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Abstract

In this paper, we study the dimension of bivariate polynomial splines of mixed
smoothness on polygonal meshes. Here, “mixed smoothness” refers to the choice
of different orders of smoothness across different edges of the mesh. To study
the dimension of spaces of such splines, we use tools from homological algebra.
These tools were first applied to the study of splines by Billera (Trans. Am. Math.
Soc. 310(1), 325-340, 1988). Using them, estimation of the spline space dimension
amounts to the study of the Billera-Schenck-Stillman complex for the spline space.
In particular, when the homology in positions 1 and O of this complex is trivial, the
dimension of the spline space can be computed combinatorially. We call such spline
spaces “lower-acyclic.” In this paper, starting from a spline space which is lower-
acyclic, we present sufficient conditions that ensure that the same will be true for the
spline space obtained after relaxing the smoothness requirements across a subset of
the mesh edges. This general recipe is applied in a specific setting: meshes of arbi-
trary topologies. We show how our results can be used to compute the dimensions of
spline spaces on triangulations, polygonal meshes, and T-meshes with holes.
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1 Introduction

Piecewise-polynomial functions called splines are foundational pillars that support
modern computer-aided geometric design [1], numerical analysis [2], etc. These
functions are defined on polyhedral partitions of R”. Their restriction to any poly-
hedron’s interior is a polynomial, and these polynomial pieces are constrained to
join with some desired smoothness across hyperplanes supporting the intersections
of neighboring polyhedra. Here, we study bivariate spline spaces—i.e., n = 2—
of mixed smoothness—i.e., different orders of smoothness constraints are imposed
across different edges of the partition. From the perspective of approximation with
splines, mixed smoothness is particularly interesting for capturing local, non-smooth
(or even discontinuous) features in the target function, e.g., for shock-capturing
in fluid dynamics, or for modeling smooth geometries with localized creases. In
particular, we study how the dimension of such spline spaces can be computed.

Computing the dimension of spline spaces is a highly non-trivial task in general for
splines in more than one variable. Initiated by Strang [3, 4], this is by now a classical
topic in approximation theory and has been studied in a wide range of planar settings,
e.g., on triangulations, polygonal meshes, and T-meshes [5-14]. Non-polynomial
spline spaces have also been studied in the same vein, e.g., [15].

In the present paper, instead of initiating the study of mixed-smoothness splines
from scratch, we study them in relation to a proper subspace for which the dimension-
computation problem is well-understood. Several conceptually similar approaches
have been recently formulated, inspired by applications of splines in numerical analy-
sis and geometric modeling. For instance, this approach was adopted to study splines
on non-rectangular T-meshes in [16] (using Bernstein—Bézier methods); to study
splines on locally subdivided simplicial meshes in [17]; to study splines with local
polynomial-degree adaptivity in [12, 14]; and to study mixed-smoothness splines on
T-meshes in [18].

More specifically, we derive sufficient conditions that help describe mixed-
smoothness spline spaces as lower-acyclic, i.e., as spaces for which the dimension
can be computed combinatorially using only local geometric information. Working
on a polygonal mesh in R?, we start from a spline space R” whose members are con-
strained to be at least r(r) smooth across edge t of the mesh. Then, given that R"
is lower-acyclic, we derive sufficient conditions for R° D R” to be lower-acyclic,
where s(t) < r(t) for all edges 7. In general, the former does not imply the latter
[18]. We use methods from homological algebra to derive these results; see Section 3.

In order to examine the sufficient conditions in practice, we narrow our focus
down to a specific application: dimension computation for spline spaces on meshes of
arbitrary topologies; e.g., see Fig. 1. Such splines enable geometric modeling of and
numerical analysis on arbitrary smooth surfaces [19], and are very useful in applica-
tions. We investigate the applications of our results to the following particular cases;
see Section 4 for details:

— Total-degree splines on triangulations and polygonal meshes containing holes;
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(a) (b) (c)

Fig. 1 We study the dimension of splines on polygonal meshes of arbitrary topologies, such as the ones
shown above, in Section 4. Here, the mesh boundaries have been displayed in bold

— Mixed bi-degree splines on T-meshes containing holes.

In summary, the following are our main contributions in this paper. In Section 3,
we derive a highly general dimension-computation framework with a plug-and-play
nature; i.e., it can be combined with other approaches from the literature to compute
dimensions of a wide variety of non-standard spline spaces. We illustrate its utility
in Section 4 by applying it to the study of spline spaces defined on triangulations,
polygonal meshes, and T-meshes. Doing so, we recover and extend results in several
papers [16, 18, 20, 21]. For instance:

— In Section 4.1, we provide a new proof that the spline complex of degree m
and regularity r on an arbitrary triangulation is exact when m > 3r 4+ 2 [20],
and provide better estimates for non-generic situations with low degree and high
smoothness.

—  We recover dimension formulas for C” splines for arbitrary polygonal meshes
with holes [10, 11, 21] for large enough degree m in Section 4.2.

— In Section 4.3, we derive simple geometric conditions that allow a combi-
natorial dimension formula for mixed smoothness splines with non-uniformly
chosen bi-degrees on T-meshes, thus extending the results from [14, 18]. Fur-
thermore, we show how our results can be more broadly applied to study the
dimension of splines on T-meshes with holes, while circumventing the need
to compute dimensions of splines on non-rectangular T-meshes with boundary
conditions [16].

Consequently, our work also demonstrates the uniform applicability of homological
methods to the study of splines on various mesh types.

2 Preliminaries: splines, meshes, and homology

This section will introduce the relevant notation that we will use for working with
polynomial splines on polygonal meshes.
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2.1 Bivariate splines on planar meshes

Definition 2.1 (Mesh) A mesh T of R? is defined as:

— A finite collection T of polygons o that we consider as open sets of R? having
non-zero measure, called 2-cells or faces, together with

— A finite set J1 of closed segments t, called 1-cells, which are edges of the
(closure of the) faces o € T, and

—  The set Ty, of vertices y, called O-cells, of the edges t € 71,

such that the following properties are satisfied:

— o0 € T, = the boundary of o, denoted do, is a finite union of edges in T,

- 0,0’ €T, =5 N0’ =doNdo’, if non-empty, is a single edge in T; or a single
vertex in T, and,

- r,veTwitht 47 = 1tN1t €Ty,

where o denotes the closure of the mesh face o. The domain of the mesh is assumed
to be connected and is defined as £2 := Uy 7,0 C R2.

Edges of the mesh will be called interior edges if they intersect the interior of the
domain of the mesh, §2. Otherwise, they will be called boundary edges. The set of

interior edges will be denoted by ‘071. Similarly, if a vertex is in £2 it will be called an
interior vertex, and a boundary vertex otherwise. The set of interior vertices will be
denoted by ‘fro.

The first ingredient we need for defining polynomial splines on J are vector spaces
of polynomials attached to each face of the mesh. More precisely, to each face o of

the mesh, we will assign a vector space of (total degree or bi-degree) polynomials
denoted by P, :

m: o= P,.

If the closures of faces o and ¢’ have non-empty intersection, then we will assume
that

Ps + Py = Py or Py . 2.1

Then, we can use P, to assign vector spaces of polynomials to the edges and vertices
of T. Denoting these by P; and P, respectively, for t € 71 and y € T, we define
them as follows:

Pri=) P, Ppi=) P 2.2)

oDT o3y

The above assignment of vector spaces to faces, edges, and vertices of T will be
assumed to be fixed throughout this document.

