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Abbreviation

AIC Akaike Information Criterion
CDI FPSO Cidade de Ilhabela
CDM FPSO Cidade de Maricá
CDS FPSO Cidade de Saquarema
ESD Emergency Shut Down
FI Flow Indicator
FIC Flow Indicating Controller
FPSO Floating, Production, Storage and Offloading Unit
FSI Flow Safety Indicator
GTG Gas Turbine Generator
HP High Pressure
IEEE Institute of Electrical and Electronics Engineers
KE Keyphasor Probe
KMO Kaiser–Meyer–Olkin test
LI Level Indicator
LSI Level Safety Indicator
LSTM Long Short-Term Memory
MGC Main Gas Compressor
MSE Mean Square Error
OIPOC Operational Intelligence and Performance Optimization Center
PCA Principal Component Analysis
PDI Pressure Differential Indicator
PI Pressure Indicator
PM Production
PSD Process Shut Down
PSI Pressure Safety Indicator
PT Pressure Transmitter
RBF Radial Basis Function
RNN Recurrent Neural Network
SR Sulphur Removal
SVM Support Vector Machine
TI Temperature Indicator
TSI Temperature Safety Indicator
USD Unit Shut Down
VARIMA Vector Auto-Regressive Integrated Moving Average
VXI Vibration in X-axis
VYI Vibration in Y-axis
WI Water Injection System
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Summary

It is vital to maintain the stability and longevity of mechanical systems in the crucial field of vibration mon-
itoring. The thesis introduces three sets of algorithms specifically tailored to fulfill the function to detect
or predict vibration faults in the Water Injection Systems of Floating Production Storage and Offload-
ing Unit (FPSO). These methodologies include PCA-based Prognosis, LSTM + One-class SVM, and
VARIMA + One-class SVM. Notably, the LSTM + One-class SVM algorithm exhibits superior detective
performance and robust resistance to data fluctuations, surpassing the other two approaches. Further-
more, it becomes evident that applying Principal Component Analysis for dimensionality reduction can
adversely affect the discerning abilities inherent to both LSTM- and VARIMA-related algorithms.

In the context of predictive functionality, given the absence of definitive indicators, the development
of predictive models remains contingent upon the existence of robust detective models. Both LSTM-
and VARIMA-related algorithms (excluding PCA) demonstrate their efficacy in fulfilling this prerequi-
site. While the performance of PCA-based Prognosis continues to lag behind, its distinctive capacity
to delve into the intricate patterns of equipment operational states hints at the possibility of unearthing
richer insights compared to the aforementioned techniques. Consequently, the potential of PCA-based
Prognosis to evolve into a viable predictive model should not be underestimated.

iii



Contents

Preface i

Abbreviation ii

Summary iii

1 Introduction 1

2 System Introduction and Data Acquisition 3
2.1 Incident Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Introduction to Water Injection System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Theory 8
3.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Vector Auto-Regressive Integrated Moving Average . . . . . . . . . . . . . . . . . . . . 10
3.3 Long Short-term Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 One-class Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Methodology 14
4.1 Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Work Flow of Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2.1 KMO Test and Sphericity Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.2 PCA Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3 Approach 1: PCA-based Prognosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.1 Data Collection and Feature Engineering . . . . . . . . . . . . . . . . . . . . . . 17
4.3.2 PCA and Deviation of Eigenbases . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.4 Approach 2: VARIMA/LSTM + One-class SVM . . . . . . . . . . . . . . . . . . . . . . . 18
4.4.1 Principal Component Analysis to Reduce Dimensionality . . . . . . . . . . . . . 19
4.4.2 Regressors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4.3 One-class SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Long-term Performance Results 22
5.1 Results: Water Injection Pump A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1.1 Results: PCA-based Prognosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1.2 Results: VARIMA + One-class SVM . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Results: Water Injection Pump B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.1 Results: PCA-based Prognosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.2 Results: VARIMA + One-class SVM . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Results: HP Feed Pump A/B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3.1 Results: PCA-based Prognosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.3.2 Results: VARIMA + One-class SVM . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Short-term Performance Results 37
6.1 Results: PCA-based Prognosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Results: VARIMA + One-class SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3 Results without PCA: VARIMA + One-class SVM . . . . . . . . . . . . . . . . . . . . . . 41
6.4 Results: LSTM + One-class SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.5 Results without PCA: LSTM + One-class SVM . . . . . . . . . . . . . . . . . . . . . . . 42

7 Evaluation and Improvement Suggestions 43
7.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.1.1 General Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 43

iv



Contents v

7.1.2 Computational Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.1.3 Robustness in Dealing with Large Fluctuation in Values . . . . . . . . . . . . . . 43
7.1.4 Indicator Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.1.5 Capability to Identify Scheduled/Unrelated Shutdowns Automatically . . . . . . . 43

7.2 Improvement Suggestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.2.1 Functional Expansion from Detection to Prediction . . . . . . . . . . . . . . . . . 44
7.2.2 Interpretation of False Notifications . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Conclusion 45
8.1 Reflection on Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

References 47

A Framework of Water Injection Systems 48

B Water Injection System Tags of FPSO CDI/CDM/CDS 50

C Tags of Water Injection Pump A/B 54

D Remaining Tags of Water Injection Pump A/B 56

E Tags of HP Feed Pump A/B 57

F Remaining Tags of HP Feed Pump A/B 58

G Short-term Detection Results: VARIMA + One-class SVM with PCA 59

H Short-term Detection Results: VARIMA + One-class SVM without PCA 66

I Short-term Detection Results: LSTM + One-class SVM with PCA 73

J Short-term Detection Results: LSTM + One-class SVM without PCA 76

K Flowcharts for Evaluation 79



1
Introduction

Structural failure in engineering operations, particularly the failure of key devices, poses significant risks
to operational efficiency and the safety of personnel. Such failures can result in substantial financial
losses and create hazardous situations for workers. To mitigate these risks, engineering companies
worldwide prioritize the monitoring of structural integrity and the early detection of abnormal behaviors.
However, relying solely on human inspection for complex engineering systems is neither time-efficient
nor labor-efficient, necessitating the development of advanced tools and strategies to enhance moni-
toring processes [1, 2].

Following such trends of digitalization, the Operational Intelligence and Performance Optimization Cen-
ter (OIPOC) team of SBM Offshore N.V. focuses on development of solutions for engineering issues
based on data science and computer science techniques, and it is one of its tasks to make analysis on
vibration failure for systems installed on Floating, Production, Storage and Offloading (FPSO) unit. A
Floating Production Storage and Offloading (FPSO) unit is a type of floating vessel used in offshore oil
and gas production. It is designed to process and store hydrocarbons extracted from subsea wells, and
then offload the processed oil or gas to shuttle tankers for transportation. This type of vessel consists of
large amounts of rotating devices that suffer from long-term vibration, which can significantly increase
the extent of structural fatigue of the whole structure.

In engineering, vibration monitoring is crucial for ensuring the reliability and safety of machinery and
structures. The research on vibration monitoring can be divided into two main categories: Prediction
and Detection. In the early stages, from the 1950s to the 1970s, vibration fault prediction relied heav-
ily on vibration sensors. By monitoring and analyzing the signals generated during operation, experts
could foresee potential issues. During this period, research focused on signal acquisition and process-
ing techniques, including filtering and spectral analysis [3]. With the rapid development of computer
technology in the 1980s and 1990s, digital signal processing techniques became crucial for vibration
fault prediction. Notably, methods such as the Fast Fourier Transform (FFT) and wavelet transform
emerged, enabling more sophisticated and precise analysis of vibration signals [4, 5]. These advance-
ments allowed for better detection and diagnosis of machinery faults, improving maintenance practices
and reducing downtime.

In the current era, machine learning and artificial intelligence have revolutionized vibration fault pre-
diction. Advanced algorithms such as Support Vector Machines (SVM), neural networks, and deep
learning offer unprecedented accuracy in analyzing and predicting vibration signals. These technolo-
gies, coupled with multi-sensor data fusion and big data analytics, enhance both the precision and
timeliness of predictions [6, 7].

Detection methods have also evolved significantly. Before the 1950s, vibration faults were primarily de-
tected through visual inspections, effective for simple structures but inefficient for complex machinery.
The analytical phase began in the early 1960s with the advent of systematic vibration testing technolo-
gies. By examining the relationship between vibration and various factors, experts could preliminarily
analyze faults, eliminating unrelated factors and narrowing down the fault suspicion range [8].
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Post-1960s, as vibration testing technology evolved, a more structured approach to fault diagnosis
emerged. Researchers delved deeper into vibration phenomena, characteristics, and mechanisms.
Fault sources were systematically described based on vibration literature and compared with actual
case data, allowing for precise analysis and diagnosis of vibration faults. This method of diagnostic
thinking has been widely adopted and remains a cornerstone in the field [9].

Principal Component Analysis (PCA) has emerged as a powerful tool in data science for the reduction
of data dimensionality. PCA transforms large datasets into smaller sets of new variables called principal
components, which retain most of the original data’s information [10]. This transformation simplifies the
dataset while preserving its essential characteristics, making it easier to analyze and interpret. PCA
has been widely applied in fault diagnosis to identify key factors contributing to structural anomalies
[11]. By reducing the dimensionality of the data, PCA facilitates more effective and efficient time-series
analysis, enabling the timely detection of abnormal events.

Listed below are themain research question this research focuses on with three sub-questions following
by:

Main Question: How to detect the abnormal events of vibration from data of water injection systems
of FPSOs using Principal Component Analysis?

Sub-Question 1: How to effectively reduce dimensionality of the datasets of the target problem using
Principal Component Analysis?

Sub-Question 2: How to detect the abnormal events using the principal components of the datasets?

Sub-Question 3: What are the criteria for determining the optimal detection method?

The main question addresses the overarching goal of our research: leveraging strategies for effective
vibration fault detection in Water Injection Systems of FPSOs. The sub-questions break down this goal
into manageable components, focusing on data dimensionality reduction, the application of PCA in
fault detection, and establishing criteria for optimal methods.

Sub-Question 1 deals with the challenges of handling high-dimensional data typical for vibration moni-
toring and explores PCA as a technique to simplify this data while retaining critical information.

Sub-Question 2 investigates how the transformed data (principal components) can be utilized for accu-
rate detection of vibration faults, ensuring timely intervention.

Sub-Question 3 aims to define the criteria for evaluating the effectiveness and efficiency of the detection
methods, ensuring they meet operational standards.

All in all, this research is developed in the basis of the research tasks of the OIPOC team and focuses on
developing a real-time program for detecting vibration faults with and/or without PCA. Utilizing advanced
data science techniques, we aim to monitor abnormal vibration events in the water injection systems.
Our objective is to create a program capable of timely detection of abnormal vibration events and
provide corresponding intervention measures to ensure the reliability and safety of FPSO operations.
Through this study, we aspire to contribute to the ongoing advancement of structural health monitoring
in complex engineering environments.
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System Introduction and Data

Acquisition

2.1. Incident Investigation
Based on the Process Stability Report of SBMOffshore, incidents categorized as Unit Shut Down (USD)
for gas-related equipment (indicated as USD G) and water-related equipment (indicated as USD W)
installed on 13 FPSOs, including CDM/CDI/CDS, account for the majority of incidents recorded. As
depicted in Table 2.1, from the year 2020 to 2023, abnormal events of the USD G and USD W types
constitute over 80 percent of all incidents logged, with both categories generally maintaining an equal
share. Thus, it becomes apparent that delving deeper into the malfunction analysis of water- and gas-
related equipments is of paramount importance.

Number of Trips
Year USD G USD W PSD ESD Total
2023 222 159 50 25 456
2022 183 126 33 25 367
2021 107 116 35 20 278
2020 77 99 12 21 209
Total 589 500 130 91 1310
Ratio% 44.96 38.17 9.92 6.95

Table 2.1: Trip Count of Recorded Incidents from 2020 to 2023

Among all recorded USDW/G type events from 2020 to 2023 (shown in Figure 2.1), the Water Injection
System (WI) has contributed the highest number of abnormal occurrences (195), accounting for 17.91%
of the total. This ratio is nearly double that of the Main Gas Compressor (MGC) with 99 events (9.09%)
and the Gas Turbine Generator (GTG) with 83 events (7.62%), which follow in succession.

Figure 2.1: USD W and USD G Incident Counts 2020-2023

3



2.1. Incident Investigation 4

Additionally, as shown in Figures 2.2 and 2.3, which display the trip counts of USD W and USD G type
events from 2019 to May of 2024 respectively, three FPSOs (CDI, CDM and CDS) generally face the
most significant number of events. It is essential to highlight that the three FPSOs in question possess
a shared framework for their Water Injection Systems, which facilitates the analysis of these systems’
performance. Same frameworks imply that the datasets from these FPSOs have identical column
headers (or features), enabling the development and testing of generalized code for diagnosing Water
Injection System failures. By leveraging this commonality, we can streamline our analytical process
and improve the reliability of our results, as the code can be applied across multiple FPSOs without the
need for FPSO-specific adjustments. This makes CDI/CDM/CDS a good set of FPSOs for sampling
one specific type of abnormal events, training models and testing our results.

Figure 2.2: USD W Incident Counts from 2019 to May 2024

Figure 2.3: USD G Incident Counts from 2019 to May 2024

From 2022 to 2023, among all recorded abnormal events directly associated with water injection sys-
tems, vibration issues comprised the majority of anomaly types, as depicted in Figure 2.4. This finding
is not surprising, considering that the system encompasses numerous rotating equipment, such as
centrifugal compressors and pumps, which experience continuous vibration during their operation. A
more comprehensive overview of the Water Injection System is provided in section 2.2.

Figure 2.4: Incidents Counts of Water Injection System form 2020 to 2023 [CDI/CDM/CDS]
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2.2. Introduction to Water Injection System
As shown in Figure 2.5, as one of the most vital modules of FPSOs’ topsides systems, Water Injec-
tion System (WI) works together with other equipments, such as Main Gas Compression System, to
maintain various production procedures.

WI consists of devices of seawater treatment and water injection. After seawater is transformed into
filtered, chemically treated, low sulphate, deaerated water stream through Seawater Treatment System,
it is driven by the embeded pumps (HP Feed Pump, Water Injection Pump, etc.) to water injection
headers where the stream is distributed to designated subsea water injection and so on.

Figure 2.5: Layout of Topsides Systems

More detailedly, as shown in Appendix A, several principal equipments function together to fulfill the
work of Water Injection System:

1) Seawater Basket Filters S-T2202A/B/C
2) Media Filters S-T2671A/B/C/D/E
3) De-aeration Column V-T2601 and Vacuum Package A-T2660
4) HP-Feed Pump P-T2631A/B
5) Guard Filters S-T2631A/B/C/D
6) SRP Membrane Units A-2631A/B and CIP Package A-T2632
7) Water Injection Pumps P-T2611/21
8) Water Injection Chemical Injection Package A-T2850

Seawater from a depth of approximately 50 meters is filtered through coarse and fine filters, remov-
ing particles larger than 5 microns. The filtered seawater undergoes vacuum de-aeration to remove
dissolved oxygen to less than 50 parts per billion (ppb), with oxygen scavenger added to chemically
reduce the remaining oxygen to a maximum of 10 ppb and eliminate residual chlorine. The de-aerated
seawater is then boosted to the required pressure for the Sulphate Removal Unit membranes. After
passing through parallel SRUs, the injection water achieves the specified sulfate level of 40 parts per
million (ppm). Finally, Water Injection Pumps supply the de-aerated, low-sulfate injection water at the
necessary pressure and flow for well injection.

2.3. Data Acquisition
This research commences by thoroughly examining the Process Stability Report of SBM Offshore and
files fromSRS database, which act as the repository for the historical data of FPSOs and their respective
faulty events. This comprehensive analysis allows us to delve into the intricacies of the past incidents,
providing valuable insights that can guide our subsequent investigations.

Within the vast array of recorded incidents, our attention is focused on those specifically associated
with the vibration of Water Injection system. The system, as introduced above, plays a crucial role in
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maintaining the smooth operation of FPSOs, and any malfunction or degradation can have a significant
impact on the overall efficiency and productivity of the platform. By isolating incidents related to vibration
of Water Injection system, we aim to gain a deeper understanding of the root causes and contributing
factors behind these events.

According to the Process Stability Report, we have effectively pinpointed 10 malfunction events be-
tween 2022 and 2023 that are directly linked to the Water Injection Systems of three FPSOs: CDI,
CDS, and CDM. As previously discussed in the preceding section, these three FPSOs, although sep-
arate entities, exhibit similarities in their respective Water Injection systems. Parts of the event details
are presented in Table 2.2.

FPSO Year Month Day Type Failure Category Detailed Equipment
CDM 2023 August 9 USD W Mechanical Failure Water Injection Pump
CDS 2023 May 31 USD W Mechanical Failure HP Feed Pimp
CDI 2023 February 27 USD W Instrument Failure HP Feed Pimp
CDM 2023 July 13 USD W Instrument Failure HP Feed Pimp
CDM 2022 February 19 USD W Process Conditions HP Feed Pimp
CDI 2022 November 25 USD W Other HP Feed Pimp
CDS 2022 May 27 USD W Mechanical Failure Water Injection Pump
CDS 2022 April 6 USD W Instrument Failure HP Feed Pimp
CDM 2022 June 11 USD W Instrument Failure Water Injection Pump
CDI 2022 August 12 USD W Instrument Failure HP Feed Pimp

Table 2.2: Recorded Events of Vibration From 2022 to 2023

Additionally, we have identified another 12 vibration-related events of Water Injection System ranging
from 2019 to 2021 from SRS database. These events also belong to CDI, CDM and CDS. Parts of
event information is listed in Table 2.3. However, due to the issues that the data among some of these
events suffer from large-scale missing values, bring great barriers to identify abnormality and collect
sufficient data to train and test model, only 12 of the events listed in Table 2.3 and Table 2.2 can be
used in this research.

Reference Incident Type Detailed Equipment
CDI20190131-001 EF PT HP Feed Pump
CDI20190512-001 PT HP Feed Pump
CDI20190513-002 EF PT Water Injection Pump
CDI20201028-001 EF PT Water Injection Pump
CDI20210124-001 EF PT Water Injection Pump
CDI20210212-001 EF PT Water Injection Pump
CDM20190207-001 EF PT HP Feed Pump
CDM20190306-001 EF HP Feed Pump
CDM20200913-003 EF PT Water Injection Pump
CDM20201124-001 EF PT HP Feed Pump
CDM20210312-001 EF PT Water Injection Pump
CDM20210315-001 EF PT Water Injection Pump

Table 2.3: Recorded Events of Vibration From 2019 to 2021

As we can see from the records of vibration-related events mentioned above, Water Injection Pump
and HP Feed Pump contribute to all vibration-related incidents of Water Injection System.

