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S U M M A R Y

The use of scenario planning has a long history in decision-making and public policy
(Bryant and Lempert, 2010). Traditional scenario planning, as, for example, used by
the Shell Scenarios group, provides tools to communicate and characterize uncertainty,
allowing decision-makers to anticipate the future and create more robust strategies
(Bradfield et al., 2005).

However, the classical qualitative approach, where scenario narratives are devel-
oped, has some severe limitations. While this approach provides results which are
readily communicated to decision-makers, it often overlooks truly unexpected (but
plausible) scenarios (Kwakkel and Cunningham, 2016). Besides, they are not readily
implemented for problems where the structure is also disputed (Bryant and Lempert,
2010).

Scenario discovery, a quantitative, brute-force approach to scenario development,
developed by Bryant et al. (2010) aims to address these limitations. This approach
has been successfully applied to numerous grand challenges, among others climate
change (Kwadijk et al., 2010), sustainable water management (Haasnoot et al., 2011),
and global natural resource management (Kwakkel et al., 2013).

The original approach to quantitative scenario discovery relies on three consecutive
steps: sampling, labeling and searching for subspaces leading to the regions of interest.
The sample is typically collected using Latin Hypercube Sampling (Kwakkel, 2017).
For uniform, independent sampling, the chance that a random sample falls within the
region of interest decreases quadratically with increasing size of the bounds (Vrugt,
2016). Therefore, if the prior distribution cannot be estimated, or the problem at
hand demands a wide range of possible values, and the problem has a high number
of dimensions, these sampling techniques require an unreasonably high number of
samples to adequately delineate the region(s) of interest.

Therefore, this thesis proposes using dependent sampling, which concentrates the
sampling on the regions of interest, rather than attempting to represent the entire
input space. After convergence, the resulting sample approximates the true posterior
distribution. By performing a Kolmogorov-Smirnov test for uniformity, the uncertain
factors leading to the behavior of interest can be derived. The relevant ranges of
parameter values can be recognized and communicated to decision-makers.

Figure 0.1: Process of generating samples for Scenario Discovery using an a) independent, and
b) dependent sampling approach.
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Figure 3.1 3d plots of the Latin Hypercube sampling of disjoint barrels in 6d 12

Figure 3.2 Histogram of the posterior distribution derived from (a) AM
and (b) DE-MC. Reprinted from “Markov chain Monte Carlo
simulation using the DREAM soft-ware package: Theory, con-
cepts, and MATLAB implementation” by Vrugt, J.A., 2016, En-
vironmental Modeling and Software, 75, 273–316. . . . . . . . . 15

Figure 3.3 From Vrugt (2016): DREAM (ZS) algorithm: Explanation of the
snooker update for a hypothetical two-dimensional problem
using some external archive of m = 10 points (grey dots). Three
points of this archive Za , Zb and Zc are sampled at random and
define the jump of the ith chain, Xi (blue) as follows. The points
Zb and Zc are projected orthogonally on to the dotted XiZa line.
The jump is now defined as a multiple of the difference between
the projections points,Zb

⊥ and Zc
⊥ (green squares) and creates

the proposal, Xi
p. The DREAM (ZS) algorithm uses a 90/10 %

mix of parallel direction and snooker updates, respectively. . . 17

Figure 3.4 Graphs of the examined likelihood functions. The grey vertical
line depicts the boundary of the region of interest. The re-
turned value of the likelihood function (y-axis) decreases with
increasing distance from this boundary. . . . . . . . . . . . . . . 20

Figure 3.5 Pairplots of the Adaptive Metropolis algorithm (using the Metropo-
lis Ratio for acceptance/rejection) applied to the ‘upright barrel
shape’ with nfe=10,000, for various likelihood functions. The
region of interest is indicated in red. . . . . . . . . . . . . . . . . 22

Figure 4.1 PRIM performed on LHS (independent sampling) results for
the 50d, small test problem. Orange dots are cases of interest,
blue dots are not. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 4.2 Illustration of the Kolmogorov–Smirnov test for a normal dis-
tribution, with the cumulative density function of the sample
in blue and the reference distribution in red. The pairwise dis-
tances between the sample and the reference distribution are
calculated at each point. The maximum of these distances is
the recorded statistic. Adapted from Mathworks (2020). . . . . 27

Figure 4.3 Histograms of the distribution of samples for two dimensions:
one which does and one that does not contribute to the region
of interest; to illustrate how the difference may be distinguished
from an MCMC sample. The orange line is a uniform distribution. 27

ix



x list of figures

Figure 4.4 Cumulative probability functions of x1 to x50 in blue. Dimen-
sions with a KS statistic of > 0.1 (i.e. x1, x2, x48 and x49) are
coloured orange for clarity. The cumulative probability of a
uniform distribution is displayed in red. . . . . . . . . . . . . . . 27

Figure 4.5 Barplot of the value of the KS statistic for each of the dimen-
sions in the DREAM(ABC) sample of the 50d, small test prob-
lem with nfe=30,000. The KS statistic is calculated by compar-
ing to a uniform distribution with bounds [-0.5, 0.5]. . . . . . . 28

Figure 4.6 Pairplot of the selected dimensions of the DREAM(ABC) sam-
ple of the 50d, large test problem. . . . . . . . . . . . . . . . . . . 29

Figure 4.7 Probability density for each dimension of interest for the large,
50d test problem, generated by kernel density estimation. The
ranges of parameter values are indicated by the vertical orange
lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 4.8 Dimension of interest x1 . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 4.9 Dimension of interest x2, given −0.20 < x1 < 0.18 . . . . . . . . 32

Figure 4.10 Barplot of the value of the KS statistic for each of the dimen-
sions in the DREAM(ABC) sample of the 50d, large test prob-
lem with nfe=30,000. The KS statistic is calculated by compar-
ing to a uniform distribution with bounds [-5, 5]. . . . . . . . . 33

Figure 5.1 Colour-coded pairplots, generated from a Latin Hypercube sam-
ple of size 10000. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 5.2 Performance of the AM algorithm for the simple test problems 37

Figure 5.3 The AM algorithm has no trouble finding both input spaces in
the small, 6d problem. . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 5.4 The starting position of the AM algorithm is in a corner of the
50-dimensional, large input space, leading to a long trajectory
to the region of interest (in the middle of the input space). The
number of function evaluations proves insufficient for the al-
gorithm to converge to the region of interest. Only the three
dimensions defining the first region of interest are presented
here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 5.5 Histograms of the value of the KS statistic for each of the di-
mensions in the Adaptive Metropolis sample of the 50d, large
test problem. The single-chain method only finds one region of
interest, because the jumping distance is insufficient to find both. 39

Figure 5.6 Performance of the DE-MC algorithm for the simple test problems 40

Figure 5.7 Histograms of the value of the KS statistic for each of the di-
mensions in the Differential Evolution Markov Chain sample of
the 50d, large test problem. . . . . . . . . . . . . . . . . . . . . . 40

Figure 5.8 Cumulative probability functions of x1 to x50 (DE-MC, nfe=30,000).
Dimensions x1, x2, x3, x47, x48 and x49 are coloured orange for
clarity. The cumulative probability of a uniform distribution is
displayed in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 5.9 Performance of the DREAM algorithm for the simple test prob-
lems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 5.10 DREAM(ABC) sample of 50d test problem, with large bounds . 42

Figure 5.11 Histograms of the value of the KS statistic for each of the di-
mensions in the DREAM(ABC) sample of the 50d, large test
problem. The KS statistic is calculated by comparing to a uni-
form distribution with bounds [-5, 5]. . . . . . . . . . . . . . . . 42

Figure 5.12 Acceptance rates and fractions of interest of the various algo-
rithms for various test shapes in 3d, for 1000 and 30,000 nfe . . 43



list of figures xi

Figure 5.13 Acceptance rates and fractions of interest of the various algo-
rithms for various high-dimensional test shapes, for 1000 and
30,000 nfe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure A.1 Performance of the Adaptive Metropolis algorithm for various
likelihood functions . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure A.2 Performance of the AM algorithm for various likelihood func-
tions for the 50d, large box test problem . . . . . . . . . . . . . . 54

Figure A.3 Performance of the DE-MC algorithm for various likelihood
functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure A.4 Performance of the DE-MC algorithm for various likelihood
functions for the 50d, large box test problem . . . . . . . . . . . 55

Figure A.5 Performance of the DREAM(ABC) algorithm for various likeli-
hood functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



L I S T O F TA B L E S

Table 3.1 Barrel shapes from Lempert et al. (2008) and their respective
equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Table 3.2 High dimensional test shapes and their respective equations
(adapted from Lempert et al. (2008)) . . . . . . . . . . . . . . . . 12

Table 3.3 Input to various algorithms to guarantee the same number of
function evaluations . . . . . . . . . . . . . . . . . . . . . . . . . 22

Table 4.1 Ranges of values for uncertain parameters defining the regions
of interest, for LHS sample of 50d, small test problem using
PRIM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Table 4.2 Ranges of parameter values delineating the region of interest
for the 50d, small test problem . . . . . . . . . . . . . . . . . . . 30

Table 4.3 KS statistic for x1, x2, x3, given the conditions found in each step. 32

Table 4.4 First round of the process: KS statistic for x1, x2, x3, given the
conditions found in each step. . . . . . . . . . . . . . . . . . . . . 32

Table 4.5 Second round of the process: KS statistic for x1, x2, x3, given
the conditions found in each step. . . . . . . . . . . . . . . . . . 33

Table 4.6 Regions of interest found by a PRIM analysis of a Latin Hy-
percube sample, contrasted with the results of the proposed
methodology for dependent sampling. . . . . . . . . . . . . . . . 33

Table 4.7 First round of the process: KS statistic for x1, x2, x3, x47, x48,
x49 given the conditions found in each step. . . . . . . . . . . . . 34

Table 4.8 Fourth round of the process: KS statistic for x1, x2, x3, x47, x48,
x49 given the conditions found in each step. . . . . . . . . . . . . 34

Table 5.1 Fractions of interest of LH sample of various barrel shapes in 3d 36

Table 5.2 Fractions of interest of LH sample of various higher dimen-
sional test problems . . . . . . . . . . . . . . . . . . . . . . . . . . 37



List of Algorithms
3.1 Latin Hypercube Sampling (adapted from Shockley et al. (2017) . . . . . 13

3.2 Adaptive Metropolis (adapted from Vrugt (2016)) . . . . . . . . . . . . . . 14

3.3 Differential Evolution Markov Chain (adapted from Vrugt (2016)) . . . . 16

3.4 Differential Evolution Adaptive Metropolis (adapted from Vrugt (2016)) 19

3.5 Likelihood function - generic . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1



1 I N T R O D U C T I O N

1.1 decision support
When dealing with important policy problems, policymakers are faced with high lev-
els of uncertainty, where a stochastic approach is insufficient (Walker et al., 2013).
More specifically, this deep uncertainty is defined by Lempert et al. (2003) by three
criteria. The following are unknown or cannot be agreed on:

1. the conceptual model describing the relationships between factors.

2. the probability distributions of the factors used to represent the uncertainty in
the model

3. the outcomes of interest and their relative valuation

The use of scenario planning has a long history in decision-making and public
policy (Bryant and Lempert, 2010). Traditional scenario planning, as, for example,
used by the Shell Scenarios group, provides tools to communicate and characterize
uncertainty, allowing decision-makers to anticipate the future and create more robust
strategies (Bradfield et al., 2005).

However, the classical qualitative approach, where scenario narratives are devel-
oped, has some severe limitations. While this approach provides results which are
readily communicated to decision-makers, it often overlooks truly unexpected (but
plausible) scenarios (Kwakkel and Cunningham, 2016). Besides, they are not easily
implemented for problems where the model structure is also disputed (Bryant and
Lempert, 2010).

Scenario discovery, a quantitative, brute-force approach to scenario development
aims to address these limitations (Groves and Lempert, 2007). This approach has been
successfully applied to numerous grand challenges, among others climate change
(Kwadijk et al., 2010), sustainable water management (Haasnoot et al., 2011), and
global natural resource management (Kwakkel et al., 2013).

1.2 research gap
Scenario Discovery depends on a representative sample of the input space for analy-
sis. However, for uniform, independent sampling, the chance that a random sample
falls within the region of interest decreases quadratically with increasing size of the
bounds (Vrugt, 2016). Therefore, if the prior distribution cannot be estimated, or the
problem at hand demands a wide range of possible values, and the problem has a
high number of dimensions, these sampling techniques require an unreasonably high
number of samples to adequately delineate the region(s) of interest. Therefore, this
thesis proposes using dependent sampling, which concentrates the sampling on the
regions of interest, rather than attempting to represent the entire input space.

More specifically, this is achieved by using Markov Chain Monte Carlo (MCMC)
methods with multiple chains to direct the sampling to subspaces of interest. This
approach should result in a significantly higher number of cases of interest. A risk is
that these algorithms do not recognize other disconnected regions of interest. There-
fore, the algorithms are thoroughly tested and examined by performing experiments
on the known, simple shapes presented by Lempert et al. (2008).
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1.3 research questions
The following main research question was formulated to address the research gap
previously described:

How can dependent sampling methods be used for effective Scenario Discovery
to characterize high-dimensional problems with sparse regions of interest?