The second and final ingredient that we need for defining splines on T is a
smoothness distribution on its edges. The objective of this paper is to study how the
dimension of the space of splines on T (which will be defined shortly) changes with
this smoothness distribution.
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Definition 2.2 (Smoothness distribution) The map r : Ty — Z3>_; is called a

smoothness distribution if r(t) = —1 for all T ¢ 5’1.

Using this notation, we can now define the spline space R” that forms the object
of our study. From the following definition and the definition of r, it will be clear that
we are interested in obtaining highly local control over the smoothness of splines in
R’ a feature that is missing from most of the existing literature. This problem has
been addressed in a recent paper [18], but in a restricted setting where it is assumed
that (a) 7 is a T-mesh and (b) P, = P, for any o, ¢’ € T>.

Definition 2.3 (Spline space) The spline space R” is defined as:

iR’::fan(’D::{f:VGe‘J'z flo € Py,

VT € 071 £ is " smooth across r} .

From the above definition, the pieces of all splines in R”" are constrained to meet
with smoothness r(7) at an interior edge t. We will use the following algebraic
characterization of smoothness in this document (for a proof see [7] or [22]).

Lemma 2.4 Foro,o’ € Ty, let cNo'=t € T1, and consider a piecewise polynomial
function equalling p and q on o and o', respectively. Then, this piecewise polynomial
function is at least r times continuously differentiable across t if and only if

e p—q,

where £, is a non-zero linear polynomial vanishing on t.

In line with the above characterization and for each interior edge , we define J7 to
be the vector subspace of P, that contains all polynomial multiples of Ei(r)ﬂ; when
r(t) = —1, 37 is simply defined to be P,. Similarly, for each interior vertex y, we
define 3; = ZEV J7. Note that, once specified, m is assumed to be fixed; here we
are only interested in how the spline space changes with the smoothness distribution.
Thus, we have suppressed the dependence of the different spaces on m to simplify

the reading (and writing) of the text.
2.2 Topological chain complexes

Any spline f € R" is a piecewise polynomial function on J. We can explicitly
refer to its piecewise polynomial nature by equivalently expressing it Y [0] fs with
fo = flo- This notation makes it clear that the polynomial f, is attached to the face
o of J. Using this notation and Lemma 2.4, the spline space R" can be equivalently
expressed as the kernel of the map 9, where

3: @ [01Pr — @ [¢]P:/T] (2.3)

UE(IZ IE‘I]
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is defined by composing the cellular chain map 9 (with local coefficients) relative to
the boundary of 7T, namely
3: @ [0]Py > & [t]P:,

UE'TZ re‘j’l

with the natural quotient map g : @ [t]P; — @ [7]P./T%.
T 6%1 T 6%1
We briefly illustrate the cellular chain map relative to the boundary in Exam-

ple 2.5 and direct the reader to [23] for additional details on cellular and simplicial
homology.

Example 2.5 Consider the mesh T shown in Fig. 2 with three interior edges, three
boundary edges, and a single interior vertex. With orientations on edges as indicated
in Fig. 2 and with each face oriented in a counterclockwise manner, the usual cellular
chain map from faces to edges is given by:

[o1]= [za]—[T1]+[73] , [o2]— [T1]+[t5]—[2], [o3]1— [T2]+[w6]—[73] .

The chain maps we consider, which we write as 9, are relative to the mesh-boundary,
i.e., modulo all (formal sums of) boundary edges and vertices. Hence, our chain map
from faces to interior edges is given by:

a([o1]) = —[r1] +[w3], d([o2]) = [t1] — [m2] , d([03]) = [r2] — [73] .

We extend this linearly to [01]Ps, @ [02]Ps, @ [03]Ps,. Representing f = [o1] fo, +
[02] f5, 4 [03] f5; as a column vector, themap d : @ [0]P; — @ [1]P; is given

O’E‘.Tz ‘L'E‘T]

by multiplication by the matrix:

11 0
0o -1 1 |,
1 0 —1

with columns corresponding to o1, 02, and o3 and rows to 71, 72, and 3.
Similarly, our chain map from interior edges to interior vertices is given by

(1)) = =[nl, ([r2]) = =[], ([w3]) = —=[nl.

We again extend this linearly to [t1]P;, & [12]P, @ [13]P,. Representing f =
[t1]fz, + [12] fr, + [13] fz; as a column vector, the map 0 : e% [7]P; — EBO [y1P,
‘[E{.T] )/ET()

Fig.2 The mesh in Example 2.5

5
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is given by multiplication by the matrix:
[—1 -1 - 1] ,

with columns corresponding to 71, 72, and 73 and the row to yj.

Since the spline space R is the kernel of the map d in Eq. 2.3, it can be interpreted
as the top homology of a suitably defined chain complex Q",

Qr @ [01Ps — @ [11P/T; — D V1P, /T, — 0,

oeT? re%’l ye%’o
where the second map is induced from the usual cellular chain map from edges to
vertices. We call Q" the Billera-Schenck-Stillman complex (abbreviated as BSS).
The BSS was first introduced in [7, 9], and was first studied for purposes of local
degree elevation in [12, 14]; additional details on its construction may be found in
these references. As in [7, 9, 13], we will study Q" using the following short exact
sequence of chain complexes:

0 0

o 0 P[] — P [y]TJ; — 0
TE%] VE%O

e : &b [0]1Py —— P [7]1P, ——— P [y —— 0
oeT) re%‘l )/E%o

or - D 01 — D [71P/T; —— D ¥1Py/T, —— 0

oeT) re%’l )/E%o

0 0

(2.4)

It should be emphasized that all objects in the above diagram are vector spaces and
not modules; recall that we have merely suppressed their dependence on the chosen
degree distribution m.

Definition 2.6 (Lower-acyclicity of BSS) The complex Q" will be called lower-
acyclic if its homologies in positions 1 and 0 are trivial, i.e., if H1(Q") = 0 =
Ho(Q").

Lower-acyclicity of the BSS is interesting precisely because it is a sufficient
condition for ensuring that the dimension of R" can be computed using only local com-
binatorial data, with the computation being unaffected by the global geometry of 7.
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Theorem 2.7 [fQ" is lower-acyclic, then the dimension of R" can be combinatorially
computed,

dim (R") = x (Q") ,
where x (Q) is the Euler characteristic of the complex Q". Moreover,

Ho(T") = Hy(C) .

Proof The first claim follows from the definition of the Euler characteristic of Q":
x (Q") = dim (Q%) — dim (Qf) + dim (Qf) ,
= dim (H>(Q")) — dim (H;(Q")) + dim (Ho(Q")) ,
= dim (R") — dim (H{(Q")) 4+ dim (Hp(Q")) .
The second part of the claim follows from the long exact sequence of homologies
implied by the short exact sequence of chain complexes in Equation (2.4),

Hi(©) H1(Q) Ho(J") Hy(C) Ho(Q") 0. m

Remark 2.8 We describe the meaning of Theorem 2.7 in the case of uniform degree
and smoothness on planar triangulations. Suppose 7T is a simply connected planar
triangulation, m assigns to each face the vector space of polynomials with total degree
m, and r assigns to each interior edge the same fixed non-negative integer r. Under
these assumptions, the Euler characteristic x (Q") of the Billera-Schenck-Stillman
chain complex is precisely the lower bound of Schumaker [5], as is shown in [9].
The main result of [24] is that Schumaker’s lower bound gives the exact dimension
of the spline space over a generic triangulation when m > 3r + 1. Translated into our
terminology, this is the same as saying that Q" is lower-acyclic for m > 3r + 1.

