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Chapter 1

Introduction

Medical imaging first began in 1895 with the discovery of X-rays by Wilhelm Röntgen. Since
then, many more modalities have been used in order to create medical images. These images
have been beneficial ever since, in research as well as support to physicians during operations
and diagnostics. The following thesis takes place within the realm of image guidance in in-
terventions, the area in which we use medical images and information deduced from them to
support medical interventions. In our specific case, the intervention is called a TACE inter-
vention performed to treat a tumor inside the liver.

Consider a physician who decides to order a contrast-enhanced (or multi-phase) computed
tomography(CT) scan of a patient for further diagnosis. Upon investigation of the CT, the
physician discovers a tumor inside the patients liver. One of the treatment options, depend-
ing on amongst others the patient state, the number of tumors and their size, is a minimally
invasive intervention such as Transcatheter arterial chemoembolization(TACE). The purpose
of TACE is bringing therapeutics to the tumor while simultaneously restricting the blood sup-
ply to the tumor. During the intervention, a catheter is inserted through the patient femoral
artery and manoeuvred up the aorta. The catheter is then guided through the hepatic artery
before finally reaching a vessel directly supplying the tumor. Small embolic particles coated
with chemotherapeutic agents are then injected into the artery, thus diminishing the blood
supply to the tumor. During the intervention the physician makes use of intra-interventional
X-ray(XA) images to guide the catheter to its target.

During the intervention the physician has access to the 2D XA for guidance. Although the
pre-interventional CT angiography (also called CTA) is also available it is not straightforward
to effectively utilize this image. Importantly, it is not clear how the CT image is spatially
aligned with the patient. Herein lies room for improvement, as the integration of the CT scan
with the XA images will form an improved roadmap, which is hypothesized to facilitate the
navigation of the instrument to the tumor.
Due to the injected contrast agent, relevant arteries including the common hepatic artery
as well as the tumor itself are clearly visible on the CT. The aorta and other numerous
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2 Introduction

anatomical structures are also visible on the CT. Integration of the CT with the XA thus
produces potential benefits. First, navigation will become easier with relevant arteries and
structures along the catheter’s route now more clearly visible (Fig. 1-1). Second, with the
reduction in intervention time due to the augmented roadmap, the exposure of the patient and
physician to the radiation emitted by the X-ray source diminishes. The intervention would
thus benefit greatly from an accurate incorporation of the CT scan into the XA frames. The
work in this thesis is focussed on this issue: registration of the 3D CT with the 2D XA.
Accurate projection of the 3D CT onto the 2D XA, leading to an optimal alignment with the
2D XA, enables the incorporation of information contained within the CT.

Figure 1-1: The thesis objective is registration of the 3D CT with the 2D Fluoroscopy (XA).
This registration will enable an enhance roadmap, useful during minimally invasive interventions
such as the TACE intervention.

The remainder of this thesis is organized as follows. Chapter 2 discusses related work on
the topic of our thesis. The complete pipeline of our 3D/2D registration method is discussed
in detail in Chapter 3. This chapter is divided into three sections. First, in Sec. 3-1 the
pre-processing stage is discussed. Then, Sec. 3-2 deals with the 3D pose initialization stage.
Finally, Sec. 3-3 details the 3D pose optimization stage. After the method is explained, ex-
periments are described in Chapter 4, their results are depicted in Chapter 5 and discussed
in Chapter 6. Recommendations with respect to future work are detailed in Chapter 7.
Chapter 8 contains the conclusion of the thesis. Additionally Appendix A details the vari-
ous coordinate systems involved in this thesis, Appendix B addresses the projection of 3D
images generating the Digitally Reconstructed Radiographs(DRRs) used in this method and
Appendix C depicts additional experiment results.
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Chapter 2

Related Work

As stated in Chapter 1 the objective of this thesis is the registration of a 3D CT image with
a 2D XA image (Fig. 2-1). A lot of research has been done on 3D/2D registration [1] [20]
and its feasibility [2] [11]. Most of the 3D/2D image registration is achieved by optimising
a similarity measure between the 2D image and the (simulated) projection of the 3D image
[17]. In this case the pose of the 3D image is the optimization parameter.

3D/2D registration methods are either extrinsic-, intrinsic- or calibration-based[17].
Extrinsic registration methods rely on the presence of artificial objects or physical markers
in order to aid the registration process. As we do not have nor place physical markers the
only manner in which we could use these methods is by using segmentation as part of the
registration. The result of which could then be used as seed-markers for an extrinsic regis-
tration method. However, we prefer a method that does not require extensive segmentation
to be applied. Also, any error in segmentation or detection will influence the overall registra-
tion performance. For these reasons we decide it best not to start with extrinsic registration
through segmentation.
Calibration-based registration methods use carefully pre-calibrated imaging devices [12]. The
position of the operation table w.r.t. the imaging device is established during image acqui-
sition. This system requires tracking of multiple moving components of the imaging system
such as the X-ray source, C-arm and much more. As we do not have all required tracking
capabilities these methods cannot be applied to our situation.
Intrinsic(image based) registration methods rely solely on information contained within the
images, such as intensity distributions or image gradients. As such it is the class most appli-
cable to our situation.

Each registration method consists of optimizing a similarity measure and requires an initial-
ization. Also a certain model of deformation is assumed.
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4 Related Work

Focusing on the similarity measure we can divide intrinsic methods into three sub-classes
being: feature-, intensity- and gradient-based registration.
Feature-based registration methods rely on segmentation. The object of interest is segmented
in both images prior to the extraction of features. Subsequently extracted features are used
to register the images. These features can be geometrical entities like isolated points, point
sets, a curve or a surface. Extraction of these geometrical features by image segmentation
greatly reduces the amount of data, which in turn makes such registration fast. However
the speed and accuracy of the whole process is also influenced by the segmentation. One
can reduce the negative influence by implementing approaches for handling false geometrical
correspondences and outliers. Although this method is applicable to our case it is preferable
not to start with it for the same reasons we debunked extrinsic registration, the dependency
on segmentation.
Intensity-based registration methods use intensity values from the images to find the correct
registration [4] [7]. Generally the registration in this method is slower in comparison with
feature based registration however it requires little or no segmentation.
Gradient-based registration methods revolve around image gradients. Using these gradients
for registration allows for robust registration even between images with different modalities.
i.e. between a CT and X-ray fluoroscopy. Tomazevic et. al have proposed measuring the
similarity between preoperatively computed CT or MR gradients, perpendicular to the bone
surfaces, with gradients of intraoperational X-ray images [6]. Livyatan et. al proposed pro-
jecting 3D image gradients on the detector plane and measuring the similarity with the X-ray
image gradients [10].

Both intensity- and gradient-based registration methods are applicable to our case, our reg-
istration method will hence utilize the benefit of said methods.

Arguably one of the most important aspects of 3D/2D registration is the initialization of the
3D pose as most proposed registration methods have a small capture range. Most methods
require manual initialization [3] [8]. However automatic pose initialization methods have been
proposed, amongst others in [18], where 2-D vessel bifurcation detection and spine detection
is used to provide an initial pose estimate. During catheterization inside the hepatic artery,
the spine is visible on the 2D fluoroscopy. As the spine is also visible on the 3D CTA, a
3D pose initialization could be achieved by aligning the 2D spine on the fluoroscopy to the
projection of the 3D spine extracted from the CTA.

Furthermore, registration methods differ in their model of deformation, assuming either rigid
or non-rigid deformation. Due to the thickness of the aorta and the common hepatic artery,
the respiratory motion is not affecting their position by much. Thus, a rigid registration
should be sufficient to achieve a roadmap of the vessels.

Finally, creation of the aforementioned projection of the 3D image can be achieved in multiple
ways, exhibiting a trade off between accuracy and computational complexity [5]. Assuming
the projection process is not overly computational expensive, a combination of ray-casting
[14] and splatting [21] shall be applied.

In summary, we will assume a rigid deformation model and use ray-casting and splatting to
project the 3D CT image. We will utilize either intensity- or gradient-based similarity mea-
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sures during optimization of the 3D pose. Furthermore, to overcome the common drawback
of a registration method’s small capture range, we propose a new automatic initialization
approach. This approach will detect the spine, and use it to align both images with respect
to pose, orientation and scale. Finally, manually placed annotations will be used to evaluate
the performance of the proposed registration method.

Figure 2-1: The thesis objective translates into correct determination of the pose of the 3D CT
image (positioned on the table) in order for its projection to align with the 2D XA image (depicted
on the detector plane in the upper right corner). Additionally, the axis of the world coordinate
system and detector plane coordinate system (App. A) are depicted. Here, red denotes the x-axis,
green the y-axis and blue the z-axis.
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Chapter 3

Registration Method

The proposed 3D CT/2D XA registration method consists of the following three stages:

Stage 1. Pre-processing of the CT and XA images

Stage 2. Initialization of the 3D pose

Stage 3. Optimization of the 3D pose

We will deal with the pose initialization by creating an automatic initialization scheme heav-
ily reliant on spine detection. During the method we aim to register based on only the spine
and that part of the ribs closest to the spine. The pose optimization will utilize either an
intensity or gradient-based similarity measure, the experiments will prove which works best.
As the CT is pre-interventional, the pre-processing of the CT could be done in advance of the
actual intervention. However we also propose an automatic approach, of an assumed sufficient
performance with the added benefit of ease of use.

Preprocessing

Initialization
2D pose

Optimization
2D pose

Pose transform
2D to 3D

Optimization
3D pose

Projection

Preprocessing

XA

CT

3D pose

XApre

CTpre

DRR

Preprocessing 3D pose initialization 3D pose optimization

Figure 3-1: Blockscheme of the proposed 3D/2D registration method

The proposed registration method is depicted in detail in Fig. 3-1. The result of the Pre-
processing stage (detailed in Sec. 3-1) are the images XApre and CTpre. During the pre-
processing, among other things, noise is reduced in both images and the aorta is removed
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8 Registration Method

from the CT image.

The 3D Pose Initialization stage as detailed in Sec. 3-2 involves our tailor made initialization
scheme. Here, the 3D CTpre is projected onto the detector plane creating the 2D Digitally
Reconstructed Radiograph DRR (see App. B on projection of the 3D CT). Subsequently, the
translation, rotation and scale necessary to improve the DRR’s alignment with XApre are
automatically estimated, yielding us an initial 2D pose of the DRR on the detector plane.
This pose is then further optimized as to improve the alignment, yielding us with an optimal
2D pose. This resulting pose is then transformed back to a 3D pose which is used as an initial
seed point in the subsequent 3D Pose Optimization Stage.

The 3D Pose Optimization Stage as detailed in Sec. 3-3 optimizes the initial 3D pose provided
by the previous stage. The output of this stage, the optimal 3D pose of the CTpre, forms the
output of the entire system.

All individual steps of the three stages will be addressed in their corresponding sections, with
the projection step as an exception. This will be discussed in Appendix B as this is a very
common process in any 3D/2D image registration method.

