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Abstract. In this paper we use a General Galerkin (G2) method to simulate drag crisis
for a sphere, where the unresolved turbulent boundary layer is modeled as a decreasing
skin friction.

1 INTRODUCTION

A major challenge of turbulence simulation is the excessive number of degrees of free-
dom needed to represent the velocity scales of the flow in space and time, which may
be estimated to be of the order Re3, with the Reynolds number defined by Re = UL/ν,
where U and L are characteristic scales of velocity and length, and ν is the viscosity.
Many turbulent flows of interest have Re > 106, and thus representation of all scales in
the flow is impossible using any computer of today, or tomorrow.

Fortunately it appears that many quantities of interest are less dependent of the
Reynolds number, typically various mean values of the flow variables. An example of such
a quantity is the total dissipation of energy in fully developed turbulence, for example in
a turbulent wake behind a moving object, for which there is both experimental and com-
putational evidence2;1 supporting a Law of finite energy dissipation. Thus for sufficiently
high Reynolds number the total energy dissipation would be constant, irrespectively of
on what scale the actual viscous dissipation takes place. Other examples are drag and
lift for a body in a flow, which appear only weakly dependent on the Reynolds number
in certain regimes. Here it appears that the main dependence of the Reynolds number is
through the separation of the flow, corresponding to different sizes of the turbulent wake
attached to the rear of the body.

Separation of the flow is determined by the flow in the boundary layer at the surface
of the body, with separation if the flow momentum in the streamwise direction near the
surface is reduced to zero by an adverse pressure gradient and the loss of kinetic energy
in the boundary layer. The energy dissipation in the boundary layer is related to the skin

1



Johan Hoffman

friction, which is proportional to Re0.5 or Re0.2 in a laminar and a turbulent boundary
layer respectively (for a flat plate), according to boundary layer theory and experimental
observations13.

Thus for a high Reynolds number turbulent flow, it appears that the dependence of the
Reynolds number for certain quantities of interest, such as drag, is restricted to the energy
dissipation in the boundary layer, which is given by the skin friction of the boundary layer.
This is apparent when studying the turbulent flow past a circular cylinder or a sphere,
where the separation of the flow is more or less constant in the range Re = 103

− 105,
corresponding to a similarly more or less constant drag. Near Re = 105 the laminar
boundary layer undergoes transition to turbulence, leading to increased momentum near
the boundary resulting in a delayed separation, corresponding to a smaller wake and
lower drag, referred to as drag crisis13. As the Reynolds number is further increased
the skin friction decreases and separation is further delayed. Although for the cylinder
when increasing the Reynolds number, the small wake is not stable and starts to oscillate,
corresponding to a higher drag4;11.

A question is then if it is possible to model high Reynolds number turbulent flow solely
by modeling the turbulent boundary layer as a skin friction? In4 drag crisis is modeled for
a circular cylinder using a General Galerkin (G2) method2;8;3;5;6 with a friction boundary
condition, and in this paper we address the problem of modeling drag crisis for sphere,
for which we present some preliminary results.

2 GENERAL GALERKIN METHODS

In2;8 a new framework for computation of mean value output in turbulent flow is pre-
sented, based on stabilized Galerkin finite element methods with adaptive mesh refinement
based on a posteriori output error estimates using duality, which we refer to as General
Galerkin methods, or G2 methods. In G2 we compute approximate weak solutions 7 to the
Navier-Stokes (NS) equations directly, and we do not apply any filter to obtain averaged
NS equations as in RANS or LES12. G2 was first used to compute drag of a surface
mounted cube and a square cylinder2;8, and was then extended to flow past a circular
cylinder, a sphere, and a cylinder rolling along ground3;5;6.

3 FRICTION BOUNDARY CONDITIONS

For the square shapes the separation is given by the geometry, but for the circular
shapes the separation depend on the Reynolds number. For the problems in3;5;6 the
Reynolds number is sub-critical, corresponding to laminar boundary layer separation,
where the laminar boundary layer is resolved by the adaptive mesh refinement. Although,
a turbulent boundary layer is too expensive to resolve, and therefore alternative strategies
are needed.