After filtering out those events with missing data, 6 events are finally picked up (4 for Water Injection
Pump, 2 for HP Feed Pump) from the remaining datasets of 12 events. We extract the complete faulty
condition data for each of the 6 selected events with respect to equipment, meticulously examining
every second of their operational history. This comprehensive approach allows us to capture even the
most subtle nuances and fluctuations in the WI systems’ performance during these critical periods. In
addition to the faulty condition data, we also gather a sequential record of the healthy condition that is
close to each fault in history.
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By analyzing both the faulty and healthy condition data second by second, we can gain a deeper
understanding of the factors that contribute to vibration incidents of Water Injection system. This level
of granularity is essential for constructing robust detective/predictive models that can accurately identify
impending faults and provide operators with sufficient time to take corrective action.

Herein, we present several lines of representative data extracted from one dataset in Table 2.4, which
serve as excellent examples for showcasing the structure and composition of the generic data. These
examples provide a glimpse into the information we have compiled, offering valuable insights into the
various facets of the functionality and performance of Water Injection system.

As evident in the sample dataset, we have compiled a comprehensive set of measurements encom-
passing various aspects of the Water Injection Systems of the three FPSOs. The dataset features a
column of time stamps, which serves as a reference point for each observation, and a column of la-
bels denoting the operational status of the WI systems. In this research, we have established a clear
and intuitive labeling scheme: a value of 0 corresponds to a ’Healthy’ state, while a value of 1 repre-
sents a ’Faulty’ state. Those labeled states are determined by correlating the data in the datasets with
descriptions of the corresponding incident records in databases.

Date PM-T2611/kW PM-T2621/kW ... T26-PI-1972/barg T26-LI-1973/% label

10/28/2020 5065.137 3384.558 ... 13.78099 73.11741 0
10/28/2020 5065.137 3384.558 ... 13.72122 72.97891 0
10/28/2020 5065.137 3384.558 ... 13.66145 72.84042 1
10/28/2020 5065.137 3384.558 ... 13.60168 72.70192 1

Table 2.4: Several Exemplary Samples Extracted from One Dataset

Complementing the two columns are numerous others that encapsulate a wide array of features rele-
vant to the WI systems’ performance. In total, we have amassed 64 features for Water Injection Pump
and 25 for HP Feed Pump, each feature offering valuable insights into the system’s operational health.
These features/tags are derived from the extensive database maintained by SBM Offshore, a repos-
itory that meticulously logs every aspect of the FPSOs’ operations using a system of tag numbers.
These features/tags simplify the data retrieval process, allowing researchers to quickly locate and an-
alyze specific variables of interest. Since this research focus on vibration-related problems, we further
processed the data obtained. Appendix B provides a detailed description of each operational feature
along with its corresponding tag number. This comprehensive overview offers a snapshot of the rich
information available in our datasets, laying the groundwork for the development of predictive models
and diagnostic tools.

While gathering vibration-related incidents, we classify these events according to the specific equipment
that causes the issue. The classification outcomes are presented in the last columns of Table 2.2 and
2.3. These tables unequivocally demonstrate that Water Injection Pumps and HP Feed Pumps are
significant contributors to the recorded vibration-related anomalies in the Water Injection System. To
enhance the precision of our further analysis, this study will concentrate on both types of equipment
independently. The tags of the two subsystems are listed in Appendix C and Appendix E. Afterwards,
through pre-experiments, we found that features that are not related to vibration, such as temperature
and flow rate, can introduce a lot of fault interference from other equipment. However, since those
vibration indicators only record the vibration of the equipment they are in, and the different devices are
basically physically independent, the values of the vibration indicators can be more independent than
other indicators.. Thus only VI-, VXI- and VYI- types of tags/features are kept within the datasets as
shown in Appendix D and Appendix F, while the others are removed.

Additionally, as each of both equipments comprises two sets of sub-equipment, designated as A and B,
which typically exhibit identical structures and functions, they are expected to operate simultaneously.
But under special circumstances such as maintenance, sub-equipment A and B might show different
operation patterns, thus they should be regarded as separate devices though mechanically similar.
Consequently, our analysis is meticulously carried out with a focus on each individual sub-equipment.



3
Theory

The advent of various computational principles has led to the evolution of data processing models from
simple to complex, as exemplified by Principal Component Analysis (PCA), Vector Auto-Regressive In-
tegrated Moving Average (VARIMA), and Long Short-Term Memory (LSTM). These models are distinct
in their capacity to extract features from raw data, demonstrating a sequential enhancement in their
ability to capture increasingly complex patterns. However, this increase in model complexity also cor-
responds to a higher time cost for training. In light of these considerations, this study considers utilizing
PCA to decrease computational workload and extract statistical characteristics. However, since PCA
is merely able to capture little nonlinear information from data, another two more advanced regressors,
namely VARIMA and LSTM, are applied as the foundational techniques for vibration fault detection.

Following the identification of preliminary health characteristics, the next step involves establishing
thresholds for false alarms. For PCA, we establish thresholds directly using empirical healthy data. In
contrast, for VARIMA and LSTM, which incorporate multiple indicators, we employ One-class Support
Vector Machine (One-class SVM) to assist in automating this process. By comparing and assessing the
outcomes generated by these three methodologies, our aim is to discern the balance between model
complexity, training time, and detection accuracy.

This chapter offers a generic description of the theories used in this research, covering principles of
PCA, VARIMA, LSTM and One-class Support Vector Machine.

3.1. Principal Component Analysis
Principal Component Analysis (PCA) is a powerful technique widely employed in data analysis, of-
fering insights into the intricate relationships among various features. Beyond its analytical prowess,
PCA serves as an invaluable tool for dimensionality reduction, a process crucial for handling high-
dimensional datasets efficiently.

At its core, PCA aims to identify the principal components within a dataset, which are orthogonal vectors
that capture the maximum variance present in the data. In this way, PCA helps to discern underlying
patterns and structures that might not be immediately apparent in the raw data. The obtained principal
components not only simplify the original datasets but also retain much of the essential information
contained within them.

Assume that there is a datasets X, which consists of p samples.

X =


X1

X2

...
Xp

 (3.1)

Assume there are n features for the p-dimensional observation space, and we can acquire the obser-

8
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vation matrix of Equation (3.1). (Both n, p are finite positive integers)

X =


x11 x12 ... x1n

x21 x22 ... x2n

... ... ... ...
xp1 xp2 ... xpn

 (3.2)

In this way, we can estimate the general variance-covariance matrix of with that calculated based on
the data in the observation matrix (3.2), indicated as matrix S.

S =


a11 a12 ... a1n
a21 a22 ... a2n
... ... ... ...
an1 an2 ... ann

 (3.3)

where

aij =
1

p
×

p∑
k=1

(xik − x̃i)(xjk − x̃j) (i, j = 1, 2, ..., p)

Besides, the mean value vector x̃ can be regarded as an estimator of general vector U . The funda-
mental aim of PCA is to find a new matrix V , which is smaller that X in dimensions and contains linear
combinations with maximum variance. Such new matrix V , also known as principal component matrix,
share the quantitative relationship written below with X and S:

V = ATX (3.4)

where
V : principal component matrix,
A: a matrix of orthonormal eigenvectors of matrix S, also knwon as eigenbasis,
X: original observation matrix.

Equation (3.4) can be solved after getting results from the following deterministic equation:

|S − lI| = 0 (3.5)

where
l: the eigenvalues of matrix S,
I: unit matrix of size (n× n).

We can get n values of l after calculation, indicated as l1, l2, ... , ln. As for each eigenvalue, there
is a corresponding orthonormal column eigenvector Ai (i = 1, 2, ..., n). Assume that all l values are
arranged from large to small numerically.

l1 ≥ l2 ≥ ... ≥ lp (3.6)

Normalize the l values, and indicate them as Ci (i = 1, 2, ..., n). Those Ci values can be regarded as
weights in the linear combinations, which in other words means that the larger the Ci value, the more
information the corresponding V column vector contains. For example, the leftmost column vector V1

in matrix V corresponds to C1 and is termed as the first principal component.

Ci =
li

l1 + l2 + ...+ lp
(3.7)

Another important step of PCA is to filter key principal components and erase the others. Usually,
we can determine the number of key principal components through the cumulative variance contribu-
tion rate (Cumulative Variance Explained). The cumulative variance contribution rate represents the
percentage of the total variance explained by the first k principal components to the total variance of
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the original data. A commonly used selection criterion is that the cumulative variance contribution rate
reaches more than 95%. The setup of threshold value of contribution ratios is based on the task require-
ments and subjective judgement. After that, researchers shall conduct interpretation on each principal
component left according to the characteristics of variables included, to determine the generic element
it represents.

Generally speaking, PCA shows the advantages of significant dimensionality reduction and computa-
tional efficiency. By reducing the dimensionality of the original data set, PCA facilitates the visualiza-
tion and processing of data while reducing the impact of redundant information. In addition, PCA can
also remove noise by eigenvalue decomposition to improve the accuracy and reliability of data. For
large-scale data computing, PCA can convert the computation process into the computation of a small
number of eigenvectors, thereby greatly improving the computational efficiency.

However, as mentioned at the beginning of chapter 3, PCA is lack of ability to analyze nonlinear data.
Besides of such issue, PCA also has some other drawbacks and limitations [12]. First of all, PCA is
sensitive to outliers, and the presence of outliers may lead to the deviation of the extracted principal
components from the real situation. Second, the PCA assumes that the data conforms to a Gaussian
distribution, and if the actual data distribution does not conform to this assumption, the analysis results
may be inaccurate. In addition, PCA-extracted principal components are often difficult to interpret their
specific meanings, requiring additional analytical and interpretive work to draw conclusions. Finally, the
application of PCA is limited by the sample size and the number of variables, and insufficient sample
size or too many variables may lead to the extraction of principal components that are not representa-
tive.

3.2. Vector Auto-Regressive Integrated Moving Average
Prediction on future development of time-series data is one important part of predictive maintenance
procedure, which helps inspectors and operators to foresee the possible abnormal circumstances of
devices.

Multiple data prediction methods have been proposed to fulfill the task, including AR/MA-based statis-
tical tools. The concept of Auto-Regression was first proposed by George Yule [13] in 1927. As one
of the earliest time prediction methods, Auto-Regression (AR) model describes the auto-correlation of
time series by expressing the observation value at the current moment as a linear combination of the
observation values at several past moments.

y(t) = c+ ϕ1y(t−1) + ...+ ϕpy(1) + ϵ(t) (3.8)

where
y(t): observation value at time t,
c : constant term,
ϕ1, ... , ϕp: coefficients of auto-regression,
p: order of auto-regression,
ϵ(t): sequence of white noise.

Norbert Wiener [14] then presented another approach of time-series data prediction in 1940, namely
Moving Average (MA). Different from the AR model, the MA model describes the dependence of the
time series by expressing the observation value at the current moment as a linear combination of error
terms at several past moments.

y(t) = c+ ϵ(t) + θ1 × ϵ(t−1) + θ2 × ϵ(t−2) + ...+ θq × ϵ(t−q) (3.9)

where
y(t): observation value at time t,
c : constant term,
θ1, θ2 ... , θq: coefficients of moving average,
q: order of moving average,
ϵ(t): sequence of white noise.

Peter Whittle [15] combined the two methods together (Equation 3.8, Equation 3.9) and proposed the
concept of Auto-Regressive Moving Average (ARMA). The ARMA model can simultaneously capture
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the auto-correlation and dependence of time series.

y(t) = c+ ϕ1y(t−1) + ...+ ϕpy(1) + ϵ(t) + θ1 × ϵ(t−1) + θ2 × ϵ(t−2) + ...+ θq × ϵ(t−q) (3.10)

where y(t), c, {θ1, θ2 ... , θq}, q, p, ϵ(t) and {ϕ1, ... , ϕp} share the same numerical meanings with those
mentioned above.

However, AR, MA and ARMA models usually require the data to be stationary, i.e. the statistical char-
acteristics of each order (such as mean, variance, covariance...) of a set of time series data do not
change with time. This results in algorithms such as AR/MA being very limited in their prediction effects
on non-stationary data. At the same time, the amount of information these algorithms can capture in
processing multi-variable time series data is also relatively limited. As one of the extended forms of
the ARMA model, the ARIMA model was proposed to solve the above problems. This model handles
non-stationary time series by introducing difference operations.

(1−B)d × y(t) = c+ ϕ1y(t−1) + ...+ ϕpy(1) + ϵ(t) + θ1 × ϵ(t−1) + θ2 × ϵ(t−2) + ...+ θq × ϵ(t−q) (3.11)

where B is the lag operator, d is the difference order, while y(t), c, {θ1, θ2 ... , θq}, q, p, ϵ(t) and {ϕ1, ... ,
ϕp} share the same numerical meanings with those mentioned above.

The VARIMA model is a multidimensional generalization of the ARIMA model and is used to analyze
multidimensional time series.

(1−B)d × Y(t) = c+ ϕ1Y(t−1) + ...+ ϕpY(1) + ϵ(t) + θ1 × ϵ(t−1) + θ2 × ϵ(t−2) + ...+ θq × ϵ(t−q) (3.12)

where B is the lag operator, d is the difference order, Y(t) is multidimensional time series, while c, {θ1,
θ2 ... , θq}, q, p, ϵ(t) and {ϕ1, ... , ϕp} share the same numerical meanings with those mentioned above.

The flexibility of the VARIMA model is one of its greatest advantages. Due to its ability to adapt to vari-
ous types of linear time series data, whether stationary or non-stationary, the VARIMA model has been
widely used in finance, economics, meteorology, ecology and other fields. This versatility makes the
VARIMA model more adaptable when facing complex problems. At the same time, the VARIMA model
has excellent predictive capabilities. By capturing key characteristics such as trends, seasonality and
periodicity in time series, the VARIMA model can provide decision makers with valuable information
about future developments. In addition, the VARIMA model also has better interpretability. Its param-
eters have clear statistical significance, making it easier for data scientists to understand the dynamic
relationships captured by the model.

The VARIMAmodel also has some limitations [16]. First, it has high data requirements and requires suf-
ficient and high-quality time series data. Secondly, the computational complexity of VARIMA models is
relatively high, especially when dealing with large-scale data sets. This can result in longer computation
times and greater resource consumption. In addition, the problem of model selection is also a challenge
faced by the VARIMA model. The VARIMA model involves the selection of multiple parameters, such
as autoregressive terms, moving average terms, and lag orders. Choosing appropriate parameters is
critical to a model’s predictive performance, but this process may require multiple trials and validations.
Finally, although the VARIMA model is able to capture a certain degree of nonlinear dynamics, its core
is still built based on linear relationships. Therefore, in some cases it may not adequately capture all
nonlinear relationships in time series.

3.3. Long Short-term Memory
Long Short-Term Memory (LSTM) is a specialized type of recurrent neural network (RNN) designed
to address the challenges of modeling long sequences of data. LSTM tackles the vanishing gradient
problem inherent in traditional RNNs, which occurs when learning long-term dependencies. This design
enables LSTM to retain important past information while avoiding the overwrite issues that plague
standard RNNs. In other words, LSTM exhibits superior robustness when dealing with long lists, a
feature that sets it apart from traditional RNN networks. Figure 3.1 demonstrates the macroscopic
schematics to explain how one RNN model works.

As shown in Figure 3.2, LSTM achieves this by incorporating gated mechanisms known as forget gates,
input gates, and output gates. These gates regulate the flow of information and the updating of memory,
allowing the network to selectively remember or forget information over time.
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Figure 3.1: Framework of LSTM [17]

Figure 3.2: Framework of LSTM Gate Mechanism [18]

The forget gate serves a crucial role in LSTM by determining what information from the previous time
step should be retained or forgotten in the current time step. It takes as input the previous cell state and
the current input, applies a sigmoid activation function, and outputs a vector of values between 0 and
1 representing the degree to which each element of the cell state should be retained. A value close to
0 indicates that the corresponding memory should be forgotten, while a value close to 1 indicates that
it should be retained.

Next, the input gate decides which new information should be stored in the cell state. It consists
of a sigmoid activation function and a tanh activation function. The sigmoid function determines the
relevance of each element in the input, while the tanh function generates a new candidate value. These
values are then combined to produce an update to the cell state.

Finally, the output gate determines the final output of the LSTM cell. It regulates which parts of the cell
state should be passed to the output. The gate consists of a sigmoid activation function to determine
which parts of the cell state to output and a tanh activation function to scale the output. The output gate
then combines these two outputs to produce the final output of the LSTM cell.

The cell state in a LSTM network serves as the memory of the network, allowing information to flow
across different time steps while selectively retaining or discarding information. It acts as a conveyor
belt that carries information throughout the sequence, and its state can be updated through various
operations involving the forget gate, input gate, and output gate. The cell state retains information over
long periods, enabling the LSTM to capture dependencies in sequential data.

LSTM networks offer several advantages in sequential data processing, excelling in capturing long-term
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dependencies. With their unique gated mechanisms, LSTM effectively mitigates the vanishing gradi-
ent problem commonly encountered in traditional recurrent neural networks, enabling robust learning
even in the presence of lengthy sequences. This flexibility allows LSTM to adapt to variable sequence
lengths without requiring predefined input dimensions, making it versatile across diverse applications.
However, LSTM’s intricate architecture and numerous parameters contribute to high computational
costs, potentially leading to overfitting in resource-limited settings. Furthermore, the complexity of
LSTM models poses challenges in interpretation and explanation. Nevertheless, LSTM remains widely
utilized in natural language processing, time series analysis, and speech recognition domains due to
its unparalleled ability to learn and model long-term dependencies in sequential data.

3.4. One-class Support Vector Machine
One-class Support Vector Machine (One-class SVM) [19] is a machine learning algorithm used for
anomaly detection, particularly when only one class of data is available for training. Unlike traditional
SVM, which is a supervised learning algorithm used for classification, One-class SVM is an unsuper-
vised learning algorithm focused on learning the distribution of normal data points and identifying devi-
ations from this distribution. This kind of model feature enables the one-class SVM to be directly used
for model training and testing after the feature extraction task of the regressor is completed, without
the need to introduce additional training sets or further feature engineering to original datasets.