Note that the XA and CT images are originally defined in their own coordinate systems(see
App. A for elaboration on the coordinate systems and transformation matrices). Transforma-
tion of the XA and CT from their original coordinate systems to the world coordinate system
and the X-ray 2D device coordinate system respectively, is done as follows:

CTworld = T lCTdevice→world ∗RCTmm→CTdevice ∗ SCT→CTmm ∗ CT (3-1)
XAX−ray2D = RXAmm→X−ray2D ∗ SXA→XAmm ∗XA (3-2)

Our objective is to find the correct pose of the CTworld image such that there is an optimal
alignment between the projection onto the detector plane of TCT ∗ CTworld and the image
XAX−ray2D (both defined in the X-ray 2D coordinate system). TCT is the transformation
matrix based on the three translation- and three rotation parameters. Our objective thus
consists of finding TCT in

XAX−ray2D == Tworld→X−ray2D ∗ TCT ∗ CTworld, (3-3)

such that the two parts of this equation exhibit the best possible match.

Mathematical conventions Before we start with the detailed description of the registration
method, we define a number of mathematical conventions adhered to throughout this thesis.
The CT image at the input of the method is defined as CT of size RCT, CCT, SCT denoting
respectively the number of rows, columns and slices. CT(r, c, s) depicts the intensity of the
voxel of the CT at row r, column c and slice s.
The XA image at the input of the method is defined as XA of size RXA, CXA, FXA denoting
respectively the number of rows, columns and frames. XA(r, c, f) depicts the intensity of the
pixel of the XA at row r, column c and frame f .

M.A. van der Cammen Master of Science Thesis
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During the registration, a pre-processed version of the CT known as CTpre is projected yield-
ing us with a DRR image. This 2D image has a size of RDRR, CDRR denoting respectively
the number of rows and columns.

For information about the orientation of the images as well as additional information about
the coordinate systems used, please refer to Appendix A. For information about the projection
of CTpre resulting in DRR, please refer to Appendix B.

Master of Science Thesis M.A. van der Cammen
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3-1 Pre-processing

3-1-1 CT pre-processing

Preprocessing

Initialization
2D pose

Optimization
2D pose

Pose transform
2D to 3D

Optimization
3D pose

Projection

Preprocessing

XA

CT

3D pose

XApre

CTpre

DRR

Preprocessing 3D pose initialization 3D pose optimization

In this section we discuss the pre-processing of the CT image. Fig. 3-2a shows a CT image
and Fig. 3-10a shows the first frame of an XA sequence (from the same patient). These images
should be spatially aligned. To this end, we need to select those structures that can be used
to align these images.

We do not wish to influence our registration with anatomical structures which are not clearly
present in both modalities. Also, as respiratory movement and cardiac phase influence some
inner body relative positions, we prefer structures close to our regions of interest: liver ar-
teries and the aorta. From the anatomical structures present in both modalities (see Fig.
3-2a and 3-10a) the spine and the ribs (specifically those parts closest to the spine) meet
our requirements. Thus, the CT pre-processing will consist of removing all of the anatomical
parts except for the spine and the parts of the ribs close to the spine.

The CT pre-processing is divided into three steps. First, we apply a threshold to retain only
dense structures amongst which are the spine and ribs. Then, we perform masking as to
remove those rib parts far away from the spine. Finally, we remove the aorta from the CT
which survived the subsequent steps due to its location and its high density as a result of
injected contrast agent. Fig. 3-2 depicts the result of all steps.

M.A. van der Cammen Master of Science Thesis



3-1 Pre-processing 11

(a) original CTA (b) after threshold

(c) after masking (d) after aorta removal

Figure 3-2: CT pre-processing; consisting of noise reduction by means of a threshold, masking
and removal of the aorta

Noise reduction

In order to keep only the spine and ribs, we start by applying a threshold to the 3D image
to segment the bone. To achieve this we make use of the density of bone in contrast with
other elements. Fig. 3-4 shows the Hounsfield range values(depicting radio density) of the
main anatomical parts. The threshold value HHU is set to be the equivalent of the minimum
compact bone Hounsfield value of 300 HU. For memory reasons medical images adhering to
the DICOM standard (a standard for storage of medical images) have voxel values which are
not stored in Hounsfield units (in the case of a.o. CT and PET images). Using the DICOM
tags: rescale slope resl and rescale intercept reicp, a voxel’s value can be transformed from
Hounsfield units to the proper unit representation (Eq. 3-4). Fig. 3-2b demonstrates the
effects of applying a threshold on the CT of 300 HU. Eq. 3-5 depicts the application of a
threshold with an intensity value of H.

H = resl ∗HHU + reicp (3-4)

CTt(r, c, s) =
{

CT(r, c, s), if CT(r, c, s) > H

0, otherwise
(3-5)

Master of Science Thesis M.A. van der Cammen



12 Registration Method

Figure 3-3: CT coordinate system Figure 3-4: Hounsfield unit scale [9]

Masking

Next, we will mask the thresholded image CTt such that only the spine and rib parts close
to the spine remain. The approach we use to determine the mask is a spine localization
approach, tailor-made for the CT modality consisting of two steps.
The mask will be a rectangular box spanning over all slices. In this approach, we assume that
the spine is present at all slices and in the same region. We are thus searching for boundaries
in terms of rows and columns. In order to obtain these, we need to first detect the location
of the spine. Based on our assumption, we can take a patch of the image CTt (containing all
rows and columns but only a certain number of slices). The sum of this patch should yield
high values in the spine region. To make our approach more robust, we take multiple patches
throughout the image CTt in order to determine the spine position. In total, ten patches are
used at the following locations: spatch = [0 : 0.1 : 0.9] ∗ SCT. The patches have a thickness of
3 cm.

For each patch, we sum over the slices, creating a 2D image CTpatchΣslice by using the
equation

CTpatchΣslice(r, c) =
spatch+30/∆zCT∑

s=spatch

CTt(r, c, s), (3-6)

in which ∆zCT is the slice spacing in mm. Subsequently we determine the position of the
maximum value p = [rp cp] in the summed patch as,

ppatch = argmax (CTpatchΣslice) . (3-7)

Averaging over the positions of all detected maxima in the patches yields us our step-1 spine
position estimate p. We then use this estimate to put a rectangular mask on the CTt as,

CTmask1(r, c, s) =
{

CT(r, c, s) if rp − rm < r < rp + rm and cp − cm < c < cp + cm

0 otherwise
, (3-8)

creating CTmask1. The mask is centered at p with a width of 2rm and a height of 2cm. The
result is shown in Fig. 3-5. Here, p is depicted as a red dot whereas the blue rectangle depicts

M.A. van der Cammen Master of Science Thesis



3-1 Pre-processing 13

the masking boundaries [rp − rm, rp + rm] and [cp − cm, cp + cm].

We use the new masked image CTmask1 as an input into our second and final step. During
this step we will improve the column estimate cp of the spine’s position.
First, we sum over the rows of CTmask1, creating CTΣrow by using the following equation,

CTΣrow(c, s) =
RCT∑
r=1

CTmask1(r, c, s). (3-9)

On this 2D image we then apply a spine edge detection method created for this thesis (the
method will be extensively discussed in Sec. 3-2-1). The method results in a left- and right
edge value which we denote as cl and cr respectively. Using the edge estimates, we can update
the column-element of the spine position estimate as cp = (cr+cl)/2. This step can be viewed
in Fig. 3-6. Here, cl and cr are depicted as blue solid lines whereas the new column boundaries
[cl − cm, cr + cm] are depicted as blue dashed lines.
Now that we have our final spine position estimate, we can apply the masking on CTt as,

CTm =
{

CTt if rp − rm < r < rp + rm and cl − cm < c < cr + cm

0 otherwise
, (3-10)

yielding the result of this stage, CTm. The result of the masking is shown in Fig. 3-2c with
cm = 100 mm and rm = 60 mm. The value of 100 mm is selected as we wish to keep only
the static part of the ribs which do not undergo much influence from respiratory movement
and/or cardiac phase. The 60 mm value is based on the spine’s curvature, and exhibits parts
of the spine to be excluded from the mask.

Figure 3-5: CTΣslice, CT masking
step 1

Figure 3-6: CTΣrow, CT masking
step 2

Removing the aorta

Most likely, the aorta is still present in the image CTm, as the contrast agent present in the
aorta will yield intensity values above the bone threshold. During this step we remove the
aorta by creating an aorta mask based on region growing.
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14 Registration Method

The region growing method requires a seed point. For this, we use a method that was pro-
posed by Metz et. al [16]. This method localizes a high-intensity, spherical object (the aorta)
in a 2D CT slice, by combining several criteria. The criteria applied are based on the object
size, object location and object roundness. The parameters are set to represent the aorta
and are stated in Chapter. 4. To make our approach more robust, we take multiple slices
throughout the image CTm in order to determine the aorta position. All slices between 0.5
and 0.9 ∗ SCT are used. The results of executing the seed point detection on a single slice is
observable in Fig. 3-7.

In Fig. 3-7a a slice of the masked CT (as depicted in Fig. 3-2c) is depicted. In overlay, the
result of applying the size criteria is plotted. The higher the value of the criteria (denoting
more likely to correspond to aorta location) the higher the gray value. Notice the high
intensity spot of the size index at the aorta’s center. In Fig. 3-7b the slice is plotted with an
overlay of the location index. The location index is set to favour objects at the aorta location.
Fig. 3-7c depicts the slice with an overlay of the roundness index. Here, round objects result
in high index values. The result of the approach is a multiplication of the three indices and
is depicted in Fig. 3-7d.

(a) Size index of the CT slice (b) Location index

(c) Roundness index (d) Result of seed point detection

Figure 3-7: Aorta detection; by computation of size-, location- and roundness-indices

The MATLAB code used to perform the region growing was created in [13]. The absolute
threshold value was set to 0.02 ∗ max(CTm). The method also fills enclosed holes in the
created mask. The result after applying the mask created by this method is showed in Fig.
3-8. To guarantee that also partial volume voxels at the border of the aorta are removed, we
include a dilation on the mask with a kernel size of 7 mm. The result of applying this dilated
mask is shown in Fig. 3-9. The result of the entire aorta removal step can also be viewed in
Fig. 3-2d. We denote the result of the aorta removal and thus the entire CT pre-processing
stage as CTpre.
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3-1 Pre-processing 15

Figure 3-8: Aorta removal; result of
applying the aorta mask

Figure 3-9: Aorta removal; result of
applying the aorta mask with 7 mm
dilation

3-1-2 XA pre-processing

Preprocessing

Initialization
2D pose

Optimization
2D pose

Pose transform
2D to 3D

Optimization
3D pose

Projection

Preprocessing

XA

CT

3D pose

XApre

CTpre

DRR

Preprocessing 2D pose optimization 3D pose optimization

In this section we discuss the preprocessing of the X-ray images. Fig. 3-10a shows an X-ray
image. Recall that we want to keep only the region of interest, being the spine and the part
of the ribs closest to the spine. We implement this in three steps. First we reduce the noise
of the image by averaging over multiple frames. Then we remove any black regions present
at times due to the beam detector. Finally we mask the X-ray image to only include the
aforementioned region of interest.