3 Spline space R* 2 R’ of reduced regularity

We present our main results in this section. In particular, we will relate the dimension
of the spline space R" to the dimension of a spline space R® obtained by relaxing
the regularity requirements. That is, for all interior edges t, it will be assumed that
s(t) < r(r). This relationship will be utilized to present sufficient conditions for
lower-acyclicity of the BSS defined for RS.

For the spline space R®, let the first and last chain complexes in Equation (2.4)
be denoted by J* and QF, respectively. Then, by definition of the smoothness
distributions r and s, we have the following inclusion map from J” to J%,

J — 75 .

Since both complexes are also included in the complex €, we can build the following
commuting diagram between two short exact sequences of chain complexes:

0 > Jr > J8 > J5/97 —— 0
l l l 3.1
0 > C > C > 0 > 0
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Proposition 3.1 If Hy(J°/I") = 0 and Q" is lower-acyclic, then the following hold:
Ho(3%) = Ho(C) = Ho(I") , Hy(Q%) =0.
Proof The diagram in Equation (3.1) implies the following commuting diagram that

connects the long exact sequence of homologies for the two exact sequences of
complexes:

cor —— H1(J¥)7") —— Ho(0") —— Ho(J°) —— Ho(F¥/7") —— 0

| | | |

> 0 > Hp(C) —— Hy(C) > 0 > 0

Then, from Theorem 2.7, we know that Hy(C) = Hy(J"). Then, by an application of
the Five lemma [23, 25], we obtain

Hy(3%) = Hy(©) ,

and the first part of the claim follows. The second part of the claim follows upon
considering the long exact sequence of homologies implied by the following short
exact sequence of chain complexes:

P — C —— 0.

The tail-end of this long exact sequence is shown below and, using the first part of
the claim, we see that Hy(Q%) must be trivial:

coo — Hy(J¥) —— Ho(C) —— Hp(Q*) —— 0. n

By focusing on the simpler object Ho(J°/J"), see Lemma 3.4 at the end of this
section, the previous result helps identify when Hy(J*) will be isomorphic to Hy(C).
Using this, we can now present our main results: sufficient conditions for the lower-
acyclicity of Q°. The results use the following commuting diagram of complexes:

0 > Jr s C > QF > 0

RN

0 > J8 > C > QF > 0

which is built using the inclusion map € — C.

Proposition 3.2 If Hy(J°/J") = 0 and Q" is lower-acyclic, then
Hi(Q)=0.
Proof The diagram in Equation (3.2) implies the following commuting diagram that

connects the long exact sequence of homologies for the two exact sequences of
complexes:

Hi(©) H1(Q) Ho(J") Hy(C) Ho(Q") 0
Hi(€) Hi(Q%) Ho(J*) Ho(C) Ho(Q%) 0
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By an application of the Five lemma [23, 25], we obtain that the map H;(Q") —
H1(Q%) must be a surjection. Then, the claim follows from the lower-acyclicity of
Qr. ]

Corollary 3.3 If Hy(J°/J") = 0 and Q" is lower-acyclic, then QF is lower-acyclic.

As mentioned earlier, Hy(J* /J") is a simpler object to study, both computationally
and analytically. Let us precisely state what we mean by “easier.” Let T7 be the set of
edges 7 for which s(t) < r(r), and let Tj be the set of vertices of the edges T € T}

in Tp.

Lemma 3.4 The complex J°/J" is supported only on T| and T, i.e., zero vector
spaces are associated to all edges t ¢ T| and vertices y ¢ Ty,

Proof The claim follows from the definition of the complexes J* and J". Indeed, if
s(t) = r(r), then 33 = J7 and the cokernel of the inclusion map from J" to J* is
zero on t; similarly for the vertices. |

Remark 3.5 Corollary 3.3 provides sufficient conditions for ensuring lower-
acyclicity of QF given that of Q". In particular, it should be noted that it does not
place any assumptions on the homologies of the complex €. Thus, our approach is
compatible with studies which assume Hj(C) and Hy(C) both vanish (e.g., [13]) as
well as studies where such assumptions are not made (e.g., [12]).

4 Applications

Let us now see how we can compute the dimension of splines on interesting meshes
using Corollary 3.3. This result is quite general and is applicable in a large number of
settings. We will narrow our focus down to the case where we reduce the smoothness
across one or more interior edges T from r(t) to s(tr) = —1. This is motivated as
follows. Let us say that we are working with splines on a polygonal partition T of a
topological disk £2. Suppose we are able to reduce smoothness across all boundary
edges of a number of polygonal faces of T to —1 while retaining lower-acyclicity
(by an application of Corollary 3.3). Then we can carve out these polygons from the
domain §2 to create a new mesh of more complex topology, and we can do so without
losing the ability to exactly compute the dimension of splines on the new mesh. We
now make this precise.

Definition 4.1 (Pruned mesh, spline space, and BSS complex) Given T, r and m, let
F C T, be the set of faces o such that, for any edge t C o, r(r) = —1.

— A pruned mesh T is obtained from T by deleting all faces in F.
—  With 7 and i defined by restricting  and m to the edges and face of T, the spline
space R (T) will be called the pruned spline space.
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— The pruned BSS complex O is defined on T using 7 and m. Equivalently, o
can be obtained from Q" by deleting all faces o € F from the top vector space.

Note that, in general, the domains corresponding to a mesh T and its correspond-
ing pruned mesh T will be topologically different. The next three subsections show
how the dimension of pruned spline spaces can be be computed for triangulations,
polygonal meshes, and T-meshes. We will use the following result in all sections.

Theorem 4.2 Let Q" be lower-acyclic for a given mesh T, and let th (ﬁ) and O be
the corresponding pruned spline space and BSS complex. Then,

dim (ﬂth(‘j)) = ()= > dim(P,) .

oeF

Proof From Definition 2.3, and compared to the pruned spline space, the spline space
Ry, (T) does not impose any additional smoothness constraints along the edges of
faces 0 € F. Then, and since Theorem 2.7 applies as Q" is lower-acyclic, we see that

x (Q7) = dim (R}, (7)) = dim (ﬂ%f;, (’33) + Y dim () . .
oeF

4.1 Triangulations

In this section, we show that Corollary 3.3 and Theorem 4.2 can be used to recover
dimension formulas for splines on triangulations with holes. For instance, Theo-
rem 4.9 shows that the complex Q" associated to the space of C” splines of degree
m > 3r + 2 is always lower-acyclic. Similarly, Corollary 4.10 provides finer control
over the dimension of splines than was previously known if there are enough slopes
meeting at interior vertices. Note that the former result is not new—a dimension for-
mula for splines on planar triangulations with holes is given in [20] for m > 4r + 1.
This formula is extended to m > 3r + 2 in [21] where an extension of Schumaker’s
lower bound to rectilinear partitions with holes (and possibly non-triangular faces) is
also made. Thus, the main purpose of Theorem 4.9 is to illustrate the utility of Corol-
lary 3.3 by providing an alternate proof of the fact. Moreover, this section also sets
the stage for our treatment of arbitrary rectilinear partitions in Section 4.2.