At the core of One-class SVM lies the concept of constructing a hyperplane in a high-dimensional
feature space. This hyperplane serves as the decision boundary, separating normal data points from
potential outliers. Mathematically, the hyperplane equation is represented as ωT · ϕ(x) + b = 0, where
ω is the normal vector, ϕ(x) is the feature function, and b is the bias term. The goal is to optimize ω
and b such that they define a hyperplane that maximizes the separation margin around the normal data
points.

To achieve this, One-class SVM formulates an optimization problem aimed at minimizing the empirical
risk while maximizing the margin around the normal data points. The optimization problem incorporates
slack variables, allowing for a certain degree of flexibility in accommodating normal data points that lie
on the wrong side of the hyperplane. Additionally, the parameter ν is introduced to control the trade-off
between capturing the normal data distribution and allowing for outliers. By adjusting ν, the algorithm
can adapt to different data distributions and anomaly detection requirements.

A crucial aspect of One-class SVM is its ability to handle nonlinearities in the data through the kernel
trick. The kernel trick allows the algorithm to implicitly map the input data into a higher-dimensional
feature space, where linear separation becomes possible. Common kernel functions used include
the radial basis function (RBF) and polynomial kernels. By mapping the data into higher-dimensional
spaces, One-class SVM can effectively capture complex relationships in the data and learn nonlinear
decision boundaries, enhancing its versatility and applicability to various real-world scenarios.

One-class SVM offers advantages including effectiveness with unbalanced data, robustness to high-
dimensional data, and versatility with kernel functions, but it is sensitive to hyperparameters, has limited
interpretability, and may struggle with complex data distributions [20]. Despite these limitations, One-
class SVM remains a powerful tool for anomaly detection, particularly suitable for scenarios with skewed
data distributions and where understanding the reasoning behind outlier classifications is less critical.



4
Methodology

In this chapter, two distinct methods for detecting abnormalities are presented: PCA-based Progno-
sis and VARIMA/LSTM + One-class SVM. The PCA-based Prognosis method focuses on leveraging
principal component analysis (PCA) to extract eigenbases, which serve as representative vectors cap-
turing the essential variability within the dataset. By analyzing the eigenbases, the method identifies
thresholds indicative of shifts in correlation among features. This approach offers a systematic means
to detect abnormalities by discerning significant deviations from the established correlations observed
during normal operational states. Meanwhile, the VARIMA/LSTM + One-class SVM method combines
various techniques to enhance anomaly detection. It begins by reducing the dimensionality of datasets
through PCA, followed by the utilization of machine learning and recurrent neural network (RNN) mod-
els to extract characteristic patterns from healthy-state feature values. Subsequently, it scrutinizes ab-
normal deviations by comparing residuals between actual and predicted values, employing One-class
SVM to discern anomalies from normal behavior. These approaches collectively provide comprehen-
sive strategies for anomaly detection, addressing different aspects of data analysis and modeling to
effectively identify deviations indicative of potential issues.

4.1. Indicator
In order to quantify the performance of algorithms, four numerical indicators are introduced, namely
Accuracy, Precision, Recall, and F1 Score. These four measurements are essential metrics for
evaluating classification models. Accuracy measures the proportion of correctly classified samples
out of the total samples, calculated as

Accuracy =
TP+ TN

TP+ TN+ FP+ FN

where TP, TN, FP, and FN stand for true positives, true negatives, false positives, and false negatives,
respectively. It is best suited for balanced datasets. Precision quantifies the proportion of true positive
predictions among all positive predictions, given by

Precision =
TP

TP+ FP

, making it crucial when the cost of false positives is high, such as in spam detection. Recall indicates
the proportion of actual positive samples that are correctly identified, calculated as

Recall =
TP

TP+ FN

, and is particularly important in scenarios where missing a positive case is costly, such as in disease
screening. The F1 Score is the harmonic mean of Precision and Recall, defined as
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F1 Score =
2× Precision× Recall
Precision+ Recall

, and is useful for evaluating models on imbalanced datasets where a balance between Precision and
Recall is needed.

4.2. Work Flow of Principal Component Analysis
Through the fault data of WI systems recorded in actual engineering applications, PCA technology can
help us identify key principal components related to vibration faults. These principal components can
clearly display the characteristic modes of vibration faults, thereby providing strong support for fault
diagnosis and early warning. By monitoring the changes in these principal components in real time,
we can promptly detect and warn potential vibration faults, and take appropriate measures to intervene
and deal with them to ensure the stability and safety of the WI system.

4.2.1. KMO Test and Sphericity Test
Before extracting the principal components, it is an indispensable step to perform KMO (Kaiser-Meyer-
Olkin) test and sphericity test on the datasets. These tests help evaluate the quality of the datasets
and ensure that they meet the conditions for factor analysis, thereby improving the analysis effect and
application value of PCA.

4.2.1.1 KMO Test
The KMO test is mainly used to measure the degree of correlation between variables in the datasets.
Specifically, the statistic of the KMO test is obtained by calculating the average of the ratio of the
partial correlation coefficient to the correlation coefficient of all pairs of variables. The partial correlation
coefficient refers to the degree of correlation between two variables while controlling other variables.
The correlation coefficient is the direct correlation between two variables. The calculation formula of
KMO statistic is as follows:

KMO =

∑
r2ij∑

(r2ij + p2ij)
(4.1)

where, rij represents the correlation coefficient between variable i and variable j, and pij represents
the partial correlation coefficient between variable i and variable j when controlling other variables.
The subscripts i and j represent different pairs of variables respectively.

KMO value range is between 0 and 1. The closer the value is to 1, the stronger the correlation between
variables and the higher the structural validity of the data set. When the KMO value is greater than 0.5,
the data set is generally considered suitable for factor analysis. Through the KMO test, we can initially
determine whether the dataset meets the basic conditions for PCA.

4.2.1.2 Sphericity Test
The sphericity test (Bartlett’s sphericity test) further verified the distribution characteristics of datasets.
The null hypothesis (H0) of this test is that the variables are independent of each other, that is, the data
has a spherical distribution. The alternative hypothesis (H1) is: the correlation matrix is not the identity
matrix, that is, there is a certain correlation between variables.

The statistic (χ2) of Bartlett’s test of sphericity is calculated as follows:

χ2 = −[(n− 1)× ln(S)−
∑

(ln(λi))] (4.2)

where n is the number of samples, S is the determinant value of the sample covariance matrix, and λi

is the eigenvalue of the correlation matrix.

According to the χ2 distribution table, we can find the corresponding degrees of freedom (df), usually
(p−1)×(p−2)

2 , where p is the number of variables. We can then calculate the P value for Bartlett’s test of
sphericity. If the P value of the sphericity test is less than 0.05, the null hypothesis is rejected, indicating
that there is a significant correlation between the variables and the data is non-spherical. In this case,
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the data set is more suitable for factor analysis in order to reveal the underlying relationships between
variables.

Through the double checks of KMO test and sphericity test, we can ensure that the data set has the
structural validity and distribution characteristics required for PCA. This helps to improve the analytical
accuracy of PCA and reveal the main components and potential patterns in the data set, thereby laying
a solid foundation for subsequent data mining and analysis work.

4.2.2. PCA Execution
After successfully obtaining the datasets and verifying that they are suitable for PCA analysis, we offi-
cially enter the critical stage of data preprocessing and principal component extraction. This stage is
critical to ensure the accuracy and reliability of the analysis results. We will take a series of measures to
optimize the data structure, extract core information, and lay a solid foundation for subsequent principal
component interpretation and predictive analysis.

First, we clean and standardize the data in each dataset. Our operations in this step include re-
moving obvious outliers in healthy states, filling in missing values with mean healthy value, modifying
inappropriate data types, etc. to ensure a clean and consistent data set. Standardization scales all vari-
ables to the same scale, eliminating the influence of different units and dimensions, making the data
more suitable for PCA analysis. Commonly used data standardization methods include min-max stan-
dardization, Z-score standardization, and proportional standardization. The formulas for thesemethods
are given below:

1) Min-Max Scaling. To perform a linear transformation on the original data so that the resulting value
maps to [0, 1].

x′ =
x−min

max−min
(4.3)

where x′ is the standardized data, x is the original data, min andmax are the minimum and maximum
values of the original data respectively.

2) Standard Scaling. To subtract the original data from its mean and dividing by the standard deviation
results in a normal distribution with mean 0 and standard deviation 1.

x′ =
x− µ

σ
(4.4)

where x′ is the standardized data, x is the original data, µ is the mean of the original data, and σ is the
standard deviation of the original data.

3) Robust Scaling. To scale the data using quartiles (1st quartile and 3rd quartile).

x′ =
x−Q1

Q3 −Q1
(4.5)

where x′ is the normalized data, x is the original data, Q1 is the first quartile of the original data, and
Q3 is the third quartile of the original data. This method is robust to outliers.

Considering the raw data still contains outliers within healthy state, this thesis chooses the second
standardization method since it is less susceptible to extreme values compared with the other methods,
providing more stable feature scaling.

Next, we perform principal component extraction on the data. By solving for eigenvalues and eigen-
vectors, we obtain the principal components of the dataset that explain most of the variation in the
data. We also determine the information contribution ratios of the principal components based on the
magnitude of corresponding eigenvalues and select one or several principal components to represent
the original data.

In short, in the data preprocessing and principal component extraction stage, we take a series of rigor-
ous measures to decrease the dimensionality of original datasets and/or extract key information. This
operation provides strong support for subsequent principal component interpretation and model train-
ing, helping us better understand and utilize the data.
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4.3. Approach 1: PCA-based Prognosis
PCA-based Prognosis relies on detecting abnormal changes in correlations among the equipment
within a system during abnormal events. As shown in fig 4.1, this method utilizes the eigenbasis of
correlation matrices derived from datasets to unveil the principal correlations, thereby enabling the
examination of the extent of deviation in the eigenbasis during normal conditions. By establishing
prognostic thresholds based on these observations, early alarms can be triggered when deviations ex-
ceed predefined limits. This approach ensures timely intervention and maintenance, safeguarding the
system’s functionality and efficiency.

Figure 4.1: Schematics of PCA-based Prognosis for the first two consecutive time intervals. The whole multi-dimensional
dataset is divided into many time intervals encapsulating equal number of time steps (3 steps shown in the figure in order to

save space, but 60 steps enclosed in one set for this research actually).

4.3.1. Data Collection and Feature Engineering
We collect those datasets that contain only the time-series data during the healthy state of the interested
equipments. Each dataset is first divided into certain number of time intervals each with 60 time steps.

Following data collection, we engage in feature engineering to prepare the data within each time inter-
val for principal component analysis. This involves at least two crucial procedures: Firstly, eliminating
features with constant values to prevent issues such as zero-value determinant during eigenvalue and
eigenbasis calculation. Secondly, standardizing the values of each feature to mitigate bias concerns
stemming from dimensionality discrepancies.

4.3.2. PCA and Deviation of Eigenbases
Subsequently, PCA is employed to acquire the eigenvectors and eigenbases corresponding to each
time interval. The components within each eigenbasis are sorted based on the numerical order of
their eigenvectors. PCA is then instructed to extract the initial eigenbases that collectively capture a
predetermined proportion of the variance in the dataset.

After that, we quantify the deviation between eigenbases of two consecutive time intervals. Geo-
metrically, the components selected within each eigenbasis can be conceptualized as new coordinate
systems within the reduced observational space. Therefore, it becomes viable to compute the deviation
of eigenbases between successive time intervals using cosine similarity.

Cosine similarity is a metric that measures the cosine of the angle between two vectors in a multidi-
mensional space. In the context of comparing eigenbases, cosine similarity quantifies the similarity
between the directions represented by the eigenvectors of the respective eigenbases. By calculating
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the cosine of the angle between these vectors, we obtain a numerical measure of how closely aligned
the eigenbases are, indicating the degree of deviation between consecutive time intervals. The cosine
similarity cos θ between two vectors a⃗ and b⃗ is calculated as:

cos θ =
a⃗ · b⃗

||⃗a|| · ||⃗b||

As a result of the preceding feature engineering processes, it’s possible that certain features may
not be considered in every time interval, leading to discrepancies in the feature sets across intervals.
This inconsistency poses a challenge when computing cosine similarities. To address this issue, we
adopt a strategy where zero-values are introduced into the eigenbases at positions corresponding
to the features that are absent in certain intervals. This ensures uniformity in the dimensionality of
the eigenbases across all intervals, thus enabling accurate computation of cosine similarities without
compromising the integrity of the data.

Given that each eigenbasis consists of multiple vector components, comparing eigenbases of two con-
secutive time intervals yields several cosine similarities. These cosine similarities represent the de-
grees of rotation between the axes of distinct but equally dimensional coordinate systems. As these
rotations are inherently related, the cosine similarities are unlikely to exhibit significant discrepancies
among themselves. To quantify the overall deviation, we first calculate the Euclidean norm of these
cosine similarities. Subsequently, we normalize this aggregated norm by dividing it by the square root
of the number of vector components. This normalized metric offers a comprehensive indicator of the
deviation between consecutive eigenbases, providing a holistic assessment of their alignment in the
reduced observational space. Assume vector v⃗ contains n cosine similarities of two consecutive eigen-
bases.

v⃗ = cos θ1, cos θ2, ..., cos θn

Then the deviation indicator Dis based on Euclidean norm is:

Dis =

√
cos θ1

2 + cos θ2
2 + ...+ cos θn

2

n

In the concluding stage of our workflow, we aggregate the deviation values obtained from comparing
consecutive eigenbases. These deviation values encapsulate the extent of difference between the
equipment’s behavior across different time intervals. Subsequently, we employ statistical techniques to
fit a probability distribution model to these deviation values. By training this model, we gain insights into
the underlying patterns and characteristics of the deviations observed in the equipment’s performance.

The obtained probability distribution model serves as a reference for assessing the likelihood of en-
countering specific deviation magnitudes. Leveraging this model, we derive confidence intervals that
provide a range of values within which the true deviation is likely to lie with a certain level of confi-
dence. These confidence intervals offer actionable insights into the uncertainty associated with the
deviation estimates, empowering decision-makers to make informed choices regarding maintenance,
operational strategies, and resource allocation. Overall, this comprehensive approach enhances our
understanding of the equipment’s health dynamics and enables proactive measures to mitigate poten-
tial risks.

4.4. Approach 2: VARIMA/LSTM + One-class SVM
The VARIMA/LSTM + One-class SVM approach is a powerful method for identifying and detecting
anomalous events in various datasets. This technique combines the strengths of the VARIMA/LSTM
model, which is capable of capturing time series patterns and trends, with the One-class SVM algorithm,
which excels at identifying outliers in high-dimensional spaces.

Moreover, in contrast to the purely statistical PCA-based prognosis method, this approach necessitates
a significantly higher computational capacity due to the extensive model training and testing processes
involved. Consequently, there arises a requirement to reduce the dimensionality of our datasets, a task
that can be efficiently accomplished through Principal Component Analysis.
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4.4.1. Principal Component Analysis to Reduce Dimensionality
This step bears resemblance to the PCA-based prognosis method, yet it incorporates an additional step.
Following the acquisition of eigenbases based on the feature values of healthy states, which elucidate
the significant relationships among the original features, new datasets featuring reduced-dimensional
features can be derived from the raw datasets containing data of faulty conditions. Moreover, the
outcomes of the eigenbases can be instrumental in classifying the principal factors of the respective
system.

4.4.2. Regressors
By capitalizing on the power of regressors, this approach initially forecasts the expected healthy val-
ues of features using historical data. These anticipated values act as a benchmark for evaluating
the normalcy of incoming data points. In this research, VARIMA and LSTM are employed to execute
these tasks, with VARIMA representing a statistical model and LSTM standing as a machine learning
approach.

4.4.2.1 VARIMA
At the beginning, we select the first several consecutive time steps of feature data of healthy states for
following processes:

Firstly, we initiate the procedure by examining the stationarity of the input time series data. In cases
where non-stationarity is detected, we apply differencing techniques to stabilize the data, ensuring a
solid foundation for subsequent modeling efforts.

Subsequently, we engage in the model identification phase, where we ascertain the optimal values
for the model’s order parameters: p, d, and q. These parameters represent the lag order of the VAR
component, the degree of differencing, and the moving average order of the VMA component, respec-
tively.

Following this, we proceed to the model estimation stage, employing robust estimation techniques—
such as the least squares method or maximum likelihood estimation—to derive the model coefficients
accurately.

To ensure the trustworthiness of our model, we carry out meticulous diagnostic checks on the model’s
residuals. These checks evaluate the residuals for normality, homoscedasticity, and the absence of
autocorrelation. Should any discrepancies arise, we remain prepared to refine the model as necessary.
This study uses the Akaike Information Criterion (AIC) [21] as the basis for the selection of the VARIMA
model parameters p and q. In order to determine the best combination of parameters, we first set the
range of possible values for p and q. Then, each set of parameter combinations is tested one by one
by enumeration and the corresponding AIC value is calculated. In the end, we chose the combination
of p and q parameters corresponding to the lowest AIC value as the optimal parameter for the VARIMA
model.

With the estimated VARIMA model at our disposal, we can generate informed forecasts for future
time periods, offering valuable insights into potential trends and patterns that may unfold.

4.4.2.2 LSTM
Initially, we select the initial consecutive time steps of feature data representing healthy states, and
process the data with feature engineering for subsequent processing steps:

Firstly, the process begins with further data preprocessing. Multi-dimensional time-series data is
meticulously divided into three distinct sets: training set, validation set and testing set. This segrega-
tion is crucial for evaluating the model’s performance without any bias. Normalization techniques are
applied to scale the data, ensuring that each feature falls within a comparable range, thus prevent-
ing any particular feature from dominating the learning process. The input data is structured so that
each input feature has a consistent number of time steps, facilitating a smooth and coherent flow of
information through the model.

Secondly, model definition comes into play. Utilizing powerful deep learning frameworks (PyTorch in
this research), a multi-input multi-output LSTM model is constructed. This model architecture incorpo-
rates LSTM layers for each input feature, which may optionally share weights to reduce computational
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complexity or improve generalization. Fully connected layers or alternative neural network architec-
tures are added subsequent to these layers to refine the LSTM outputs. Multiple output heads are
established, each tailored to produce predictions for a specific time-series dimension, catering to the
multi-dimensional nature of the predictions.