Fig. 3-10 depicts the result of all stages in the XA preprocessing.
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(a) 1st frame of a XA sequence (b) after noise reduction

(c) after band removal (d) after masking

Figure 3-10: XA pre-processing; consisting of noise reduction, band removal and masking

Noise reduction

The first step we take is reducing the noise in the XA image. We achieve this by taking the
average over nF number of frames. In Fig. 3-10b the result of the noise reduction is depicted
using the first four frames of the sequence.

Let XAn be the image after taking the average of the first nF frames of the original XA
sequence as in Eq. 3-11.

XAn(r, c) =
∑nF
f=1 XA(r, c, f)

nF
(3-11)

Band removal

Next, we want to get rid of the dark bands at the top, left and bottom of the image XAn.
These are effects of diaphragm settings on the imaging device. To achieve this, we use the
difference in intensity between the region inside and outside the bands.

We start by computing the horizontal sum of the image XAn as XAnΣcol(r) =
∑CXA
c=1 XAn(r, c).

XAnΣcol is then normalized and subsequently smoothed by convolution using a Gaussian ker-
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nel of σ = 1 mm. Smoothing is applied to counter any left over noise in the image. The
result of these efforts is depicted in Fig. 3-11.

After the smoothed normalized horizontal sum is computed, it’s gradient ∇XAnΣcol(r) is cal-
culated. The gradient is computed by extracting each value of XAnΣcol with the preceding
value. The band edges are then estimated by first applying a threshold of 0.01 on the ab-
solute of ∇XAnΣcol(r). In case of the left edge estimate el, we then take the index of the
value which is higher than the threshold and closest to the center of XAnΣcol (at RXA/2) for
1 < r < RXA/2. In case of the right edge estimate er, we take the index of the value higher
than the threshold and closest to the center of XAnΣcol for RXA/2 < r < RXA. The result of
these efforts is depicted in Fig. 3-13.

The process of computing the top (et) and bottom (eb) band edges is very similar. Here,
instead of the horizontal sum and gradient, the vertical ones are computed (see Fig. 3-12 and
3-14). The four edges together enclose the mask which is applied on the image XAn (see Fig.
3-15). The result of applying this stage of band removal can be observed in Fig. 3-10c. We
call the resulting image XAb, computed as follows

XAb = XAn (et < r < eb, el < c < er) . (3-12)

Masking

Now that we have reduced the noise and gotten rid of the bands in the image, we have one
final task to perform. In order to keep only the region of interest of the spine and ribs closest
to it, we will now mask the image XAb.

The aforementioned spine-edge detection (the description of which will be given in Sec. 3-2-1)
is applied on the result of the noise-reduced and band-removed image. After the detection of
the spine’s left- and right edges (cl and cr) we use these values in combination with a mask
width of cm (equal to the width used in the CT masking stage in Sec. 3-1-1) to generate
column boundaries for our image. Eq. 3-13 and Fig. 3-16 depict this process. In the figure cl
and cr are depicted as blue solid lines whereas the new column boundaries [cl − cm, cr + cm]
are depicted as blue dashed lines.

The result of the entire masking stage can be viewed in Fig. 3-10d with cm = 100mm. We
shall denote the result of the masking and thus the entire XA preprocessing stage as XApre,
computed as

XApre = XAb (r, cl − cm < c < cr + cm) . (3-13)
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Figure 3-11: normalized smoothed
horizontal sum of XAn

Figure 3-12: normalized smoothed
vertical sum of XAn

Figure 3-13: gradient of normalized
smoothed horizontal sum of XAn, the
red dot denotes the edge estimation

Figure 3-14: gradient of normalized
smoothed vertical sum of XAn, the red
dot denotes the edge estimation
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Figure 3-15: resulting mask of band removal

Figure 3-16: resulting mask based on spine edge detection in image XAb
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3-2 3D pose initialization

3-2-1 2D pose initialization

Preprocessing

Initialization
2D pose

Optimization
2D pose

Pose transform
2D to 3D

Optimization
3D pose

Projection

Preprocessing

XA

CT

3D pose

XApre

CTpre

DRR

Preprocessing 3D pose initialization 3D pose optimization

Recall the scheme of our registration method as depicted above. Now that we have created
CTpre and XApre we can begin the initialization of the 2D pose in the detector coordinate
system (see App. A concerning coordinate systems). However prior to this initialization we
first need to project CTpre. The details of projecting a 3D image onto a 2D plane can be
found in App. B. Suffice to say a digitally reconstructed radiograph(DRR) of CTpre (Fig. 3-2d
at its initial position in the world coordinate system is constructed, the result of which can
be seen in Fig. 3-18. The pre-processed image XApre is plotted alongside the DRR in Fig. 3-17.

During this stage we use our prior knowledge about the human anatomy to quickly align DRR
with XApre. In this way we turn the otherwise global optimization problem of the subsequent
stages into a local one.

Figure 3-17: XApre
Figure 3-18: DRR, projection of
CTpre

Aligning the DRR with the XApre means determining the four variables which make up the
DRR’s 2D pose:
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• horizontal translation (x̂)

• vertical translation (ŷ)

• rotation (α̂)

• scale (ŝc)

The 2D pose will be stated as Pose2D,init = [x̂ ŷ α̂ ŝc].

In finding the proper 2D pose, first consider Fig. 3-17 and 3-18. One can observe the spine
forming a clear structure in both modalities. We can use the spine to determine the necessary
horizontal translation, orientation and scale. This leaves us with the vertical translation in
which the spine does not offer great help, as the vertebrae all look alike. However the ribs
are well defined in vertical direction. We use this in our estimation of the necessary vertical
translation. The following sections explain how we estimate each of the four variables which
make up the 2D pose.

Also, we introduce a test case we will be using throughout the thesis to visualize the workings
of each estimation step. The XApre and DRR of the test case are depicted in Fig. 3-27 and
3-28 respectively.

Step 1. Horizontal translation

Let us start by estimating the necessary horizontal translation x̂ of the image DRR, in order
to align it with the image XApre. We use the spine, which is present in both images, and
estimate the 2D x-position x̂ by determining their horizontal positions. Here, we use the
spine edge detection method mentioned earlier, tailored to detect the spine’s edges in both
modalities as follows.

As the spine is a clear, often almost perfectly vertical structure in the image, we start with
determining the sum intensity over all columns of the DRR. As the XApre inhabits more struc-
tures besides the spine and ribs, the median intensity over the columns is more appropriate
here. The sum of the DRR and median of the XApre are computed as follows:

XAmed(c) = median (XA(r, c)) , (3-14)

DRRΣrow(c) =
RDRR∑
r=1

DRR(r, c), (3-15)

and can be observed in Fig. 3-20 and 3-19. In the figures the vertical median or sum is
depicted as a blue line. Note that the intensity in CT images correspond to attenuation
coefficients whereas that in XA images corresponds to received X-ray photons. Therefore the
spine is represented by high image values in case of the DRR and low values in case of the
XApre. For visualization purposes we plot the inverse of the actual XA median, a high value
in the image thus corresponding to a low median value.

Master of Science Thesis M.A. van der Cammen



22 Registration Method

Additionally we use the fact that the spine has a certain width sw, very consistent among
all human beings. The average width of a human spine is sw = 40 mm [19]. Magnifying
this with the factor SID/SOD due to the projection will yield us the expected spine width in
the images DRR and XApre. SID stands for the distance between source and image(detector
plane), whereas SOD stands for the distance between source and object(patient at the world
isocenter), both parameters will be visualized in Sec. 3-2-3.
We can use the spine width to compute a forward moving median of the earlier computed
vertical median or sum, which maxima in case of DRRΣrow and minima in case of XAmed
(due to the aforementioned difference in the nature of the image values) should correspond
to the left edge of the spine. We compute the forward moving median and their optima of
the XAmed and DRRΣrow as follows:

XAmed→(c) = median (XAmed(c : c+ sw)) , (3-16)
pXA = argmin (XAmed→(c)) , (3-17)

DRRmed→(c) = median(DRRΣrow(c : c+ sw)), (3-18)
pDRR = argmax (DRRmed→(c)) . (3-19)

The forward moving median of both the DRR and XApre can be observed again in Fig. 3-20
and 3-19. In the figures the forward moving median is depicted as a red line, the maximum
peak is denoted with a red filled circle. Note that again for visualization purposes, in case of
the XApre the inverse of the forward moving median is plotted.

The estimate at this point is approximately at the spine’s left edge. This enables us to
improve our estimate by looking at the gradient of the vertical median within a small local
area. The gradient is computed by extracting a value with its preceding value. We set the
local area to include everything within a quarter spine width of the estimate deduced from
the moving average. We set this particular width as vertebrae exhibit a low intensity at
their spinal canal which causes gradients at the canal edges. A quarter of the spine width
excludes misclassification’s due to vertebra structure for all possible angles. The maxima of
the gradient in case of the DRRΣrow and the minima in case of the XAmed correspond to the
spine’s left edge position. They are computed as follows:

pXAspine,l = argmin
(
∇XAmed(pXA −

1
4sw : pXA + 1

4sw)
)
, (3-20)

pDRRspine,l = argmax
(
∇DRRΣrow(pDRR −

1
4sw : pDRR + 1

4sw)
)
. (3-21)

and are shown in Fig. 3-20 and 3-19. In the figures the gradient of the vertical median or
sum is depicted as a yellow line, the spine edge estimate is denoted with a yellow filled circle.
Note that in case of the XApre the inverse of the gradient is plotted.

We compute the horizontal translation x̂ necessary to align the images by taking the difference
between the estimations of the spine’s left edge in both images as:

x̂ = pXAspine,l − pDRRspine,l. (3-22)
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Figure 3-19: Detection of the spine’s
left edge in XApre

Figure 3-20: Detection of the spine’s
left edge in DRR

In summary, we first computed the vertical median and sum of respectively the XApre and
DRR, using the fact that the spine is a vertically oriented structure. Subsequently we com-
pute the horizontal forward moving median of the vertical median or sum (incorporating our
knowledge of human spine widths). We then defined an area around the optimum of the
forward moving median. Within this local area we calculated the gradient of the median or
sum and took its optimum to represent the spine’s left edge. Finally we created x̂ out of the
computed edge locations.

Step 2. Rotation

Next we address the alignment of the DRR with the XApre with respect to the orienta-
tion . To achieve this, we first detect the individual orientation of the spine in both images.
In this approach, we make use of the fact that the spine looks very similar at subsequent rows.

