org/wp-content/uploads/2020/11/

lorawan_regional_parameters_v1.0.2_final_1944_1.pdf, 2017.

[9] Semtech Corporation. What are LoRa and LoRaWAN? https:

//lora-developers.semtech.com/library/tech-papers-and-guides/

lora-and-lorawan/. Last accessed: Nov. 09, 2020.

[10] Semtech Corporation. LoRa modulation basics. https://www.

frugalprototype.com/wp-content/uploads/2016/08/an1200.22.pdf,
2015. Last accessed: Nov. 09, 2020.

[11] Semtech Corporation. SX1276/77/78/79 - 137 MHz to 1020 MHz
low power long range transceiver. https://semtech.my.salesforce.

com/sfc/p/#E0000000JelG/a/2R0000001Rbr/6EfVZUorrpoKFfvaF_

Fkpgp5kzjiNyiAbqcpqh9qSjE, May 2020. Last accessed: Jul, 13, 2021.

39

https://lora-alliance.org/wp-content/uploads/2020/11/lorawan1.0.3.pdf
https://lora-alliance.org/wp-content/uploads/2020/11/lorawan1.0.3.pdf
https://lora-alliance.org/wp-content/uploads/2020/11/tr002-fuota_process_summary-v1.0.0.pdf
https://lora-alliance.org/wp-content/uploads/2020/11/tr002-fuota_process_summary-v1.0.0.pdf
https://www.chirpstack.io/application-server/
https://www.chirpstack.io/application-server/
https://www.chirpstack.io/network-server/
https://www.chirpstack.io/network-server/
https://lora-alliance.org/wp-content/uploads/2020/11/lorawan_regional_parameters_v1.0.2_final_1944_1.pdf
https://lora-alliance.org/wp-content/uploads/2020/11/lorawan_regional_parameters_v1.0.2_final_1944_1.pdf
https://lora-developers.semtech.com/library/tech-papers-and-guides/lora-and-lorawan/
https://lora-developers.semtech.com/library/tech-papers-and-guides/lora-and-lorawan/
https://lora-developers.semtech.com/library/tech-papers-and-guides/lora-and-lorawan/
https://www.frugalprototype.com/wp-content/uploads/2016/08/an1200.22.pdf
https://www.frugalprototype.com/wp-content/uploads/2016/08/an1200.22.pdf
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Rbr/6EfVZUorrpoKFfvaF_Fkpgp5kzjiNyiAbqcpqh9qSjE
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Rbr/6EfVZUorrpoKFfvaF_Fkpgp5kzjiNyiAbqcpqh9qSjE
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R0000001Rbr/6EfVZUorrpoKFfvaF_Fkpgp5kzjiNyiAbqcpqh9qSjE

[12] LTD. Dragino Technology Co. 10 channels - LoRaWAN GPS concen-
trator for Raspberry Pi. https://www.dragino.com/products/lora/

item/149-lora-gps-hat.html. Last accessed: Jul, 13, 2021.

[13] Fhessel. fhessel dragino pi gateway fwd Github repo. https://github.

com/fhessel/dragino_pi_gateway_fwd, January 2020. Last accessed:
Apr, 10, 2021.

[14] Raspberry Pi Foundation. Raspberry Pi 3 model b+. https://www.

raspberrypi.org/products/raspberry-pi-3-model-b-plus/. Last ac-
cessed: Jul, 13, 2021.

[15] The PostgreSQL Global Development Group. PostgreSQL: The
world’s most advanced open source relational database. https://www.

postgresql.org/. Last accessed: Jul, 13, 2021.

[16] Cian Guinee and Jonathan Dukes. Efficient firmware up-
date transmission for LoRa low power wide area technology.
https://www.scss.tcd.ie/publications/theses/diss/2019/

TCD-SCSS-DISSERTATION-2019-013.pdf, 2019.

[17] ECS Inc International. Ecs txo 2520 datasheet. https://ecsxtal.com/

store/pdf/ECS-TXO-2520.pdf. Last accessed: 1 Aug 2021.

[18] Jan Jongboom. Towards firmware updates over LoRa: cryp-
tography and delta updates. https://os.mbed.com/blog/entry/

towards-fota-lora-crypto-delta-updates/, October 2017. Last ac-
cessed: Jul. 26, 2021.