In the interest of a focused discussion, we consider meshes J which satisfy the
following properties:

Py =Py VYo €T, and r(r)e{r,—1} Vte‘j'l,

where m € Zxo, r € Zx_1, and P, is the space of polynomials of total degree at
most m.

Lemma 4.3 Let Q" be lower-acyclic, and consider an interior edge t with end-points
y and y' such that r(t) = r. Let s be the smoothness distribution obtained from r by
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reducing the smoothness across T to —1, i.e.,

() = {r(r ), T fr,

-1, =1

If there exists an edge ' incident on y such that r (") = —1, then Q° is also lower-
acyclic.

Proof From Lemma 2.4, J* /3" is

—  Supported on both T and y’ if r (") # —1 for any edge t” incident on y’, and,
—  Supported only on t otherwise.

Then, for both these cases, it is easy to verify that Hy(J*/J") vanishes and the claim
follows from Corollary 3.3. |

Lemma 4.3 tells us that if an edge 7 is incident on a vertex y such thatr(t) = —1,
then for any other edge t’ that is incident on y, we can reduce the smoothness across
7’ to —1 preserving lower-acyclicity for all m. On the other hand, we now consider
what happens when we reduce the smoothness across the entire boundary of a face
o € T, to —1. That is, if r is a smoothness distribution on J; and o is a face with
bounding edges 1, 72, and 13, we consider the smoothness distribution s defined as

r(ty, t#71,i=1,2,3,
(1) := .
—1, otherwise.
We call s the smoothness distribution obtained from r by reducing smoothness across
do to —1. Unlike Lemma 4.3, our result will now depend on m.

If we wish to reduce smoothness across the entire boundary of a triangular face
to —1 while preserving lower-acyclicity using Corollary 3.3, then we must describe
Ho(J* /7). This homology is the cokernel of the only non-trivial map in the chain
complex J* /J"; we call this map ¢. Suppose o is bounded by edges t;, 12, and t3.
Let y; = 1; N 1,41 be interior vertices of T, where the index i is cyclic in (1, 2, 3).
Let ¢; be a linear form vanishing along 7; fori = 1, 2, 3. Then, ¢ is the map:

9>m/$1+‘> Pn/3},
®
¢ Pu/ityth P /7, 4.1
® ®
P/ (5 P/

Here, (Z;H) is the subspace of P,, containing all polynomial multiples of Zf“, for
i = 1,2, 3 (see also Remark 4.6).

Lemma 4.4 Let Q" be lower-acyclic and consider face o, edges t;, and vertices y;,
i =1,2,3, as defined above. Assume that the following hold for all i € {1, 2, 3}:

- r@m=r,
—  r(t) # —1 for any other edge t incident on y;,
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Let s be the smoothness distribution obtained from r by reducing the smoothness
across 9o to —1. If the cokernel of the map ¢ from Equation (4.1) is trivial, then Q°
is lower-acyclic.

Proof The claim is immediate from Corollary 3.3 and the fact that Hy(J*/J") is
precisely the cokernel of the map ¢ from Equation (4.1). ]

Lemma 4.5 The cokernel of the map ¢ in Equation (4.1), and hence Hy(J°/I"), is
isomorphic to

P/ (T, + T3, +T7).

Proof We apply the snake lemma to the left two columns of the following commuta-
tive diagram:

0 0
| |
3 " 3
@1 ety —¢ @13;" . coker(¢)) ———— 0
1= 1=
t
3 [1 | 1] -
@ipm > me s> 0
i=1
| : :
3 P ¢ 3 P v
b : » P — ——— > coker(¢p) ———— 0
i=1 () i=1 3y,
0 0 0

We only need the last portion of the snake lemma, namely the rightmost vertical
column given by the sequence

cokerg” 5N cokerg’ I coker(¢p) — 0,

where ¢ and 7 are the induced maps from ¢ and 7. In other words, coker(¢) =
coker(7). The above diagram explicitly identifies coker¢’ with P,,. Since the diagram

-~

is commutative, 1 = [1 1 1] o 1. The image of the latter inside Py, is clearly J7 +
35, + 37, Thus

coker(¢) = coker(i) = P,,/ (3)'/0 + ﬁ];l + 3;2),

as claimed. |
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Remark 4.6 In the remainder of the manuscript, if fi, ..., f; are polynomials in P,
we use the notation (f;) to denote the subsEace of P,, containing all polynomial
multiples of f; and (fi, ..., fx) todenote ) ;_,(fi).

By a change of coordinates, we may assume that £; = x, ¢, = y, and {3 = z,
where z = (x + y 4+ 1). Then

~r o _ (1l o+l g+l g+l r+l
J)’l = (x Y ’Ll 1’ L2 ’l ’Lt1—2>l
ro_ r+1 _r+1 r+ r+1 r+
:iyz - (y » < 7M1 17M2 . 9 7M[2T2>
~Nr r+1 _r+1 r+ r+ r+
Jy3— {x » < 7N1 ,Nz s”'sNt3_2>7

where L;, M;, and N; are linear forms in x and y, y and z, and x and z, respectively
(regarding z as a variable), and the integer #; is the maximum number of the powers
of linear forms in {ZQH : ¥; € t} which are linearly independent. It is known that #; is
the minimum of » 42 and the number of slopes incident upon y;. A standard basis for
P, is provided by the monomials x’y/, i + j < m. An alternative basis for P,, which
is more convenient for our arguments is the polynomials x’y/z%¥ = x?y/ (x +y + Dk,
where i + j + k = d. Lemma 4.5 guarantees that Hy(J*/J") will vanish if every
polynomial of this form is in the sum J7, + 77, + 77, . We can obtain good estimates
for this from the integers:

21 := min{d : x'y/ € 37, foralli + j > d},
2, := min{d : y'z/ € 37, foralli + j > d},
23 := min{d : x'z/ € I, foralli + j > d}.

We can in fact obtain these exactly using [9].

Lemma 4.7 (Schenck and Stillman [9, Corollary 3.4]) Let the vertices y1, y2, v3 be
as above. Define t; and $2; fori = 1,2, 3 as above. Then, fori = 1,2, 3,

1
.Q,':I‘—i-’rr—}_ —‘
;i —1

We are now in a position to state our main result on triangulations.

Theorem 4.8 Let Q" be lower-acyclic and consider a face o, edges t; and vertices
vi, i = 1,2,3, as defined above. Assume that the following hold for all i € {1, 2, 3},

- r(m)=r,
—  r(t) # —1 for any other edge t incident on vy;,

Suppose y; has n; distinct slopes, and define t; = min{r + 1, n;} and $2; = r+ [[’itlﬂ

fori = 1,2,3. Let s be the smoothness distribution obtained from r by reducing
smoothness across 0o to —1. Then, if m > % the chain complex QS for
the pruned mesh is lower-acyclic.

Proof By Lemma 4.4, it suffices to show that the cokernel of the map ¢ in Equa-
tion 4.1 is trivial. By Lemma 4.5 it suffices to show that 37, + 37, + 37 = P, for
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we must have

i+j<£2-1
Jtk<$§,-1
i+k<$£23;—1.