In order to answer this research question, firstly a literature review will be con-
ducted to select appropriate algorithms and measures of performance. These two
objectives form the first two research questions:

1. Which dependent sampling algorithms may be employed for Scenario Discovery?

2. Which measures of performance can be used to compare various algorithms for Scenario
Discovery?

Secondly, an appropriate way to process an MCMC sample for visualization and
communication will be designed. This is also a proof of concept of the applicability of
independent sampling to Scenario Discovery.

3. How can combinations of input parameters that are highly predictive of the behavior of
interest be derived from an MCMC sample?

Finally, a number of algorithms (selected in subquestion 1) are applied to increas-
ingly challenging (but still known) problems, to study their relative performance on
high-dimensional problems with sparse regions of interest with regards to the goals
of Scenario Discovery. This forms the fourth research question:

4. What is the relative efficacy of dependent sampling algorithms for high-dimensional prob-
lems with sparse regions of interest, compared to an independent sampling approach?

Together, these subquestions address the main question posed previously.

1.4 research flow
This thesis consists of six chapters. This first chapter introduces the topic of the the-
sis and discusses the research gap addressed by the research project. A number of
subquestions are formulated to guide the research. Then, the principles of Scenario
Discovery and dependent sampling algorithms are presented in the literature review.
This chapter provides answers to the first subquestion. Subsequently, the experimental
setup and research methods will be discussed, including the performance measures
used to compare approaches to Scenario Discovery, answering the second subques-
tion. The following chapter discusses a method to derive the combinations of input
parameters that lead to the behavior of interest from an MCMC sample. The subse-
quent chapter presents increasingly challenging test cases for algorithms for Scenario
Discovery to answer the fourth subquestion. The final chapter discusses the main
research question and reflects on the research study.



2 R E L AT E D W O R K

2.1 scenario discovery
Scenario Discovery is a quantitative approach to find the combinations of input param-
eter values (or ‘uncertainties’) that lead to an outcome of interest (Bryant and Lempert,
2010). The approach includes three steps (Lempert et al., 2008), which will each be
discussed in more detail in the subsections below.

1. Sample parameter values over prior distributions. These values are used as
inputs to a simulation model and the resulting outcomes are recorded.

2. Classify outcomes as ‘of interest’ or ‘not of interest’, based on some user-defined
condition.

3. Use Machine Learning techniques to search for the combinations of ranges of
parameter values causing the behavior of interest (Groves and Lempert, 2007).

These combinations of uncertain model input parameters that are predictive of
policy-relevant cases are translated into scenarios, which are used to inform policy-
makers. This provides a tool for decision-making in situations of deep uncertainty
(Groves and Lempert, 2007).

2.1.1 Sampling

Sampling methods typically used in this field are independent, and include fully ran-
dom methods (Kim et al., 2000), Latin Hypercube Sampling (pseudo random) (McKay
et al., 1979), and factorial (pseudo random) (Fisher, 1935) methods. These sampling
methods are independent (i.e. sampling does not depend on other observations) and,
given sufficient samples, guarantee the coverage of the full parameter space. The dif-
ferences between these three methods are illustrated in figure 2.1, showing samples
from a 2D space.

Figure 2.1: Sampling coverage of pseudo-random (factorial and latin hypercube) and random
sampling methods in 2D. Adapted from (Weber, 2019).

2.1.2 Classifying outcomes

‘Cases of interest’ are often defined by some threshold for ‘failure’ or ‘success’, but
could be defined as any threshold, value, or range of values for a certain outcome, or
a combination of outcomes (Lempert et al., 2006). Scenarios of interest could even be
labeled by their behavior over time (Steinmann et al., 2020).
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2.1.3 Finding subspaces of interest

Finally, some algorithm is employed to identify subspaces in the input space that ex-
plain the outcomes of interest. While various algorithms may be applied, algorithms
typically used in this field are Classification And Regression Trees (CART) and the Pa-
tient Rule Induction Method (PRIM) (Lempert et al., 2008), of which the latter is more
often used (Kwakkel, 2019). PRIM and CART balance three performance measures: in-
terpretability, coverage and density, which together maximize the explanatory power
of the boxes (Lempert et al., 2008).

Interpretability

Firstly, the interpretability of the results is considered, which is quantified by restrict-
ing the number of boxes to three or four, with each a maximum of two to three
restricted dimensions.

Coverage

Coverage refers to the proportion of relevant cases, i.e. the ratio of cases of interest
within a box to the total number of cases of interest in the dataset. A coverage of 1

indicates that the box contains all of the cases of interest (Kwakkel and Cunningham,
2016).

Density

The third performance measure proposed by Lempert et al. (2008) is density, which
refers to the fraction of cases of interest within the box set, relative to the total number
of cases in that box set. It reflects whether a box primarily describes cases of interest
(high density), or if there is a lot of noise (low density).

Coverage and density are usually mutually exclusive: decreasing the box size typi-
cally decreases the coverage, while increasing the density. For example, the box that
contains all cases has a coverage of 1, but a very low density.

Patient Rule Induction Method

PRIM starts with a box that encompasses the entire uncertainty space and incremen-
tally decrease the size of the box along one dimension at a time. Each step, the box
becomes smaller, containing fewer irrelevant cases. Each step, the density of this sub-
space is improved, while keeping as many cases of interest as possible (Friedman and
Fisher, 1999). Since only one dimension is restricted in any step, the solution sub-
space has a lower number of dimensions than the full uncertainty space. The results
are typically easily interpreted by decision-makers (Lempert et al., 2008). PRIM can be
repeated to find additional boxes, explaining different parts of the uncertainty space
(Kwakkel and Cunningham, 2016).

Classification And Regression Trees

CART outputs decision trees consisting of splitting criteria that determine the output
class based on input parameters (Breiman et al., 1984). In this process, it optimizes for
the lowest classification error. The user can choose the tree with the best predictive
power, i.e. a good balance between density and coverage on the one side, and com-
plexity on the other. Still, CART typically yields less interpretable results compared
to PRIM (Lempert et al., 2008).



6 related work

2.1.4 Limitations

Scenario Discovery is typically used in combination with models with a relatively
low number of uncertain parameters (9 (PRIM) (Bryant and Lempert, 2010), 6 (PRIM)
(Moksnes et al., 2019), 9 (PRIM) (Halim et al., 2016), 18 (CART) (Agusdinata, 2008).
Using the classical approach, it is not feasible to create a representative sample of a
higher number of uncertain factors in a reasonable time span. Any search on these
samples would yield nonsensical results (Vrugt and Beven, 2018).

For uniform, independent sampling, the chance that a random sample falls within
the region of interest decreases quadratically with increasing size of the bounds (Vrugt,
2016). If the prior distribution cannot be estimated, or the problem at hand demands
a wide range of possible values, and the problem has a high number of dimensions,
these sampling techniques require an unreasonably high number of samples to ade-
quately delineate the region(s) of interest. Therefore, this thesis proposes using depen-
dent sampling, which concentrates the sampling on the regions of interest, rather than
attempting to represent the entire input space.

2.2 markov chain monte carlo
In Markov chain Monte Carlo simulation, proposal samples are generated from the
current state of the Markov Chain (Metropolis et al., 1953). This proposed sample is
accepted or rejected, dependent on its relative performance using the Metropolis ratio:

pacc
(
xt−1 → xp

)
= min

[
1,

p
(
xp
)

p (xt−1)

]
(2.1)

where p
(
xp
)

and p (xt−1) represent the performance of the proposal point xp and
the current point xt−1, respectively. If the performance of the proposal is equal to
or better than the current point, the proposal is always accepted. If it is worse, it
is sometimes accepted, with a probability proportional to the relative performance. If
the proposed sample is accepted, the chain moves to xp, and if it is rejected, the
chain remains in xt−1. After a sufficient number of iterations, the chain represents the
posterior density function. This requires a burn-in period, in which the chain explores
the search space (Vrugt, 2016).

The performance of a proposed sample is evaluated through a likelihood function.
The likelihood is the probability that the observed data is generated by the parameter
values to be sampled (θ): likelihood(θ) = f (x1, . . . , xn | θ). The likelihood function
transforms the raw model outcomes to an energy landscape defining regions of inter-
est, similar to the ‘labeling’ step in Scenario Discovery (section 2.1). This process is
graphically explained in figure 2.2, where the left-hand graph is an arbitrary outcome
y, given an independent variable x1. Performance exceeding the threshold is marked
‘of interest’ and given a likelihood of 1, i.e. points within this region of interest are
always accepted. The likelihood function decreases with increasing distance from the
region of interest.

The choice of the shape of this function is largely dependent on what the model
returns (i.e. a (log-)likelihood, simulation outcomes, or summary statistics). One can
then decide on a suitable likelihood function using Table 2 in Vrugt (2016).
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Figure 2.2: The relationship between the model outcomes, the threshold and the shape of the
likelihood landscape. This likelihood function follows some sigmoidal shape, but
any shape that fits the problem at hand is allowed.

Figure 2.3: Process of generating samples for Scenario Discovery using an a) independent, and
b) dependent sampling approach.
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2.3 approximate bayesian computation
MCMC requires the definition of a formal likelihood function (e.g. Table 2 in Vrugt
(2016)). However, for the complex problems subjected to Scenario Discovery, it is
impossible to formulate a formal likelihood function (Vrugt and Sadegh, 2013). Ap-
proximate Bayesian Computation (ABC) constitutes a class of computational methods
often used in model calibration or validation, that avoid this formal likelihood func-
tion (Diggle and Gratton, 1984). Rather, samples are compared to observed data and
rejected if the difference between the chosen summary statistics is too large.

Figure 2.4 shows a conceptual overview of ABC for model calibration (its intended
purpose). The model ( dyt

dt = f (yt, θ, ũ∗), where yt is the outcome of interest, θ∗ the
prior distribution of parameter values and ũ the observed data, is fitted to the observed
data. First, a threshold is chosen for ε, which is a trade-off between the accuracy and
the computational efficiency. Then, N samples are drawn, using a sampling method
of preference. Using this sample, N simulations are ran, collecting some outcome of
interest or summary statistic. If the distance between the observed and simulated data
is smaller than or equal to ε, this sampled point is accepted. The resulting sample,
consisting only of accepted points, is used to approximate the posterior parameter
distribution p(θ|Y) (Sadegh and Vrugt, 2014).

Figure 2.4: Conceptual overview of Approximate Bayesian Computation for a one-dimensional
parameter estimation problem. Adapted from Sadegh and Vrugt (2014); Sunnåker
et al. (2013).

As previously mentioned, ABC requires a sample of the input space, which can
be obtained through any sampling scheme. For large input spaces, it is infeasible to
generate a representative sample of the entire input space. Therefore, ABC is often
combined with rejection methods like MCMC.

An MCMC implementation of ABC follows these steps (Sunnåker et al., 2013):

1. Choose one or more summary statistics µ that describe the the observed data
well (for example the mean values of various parameters)

2. Generate a candidate point from the current position (note that different MCMC
algorithms do this in different ways)

3. Evaluate the model at this proposal point and collect the summary statistic(s)
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4. Choose a tolerance value ε. If the difference between the observed summary
statistics and the simulated summary statistics is smaller than this tolerance
value, the candidate point is accepted. If the difference is larger, it is accepted
depending on the Metropolis ratio (Turner and Van Zandt, 2012):

α =

{
min

(
1, π(θ∗)q(θi |θ∗)

π(θi)q(θ∗ |θi)

)
if ρ(X, Y) ≤ ε0

0 if ρ(X, Y) > ε0
(2.2)

5. By repeating steps 2-4 n times, the true posterior distribution is approximated
(Sadegh and Vrugt, 2014).

Of course, when applying Scenario Discovery, we are not comparing simulated
data with observed data. However, this process may be adapted to fit the objectives of
Scenario Discovery.

In Scenario Discovery, regions of interest are defined by some threshold or condi-
tion, similar to the threshold value ε in ABC. However, while in ABC, there is still
a difference in performance within this region of interest, in this case we are equally
interested in all points within the region of interest. Therefore, the likelihood function
is chosen to be uniform within the region of interest. Within the region of interest,
the ratio will always be 1. Outside the region of interest, it decreases with increasing
distance from ε, to accommodate for more sparse samples. The chain is able to slowly
move towards a region of interest, instead of getting stuck in empty subspaces.
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3.1 test shapes
Following the methodology used in (Lempert et al., 2008), the performance of the
algorithms for Scenario Discovery is examined using known, simple shapes.

3.1.1 Simple test problems

These different shapes were designed to be relatively easily visualized, while present-
ing a range of challenges to CART and PRIM (Lempert et al., 2008):

• upright barrel: should not pose any issues; baseline.

• tilted barrel: not orthogonal, so PRIM/ CART may have a hard time drawing a
box around the region of interest.

• crossed barrels: even though the shape is originally described by combining
two shapes, PRIM and CART need 3 separate boxes to describe it, because the
algorithms remove the cases of interest described by the first box, leaving a gap
in the middle.