Thirdly, parameter initialization is performed. The model’s weight matrices and bias vectors are initial-
ized to initial values, which is critical for the model’s convergence during training and can significantly
impact its performance.

Afterwards, forward propagation takes place, where for each time step in the input sequence, the
following operations occur:

1) The current time step data of all input features is passed to their respective LSTM layers.

2) New hidden states are calculated for each LSTM layer based on the previous hidden state and
current input.

3) The hidden states of all LSTM layers are passed to subsequent fully connected layers or other
network layers.

4) The output is calculated from the fully connected layers or other network layers based on the LSTM
hidden states.

5) Predicted values for each dimension are computed using the output heads.

As shown in Figure 4.2, this research contructs a LSTM model with 2 LSTM layers and one fully con-
nected layer. The purpose of using two LSTM layers is to capture complex temporal dependencies
in the input time series data. Each LSTM layer processes the input sequence and passes its hidden
state to the next layer, allowing the model to learn deeper temporal patterns. The fully connected layer
serves as the output layer of the model. It takes the final hidden state from the last LSTM layer as
input and maps it to the desired output space. In this case, the fully connected layer is responsible for
generating predictions based on the learned temporal information from the LSTM layers.

Figure 4.2: Schematics of LSTM Structure

Then the LSTM model undergoes a series of iterative processes to optimize its performance and
generate predictions. Initially, loss calculation is performed, with the loss function value calculated
based on the predicted outputs and true labels, using common loss functions such as Mean Squared
Error (MSE) or Mean Absolute Error (MAE). Subsequently, backpropagation is employed to calculate
the gradients of the loss function with respect to the model parameters, utilizing the backpropagation
algorithm. This step is vital for optimizing the model’s performance.

Following this, parameter update occurs, with the model parameters updated using optimization algo-
rithms, such as Gradient Descent or Adam, based on the calculated gradients. This iterative process
helps the model learn from its errors and improve over time. The iterative training continues until the
desired number of training iterations is reached or a stopping criterion is met, repeating the cycle of
forward propagation, loss calculation, backpropagation, and parameter update.

Lastly, model evaluation is conducted by assessing the model’s performance on the test set using ap-
propriate evaluation metrics, such as MSE or accuracy rate. This assessment provides insights into
the model’s generalization capabilities. Now, the trained model is ready for prediction, where it lever-
ages its learned patterns and relationships to generate accurate forecasts for new multi-dimensional
time-series data.
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4.4.3. One-class SVM
The One-class SVM is used to detect any significant deviations between the actual feature values and
the predicted healthy values. This technique is particularly effective in identifying anomalies or outliers
in the data, as it is designed to model the distribution of normal data points and identify any data points
that significantly deviate from this distribution. By comparing the actual feature values to the predicted
healthy values, the One-class SVM algorithm helps to identify any potential abnormalities or faults in
the system being monitored. This approach enables the early detection of issues, allowing for timely
intervention and maintenance, thereby improving the overall reliability and performance of the system.

We initially select a brief sequence of healthy feature data that follows the sequence utilized for regres-
sors. This healthy sequence serves as a valuable reference for training the One-class SVM model,
enabling it to learn the typical behavior and patterns exhibited by the system. By employing a dis-
tinct sequence for training the One-class SVM, we ensure that the model remains impartial and can
accurately detect deviations from the expected healthy state.

Subsequently, we proceed to the Data Preparation phase, where we meticulously clean and normalize
both the healthy sequence and the sequence used for regressors. This critical step ensures that the
One-class SVM model can effectively learn from the data and make precise predictions. Following
cleaning and normalization, we partition the data into training, validation and testing sets, with the
training set comprising solely of healthy feature data.

During the Model Training phase, we train the One-class SVM model using the healthy feature data in
the training set. Throughout this process, the model learns to discern the boundaries between normal
and abnormal data points, empowering it to detect anomalies within the system.

Once the model has been trained, we advance to the Anomaly Detection phase. Here, we apply the
trained One-class SVM model to the testing set, which contains a mix of healthy and unhealthy feature
data. The model will categorize each data point as normal or abnormal based on its proximity to
the decision boundary, aiding us in identifying any potential issues or malfunctions within the system.
Then we can further enhance the anomaly detection process by establishing a threshold ratio between
abnormal features and all features. This threshold serves as a critical threshold that, when exceeded,
triggers an alarm, alerting us to potential issues within the system.



5
Long-term Performance Results

This chapter introduces the results gained from datasets, each of which covers approximately 12 days
of second-by-second data to test the performance of all algorithms in long-term time period.

In common sense, those healthy operational conditions should be comprised of stable data. However,
we found that in many cases (one example shown in Figure 5.1), there are additional ’abnormal’ trips in
healthy conditions, consisting of scheduled shutdowns and ’fake’ shutdowns caused by other devices.
These shutdowns should not be identified by our algorithms. For example, scheduled shutdowns are
deliberately designed to help operators make routine inspections and so on, thus should also be in-
cluded into healthy conditions. But due to the lack of deterministic characteristics to distinguish those
extra shutdowns and actual events, our algorithms are likely to mix these two conditions together and
trigger unnecessary alarms.

Figure 5.1: One Example of Scheduled Shutdowns (Marked with Green Rectangular Windows) and Actual Event (Marked with
Red Rectangular Window)

Here we select 6 events of datasets in total, each of which contains at least one unwanted shutdown.
We use these 6 cases to check if our algorithms can distinguish the unwanted shutdowns.

5.1. Results: Water Injection Pump A
Two vibration-related events are found for Water Injection Pump A.

5.1.1. Results: PCA-based Prognosis
As mentioned in Chapter 4.2, the method of PCA-based Prognosis leverages Principal Component
Analysis to extract eigenbases, which are then analyzed to detect abnormalities based on deviations
from the established correlations observed during normal operational states. The method starts by col-

22
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lecting time series data during the system’s healthy state and performing feature engineering, including
removing constant features and standardizing data. PCA is then applied to extract the eigenbases of
every time interval of datasets (60 time steps per time interval in this research). These eigenbases are
used to monitor the system, with deviations from the previous consecutive time interval indicating po-
tential anomalies. Warnings are triggered when these deviations exceed predefined thresholds based
on different confidence probabilities and normal deviations in systems’ healthy states.

Figure 5.2: Distribution of Eigenbasis Deviations during Normal Conditions CDIEVENT0012021_12DAY

Figure 5.3: Distribution of Eigenbasis Deviations during Normal Conditions CDMEVENT0012022_12DAY

We first collect the eigenbasis deviations when devices are in healthy condition. Above in Figure 5.2 and
Figure 5.3 demonstrated the distribution of eigenbasis deviations for the healthy datasets corresponding
to the two cases.

As we can see from the two distributions, the layouts of eigenbasis deviations generally follow the
Gaussian distribution. And the fitted Gaussian probability distribution functions (Confidence Probability:
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99.73%) is also drawn on the figure. The results are basically consistent with the actual situation,
because subjectively, when the equipment is running stably, the value of each feature fluctuates around
a certain point, and the relationship between features should be the same.

Then we apply 11 different confidence probabilities to the ’healthy deviations’, namely [0.90, 0.91, 0.92,
0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99, 0.9973], and obtain 11 sets of upper and lower limits accordingly.

Then we set these 11 sets of upper and lower limits as the thresholds to trigger false notifications and
check the performance of PCA-based Prognosis algorithms via different indicators, including Accuracy
and F1 Score. The results are shown in Table 5.1 and Table 5.2.

Confidence Prob. Accuracy Precision Recall F1 Running Time
0.9 0.9512 0.5159 0.5713 0.5201 121.7286s
0.91 0.9576 0.5178 0.568 0.5239 119.1522s
0.92 0.9636 0.5203 0.5645 0.5279 116.8872s
0.93 0.9682 0.5226 0.5603 0.5309 124.3213s
0.94 0.9740 0.5291 0.56 0.5382 123.7909s
0.95 0.9782 0.5312 0.5491 0.5378 115.4476s
0.96 0.9814 0.5388 0.5474 0.5426 114.3656s
0.97 0.984 0.5465 0.5422 0.5442 116.2072s
0.98 0.9864 0.5627 0.5402 0.5488 110.6557s
0.99 0.989 0.6089 0.5382 0.5558 110.4962s
0.9973 0.9902 0.6455 0.5193 0.5324 115.2389s

Table 5.1: Performance of PCA-based Prognosis for CDIEVENT0012021_12DAY

Confidence Prob. Accuracy Precision Recall F1 Running Time
0.9 0.7948 0.5001 0.5062 0.4467 140.5473s
0.91 0.8106 0.5001 0.5064 0.4516 137.2745s
0.92 0.8251 0.5001 0.5061 0.456 137.0578s
0.93 0.8393 0.4999 0.4978 0.4598 141.7669s
0.94 0.8582 0.5002 0.5073 0.4658 138.1752s
0.95 0.8744 0.5002 0.5078 0.4706 146.2540s
0.96 0.8952 0.5001 0.5029 0.4761 157.9791s
0.97 0.9161 0.4999 0.4981 0.4815 135.4120s
0.98 0.9405 0.4996 0.495 0.4875 144.3665s
0.99 0.9515 0.5045 0.507 0.5048 116.4899s
0.9973 0.9737 0.5098 0.5038 0.5041 123.0880s

Table 5.2: Performance of PCA-based Prognosis for CDMEVENT0012022_12DAY

As we can see from the numerical indicators, the accuracies generally go beyond 95% when the con-
fidence probability reaches up to 99% and 99.73%. However, the F1 scores, which show the com-
prehensive performance of algorithms regardless of magnitudes, generally vibrate around 0.5. This
means that the models may have a trade-off between precision and recall. In other words, among
the detection accuracies for healthy time steps and faulty ones, there must be one good and one bad.
Two reasons might be that the unrelated shutdowns are mixed within the healthy state, reducing the
distinguishing ability of algorithm.

Then we extract the best prediction results from each of the two cases based on the values of F1 scores.
As demonstrated in Figure 5.4 and Figure 5.5, a red vertical dotted line divides the entire time period
into two parts. The blue part on the left represents that the actual equipment condition is normal, and
the blue part on the right represents a fault. Among the detective results shown as the blue line, the
time point whose corresponding values are 1 considers the point to be faulty, those with 0 value indicate
health.
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Figure 5.4: CDIEVENT0012021_12DAY: Best Result w.r.t. F1 Score

Figure 5.5: CDMEVENT0012022_12DAY: Best Result w.r.t. F1 Score

However, as we can see from the best results, there are still lots of unexpected notifications. Then we
check the time intervals of those scheduled shutdowns, and find the majority of them match the time
steps where the unexpected notifications are shown. Such coincidence matches our hypothesis. In
this way, it can be told that the PCA-based Prognosis is unable to distinguish the scheduled shutdowns
from actual trips for both cases.

5.1.2. Results: VARIMA + One-class SVM
The VARIMA + One-Class SVM method begins by applying PCA to reduce the dimensionality of the
dataset, which helps improve computational speed; if necessary, the principal components can be
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analyzed further to interpret what factors they represent. The VARIMA model is then used to capture
the dynamics of the system’s multivariate time series data, generating predictions for normal operating
conditions. The residuals, calculated as the difference between the predicted and actual values, reflect
any deviations from expected behavior. Features are extracted from these residuals and used to train
a One-Class SVM model with data from normal operating conditions. During deployment, new residual
features are fed into the trained One-Class SVM, which identifies any deviations from the normal range,
effectively detecting and signaling anomalies in the system.

Since PCA is used solely to reduce the dimensionality of the datasets and interpreting the principal
components is not essential for this approach, we present the principal component information for
these two cases as examples, as shown in Table 5.3 and Table 5.4. Generally, to interpret the meaning
of each principal component, we look at the features with the highest positive and highest negative
loadings in the factor analysis (Loadings whose values difference are within 0.01 compared with the
highest or lowest ones are also considered, since their contributions are highly similar). A positive
loading indicates that the feature is positively correlated with the principal component, while a negative
loading indicates a negative correlation. By analyzing these loadings, we can better understand the
combination of variables each principal component represents and their role in the data. Ideally, once
one alarm is triggered, operators can refer to the exact principal component that first show abnormality
and seek for the source of problems accordingly.

The principal components in the above two examples reveal that the operational conditions differ be-
tween FPSOs, even though the system structures are identical. Additionally, based on previous sur-
veys, the operational patterns of a single system can also change over time.

Main Features Description Factor

1st Principal Component Most Positive T26-VXI-1820 Motor DE Radial Bearing Vibration ’x’ 0.54
Most Negative T26-VYI-1828 Motor NDE Radial Bearing Vibration ’y’ -0.068

2nd Principal Component Most Positive T26-VYI-1821 Motor DE Radial Bearing Vibration ’y’ 0.39
Most Negative T26-VXI-1827 Motor NDE Radial Bearing Vibration ’x’ -0.51

3rd Principal Component Most Positive T26-VXI-1811 Pump NDE Radial Bearing vibration ‘x’ 0.75
Most Negative T26-VYI-1812 Pump NDE Radial Bearing vibration ‘y’ -0.5

4th Principal Component Most Positive T26-VXI-1820 Motor DE Radial Bearing Vibration ’x’ 0.7
Most Negative T26-VYI-1812 Pump NDE Radial Bearing vibration ‘y’ -0.57

5th Principal Component Most Positive T26-VYI-1821 Motor DE Radial Bearing Vibration ’y’ 0.64
Most Negative T26-VYI-1812 Pump NDE Radial Bearing vibration ‘y’ -0.4

Table 5.3: Principal Components for CDIEVENT0012021_12DAY (Variance Ration:95%)

Main Features Description Factor

1st Principal Component Most Positive T26-VYI-1828 Motor NDE Radial Bearing Vibration ’y’ 0.47
Most Negative T26-VYI-1812 Pump NDE Radial Bearing vibration ‘y’ -0.33

2nd Principal Component Most Positive T26-VXI-1815 Pump DE Radial Bearing vibration ‘x’ 0.33
Most Negative T26-VXI-1827 Motor NDE Radial Bearing Vibration ’x’ -0.53

3rd Principal Component Most Positive T26-VXI-1815 Pump DE Radial Bearing vibration ‘x’ 0.55
Most Negative T26-VYI-1816 Pump DE Radial Bearing vibration ‘y’ -0.41

4th Principal Component Most Positive T26-VXI-1815 Pump DE Radial Bearing vibration ‘x’ 0.6
T26-VYI-1816 Pump DE Radial Bearing vibration ‘y’ 0.6

Most Negative T26-VYI-1821 Motor DE Radial Bearing Vibration ’y’ -0.32

5th Principal Component Most Positive T26-VYI-1816 Pump DE Radial Bearing vibration ‘y’ 0.56
Most Negative T26-VXI-1827 Motor NDE Radial Bearing Vibration ’x’ -0.59

Table 5.4: Principal Components for CDMEVENT0012022_12DAY (Variance Ration:95%)

Since the amounts of features considered in this research are no higher than 10 for each device, we
put more focus on remaining such much information as possible than reducing the numbers of original
features. Otherwise, the considerable loss of information may highly influence the detective results.
For all the 6 cases, we ask our algorithm to extract the first several principal components whose accu-
mulative variance ratio are no larger than 95%. Then in both cases of this section, the dimensionality
of the original 8 features are reduced to 5 new features.
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Since all the values of features at the start of testing sequences considered healthy are vibrating stably
and demonstrate highly similar patterns, thus we do not need long sequences of samples to train the
VARIMA model. However, in order to help computer automatically obtain such generic thresholds as
possible, we need to feed One-class SVM model with such large amounts of samples as possible.
Following the idea, we then use the first 1/120 of each healthy sequence to train the VARIMA models
and the next 1/20 to train the One-class SVM models (Ratios can change with respect to the actual
need of operators). The performance indicators are shown in Table 5.5 and Table 5.6. The VARIMA
and One-class SVM models give different results after training. The former gives the result at once,
while the latter can give the judgment result at each time step. In other words, the model training
time and the time required to give the detection result of this method should be considered separately.
Therefore, we use two additional indicators to measure the time cost of this method, namely Model
Training and Detection per Time Step. The same is true for the approach of LSTM + One-class SVM in
the following chapters. In both cases, the accuracy decreases compared to PCA-based Prognosis. For
the first case, the F1 score increases, indicating better overall performance than PCA-based Prognosis.
However, the second case shows the opposite trend.

Figure 5.6: VARIMA + One-class SVM: Detection results of CDIEVENT0012021_12DAY

Figure 5.7: VARIMA + One-class SVM: Detection results of CDMEVENT0012022_12DAY

The detection results are shown in Figure 5.6 and Figure 5.7 for better and more direct understanding
of performance. And now it becomes quite clear that lots of unexpected notifications are shown before
the actual trip, and the number of those ’false alarms’ for the second case significantly excels that of
the first case. We then examine the distribution of the extra and unwanted shutdowns in each case
to understand the performance differences. In the first case, those shutdowns account for around 2
days of data (1/6 of the dataset), whereas in the second case, they extend to around 6 days (half of
the dataset). This increase in noise not only results in more unexpected notifications but also affects
the model parameters. The VARIMA + One-class SVM approach is sensitive to abnormal shifts in data
values, making it more susceptible to scheduled shutdowns compared to PCA-based Prognosis. This
sensitivity primarily explains the differing performance of our algorithms in the two cases.

5.2. Results: Water Injection Pump B
Two vibration-related events are found for Water Injection Pump B.

5.2.1. Results: PCA-based Prognosis
Following the same steps mentioned in section 5.1, the collection and analysis on eigenbasis devia-
tions in healthy states are first conducted. As shown in Figure 5.8 and Figure 5.9, the distributions of
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Accuracy Precision Recall F1
0.9436 0.5465 0.7629 0.5688
Model Training/s Abnormality Detection/s

87.8101 1509.5243
Detection Steps Dectection per Time Step

976358 0.001546077

Table 5.5: Performance of VARIMA + One_class SVM for CDIEVENT0012021_12DAY

Accuracy Precision Recall F1
0.5767 0.5185 0.726 0.4022
Model Training/s Abnormality Detection/s

98.5687 1662.3902
Detection Steps Dectection per Time Step

1028329 0.001616594

Table 5.6: Performance of VARIMA + One_class SVM for CDMEVENT0012022_12DAY

correlation deviations of healthy data for the two cases also follow Gaussian distributions.