Summin étheseleadstOZ(l—}-]—f-k) <+ S22+ 823—-3,orm=(>0+j+k) <
(21+92+ 3 . Thus, jr +jr +jr =P, form > M By Lemmas 4.4

and 4.5, Q5 is lower acychc for m > %‘*933 |

Theorem 4.9 Suppose T is any triangulation. Then Q" is lower-acyclic form > 3r+
2. In particular, the formula for dim (R") in [24, Equation 7.1] holds for m > 3r + 2.

Proof An arbitrary planar triangulation 7 has some number of holes, along with a
minimal number of triangles needed to “fill in” those holes with a triangulation. We
induct on this minimal number of triangles needed to “fill in” the holes. If no such tri-
angles are needed, then 7 triangulates a simply connected region and the main result
of [26] (see also [27] where a similar result is shown for superspline spaces) implies
that the corresponding chain complex Q" is lower-acyclic for m > 3r + 2. Now
suppose T triangulates an arbitrary non-simply connected region with corresponding
chain complex Q. Pick one of the holes in T and form 7’ by adding in a triangular
face o so that:

1. o begins a filling of the holes of T in a minimal fashion
2. o N7 is connected

By induction, the chain complex Q" corresponding to 7" is lower-acyclic for m >
3r + 2. If ¢ N T is not the entire boundary of o, then applying Lemma 4.3 at most
twice yields that QF is lower-acyclic for m > 3r 4 2. If & N T is the entire boundary
of o, then applying Theorem 4.8 yields that Q° is lower-acyclic for m > 3r + 2 as
long as (£21 + 22 + §23 — 3) /2 < 3r + 2. The integers £2; are largest when only two
slopes meet at y;. In this case, £2; = 2r 4 1. Hence

(821 + 22+ 8§23 —3)/2 < (6r)/2 =3r < 3r + 2,

completing the induction.

The last statement in Theorem 4.9 now follows from Theorem 2.7 and Theo-
rem 4.2, since the Euler characteristic of Q" (subtracting off the dimensions dim (P,,)
for each triangle used to fill in the holes) is precisely the dimension of the spline
space. The exact formulas can also be derived from the chain complex; see [9, 28].
We do not discuss this here. |

Lemma 4.5 can be used to give better estimates in non-generic situations for
combinations of low degree and high smoothness, as we illustrate in the following
corollary.
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Corollary 4.10 Let r, m, and T be such that Q" is lower-acyclic. If every interior
vertex of T has at least r + 2 distinct slopes incident upon it and m > 3{ then the
smoothness across the boundary of any face o € Ty can be reduced to —1 while
preserving lower-acyclicity. In particular, the following can be said about specific
choices of r and m.

(A) m = 2andr = 1: If T is such that any interior vertex has edges with at least
3 distinct slopes incident upon it, then the smoothness across the boundary of
any face o € Ty can be reduced to —1 while preserving lower-acyclicity.

B) m = 4andr = 2: If T is such that any interior vertex has edges with at least
4 distinct slopes incident upon it, then the smoothness across the boundary of
any face o € T, can be reduced to —1 while preserving lower-acyclicity.

In all such cases, the dimension of the corresponding pruned spline space can be
computed by a direct application of Theorem 4.2.

Example 4.11 (C' quadratic splines on a domain with holes) Consider the meshes
shown in Fig. 3. We are interested in the space of C' quadratic splines on mesh in
Fig. 3(a). Then, we can interpret this space as the pruned version of the space of C'!
quadratics on the triangulation in Fig. 3(b) after we have reduced the smoothness
across the dashed edges in Fig. 3(c) to —1. Therefore, we start by looking at the mesh
in Fig. 3(b).

First, for the mesh in Fig. 3(b), choose all P, = P, for all faces o, where P, is
the space of polynomials of total degree at most 2, and r(t) = 1 for all interior edges
7. It can be checked, using the formulas in [29], for instance, that Q" is lower-acyclic
and the dimension of the corresponding space is 27.

Then, using Lemmas 4.3 and 4.4, we can reduce the smoothness across all dashed
edges in Fig. 3(c) to —1 while preserving lower-acyclicity (c.f. Corollary 4.10(A)).

(a) (b) (c)

Fig.3 A non-simply connected domain and its triangulation are shown in a. Starting from the triangulation
in b, we can interpret the triangulation in a as a pruned triangulation once the smoothness across the
dashed edges in ¢ have been reduced to —1. In ¢, reducing the smoothness to —1 decouples the faces inside
the dashed region from those outside the dashed region. Then, the required spline space dimension can be
computed from the one on ¢ using Theorem 4.2, i.e., by subtracting dim (P ) for each o contained inside
the dashed region. Note that all domain boundaries have been displayed in bold
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The dimension of the resulting space is 53. As a result, the dimension of the pruned
space in Fig. 3(a) can be exactly computed using Theorem 4.2 to be 29.

Note that, for the mesh in Fig. 3(a), H{(C) is not 0. Therefore, it is not directly
covered by the approach presented in [29] for dimension counting. The result of the
computation of course coincides with Billera [7, Theorem 5.8] since we looked at
the special choice of r = 1. Nonetheless, our results can also be applied for different
choices of r; c.f. Corollary 4.10(B).

Remark 4.12 At first glance, it may seem strange that the dimension of splines in
Fig. 3b is smaller than the dimension of splines in Fig. 3(a). However, this makes
sense because, while removing some faces from the mesh, we also removed the
smoothness constraints across the boundaries of those faces. The net effect of such
operations may very well lead to an increase in the dimension, as is the case here. The
same observation will also hold later when we look at T-meshes in Example 4.28.

4.2 Polygonal meshes

We now turn to planar meshes with convex polygonal faces, or rectilinear meshes.
We again show that Theorem 4.2 and Corollary 3.3 can be used to recover dimen-
sion formulas for splines on rectilinear meshes with holes (and m large enough—this
will be specified later) from dimensions formulas for splines on rectilinear meshes
without holes. A dimension formula for splines on polygonal meshes without holes
(and m > 0) is derived in [10]; in [11] it is shown that this formula holds for
m > 2F + 1)(r + 1) — 2, where F is the largest number of edges surrounding a
single face of 7. In practice, the dimension formula in [10] typically holds for much
smaller values of m, as we will see in Example 4.16. For most vertex positions, the
dimension formula of [10] agrees with Schumaker’s lower bound from [5] when
m > 0.

Let T be an arbitrary rectilinear mesh (allowing polygonal faces) with the same
setup as in Section 4.1. That is,

Py =P, Vo eTr and r(r) e fr,—1} VreT,

where m € Zxo, r € Z»_1, and Py, is the space of polynomials of total degree at
most m. We will assume that the polygonal faces are convex although this condition
could be dropped for particular examples.

We consider reducing smoothness to —1 across the boundary of a face o € 7.

Suppose o is bounded by edges 71, 12, ..., Tx. Let y; = t; N T;4+1 be interior vertices
of J, where the index i is cyclic in (1,2, ..., k). Let £; be a linear form vanishing
along 7; fori = 1,2, ..., k. Let s be the smoothness distribution where:

r(t), t#rt,i=1,...,k,

s(t) :=
2 —1, otherwise.
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We again call s the smoothness distribution obtained from r by reducing smoothness
across do to —1. Then, the only non-trivial map ¢ in Ho(J*/J") is given by

11 0

@ . Lo, . @
Pu/Y L Pl
¢ : @ R @
® ®
P/ () P /T

Lemma 4.13 The cokernel of ¢, and hence Ho(J* /), is isomorphic to Py, / (37, +
ST,
Yk

Proof The proof is the same as Lemma 4.5. |

If the face o is not triangular, then it is likely that (37’,1 + .+ fi;k) = P, for
quite small m relative to r and it is possible to obtain quite accurate estimates for
the smallest such m. However, this equality typically holds in degree far lower than
dimension formulas are actually known (see [11]), so we focus on giving some coarse
estimates that are easy to derive.