Thus, in order to detect the spine orientation we propose a tracking of the spine’s left edge.
Here, we compare the medians of patches of the image (containing all columns but only a
number of rows),

XApatchmed(c) = median(XApre(rpatch < r < rpatch +Rpatch, c)), (3-23)

with a template of the spine, working our way from the top of the image (at rpatch = 1) to
the bottom (at rpatch = RXA − Rpatch). The spine template has a width corresponding to
a spine width of the aforementioned sw = 40 mm and is initialized with a uniform value of
0.25 ∗median(XA(r, c)) to represent the low intensity spine.
For each patch the normalized cross correlation with the spine template is calculated as

xcorr(r) =
∞∑

m=−∞
XApatchmed(m) ∗ template(m+ r). (3-24)
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The position of the maximum ppatch = argmax(xcorr) of the cross correlation represents the
spine’s edge position in the patch. The template is then updated with the detected spine
segment by template = (template ∗ 0.75) + (0.25 ∗XApatchmed(ppatch : ppatch + sw)).
The edge positions ppatch(rpatch) with 1 < rpatch < RXA − Rpatch are then used to fit a line
along the spine of XApre. The angle between the line and the vertical axis is the estimation
of the necessary rotation ∠XApre, to align the image with the vertical axis.
Tracking the spine’s left edge in the DRR image as opposed to the XApre image requires but
one alteration. Now, the spine template is initialized with max(DRR(r, c)) to represent the
high intensity of the spine.

This edge tracking may be prone to errors (inaccuracies), as the edge detection in small
patches is subject to noise. Therefore, we adopt a multi-scale approach, where the edge
detection results of patches of varying heights are combined. In this way, we are trading
sensitivity for robustness. Running the edge tracking algorithm for various patch heights and
averaging the results should make for a more robust tracker. Fig. 3-21 and 3-22 show the
results of this effort with a patch height of 1 − 20 mm′s. The fitted lines are depicted in
blue. The orientations of the spines are denoted by ∠XApre and ∠DRR. Additionally, to
make the edge tracking more robust, we limit the range of possible edge locations between
subsequent patches of the same size to be within 20 mm of the previous detected edge position.

Now that we have determined the orientation of both images we can create α̂ (the angle used
to rotate the DRR) as

α̂ = ∠XApre − ∠DRR. (3-25)

Figure 3-21: Tracking of the spine’s
left edge in XApre using vertical patch
heights of 1− 20mm

Figure 3-22: Tracking of the spine’s
left edge in DRR using vertical patch
heights of 1− 20mm
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Step 3. Scale

The two images XApre and DRR may differ in scale, in case the CTpre is positioned either
too close or too far away from the detector plane. Again, we propose to utilize the spine in
both images to determine the proper scale adjustment needed in the DRR.

For this, we again use the spine left edge detection technique. Using a vertical median,
followed by a forward moving median, followed by a gradient computation, we were able to
detect the left edge of the spine in both DRR and XApre images. We can actually make
minor adjustments in this process in order to turn the left edge detector into a right edge
detector. First, we replace the forward moving median with a backward moving median.
And second, we swap maximum- with minimum calculations and vice-versa. The following
equations describe the right edge detection:

XAmed(c) = median (XA(r, pXAspine,l : CXA)) , (3-26)
XAmed<−(c) = median (XAmed(c− sw : c)) , (3-27)

pXA = argmax (XAmed<−) , (3-28)

pXAspine,r = argmax
(
∇XAmed(pXA −

1
4sw : pXA + 1

4sw)
)
, (3-29)

DRRΣrow(c) =
RDRR∑
r=1

(DRR(r, pDRRspine,l : CDRR)) , (3-30)

DRRmed<−(c) = median (DRRΣrow(c− sw : c)) , (3-31)
pDRR = argmin (DRRmed<−) , (3-32)

pDRRspine,r = argmin
(
∇DRRΣrow(pDRR −

1
4sw : pDRR + 1

4sw)
)
, (3-33)

ŝc = pDRRspine,r − pDRRspine,l
pXAspine,r − pXAspine,l

. (3-34)

Note that as the left edge detection is performed prior to the right edge detection, the right
edge detection is only needed for the part to the right of the left edge detected. After all
edges are estimated, the spine widths of the images are updated to pDRRspine,r− pDRRspine,l in
case of the DRR and pXAspine,r− pXAspine,l in case of the XA. The scale estimate ŝc is created
by dividing the DRR spine width with the XA spine width. Fig. 3-23 and 3-24 depict the
results of this stage. As for the same reasons during Sec. 3-2-1 the inverted values are plotted
of the median, backward moving median and gradient in case of the XA image modality.

Step 4. Vertical translation

The final step in the 2D pose initialization is estimating the vertical translation ŷ. For the
first time the spine itself is not sufficient. As it is quite repetitive in the vertical direction.
However other structures present in both images, namely the ribs, are more distinguishable
in this direction.

There are multiple approaches to estimate the proper vertical translation using the ribs. For
example, we could attempt to segment the ribs in both images and use the position of the
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Figure 3-23: Detection of the spine’s
right edge in XApre

Figure 3-24: Detection of the spine’s
right edge in DRR

segments to derive the necessary translation. However this approach would require an addi-
tional segmentation step, which would be hard given the low contrast of the ribs.
Another approach is to register both images with a similarity metric. The initial position of
the DRR image will incorporate the scale ŝc, the orientation α̂ and the horizontal position x̂
that we computed during previous steps. The correct vertical translation, aligning the DRR
and XA ideally yields the highest similarity value. Specifically the normalized cross correla-
tion(NCC) should be an adequate metric.

In using the NCC to estimate vertical translation, we start by defining DRRαsc as the DRR
image rotated and scaled using the estimations from their respective steps. Only the part of
the DRR is used which overlaps with XApre. In constructing this patch, first the estimate x̂
is taken into account as follows:

DRRpatch(r, c) =
{

DRRαsc(r, |x̂| : RDRRαsc) if x̂ < 0
[zeros(RDRRαsc , x̂) DRRαsc], if x̂ > 0

. (3-35)

Then the DRRpatch is set to the same horizontal size as XApre by stating

DRRpatch(r, c) =
{

DRRpatch(r, 1 : CXA) if CXA < CDRRpatch

[DRRpatch zeros(CXA − CDRRpatch)], if CXA > CDRRpatch
. (3-36)

The DRRpatch and XApre now have the same horizontal size and are aligned with respect to
horizontal translation, rotation and scale. The NCC is then calculated as:

NCC(y) = 1
RXA × CXA

∑
r,c

DRRpatch(r + y, c)XApre(r, c), (3-37)

with y representing the vertical translation. The estimate of the vertical translation ŷ is then
taken to be the position of the maximum ŷ = argmax(NCC).
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Fig. 3-25 shows the result of executing this procedure. XApre has been plotted next to
the image in proper proportion. The blue line in Fig. 3-25 denotes the value of the NCC
for different vertical translations. For visualization purposes, the right edge corresponds to a
high NCC value and the left edge corresponds to a low NCC value. Note that the translations
include values outside the scope of the DRRpatch. The topmost value denotes a shift which
poses the XApre’s top a distance of 2 vertebrae(2 ∗ 35 mm[19]) above the top of the DRR
image (corresponding to a negative value of y). The value of 2 vertebrae is chosen as for our
specific intervention. The pre-interventional CT image and intra-interventional XA image
tend to have regions at most 2 vertebrae apart. The bottommost value of the blue NCC line
denotes a shift which poses the XApre’s bottom a distance of 2 vertebrae below the DRR’s
bottom.

Figure 3-25: Estimation of the nec-
essary vertical translation

Figure 3-26: XApre

In the depicted figures we notice multiple local optima ŷ. This was to be expected as the
vertebrae impact the metric, as well as the fact that the ribs themselves do rather lookalike.
Ideally one of the detected optima represents the proper vertical alignment. As we do not
know which optima is the correct one (and using the NCC value to select is not robust as the
overlapping area is not always equal), we pass on multiple 2D poses to the next stage, the
2D pose optimization. This causes that human interaction might be necessary to ultimately
determine the correct alignment, if multiple possible vertical translation are detected.

With this final step of aligning the images with respect to their vertical position, we have ini-
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tially aligned the DRR and XApre images. The resulting 2D pose(s) are stated as Pose2D,init =
[x̂ ŷ α̂ ŝc].

Example

Note the test case as defined by XApre and DRR in Fig. 3-27 and 3-28 respectively. Applying
the 2D pose initialization stage of this chapter onto the test case yields us the result as shown
in Fig. 3-29 to 3-32. In Fig. 3-29 and 3-30, we see an overlay of the DRR with the XApre before
and after the initialization of the 2D pose. Due to amongst others the fact that the vertebrae
look so much alike it is quite difficult to get a sense of the improvement in alignment from
these two images. In Fig. 3-31 and 3-32 the results are again shown, however in these figures
manual annotations on the ribs and vertebrae are also plotted to clarify the improvement in
alignment.

In this case the initialization included a shift in both directions and a scaling, no orientation
difference was detected. We notice the improvement in alignment, which should be sufficient
to change the otherwise global optimization problem of the 2D pose in the next chapter into
a local one.

M.A. van der Cammen Master of Science Thesis



3-2 3D pose initialization 29

Figure 3-27: XApre of test case Figure 3-28: DRR of test case

Figure 3-29: Result before 2D pose
initialization

Figure 3-30: Result after 2D pose ini-
tialization

Figure 3-31: Result before 2D pose
initialization

Figure 3-32: Result after 2D pose ini-
tialization
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3-2-2 2D pose optimization
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Recall the scheme of our registration method as depicted above. We have created CTpre and
XApre and aligned the DRR(the projection of CTpre) with XApre. During this stage we will
improve our 2D alignment using an optimization scheme. To optimize the 2D pose consist-
ing of translation, rotation and scale between the images XApre and DRR(see Fig. 3-17 and
3-18 respectively), we need to select a similarity measure. Secondly, we need an optimization
method to find the transformation corresponding to the maximum similarity. During this
section we will discuss the requirements on the similarity measure and optimization method
and explain which we ultimately employ and why.

Recall that the goal of the previous stage was to create a sufficiently accurate initial 2D align-
ment between the DRR and the XApre. This was a paramount step as the otherwise global
optimization problem during this stage has been turned into a local one.
Analogues to this relationship between the previous and present stage, the 2D pose opti-
mization stage paves the way for a local optimization approach in the subsequent 3D pose
optimization stage. An important aspect we should not forget is that as opposed to 2D pose
initialization/optimization, 3D pose optimization is a computational complex stage due to
the increase in image size and number of pose parameters. Every improvement in the inital
point’s accuracy may greatly reduce the computational complexity needed in the 3D pose
optimization as less iterations will be required.

Similarity measure
In finding an appropriate similarity measure we consider the XApre and DRR images as in
Fig. 3-17 and 3-18. The pre-processing of the XA reduced the level of noise, removed any
dark bands if still present, and masked the image to a certain width left and right from the
spine’s edges. The CT has also been pre-processed to only include the spine and the closest
part of the ribs.
There are two types of similarity measures which can be considered. Intensity based and
gradient based. In other work, sometimes calibration based approaches are used[12], however
as the name suggest, they require carefully calibrated and traceable equipment and placed
markers. As we only have the images, we can only work with their pixel intensities.
Now as for intensity based similarity measures, the normalized cross correlation(NCC) and
mutual information(MI) are promising candidates as both the fluoroscopy and the DRR should
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have similar intensity distribution. We test both measures during the experiments in Chapter
5.