• disjoint barrels: presenting a test problem with two disconnected region of in-
terest forces the algorithms to describe one after the other. PRIM may try to
describe disjoint regions with single box.

Similarly, the relative performance of the MCMC methods are examined using these
shapes. An important challenge for the MCMC methods are the disjoint barrels, since
it is possible for the chains to get stuck in one of the barrels, without exploring the rest
of the uncertainty space. The various testshapes are presented in table 3.1. The figures
were generated using a 1000-point Latin Hypercube sample, with −0.5 < xj < 0.5 so
that the shape is in the middle of the space. PRIM and CART look for orthogonal
boxes.

3.1.2 High-dimensional, sparse test problems

Additional experiments were created, where the dimensionality of the uncertainty
space is increased significantly, and where the disjoint barrels are in different sub-
spaces. This increases the level of the challenge to the algorithms and mimics the
envisioned application of the MCMC algorithms, i.e. a large high-dimensional uncer-
tainty space with small, sparse regions of interest. The barrels are placed in different
subspaces, and further apart in the larger test problems, so that the chains do not eas-
ily jump from one region of interest to another. This additional challenge examines
whether the algorithms are able to find all the regions of interest, instead of getting
stuck in local optima.

Latin Hypercube Sampling is expected to perform poorly on these sparse uncer-
tainty spaces, requiring a large number of samples to adequately characterize the
regions of interest. Monte Carlo methods risk not finding the regions of interest at
all, or getting stuck in one of the regions of interest. The following problems are
formulated:
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Table 3.1: Barrel shapes from Lempert et al. (2008) and their respective equations
Barrel shape Equation(s) Figure

Upright 16 (x1)
2 + 16 (x2)

2 + (x3)
2 < 1

Tilted

25
4 (x1)

2 + 16 (x2)
2 + 25

9 (x3)
2

+5 (x1x2 + x1x3 + x2x3) < 1

Crossed
25 (x1)

2 + 25 (x2)
2 + 9

4 (x3)
2 < 1

9
4 (x1)

2 + 25 (x2)
2 + 25 (x3)

2 < 1

Disjoint
25 (x1)

2 + 25 (x2 − 0.25)2 + 9
4 (x3)

2 < 1

9
4 (x1)

2 + 25 (x2 + 0.25)2 + 25 (x3)
2 < 1
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Table 3.2: High dimensional test shapes and their respective equations (adapted from Lempert
et al. (2008))

Dimensions Bounds Equations

6 -0.5, 0.5
25 (x1)

2 + 25 (x2 − 0.25)2 + 9
4 (x3)

2 < 1
9
4 (x4)

2 + 25 (x5 + 0.25)2 + 25 (x6)
2 < 1

6 -5, 5

25 (x1 − 2)2 + 25 (x2 − 2.25)2 + 9
4 (x3 − 2)2 < 1

9
4 (x4 + 2)2 + 25 (x5 + 2.25)2 + 25 (x6 + 2)2 < 1

50 -0.5, 0.5
25 (x1)

2 + 25 (x2 − 0.25)2 + 9
4 (x3)

2 < 1
9
4 (x47) + 25 (x48 + 0.25)2 + 25 (x49)

2 < 1

50 -5, 5

25 (x1 − 2)2 + 25 (x2 − 2.25)2 + 9
4 (x3 − 2)2 < 1

9
4 (x47 + 2)2 + 25 (x48 + 2.25)2 + 25 (x49 + 2)2 < 1

(a) x1, x2, x3 (b) x4, x5, x6

Figure 3.1: 3d plots of the Latin Hypercube sampling of disjoint barrels in 6d

Furthermore, the 50-dimensional test problems expose the challenge of visualization
and interpretation of the results of MCMC algorithms. The results yield a suitable test
case to answer the last sub-question.

The shapes of the high-dimensional test problems are verified by generating two 3d
plots of the dimensions that the barrels should be in. These plots (displayed in figure
3.1), show some clutter, since points are of interest because of their parameter values
for x1, x2 and x3, regardless of their values of x4, x5 and x6 (and vice versa).

3.2 algorithms

For the independent sampling, Latin Hypercube Sampling will be implemented, since
this is the most widely used (Lempert et al., 2006). For the dependent sampling
techniques, this thesis follows the line of reasoning by Vrugt (2016), where a num-
ber of MCMC methods are compared. Each of the algorithms has a transparent
Python implementation. These implementations are adapted to follow the Approx-
imate Bayesian Computation paradigm and record additional statistics, but otherwise
implemented out-of-the-box.

The following list describes the algorithms selected for the experiments in this thesis,
along with their respective added insights.

• Latin Hypercube Sampling: Contrast dependent sampling techniques with inde-
pendent sampling technique (reference)

• Adaptive Metropolis: Contrast multi-chain methods with single chain method
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• Differential Evolution Markov chain: Contrast DREAM with its predecessor.
Most interestingly, DE-MC lacks subspace sampling.

• Differential Evolution Adaptive Metropolis: Examine high-performance MCMC
algorithm, enhanced adaptation of DE-MC.

The following sections describe the implementation and settings used for each algo-
rithm for the experiments in this thesis.

3.2.1 Latin Hypercube Sampling

Latin Hypercube Sampling is a stratified approach. It divides each input variable into
intervals of equal probability and one sample is drawn from each partition (McKay
et al., 1979). These samples for each dimension are randomly combined to an n-
dimensional sample. This guarantees that the input space is uniformly sampled given
a limited sample size.

Implementation used in experiments

Experimentation and analysis of LHS is performed through the Exploratory Modelling
and Analysis (EMA) Workbench (Kwakkel, 2017). This open source python library
facilitates the sampling of real, categorical or discrete variables, and the analysis of
the samples using PRIM.

Algorithm 3.1: Latin Hypercube Sampling (adapted from Shockley et al.
(2017)

Input: minn: lower bound (array of length d)
maxn: upper bound (array of length d)
N: number of samples
Output: A numpy array of length N containing LHS samples

1 y = np.random.rand(N, len(minn))
2 x = np.zeros((N, len(minn)))
3 for j in range(len(minn)) do
4 idx = np.random.permutation(N)
5 P = (idx - y[:, j])/N
6 x[:, j] = minn[j] + P * (maxn[j] - minn[j])

7 return x

3.2.2 Adaptive Metropolis

Adaptive Metropolis (AM) is an adaptation of the Random Walk Metropolis (RWM) al-
gorithm. The performance of RWM is highly dependent on the choice of the proposal
distribution. If it is too wide, many of the resulting proposed samples are rejected,
causing slow convergence. If it is too narrow, the distance moved each step is very
slow, requiring many samples to converge (Vrugt, 2016). Where RWM uses a static
distribution, AM tunes this proposal distribution dynamically using the accepted sam-
ples (Haario et al., 2001).

Implementation used in experiments

The implementation of Adaptive Metropolis used in this thesis is based on the one pre-
sented in Vrugt (2016), where the MATLAB implementation of DREAM is presented,
and its concepts and performance are contrasted with single-chain (AM) and multi-
chain (DE-MC) methods. It is adapted to follow the logic of Approximate Bayesian
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Computation, which avoids the use of a formal likelihood function. Rather, the pos-
terior is evaluated directly. In the algorithm (3.2), this mainly affects line 9, where
the proposed sample is accepted or not. In a classical Metropolis sampling algorithm,
acceptance is based on the Metropolis ratio, which is the fraction of the likelihood of
the proposal over the likelihood of the previous (accepted) point. If this ratio is larger
or equal to u (from U[0, 1]), the proposal is accepted. In this case, the proposal is
immediately accepted if its score is 1 (indicating it is inside the region of interest) or
the score is smaller than the score of the previous accepted point. Experiments are
designed to test the various likelihood functions.

Algorithm 3.2: Adaptive Metropolis (adapted from Vrugt (2016))
Input: The likelihood function L: Rn → R

The bounds of the uncertainty space
imax: The number of samples to be drawn
Output: A list of accepted samples and their respective likelihoods

1 d← number of dimensions
2 Generate empty arrays of length imax for samples and scores

3 Create covariance matrix cov← 2.38
2
d · Identity matrix(d)

4 naccepted ← 0
5 i← 0
6 while i < imax do
7 δ← an array of size (d, 0), generated from a multivariate normal

distribution with mean = 0 and covariance = cov
8 Generate new proposal pi+1 = pi + δ
9 Adapt and rescale new proposal to ensure it respects the bounds

10 Calculate the likelihood scorei+1 of the proposal using the likelihood
function L

11 if scorei+1 <= scorei or score == 1 then
12 Accept proposal pi+1:
13 Add proposal to array of samples
14 Add scorei+1 to list of scores
15 naccepted +=1

16 else
17 Reject proposal:
18 Add previous sample pi to array of samples
19 Add previous scorei to list of scores

20 Update array of chains to ensure all samples are within bounds
21 return naccepted, chains, scores

3.2.3 Differential Evolution Markov Chain

Differential Evolution Markov chain (DE-MC) uses different chains to explore the
posterior target distribution, to prevent premature convergence for complex problems.
It combines the principles of the Metropolis selection rule with a genetic algorithm
for population evolution (Ter Braak, 2006). Proposal samples are generated using
differential evolution (Storn and Price, 1997; Price et al., 2005):

Xi
p = γd

(
Xa − Xb

)
+ ζd, a 6= b 6= i (3.1)

where:

• γ = scaling factor or jump rate; typically set to 2.38/2d;
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Figure 3.2: Histogram of the posterior distribution derived from (a) AM and (b) DE-MC.
Reprinted from “Markov chain Monte Carlo simulation using the DREAM soft-ware
package: Theory, concepts, and MATLAB implementation” by Vrugt, J.A., 2016, En-
vironmental Modeling and Software, 75, 273–316.

• a and b are integer values from [1, ..., i− 1, i+ 1, ..., N] (N is the number of chains),
i.e. two random other chains are selected, and the proposed sample is generated
from the difference between these chains;

• ζd = a real number drawn from a normal distribution with mean 0 and standard
deviation = 10−6.

Additionally, DE-MC includes a way to enable transitions to different regions of
interest, by setting the value of γ to 1 with a probability of 10% (Ter Braak, 2006). This
functionality is demonstrated by figure 3.2.

Implementation used in experiments

Analogous to Adaptive Metropolis, the implementation of Differential-Evolution Markov
Chain is based on Approximate Bayesian Computation, resulting in the acceptance
condition as in line 13 of algorithm 3.3.

Apart from this, the following settings are used in the experiments for this thesis:

• Number of chains: 3 times the number of dimensions, as proposed by Ter Braak
(2006)

• Crossover probability: 0.1, the default value, as proposed by Ter Braak (2006)

3.2.4 Differential Evolution Adaptive Metropolis

Compared to DE-MC, several additional features are implemented in DREAM to
speed up convergence, specifically for non-linear, high-dimensional and multi-modal
problems. In the following paragraphs, each component will be briefly explained,
after which the algorithm settings used for the experiments in this thesis are listed.

Adaptive randomized subspace sampling

Each time a proposal sample is generated in DREAM, only a limited number of di-
mensions is updated. This is implemented in the calculation of the jump rate γ. An
additional hyperparameter δ is the maximum number of chain pairs used to gener-
ate the jump to the proposal point. The default value of 3 results in one-third of the
proposals being created with δ = 1, another third with δ = 2, and one third using
δ = 3 (Vrugt, 2016). Compared to DE-MC, the mode-jumping probability is higher
(0.2 instead of 0.1), to enhance the exploration of various modes of the model outcome
space.

By implementing subspace sampling, the required number of chains can be signifi-
cantly reduced from N ≥ 2d (DE-MC) (Ter Braak, 2006) to N < d (Vrugt, 2016).
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Algorithm 3.3: Differential Evolution Markov Chain (adapted from Vrugt
(2016))

Input: The likelihood function L: Rn → R

The bounds of the uncertainty space
The number of chains
imax: The number of samples to be drawn
pCR: The crossover probability (=0.9)
Output: A list of accepted samples and their respective likelihoods

1 d← number of dimensions
2 γRWM ← 2.38√

2d
3 naccepted ← 0
4 i← 0
5 while i < imax do
6 Assign γRWM to g with probability pCR, or 1 with probability (1− pCR)
7 for chaini in range(chains) do
8 Select randomly (with equal probability) two other chains a and b
9 Generate an array norm a of size d from a normal distribution with

mean 0 and stdev 1.
10 Generate new proposal: pi+1 = pi + g ∗ (a− b) + 1e−6 ∗ norm a
11 Adapt and rescale proposal to ensure it respects the bounds
12 Calculate the likelihood scorei+1 of the proposal using the likelihood

function L
13 if scorei+1 <= scorei or score == 1 then
14 Accept proposal pi+1:
15 Add proposal to chain
16 Add scorei+1 to list of scores
17 naccepted +=1

18 else
19 Reject proposal:
20 Add previous sample pi to chain
21 Add previous scorei to list of scores

22 Update array of chains to ensure all samples are within bounds
23 return naccepted, chains, scores
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Figure 3.3: From Vrugt (2016): DREAM (ZS) algorithm: Explanation of the snooker update
for a hypothetical two-dimensional problem using some external archive of m = 10
points (grey dots). Three points of this archive Za , Zb and Zc are sampled at random
and define the jump of the ith chain, Xi (blue) as follows. The points Zb and Zc are
projected orthogonally on to the dotted XiZa line. The jump is now defined as a
multiple of the difference between the projections points,Zb

⊥ and Zc
⊥ (green squares)

and creates the proposal, Xi
p. The DREAM (ZS) algorithm uses a 90/10 % mix of

parallel direction and snooker updates, respectively.