Various types of wall models are proposed in the literature, see12 for an overview.
Typically a wall model corresponds to solving a simplified NS equation for the boundary
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layer which is then coupled to the rest of the flow in some way.
In4 we propose a very simple wall model based on a friction boundary condition on a

part of the boundary Γslfr with normal n and two orthogonal tangential vectors τ1, τ2:

u · n + α nT σn = 0, (1)

u · τk + β−1nT στk = 0, k = 1, 2, (2)

for a solution û = (u, p) with velocity u and pressure p, and with the stress tensor
σ = σ(û), and where we use matrix notation with all vectors v being column vectors and
the corresponding row vector is denoted vT .

Here α is a penetration parameter and β is a friction parameter, both positive functions
defined on the boundary. In principle, (α, β) → (0,∞) corresponds to a penalty imposition
of a no slip boundary condition, and (α, β) → (0, 0) corresponds to a penalty imposition
of a slip boundary condition. By increasing β we increase the resistance at the boundary,
and by increasing α we increase the penetration of the boundary.

The idea here is to model the influence on the global flow of the unresolved turbulent
boundary layer as a skin friction given by the function β acting as a friction parameter.

This wall model is partly inspired by the work in9;10, where such a boundary condition
is used to study reattachment of a low Reynolds number flow past a surface mounted
cube.

4 FLOW PAST A SPHERE

Drag crisis for a sphere occurs near Re = 105, and thus we may drop the viscous term
from the discrete equations since it is dominated by the numerical dissipation of G2 in the
form of a weighted least squares stabilization of the residual. We assume the boundary
to be non-penetrable so that α = 0, and we are thus left with a model containing only
the friction parameter β and the discretization parameter h (with h the local mesh size).

Using the locally refined mesh in Fig. 1, with mesh size h = h(x) for x in the compu-
tational domain Ω ⊂ R

3, we let β vary linearly from the constant value 0.1 to 0 on a time
interval I = [0, 10].

We find that the drag coefficient cD drops linearly as a function of β until reaching a
value cD ≈ 0.2 at β ≈ 0.02, which is stable until β is below 0.01, as cD drops linearly
towards 0 as β → 0.

The reduction of cD for β in the interval [0.1, 0.01] corresponds to the scenario of drag
crisis, whereas the scenario for cD corresponding to β lower than β0 = 0.01 is unknown
experimentally to the knowledge of the author. Preliminary results indicate that value
for β0 depend on the mesh resolution, with a finer resolution corresponding to a smaller
β0, and thus that the results corresponding to β < β0 may be non-physical corresponding
to insufficient mesh resolution.

In Fig. 2 we show snapshots of the vorticity for 3 different values of β, where we find
that as β is reduced, separation is delayed and the turbulent wake seems to approach a
configuration with 4 tubes of streamwise vorticity attached to the rear of the sphere.
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Figure 1: Section of the computational mesh.

Figure 2: Vorticity for the sphere corresponding to β = 0.1, 0.025, 0.01.
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Figure 3: Section of the velocity field just downstream the sphere, for friction parameters
β = 0.082, 0.032, 0.022, 0.018, 0.013, 0.012, 0.011, 0.0097, corresponding to drag coefficients cD =
0.5, 0.3, 0.2, 0.2, 0.2, 0.2, 0.2, 0.1.
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In Fig. 3 we show snapshots of the velocity field in a section just downstream the
sphere, where we can follow the development of the 4 vorticity tubes. In particular, we
find that the stable value of cD ≈ 0.2 corresponds to the fully developed configuration of
4 tubes of streamwise vorticity.

5 DISCUSSION AND FUTURE DIRECTIONS

Using a G2 method and friction boundary conditions, we have simulated drag crisis
for a sphere. We noted that since the viscosity parameter is small for the high Reynolds
numbers corresponding to drag crisis, we may drop the viscous term from the discrete G2
equations, and thus the only dissipation in G2 is due to the least squares stabilization of
the residual and the friction boundary conditions. In particular, the only parameters left
in the model are the discretization parameter h and the friction parameter β.

We found that as β is reduced we are able to follow the scenario of drag crisis for
the sphere corresponding to a drop in the drag coefficient of more than 50%. We also
found that for β less than a value β0, the computational results appear to be non-physical
judging from available experiments, possibly due to insufficient mesh resolution as β0 is
a function of h.

We plan to further investigate simulation of flows with turbulent boundary layers using
G2 with friction boundary conditions, and in particular to study the dependence of the
mesh resolution.
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