Mutual information stands for the amount of information one variable describes about
another. A high value will thus correspond to great similarity between the two variables or
images. Another way to look at the mutual information is as the measure of reduction in
uncertainty of image Y due to knowledge of image X. Notice that the mutual information
has the distributions of both images as an underlying measure, they should be very similar
in order to yield a high mutual information. These distributions have a parameter, named
the binning parameter, which is the discretization of the histograms (as MI is computed
from the histograms of both distributions). A small binwidth represents a more accurate
approximation, however it also leads to a sparse histogram, which is less informative.
Calculating the mutual information between XApre and the overlapping segment of the DRR
called DRRoverlap is done as follows:

H(XApre) = −
RXApre∗CXApre∑

i=1
P (XAprei)log(P (XAprei)), (3-38)

H(DRRoverlap) = −
RXApre∗CXApre∑

i=1
P (DRRoverlapi)log(P (DRRoverlapi)), (3-39)

H(XApre,DRRoverlap) = P (XApre) ∗ P (DRRoverlap), (3-40)
MI = H(XApre) +H(DRRoverlap)−H(XApre,DRRoverlap), (3-41)

with P (XApre) and P (DRRoverlap) being the histogram of XApre respectively P (DRRoverlap),
H(XApre) and H(DRRoverlap) the entropy of the two and H(XApre,DRRoverlap) being the
joint entropy of the two images.
To visualize how the MI behaves, Fig. 3-33 depicts two 1D signals X and Y and Fig. 3-34
denotes the result of calculating the mutual information between X and Y for various shifts.

Normalized cross correlation is a direct measure of similarity. It can be described as the
sliding inner product of two variables. To obtain the cross correlation between two variables
one will shift one of the signals a specific amount. At this shift the inner product is calculated
for all corresponding sets of points and added up. The result is the cross correlation coefficient
at the index of the shift. Normalization is used to counter differences in intensity scales.
This measure was earlier used in our registration method, specifically during the estimation
of the vertical translation in Sec. 3-2-1. Calculating the normalized cross correlation between
XApre and DRRoverlap is done as follows:

NCC = 1
RXA × CXA

∑
r,c

DRRpatch(r, c)XApre(r, c). (3-42)

To elaborate on how the NCC behaves, Fig. 3-33 depicts two 1D signals X and Y and Fig.
3-34 denotes the result of calculating the normalized cross correlation between X and Y for
various shifts.
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Figure 3-33: Two 1D signals, X(blue)
with its peak at 600 and Y(red) with
its peak at 250

Figure 3-34: MI(red) and NCC(blue)
between X and Y, the correct lag for
optimal alignment is 350

The mentioned two similarity measures (MI and NCC) will both be tested during the exper-
iments. The results of which will determine which measure will be selected for this 2D pose
optimization stage of the method.

Optimization method
Now that we know more about the behaviour of the similarity measures(the objective func-
tions), we proceed to select the optimization technique.

We reject a number of optimizer classes. As the problem is not linear, nor quadratic or convex,
optimizers assuming such objective function are not applicable in our case. This leaves us
with more complex non-linear optimization methods. Newton and Quasi-Newton optimizers
(e.g. Levenberg-Marquadt and Davidon-Fletcher-Powell) involve approximating the gradient
or Hessian with each iteration. Another way is using direction determination and line search
methods. There are a number of such optimizers which do not utilize or make an computa-
tional expensive estimate of the gradient or Hessian. Most prominent and proven amongst
these is the Powell direction determination, often used in combination with a variable step
size. Other line search approaches do exist, such as the golden section approach, which might
reduce the number of iterations needed to reach the optimum.

Due to the advantage of decreased computational complexity and suitability to our image
modalities and similarity measures we use the Powell optimizer with variable step size.

Example

Recall the test case as defined by XApre and DRR in Fig. 3-27 and 3-28 respectively. Applying
the 2D pose optimization stage of this chapter (using NCC) onto the test case yields us the
result as shown in Fig. 3-35 to 3-38. In Fig. 3-35 and 3-36 we see an overlay of the DRR with
the XApre before and after the optimization of the 2D pose. In Fig. 3-37 and 3-38 the results
are again shown, however in these figures manual annotations on the ribs and vertebrae are
also plotted to clarify the improvement in alignment.
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In this case the optimization included a shift in both directions and a small decrease in the
scale factor. There was no change in orientation. We notice the improvement in alignment,
which is meant to be sufficient to change the otherwise global optimization problem of the
3D pose (detailed in the next chapter) into a local one.

Figure 3-35: Result before 2D pose
optimization

Figure 3-36: Result after 2D pose op-
timization

Figure 3-37: Result before 2D pose
optimization

Figure 3-38: Result after 2D pose op-
timization

3-2-3 Transformation from 2D pose to 3D pose
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Recall the scheme of our registration method as depicted above. At this point we have created
CTpre and XApre and aligned the DRR(the projection of CTpre) with XApre and optimized this
alignment. Realizing that the next step is to align not the 2D pose between the DRR and the
XApre but the 3D pose of the CTpre, we have to convert the 2D pose (pose2D = [x y α sc])
into its 3D equivalent (pose3D = [x3D y3D z3D α3D β3D γ3D]).
The 2D pose contains a translation, rotation and scale adjustment, below we discuss how we
transform these three elements. More information on the details of transformations between
coordinate systems can be found in App. A.

Translation The first two elements of the 2D pose denote a translation of the DRR on the
detector plane. We can find out which 3D translation is necessary at the isocenter of the
world coordinate system, to result in such a 2D translation on the detector plane.
Consider the point oworld to be the origin (0, 0, 0) of the world coordinate system. We can
transform this point to the X-ray Device 2D coordinate system(the detector plane in 2D)
resulting in

oX−ray2D = Tworld→X−ray2D ∗ oworld.

We then add the translation derived from the 2D pose pose2D = [x y α sc] to oX−ray2D,
to obtain

pX−ray2D = oxray2D + [x y 0]. (3-43)

Figure 3-39: X-ray 2D Device coordinate system, with 2D translation depicted as xt and yt

Now that we have both points in the X-ray Device 2D system (see Fig. 3-39) we transform
them to the X-ray 3D Device system and calcualte the resulting translation vector at the
detector plane in 3D as follows:

oX−ray3D = T−1
X−ray3D→X−ray2D ∗ oX−ray2D, (3-44)

pX−ray3D = T−1
X−ray3D→X−ray2D ∗ pX−ray2D, (3-45)

vX−ray3D = pX−ray3D − oX−ray3D, (3-46)
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where TX−ray3D→X−ray2D denotes the transformation between both systems.

The next step is to bring this translation vector back to the world coordinate system (see Fig.
3-40). Logically, the inverse of Tworld→X−ray3D does not exist(P is non-invertible, App. A) as
any point along the line between source and detector plane yields the same projected point.
However, we can use the ratio of the SOD and SID distances to calculate the translation
vxy necessary at the isocenter of the world coordinate system to result in the appropriate
translation vX−ray3D on the detector plane as such:

vxy = SOD

SID
∗ vX−ray3D. (3-47)

Note that the label xy represents the origin of the translation vector, being the result of the
x and y translation of the pose2D.

Figure 3-40: World coordinate system, with necessary 3D translation depicted due to the 2D
translation parameters

Scaling As with translation, the scaling can be depicted as a 3D translation. The effect of
2D scaling is equal to a translation in the world coordinate system (see Fig. 3-41) along the
normal on the detector plane. We can calculate the normal n on the detector plane in various
ways. However, as we already know the world origin and its projection on the detector plane,
we use those points to calculate n. After calculation of the normal the calculation of the
necessary translation vsc is straightforward.

n = oworld − oX−ray3D√∑
(oworld − oX−ray3D)2

(3-48)

vsc = −sc ∗ SOD ∗ n (3-49)

Note that the label sc represents the origin of the translation vector, being the result of the
scaling sc of the pose2D.
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Figure 3-41: World coordinate system, with necessary 3D translation depicted due to the 2D
scaling parameter

Now that we have calculated the impact of both 2D translation(x and y) and scale(sc), we
are ready to form the transformation matrix TranslCT as:

TranslCT =


1 0 0 vxy(1) + vsc(1)
0 1 0 vxy(2) + vsc(2)
0 0 1 vxy(3) + vsc(3)
0 0 0 1

 (3-50)

Rotation The in-plane rotation on the detector plane(see Fig. 3-42)is equal to the same
rotation around the aforementioned normal on the detector plane (see Fig. 3-43). Using the
normal n = [nx ny nz] and the rotation around this normal (the in-plane rotation) α we
can create the rotation matrix RotCT as:

RotCT =

 cos(α) + n2
x(1− cos(α)) nxny(1− cos(α))− nzsin(α) nxnz(1− cos(α)) + nysin(α)

nynz(1− cos(α)) + nzsin(α) cos(α) + n2
y(1− cos(α)) nynz(1− cos(α))− nxsin(α)

nznx(1− cos(α))− nysin(α) nzny(1− cos(α)) + nxsin(α) cos(α) + n2
z(1− cos(α))


(3-51)

Now that we have both the translation matrix TranslCT and rotation matrix RotCT which,
applied to the CT in the world coordinate system, yields the correct pose change pose2D at
the detector plane (defined in the X-ray 2D coordinate system), we combine them to form

TCT = TranslCT ∗ RotCT. (3-52)

Applying this matrix to the CT in the world coordinate system positions the CT in such a
way that its projection is initially aligned with the XA at the detector plane. The following
Chapter 3-3 will optimize this alignment (the transformation matrix TCT).
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Figure 3-42: X-ray 2D Device coordinate system, with 2D rotation depicted

Figure 3-43: World coordinate system, with necessary 3D rotation depicted due to the 2D
rotation parameter
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3-3 3D pose optimization
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Recall the scheme of our registration method as depicted above. At this point, we have cre-
ated CTpre and XApre. Subsequently we have initialized and then optimized the alignment
between DRR(the projection of CTpre) and XApre. In the previous section we transformed
the resulting 2D pose of the DRR to a 3D pose of the CTpre. During this stage we will
improve this 3D pose by means of 3D/2D registration. Recall that the 3D pose consists of
three translation parameters and three rotation parameters.

Now when looking at the scheme as depicted above, notice that the entire Chapter 3-2 has
one sole purpose; finding a sufficiently close initial 3D pose. In Chapter 2 we mentioned that
the pose initialization was the main problem of 3D/2D registration methods. Now that we
have dealt with the initialization, the 3D pose optimization should converge more easily.

Similarity measure
In Sec. 3-2-2 we addressed relevant similarity measures between the XApre and the DRR. MI
and NCC were selected to be used in the optimizing of the DRR pose with respect to the
XApre. We again utilize these measures but now in the 3D/2D scheme. In this case during
each iteration we project the CTpre to obtain a DRR and measure its similarity with the
XApre.
We investigate another group op measures, ones that compare the 3D CTpre directly with
the 2D XApre. Of this group, the method investigated in this thesis is the gradient measure
as proposed by Tomazevic et. al in [6]. Before moving on to the used optimization method
during this stage, Tomazevic’s measure will be explained.