Outlier chain correction

One of the critical limitations of multi-chain MCMC methods is that chains may be-
come ‘trapped’ in an unproductive region, because the size of the jumps is not large
enough to escape this local optimum. Since new proposals are generated from the
states of other chains, this slows (or even inhibits) convergence. The jumps of the
‘good’ chains are contaminated and the algorithm cannot converge (further explained
in section 6.2.3) (Gelman and Rubin, 1992; ter Braak and Vrugt, 2008).

The outlier chain detection implemented in DREAM uses the mean density (score)
of the second half of each chain to assess the performance of each trajectory. Anoma-
lous behavior is flagged, and outlier chains are moved to the position of one of the
other chains. (Vrugt et al., 2009).

Snooker update

Additionally, the DREAM(ZS) algorithm implemented the snooker update to increase
the diversity of the generated proposal samples.

Multi-Try

MT-DREAM(ZS) additionally implements multi-try sampling. This introduced an ad-
ditional parameter, µ, which is the number of different proposals generated for each
step for each chain. This additional feature works as follows (Laloy and Vrugt, 2012):

1. Generate µ trials z1, ..., zµ from the current state of the chain, j = 1, ..., µ

2. Compute the score of each of the µ proposal points

3. Randomly select one candidate point zj from step 1, with probability of each
trial proportional to its score

4. Generate reference points x∗1 , ..., x∗µ−1 from the current state of the chain

5. Set x∗µ to xt−1
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6. Accept z with probability:

p (xt−1, z) = min

{
1,

π (z1) + . . . + π (zk)

π
(
x∗1
)
+ . . . + π

(
x∗k
)} (3.2)

where π (zi) and π
(
x∗i
)

are the performance scores of the candidate points and
reference points, respectively.

The trial proposals can all be evaluated in parallel. The default value of µ = 5.

Implementation used in experiments

Again, the implementation of Differential-Evolution Adaptive Metropolis is based on
Approximate Bayesian Computation, resulting in the acceptance condition as in line
15 of algorithm 3.4.

Not all of the features previously described are used in the experiments for this
thesis. The following settings are used:

• Number of chains: 3, following the recommendation by Vrugt (2016).

• Prior distribution: uniform, so an uninformed prior is used.

• Multi-try: False. The logic implemented by multi-try, where the acceptance
probability is based on the ratio of the sums of scores, is incompatible with the
principles of ABC, where the proposal sample is accepted if it outperforms the
current point.

• Random start: True, to evaluate how DREAM performs when the user has no
prior knowledge. Since the starting position has a relatively large impact on the
performance of the algorithm when using a relatively low number of function
evaluations, replications will be performed of each experiment.

3.2.5 Shape of the likelihood function

The algorithms described above use a deterministic acceptance condition: proposals
are always accepted if they are within the region of interest, or if they perform better
than the previous point. This performance is defined in the likelihood function, which
is user-defined. The likelihood function takes the parameter vector generated by the
algorithm, calls the model (e.g. the barrel functions), evaluates the outcomes of in-
terest, and returns the ’likelihood’ of the parameter vector. This logic is presented as
pseudocode in 3.5. The likelihood functions are designed to have a uniform, highest
value within the region of interest, and decrease with increasing distance.

Since the likelihood function plays a central role in the performance of the algo-
rithms, various shapes were examined to find the function that led to the best perfor-
mance in each case. The examined shapes are inspired by the activation functions in
neural networks, which are used to map outcome values to the extent of activation of
the hidden neuron (Goodfellow et al., 2016). This is similar to the logic of the likeli-
hood function: the outcome values (which could be anything from -Inf to Inf), should
be translated to ‘within region of interest’ or ‘outside region of interest’.

The likelihood shapes presented in figure 3.4 are used in combination with the
adapted implementations of Adaptive Metropolis, Differential-Evolution Markov Chain
and DREAM(ABC) (as presented in section 5.1.2 for each of the test problems.

The ‘distance’ likelihood function (figure 3.4a) decreases linearly with increasing
distance. Therefore, any step closer to the region of interest is immediately accepted,
and the probability of making steps backwards is equal regardless of the position
with respect to the barrel. The sigmoidal-shaped hyperbolic tangent functions are
more lenient close to the region of interest, decrease quickly with increasing distance,
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Algorithm 3.4: Differential Evolution Adaptive Metropolis (adapted from
Vrugt (2016))

Input: The likelihood function L: Rn → R

The number of chains (N)
A prior distribution imax: The number of samples to be drawn
pCR: The crossover probability (=0.8)
Output: A list of accepted samples and their respective likelihoods

1 i← 0
2 while i < imax do
3 for chaini in range(chains) do
4 Select randomly r1, ..., rδ from [1, ..., chain− 1, chain + 1, ..., N] Set b to

be an empty set
5 for m={1,...,N} do
6 Draw a value ze from a standard uniform distribution
7 if ze ≥ (1− pCR) then
8 Add dimension m to the set b

9 p∗ ← number of elements of b
10 Set γ to 2.4/

√
2δp∗ with 80% probability, or 1 with 20% probability

Generate an array norm a of size d from a normal distribution with
mean 0 and stdev 1.

11 Generate proposal of the jth chain:

Aj
(i)(P) = Aj

(i) + γ(δ,d∗)

(
∑δ

l=1 Aj
(rl),b

−∑2δ
l=δ+1 Aj

(rl),b

)
+ 1e−6 ∗ norm a

12 Adapt and rescale proposal to ensure it respects the bounds
13 Calculate the likelihood scorei+1 of the proposal using the likelihood

function L
14 for chaini in range(chains) do
15 if scorei+1 <= scorei or score == 1 then
16 Accept proposal pi+1:
17 Add proposal to chain
18 Add scorei+1 to list of scores
19 naccepted +=1

20 else
21 Reject proposal:
22 Add previous sample pi to chain
23 Add previous scorei to list of scores

24 Detect and reset outlier chains by comparing the mean log-densities of the
second half of each of the N chains

25 return naccepted, chains, scores

Algorithm 3.5: Likelihood function - generic
Input: Parameter vector (sample)
Model function
Threshold that defines the region of interest
Output: Likelihood of the sampled parameters

1 model outcome = model(parameter vector)
2 if model outcome < threshold then
3 likelihood = 1

4 else
5 likelihood = decreasing with increasing distance (figures 3.4)

6 return likelihood
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(a) Distance (b) Hyperbolic tangent

(c) Hyperbolic tangent - steeper (d) Hyperbolic tangent - steepest

Figure 3.4: Graphs of the examined likelihood functions. The grey vertical line depicts the
boundary of the region of interest. The returned value of the likelihood function
(y-axis) decreases with increasing distance from this boundary.

and flatten afterwards. Therefore, if the chain is far away from the region of interest,
it doesn’t necessarily move closer. In large spaces, with relatively small regions of
interest this may be inefficient. The probability of moving further away from the
region of interest is very small when the chain is close, due to the steep slope. A
steeper slope emphasizes this behavior.

Following the conclusions drawn from the experiments discussed in appendix A,
the ‘distance’ likelihood function will be used for each algorithm for the experiments
conducted for this thesis.

3.3 performance measures

A set of performance measures is selected to describe the suitability of each approach
for Scenario Discovery, for a variety of test problems. The goal of Scenario Discovery is
to find all combinations of ranges of parameter values leading to a behavior of interest
and communicate these in an intuitive way. In other words, the objective is twofold:
the approach should be suitable to collect a representative sample of the regions of
interest in order to analyse it, and the collected sample should be readily processed to
inform decision-makers.

These goals can be divided into three categories. Firstly, the results of the analysis
should be easily interpretable. Secondly, the quality of the sample should be high, i.e.
suitable for a detailed analysis. Thirdly, the collection of the sample should be efficient,
to facilitate the analysis of complex problems.

In the following subsections, various performance measures from literature are dis-
cussed for each of these categories. In the final subsection, a set of performance
measures is presented that, together, provide a comprehensive understanding of the
relative performance of the various algorithms and corresponding approaches.
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3.3.1 Interpretability

Interpretability is one of the performance measure proposed by Lempert et al. (2008).
It refers to the ease with which decision-makers can understand the results. In the con-
text of Scenario Discovery using PRIM or CART, it is often implemented by restricting
the number of boxes to three or four, with each a maximum of two to three restricted
dimensions.

In this thesis, interpretability more broadly refers to the ease with which decision-
makers can understand the results. Instead of trying to quantify this measure, it will
be qualitatively discussed by comparing the results of Scenario Discovery using an
independent sampling approach to the results of post-processing the MCMC samples.
Chapter 4 will address the differences between independent and dependent sampling
with regards to interpretability in more detail.

3.3.2 Quality

To use MCMC for Scenario Discovery, it is imperative that the resulting sample can be
adequately analysed, yielding ranges of parameter values and/or intuitive visualiza-
tions, which can be readily interpreted by decision-makers.

Correct representation of the regions of interest

Firstly, the sample should be validated, by checking whether the correct regions of
interest are found. This entails two checks: 1) are all the regions of interest found,
and 2) are the ranges of parameter values roughly correct. These checks can easily be
performed on the known test problems presented in this thesis. Findings may be ex-
tended to the performance on unknown problems, where these checks are impossible.

Fraction of points of interest

The fraction of points of interest indicates how many of the samples in the chain (given
a certain burn-in period) are cases of interest. For MCMC algorithms, this indicates
how well the chain characterizes the posterior distribution. Figure 3.5 illustrates how
a different shape of the likelihood function of an MCMC algorithm may affect the
fraction of interest, and, therefore, how well the posterior can be characterized.

This performance measure can also be used to compare the computational efficiency
between MCMC algorithms and Latin Hypercube Sampling. It exposes the limitation
of LHS for the analysis of high-dimensional problems, especially when the regions of
interest are small and/or sparse.

3.3.3 Efficiency

Initial exploration of the application of the R-statistic for convergence yields poor
results for the test shapes, where R̂ immediately dives under 1.2, and stays there.
Potentially this is because the chains have not sufficiently mixed, as the Gelman Rubin
diagnostic can only be used after a burn-in period. However, calculations at any nfe
yield similar results. Therefore, it is not used for now.

The fraction of interest and acceptance rate together give a good idea of the com-
putational efficiency and performance of the MCMC algorithms. It is important to
consider them together: an exceptionally high acceptance rate may also indicate a
sloppy sample, and an exceptionally high fraction of interest could also mean many
of the samples in the chain are in fact the same point. In this case, the algorithm found
a region of interest, but never moved on, because any proposed sample is worse than
the current position.
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(a) Hyperbolic tangent - steepest;
fraction of interest = 85%

(b) Hyperbolic tangent;
fraction of interest = 56%

Figure 3.5: Pairplots of the Adaptive Metropolis algorithm (using the Metropolis Ratio for ac-
ceptance/rejection) applied to the ‘upright barrel shape’ with nfe=10,000, for vari-
ous likelihood functions. The region of interest is indicated in red.

Table 3.3: Input to various algorithms to guarantee the same number of function evaluations

Number of chains
Function evaluations

1000 3000 15000 30000

LHS n.a. 1000 3000 15000 30000

AM 1 1000 3000 15000 30000

DE-MC 9 111 333 1111 3333

DREAM(ABC) 3 335 1000 5000 10000

Number of function evaluations

Sadegh and Vrugt (2014) compare DREAM(ABC) to Rejection Sampling (ABC) and to
Population Monte Carlo (ABC) by comparing the number of function evaluations (nfe)
required to find 1,000 solutions of interest. They record the nfe and the acceptance
rate to compare the computational efficiency of the various algorithms.

Laloy and Vrugt (2012) compare the computational efficiency of DREAM(ZS) and
MT-DREAM(ZS). Here, the number of Computational Time Units (CTU) is recorded.
For sequential methods, this is equivalent to using the nfe. However, for DREAM(ZS),
CTU = FE/N, where N is the number of chains. For MT-DREAM(ZS), CTU =
FE/(N ∗ (k − 1

2 )), where k is the number of tries per iteration. However, Chu et
al. 2014 criticize the use of CTU as a measure of computational efficiency, as the
comparison between two algorithms is only fair if both are given the same number of
threads.

Therefore, the number of function evaluations will be varied for each algorithm
to assess whether this affects the performance of each sampling approach differently.
Since DE-MC and DREAM are multi-chain methods, the ‘number of iterations’ speci-
fied for these algorithms will deviate from the number of function evaluations, since
the chains are merged in the end. Table 3.3 specifies these numbers. This implies
that the multi-chain methods have a lower number of iterations per chain, compared to
the single-chain method AM. However, multi-chain methods are designed to be faster
than running the same number of function evaluations sequentially in a single chain,
as multiple chains are ran in parallel.