Proposition 4.14 Let T be a planar polygonal mesh and o a face of T with bounding
edges 11, ..., T and vertices y; = T; N Tj41, with i taken cyclically from (1, ..., k).
Let r be a fixed smoothness distribution and let s be the smoothness distribution
obtained from r by reducing smoothness across do to —1. As above, let $2; = r +

trﬂ -| where t; = min{r + 1, n;} and n; is the number of distinct slopes incident at
1

;. Then Hy(J* /I") vanishes for

— m > 3ror
- m> 82+ Q241 —2foranyi=1,... k.

In particular, if either of these conditions holds and Q" is lower-acyclic then so is Q5.

Proof By Lemma 4.13, it suffices to show that (J7, +--- 4+ 37 ) = P, for the two
cases above.

Without loss of generality, we can change coordinates so that 37 = (x™ 1y, J, =
(y"t1y, and JL = (z" 1y for some 2 < i < k, where z = (x + y + 1). Then, it is
clear that (x"+1, y™+1 7+l < (35, +---+37,). We again choose to use the basis
xiyiZK i+ j+k =m, for Py, If xyizk ¢ (x™+1, y"+1 z7+1y then we must have
i<r, j<randk <r;thusi+ j+k < 3r.Itfollows that (x" 1, y'+1 z7+ly = p
hence also (3;1 +o 4 J;k) = P,.
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Now suppose that m > §2; + §2;41 — 2 forsome i = 1,..., k. Again, changing
coordinates, we may assume that:
r _ r+1 | r+l r+1 yr+l r+1
Iy = LY L ; L !l"' *Lzlfz)l
~Nr _ r+1 _r+l1 r+ r+1 r+
Jy,qu - <y » 2 ’Ml aM2 ) ’Mt2—2>

where L; and M; are linear forms in x and y, and y and z, respectively (regarding
z as a variable, where we are again letting z=x+y— 1). Recall that x'y/ Z*,
i+ j+k = m, form a basis for P,,. Suppose x’ y/z* ¢ I +3;i+l .Theni+j < £2;—1
and j+k < $2;41—1.Hence,i+j+k <i+2j+k < $2; + £2;4+1 — 2, contrary to
assumption. Hence 3)'4_ + J;iH = P,,, and thus (ﬁ;l + .+ S;k) =P, ,aswell. R
Remark 4.15 Suppose T is a polygonal mesh with smoothness distribution r. Let s
be the smoothness distribution which is equal to r on every edge other than 7, and

r+1 | \where
ti—1

t; = min{r + 1, n;} and n; is the number of distinct slopes incident at y; (i = 1, 2).
If m > §21 4+ §22 — 2, the proof of Proposition 4.14 shows that if Q" is lower-acyclic
then so is Q. This observation can be used to remove all smoothness requirements
along arbitrary edges, as long as m is large enough.

satisfies s(tr) = —1. Suppose 7 joins vertices y; and y». Let §£2; = r + {

Example 4.16 (C' splines on a polygonal mesh with holes) Let T be the mesh
depicted in Fig. 4(b). For simplicity, we assume the coordinates of the vertices in
this figure are chosen generically (thus Q" is lower-acyclic for large m by [10]).
In this case, [10] implies that dimR! = (mgz) — 20(';) + 32(”’2_1) for m > 0;
here (g) = @ is the binomial coefficient. The main result of [11] implies that
dim®R! = ("F?) - 20(%) +32(";") form > (2-8 — 1) - 2 — 2 = 28. This bound
from [11] takes into account worst-case scenarios and thus is typically much larger
than it needs to be. Hence, for this particular example, we do a direct computation.

We can compute the dimension of splines on this mesh using the AlgebraicSplines
package for Macaulay?2 [30]. Doing this for a generic choice of coordinates for the
vertices in Fig. 4, we find that Q" is lower-acyclic for m > 7; in other words,
dimR!' = ("1?) — 20(%) + 32(";") for m > 7. Taking this improved bound for
the lower-acyclicity of Q", we now use Proposition 4.14. For each of the vertices
Y1, - - ., ¥g on the boundary of the central octagon, £2; = 2. Thus, the lower bound of
3r = 3 is better than the lower bound of £2; + £2;4+1 — 2 = 4. Either of these is less
than 7; hence, Proposition 4.14 indicates that the pruned spline space over the mesh
depicted in Fig. 4(a) will satisfy the dimension formula —4 (%) 4 16(" ") form > 7.
(In fact, if we again use the AlgebraicSplines package in Macaulay? to compute the
dimension of the pruned spline space, we see that the dimension of the pruned spline
space satisfies the formula —4(5) + 16('”2_1) form > 4.)

4.3 T-Meshes

Let us now present examples of applications to splines on T-meshes 7. In particular,
we will show how Corollary 3.3 can be combined with previously published results
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(a) (b)

Fig.4 A non-simply connected polygonal mesh is shown in a. We can interpret the mesh in a as a pruned
mesh once the smoothness across the dashed edges in b have been reduced to —1. In b, reducing the
smoothness to —1 decouples the faces inside the dashed region from those outside the dashed region.
Then, the required spline space dimension can be computed from the one on a using Theorem 4.2, i.e., by
subtracting the term dim (P, ) for the polygon enclosed by the dashed edges. All domain boundaries have
been displayed in bold

from [13, 14, 18] to compute the dimension of bi-degree splines in a very general
setting by reducing the smoothness across one or more edges to — 1. Thereafter, The-
orem 4.2 will allow us to compute the dimension of the corresponding pruned spline
spaces on T-meshes of arbitrary topologies. In particular, in the simplified setting of
maximally smooth, uniform degree splines on T-meshes with holes, Example 4.26
demonstrates the generality of our approach compared to the one of [16].

T-Meshes have a simpler structure and as a result we can consider a more general
setting than the one we discussed in the previous sub-sections. More precisely, for
o € T, we will allow m (o) = P, to be the vector space of polynomials of bi-degree
at most (m, my) for some my € Z>o, i.e.,

m(o) =Py =Pu_m, -

Of course, we will assume that the assumption placed on m in Eq. 2.1, Section 2,
is still satisfied. Then, following Eq. 2.2, we have P; = Py m, and Py = Py m,,,
where we define:

my = maxmg , my = maxmey .
oDoT o3y

We start by defining the segments of the T-mesh as connected unions of horizontal
or vertical edges that have the same associated m.

Definition 4.17 (Segments of the T-mesh) Let p C ’3’1 be a finite set of horizontal
(resp. vertical) edges T € T7i:

— L, :=U;¢,T is non-empty and connected,
- m¢y=my =:m,forany 7,7’ € p.

Then, p will be called a horizontal (resp. vertical) segment of the mesh.
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Lemma 4.23, which will be presented shortly, identifies sufficient conditions
allowing the smoothness across a segment of the T-mesh to be reduced while pre-
serving lower-acyclicity. The next three results discuss the dimensions of spaces of
univariate polynomials, and Example 4.21 presents an application of these results;
the proof of Lemma 4.23 will use these results.