[19] Jan Jongboom. Armmbed/mbed-os-example-lorawan-fuota Github page.
https://github.com/armmbed/mbed-os-example-lorawan-fuota, May
2019.

[20] J.Catalano (Kerlink), J-P.Coupigny (STMicroelectronics), N.Sornin
(Semtech), and J.Stokking(The Things Network Foundation). LoR-
aWAN fragmented data block transport specification. https:

//lora-alliance.org/sites/default/files/2018-09/fragmented_

data_block_transport_v1.0.0.pdf, 2018. Last accessed: 13 Jul 2021.

[21] J.Catalano (Kerlink), J-P.Coupigny (STMicroelectronics), J.Delclef
(STMicroelectronics), A.Grigore (Flashnet), J.Schlarb (Comcast),
N.Sornin (Semtech), J.Stokking (The Things Network Founda-
tion), and A.Yegin (Actility). LoRaWAN remote multicast setup
specification v1.0.0. https://lora-alliance.org/resource_hub/

lorawan-remote-multicast-setup-specification-v1-0-0/, Septem-
ber 2018. Last accessed: 13 Jul 2021.

[22] Arm Limited. Mbed OS. https://os.mbed.com/mbed-os/. Last accessed:
Aug. 4, 2021.

[23] QUITECH. Otii by QOITECH. https://www.qoitech.com/. Last ac-
cessed: Jul, 13, 2021.

40

https://www.dragino.com/products/lora/item/149-lora-gps-hat.html
https://www.dragino.com/products/lora/item/149-lora-gps-hat.html
https://github.com/fhessel/dragino_pi_gateway_fwd
https://github.com/fhessel/dragino_pi_gateway_fwd
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.postgresql.org/
https://www.postgresql.org/
https://www.scss.tcd.ie/publications/theses/diss/2019/TCD-SCSS-DISSERTATION-2019-013.pdf
https://www.scss.tcd.ie/publications/theses/diss/2019/TCD-SCSS-DISSERTATION-2019-013.pdf
https://ecsxtal.com/store/pdf/ECS-TXO-2520.pdf
https://ecsxtal.com/store/pdf/ECS-TXO-2520.pdf
https://os.mbed.com/blog/entry/towards-fota-lora-crypto-delta-updates/
https://os.mbed.com/blog/entry/towards-fota-lora-crypto-delta-updates/
https://github.com/armmbed/mbed-os-example-lorawan-fuota
https://lora-alliance.org/sites/default/files/2018-09/fragmented_data_block_transport_v1.0.0.pdf
https://lora-alliance.org/sites/default/files/2018-09/fragmented_data_block_transport_v1.0.0.pdf
https://lora-alliance.org/sites/default/files/2018-09/fragmented_data_block_transport_v1.0.0.pdf
https://lora-alliance.org/resource_hub/lorawan-remote-multicast-setup-specification-v1-0-0/
https://lora-alliance.org/resource_hub/lorawan-remote-multicast-setup-specification-v1-0-0/
https://os.mbed.com/mbed-os/
https://www.qoitech.com/

[24] Peter Ruckebusch, Eli De Poorter, Carolina Fortuna, and Ingrid Moerman.
GITAR: Generic extension for Internet-of-Things ARchitectures enabling
dynamic updates of network and application modules. Ad Hoc Networks,
36:127–151, January 2016.

[25] Peter Ruckebusch, Spilios Giannoulis, Ingrid Moerman, Jeroen Hoebeke,
and Eli De Poorter. Modelling the energy consumption for over-the-air
software updates in LPWAN networks: SigFox, LoRa and IEEE 802.15.4g.
Internet of Things, 3-4:104–119, 10 2018.

[26] Saft Group SA. Ls, lsh, lsp — saft batteries. https://www.

saftbatteries.com/products-solutions/products/ls-lsh-lsp. Last
accessed: Jul, 21, 2021.

[27] Semtech. Semtech website. https://www.semtech.com/. Last accessed:
Aug, 25, 2021.

[28] Semtech. Lora-net/loramac-node github page. https://github.com/

Lora-net/LoRaMac-node, July 2021. Last accessed: Jul, 13, 2021.

[29] Yonatan Shiferaw, Apoorva Arora, and Fernando Kuipers. LoRaWAN
Class B Multicast Scalability. In 2020 IFIP Networking Conference (Net-
working), pages 609–613, June 2020.