Tomazevic’s gradient measure
This approach revolves around using gradients in the CT image and compare them with the
back projections of gradients of the XA. To fully comprehend the method we start with a quick
recap of the generation of X-ray images before proceeding to the mathematical description of
the measure. For a more elaborate and detailed description we refer to [6].

X-ray image formation is generally modelled as follows:

I(p) = I0 ∗ cos3ϑ ∗ e−
∫
L
µ(r)dr. (3-53)
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Figure 3-44: X-ray image generation, copied from [6]

Consider Eq. 3-53 and Fig. 3-44 where µ(r) denotes the X-ray attenuation coefficient, L stands
for the projection beam and ϑ describes the angle between L and line L0, which originates
in the X-ray source and is perpendicular to the detector plane U . I(p), the image intensity
at point p is obtained by integrating the X-ray attenuation coefficient from X-ray source rs
to point p. The factor cos3ϑ describes the effect of X-ray beam divergence. Lastly I0 is the
image intensity at the point where L0 intersects U .
A simpler model is obtained when the X-ray imaging system itself corrects for beam diver-
gence:

I(p) = I0e
−
∫
L
µ(r)dr. (3-54)

And for X-ray sensors with a logarithmic static response the model changes into

I(p) =
∫
L
µ(r)dr. (3-55)

Figure 3-45: Geometrical setup with normals to surfaces and intensity gradients used in 3D/2D
registration, copied from [6]

Now as to Tomazevic’s gradient metric, consider Fig. 3-45 and recall that we are going to
compare CT gradients in the direction of normal to bone surfaces of the CT image (our CTpre)
with back projections of XA (XApre) gradients. In order to achieve this we need to determine
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the normal to bone surfaces and which gradients on the detector plane correspond to them.

Let vu(p) = ∇UI(p), be the 2D image intensity gradient in the projection plane U . And let
vw(p) = ∇W I(p) be that in plane W , which is perpendicular to the projection beam L. We
can define the relationship between the two as

vu(p) = (n× vw(p))× n (3-56)

in which n is the unit normal to the projection plane U .

Let vA(r) be the gradient on the CT body, which can be divided into a component vAr(r)
with the same direction as L and a component vAt(r) perpendicular to L as such

vA(r) = ∇µ(r) = vAr(r) + vAt(r) (3-57)

The 2D image intensity gradient vw(p) and vAt(r) derived from the CT gradient relate to
each other in the following manner ([6] appendix C ):

vw(p) = 1
p− rs

∫
L
|r − rs|vAt(r)dr. (3-58)

Now that we have determined the appropriate gradients on the 2D XA image and the 3D
CT surface, the last thing we need to do is back projection of the XA gradient, in order to
compare it with the CT gradient. Let vB(r) be the back projection of the gradient vw(p) on
the 2D XA image. We can compute vB(r) as follows:

vB(r) = |p− rs|
|r − rs|

vw(p) (3-59)

The cost function as proposed by [6] to measure the correspondence between the CT’s surface
gradients vAi and the XA’s back-projected gradients vBi is defined as

CF =

N∑
i=1
|vAi||vBi|f(α)

N∑
i=1
|vAi|

N∑
i=1
|vBi|

(3-60)

where f(α) is a weighting function depending on α, the angle between the gradients vAi and
vBi defined as

f(α) =
{
cosnα, 0 < abs(α) < 90degrees

0, otherwise . (3-61)

The parameter n determines the sensitivity of weighting to the angle α. It is important to
note that a threshold is applied on the collection of CT gradients in order to retain only bone
surface gradients.
With this approach, the metric denotes the similarity between surface gradients in the CT
image and gradients of the XA image by back-projection. Adding Tomazevic’s metric as
gradient based similarity measure to our exisitng set of intensity based measures (NCC and
MI) yields us three similarity measures to test during the experiments. The result of which will
determine which measure will be selected for the 3D pose optimization stage of the method.
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Optimization method
As for the same reasons as in Sec. 3-2-2 we will again utilize Powell’s method in optimizing
the similarity measure.

Example

Recall the test case as defined by XApre and DRR in Fig. 3-27 and 3-28 respectively. Applying
the 3D pose optimization stage of this chapter (using NCC) onto the test case yields us the
result as shown in Fig. 3-46 to 3-49. In Fig. 3-46 and 3-47 we see an overlay of the DRR with
the XApre before and after the optimization of the 3D pose. In Fig. 3-37 and 3-38 the results
are again shown, however in these figures manual annotations on the ribs and vertebrae are
also plotted to clarify the improvement in alignment.

We notice after the optimization of the 3D pose the vertebrae are better aligned, also the
alignment among the ribs seems to be improved.

Figure 3-46: Result before 3D pose
optimization

Figure 3-47: Result after 3D pose op-
timization

Figure 3-48: Result before 3D pose
optimization

Figure 3-49: Result after 3D pose op-
timization
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Chapter 4

Experiments

In this chapter we describe the experiments for the proposed 3D/2D registration method,
the results of which are depicted in Chapter 5 and discussed in Chapter 6. This chapter
is organized as follows. First, we clarify the dataset used in the evaluation of the proposed
method. Then, the evaluation metrics are discussed. Afterwards, the outline of the coming
experiments is described. Finally, the parameters and their values used during the experiments
are listed.

4-1 Dataset

The dataset involved in the experiments consisted of data acquired during 19 TACE proce-
dures. Every procedure contained one CT image and between 2-3 XA sequences, adding up
to a total of 60 XA sequences and 19 CT images in the dataset. Of those XA sequences we
excluded those in which there was X-ray system motion, the imaged region was too small or
outside the range of the corresponding CT image. After applying the exclusion criteria all
19 sets contained at least one CT image and one XA sequence. In case of multiple XA se-
quences per patient one was selected at random and was used during the experiments. Of the
dataset, two interventions were taken as the training set, while the remaining 17 interventions
comprised the test set.

4-2 Evaluation criteria

All interventions (set of one CT and one XA sequence) were annotated by the author of this
thesis. The annotations include points at the center of each vertebra, as well as points along
the centerline of the ribs. During the latter use was made of a centerline tracking method
(based on Graph Cuts and Robut Kernel Regression [15]) initialized with manual annotations.
Although great care was taken in the annotation process, it should be noted that multiple
annotators presumably make the evaluation more robust to annotation errors.
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Two metrics were created based on the vertebra and rib annotations. The first of which de-
notes the distance between the vertebrae of the CT projection and the XA image. Here, the
average distance between corresponding vertebra in the CT and XA was calculated. When
a vertebra was not present on either the CT or XA, its annotation is not taken into account
in this metric. It should be noted that as this metric is based on relatively few annotations
(one per vertebra), any error in annotation greatly influences the metric. In the case of the
second metric many more points are taken into consideration, diminishing the effect of a sin-
gle incorrect annotation.

The second metric denotes the distance between corresponding ribs. The value is calculated
as the average distance between all corresponding sets of ribs. When the rib of the CT’s pro-
jection extended beyond the XA image, only the overlapping segments are taken into account.

The procedure of selecting the overlapping rib segments of the XA image and the CT’s
projection, as well as calculating the average rib distance is as follows. The distance between
two ribs (two sets of points) is calculated by adding dummy points at the end of the two point
sets, see Fig. 4-1. Subsequently for every point(except the dummy end-points) the distance
to the closest point in the other set(including the dummy end-points) is calculated, denoted
by a line in the figure. In case this closest point is the dummy end-point of the other set we
exclude this point, all other points are retained. The distance between the two ribs is then
calculated as the average value of all computed point distances. In the figure this corresponds
to the average of the lengths of all lines not connected to a dummy end-point. This process
is repeated for each pair of corresponding ribs in the XA image and CT’s projection. Finally,
the average of these rib distances is taken as the value of the rib evaluation metric.

Figure 4-1: Calculation of the rib metric
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4-3 Experiments outline

In this section we outline the experiments of which the results are shown in Chapter 5. We
investigate the performance of the proposed 3D/2D registration method under a variety of
configurations and in the following order:

1. Preprocessing

2. 2D initialization

3. 2D optimization

4. 3D optimization

Note that the 3D initialization stage is divided into its two main components, the 2D initialization-
and optimization stages. With the exception of the pre-processing stage, all stages have mul-
tiple possible parameter settings(configurations). We thus investigate multiple configurations
per stage.
Finally, the results of two registrations are depicted in two images. Both images contain a
checkerboard overlay of a CT projection (DRR) with its corresponding XA. The evaluation
metric values are stated in the images’ caption. These images are included to visualize the
relationship between the metric values and visual alignment.

4-4 Parameters

In this section we list the method parameters. Parameters of which their value has been fixed
earlier, such as those based on human anatomy (e.g. the 300 HU CT threshold based on bone
density, as well as the spine width), are stated as well as empirically deduced parameters
(such as the step size during the 2D- and 3D pose optimization stages).
Table. 4-1 depicts the parameter settings of the method during the experiments.
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Stage Parameter Value Unit Chapter
CT pre-processing
Threshold threshold 300 HU 3-1-1
Mask radius horizontal 100 mm 3-1-1

vertical 60 mm
Aorta detection [16] 3-1-1

back-foreground 50 %
aorta diameter 23 mm
σs 1.4
µl 180 degrees
σl 30 degrees
ar 2
br 1
taorta 1e-5

Aorta removal tregiongrowing 0.015 % 3-1-1
dilation 5 mm

XA preprocessing
nFrames 4 3-1-2
mask radius hor 100 mm 3-1-2

2D Pose Initialization
x region radius hor 0.25 mm/sw 3-2-1

spinewidth(sw) 40 mm
α patch height 1-20 mm 3-2-1
y offset 60 mm 3-2-1
2D Pose Optimization 3-2-2
MI binsize 16
Powell alpha 0.9
stepsize translation 1 mm

rotation 1 degree
scale 0.001

boundaries translation 50 mm
rotation 45 degrees

stopping criteria translation 0.001 mm
rotation 0.001 degree
scale 0.001

3D Pose optimization 3-3
Tomazevic σ 0.5

threshold 0.6
n 4

stepsize translation 0.1 mm
rotation 0.1 degree

boundaries translation 50 mm
rotation 45 degrees

stopping criteria translation 0.01
rotation 0.01

Table 4-1: Parameter settings of the registration method during experiments
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Results

In this chapter the results of the experiments are depicted. The order of the experiments is
as follows.