MCMC methods typically use a burn-in period: the first number of samples are
discarded. The analyses in this research use a burn-in period of 10%, or 100 iterations
if 10% is lower than that (unless otherwise indicated).
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Acceptance rate

The acceptance rate is the percentage of proposal points which is accepted, rather
than rejected. This statistic is used to measure the relative efficiencies of DREAM(ABC)
(Sadegh and Vrugt, 2014), DREAM(ZS) (Vrugt, 2016), and MT-DREAM(ZS) (Laloy and
Vrugt, 2012). A higher acceptance rate indicates a higher efficiency. However, if the
acceptance rate is too high, the accuracy of the sample may be low (Laloy and Vrugt,
2012).

3.3.4 Selection of measures for research

To summarize, for each of the broad requirements a set of performance measures is
selected that, together, provide insight in the performance of the approach for Scenario
Discovery.

1. Interpretability

• A qualitative discussion of the relative interpretability of the approaches

2. Quality

• Correct representation (check)

• Fraction of cases of interest

3. Efficiency

• Acceptance rate

• Number of function evaluations

The next chapter will address the differences between independent and dependent
sampling with regards to interpretability. The ease of interpretation is related to the
processing and presentation of the results and is therefore equal for each MCMC
algorithm.

The subsequent chapter evaluates a number of MCMC algorithms on the basis of
the remaining performance measures.



4 V I S U A L I Z AT I O N A N D C O M M U N I C AT I O N
O F R E S U LT S

This chapter explores the potential of dependent sampling approaches for Scenario
Discovery by proposing a method for the processing of the results, yielding outcomes
that are relevant in a policy-making context. These outcomes and the processing
steps are compared to the original independent sampling approach. Throughout the
chapter, the 50d, small test problem with two disjoint barrels in separate dimensions
is used for demonstration of the approaches.

4.1 independent sampling
The methodology for Scenario Discovery (as described in section 2.1) includes process-
ing of the results using PRIM, which highlights the dimensions causing the behavior
of interest. This greatly improves the interpretability of the results, by immediately
presenting decision-makers with ranges of input parameter values causing the behav-
ior of interest.

As a baseline for the interpretability of the results of MCMC approaches, PRIM is
applied to the small, 50d test case. This test problem contains a sufficient sample
of the cases of interest because of the small interval, but cannot be intuitively inter-
preted from a scatterplot due to its high number of dimensions. The same analysis is
performed for each test case discussed in this chapter.

As demonstrated in figure 4.1, it is possible to identify the ranges of input parameter
values that define the region of interest using two boxes. The first box describes
the barrel defined by x1, x2, x3, and the second box describes the barrel defined by
x47, x48, x49. PRIM ignores the remaining 44 empty dimensions. Similar to the 3d
plots in figure 3.1, the first barrel cannot be visually distinguished because of the
cases of interest from the second barrel. The ranges of values for uncertain parameters
defining the regions of interest are presented in table 4.1, as would be presented to
decision-makers.

It is important to realise that this analysis cannot be performed for the test problems
with a larger parameter space, since even the sample with 30,000 cases did not provide
a sufficient characterization of the input space (see section 5.2.2).

4.1.1 Applicability of original approach to MCMC sample

The definitions of density and coverage from Lempert et al. (2008) are not directly
applicable to dependent samples. The reasoning for this is outlined below, along with
their potential implementations for dependent samples.

Table 4.1: Ranges of values for uncertain parameters defining the regions of interest, for LHS
sample of 50d, small test problem using PRIM.

box 1 box 2

min max min max
x1 -0.131531 0.132578 x47 -0.413606 0.394481

x2 0.108813 0.397337 x48 -0.367195 -0.118585

x3 -0.401516 0.445789 x49 -0.129931 0.146916
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(a) First box (b) Second box

Figure 4.1: PRIM performed on LHS (independent sampling) results for the 50d, small test
problem. Orange dots are cases of interest, blue dots are not.

Coverage and density, the two quantifiable performance measures proposed by
Lempert et al. (2008), are not directly applicable to a Markov chain. However, they
may be adapted to provide a similar insight for MCMC results as they do for LHS
results.

Coverage

Coverage was originally defined as the number of cases of interest within the box,
divided by the total number of cases of interest (Lempert et al., 2006). Since the
MCMC-ABC sample only consists of cases of interest, coverage cannot be calculated
directly. Since its probability distribution reflects the true posterior, the percentage of
the integral of the probability distribution within the box is analogous to coverage: as
the size of a box decreases, the portion of the distribution within the box decreases.

Density

Latin Hypercube produces a sample which is approximately uniform for each param-
eter, containing both cases of interest and cases not of interest, which allows for the
calculation of the density. Density was originally defined as the number of cases of
interest within the box, divided by the total number of cases within the box (Lempert
et al., 2006). Instead, dependent sampling methods reject proposed parameter values
that do not lead to behavior of interest, yielding a chain with a very high fraction of
cases of interest. Thus, the density of a DREAM sample cannot readily be determined.

Potentially, one could also record these rejected proposals, and use these data points
as the ‘cases not of interest’ to calculate the density. However, these points would be
mostly concentrated at the boundaries of the regions of interest, rather than cover the
space. Because even if they are recorded, they are not accepted, and therefore new
points are being generated from the position of the last accepted point, which is within
the region of interest. The distribution of rejected proposals will be skewed due to the
limited jump rate.

Another option is to use MCMC sampling to derive the relevant dimensions using
the Kolmogorov-Smirnov test and take a LHS sample of this subset of dimensions. Or,
one could go one step further and extract coarse ranges of the parameter values to
use as inputs for Latin Hypercube. This sample of a subspace of the uncertainty space
could be further analysed using PRIM or CART.
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The remainder of this chapter will explore the possibility of directly using the
MCMC sample for further analysis, without the need of additional sampling.

4.2 dependent sampling
Similar to what PRIM does for the independent sample, the results of the MCMC
algorithms should be post-processed to present the ranges of values for uncertain
parameters defining the regions of interest. To this the end, the following features
should be derived:

1. the relevant dimensions to which the behavior of interest is sensitive

2. the combinations of ranges of parameter values leading to behavior of interest.
I.e. for this test problem, a combination of x1, x2, x3 may lead to behavior of
interest, regardless of the values for x47, x48 and x49, and vice versa.

Firstly, the samples should be ‘filtered’ to derive the dimensions of interest. A prop-
erty which could be used to derive the dimensions causing the behavior of interest is
the fact that the input space is non-uniformly sampled, i.e. regions of interest are sam-
pled significantly more often: the sampling ‘concentrates’ in the regions of interest.
After the algorithm converges, the sample represents the target distribution (similar
to the orange density function in figure 4.1b). When comparing subfigures 4.3a and
4.3a, the difference is evident: sampling for x2 (one of the dimensions of interest) is
clearly not uniform. An often-used method to quantify the different shapes of these
distributions is the Kolmogorov–Smirnov test (KS test) (Massey, 1951).

Secondly, a potential approach is explored to extract the ranges from these dimen-
sions. The probability density of the parameter values is estimated from the sample
and the part within that sample with high density is derived.

By slicing the dataframe at the previously found ranges of parameter values, re-
calculating the KS statistic for this subset and finding the corresponding ranges of
parameter values for the other dimensions, the combinations of ranges of parameter
values leading to behavior of interest are found.

This approach is demonstrated for the 50d, small problem, which shows how multi-
ple dimensions in distinct subspaces are found. Finally, three test cases are discussed
to demonstrate the possibility to distinguish multiple regions of interest within a di-
mension.

4.2.1 Deriving the dimensions of interest

The Kolmogorov–Smirnov test compares a sample to a probability distribution by
calculating the maximum distance between the sample’s cumulative density function
(CDF) and the CDF of the reference distribution (as illustrated in figure 4.2). If this
statistic is low, the sample follows the reference distribution. If it is higher, the hypoth-
esis of resembling the reference distribution is rejected.

This test can be used to distinguish dimensions in which the sampling is not uni-
form, indicating a region of interest. This is illustrated in figures 4.3 and 4.4, where
the KS statistic is plotted for each dimension. The value is calculated by removing the
burn-in period and merging the chains.

Since this is a stylized problem, where the regions of interest are known beforehand,
the results can be validated. The dimensions x1, x2, x48 and x49 have a much higher
value for the KS statistic, as demonstrated in figure 4.10. Since the barrels occupy
almost the entire space in dimensions x3 and x47, most PRIM boxes also do not include
these dimensions.

Evidently, the Kolmogorov-Smirnov test, using a uniform distribution with loc=
−0.5 and scale= 1 (i.e. bounds of [-0.5, 0.5]) point to the dimensions that contain
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Figure 4.2: Illustration of the Kolmogorov–Smirnov test for a normal distribution, with the
cumulative density function of the sample in blue and the reference distribution in
red. The pairwise distances between the sample and the reference distribution are
calculated at each point. The maximum of these distances is the recorded statistic.
Adapted from Mathworks (2020).

(a) Dimension x6, which does not contribute to the
region of interest. KS statistic = 0.02.

(b) Dimension x2, which contributes to the region
of interest. KS statistic = 0.23.

Figure 4.3: Histograms of the distribution of samples for two dimensions: one which does and
one that does not contribute to the region of interest; to illustrate how the differ-
ence may be distinguished from an MCMC sample. The orange line is a uniform
distribution.

Figure 4.4: Cumulative probability functions of x1 to x50 in blue. Dimensions with a KS statistic
of > 0.1 (i.e. x1, x2, x48 and x49) are coloured orange for clarity. The cumulative
probability of a uniform distribution is displayed in red.
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Figure 4.5: Barplot of the value of the KS statistic for each of the dimensions in the
DREAM(ABC) sample of the 50d, small test problem with nfe=30,000. The KS statis-
tic is calculated by comparing to a uniform distribution with bounds [-0.5, 0.5].

the region of interest. It is therefore an applicable and useful preprocessing step to
visualize the results of Scenario Discovery using a dependent sampling approach. For
general applicability, it will be useful to define a threshold below which the dimension
will not be considered. In this case, a threshold of ≈ 0.05 yields the desired results,
which corresponds to the threshold value recommended in literature (Massey, 1951).

Following Sadegh and Vrugt (2014) in their journal paper presenting DREAM(ABC),
the selected dimensions of the DREAM(ABC) sample (x1, x2, x3, x47, x48 and x49) are
visualized in a pairplot, showing the pairwise relationships in the sample. This plot
(figure 4.6) gives insight in the ranges of parameter values of interest. A trained eye
may also notice that x1, x2, and x3, and x47, x48 and x49 form two distinct regions
of interest. However, the interpretation is not intuitive, and therefore not suitable for
communication to decision-makers.

Contribution to the performance measures

The KS-test yields additional information, which the previous performance measures
‘acceptance rate’ and ‘fraction of cases of interest’ did not yet reveal. Firstly, it allows
one to check whether all regions of interest are found, or whether the algorithm gets
stuck in one region of interest and fails to explore the entire uncertainty space.

Secondly, it allows to draw more quantitative conclusions as to which number of
function evaluations is sufficient to characterize the regions of interest. Simply plot-
ting the samples already suggest that the regions of interest cannot be readily dis-
tinguished, but this is highly qualitative. The histograms of the KS-statistic (figure
5.11b) quantifies and supports this hypothesis, since most irrelevant dimensions do
not satisfy the threshold of 0.05.

4.2.2 Regions of interest

When the dimensions causing the region of interest are determined, the specific com-
binations of ranges of parameter values describing the region(s) of interest can be
derived.

Ranges of input parameter values leading to an outcome of interest

Besides visual inspection, the ranges of input parameter values leading to an outcome
of interest may be determined by visual inspection of the kernel density estimation
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Figure 4.6: Pairplot of the selected dimensions of the DREAM(ABC) sample of the 50d, large
test problem.
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(a) x1 (b) x2 (c) x3

(d) x47 (e) x48 (f ) x49

Figure 4.7: Probability density for each dimension of interest for the large, 50d test problem,
generated by kernel density estimation. The ranges of parameter values are indi-
cated by the vertical orange lines.

(kde) of each dimension or the raw data. KDE is a machine learning technique for
data smoothing of finite samples (Rosenblatt, 1956; Parzen, 1962). It transforms the
discrete sample into a continuous distribution of the sampling frequency.

Figure 4.7 shows the KDE plots of the selected dimensions. Vertical lines indicating
the boundaries of the region of interest are derived using a threshold of 0.1 for the
probability density. The parameter values with a density that exceeds this threshold
are within a region of interest. This empirically derived threshold value of 0.1 yields
results that are in agreement with the PRIM results, but may be varied to include more
or fewer sampled points.

The bounds for the small test problem are also presented in table 4.2 and contrasted
with the values found by PRIM. While the bounds found using this method vary from
the values found by PRIM, the KDE plots of the MCMC samples resembles the KDE
of the cases of interest, as visualised in figure 4.1. It is important to realise that both
the box choice in PRIM and the choice of a threshold value here are highly subjective
and largely determine the similarity of the values.