[30] Victor Shnayder, Mark Hempstead, Bor-rong Chen, Geoff Werner Allen,
and Matt Welsh. Simulating the power consumption of large-scale sensor
network applications. In Proceedings of the 2nd international conference
on Embedded networked sensor systems - SenSys ’04, page 188, Baltimore,
MD, USA, 2004. ACM Press.

[31] STMicroelectronics. Mainstream Arm Cortex-M0 value line MCU with 128
Kbytes of flash memory, 48 MHz CPU, USB. https://www.st.com/en/

microcontrollers-microprocessors/stm32f070cb.html.

[32] Johan Stokking. Firmware updates over low-power wide
area networks. https://www.thethingsnetwork.org/article/

firmware-updates-over-low-power-wide-area-networks, July 2017.
Last accessed: Jan, 19, 2021.

[33] Jean-Jacques Chaillout Randa Jaouadi Taoufik Bouguera, Jean-
François Diouris and Guillaume Andrieux. Energy consumption model for
sensor nodes based on lora and lorawan. Sensors 2018, May 2018.

[34] J.CATALANO (Kerlink)-N.SORNIN (Semtech) J.CATALANO (Ker-
link) J.CATALANO (Kerlink) J-P.COUPIGNY (STMicroelectronics)
M.KUYPER (TrackNet) 56 N.SORNIN (Semtech) A.YEGIN (Actility)
T.KRAMP (Semtech), A.YEGIN (Actility). LoRaWAN remote multicast
setup specification v1.0.0. https://lora-alliance.org/wp-content/

uploads/2020/11/tr002-fuota_process_summary-v1.0.0.pdf, Janu-
ary 2019. Last accessed: 18 Jul 2021.

[35] TWTG. NEON valve sensor QT. https://www.twtg.io/products/

neon-valve-sensor-qt/. Last accessed: Jul, 20, 2021.

41

https://www.saftbatteries.com/products-solutions/products/ls-lsh-lsp
https://www.saftbatteries.com/products-solutions/products/ls-lsh-lsp
https://www.semtech.com/
https://github.com/Lora-net/LoRaMac-node
https://github.com/Lora-net/LoRaMac-node
https://www.st.com/en/microcontrollers-microprocessors/stm32f070cb.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f070cb.html
https://www.thethingsnetwork.org/article/firmware-updates-over-low-power-wide-area-networks
https://www.thethingsnetwork.org/article/firmware-updates-over-low-power-wide-area-networks
https://lora-alliance.org/wp-content/uploads/2020/11/tr002-fuota_process_summary-v1.0.0.pdf
https://lora-alliance.org/wp-content/uploads/2020/11/tr002-fuota_process_summary-v1.0.0.pdf
https://www.twtg.io/products/neon-valve-sensor-qt/
https://www.twtg.io/products/neon-valve-sensor-qt/

[36] TWTG. TWTG company website. https://twtg.io. Last accessed: Jul,
20, 2021.

42

https://twtg.io

Appendix A

LoRaWAN 1.0.3 Commands

Quick reference to the used LoRaWAN 1.0.3 commands. This is a quick
reference and most parts are directly copied from the LoRaWAN
1.0.3 Specification [2] and the LoRaWAN Remote Multicast Setup
Specification [21].

A.1 DeviceTime command (DeviceTimeReq, Device-
TimeAns)

The device timing commands can be used to synchronized the internal clock of
an end-device with the gateway.

DeviceTimeReq

Request seconds since epoch1. This message does not contain any payload.

DeviceTimeAns

Answer to the DeviceTimeReq, the payload is defined as follows:

Byte# 4:1 0

Payload
32 bit unsigned interger:
seconds since epoch1

8 bit unsigned interger:

fractional second in 1
2

8
seconds step

Table A.1: DeviceTimeAns payload format

1seconds since Sunday January the 6th 1980 at 00:00:00 UTC

43

A.2 PingSlotInfo commands (PingSlotInfoReq,
PingSlotInfoAns)

PingSlotInfoReq

Send by an end-device to inform the server of its unicast Class B periodicity.
The payload is defined as follows:

Bit# 7:3 2:0
Payload RFU 3 bits: Periodicity

Table A.2: PingSlotInfoReq payload format. RFU means reserved for
future use.