1. Preprocessing

2. 2D initialization

3. 2D optimization

4. 3D optimization

Recall the evaluation metrics introduced in Chapter 4. For every configuration two distribu-
tions are plotted in the form of box plots. The first box plot(blue) denotes the values of the
vertebra metric (the average distance between annotated vertebrae in the CTs projection and
the XA) while the second box plot(green) denotes the values of the rib metric (the average
distance between annotated ribs) for all successful interventions. We thus aspire to low values
of the evaluation metrics. Each box plot includes the median, the 25th percentile (Q1) and
the 75th percentile (Q3), and extends from Q1 − w(Q3 − Q1) to Q3 + w(Q3 − Q1). Using a
value for w of 1.5 this translates into a coverage of 99.3%.
Of the in total 19 interventions in the test set, the registration method failed in two cases.
We classify a registration as a failure when the 2D initialization stage is not able to bring
the DRR within the capture range of the subsequent optimization stages (which translates
to a pose in which corresponding vertebra overlap most). Due to the inaccurate initial pose
estimation, the 2D- and 3D optimization stages were not able to adequately align the DRR
with the XA. Chapter 6 will discuss these failed registrations further. Note that due to the
failure, the depicted results in this chapter are based on the 15 cases in which the registration
method succeeded to position the DRR within the aforementioned capture range.
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Pre-processing As all parameters in this stage are based on human anatomy, we have but
one possible configuration. The result of the pre-processing stage is labelled as initial and is
depicted in Fig. 5-1.

2D pose initialization During the 2D pose initialization step four configurations were eval-
uated. In the first configuration, only the translation is estimated. During the second, trans-
lation and orientation are estimated. The third configuration involves estimating translation
and scale and the last configuration estimates all four variables. In Fig. 5-2 the results of
the configurations are displayed. Additionally, in Fig. 5-3 the change with respect to the
previous pre-processing stage is depicted. Here, a negative value is favourable as it represents
a decrease in evaluation metric value.
As will be discussed in Chapter 6, the first configuration (estimating only translation) exhibits
the most favourable performance, and will thus be utilized in the subsequent experiments.

2D pose optimization The last step of the 3D pose initialization stage is the 2D pose op-
timization step. Here, two different configurations are evaluated, using either the NCC or
MI as similarity measure. Note that the optimization parameters(e.g. step size and stopping
criteria) were empirically determined. In Fig. 5-4 and 5-5 the results of the 2D pose opti-
mization step and thus the entire 3D pose initialization stage are displayed.
As will be discussed in Chapter 6, the first configuration (using NCC as similarity mea-
sure) exhibits the most favourable performance, and will thus be utilized in the subsequent
experiments.

3D pose optimization The last step of our 3D/2D registration method is the 3D pose
optimization stage. Here, we evaluated three different configurations, using either the nor-
malized cross correlation, the mutual information or the gradient-based metric as proposed by
Tomazevic as our similarity measure. Note that similar to the previous step, the optimization
parameters(e.g. step size and stopping criteria) were empirically determined. In Fig. 5-6 and
5-7 the results of the 3D pose optimization step and thus the entire registration method are
displayed.

Registration examples Finally in Fig. 5-8 and 5-9 the results of two registrations are shown.
Both the DRR (background) and XA (foreground) are shown, the evaluation metric values
are depicted as well. The images are shown in order to visualize the relationship between the
metrics and the alignment.
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Figure 5-1: results of the pre-processing stage

Figure 5-2: results of the 2D initialization stage Figure 5-3: difference between the results of the
2D initialization stage and pre-processing stage
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Figure 5-4: results of the 2D optimization stage Figure 5-5: difference between the results of the
2D- optimization and initialization stages

Figure 5-6: results of the 3D optimization stage Figure 5-7: difference between the results of the
3D- and 2D optimization stages
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Figure 5-8: Registration example 1, vertebrae-
and rib metric values are respectively 8.1 and 19.5
mm

Figure 5-9: Registration example 2, vertebrae-
and rib metric values are respectively 7.6 and 11.7
mm
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Chapter 6

Discussion

In this chapter, the results as depicted in Chapter 5 are discussed, the same order is main-
tained.

Pre-processing
Recall the purpose of the pre-processing stage, filtering of the images in order to boost per-
formance during subsequent pose estimation and optimization. The impact of this stage can
not yet be observed in the results seen in Fig. 5-2 and 5-3. The reason for this is that there
is no action undertaken during the pre-processing which directly influences the alignment at
this time. Succesful pre-processing will positively influence the performance of all subsequent
steps, utilizing the pre-processed images.
Noteworthy from the results depicted in Fig. 5-2 and 5-3 are the outliers in both metrics.
Note the median of the vertebra- and rib metric being respectively 38.0 and 29.9 mm. The
outliers in both metrics (around 180 mm) correspond to the same intervention. The CT
image belonging to this outlier spans an unusually large region. The image ranged from the
pelvis up to vertebra T8. The average CT image in the dataset ranged from vertebra T10 to
L4. During the pre-processing stage the CT image’s center is positioned at the isocenter of
the world coordinate system. On average the CT vertebra L1 and the XA vertebra L2 was
found at that position, in case of the outlier CT vertebra L5 was located at the isocenter,
which explains the unusually large initial metric values.

2D pose initialization
Regarding the results as depicted in Fig. 5-2 and 5-3, we notice a substantial improvement
with respect to the pre-processing results. The largest improvement is found in the result
of the first configuration (estimating only the translation), which brings down the evaluation
metric values from medians of 38.0 mm (vertebra metric) and 29.9 mm (rib metric) to respec-
tively 14.9 and 10.6 mm. Visual inspection supports the metric values, it revealed a robust
performance of the spine edge detection (utilized in estimation of x̂), which also positively
influenced the estimation of ŷ. This estimation of ŷ proved sufficient due to amongst others
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its redundancy as a consequence of returning multiple possible poses. However, as mentioned,
the vertical translation estimation failed in 2 out of 19 cases, which shows the estimation being
less robust than preffered. On closer inspection of the mentioned two cases, both exhibited
in-plane rotations (of respectively 6 and 12 degrees). In estimating the vertical translation,
the normalized cross correlation is measured for various vertical shifts. This approach inher-
ently assumes an equal orientation in both images. When there is a orientation difference,
the approach becomes less robust, as further proven by the two failed registrations.
The estimation of α did not improve the results, upon closer investigation it appeared that
orientation was almost always detected however often mis-estimated by a few degrees in the
case of the XA images. The estimation of the orientation of DRR images, inhabiting much
less ’noise’ proved much more accurate. The mis-estimation of XA image orientation also
yielded a negative effect on the vertical translation estimation later on in the process, mea-
suring normalized cross correlation between two images orientated differently.
The estimation of scale seemed to slightly decrease performance. Upon visual inspection it
is revealed that the largely equal approach to detect the spine edges in both modalities is
not ideal. Detecting the exact same spine edges in both modalities deserves two different
approaches. The estimation of x̂ suffers much less from the spine edges detected not being
100% accurate. In the scale estimation case, the error in the four edges detected adds up to
a small but noticeable decrease in accuracy. It should be noted that the efforts with respect
to scale estimation might not be required. In fact closer visual inspection of the intervention
images showed no large scale differences between the images. Orientation differences were
detected more often.
Considering the results and aforementioned observations, configuration one (estimating solely
the translation) will be used in following stages.
The benefit of this 2D pose initialization is clearly visible from the results, however we also
notice that for a number of patients the alignment has actually gotten worse, even in case of
configuration one(estimating only the translation). On closer visual inspection of these cases,
a decrease in quality of alignment occurred only in the instances for which the original align-
ment was, by chance, quite good. In these cases we clearly notice the limited capability of
the initialization step, being able to bring the DRR within capture range, but not optimizing
the alignment.

2D pose optimization
From the results we deduce that the first configuration (optimizing by using NCC as the
similarity measure) exhibits a slightly more favourable performance. The median values of
the metric here are 11.6(vertebra metric) and 9.2 mm(rib metric) which are smaller or equal
to the result of using the MI similarity measure, of which the median values of the metrics are
14.4 and 9.2 mm respectively. The difference between the 75% and 99.3% percentiles between
the two configurations, as depicted in the figures, is not much. However regarding the lower
median of the vertebra metric in configuration one, as well as lower 25% and 75% percentiles,
this configuration is determined to be the best candidate to use in the experiments of the
following stage. Fig. 5-5 adds some insights into our comparison. Here, it is clear that the
NCC approach has a smaller standard deviation than the MI approach. A smaller standard
deviation is a sign of a more robust step, which counts heavily in the decision to accept the
NCC as our similarity measure.
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3D pose optimization
As opposed to the previous stages and steps we do not notice an obvious improvement. The
vertebra metric medians have changed from 11.6 mm in the previous stage’s best configura-
tion(NCC) to 11.7, 10.1 and 13.4 mm by respectively utilizing Tomazevic’s metric, the nor-
malized cross correlation and the mutual information in the current stage. The medians of the
rib metric have similarly changed from 9.2 mm (2D optimization, NCC) to 9.4(Tomazevic),
10.2(NCC) and 10.9(MI).
Looking at Fig. 5-7, where the difference with the previous stage is depicted, we notice that
the gradient-based approach has a negligible effect. Upon closer investigation it seems the
alignment from the previous stage was outside the capture range of our implementation of
Tomazevic’s gradient approach. It should be noted that the result of Tomazevic’s paper
[6](Fig. 5) show a 50% successful registration when original displacement is less or equal to
about 10 mm(and 90% when original displacement is under 6 mm). Looking at Fig. 5-4,
the configuration using NCC as similarity measure, the larger portion of our test set result
lie above this boundary. This supports the possible explanation, in that the results of the
previous stage lie outside the capture range of Tomazevic’s gradient based measure, which
would explain the lack of improvement in the results.
The intensity-based configurations on the other hand, show different results. Both exhibit
a noticeable effect with respect to the previous stage’ performance. In case of the second
configuration (utilizing the NCC as similarity measure), the vertebra median is reduced from
11.6 to 10.1 mm, while the median of the rib metric increases from 9.2 to 10.2 mm. However,
the deviation of the metric results has increased (note the 25% and 75% percentiles). This,
to a slightly lesser degree, is also the case in configuration three(MI). Note that the number
of interventions undergoing a positive effect(8) from the configuration utilizing MI are almost
equal to the interventions undergoing a negative effect(9). The same results were found in
case of configuration two(NCC), however in this case the net effect is a higher increase in
performance with respect to configuration three(MI). It is clear that the intensity-based mea-
sures, while influencing results, are not well suited to substantially increase the performance
of the overall method. Note that the results when applying the three configurations on the
result of 2D pose optimization while using MI as similarity measure as well, are depicted in
Fig. C-1.
Unfortunately it seems the tested 3D pose optimization technique failed in improving the re-
sult of the previous stage. Therefore, based on the experiments, this stage should be excluded
from the overall method at this point.