Table 4.2: Ranges of parameter values delineating the region of interest for the 50d, small test
problem

LHS DREAM(ABC)
min max min max

x1 -0.16 0.17 -0.15 0.16

x2 0.08 0.41 0.08 0.40

x48 -0.38 0.10 -0.41 0.09

x49 -0.13 0.14 -0.15 0.16

Combinations of parameter values

By iterating over the dimensions of interest, the combinations of parameter values
leading to behavior of interest; i.e. the distinct regions of interest can be found. The
process is as follows:

1. Select the next dimension of interest
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2. Slice the dataframe so it only contains samples within the range derived from
the KDE plot in the previous step of this dimension of interest and recalculate
the KS statistic for the all other dimensions.

3. Select the dimension with the highest value for the KS statistic

4. Determine the range of parameter values leading to behavior of interest for this
dimension

5. Repeat steps 2-4 until the KS statistics are low for each dimension; i.e. no other
dimension contributes to the region of interest

6. Repeat for each dimension of interest found, until all are accounted for

4.2.3 Demonstration for three cases

This process can be explained and demonstrated using three examples: a case with
one region of interest, and two case with two regions of interest: one where the regions
of interest are in separate dimensions, and one where they are in the same dimensions.
The following paragraphs will go through the steps to illustrate.

One region of interest

The test problem used in this paragraph is the upright barrel in a 3d, small uncertainty
space. The KS test yields high values for x1 and x2, so the steps are repeated for these
two dimensions. Again, the barrel shape extends to the borders of the third dimension,
so this dimension is only included if the threshold value is significantly increased. This
is consistent with the results of Lempert et al. (2008).

1. First, select x1. The region of interest lies between -0.20 and 0.18.

Figure 4.8: Dimension of interest x1

2. Recalculating the KS statistic given −0.20 < x1 < 0.18 yields a value of 0.24 for
x2 and 0.03 for x3.

3. x2 is selected.

4. The area between -0.2 and 0.19 exceeds the threshold and therefore delineates
the region of interest.

5. Recalculating the KS statistic for x3, given −0.20 < x1 < 0.18 and −0.20 < x2 <
0.19 yields a KS score of 0.03, which is not significant.

6. Repeating these steps for x2 yields the same region of interest, so there is only
one region of interest, defined by (−0.20 < x1 < 0.18 and −0.20 < x2 < 0.19).
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Figure 4.9: Dimension of interest x2, given −0.20 < x1 < 0.18

The steps described above can be summarized in a table of KS values, given the
ranges derived in each step. The conditions presented in the column names are cumu-
lative, i.e. for the last column all previous conditions are also imposed. This manner
of reporting will be used for the remainder of the cases.

Table 4.3: KS statistic for x1, x2, x3, given the conditions found in each step.
none −0.20 < x1 < 0.18 0.13 < x2 < 0.38

x1 0.25 - -
x2 0.25 0.24 -
x3 0.04 0.03 0.03

The values for the boundaries of the regions of interest are consistent with the
results of independent sampling combined with PRIM.

Two regions of interest in the same dimensions

The test problem used in this paragraph is the disjoint barrels in a 3d, small uncer-
tainty space. This problem is interesting, because PRIM finds two regions of interest,
which partially occupy the same dimensions: one region of interest is defined by x1
and x2, and the other by x2 and x3. The steps proposed in sections 4.2.1 and 4.2.2 are
followed to find these regions of interest from the DREAM(ABC) sample.

Table 4.4 presents the KS statistic for each dimension for each step. The leftmost
column shows the KS statistic for each dimension without restrictions. The range of
parameter values driving the behavior is derived for the first dimension and imposed
as a rule. Repeating this process with this subset of the sample yields the first region
of interest, defined by −0.13 < x1 < 0.13 and 0.13 < x2 < 0.38.

Table 4.4: First round of the process: KS statistic for x1, x2, x3, given the conditions found in
each step.

none −0.13 < x1 < 0.13 0.13 < x2 < 0.38
x1 0.17 - -
x2 0.08 0.29 -
x3 0.19 0.12 0.06

For the full sample, the KS statistic of x1 and x3 both exceed the threshold. There-
fore, the process of finding the regions of interest will be repeated for x3.

These can be validated by comparison to the results of a PRIM analysis of a Latin
Hypercube sample. Table 4.6 presents the regions of interest found by LHS/PRIM
and using this method on a DREAM(ABC) sample.

The values describing the regions of interest are similar. The differences between
the regions derived from the dependent sampling approach and the LHS/PRIM re-
sults are due to the box choice in PRIM (i.e. the specific trade-off between density
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Table 4.5: Second round of the process: KS statistic for x1, x2, x3, given the conditions found in
each step.

none −0.20 < x3 < 0.20 −0.42 < x2 < −0.09
x1 0.17 0.12 0.05

x2 0.08 0.24 -
x3 0.19 - -

Table 4.6: Regions of interest found by a PRIM analysis of a Latin Hypercube sample, con-
trasted with the results of the proposed methodology for dependent sampling.

First region Second region
LHS DREAM LHS DREAM

min max min max min max min max
x1 -0.16 0.17 -0.13 0.13 - - - -
x2 0.08 0.41 0.13 0.38 -0.38 -0.10 -0.42 -0.09

x3 - - - - -0.13 0.14 -0.20 0.20

and coverage that is chosen) and the choice of the threshold value for the dependent
sampling approach.

Two regions of interest in separate dimensions

The test problem used in this paragraph is the disjoint barrels in a 50d, large un-
certainty space. The regions of interest in this test problem are placed in different
dimensions.

Performing the KS test for the 50d, large test problem proves that, when the region
of interest is much smaller than the uncertainty space, the results of the KS test are in
line with the theory. Indeed, the dimensions of interest are x1, x2, x3, x47, x48 and x49,
which have a much higher value for the KS statistic, as demonstrated in figure 4.10. So
the steps proposed in section 4.2.2 will be repeated for each of these six dimensions.

Figure 4.10: Barplot of the value of the KS statistic for each of the dimensions in the
DREAM(ABC) sample of the 50d, large test problem with nfe=30,000. The KS
statistic is calculated by comparing to a uniform distribution with bounds [-5, 5].

Starting with x1, the first region of interest is found, defined by x1, x2 and x3.
The process is repeated beginning with x2, x3, x47, x48 and x49. The first two yield

the same region of interest as x1. x47, x48 and x49 jointly yield another region of
interest.
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Table 4.7: First round of the process: KS statistic for x1, x2, x3, x47, x48, x49 given the conditions
found in each step.
none 1.25 < x1 < 2.75 1.81 < x2 < 2.77 1.78 < x3 < 2.77

x1 0.23 - - -
x2 0.27 0.57 - -
x3 0.22 0.49 0.56 -
x47 0.33 0.07 0.05 0.05

x48 0.40 0.12 0.03 0.03

x49 0.37 0.08 0.04 0.04

Table 4.8: Fourth round of the process: KS statistic for x1, x2, x3, x47, x48, x49 given the condi-
tions found in each step.

none −2.93 < x47 < −1.18 −2.67 < x48 < −1.87 −2.39 < x49 < −1.62
x1 0.23 0.05 0.05 0.04

x2 0.27 0.09 0.09 0.06

x3 0.22 0.04 0.04 0.04

x47 0.33 - - -
x48 0.40 0.59 - -
x49 0.37 0.58 0.58 -

4.3 conclusions
First of all, although the method is still imperfect, its results are in agreement with the
results of a PRIM analysis of an independent sample. This proves that dependent sam-
pling approaches are promising to use for Scenario Discovery and are worth exploring
further.

Naturally, this method to derive the combinations of ranges of parameter values
yields slightly different results than PRIM. Both the box choice in PRIM and the choice
of a threshold value are highly subjective and largely determine the similarity of the
values. The threshold value can be increased or decreased to include fewer or more
data points, similar to the trade-off between density and coverage in PRIM.

The interpretability of the results is comparable between the dependent and inde-
pendent approaches. Both yield the combinations of ranges of parameter values that
lead to behavior of interest. Intuitive visualizations (like the pairplots with red boxes
delineating the regions of interest) have already been developed for the original ap-
proach, which can be mimicked by the dependent sampling approach.

An important drawback is the limitation to orthogonal subspaces, similar to PRIM
in its early days. Additional research has since been done to resolve this by, for
example, performing Principal Component Analysis, rotating the coordinates as a
preprocessing step (Dalal et al., 2013).



5 C O M PA R I N G A LG O R I T H M S

Given the demonstration of the applicability of dependent sampling approaches to
Scenario Discovery, this chapter explores a number of MCMC-ABC algorithms which
may be applied.

5.1 experimental setup
To compare the performance of these algorithms, each of the components below is
varied. The motivation and implementation of each of these are briefly discussed in
the remaining of this section.

• Various algorithms, selected from a literature review, contrasted with Latin Hy-
percube Sampling;

• Four different definitions of the likelihood function, as presented in figure 3.4.

• Various test shapes, adapted from Lempert et al. (2008);

5.1.1 Test shapes

The simple test shapes are taken directly from Lempert et al. (2008). They were origi-
nally developed to challenge PRIM and CART in various ways, and will be used here
to study the performance of various MCMC algorithms for Scenario Discovery.

The high-dimensional test problems are adapted from the ‘disjoint barrels’ test
shape proposed by Lempert et al. (2008) to mimic the envisioned application of the
MCMC algorithms, i.e. a large uncertainty space with small, sparse regions of interest.
The precise definitions are presented in table 3.2.

5.1.2 Algorithms

In the literature review in section 3.2, three algorithms are selected to test and demon-
strate their performance relative to each other and to Latin Hypercube Sampling. The
performance of the MCMC algorithms is compared to a Latin Hypercube sample of
the uncertainty space, to illustrate the difference between dependent and independent
sampling for each type of problem. Adaptive Metropolis is selected to demonstrate
the difference between single chain and multi-chain methods. Differential-Evolution
Markov Chain contains the core principle of DREAM, but without many of the op-
timizations implemented in DREAM. The Python implementations of the algorithms
are adapted from Vrugt (2016).

To ensure that the results are not caused by an (un)lucky starting position or sample,
each experiment is replicated twenty times.

Number of function evaluations

The algorithms are compared given the same number of function evaluations. This
implies that the multi-chain methods have a lower number of iterations per chain, com-
pared to the single-chain method AM and LHS. The number of function evaluations
are used as a measure of computational efficiency.
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Latin Hypercube Sampling

A Latin Hypercube Sample is drawn from each test problem. The number of sam-
ples is equal to the number of function evaluations in the Monte Carlo methods in
order to make a fair comparison. The sampling is performed using the EMA Work-
bench (Kwakkel, 2017), with the dimensions (x1, x2, x3, etc) as uncertainties within the
bounds identical to the bounds defined for the MCMC methods.

MCMC algorithms

The MCMC algorithms described in section 3.2 are applied to each test problem, com-
bined with the four different definitions of the likelihood function described in section
3.2.5. Each of these experiments is ran for four different numbers of function evalua-
tions, to:

1. Find the most suitable likelihood for each algorithm, the results of which are
presented in appendix A. In conclusion, the ‘distance’ likelihood function is used
for each algorithm;

2. Compare the performance of the various algorithms, given the performance mea-
sures defined in 3.3.

5.2 latin hypercube sampling

5.2.1 Simple test problems

The fractions of cases of interest for the various test shapes and numbers of function
evaluations are presented in table 5.1. As expected, the fraction is proportional to the
relative size of the region of interest, compared to the full sampled area. The fraction
does not change with a higher number of function evaluations.

Table 5.1: Fractions of interest of LH sample of various barrel shapes in 3d
Function evaluations

1000 3000 15000 30000

Upright barrel 0.17 0.18 0.18 0.18

Tilted barrel 0.29 0.28 0.28 0.28

Crossed barrels 0.15 0.16 0.16 0.16

Disjoint barrels 0.21 0.21 0.20 0.20

Characterizing the region of interest using LHS is quite simple. Since the uncer-
tainty space is uniformly sampled, one can use PRIM or CART to find the ranges of
uncertain parameters causing cases of interest. For this simple 3d case, it is also pos-
sible to directly visualize the shape by colour-coding the cases of interest, as in figure
5.1.

5.2.2 High-dimensional test problems

The fractions of cases of interest in a Latin Hypercube sample of the various test prob-
lems are presented in table 5.2. The performance for the problems with the smaller
bounds is comparable to performance for the 3d test problems, since the additional
dimensions are empty.

Latin Hypercube evidently struggles with the larger bounds: the number of cases
of interest drops to a negligibly low number. Increasing the number of function eval-
uations does not increase the fraction, so an unrealistically high number of function
evaluations are required to reliably define the regions of interest.
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(a) Tilted barrel (b) Disjoint barrels

Figure 5.1: Colour-coded pairplots, generated from a Latin Hypercube sample of size 10000.

Table 5.2: Fractions of interest of LH sample of various higher dimensional test problems
Function evaluations

1000 3000 15000 30000

6d, small 0.18 0.20 0.19 0.20

6d, large <0.01 <0.01 <0.01 <0.01

50d, small 0.11 0.10 0.10 0.10

50d, large <0.01 <0.01 <0.01 <0.01

5.3 adaptive metropolis

5.3.1 Simple test problems

Plotting the AM sample confirms that the regions of interest are found, and that the
ranges of parameter values are consistent with the Latin Hypercube sample.