Figure 5.8: Distribution of Eigenbasis Deviations during Normal Conditions CDSEVENT0052022_12DAY

Figure 5.9: Distribution of Eigenbasis Deviations during Normal Conditions CDMEVENT0062023_12DAY
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Then still, the same 11 confidence probabilities are picked to get upper/lower limits as thresholds accord-
ing to the collected values and test the performance of PCA-based Prognosis algorithm. The results
are shown in table 5.7 and 5.8. Upon examining the results, it becomes evident that the performance of
the algorithm for the two cases of Water Injection Pump B is generally comparable to that for the cases
of Water Injection Pump A. Although the accuracy surpasses 95% when the confidence probability
exceeds 98%, the F1 scores fluctuate around 0.5, which suggests a suboptimal ability to discriminate
between healthy and faulty conditions.

Confidence Prob. Accuracy Precision Recall F1 Running Time
0.9 0.8643 0.4939 0.4837 0.4823 26.6844s
0.91 0.8746 0.4928 0.4825 0.4831 26.5637s
0.92 0.9023 0.4936 0.489 0.4898 26.7154s
0.93 0.9023 0.4936 0.489 0.4898 26.7154s
0.94 0.9136 0.4918 0.4883 0.4896 26.5672s
0.95 0.925 0.4888 0.4877 0.4882 26.3715s
0.96 0.9357 0.49 0.4919 0.4909 26.4581s
0.97 0.9422 0.4926 0.4953 0.4934 26.4184s
0.98 0.9491 0.4945 0.4976 0.4945 26.7565s
0.99 0.9564 0.5004 0.5 0.4955 26.4406s
0.9973 0.9618 0.4818 0.4989 nan 26.549s

Table 5.7: Performance of PCA-based Prognosis for CDSEVENT0052022_12DAY

Confidence Prob. Accuracy Precision Recall F1 Running Time
0.9 0.8849 0.4933 0.4837 0.4845 48.8452s
0.91 0.8928 0.4933 0.4853 0.4863 48.48s
0.92 0.9013 0.4939 0.488 0.4888 61.5822s
0.93 0.9096 0.4941 0.4898 0.4906 48.9816s
0.94 0.9170 0.4942 0.4911 0.4919 49.4838s
0.95 0.9262 0.4933 0.4916 0.4923 48.6251s
0.96 0.9353 0.4954 0.4954 0.4954 48.9537s
0.97 0.94 0.4966 0.4971 0.4967 48.9184s
0.98 0.9464 0.4941 0.4961 0.4947 48.7635s
0.99 0.9536 0.4978 0.499 0.4967 48.6766s
0.9973 0.9631 0.5177 0.5023 0.4983 49.1909s

Table 5.8: Performance of PCA-based Prognosis for CDMEVENT0062023_12DAY

As shown in the figures of best results (Figure 5.10 and Figure 5.11) according to F1 scores, there are
numerous premature notifications and the algorithm fails to detect the actual start of the trips of both two
cases. This strategy that employs cosine similarity of eigenbase differences for correlation deviation
identification still struggles to accurately capture the abnormal variations in feature correlations for these
two cases due to ambiguous abnomral changes in eigenbasis deviations and the similar reasons of the
previous two cases.
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Figure 5.10: CDSEVENT0052022_12DAY: Best Result w.r.t. F1 Score

Figure 5.11: CDMEVENT0062023_12DAY: Best Result w.r.t. F1 Score

5.2.2. Results: VARIMA + One-class SVM
Same as the steps mentioned in section 5.1, in both cases, we apply PCA to reduce the dimensionality
of the original 8 features to 4 new features, capturing 95% of the variance. We then use the first 1/120
of each healthy sequence to train the VARIMA models and the following 1/20 of each healthy sequence
to train the One-class SVM models. The performance indicators are shown in Table 5.9 and Table 5.10.
And the detection results are shown in Figure 5.6 and Figure 5.7.
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Figure 5.12: VARIMA + One-class SVM: Detection results of CDSEVENT0052022_12DAY

Figure 5.13: VARIMA + One-class SVM: Detection results of CDMEVENT0062023_12DAY

Accuracy Precision Recall F1
0.9363 0.4816 0.4877 0.4846
Model Training/s Abnormality Detection/s

441.1361 824.4326
Detection Steps Detection per Time Step

605542 0.001361479

Table 5.9: Performance of VARIMA + One_class SVM for CDSEVENT0052022_12DAY

Accuracy Precision Recall F1
0.9856 0.8556 0.9923 0.9117
Model Training/s Abnormality Detection/s

609.5172 1951.6148
Detection Steps Detection per Time Step

1028448 0.001897631

Table 5.10: Performance of VARIMA + One_class SVM for CDMEVENT0062023_12DAY

For the first case, the accuracy exceeds 90%, but the F1 score remains below 0.5. In contrast, the F1
score for the second case surpasses 90%, indicating a better overall performance compared to PCA-
based Prognosis. We then examine the distribution of extraneous, unrelated shutdowns in each case to
explain the performance differences. In the first case, shutdowns unrelated to vibration issues constitute
around 1 day of data (approximately 1/12 of the dataset), whereas in the second case, these shutdowns
decrease to about 2 hours (less than 0.7% of the dataset). This reduction in noise not only results in
fewer unexpected notifications but also influences the model parameters. Besides, the data of those
unrelated shutdowns also enters the model-training dataset for the first case, which largely affects the
accuracy and distinguishing ability of the model. The VARIMA + One-class SVM approach is sensitive
to abnormal shifts in data values, making it more susceptible to unrelated shutdowns compared to PCA-
based Prognosis. This sensitivity largely accounts for the differing performance of our algorithms in the
two cases.
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5.3. Results: HP Feed Pump A/B
Given that there is only one single case for HP Feed Pump A and B respectively, this chapter presents
the findings from both cases in a consolidated manner, namely CDSEVENT0072022_12DAY and CD-
SEVENT0102023_12DAY.

5.3.1. Results: PCA-based Prognosis
As shown in Figure 5.14 and Figure 5.15, the distributions of correlation deviations for healthy data
in both cases follow Gaussian distributions. We used the same 11 confidence probabilities to test the
performance of the PCA-based Prognosis algorithm. The results are presented in Table 5.11 and Table
5.12.

Figure 5.14: Distribution of Eigenbasis Deviations during Normal Conditions CDSEVENT0072022_12DAY

Figure 5.15: Distribution of Eigenbasis Deviations during Normal Conditions CDSEVENT0102023_12DAY

Examining the results reveals that the algorithm’s performance for the two cases of HP Feed Pump
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A/B is generally comparable to that of the previous two subsystems. Although the accuracy exceeds
95% when the confidence probability is above 98%, the F1 scores fluctuate around 0.5, indicating a
suboptimal ability to differentiate between healthy and faulty conditions.

Confidence Prob. Accuracy Precision Recall F1 Running Time

0.9 0.952 0.5055 0.5319 0.5029 52.4134s

0.91 0.9577 0.5046 0.5227 0.5026 52.1794s

0.92 0.9631 0.5051 0.5213 0.5044 52.064s

0.93 0.968 0.5067 0.5238 0.5077 51.9475s

0.94 0.9726 0.5062 0.518 0.5075 51.8754s

0.95 0.9773 0.5072 0.5163 0.5091 51.789s

0.96 0.9805 0.5077 0.5139 0.5095 59.1238s

0.97 0.9838 0.5117 0.5156 0.5133 52.4985s

0.98 0.9868 0.5101 0.509 0.5095 52.2126s

0.99 0.9897 0.5137 0.5064 0.5084 53.7749s

0.9973 0.9918 0.544 0.5075 0.5118 53.6125s

Table 5.11: Performance of PCA-based Prognosis for CDSEVENT0072022_12DAY

Confidence Prob. Accuracy Precision Recall F1 Running Time

0.9 0.9034 0.5065 0.5557 0.4941 47.9865s

0.91 0.914 0.5072 0.5552 0.4981 47.7104s

0.92 0.9252 0.5074 0.5492 0.5013 47.8197s

0.93 0.9364 0.5067 0.5372 0.5028 48.6632s

0.94 0.9467 0.5074 0.5337 0.5061 48.8119s

0.95 0.9567 0.5101 0.5358 0.5119 48.223s

0.96 0.9634 0.5126 0.5362 0.5162 49.92s

0.97 0.9688 0.5141 0.5331 0.5184 47.1706s

0.98 0.9745 0.5141 0.5243 0.5174 48.1269s

0.99 0.9811 0.5157 0.5159 0.5158 47.3453s

0.9973 0.9864 0.516 0.5068 0.509 47.218s

Table 5.12: Performance of PCA-based Prognosis for CDSEVENT0102023_12DAY

Figure 5.16 and Figure 5.17 show the best results according to F1 scores. However, these figures also
highlight numerous premature notifications and the algorithm’s failure to detect the actual onset of the
trips in both cases. Therefore, in addition to the impact of irrelevant trips, the strategy that uses cosine
similarity of eigenbase differences for correlation deviation identification struggles to accurately capture
variations in feature correlations.
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Figure 5.16: CDSEVENT0072022_12DAY: Best Result w.r.t. F1 Score

Figure 5.17: CDSEVENT0102023_12DAY: Best Result w.r.t. F1 Score

5.3.2. Results: VARIMA + One-class SVM
In both cases, we apply PCA to reduce the dimensionality of the original features to 7 new features for
both two devices, capturing 95% of the variance. We then use the first 1/120 of each healthy sequence
to train the VARIMA models and the following 1/20 of each healthy sequence to train the One-class
SVM models. The performance indicators are shown in Table 5.13 and Table 5.14. And the detection
results are shown in Figure 5.18 and Figure 5.19.
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Figure 5.18: VARIMA + One-class SVM: Detection results of CDSEVENT0072022_12DAY

Figure 5.19: VARIMA + One-class SVM: Detection results of CDSEVENT0102023_12DAY

Accuracy Precision Recall F1
0.9832 0.6366 0.85974 0.696
Model Training/s Abnormality Detection/s

907.3419 2655.9532
Detection Steps Dectection per Time Step

1023309 0.002595456

Table 5.13: Performance of VARIMA + One_class SVM for CDSEVENT0072022_12DAY

Accuracy Precision Recall F1
0.9867 0.502 0.5005 0.4998
Model Training/s Abnormality Detection/s

708.9208 2379.4813
Detection Steps Dectection per Time Step

1028243 0.002314124

Table 5.14: Performance of VARIMA + One_class SVM for CDSEVENT0102023_12DAY

In the second case, the accuracy is above 90%, but the F1 score remains below 0.5. Conversely, the
first case has an F1 score of approximately 70%, indicating better overall performance.

To explain the performance differences, we examined the distribution of extraneous, unrelated shut-
downs in each case. In the first case, unrelated shutdowns accounted for around 7 hours of data
(approximately 2% of the dataset), whereas in the second case, these shutdowns extended to about 1
day (around 1/6 of the dataset). This increase in noise not only led to fewer unexpected notifications but
also influenced the model parameters. The VARIMA + One-class SVM approach is more sensitive to
abnormal data shifts compared to PCA-based Prognosis. This sensitivity largely explains the differing
performance of our algorithms in the two cases.

The heightened sensitivity to unrelated shutdowns in the VARIMA + One-class SVM approach under-
scores the importance of noise reduction for accurate anomaly detection. Minimizing the impact of
irrelevant shutdowns is crucial for enhancing model robustness and ensuring reliable fault detection.

In general, while the performance of VARIMA+One-class SVM is better than that of PCA-based Progno-
sis, both methods are easily affected by irrelevant shutdowns. Additionally, for PCA-based Prognosis,
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some results indicate that using the deviation of eigenbasis based on Euclidean distance as the indica-
tor may not clearly reflect abnormal changes when the real vibration-related trips occur.



6
Short-term Performance Results

As discussed in Chapter 5, those unwanted shutdowns ahead of the actual trips have the potential to
introduce unnecessary additional notifications, which can significantly compromise the precision of our
algorithms. Furthermore, the shift in operational patterns preceding and following these shutdowns can
also disrupt the outcomes. To mitigate the impact of these distracting elements, our datasets must be
partitioned based on failure time boundaries and scrutinized autonomously for segments that exclude
scheduled shutdowns. This approach effectively emulates the actions of operators who consciously
disregard the shutdowns not related to vibration and reinitialize the algorithms subsequent to each trip.
By doing so, our code parameters can adapt to the evolving state of the system, thereby enhancing
the reliability of the monitoring results. This chapter introduces the results of those datasets including
scheduled shutdowns using such strategy.

Besides, there are other factors can also significantly influence the results, such as the twist in original
data characteristics caused by feature engineering and the false warnings caused by the issue that
the additionally selected health data is not representative of the test set’s health status criteria. Thus,
further modifications of algorithms are made, which are listed below:

1. Removed the irrelevant shutdowns;

2. (PCA-based prognosis) Used the first time interval of healthy periods as the baseline of eigenbasis
deviation;

3. (PCA-based prognosis) Removed cosine similarity of eigenbasis and replaced it by the Euclidean
distance of similarity matrix/correlation matrix (Refering to the work of Elmore & Richman [22]);

4. Selected the first 1/40 of the ‘healthy’ as the training sets to give thresholds of confidence intervals.

5. (PCA-based prognosis) Only considered upper limits, since low values of deviations mean the status
of device is close to the original healthy baseline even though exceling the lower thresholds.

6. (VARIMA/LSTM + One-class SVM) removed PCA from the procedure of feature engineering, since
there are only 6-8 vibration-related features for each device.

We select the same but shorter-term cases for each device, and check the changes in performance
with this new approach. Besides, the decreases in numbers of time steps make it possible to deploy
LSTM as one of the regressors to extract the healthy characteristics of data, since it usually take long
time to train recurrent neural network models with large-scale data, making it unfeasible to be deployed
in real industrial environments.

6.1. Results: PCA-based Prognosis
After adjustments, the PCA-based Prognosis method begins by gathering time series data from the
system’s healthy state and conducting feature engineering, which includes removing constant features
and standardizing the data. PCA is then employed to extract the correlation matrix for each time interval
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in the datasets (60 time steps per interval in this study). These correlation matrices are utilized for
system monitoring, with deviations from the initial time interval in the healthy state signaling potential
anomalies. Warnings are issued when these deviations surpass predefined thresholds, which are
determined based on various confidence probabilities and normal deviations observed in the system’s
healthy states.

Demonstrated in Table 6.1 and Table 6.2 are the performance of PCA-based Prognosis for case CD-
MEVENT0012022_12DAY and case CDMEVENT0012022 when confidence probability is 99% (Confi-
dence probability corresponding to the highest F1 score in long-term performance). It is clear that the
accuracy of the new case decreases while the performance of distinguishing (indicated as F1 score)
increases from 0.5 to over 0.6.

Confidence Prob. Accuracy Precision Recall F1 Running Time
0.99 0.9515 0.5045 0.507 0.5048 116.4899s
Table 6.1: Performance of PCA-based Prognosis for CDMEVENT0012022_12DAY

Confidence Prob. Accuracy Precision Recall F1 Running Time
0.99 0.9193 0.7739 0.5829 0.6158 10.4746s

Table 6.2: Performance of PCA-based Prognosis for CDMEVENT0012022
Then we check the results of detection for the new case shown in Figure 6.1, and it is obvious that the
unexpected notifications are less dense than that of long-term performance. The reduction of affects
by irrelevant shutdowns is the main reason of such changes.

Figure 6.1: CDMEVENT0012022: Results when Confidence Prob. = 99%
Furthermore, we check the performance of the new case for all confidence probabilities (table 6.3), and
now it can be told that the comprehensive performance of PCA-based Prognosis generally increases
compared with that of the 12-day case. It indirectly proves the large extent of influence of unwanted
shutdowns within the long-term datasets.

Confidence Prob. Accuracy Precision Recall F1 Running Time
0.9 0.894 0.6663 0.669 0.6677 10.3817s
0.91 0.8958 0.6674 0.6606 0.6639 10.7895s
0.92 0.9007 0.6792 0.6606 0.6691 10.4936s
0.93 0.9056 0.692 0.6565 0.6717 10.8699s
0.94 0.9080 0.6989 0.6537 0.6723 10.3705s
0.95 0.9113 0.7099 0.6447 0.6693 10.4926s
0.96 0.9136 0.7196 0.6406 0.6686 10.3302s
0.97 0.9147 0.7239 0.6223 0.6536 10.1927s
0.98 0.9175 0.7444 0.6062 0.6408 10.2875s
0.99 0.9193 0.7739 0.5829 0.6158 10.4746s
0.9973 0.9188 0.7974 0.5583 0.5821 10.3982s
Table 6.3: Short-term Performance of PCA-based Prognosis for CDMEVENT0012022

Similar results are observed in case CDMEVENT0062023, as shown by the performance indicators
in Table 6.4. Similar to the previous case, the F1 scores increase to around 0.6, while the accuracies
generally decrease slightly. The reason of such increases in performance generally lies in the evident
abnormal changes when and before the time interval where actual trip happens, which matches our
principle.
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Confidence Prob. Accuracy Precision Recall F1 Running Time
0.9 0.9325 0.5715 0.7099 0.5995 19.909s
0.91 0.9363 0.5748 0.7063 0.6036 19.9509s
0.92 0.9383 0.576 0.7017 0.6047 19.6592s
0.93 0.9408 0.5756 0.6891 0.6032 19.8984s
0.94 0.9435 0.5748 0.6738 0.6007 19.9055s
0.95 0.9459 0.5744 0.6612 0.5986 20.0527s
0.96 0.9485 0.5741 0.6486 0.5965 19.9947s
0.97 0.9518 0.5744 0.6336 0.594 22.0865s
0.98 0.9552 0.5738 0.6159 0.5893 22.052s
0.99 0.9619 0.5833 0.5999 0.5907 24.616s
0.9973 0.968 0.6048 0.5919 0.5979 21.9329s
Table 6.4: Short-term Performance of PCA-based Prognosis for CDMEVENT0062023

A more detailed inspection of the detection results shown in Figure 6.2 reveals that dense false no-
tifications are triggered not only when/after but also several minutes before the actual trip. It means
that the abnormal shifts within the correlations of features becomes clear right before the actual trip,
which are captured by the algorithm. Although in the two cases mentioned above, the indicators

Figure 6.2: CDMEVENT0062023: Results when Confidence Prob. = 99%
showing changes in the relationships between system components exhibited clear abnormal fluctua-
tions at or before the actual moment of system trip, such abnormal fluctuations were still not obvious
in most other cases. Demonstrated below in Figure 6.3, 6.4, 6.5 and 6.6 are the detection results
for case CDIEVENT0012021, CDSEVENT0052022, CDSEVENT0072022 and CDSEVENT0102023
respectively.