PingSlotInfoAns

Acknowledge to the PingSlotInfoReq, this message does not have a payload.

A.3 Remote Multicast Setup Commands (Mc-
GroupSetupReq, McGroupSetupAns, Mc-
ClassBSessionReq, McClassBSessionAns)

These commands are used to remotely setup a multicast session.

McGroupSetupReq

This command is used to create or modify the parameters of a multicast group.
The payload is defined as follows:

Byte# 28 27:24 23:8 7:4 3:0

Payload McGroupIDHeader McAddr McKey encrypted minMcFCount maxMcFCount

Table A.3: McGroupSetupReq payload format

• McGroupIDHeader contains the McGroupID which is the multicast group
ID of the multicast context.

• McAddr is the multicast group network address.

• McKey encrypted is the encrypted multicast group key from which McAppS-
Key and McNetSKey will be derived. These keys are used for encryption
of the multicast message.

• The minMcFCount field is the next frame counter value of the multicast
downlink packet to be sent by the server for this group.

• maxMcFCount specifies the life time of this multicast group expressed as
a maximum number of frames.

44

McGroupSetupAns

The end-device sends a acknowledgement using the McGroupSetupAns. The
payload is defined as follows:

Bit# 7:3 2 1:0
Payload RFU IDError McGroupID

Table A.4: McGroupSetupAns payload format

When set, the IDerror bit indicates that the end-device does not support the
multicast context indexed by the McGroupID requested by the server.

McClassBSessionReq

This message is sent by the server and used to setup a temporary Class B session.
The payload is defined as follows:

Byte# 9 8:5 4 3:1 0
Payload McGroupIDHeader SessionTime TimeOutPeriodicity DLFreq DR

Table A.5: McClassBSessionReq payload format

• McGroupIDHeader contains the McGroupID which is the multicast group
ID of the multicast context.

• SessionTime contains the Class B session start time in seconds since
epoch.

• TimeOutPeriodicity encodes the maximal session time in beacond periods
(128 seconds)

• DLFreq encodes the frequency used for the multicast.

• DR encodes the data rate used for the multicast.

McClassBSessionAns

The end-device acknowledges the session setup message by sending a McClassB-
SessionAns. The payload format is defined as follows:

Byte# 93 2:0
Payload Setup&McGroupID TimeToStart

Table A.6: McClassBSessionAns payload format

• Setup&McGroupID encodes the multicast group ID and the status of the
received McClassBSessionReq. The status contains status bits to indicate
if the frequency, data rate and multicast group are correctly setup.

• TimeToStart sends back the number of seconds until the session starts.

45

	Introduction
	LoRa and LoRaWAN
	LoRa
	LoRaWAN

	Problem Statement and Motivation
	Research Questions
	Contribution

	Background and Related Work
	Related Work
	How To Perform FUOTA With LoRaWAN?
	LoRaWAN Packages
	Multicast
	Firmware Fragment Transmission
	Class B versus Class C
	FUOTA Implementation Used for Evaluation

	LoRaWAN Class B
	Beacons
	Ping-Slots
	Class B Beacon and Ping-Slot Blocking

	Experiments and Results
	Experiment Phases and Communication
	Initial Phase
	Beacon Acquisition Phase
	Multicast Phase

	FUOTA Experimental Setup
	End-Devices
	Gateway

	Power Consumption of FUOTA over LoRa
	Power Consumption Microcontroller Model
	Power Consumption Radio Module Model
	FUOTA Power Consumption Model

	Scalability of FUOTA
	Number of FUOTA setup uplink messages
	Number of received multicast messages during FUTOA
	Beacon Acquisition Phase Duration

	Impact on Non-FUOTA Devices for Different Firmware Sizes and Ping-Slot Periodicities
	Results

	Feasibility of FUOTA over LoRa
	Extend the LoRaWAN Fragment Data Block Transport Package

	Conclusion
	LoRaWAN 1.0.3 Commands
	DeviceTime command (DeviceTimeReq, DeviceTimeAns)
	PingSlotInfo commands (PingSlotInfoReq, PingSlotInfoAns)
	Remote Multicast Setup Commands (McGroupSetupReq, McGroupSetupAns, McClassBSessionReq, McClassBSessionAns)