The acceptance rate varies slightly between the various test shapes. The tilted barrel
yields a higher acceptance rate than the upright barrel, most probably because this
shape is larger: there is simple a bigger probability of sampling within the region of
interest. Interestingly, the disjoint barrels have a much lower acceptance rate than the
upright barrels, while they occupy a similar percentage of the uncertainty space. The
MCMC methods have some trouble crossing the space between the regions of interest,
since the success of the jump also depends on the jump rate. The fraction of cases of
interest is consistently high.

The number of function evaluations does not have an obvious effect on the perfor-
mance of the algorithm.

(a) Acceptance rate (b) fraction of cases of interest

Figure 5.2: Performance of the AM algorithm for the simple test problems
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Figure 5.3: The AM algorithm has no trouble finding both input spaces in the small, 6d prob-
lem.

5.3.2 High-dimensional test problems

Figure 5.3 demonstrates that, given a suitable starting position and a sufficient number
of function evaluations, AM characterizes the region of interest in a small uncertainty
space well. The shapes of the regions of interest can easily be distinguished.

Figure 5.4 suggests that in a larger uncertainty space, the AM algorithm may have
trouble reaching the region of interest within the given number of function evaluations
if the starting position is far away from the region of interest.

Additionally, the AM algorithm fails to find both regions of interest, when chal-
lenged with a large uncertainty space. When plotting the KS-statistics per dimension
for various numbers of function evaluations (while considering the burn-in period
and merging the chains), the samples generated by the Adaptive Metropolis algo-
rithm only distinguish one region of interest at a time, since the proposed samples are
generated by pi+1 = pi + δ, where δ is generated from a multivariate normal distribu-
tion with mean = 0 and covariance = 2.38

2
d · I(d) = 1.04 · I(50) (algorithm 3.2), i.e. the

jump rate is insufficient to reach the other region of interest once one has been found.
Two illustrative AM samples are analysed and displayed in figure 5.5.

5.4 differential evolution markov chain

5.4.1 Simple test problems

Plotting the DE-MC sample confirms that the regions of interest are found, and that
the ranges of parameter values are consistent with the Latin Hypercube sample.

Similar to the results of the AM algorithm, the acceptance rate varies slightly be-
tween the various test shapes. The fraction of cases of interest is consistently high.

The number of function evaluations does not have an obvious effect on the accep-
tance rate. The fraction of cases of interest logically increases with increasing number
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Figure 5.4: The starting position of the AM algorithm is in a corner of the 50-dimensional, large
input space, leading to a long trajectory to the region of interest (in the middle of
the input space). The number of function evaluations proves insufficient for the
algorithm to converge to the region of interest. Only the three dimensions defining
the first region of interest are presented here.

(a) AM finds the first region of interest, defined by
x1, x2, x3.

(b) AM finds the second region of interest, defined
by x47, x48, x49.

Figure 5.5: Histograms of the value of the KS statistic for each of the dimensions in the Adaptive
Metropolis sample of the 50d, large test problem. The single-chain method only
finds one region of interest, because the jumping distance is insufficient to find
both.
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(a) Acceptance rate (b) fraction of cases of interest

Figure 5.6: Performance of the DE-MC algorithm for the simple test problems

(a) nfe=3000 (b) nfe=30,000

Figure 5.7: Histograms of the value of the KS statistic for each of the dimensions in the Differ-
ential Evolution Markov Chain sample of the 50d, large test problem.

of function evaluations, as the algorithm is allowed to converge further to the region(s)
of interest. No clear trade-off between efficiency and quality can be distinguished.

5.4.2 High-dimensional test problems

The KS-statistic of the DE-MC samples often exceeds the threshold of 0.05. The di-
mensions of interest may still be distinguished, but without prior knowledge it would
be difficult to rule out some dimensions (e.g. x41. The cumulative probability, dis-
played in figure 5.8 further illustrates this: compared to the cumulative probability of
the DREAM sample (figure 4.4), the blue lines deviate much more from the uniform
(red) line. With a lower number of function evaluations (nfe=3000, figure 5.7a), it is
impossible to define the regions of interest.

Figure 5.8: Cumulative probability functions of x1 to x50 (DE-MC, nfe=30,000). Dimensions x1,
x2, x3, x47, x48 and x49 are coloured orange for clarity. The cumulative probability
of a uniform distribution is displayed in red.
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5.5 differential evolution adaptive metropolis

5.5.1 Simple test problems

Plotting the DREAM sample confirms that the regions of interest are found, and that
the ranges of parameter values are consistent with the Latin Hypercube samples.

Similar to the results of the AM and DE-MC algorithms, the acceptance rate varies
slightly between the various test shapes. The fraction of cases of interest is consistently
high, but not approximately 1, as for AM and DE-MC.

The number of function evaluations does not have an obvious effect on the accep-
tance rate. The fraction of cases of interest logically increases with an increasing
number of function evaluations, as the algorithm is allowed to converge further to the
region(s) of interest.

5.5.2 High-dimensional test problems

The DREAM(ABC) sample resembles both regions of interest for every replication,
and the regions of interest can be distinguished reasonably well when looking at
figure 5.10.

For DREAM(ABC), the number of function evaluations matters for whether or not
the KS test yields the desired results. This is illustrated in figure 5.11. AM and DE-MC
follow similar behavior.

For a very low number of function evaluations (nfe=1000, figure 5.11a), the sample
does not represent the full target distribution. Regions of interest cannot be distin-
guished. For nfe=3000 (figure 5.11b), the regions of interest can be distinguished
visually, but value of the KS statistic of the irrelevant dimensions is not below the
threshold. For nfe=15,000 (not pictured) the results are similar to the results presented
in figure 4.10 (nfe=30,000), so this number of function evaluations is already sufficient.

(a) Acceptance rate (b) fraction of cases of interest

Figure 5.9: Performance of the DREAM algorithm for the simple test problems
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(a) First region of interest (b) Second region of interest

Figure 5.10: DREAM(ABC) sample of 50d test problem, with large bounds

(a) nfe = 1000 (b) nfe = 3000

Figure 5.11: Histograms of the value of the KS statistic for each of the dimensions in the
DREAM(ABC) sample of the 50d, large test problem. The KS statistic is calculated
by comparing to a uniform distribution with bounds [-5, 5].
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5.6 comparing algorithms
As evident from figure 5.12, each of the MCMC algorithms outperforms Latin Hy-
percube with regards to the fraction of cases of interest. The acceptance rates and
fractions of cases of interest of the algorithms for the various test problems are pre-
sented for a low and high number of function evaluations in figure 5.13. Evidently, the
fraction of cases of interest is considerably higher for each of the dependent sampling
algorithms than for a Latin Hypercube sample. The difference between the various
algorithms is not apparent when applied to the small test problems.

(a) Acceptance rate, 1000 nfe (b) Acceptance rate, 30,000 nfe

(c) Fractions of interest, 1000 nfe (d) Fractions of interest, 30,000 nfe

Figure 5.12: Acceptance rates and fractions of interest of the various algorithms for various test
shapes in 3d, for 1000 and 30,000 nfe

For the larger test problems, the acceptance rate and fractions of cases of interest
do not tell the entire story. Each of the MCMC algorithms occasionally have a very
low fraction of cases of interest, indicating that the chains do not reach any region of
interest within the given nfe. The plots are generated using 20 replications of each ex-
periment, so that this behavior wouldn’t skew the results. But this also means that this
unreliability is not immediately visible. For DE-MC and DREAM, this happens only
at nfe=1,000 and for the ‘50d - large’ test problem. However, for Adaptive Metropo-
lis, it may also happen at nfe=30,000 or for the ‘6d - small’ challenge. This is most
likely caused by the way proposal samples are generated in Adaptive Metropolis: by
adding a value to the current point (pi+1 = pi + δ). It does not have the jumping
features implemented in DE-MC and DREAM.

Besides, an interesting feature of the graphs is that the acceptance rate of the AM
algorithm decreases with increasing nfe, while the acceptance rate of DE-MC and
DREAM increase with increasing nfe. Simultaneously, the fraction of cases of interest
increases for the larger test problems, while it is stable for the test problems with
narrower bounds. For the former problems, the algorithms were still progressing
towards the posterior target distribution.
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(a) Acceptance rate, 1000 nfe (b) Fractions of interest, 1000 nfe

(c) Acceptance rate, 30,000 nfe (d) Fractions of interest, 30,000 nfe

Figure 5.13: Acceptance rates and fractions of interest of the various algorithms for various
high-dimensional test shapes, for 1000 and 30,000 nfe

5.7 conclusions
From the experiments described in the previous sections, a number of conclusions can
be drawn, which answer the fourth subquestion, as discussed in the introduction.

Each of the MCMC algorithms outperforms Latin Hypercube, especially for high-
dimensional problems with sparse regions of interest. This is most evident for the test
problems with expanded bounds, where a Latin Hypercube sample is insufficient to
characterize the region of interest using PRIM given a reasonable number of function
evaluations.

With regards to the relative performance of the various algorithms, the number of
function evaluations seems to impact each MCMC-ABC algorithm differently: with a
higher nfe, the fraction of cases of interest increases for DE-MC, stays approximately
100% for AM and is stable around 90% for DREAM. The choice of likelihood func-
tion is determined based on experiments on the small and large test problems. For
each algorithm, the function that decreases linearly with increasing distance from the
boundary of the region of interest leads to the highest fraction of cases of interest.
For the remainder of the experiments and conclusions, this setting is used for each
algorithm.

The Adaptive Metropolis algorithm is not very reliable. Often, it is not able to ade-
quately represent the regions of interest, as demonstrated in figure 5.4. Additionally,
if the regions of interest are further apart, AM gets stuck in a single region of interest
and fails to explore the uncertainty space.

DE-MC and DREAM consistently perform well, yielding a high fraction of cases of
interest and a reasonable acceptance rate. DE-MC and DREAM consistently find all
regions of interest. DREAM has a higher acceptance rate than DE-MC for the larger
test problems, most probably due to DREAMs subspace sampling, since only a few
dimensions are actually of interest.



6 C O N C L U S I O N S & D I S C U S S I O N

6.1 answering the research question
This final chapter adresses the research question posed in chapter 1: ‘How can depen-
dent sampling methods be used for effective Scenario Discovery to characterize high-
dimensional problems with sparse regions of interest?’ To do so, the sub-questions
are briefly discussed, after which the proposed methodology for Scenario Discovery
is presented, answering the research question.

1. Which dependent sampling methods may be employed for Scenario Discovery?

Since a formal definition of the likelihood function is not possible for complex sim-
ulation models, sampling should be performed using Approximate Bayesian Compu-
tation (ABC), where proposal samples are always accepted when their performance
exceeds the performance of the current point and always rejected when their perfor-
mance is worse. Normal Markov Chain Monte Carlo (MCMC) methods, which reject
samples based on a probability proportional to the relative performance, are not ap-
plicable because they require a formal likelihood function.

The specific algorithms have been selected based on the availability of a Python im-
plementation, their respective contribution to the understanding of MCMC methods
for Scenario Discovery, and to what extent they support the academic argument. Be-
sides Latin Hypercube Sampling, Adaptive Metropolis, Differential Evolution Markov
chain and Differential Evolution Adaptive Metropolis are applied.

2. Which measures of performance can be used to compare various algorithms for Scenario
Discovery?

The selected performance measures describe both the efficiency with which the
sample is collected and the quality of the sample. The efficiency is quantified by col-
lecting the acceptance rate of the MCMC implementations of ABC, i.e. the fraction
of accepted proposals. The acceptance rate gives insight in how many of the func-
tion evaluations are productive. Secondly, experiments are conducted with various
numbers of function evaluations, to qualitatively assess whether the trade-off between
quality and speed of analysis varies between algorithms.

Furthermore, the quality of the sample is determined by qualitative measures. The
sampling approach should find all of the regions of interest. The known test problems
used in this thesis allow for easy confirmation, but this is not possible when applying
MCMC-ABC for Scenario Discovery on unknown problems.

Besides, the fraction of cases of interest is calculated for each of the sampling ap-
proaches (independent and dependent). This measure indicates how well the sample
may be analysed to provide insight in the region(s) of interest. In section 5.2.2, it is
demonstrated that this fraction is problematically low for an independent sample of
large uncertainty spaces with sparse regions of interest. A sample with a low fraction
of cases of interest cannot be adequately analysed and is therefore not suitable for
Scenario Discovery. This also partly reflects the quality of the sample.

Finally, the intuitive interpretability of the results is paramount to use the sampling
approach for Scenario Discovery in a decision-making context. Interpretability is a
rather vague performance measure. Lempert et al. (2008) used the number of boxes
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and the number of restricted dimensions (in a way, the number of ‘things’ communi-
cated to a decision-maker) as a proxy. These performance measures are not appropri-
ate for the results of a dependent sampler. Instead, chapter 4 develops a methodology
to derive the same information from an MCMC sample as PRIM would, proving that
the interpretability is at least similar for both methods.