Figure 6.3: CDIEVENT0012021: Results when Confidence Prob. = 99%
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Figure 6.4: CDSEVENT0052022: Results when Confidence Prob. = 99%

Figure 6.5: CDSEVENT0072022: Results when Confidence Prob. = 99%

Figure 6.6: CDSEVENT0102023: Results when Confidence Prob. = 99%
As seen from these detection results, abnormal changes in feature correlations are mixed with normal
fluctuations. Besides, according to the F1 scores, the performance of our algorithms are still not good
enough to distinguish the healthy and faulty conditions even for the first two cases mentioned in this
part. Such issues likely arises from the choice of indicators. Merging the correlation changes of all
features into a single indicator, such as Euclidean distance, causes sub-indicators with large normal
correlation changes to overshadow those with less significant changes. Consequently, even when the
system enters an abnormal state, these abnormal correlation changes are not apparent, negatively
impacting the algorithm’s judgment. Thus, it would be more effective to process and analyze each
sub-indicator representing the correlations separately.

6.2. Results: VARIMA + One-class SVM
The modified VARIMA + One-Class SVM approach starts with applying PCA to reduce the dataset’s
dimensionality, thereby enhancing computational efficiency. Next, the VARIMA model is utilized to
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capture the dynamics of the system’s multivariate time series data, producing predictions for normal
operating conditions. The residuals, which are the differences between the predicted and actual values,
indicate any deviations from expected behavior. These residuals are then used to extract features for
training a One-Class SVM model based on normal operating data. During deployment, new residual
features are input into the trained One-Class SVM, which detects deviations from the normal range and
effectively identifies and signals anomalies in the system.

Since the length of datasets is much slower that of the previous ones, here we select the first 1/40 of
the healthy sequence of data to train VARIMA models and the following 1/20 of the rest of the healthy
sequence to train One-class SVM models. And the VARIMA- and LSTM-related results of the following
cases all share the same ratio of datasets division.

All results and performance indicators are listed in Appendix G. Although the accuracies exceed 90%
for all six cases and the F1 scores for four out of the six cases are around 0.8 or even above 0.9, the
F1 scores for the remaining two cases are around 0.6 or even nan (indicating no distinguishing ability).

There are two possible reasons for these issues:

1) For the most unique case among the six, case CDSEVENT0102023 (where the F1 score indicates
that the code lost its ability to distinguish), it is evident that the values of all new indicators oscillate
significantly. Since the One-class SVM algorithm cannot capture numerical correlations between dif-
ferent time points, these large fluctuations cause the threshold range for normal values in the model
to become very large. Additionally, in this case, after dimensionality reduction by the PCA algorithm,
the values of the new features returned to extremely small fluctuations after the actual failure occurred,
causing the abnormal trend growth originally present in the raw data to disappear. This is one of the
main reasons the code loses its distinguishing ability in this case.

2) By transforming the original features into new features via PCA, the original and independent char-
acteristics of each feature are mixed and twisted, which confuses the algorithm.

6.3. Results without PCA: VARIMA + One-class SVM
The method of VARIMA + One-class SVM in this section is similar to that mentioned in section 6.2, but
PCA is not applied to reduce dimensionality of datasets.

As discussed in the previous section, although the numerical performance indicators suggest better
detection results for some cases compared to long-term performance results, there are still numerous
isolated faulty notifications before the actual trip. Therefore, it is crucial to reduce the number of these
unexpected notifications.

While PCA can reduce the dimensionality of datasets and increase computing speed, it distorts the orig-
inal dataset’s information. Additionally, the principal components may twist the deterministic charac-
teristics of different original features. This research currently only considers vibration-related features,
consisting of 8 tags, making it feasible to directly use the original data to train and test models.

All results and performance indicators are listed in Appendix H. It is evident that the code has signif-
icantly improved in all cases. Among the 6 cases, the F1 scores of the first 5 cases have increased
to more than 0.96. For the 6th case (Case CDSEVENT0102023), which previously caused the code
to completely lose its distinguishing ability, the F1 score, although still only 0.5111 due to large fluctua-
tions in the original feature value, represents a significant improvement compared to nan. The detection
results (Figure H.6) show that even the naked eye can distinguish normal and abnormal notifications
based on the density of notifications.

However, it is undeniable that the large fluctuations in some feature values during the system’s healthy
state negatively impact the code’s ability to distinguish. This thesis suggests two possible solutions to
this problem:

1) Use a more complex algorithm model than the One-class SVM algorithm, which can only judge the
value of a single time point. A more complex model could not only evaluate based on a single time
point’s deviation but also make corrections by linking the value relationships between previous and
subsequent time points;
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2) Normalize or standardize the data with large fluctuations to convert it into data with low fluctuations.

6.4. Results: LSTM + One-class SVM
The workflow of the modified LSTM + One-class SVM is mostly the same as that of VARIMA + One-
class SVM mentioned in section 6.2. The only difference is that the regressor used in this section is
changed from VARIMA to LSTM.

Appendix I shows the detection results and the indicators of performance for LSTM + One-class SVM
with PCA. Since the new feature values are the same as those of VARIMA + One-class SVM with PCA,
they are not shown in the appendix. Although the performance are generally better than that of VARIMA
+ One-class SVM with PCA, it takes much longer time to train the model. The main reason why LSTM
takes longer to train the model than VARIMA is its complex model structure, computationally intensive
training process, more data preprocessing steps, and dependence on hardware resources.

Besides, as shown in the detection results of case CDSEVENT0102023 (Figure I.6), the influence of
data with large fluctuation in healthy conditions is still significant for the algorithm of LSTM + One-class
SVM due to the characteristics of One-class SVM as mentioned in section 6.2.

6.5. Results without PCA: LSTM + One-class SVM
The LSTM + One-class SVM method described in this section is similar to the approach outlined in
section 6.4, with the key difference being that PCA is not used to reduce the dimensionality of the
datasets.

As shown in appendix J, both the accuracy and F1 scores show obvious increase compared with those
of VARIMA +One-class SVMwithout PCA. And the detection result shown in the appendix indicates that
the algorithm perform well in automatically filtering out the unrelated notifications and the influences
caused by features with large fluctuations in values over time for the majority of all 6 cases. Such
increase in performance mainly relies on the excellent ability to remember and extract (non)linear long-
term characteristics of training data, which provides a more firm foundation of reference compared with
that from VARIMA.

Generally speaking, although the results of LSTM + One-class SVM with/without PCA are clearly better
than those of VARIMA + One-class SVM with/without PCA, the cost of time of the former one is much
higher than that of the later one. And the results of LSTM + One-class SVM are obtained under the cir-
cumstance that the structures of LSTM models are kind of simple in this research, such as the number
of hidden layers of LSTM being just 10. If we increase the complexity of the LSTM structures, more
nonlinear characteristics can be extracted, further improving the performance of detection. However,
the cost of increasing the complexity of the LSTM model is that the training time of the model increases
exponentially. However, too long training time is not conducive to the application of the model in actual
engineering environments. Therefore, in order to take advantage of LSTM in mining nonlinear charac-
teristics of data, we need to further compress the time or improve the performance of the computer.

In general, the detection performance of LSTM + One-class SVM surpasses that of VARIMA + One-
class SVM and PCA-based Prognosis. Since PCA distorts original statistical features and only vibration-
related features are considered, PCA is unnecessary for LSTM- and VARIMA-based vibration monitor-
ing approaches.
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Evaluation and Improvement

Suggestions

This chapter summarizes the analysis of the results mentioned in chapter 5 and chapter 6 and provide
several suggestions for further improvements. Figure K.2 and Figure K.1 in Appendix K visualize the
flowchart of how the proposed approaches are implemented, and/or how the approach can be imple-
mented when it is sufficiently improved. Detailed introduction on the embedded content within these
two figures is presented in the following sections.

7.1. Evaluation
7.1.1. General Performance Comparison
According to the numerical indicators, the detection performance of LSTM + One-class SVM is much
better than that of VARIMA + One-class SVM and PCA-based Prognosis. Since only vibration-related
features are considered in this research and PCA transformation twists the original statistical character-
istics significantly, Principal Component Analysis is not necessary for both LSTM- and VARIMA-related
approaches for vibration monitoring.

7.1.2. Computational Time
Although LSTM can provide best results by capturing more complex nonlinear relationships in data and
provide most powerful detection capabilities among all three approaches, its computational time cost
is considerable. In contrast, the VARIMA model has much lower computational complexity and faster
training speed, and is suitable for detection tasks of (semi-)linear time series data.

7.1.3. Robustness in Dealing with Large Fluctuation in Values
As for robustness in dealing with features whose values oscillate significantly, LSTM + One-class SVM
excels VARIMA + One-class SVM. PCA-based Prognosis cleverly avoids such issues by data normal-
ization before calculating the correlations among features.

7.1.4. Indicator Selection
PCA-based Prognosis has great potential of improvement since it goes further into the inter-connections
among features, which are more direct indicators to reveal the deep logic of different operational con-
ditions compared with superficial analysis on feature values. However, the indicator of PCA-based
Prognosis chosen in this research can mix the abnormal shifts of correlations with the normal ones,
confusing the algorithm.

7.1.5. Capability to Identify Scheduled/Unrelated Shutdowns Automatically
It’s still an unsolved question how to tell the scheduled/unrelated shutdowns from actual vibration-
related shutdowns automatically. Thus, so far we can still insist on the strategy to restart algorithms
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after every shutdowns.

7.2. Improvement Suggestions
7.2.1. Functional Expansion from Detection to Prediction
During forehand investigation, we find that vibration problems can happen with different reasons, some
of them not obviously shown. Thus, unless we have decisive indicators for prediction, the only methods
we can now choose is to tune the parameters of detective models and let the models find out the hidden
or ambiguous abnormalities ahead of actual trips, and this how prediction is fulfilled with detective
models. So if our algorithms cannot perform well for detection, then it’s not possible to generate stable
and clear predictive results.

Now we have found the LSTM- and VARIMA-related methods can already fulfill good detection perfor-
mance, and these two sets of algorithms can be regarded as the basis of predictive models. However,
auxiliary codes should also be developed to decrease the number of false notifications ahead of the
actual trips, especially for VARIMA + One-class SVM with/without PCA whose distinguishing ability is
worse than LSTM + One-class SVM with/without PCA.

As for PCA-based Prognosis, since its detection performance is still not good enough, further improve-
ment on detection is still needed, such as separate analysis on the correlation values. However, just
as mentioned in the previous section, this approach focuses on much deeper statistical characteris-
tics within data than the superficial analysis on the changes in data values only. Thus it might reveal
more surprising results than the VARIMA- and LSTM-related algorithms in this research, since stable
abnormal shifts ahead of actual trips are already shown in one or two cases.

To enable robust prediction, several additional elements are also required beyond enhancing detection
performance.

• Firstly, comprehensive and high-quality data collection is essential, as diverse and representative
datasets ensure the models can generalize well to various scenarios.

• Secondly, a refined methodology incorporating advanced feature engineering techniques can
help capture more intricate patterns in the data.

• Thirdly, integration of domain knowledge can improve model interpretability and accuracy, guid-
ing the selection of relevant features and the design of more effective algorithms.

• Lastly, continuous model validation and retraining with new data are necessary to adapt to chang-
ing conditions and maintain predictive accuracy over time.

7.2.2. Interpretation of False Notifications
After the rough detection results are obtained and filtering work is conducted, further interpretation for
all the remaining false notifications is needed to determine the cause of issues. Themost direct strategy
is to send those notifications to onboard operators and let them conduct in-situ investigation to find out
the cause of problems, which is labour-intensive and inefficient.

In order to transform the procedure of manual determination of problem sources into an automatic
process, a set of cause/effect matrix and/or neural network can be developed to simulate the human
brain’s process of analyzing and judging notifications via computers. However, the work to simulate
judgment progress of brain requires huge workload with large amounts of empirical data, including
numerical values and records of each fault in text form. Long-term work in the future is needed to fulfill
such functions.



8
Conclusion

8.1. Reflection on Research Questions
This section discusses how and to which extend this thesis answers the four research questions men-
tioned in Chapter 1.

• Main Question: How to predict or detect the abnormal events of vibration from data of water
injection systems of FPSOs using Principal Component Analysis?

The thesis demonstrates that while PCA-based approaches have potential, they currently under-
perform compared to LSTM + One-class SVM and VARIMA + One-class SVM in detection tasks.

• Sub-Question 1: How to effectively reduce dimensionality of the datasets of the target problem
using Principal Component Analysis?

This research finds that while PCA effectively reduces dimensionality, it negatively impacts the
detection performance of LSTM- and VARIMA-related algorithms. This suggests a trade-off be-
tween dimensionality reduction and the preservation of critical statistical characteristics necessary
for accurate detection.

• Sub-Question 2: How to predict or detect the abnormal events using the principal components
of the datasets?

This research shows that using principal components for prediction and detection is challenging
and often less effective than other methods. The PCA-based Prognosis needs further refinement
to improve its detection performance and realize its predictive potential.

• Sub-Question 3: What are the criteria for determining the optimal prediction/detection method?

The optimal method is determined by its ability to accurately detect abnormalities, robustness
to data fluctuations, and minimal false notifications. LSTM + One-class SVM meets these cri-
teria best, followed by VARIMA + One-class SVM, with PCA-based Prognosis requiring further
enhancement.

8.2. Summary
This thesis presents three sets of algorithms (PCA-based Prognosis, LSTM + One-class SVM and
VARIMA + One-class SVM), analyzes their detective performance for vibration monitoring and dis-
cusses their potential for prediction.

As for the detective function, LSTM + One-class SVM excels both VARIMA + One-class SVM and PCA-
based Prognosis in general performance. Meanwhile, this algorithm also shows strong robustness in
tackling with disturbances caused by data with large fluctuation amplitudes. Besides, it is proven that
dimensionality reduction via Principal Component Analysis exerts negative effects on the distinguishing
ability of both LSTM- and VARIMA-related algorithms mentioned in this research.
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As for predictive function, since no decisive indicators are found, predictive models can merely be
developed in the basis of good detective models. Both LSTM- and VARIMA-related algorithms (without
PCA)match the requirement. Although the performance of PCA-based Prognosis is still not satisfactory,
its ability to directly mine the deep logic of equipment operating status also indicates that it may be able
to obtain richer information than the other two codes, so its potential to transform into a predictive model
cannot be ignored.

In conclusion, while LSTM + One-class SVM and VARIMA + One-class SVM are effective for detection
and form a solid basis for predictive models, PCA-based methods, despite their current limitations, hold
potential for deeper analysis and future predictive applications. Further research and improvement are
necessary to fully leverage the capabilities of PCA in this context.
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A
Framework of Water Injection

Systems

Figure A.1: Framework of Water Injection System



B
Water Injection System Tags of FPSO

CDI/CDM/CDS

FPSO Attribute Name PI Tag Name

CDS MLO Reservoir Level CDS:FPSO:T26-LI-1873
CDS MLO Reservoir Level CDS:FPSO:T26-LI-1973
CDS MLO Filter Differential Pressure CDS:FPSO:T26-PDI-1874
CDS MLO Filter Differential Pressure CDS:FPSO:T26-PDI-1974
CDS MLO Supply Pressure CDS:FPSO:T26-PI-1871
CDS Main MLO Pump Discharge Pressure CDS:FPSO:T26-PI-1872
CDS MLO Supply Pressure CDS:FPSO:T26-PI-1971
CDS Main MLO Pump Discharge Pressure CDS:FPSO:T26-PI-1972
CDS Pump Outboard Thrust Bearing Temperature CDS:FPSO:T26-TI-1810
CDS Pump Inboard Thrust Bearing Temperature CDS:FPSO:T26-TI-1811
CDS Pump NDE Radial Bearing Temperature CDS:FPSO:T26-TI-1812
CDS Pump DE Radial Bearing Temperature CDS:FPSO:T26-TI-1815
CDS Motor DE Radial Bearing Temperature CDS:FPSO:T26-TI-1820
CDS Winding Phase U2 Temperature CDS:FPSO:T26-TI-1821
CDS Winding Phase V2 Temperature CDS:FPSO:T26-TI-1822
CDS Winding Phase W2 Temperature CDS:FPSO:T26-TI-1823
CDS Winding Phase U1 Temperature CDS:FPSO:T26-TI-1824
CDS Winding Phase V1 Temperature CDS:FPSO:T26-TI-1825
CDS Winding Phase W1 Temperature CDS:FPSO:T26-TI-1826
CDS Motor NDE Radial Bearing Temperature CDS:FPSO:T26-TI-1827
CDS Cold Air Temperature CDS:FPSO:T26-TI-1828
CDS Cold Air Temperature 2 CDS:FPSO:T26-TI-1829
CDS Hot Air Temperature CDS:FPSO:T26-TI-1830
CDS MLO Supply Temperature CDS:FPSO:T26-TI-1875
CDS MLO Reservoir Temperature CDS:FPSO:T26-TI-1876
CDS Pump Outboard Thrust Bearing Temperature CDS:FPSO:T26-TI-1910
CDS Pump Inboard Thrust Bearing Temperature CDS:FPSO:T26-TI-1911
CDS Pump NDE Radial Bearing Temperature CDS:FPSO:T26-TI-1912
CDS Pump DE Radial Bearing Temperature CDS:FPSO:T26-TI-1915
CDS Motor DE Radial Bearing Temperature CDS:FPSO:T26-TI-1920
CDS Winding Phase U2 Temperature CDS:FPSO:T26-TI-1921
CDS Winding Phase V2 Temperature CDS:FPSO:T26-TI-1922
CDS Winding Phase W2 Temperature CDS:FPSO:T26-TI-1923
CDS Winding Phase U1 Temperature CDS:FPSO:T26-TI-1924
CDS Winding Phase V1 Temperature CDS:FPSO:T26-TI-1925
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FPSO Attribute Name PI Tag Name