In the following, Py, is used to denote the vector space of univariate polynomials
in variable x of degree at most m; P,, := 0 for m < 0. Finally, for I = {1, ..., k}
and some a; € Randd; € Z»_y,i € I, we define M(I) C I to be the largest set

such that:

— Alla;,i € M(I), are distinct;
— Foreachi € M(I),d; =min{d; : a; =aj, j€l}.

Lemma 4.18 (Proposition 1.8, Mourrain [13]) Fori € I = {1,...,k}, leta; € R

and d; € Z>_1. Consider linear polynomials {; = x — a;, i € I, and define the
vector space V as
dis
Vi=> tiP g .
iel

Then, the dimension of V is given by the following formula:

dim (V) =min | m + 1, Z (m—d; + 1)y
ieM(I)

Lemmad4.19 Fori eI ={1,...,k}, leta; e R, d; € Z>_y and e; € Z>¢. Consider
linear polynomials €; = x — a;, i € I, and define the vector space V as below:

d,'_
V= Zei Pr—di—e; -
iel

Then, the dimension of V is given by the following formula:

dim (V) = Z?:O [min (m —elt 41, Yiemiym— et —d; + 1)+>
— min (m —el +1, ZieM(”-)(m —el —d; + 1)+)] ,

where we use the following definitions:

E:={e,...,ex}, d:=#E — 1,
{m+1, ji=0,
el =

max E\{¢®,...,e/71}, j=1,...,d+1,
I=liel :e¢<el}, j=0,...,d+1.

Proof The proof follows from Lemma 4.18 and [12, Lemma 4.5], where an analo-
gous claim was shown for bivariate polynomials. |
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Corollary 4.20 Fori € I = {l1,...,k}, leta; € R, d;i € Z>_1 and e; € Zxo.
Consider linear polynomials €; = x — a;, i € I, and define the vector space V as

below: i
V=Y Py -
iel

Ifdim(V) =m + 1, then V. = P,
Example 4.21 As an illustration of Lemma 4.19, let us consider the vector space V

defined by choosing:

m=3, I ={1,2,3,4}, (di,dz,d3,ds) =(3,2,3,3),
(e1,ep,e3,e4) =(0,1,0,0), (a1,az,a3,a4) =(—1,0,0,1).

That is, we choose V as the following vector space, where ¢; = x — a;,
V= E?ﬁo + E%?O + Egio + @iio .
Then, following the definitions in Lemma 4.19, we have:

E=1{0,1}, d=1, (e',¢?) =(4,1,0),
I1={1,2,3,4), I°=1, I'={1,3,4}, I’=9.

Therefore, we see that:
MI% ={1,2,4), MUY ={1,3,4},

and the dimension of V follows as:

S~—

dim(V)=min<3—1—|—1, > B-1—-di+ 1)y
ieM(19)

—min<3—4+1, Y B—d4—di+1)4
ieM(I19)

+min<3—0+1, > B-0—-di+ 1)y
ieM(IY)

Sce— S S———

—min<3—1+1, Y @B—1—di+1)4
ieM(I)

=(1—0)+(3—0)=4=dim(§3),
sothatV=§3.

Definition 4.22 (Weight of a segment) Given a segment p, define the set 7' as
T ={T €T, : Tintersects L, trasversally} .

Let az be the horizontal (resp. vertical) coordinate for the vertical (resp. horizontal)
edge 7. Then, the weight of p, " (p), is defined as:

" (p) :=dim (Z(x - ar)r(tH—]?mp—max(O,mp—m,)—r(r)—l) .

el

Note that w" (p) can be computed by a direct application of Lemma 4.19.
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Lemma 4.23 Let r be such that Q" is lower-acyclic, and consider a segment p. Let
the smoothness distribution s be defined as follows:

$() = {r(r) fort ¢ p,
-

otherwise,

where v < r(t) for all for all T € p, v € Zx_y. If either one of the following two
requirements is satisfied:

(@) p C o for some segment p', and s(t) < rforallt € p/,
b) o*(p)=m,+1,

then QS is also lower-acyclic.

Remark 4.24 Since the weight of a segment p depends only on the smoothness of
edges transversal to p, we always have o®(p) = " (p).

Proof Using Lemma 3.4, we can study the lower-acyclicity of QF by studying Hy
(3%/97) on the segment p. This is essentially a one-dimensional problem. Consider
then the horizontal segment p as shown below; the proof for vertical segments is
analogous.

1o 14! V2 Vi—1 Yk

————————————————————— o~
71 2 Tk

The segment p contains the edges t1,..., T € ‘3’1, and vertices Yo, Y1, .- -, Yk
form the boundaries of these edges. By definition, p contains at least one edge, i.e.,
k > 1. Moreover, m; = my =: m, for all edges 7, 1/ € p. Let T be the set from
Definition 4.22, i.e., the set containing all vertical edges that intersect L ,. Note that
J5 /3" is not supported on any T € T.

When condition (a) is satisfied, the proof is very simple for the following reason.
Firstly, since p C p’, we must have m, = m, from the definition of segments.
Without loss of generality, let yy € L o NIL,. Then, 3’ o = 3;0 and, as a consequence,
J#¥ /3" is not supported on yy. Every element of Jj, can be expressed as a sum of
elements of 3%, y; € T € T, and Js As aresult, Hy(J*/J") vanishes.

Let us now examine condition (b). Let £, be a non-zero linear polynomial that
vanishes on L ,. By definition, for all T € p,

jf: = {E:}—Hfi fe Tmp(mp—r—l)} =" j,SO ’

Let ¢+ be a non-zero linear polynomial that vanishes on vertical edge T € T. Since
w®(p) = m, + 1, we can use Corollary 4.20 to write:

)41
3 =t Zfs;(wr Pmp—s@—1)mp—r—1) -
TeT

Then, for any i, any element of Jj, can be written as the sum of elements of 3%,
7 € T. Since J°/J" is not supported on any T, Hy(J*/I") = 0.

For both conditions (a) and (b), the claim of lower-acyclicity of Q° follows from
the above and Corollary 3.3. ]
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Lemma 4.23 discusses the setting when the smoothness is reduced across a single
segment of the mesh. Its successive applications can help us compute the dimension
of a large class of splines on T with mixed smoothness. The next result is immediate
and is completely analogous to Lemma 4.3 which was shown for triangulations. Its
statement is simple: if an edge intersects another edge, and the order of smoothness
across the latter is —1, then we can also reduce the order of smoothness across the
former to —1 while preserving lower-acyclicity.

Lemma 4.25 Let r be such that Q" is lower-acyclic, and consider an interior edge

T € T1. If ©/ is another edge such that TNt is not empty, r(t') = —1, and my > my,
then QS is lower-acyclic where

s(r") = r(r”) " #r,
—1 otherwise.

We are now in a position to present examples where we compute the dimensions of
spline spaces on T-meshes that contain holes. The approach will be exactly analogous
to the one taken in the previous sub-section, i.e., we will try to see if the spline space
can be interpreted as a pruned spline space on a T-mesh without holes. We start by
reproducing, and expanding upon, an example from [16].

Example 4.26 (C' bi-quadratic splines; comparison with Zeng et al. [16]) Con-
sider the problem of building C' bi-quadratic splines on the two domains shown in
Figs. 5(a) and (b). Proceeding as in the case of triangulations, we will compute the
dimension of such spline spaces by interpreting them as pruned spline spaces on the
mesh shown in panel Fig. 5(c).