3. How can combinations of input parameters that are highly predictive of the behavior of
interest be derived from an MCMC sample?

Independent sampling approaches yield intuitive plots and easily interpreted ranges
of parameter values. Its efficacy in a decision-making context has been repeatedly
proven.

The interpretation of the results of dependent sampling in the context of Scenario
Discovery is not straight-forward. These MCMC algorithms yield a posterior target
distribution, rather than neat ranges of parameter values causing the behavior of in-
terest. Chapter 4 demonstrates the extraction of the combinations of parameter values
causing certain behavior of interest.

While the methodology is still a work in progress, it proves the applicability of
the approach for Scenario Discovery and provides additional methods to assess the
performance of the various algorithms.

4. What is the relative efficacy of dependent sampling algorithms for high-dimensional prob-
lems with sparse regions of interest, compared to an independent sampling approach?

Chapter 5 compares algorithms by experimenting on increasingly challenging test
problems. Even for small test problems, where the region of interest is relatively
large, each of the MCMC algorithms outperforms Latin Hypercube with regards to the
fraction of cases of interest. The gap is even larger for high-dimensional problems with
sparse regions of interest. A Latin Hypercube sampler cannot adequately characterize
the region of interest using PRIM given a reasonable number of function evaluations.

The three MCMC-ABC algorithms applied in the experiments yield varying results.
The Adaptive Metropolis algorithm is not very reliable. Often, it is not able to ad-
equately represent the regions of interest, as demonstrated in figure 5.5. DE-MC
consistently achieves a fraction of cases of interest close to 1, and a reasonably high
acceptance rate. However, the resulting sample contains more clutter and is therefore
less applicable to Scenario Discovery. Due to the features in DREAM that force explo-
ration of the input space, the fraction of cases of interest of the DREAM samples are
consistently lower than for DE-MC. However, the resulting sample represents the true
posterior distribution and is readily analysed to derive the combinations of parameter
values that cause a behavior of interest.

6.1.1 Proposed methodology

To answer the main research question, this section describes the proposed methodol-
ogy for Scenario Discovery using a dependent sampling approach.

Problems that fulfill the following three criteria cannot be adequately analysed us-
ing an independent sampling approach and should therefore be considered to be
characterized using this methodology:

• Large uncertainty space, both with regards to the number of dimensions and,
most importantly, the bounds;

• Sparse regions of interest: a Latin Hypercube sample would yield a problemati-
cally low number of cases of interest;

• A long run time of the model, i.e. it is unfeasible to compensate the former
points by drawing a larger sample.
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Based on the answers to the subquestions, I recommend the following approach for
Scenario Discovery using depending sampling:

1. Determine the ranges of parameter values to be sampled

2. Define a likelihood function that transforms the model outputs to a single value
which is highest when it is of interest and decreases when it is of decreasing
interest. This is based on a threshold, similar to the ‘labeling’ step in the original
Scenario Discovery approach.

3. Choose an MCMC-ABC sampler. I used an adapted version of pyDREAM
(Shockley et al., 2017) with good results, but other algorithms exist, including,
but not limited to STAN (Carpenter et al., 2017) and pyMC3 (Salvatier et al.,
2016).

4. Draw a few thousand samples using the MCMC-ABC sampler of choice and
evaluate the convergence, or directly evaluate the results by collecting some ini-
tial statistics and visual inspection. If the algorithm has not converged, continue
sampling until it has.

5. Calculate the Kolmogorov-Smirnov statistic for each dimension to determine the
parameters driving the behavior of interest.

6. Derive the combinations of ranges of parameter values driving the behavior
of interest by deriving the ranges of inputs for each dimension and iteratively
selecting subsets of the data, following the steps proposed in section 4.2.2.

6.2 discussion

6.2.1 Predetermined definitions of behavior of interest

One important limitation to the approach is the need to define behavior of interest
before sampling. When using a Latin Hypercube sample for Scenario Discovery, this
sample can be reused for other purposes, i.e. one can experiment with different defi-
nitions of failure/success, or run additional analyses. Instead, in MCMC, the behavior
of interest determines where the sampling is concentrated. The sample resembles the
posterior of that behavior of interest and can therefore not be reused for different
purposes.

6.2.2 Computational considerations

Apart from the comparison of the efficacy of the various sampling algorithms as a
measure of performance through proxy statistics, the computational considerations
for choosing one paradigm over the other is not thoroughly discussed in the body
of this thesis. However, when discussing the need for new sampling approaches for
large, complex models, it is illogical to ignore these.

Resuming sampling

Firstly, an advantage of MCMC methods over Latin Hypercube is the possibility of
continuing the sampling process when it has been interrupted. One can test whether
the number of samples is sufficient, and if not, simply feed the chains as history to
the algorithm again. Theoretically, it is possible to double or quadruple the number
of points in a Latin Hypercube Sample, by drawing n points per subspace instead of
one, but this is rather inflexible.
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Parallelization

Secondly, MCMC methods are more difficult to run in parallel. Independent sam-
pling methods could fully parallelized, significantly speeding up experimentation if
resources are endless. In MCMC, the various chains may be ran in parallel. If the
model is sufficiently complex, so that distributed or parallel simulation of the model
is beneficial, this is also possible. However, as candidate points are generated from
the current position, it is not possible to further parallelize the experimentation.

6.2.3 Comparing computational efficiency

Lastly, the convergence of the MCMC algorithms is not readily determined. The most
frequently used convergence diagnostic for multi-chain methods is the Gelman-Rubin
R̂ (r-hat) statistic (Carpenter et al., 2017; Vrugt, 2016; Shockley et al., 2017; Salvatier
et al., 2016), which is calculated from the variance within (W) and between (B) the m
number of chains of length n, for each parameter of interest θ (Gelman and Rubin,
1992):
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The posterior variance of θ can be estimated by:
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The Gelman-Rubin diagnostic can then be monitored by tracking:

R̂ =

√
V̂ar(θ|y)

W
(6.3)

For MCMC methods (and ABC methods specifically), the algorithm is believed to
have converged when R̂ is below 1.2 for each chain (Vrugt et al., 2009; Sadegh and
Vrugt, 2014).

R̂ is used in pydream, and is suggested to use in combination with pydream(ABC)
(Vrugt, 2016). Additionally, both STAN and pyMC3 use R̂, the Gelman Rubin conver-
gence diagnostic. Theoretically, it should be possible to use this diagnostic to assess
the convergence. In comparison, one can also only assess whether a Latin Hypercube
sample is sufficient after completing the sampling process. This is a limitation of both
approaches, but MCMC algorithms are more easily continued, rather than repeated
with a higher number of iterations.

Because the convergence of the algorithms is not assessed in the experiments in
this thesis, the computational efficiency cannot be directly compared. Instead, some
experimentation is done with various numbers of function evaluations to gain some
insights.

6.2.4 Discrete and categorical parameters

Furthermore, similar to the original Scenario Discovery approach, MCMC methods
are able to handle discrete and categorical parameters values. The sampled real value
is floored to the nearest integer, which may also be interpreted as a category, as demon-
strated in Vrugt and Ter Braak (2011).
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6.2.5 Finding all regions of interest

With regards to the performance measures, it is difficult to assess whether all regions
of interest have been discovered. For the known problems this can be checked, and it
doesn’t seem to be an issue. However, it is important to stay aware of, and potentially
develop some diagnostic for. Independent sampling methods are less vulnerable to
this, since the entire uncertainty space is always sampled.

6.3 impact of research
This thesis presents an approach to Scenario Discovery for complex problems with
a large input space with sparse regions of interest using an MCMC-ABC sampler.
This development allows for the analysis of a wide array of models which previously
required preprocessing to select or extract the relevant uncertain input parameters.

6.4 future directions of research
To finalize the approach to Scenario Discovery using dependent sampling and incor-
porate this in the standard workflow, more time should be dedicated to transforming
the results into intuitive visualizations and advice helpful to decision-makers.

To further demonstrate the added value, it should be applied to a suitable case
study. The test problems presented in this thesis share characteristics found in com-
plex problems, but lack complex dynamics and interactions.

Additionally, application to a real model may develop understanding of the limits
of the approach. Since convergence is difficult to assess, it is important to have an
idea of the limitations, to avoid wasting time sampling to no avail. For example,
the MCMC-ABC sampler may struggle with problems with many distinct regions of
interest, since it has to jump. Or one may find a limit to the number of dimensions
that can be effectively sampled.

Furthermore, ways to find non-orthogonal subspaces with PRIM have been explored
Dalal et al. (2013). The method as proposed in this thesis exclusively yields orthogonal
subspaces. Similar efforts should be made for this method to rival the versatility of
PRIM.

Besides, different likelihood-free dependent sampling approaches should be ex-
plored. DREAM(ABC) yields promising results, but for real-world applications it
is worth it to test other approaches, which potentially perform better with regards to
computational efficiency or quality of the sample.
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A T H E S H A P E O F T H E L I K E L I H O O D
F U N C T I O N

a.1 adaptive metropolis

a.1.1 Simple test problems

To draw conclusions regarding its performance, twenty duplicates of the experiments
are performed to visualize the spread of performance.

The results of these replications for the simple test problems are visualized in figure
A.1. The Adaptive Metropolis algorithm shows a large variance in the acceptance rate
for each of the likelihood functions. However, this does not affect the corresponding
fraction of interest, which is consistently very high (ranging from 0.975 to 1). In these
graphs, the entire chain is used. The performance increases even further when using
a burn-in period of 10% of the sample. Then, the fraction of interest is 1 for each case.

a.1.2 High-dimensional test problems

Since the comparison of likelihood functions for the AM algorithm for the 3d barrels
was inconclusive, a similar experiment was conducted using the 50d implementation
with a large uncertainty space. The results of the twenty replications performed of
this experiment are presented in figure A.2.

The acceptance rates are comparable for 15,000-30,000 nfe are comparable across
likelihood functions. However, for the hyperbolic tangent shapes, the acceptance rates
are often (close to) 100%. These extraordinarily large values for the acceptance rates
are accompanied by fractions of cases of interest of (close to) zero. This can be ex-
plained by the shape of the likelihood function: further away from the region of inter-
est, the likelihood converges to zero. Therefore, the chain does not ‘know’ in which
direction to move to find the regions of interest. In contrast, using the distance func-
tion, the chain always moves towards the region of interest (or the proposed sample
is not accepted).

(a) Acceptance rate (b) Fraction of interest

Figure A.1: Performance of the Adaptive Metropolis algorithm for various likelihood functions
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(a) Acceptance rate (b) Fraction of interest

Figure A.2: Performance of the AM algorithm for various likelihood functions for the 50d, large
box test problem

The ‘distance’ likelihood function will therefore be used in combination with the
AM algorithm for the remainder of the experiments.

a.2 differential evolution markov chain

a.2.1 Simple test problems

For the simple test problems, the performance DE-MC algorithm is not very depen-
dent on the likelihood function. The fraction of interest is generally high: it varies
between 86% and 100%, primarily depending on the number of function evaluations,
but also on the run and the specific barrel shape. Similar experiments will be ran
for the high-dimensional test shapes, to examine whether the shape of the likelihood
function has an effect when dealing with more sparse regions of interest.

a.2.2 High-dimensional test problems

Figure A.4 displays the acceptance rates of the DE-MC algorithm for the 50d test
problem with expanded bounds. The acceptance rate is similar for each likelihood
function. The variance decreases with increasing nfe, but the mean does not change
significantly. The fraction of interest, however, converges close to 1 with increasing nfe
for each likelihood function shape. The ‘distance’ function shows the highest fraction
of interest and the highest reliability for each nfe. For the smaller problem, the fraction
of interest is 1 or close to 1 for any of the likelihood functions.
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(a) Acceptance rate (b) Fraction of interest

Figure A.3: Performance of the DE-MC algorithm for various likelihood functions

(a) Acceptance rate (b) Fraction of interest

Figure A.4: Performance of the DE-MC algorithm for various likelihood functions for the 50d,
large box test problem
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a.3 differential evolution adaptive metropolis
The acceptance rate is not significantly affected by the shape of the likelihood function.
However, the fraction of cases of interest is highest for the ‘distance’ function, and
increases with increasing nfe. This is most likely due to the way DREAM generates
the next sample, i.e. from the difference between other chains. Therefore, the sample
can jump through the uncertainty space, while the Adaptive Metropolis algorithm
generates its next sample by adding some randomly generated ‘delta’ value to the
current sample.

Therefore, all subsequent experiments with the DREAM(ABC) algorithm will be
performed using the ‘distance’ likelihood function. This is confirmed by experiments
with the largest test problems (not displayed here).

(a) Acceptance rate (b) Fraction of interest

Figure A.5: Performance of the DREAM(ABC) algorithm for various likelihood functions

a.4 choosing the likelihood function
Using the performance measures acceptance rate and the fraction of cases of interest,
the most suitable likelihood function was selected for each algorithm. The ‘distance’
likelihood function leads to the best performance for each algorithm for each test
shape and will therefore be used for the experiments conducted in this thesis.
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