CDS Winding Phase W1 Temperature CDS:FPSO:T26-TI-1926
CDS Motor NDE Radial Bearing Temperature CDS:FPSO:T26-TI-1927
CDS Cold Air Temperature CDS:FPSO:T26-TI-1928
CDS Cold Air Temperature 2 CDS:FPSO:T26-TI-1929
CDS Hot Air Temperature CDS:FPSO:T26-TI-1930
CDS MLO Supply Temperature CDS:FPSO:T26-TI-1975
CDS MLO Reservoir Temperature CDS:FPSO:T26-TI-1976
CDS Pump NDE Radial Bearing vibration x CDS:FPSO:T26-VXI-1811
CDS Pump DE Radial Bearing vibration x CDS:FPSO:T26-VXI-1815
CDS Motor DE Radial Bearing Vibration x CDS:FPSO:T26-VXI-1820
CDS Motor NDE Radial Bearing Vibration x CDS:FPSO:T26-VXI-1827
CDS Pump NDE Radial Bearing vibration x CDS:FPSO:T26-VXI-1911
CDS Pump DE Radial Bearing vibration x CDS:FPSO:T26-VXI-1915
CDS Motor DE Radial Bearing Vibration x CDS:FPSO:T26-VXI-1920
CDS Motor NDE Radial Bearing Vibration x CDS:FPSO:T26-VXI-1927
CDS Pump NDE Radial Bearing vibration y CDS:FPSO:T26-VYI-1812
CDS Pump DE Radial Bearing vibration y CDS:FPSO:T26-VYI-1816
CDS Motor DE Radial Bearing Vibration y CDS:FPSO:T26-VYI-1821
CDS Motor NDE Radial Bearing Vibration y CDS:FPSO:T26-VYI-1828
CDS Pump NDE Radial Bearing vibration y CDS:FPSO:T26-VYI-1912
CDS Pump DE Radial Bearing vibration y CDS:FPSO:T26-VYI-1916
CDS Motor DE Radial Bearing Vibration y CDS:FPSO:T26-VYI-1921
CDS Motor NDE Radial Bearing Vibration y CDS:FPSO:T26-VYI-1928
CDS Pump Shaft Axial Displacement CDS:FPSO:T26-ZE-1811
CDS Pump Shaft Axial Displacement 2 CDS:FPSO:T26-ZE-1812
CDS Pump Shaft Axial Displacement CDS:FPSO:T26-ZE-1911
CDS Pump Shaft Axial Displacement 2 CDS:FPSO:T26-ZE-1912
CDM MLO Reservoir Level CDM:FPSO:T26-LSI-1873
CDM MLO Reservoir Level CDM:FPSO:T26-LSI-1973
CDM MLO Filter Differential Pressure CDM:FPSO:T26-PDI-1874
CDM MLO Filter Differential Pressure CDM:FPSO:T26-PDI-1974
CDM Main MLO Pump Discharge Pressure CDM:FPSO:T26-PI-1872
CDM Main MLO Pump Discharge Pressure CDM:FPSO:T26-PI-1972
CDM Pump DE Radial Bearing Temperature CDM:FPSO:T26-TI-1815
CDM Motor DE Radial Bearing Temperature CDM:FPSO:T26-TI-1820
CDM Winding Phase U2 Temperature CDM:FPSO:T26-TI-1821
CDM Winding Phase V2 Temperature CDM:FPSO:T26-TI-1822
CDM Winding Phase W2 Temperature CDM:FPSO:T26-TI-1823
CDM Winding Phase U1 Temperature CDM:FPSO:T26-TI-1824
CDM Winding Phase V1 Temperature CDM:FPSO:T26-TI-1825
CDM Winding Phase W1 Temperature CDM:FPSO:T26-TI-1826
CDM Motor NDE Radial Bearing Temperature CDM:FPSO:T26-TI-1827
CDM Cold Air Temperature CDM:FPSO:T26-TI-1828
CDM Cold Air Temperature 2 CDM:FPSO:T26-TI-1829
CDM Hot Air Temperature CDM:FPSO:T26-TI-1830
CDM Motor DE Radial Bearing Temperature CDM:FPSO:T26-TI-1920
CDM Winding Phase U2 Temperature CDM:FPSO:T26-TI-1921
CDM Winding Phase V2 Temperature CDM:FPSO:T26-TI-1922
CDM Winding Phase W2 Temperature CDM:FPSO:T26-TI-1923
CDM Winding Phase U1 Temperature CDM:FPSO:T26-TI-1924
CDM Winding Phase V1 Temperature CDM:FPSO:T26-TI-1925
CDM Winding Phase W1 Temperature CDM:FPSO:T26-TI-1926
CDM Motor NDE Radial Bearing Temperature CDM:FPSO:T26-TI-1927
CDM Cold Air Temperature CDM:FPSO:T26-TI-1928



52

FPSO Attribute Name PI Tag Name

CDM Cold Air Temperature 2 CDM:FPSO:T26-TI-1929
CDM Hot Air Temperature CDM:FPSO:T26-TI-1930
CDM Pump DE Radial Bearing Temperature CDM:FPSO:T26-TI-1915
CDM Motor DE Radial Bearing Vibration x CDM:FPSO:T26-VXI-1820
CDM Motor DE Radial Bearing Vibration x CDM:FPSO:T26-VXI-1920
CDM Motor DE Radial Bearing Vibration y CDM:FPSO:T26-VYI-1821
CDM Motor DE Radial Bearing Vibration y CDM:FPSO:T26-VYI-1921
CDM Motor NDE Radial Bearing Vibration x CDM:FPSO:T26-VXI-1827
CDM Motor NDE Radial Bearing Vibration x CDM:FPSO:T26-VXI-1927
CDM Motor NDE Radial Bearing Vibration y CDM:FPSO:T26-VYI-1828
CDM Motor NDE Radial Bearing Vibration y CDM:FPSO:T26-VYI-1928
CDM Pump DE Radial Bearing vibration x CDM:FPSO:T26-VXI-1815
CDM Pump DE Radial Bearing vibration x CDM:FPSO:T26-VXI-1915
CDM MLO Reservoir Temperature CDM:FPSO:T26-TI-1876
CDM MLO Reservoir Temperature CDM:FPSO:T26-TI-1976
CDM MLO Supply Pressure CDM:FPSO:T26-PI-1871
CDM MLO Supply Pressure CDM:FPSO:T26-PI-1971
CDM MLO Supply Temperature CDM:FPSO:T26-TI-1875
CDM MLO Supply Temperature CDM:FPSO:T26-TI-1975
CDM Pump DE Radial Bearing vibration y CDM:FPSO:T26-VYI-1816
CDM Pump DE Radial Bearing vibration y CDM:FPSO:T26-VYI-1916
CDM Pump Inboard Thrust Bearing Temperature CDM:FPSO:T26-TI-1811
CDM Pump Inboard Thrust Bearing Temperature CDM:FPSO:T26-TI-1911
CDM Pump NDE Radial Bearing Temperature CDM:FPSO:T26-TI-1812
CDM Pump NDE Radial Bearing Temperature CDM:FPSO:T26-TI-1912
CDM Pump NDE Radial Bearing vibration x CDM:FPSO:T26-VXI-1811
CDM Pump NDE Radial Bearing vibration x CDM:FPSO:T26-VXI-1911
CDM Pump NDE Radial Bearing vibration y CDM:FPSO:T26-VYI-1812
CDM Pump NDE Radial Bearing vibration y CDM:FPSO:T26-VYI-1912
CDM Pump Outboard Thrust Bearing Temperature CDM:FPSO:T26-TI-1810
CDM Pump Outboard Thrust Bearing Temperature CDM:FPSO:T26-TI-1910
CDM Pump Shaft Axial Displacement CDM:FPSO:T26-ZI-1811
CDM Pump Shaft Axial Displacement 2 CDM:FPSO:T26-ZI-1812
CDM Pump Shaft Axial Displacement CDM:FPSO:T26-ZI-1911
CDM Pump Shaft Axial Displacement 2 CDM:FPSO:T26-ZI-1912
CDI MLO Reservoir Level CDI:FPSO:T26-LI-1873
CDI MLO Reservoir Level CDI:FPSO:T26-LI-1973
CDI Main MLO Pump Discharge Pressure CDI:FPSO:T26-PI-1872
CDI MLO Filter Differential Pressure CDI:FPSO:T26-PDI-1874
CDI MLO Filter Differential Pressure CDI:FPSO:T26-PDI-1974
CDI MLO Supply Pressure CDI:FPSO:T26-PI-1871
CDI MLO Supply Pressure CDI:FPSO:T26-PI-1971
CDI Main MLO Pump Discharge Pressure CDI:FPSO:T26-PI-1972
CDI Pump Outboard Thrust Bearing Temperature CDI:FPSO:T26-TI-1810
CDI Pump Inboard Thrust Bearing Temperature CDI:FPSO:T26-TI-1811
CDI Pump NDE Radial Bearing Temperature CDI:FPSO:T26-TI-1812
CDI Pump DE Radial Bearing Temperature CDI:FPSO:T26-TI-1815
CDI Motor DE Radial Bearing Temperature CDI:FPSO:T26-TI-1820
CDI Motor NDE Radial Bearing Temperature CDI:FPSO:T26-TI-1827
CDI Cold Air Temperature CDI:FPSO:T26-TI-1828
CDI Cold Air Temperature 2 CDI:FPSO:T26-TI-1829
CDI Hot Air Temperature CDI:FPSO:T26-TI-1830
CDI MLO Supply Temperature CDI:FPSO:T26-TI-1875
CDI MLO Reservoir Temperature CDI:FPSO:T26-TI-1876
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FPSO Attribute Name PI Tag Name

CDI Pump Outboard Thrust Bearing Temperature CDI:FPSO:T26-TI-1910
CDI Pump Inboard Thrust Bearing Temperature CDI:FPSO:T26-TI-1911
CDI Pump NDE Radial Bearing Temperature CDI:FPSO:T26-TI-1912
CDI Pump DE Radial Bearing Temperature CDI:FPSO:T26-TI-1915
CDI Motor DE Radial Bearing Temperature CDI:FPSO:T26-TI-1920
CDI MLO Supply Temperature CDI:FPSO:T26-TI-1975
CDI MLO Reservoir Temperature CDI:FPSO:T26-TI-1976
CDI Motor NDE Radial Bearing Temperature CDI:FPSO:T26-TI-1927
CDI Cold Air Temperature CDI:FPSO:T26-TI-1928
CDI Cold Air Temperature 2 CDI:FPSO:T26-TI-1929
CDI Hot Air Temperature CDI:FPSO:T26-TI-1930
CDI Pump NDE Radial Bearing vibration x CDI:FPSO:T26-VXI-1811
CDI Pump NDE Radial Bearing vibration y CDI:FPSO:T26-VYI-1812
CDI Pump DE Radial Bearing vibration x CDI:FPSO:T26-VXI-1815
CDI Motor DE Radial Bearing Vibration x CDI:FPSO:T26-VXI-1820
CDI Motor NDE Radial Bearing Vibration x CDI:FPSO:T26-VXI-1827
CDI Pump DE Radial Bearing vibration x CDI:FPSO:T26-VXI-1915
CDI Motor DE Radial Bearing Vibration x CDI:FPSO:T26-VXI-1920
CDI Motor NDE Radial Bearing Vibration x CDI:FPSO:T26-VXI-1927
CDI Pump DE Radial Bearing vibration y CDI:FPSO:T26-VYI-1816
CDI Motor DE Radial Bearing Vibration y CDI:FPSO:T26-VYI-1821
CDI Motor NDE Radial Bearing Vibration y CDI:FPSO:T26-VYI-1828
CDI Pump NDE Radial Bearing vibration x CDI:FPSO:T26-VXI-1911
CDI Pump NDE Radial Bearing vibration y CDI:FPSO:T26-VYI-1912
CDI Pump DE Radial Bearing vibration y CDI:FPSO:T26-VYI-1916
CDI Motor DE Radial Bearing Vibration y CDI:FPSO:T26-VYI-1921
CDI Motor NDE Radial Bearing Vibration y CDI:FPSO:T26-VYI-1928
CDI Pump Shaft Axial Displacement CDI:FPSO:T26-ZE-1811
CDI Pump Shaft Axial Displacement 2 CDI:FPSO:T26-ZE-1812
CDI Pump Shaft Axial Displacement CDI:FPSO:T26-ZE-1911
CDI Pump Shaft Axial Displacement 2 CDI:FPSO:T26-ZE-1912



C
Tags of Water Injection Pump A/B

CDS CDM CDI

CDS:FPSO:PM-T2611 CDM:FPSO:PM-T2611 CDI:FPSO:PM-T2611
CDS:FPSO:PM-T2621 CDM:FPSO:PM-T2621 CDI:FPSO:PM-T2621
CDS:FPSO:T26-FI-1101 CDM:FPSO:T26-FI-1101 CDI:FPSO:T26-FI-1101
CDS:FPSO:T26-FI-1201 CDM:FPSO:T26-FI-1201 CDI:FPSO:T26-FI-1201
CDS:FPSO:T26-FSI-1102 CDM:FPSO:T26-FSI-1102 CDI:FPSO:T26-FSI-1102
CDS:FPSO:T26-FSI-1202 CDM:FPSO:T26-FSI-1202 CDI:FPSO:T26-FSI-1202
CDS:FPSO:T26-KE-1910 CDM:FPSO:T26-KE-1910 CDI:FPSO:T26-KE-1910
CDS:FPSO:T26-PDI-1105 CDM:FPSO:T26-PDI-1105 CDI:FPSO:T26-PDI-1105
CDS:FPSO:T26-PDI-1205 CDM:FPSO:T26-PDI-1205 CDI:FPSO:T26-PDI-1205
CDS:FPSO:T26-PSI-1101 CDM:FPSO:T26-PSI-1101 CDI:FPSO:T26-PSI-1101
CDS:FPSO:T26-PSI-1102 CDM:FPSO:T26-PSI-1102 CDI:FPSO:T26-PSI-1102
CDS:FPSO:T26-PSI-1201 CDM:FPSO:T26-PSI-1201 CDI:FPSO:T26-PSI-1201
CDS:FPSO:T26-PSI-1202 CDM:FPSO:T26-PSI-1202 CDI:FPSO:T26-PSI-1202
CDS:FPSO:T26-TI-1810 CDM:FPSO:T26-TI-1810 CDI:FPSO:T26-TI-1810
CDS:FPSO:T26-TI-1811 CDM:FPSO:T26-TI-1811 CDI:FPSO:T26-TI-1811
CDS:FPSO:T26-TI-1812 CDM:FPSO:T26-TI-1812 CDI:FPSO:T26-TI-1812
CDS:FPSO:T26-TI-1815 CDM:FPSO:T26-TI-1815 CDI:FPSO:T26-TI-1815
CDS:FPSO:T26-TI-1820 CDM:FPSO:T26-TI-1820 CDI:FPSO:T26-TI-1820
CDS:FPSO:T26-TI-1827 CDM:FPSO:T26-TI-1827 CDI:FPSO:T26-TI-1827
CDS:FPSO:T26-TI-1828 CDM:FPSO:T26-TI-1828 CDI:FPSO:T26-TI-1828
CDS:FPSO:T26-TI-1829 CDM:FPSO:T26-TI-1829 CDI:FPSO:T26-TI-1829
CDS:FPSO:T26-TI-1830 CDM:FPSO:T26-TI-1830 CDI:FPSO:T26-TI-1830
CDS:FPSO:T26-TI-1910 CDM:FPSO:T26-TI-1910 CDI:FPSO:T26-TI-1910
CDS:FPSO:T26-TI-1911 CDM:FPSO:T26-TI-1911 CDI:FPSO:T26-TI-1911
CDS:FPSO:T26-TI-1912 CDM:FPSO:T26-TI-1912 CDI:FPSO:T26-TI-1912
CDS:FPSO:T26-TI-1915 CDM:FPSO:T26-TI-1915 CDI:FPSO:T26-TI-1915
CDS:FPSO:T26-TI-1920 CDM:FPSO:T26-TI-1920 CDI:FPSO:T26-TI-1920
CDS:FPSO:T26-TI-1927 CDM:FPSO:T26-TI-1927 CDI:FPSO:T26-TI-1927
CDS:FPSO:T26-TI-1928 CDM:FPSO:T26-TI-1928 CDI:FPSO:T26-TI-1928
CDS:FPSO:T26-TI-1929 CDM:FPSO:T26-TI-1929 CDI:FPSO:T26-TI-1929
CDS:FPSO:T26-TI-1930 CDM:FPSO:T26-TI-1930 CDI:FPSO:T26-TI-1930
CDS:FPSO:T26-VXI-1811 CDM:FPSO:T26-VXI-1811 CDI:FPSO:T26-VXI-1811
CDS:FPSO:T26-VXI-1815 CDM:FPSO:T26-VXI-1815 CDI:FPSO:T26-VXI-1815
CDS:FPSO:T26-VXI-1820 CDM:FPSO:T26-VXI-1820 CDI:FPSO:T26-VXI-1820
CDS:FPSO:T26-VXI-1827 CDM:FPSO:T26-VXI-1827 CDI:FPSO:T26-VXI-1827
CDS:FPSO:T26-VXI-1911 CDM:FPSO:T26-VXI-1911 CDI:FPSO:T26-VXI-1911
CDS:FPSO:T26-VXI-1915 CDM:FPSO:T26-VXI-1915 CDI:FPSO:T26-VXI-1915
CDS:FPSO:T26-VXI-1920 CDM:FPSO:T26-VXI-1920 CDI:FPSO:T26-VXI-1920
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CDS CDM CDI