The dimension of splines on the mesh in Fig. 5(c) can be computed to be 37
using the results from [13]. Then, Lemma 4.23 allows us to see that, for the mesh
in Fig. 5(c), we can reduce the smoothness across any segment that is composed of
at least two edges. In particular, a combination of Lemmas 4.23 and 4.25 allows us
to reduce the smoothness across all dashed edges in Fig. 5(d) and (e) to —1. The
dimensions of the resulting spline spaces are 117 and 85. Then, use of Theorem 4.2
yields the dimension of splines on the meshes in Fig. 5(a) and (b), respectively, as 36
and 40; c.f. the supplementary M2 scripts provided with this paper.

This example borrows from, and expands upon, Example 5.16 from [16]. There,
the authors used Bernstein—Bézier methods and computed the dimension of the spline
space in Fig. 5(a). First, they compute the dimension for Fig. 5(c); they call the 3 x 3
block of extra elements a filler T-mesh. Next, they compute the dimension of splines
with zero boundary conditions on the filler T-mesh, i.e., the dimension of bi-quadratic
splines that vanish up to order 1 on the boundary of the filler T-mesh. The dimension
for Fig. 5(a) is then obtained by subtracting the latter from the former.

Compared to the results here, the applicability of the approach of [16] is con-
strained by specific choices of filler meshes; for instance, their approach will not help
obtain the dimension in Fig. 5(b) by studying Fig. 5(c). Moreover, here we circum-
vent a particular difficulty that is built into their method: computing the dimension
of splines with zero boundary conditions on arbitrarily shaped filler T-meshes.
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(a) (b)
(c)

(d) (e)

Fig. 5 Example 4.26 shows how the dimension of bi-quadratic C! splines on the above meshes in a and
b can be computed. All boundaries of the respective domains have been displayed in bold; as is clear, the
domains are not simply connected. Both of these meshes can be interpreted as pruned meshes obtained
from the T-mesh in c. Thus, after computing the dimension on the mesh in ¢ using the results from [13],
we can use Corollary 3.3 to compute the dimension when smoothness across the dashed edges in d and e
has been reduced to s(t) = —1. This in turn yields the spline space dimension for a and b

Remark 4.27 Upon visual inspection, the reason for the changes in dimension when
going from the mesh in Figs. 5(c) to 5(a) or 5(b) become clear.

— InFig. 5(a), we have cut out a block of 3 x 3 elements; this is exactly the support
of one C! bi-quadratic B-spline. The reduction in the dimension by one reflects
this observation.

— Similarly, in Fig. 5(b), consider the lower-left 4 x 4 block of elements; there are
four C! bi-quadratic B-splines supported on these elements. Then, cutting out
the L-shaped block of elements splits the supports of three of those B-splines
into two disconnected components each. The restrictions of those B-splines to
the disconnected components are independent splines themselves; they are not
related by any smoothness constraints. As a result, 3 B-splines split up into 6
linearly independent splines, and the dimension count reflects this jump.

Example 4.28 (C! splines on domains with holes) Consider the problem of building
c! splines on the two domains shown in Fig. 6(a) and 6(d). On the mesh in Fig. 6(a),
we are interested in splines that are biquadratic polynomials when restricted to any
mesh face. On the mesh in Fig. 6(d), on the other hand, we are interested in splines
that are biquadratic polynomials restricted to the white faces, and bicubic polyno-
mials when restricted to the blue faces. Proceeding as in the case of triangulations,

@ Springer



6  Page260f29 Adv Comput Math (2021) 47:6

(a) (b) ()

(d) (e) (f)

Fig. 6 Example 4.28 shows how the dimension of C! splines on the above meshes in a and d can be
computed. All boundaries of the respective domains have been displayed in bold; as is clear, the domains
are not simply connected. On both meshes, we are interested in splines whose pieces are bi-quadratic
polynomials on the faces without color, and bi-cubic polynomials otherwise. First, we use the results
from [13] and [14] to get the dimension of splines on meshes in b and e, respectively. Thereafter, we use
Corollary 3.3 to compute the dimension when smoothness across the dashed edges in ¢ and f has been
reduced to s(t) = —1. This decouples the faces inside the dashed region from those outside the dashed
region. Then, the required dimension can be computed using Theorem 4.2, i.e., by subtracting dim (P, )
for each o contained inside the dashed region

we will compute the dimension of such spline spaces by interpreting them as pruned
spline spaces on the meshes in Fig. 6(b) and Fig. 6(e).

The dimension of splines on the mesh in Fig. 6(b) can be computed using the
results from [13], while the dimension on the mesh in Fig. 6(e) can be computed using
[14]. Both are computed to be 30 and 50, respectively. Then, Lemma 4.23 allows us to
see that, for the mesh in Fig. 6(b), we can reduce the smoothness across any segment
that is composed of at least two edges. For the mesh in Fig. 6(e), Lemma 4.23 allows
us to reduce the smoothness across any edge of the mesh. Then, a combination of
Lemma 4.23 and 4.25 allows us to reduce the smoothness across all dashed edges in
Fig. 6(c) and 6(f) to —1. The dimensions of the resulting spline spaces are 58 and
118. Thereafter, we can use Theorem 4.2 to compute the dimension of splines on the
meshes in Fig. 6(a) and 6(b), respectively, as 31 and 54; c.f. the supplementary M2
scripts provided with this paper. (Again, recall Remarks 4.12 and 4.27.)

5 Conclusions

Piecewise-polynomial splines are extensively applied in the fields such as computer-
aided geometric design [1] and numerical analysis [31]. In practice, spline
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Fig.7 Splines on meshes of
arbitrary topologies [19] can be
used to build complex
geometries such as the one
shown above

refinements—degree elevation, smoothness reduction, mesh subdivision—are some
of the most important operations that yield a richer spline space. These operations are
called exact because any spline in the initial spline space can be exactly represented
as a member of the refined spline space. The ability to perform these refinements in
a local manner is central to efficient applications of splines.

In this paper, we study the problem of dimension computation for splines while
focusing on local smoothness reduction. Starting from smooth splines on arbitrary
polygonal meshes of R?, we derive results that allow us to compute the exact spline
space dimension once smoothness requirements across a subset of the mesh edges
have been relaxed. The derived results are very widely applicable, and in order to
explore their specific implications we restrict our focus—we show how they can be
used to compute the dimension of splines on polygonal meshes, triangulations, and
T-meshes of arbitrary topology.

For instance, our results allow us to compute the dimension of splines on T-meshes
with holes; see Fig. 6. Such splines can then be used to build smooth surfaces of
arbitrary topologies, such as the one shown in Fig. 7—a major application of splines
in geometric modelling and numerical analysis [19]. The construction of a spline-
space basis that can handle such applications is the focus of ongoing research.

Another particularly interesting research direction is the one opposite to the one
we study here—the inexact operation of spline coarsening. These yield subspaces
of the original spline space and are also very useful in practice. For example, when
numerically solving a PDE, if a complex solution feature simplifies over time, one
would want to switch to a subspace of the initial spline space for efficiency. Studying
this setting—where a richer spline space is used to compute the dimension of its
subspace—will likely require an entirely different approach than the one adopted
here.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
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