CDS:FPSO:T26-VXI-1927 CDM:FPSO:T26-VXI-1927 CDI:FPSO:T26-VXI-1927
CDS:FPSO:T26-VYI-1812 CDM:FPSO:T26-VYI-1812 CDI:FPSO:T26-VYI-1812
CDS:FPSO:T26-VYI-1816 CDM:FPSO:T26-VYI-1816 CDI:FPSO:T26-VYI-1816
CDS:FPSO:T26-VYI-1821 CDM:FPSO:T26-VYI-1821 CDI:FPSO:T26-VYI-1821
CDS:FPSO:T26-VYI-1828 CDM:FPSO:T26-VYI-1828 CDI:FPSO:T26-VYI-1828
CDS:FPSO:T26-VYI-1912 CDM:FPSO:T26-VYI-1912 CDI:FPSO:T26-VYI-1912
CDS:FPSO:T26-VYI-1916 CDM:FPSO:T26-VYI-1916 CDI:FPSO:T26-VYI-1916
CDS:FPSO:T26-VYI-1921 CDM:FPSO:T26-VYI-1921 CDI:FPSO:T26-VYI-1921
CDS:FPSO:T26-VYI-1928 CDM:FPSO:T26-VYI-1928 CDI:FPSO:T26-VYI-1928
CDS:FPSO:T26-ZE-1811 CDM:FPSO:T26-ZE-1811 CDI:FPSO:T26-ZE-1811
CDS:FPSO:T26-ZE-1812 CDM:FPSO:T26-ZE-1812 CDI:FPSO:T26-ZE-1812
CDS:FPSO:T26-ZE-1911 CDM:FPSO:T26-ZE-1911 CDI:FPSO:T26-ZE-1911
CDS:FPSO:T26-ZE-1912 CDM:FPSO:T26-ZE-1912 CDI:FPSO:T26-ZE-1912
CDS:FPSO:T26-TI-1876 CDM:FPSO:T26-TI-1876 CDI:FPSO:T26-TI-1876
CDS:FPSO:T26-PDI-1874 CDM:FPSO:T26-PDI-1874 CDI:FPSO:T26-PDI-1874
CDS:FPSO:T26-PI-1871 CDM:FPSO:T26-PI-1871 CDI:FPSO:T26-PI-1871
CDS:FPSO:T26-TI-1875 CDM:FPSO:T26-TI-1875 CDI:FPSO:T26-TI-1875
CDS:FPSO:T26-PI-1872 CDM:FPSO:T26-PI-1872 CDI:FPSO:T26-PI-1872
CDS:FPSO:T26-LI-1873 CDM:FPSO:T26-LI-1873 CDI:FPSO:T26-LI-1873
CDS:FPSO:T26-TI-1976 CDM:FPSO:T26-TI-1976 CDI:FPSO:T26-TI-1976
CDS:FPSO:T26-PDI-1974 CDM:FPSO:T26-PDI-1974 CDI:FPSO:T26-PDI-1974
CDS:FPSO:T26-PI-1971 CDM:FPSO:T26-PI-1971 CDI:FPSO:T26-PI-1971
CDS:FPSO:T26-TI-1975 CDM:FPSO:T26-TI-1975 CDI:FPSO:T26-TI-1975
CDS:FPSO:T26-PI-1972 CDM:FPSO:T26-PI-1972 CDI:FPSO:T26-PI-1972
CDS:FPSO:T26-LI-1973 CDM:FPSO:T26-LI-1973 CDI:FPSO:T26-LI-1973



D
Remaining Tags of Water Injection

Pump A/B

CDS CDM CDI

CDS:FPSO:T26-VXI-1811 CDM:FPSO:T26-VXI-1811 CDI:FPSO:T26-VXI-1811
CDS:FPSO:T26-VXI-1815 CDM:FPSO:T26-VXI-1815 CDI:FPSO:T26-VXI-1815
CDS:FPSO:T26-VXI-1820 CDM:FPSO:T26-VXI-1820 CDI:FPSO:T26-VXI-1820
CDS:FPSO:T26-VXI-1827 CDM:FPSO:T26-VXI-1827 CDI:FPSO:T26-VXI-1827
CDS:FPSO:T26-VXI-1911 CDM:FPSO:T26-VXI-1911 CDI:FPSO:T26-VXI-1911
CDS:FPSO:T26-VXI-1915 CDM:FPSO:T26-VXI-1915 CDI:FPSO:T26-VXI-1915
CDS:FPSO:T26-VXI-1920 CDM:FPSO:T26-VXI-1920 CDI:FPSO:T26-VXI-1920
CDS:FPSO:T26-VXI-1927 CDM:FPSO:T26-VXI-1927 CDI:FPSO:T26-VXI-1927
CDS:FPSO:T26-VYI-1812 CDM:FPSO:T26-VYI-1812 CDI:FPSO:T26-VYI-1812
CDS:FPSO:T26-VYI-1816 CDM:FPSO:T26-VYI-1816 CDI:FPSO:T26-VYI-1816
CDS:FPSO:T26-VYI-1821 CDM:FPSO:T26-VYI-1821 CDI:FPSO:T26-VYI-1821
CDS:FPSO:T26-VYI-1828 CDM:FPSO:T26-VYI-1828 CDI:FPSO:T26-VYI-1828
CDS:FPSO:T26-VYI-1912 CDM:FPSO:T26-VYI-1912 CDI:FPSO:T26-VYI-1912
CDS:FPSO:T26-VYI-1916 CDM:FPSO:T26-VYI-1916 CDI:FPSO:T26-VYI-1916
CDS:FPSO:T26-VYI-1921 CDM:FPSO:T26-VYI-1921 CDI:FPSO:T26-VYI-1921
CDS:FPSO:T26-VYI-1928 CDM:FPSO:T26-VYI-1928 CDI:FPSO:T26-VYI-1928
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E
Tags of HP Feed Pump A/B

CDS CDM CDI

CDS:FPSO:PM-T2631A CDM:FPSO:PM-T2631A CDI:FPSO:PM-T2631A
CDS:FPSO:PM-T2631B CDM:FPSO:PM-T2631B CDI:FPSO:PM-T2631B
CDS:FPSO:T26-FIC-0681 CDM:FPSO:T26-FIC-0681 CDI:FPSO:T26-FIC-0681
CDS:FPSO:T26-PSI-0612 CDM:FPSO:T26-PSI-0612 CDI:FPSO:T26-PSI-0612
CDS:FPSO:T26-PSI-0621 CDM:FPSO:T26-PSI-0621 CDI:FPSO:T26-PSI-0621
CDS:FPSO:T26-PSI-0622 CDM:FPSO:T26-PSI-0622 CDI:FPSO:T26-PSI-0622
CDS:FPSO:T26-TI-0683 CDM:FPSO:T26-TI-0683 CDI:FPSO:T26-TI-0683
CDS:FPSO:T26-TSI-1627 CDM:FPSO:T26-TSI-1627 CDI:FPSO:T26-TSI-1627
CDS:FPSO:T26-TSI-1710 CDM:FPSO:T26-TSI-1710 CDI:FPSO:T26-TSI-1710
CDS:FPSO:T26-TSI-1711 CDM:FPSO:T26-TSI-1711 CDI:FPSO:T26-TSI-1711
CDS:FPSO:T26-TSI-1720 CDM:FPSO:T26-TSI-1720 CDI:FPSO:T26-TSI-1720
CDS:FPSO:T26-TSI-1727 CDM:FPSO:T26-TSI-1727 CDI:FPSO:T26-TSI-1727
CDS:FPSO:T26-VI-1610 CDM:FPSO:T26-VI-1610 CDI:FPSO:T26-VI-1610
CDS:FPSO:T26-VI-1710 CDM:FPSO:T26-VI-1710 CDI:FPSO:T26-VI-1710
CDS:FPSO:T26-VXI-1608 CDM:FPSO:T26-VXI-1608 CDI:FPSO:T26-VXI-1608
CDS:FPSO:T26-VXI-1615 CDM:FPSO:T26-VXI-1615 CDI:FPSO:T26-VXI-1615
CDS:FPSO:T26-VXI-1706 CDM:FPSO:T26-VXI-1706 CDI:FPSO:T26-VXI-1706
CDS:FPSO:T26-VXI-1708 CDM:FPSO:T26-VXI-1708 CDI:FPSO:T26-VXI-1708
CDS:FPSO:T26-VXI-1713 CDM:FPSO:T26-VXI-1713 CDI:FPSO:T26-VXI-1713
CDS:FPSO:T26-VYI-1607 CDM:FPSO:T26-VYI-1607 CDI:FPSO:T26-VYI-1607
CDS:FPSO:T26-VYI-1612 CDM:FPSO:T26-VYI-1612 CDI:FPSO:T26-VYI-1612
CDS:FPSO:T26-VYI-1707 CDM:FPSO:T26-VYI-1707 CDI:FPSO:T26-VYI-1707
CDS:FPSO:T26-VYI-1709 CDM:FPSO:T26-VYI-1709 CDI:FPSO:T26-VYI-1709
CDS:FPSO:T26-VYI-1712 CDM:FPSO:T26-VYI-1712 CDI:FPSO:T26-VYI-1712
CDS:FPSO:T26-VYI-1716 CDM:FPSO:T26-VYI-1716 CDI:FPSO:T26-VYI-1716
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Remaining Tags of HP Feed Pump A/B

CDS CDM CDI

CDS:FPSO:T26-VI-1610 CDM:FPSO:T26-VI-1610 CDI:FPSO:T26-VI-1610
CDS:FPSO:T26-VI-1710 CDM:FPSO:T26-VI-1710 CDI:FPSO:T26-VI-1710
CDS:FPSO:T26-VXI-1608 CDM:FPSO:T26-VXI-1608 CDI:FPSO:T26-VXI-1608
CDS:FPSO:T26-VXI-1615 CDM:FPSO:T26-VXI-1615 CDI:FPSO:T26-VXI-1615
CDS:FPSO:T26-VXI-1706 CDM:FPSO:T26-VXI-1706 CDI:FPSO:T26-VXI-1706
CDS:FPSO:T26-VXI-1708 CDM:FPSO:T26-VXI-1708 CDI:FPSO:T26-VXI-1708
CDS:FPSO:T26-VXI-1713 CDM:FPSO:T26-VXI-1713 CDI:FPSO:T26-VXI-1713
CDS:FPSO:T26-VYI-1607 CDM:FPSO:T26-VYI-1607 CDI:FPSO:T26-VYI-1607
CDS:FPSO:T26-VYI-1612 CDM:FPSO:T26-VYI-1612 CDI:FPSO:T26-VYI-1612
CDS:FPSO:T26-VYI-1707 CDM:FPSO:T26-VYI-1707 CDI:FPSO:T26-VYI-1707
CDS:FPSO:T26-VYI-1709 CDM:FPSO:T26-VYI-1709 CDI:FPSO:T26-VYI-1709
CDS:FPSO:T26-VYI-1712 CDM:FPSO:T26-VYI-1712 CDI:FPSO:T26-VYI-1712
CDS:FPSO:T26-VYI-1716 CDM:FPSO:T26-VYI-1716 CDI:FPSO:T26-VYI-1716
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G
Short-term Detection Results:

VARIMA + One-class SVM with PCA

Table G.1: Performance of VARIMA + One-class SVM with PCA for Different Datasets

Dataset Accuracy Precision Recall F1

CDIEVENT0012021 0.8810 0.5768 0.8335 0.6009
CDMEVENT0012022 0.9888 0.9878 0.9458 0.9656
CDMEVENT0062023 0.9085 0.7207 0.9505 0.7802
CDSEVENT0052022 0.9381 0.8331 0.9000 0.8561
CDSEVENT0072022 0.9910 0.9747 0.8665 0.9132
CDSEVENT0102023 0.9588 0.4794 0.4999 nan
Dataset Model Training/s Abnormality Detection/s

CDIEVENT0012021 504.9708 614.9422
CDMEVENT0012022 565.0197 113.0982
CDMEVENT0062023 707.3840 469.6973
CDSEVENT0052022 634.3560 423.8700
CDSEVENT0072022 788.2499 277.5725
CDSEVENT0102023 360.6036 180.0022
Dataset Detection Steps Detection per Time Step

CDIEVENT0012021 363007 0.001694023
CDMEVENT0012022 226898 0.000498454
CDMEVENT0062023 500409 0.000938627
CDSEVENT0052022 441913 0.000959170
CDSEVENT0072022 258778 0.001072628
CDSEVENT0102023 202179 0.000890311

59



60

Figure G.1: CDIEVENT0012021: Short-term Detection Results for VARIMA + One-class SVM with PCA and New Feature
Values
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Figure G.2: CDMEVENT0012022: Short-term Detection Results for VARIMA + One-class SVM with PCA and New Feature
Values
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Figure G.3: CDMEVENT0062023: Short-term Detection Results for VARIMA + One-class SVM with PCA and New Feature
Values
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Figure G.4: CDSEVENT0052022: Short-term Detection Results for VARIMA + One-class SVM with PCA and New Feature
Values
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Figure G.5: CDSEVENT0072022: Short-term Detection Results for VARIMA + One-class SVM with PCA and New Feature
Values
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Figure G.6: CDSEVENT0102023: Short-term Detection Results for VARIMA + One-class SVM with PCA and New Feature
Values



H
Short-term Detection Results: VARIMA

+ One-class SVM without PCA

Table H.1: Performance of VARIMA + One-class SVM without PCA for Different Datasets

Dataset Accuracy Precision Recall F1

CDIEVENT0012021 0.9979 0.9940 0.9645 0.9788
CDMEVENT0012022 0.9888 0.9878 0.9458 0.9656
CDMEVENT0062023 0.9892 0.9364 0.9927 0.9624
CDSEVENT0052022 0.9974 0.9791 0.9958 0.9873
CDSEVENT0072022 0.9997 0.9945 0.9998 0.9972
CDSEVENT0102023 0.9598 0.9525 0.5109 0.5111

Model Training/s Abnormality Detection/s

CDIEVENT0012021 1146.4316 422.7645
CDMEVENT0012022 565.0197 113.0982
CDMEVENT0062023 1370.2862 672.0620
CDSEVENT0052022 941.4703 497.6890
CDSEVENT0072022 839.2274 738.4196
CDSEVENT0102023 722.9331 148.2463

Detection Steps Detection per Time Step

CDIEVENT0012021 363007 0.001164618
CDMEVENT0012022 226898 0.000498454
CDMEVENT0062023 500409 0.001343025
CDSEVENT0052022 441913 0.001126215
CDSEVENT0072022 258727 0.002854049
CDSEVENT0102023 202179 0.000733243
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Figure H.1: CDIEVENT0012021: Short-term Detection Results for VARIMA + One-class SVM without PCA and New Feature
Values
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Figure H.2: CDMEVENT0012022: Short-term Detection Results for VARIMA + One-class SVM without PCA and New Feature
Values
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Figure H.3: CDMEVENT0062023: Short-term Detection Results for VARIMA + One-class SVM without PCA and New Feature
Values
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Figure H.4: CDSEVENT0052022: Short-term Detection Results for VARIMA + One-class SVM without PCA and New Feature
Values
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Figure H.5: CDSEVENT0072022: Short-term Detection Results for VARIMA + One-class SVM without PCA and New Feature
Values
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Figure H.6: CDSEVENT0102023: Short-term Detection Results for VARIMA + One-class SVM without PCA and New Feature
Values



I
Short-term Detection Results: LSTM +

One-class SVM with PCA

Table I.1: Performance of LSTM + One-class SVM with PCA for Different Datasets

Dataset Accuracy Precision Recall F1

CDIEVENT0012021 0.8689 0.5690 0.8396 0.5862
CDMEVENT0012022 0.9782 0.9557 0.9120 0.9325
CDMEVENT0062023 0.9823 0.8751 0.9880 0.9230
CDSEVENT0052022 0.9897 0.9301 0.9411 0.9315
CDSEVENT0072022 0.9986 0.9712 0.9993 0.9848
CDSEVENT0102023 0.9472 0.9215 0.5020 0.4906

Model Training/s Abnormality Detection/s

CDIEVENT0012021 7584.3937 347.7925
CDMEVENT0012022 1383.5731 119.2618
CDMEVENT0062023 9716.3895 370.3922
CDSEVENT0052022 2716.3895 172.3632
CDSEVENT0072022 3830.3350 234.2928
CDSEVENT0102023 3130.3936 156.1959

Detection Steps Detection per Time Step
CDIEVENT0012021 363007 0.000958088
CDMEVENT0012022 226898 0.000525619
CDMEVENT0062023 441915 0.000838153
CDSEVENT0052022 500409 0.000344445
CDSEVENT0072022 258726 0.000905563
CDSEVENT0102023 202238 0.000772337
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Figure I.1: CDIEVENT0012021: Short-term Detection Results for LSTM + One-class SVM with PCA

Figure I.2: CDMEVENT0012022: Short-term Detection Results for LSTM + One-class SVM with PCA

Figure I.3: CDMEVENT0062023: Short-term Detection Results for LSTM + One-class SVM with PCA
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Figure I.4: CDSEVENT0052022: Short-term Detection Results for LSTM + One-class SVM with PCA

Figure I.5: CDSEVENT0072022: Short-term Detection Results for LSTM + One-class SVM with PCA

Figure I.6: CDSEVENT0102023: Short-term Detection Results for LSTM + One-class SVM with PCA



J
Short-term Detection Results: LSTM +

One-class SVM without PCA

Table J.1: Performance of LSTM + One-class SVM without PCA for Different Datasets

Dataset Accuracy Precision Recall F1

CDIEVENT0012021 0.9979 0.9951 0.9647 0.9794
CDMEVENT0012022 0.989 0.9885 0.9459 0.966
CDMEVENT0062023 0.9986 0.9897 0.9965 0.993
CDSEVENT0052022 0.9902 0.9801 0.9897 0.9831
CDSEVENT0072022 0.9995 0.9907 0.9997 0.9952
CDSEVENT0102023 0.9994 0.9938 0.9997 0.9967

Model Training/s Abnormality Detection/s

CDIEVENT0012021 8567.6785 611.9176
CDMEVENT0012022 1944.2742 192.4267
CDMEVENT0062023 1654.647 818.0739
CDSEVENT0052022 1043.3751 524.6771
CDSEVENT0072022 4118.9375 288.0048
CDSEVENT0102023 2074.1251 256.5581

Detection Steps Detection per Time Step
CDIEVENT0012021 363007 0.001685691
CDMEVENT0012022 226898 0.000848076
CDMEVENT0062023 441915 0.001851202
CDSEVENT0052022 500409 0.0010485
CDSEVENT0072022 258726 0.001113165
CDSEVENT0102023 202181 0.001268953
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Figure J.1: CDIEVENT0012021: Short-term Detection Results for LSTM + One-class SVM without PCA

Figure J.2: CDMEVENT0012022: Short-term Detection Results for LSTM + One-class SVM without PCA

Figure J.3: CDMEVENT0062023: Short-term Detection Results for LSTM + One-class SVM without PCA
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Figure J.4: CDSEVENT0052022: Short-term Detection Results for LSTM + One-class SVM without PCA

Figure J.5: CDSEVENT0072022: Short-term Detection Results for LSTM + One-class SVM without PCA

Figure J.6: CDSEVENT0102023: Short-term Detection Results for LSTM + One-class SVM without PCA



K
Flowcharts for Evaluation

Figure K.1: Flowchart of PCA-based Prognosis, Including Current Method and Improvement Suggestions. Enhancement from
Detection to Prediction not Mentioned Due to Insufficient Detective Performance.
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Figure K.2: Flowchart of VARIMA/LSTM + One-class SVM, Including Current Method, Improvement Suggestions and
Enhancement.
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