Relationship between evaluation metric and alignment
Note Fig. 5-8 and Fig. 5-9. In the images two registration results are shown. Interesting about
the first case is the value of the rib metric. Although the rib alignment looks quite good(note
the rib connected to vertebra T12), the metric denotes a value of nearly 2 cm. This artefact
is a consequence of the relatively small part of the ribs visible on this particular XA, allowing
for any error during the annotation process to have a larger effect on the metric value. As
for the second example case, note that there is a small rotation necessary in order to achieve
the optimal alignment, which influences both evaluation metrics.
Another important deduction can be made with respect to the evaluation itself. An ideal
evaluation metric perfectly reflects the method performance. However, even though based on
manual annotations, the metrics utilized in this thesis do not represent the alignment per-
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fectly. As an example, a low vertebra metric value could accompany an incorrect alignment,
due to an out-of-plane rotation. This also applies to the rib metric, in which the lack of
point-correspondence causes the mis-representation. Furthermore, inherently two evaluation
metrics can cause ambiguity during investigation as opposed to a single evaluation metric
case. These effects make for a required visual inspection on all numerical results, which can
not be used in comparing the proposed method against other registration methods.
The previous deduction as well as the depicted images show that the evaluation metric values
are not necessarily an entirely accurate representative of the alignment. Amongst others,
man-made annotations can contain errors, which can influence the metric value substan-
tially(example 1).

In summary, based on the numerical results as well as visual verification of these results, it
seems that the 3D pose initialization succeeded in providing a seed point sufficiently close to
the optimal pose for subsequent optimization stages. However, the automatic estimation of
the orientation and scale as part of the initialization stage have not increased performance
as expected. The approach of estimating orientation proved not to be sufficiently robust,
primarily in case of XA images. The performance of the scale estimation showed the need of
a separate spine edge detection approach for both modalities.
The 2D pose optimization stage utilizing the normalized cross correlation, an intensity-based
similarity measure, increased the accuracy in most tested interventions. Some intervention
alignments however, were reduced in accuracy as a result, revealing the limitations of the
metric. Unfortunately, the tested 3D pose optimization approaches did not succeed in bring-
ing down the alignment error.
In conclusion, the 3D/2D registration method exhibits the best performance when estimat-
ing the horizontal- and vertical translation during the 2D pose initialization stage and using
NCC as similarity measure during the 2D pose optimization stages. The results of using
this configuration are depicted in Fig. 5-4, with a median vertebrae- and rib metric value of
respectively 11.6 and 9.2 mm.
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Chapter 7

Recommendations

During the creation of the proposed 3D/2D registration method and the discussion of the ex-
periments, potential future work topics became clear. In this chapter, recommendations are
made to further improve the performance of the proposed 3D/2D registration method as well
as its applicability in future intervention support. The chapter presents the recommendations
per stage, adhering to the same order as Chapters 5 and 6.

Pre-processing
As for the Pre-processing stage the most improvement in performance can be achieved in
the XA pre-processing, especially in the removal of the dynamic ’noise’ layer still present in
the image. The challenge here lies in the design of a method with sufficient performance and
reasonable execution time. As for the CT pre-processing, room for improvement lies primarily
in a more robust removal of the aorta as well as other structures of high radio density which
survived the threshold. An interesting approach can be model based. When detecting the
spine and ribs in this manner, a more appropriate mask could be applied to these structures
resulting in a more efficient removal of unwanted structures.

2D pose initialization
The just mentioned model based approach could provide a potential improvement during
this stage as well. The approach might make for an estimation of orientation and scale with
positive impact on overall accuracy. Which, in turn, might make the usage of subsequent
approaches with a smaller capture range (such as utilizing Tomazevic’s gradient measure)
available. It would supposedly also solve the issue with the vertical translation, being the
output of multiple poses. The effects of which is that human interaction is required, as well
as an increase in computational complexity (although whether this is an issue resides on the
available hardware). Another approach in bringing down the number of optimized poses after
the estimation of vertical translation is to introduce a metric at that point. This metric could
exist of multiple similarity measures. With this, only one pose will be optimized when the
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probability of that pose being the correct one far exceeds all others. Multiple poses would
still form the output if even the most likely poses inhabit an insufficient level of probability.

2D pose optimization
The optimization of the 2D pose was performed using two intensity based measures, however
a gradient based measure might improve the result of this stage. Specifically in case of the
X-ray fluoroscopy images, the intensity distribution is dependent on a number of factors which
ideally should have no effect. Amongst them is the time at which the frames are extracted,
which influences the image due to respiratory movement, visible as a region (moving over
time) of low intensity. Furthermore as we are dealing with a single source and detector plane
configuration, the X-ray system orientation influences the intensity values, i.e. less X-ray
photons will be received when crossing the human body at the center compared to the side.
The X-ray image values are based on this sole configuration, as opposed to the CT image,
which incorporates multiple device angles. Gradient based measures might prove more robust
to these phenomena.

3D pose optimization
The optimization of the 3D pose, although not improving the previous stage, shows interesting
result. The difference between the gradient based metric and the intensity-based metrics is
clear. It seems that while the intensity-based configurations effect the alignments, they are
not able to further improve on the alignments accuracy by much. In case of the gradient
based measure however, there is no significant effect at all, as the interventions seem to lie
outside the methods capture range. Here lies room for improvement, attempting to either
increase the capture range, or increase the performance of the 3D pose initialization stage (by
e.g. the aforementioned model based approaches). As mentioned in Chapter 2 Livyatan et.
al proposed projecting relevant gradients of the 3D volume towards the detector plane and
measuring the similarity between the projections and the gradient of the X-ray images [10].
A next step would be to implement this gradient based method, noting whether the results
support our deductions and/or improve our results.

Also I would like to discuss one final other interesting field, which requires labelled data to be
available. Implementing convolutional neural networks to detect the spine and ribs in both
modalities could make for an interesting approach. Features developed in this thesis can be
used as additional information to aid the learning process. Also, pre-processed images might
make for a steeper learning curve, requiring less labelled data to be input into the system.

Lastly, recall the debate on the evaluation metrics itself in Chapter 6. Here, the drawbacks
of the metrics were discussed. The lack of point correspondence in the rib evaluation metric
inevitably causes mis-representations of alignments. On the other hand, the vertebrae metric
is ill-fitted in accurately representing out-of-plane rotations. Evaluation without a well-defined
reference has caused difficulties during the experiments. For future assessment of alignment
accuracy, I would suggest either increasing the amount of corresponding annotations or a curve
based approach. The former will diminish negative effects inherent to the rib evaluation metric
as well as those caused by human error during annotation. The latter, while introducing a
more extensive annotation process, has a non-trivial potential. Using a region-growing or
largest connected component approach, the spine and rib surfaces could be extracted in the
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CT image. The XA modality might require a more rigorous pre-processing before the same
technique can be applied. Robust principal component analysis could be applied to filter out
the dynamic layer from the static one. Comparing the distance between the surface of the
spine and ribs in the CT as compared to the XA can prove a single more robust metric.
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Chapter 8

Conclusion

In this thesis a 3D/2D registration method is proposed to support interventions with a region
of interest close to the spine, such as the TACE intervention. The method assumes an available
pre-interventional 3D CTA and intra-interventional X-ray fluoroscopy. The method’s novelty
resides in the approach taken to initialize the 3D pose of the CT. Performance of 3D/2D
registration methods heavily rely on initialization which is executed automatically in the
proposed scheme.
The clinical relevance of this registration is the ability to show the aorta and relevant vessels
after registration, making an enhanced roadmap available during interventions demanding
guidance of a catheter through this region.
The method can be divided in three stages: a pre-processing stage, a 3D pose initialization
stage and a 3D pose optimization stage. The 3D pose initialization stage itself consists of
2D pose initialization/optimization and transformation of the 2D pose to a 3D equivalent.
Important to note is that human interaction is necessary. As part of the proposed method it is
very probable (due to the estimation of vertical translation during the 2D pose initialization)
that the registration results in multiple possible alignments. The physician is required to
select the correct alignment him- or herself.
The experiments performed in this thesis resulted in a classified successful registration of 15
out of 17 interventions in the test set. The successful registrations exhibit evaluation metrics
with a median of 11.6 mm between corresponding vertebrae and a median of 9.2 mm between
corresponding ribs. Based on the experiment results, the highest performance was achieved
by estimating translation during 2D pose initialization and using NCC as similarity measure
in the subsequent 2D pose optimization stage. At this point, experiments performed with
respect to the 3D pose optimization stage did not improve the result of the previous 2D pose
optimization stage. This stage should thus be excluded from the registration method.
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Appendix A

Coordinate Systems

There are multiple coordinate systems involved throughout the project, in this chapter we
address all systems and their relations.

CT coordinate system The CT system has three dimensions denoting the following direc-
tions with respect to the human body: from front to back(anterior to posterior), from left
to right, from feet to head. The specific directions and order of the dimensions were chosen
as the used data exhibited this orientation system. A point CT(r, c, s) denotes a voxel at
row r(position between front and back), column c(position between left to right) and slice
s(position between feet to head).
The CT coordinate system can be observed in Fig. A-1. Important to note is the location of
the origin (0, 0, 0) in the figure, which is not located at the center of the 3D volume.

Figure A-1: CT coordinate system

CT-mm coordinate system As of yet in the CT system, the distance between subsequent
rows, columns or frames is just one unit. Using the voxel spacing we compose the scaling
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matrix necessary to travel to a correct mm representation as stated in Eq. A-1. Note that
in most cases the row- and column voxel spacings are equal (often < 1 mm) and the frame
spacing is somewhat larger (often 3 or 4 mm). In performing this transformation CT(r, c, s)
thus becomes CT(x, y, z) by using

SCT→CTmm =


∆xCT 0 0 0

0 ∆yCT 0 0
0 0 ∆zCT 0
0 0 0 1

 , (A-1)

where ∆xCT, ∆yCT and ∆zCT are the voxel sizes in mm.

Figure A-2: CT-mm coordinate system

CT-device coordinate system The orientation of the dimensions in the CT-device system
differs from the CT-mm system. Specifically the first dimension x should denote direction
from left to right, y goes from head to feet and z goes from front to back while the origin
remains in the upper left corner. To get the proper orientation we apply the following matrices
as displayed in Eq. A-2.

RCTmm→CTdevice =


0 1 0 0
0 0 −1 0
1 0 0 0
0 0 0 1

 ∗


1 0 0 0
0 1 0 SCT ∗∆zCT
0 0 1 0
0 0 0 1

 (A-2)
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Figure A-3: CT-device coordinate system

World coordinate system The scanning device used during the intervention consists of a
large C-shaped arm, positioned around the patient on the table. At the lower end of this arm
an X-ray source is positioned. At the upper end of this arm a detector plane is positioned.
The X-rays travel from the source through the table and patient and land on the detector
plane.
The location of the X-ray source, the isocenter and the detector plane are known. What is
left to determine is the exact position of the CT image. We know that it is approximately
at the isocenter, but as can be seen in the experiments, this is more often than not, not the
exact position.
The just mentioned all takes place in the world coordinate system. The system is a 3-
dimensional system. The dimensions are denoted by x, y and z. As mentioned this thesis
describes a method to determine the proper 3D pose of the CT image in the world coordinate
system. This pose consists of the coordinates as well as the three rotations about the axis.
This is what the output from Sec. 3-3 will be.
The world coordinate system can be observed in Fig. A-4. Here, we notice the CT image
in the world coordinate system at the isocenter, as well as the detector plane in the top left
corner and the source (denoted as a red dot) in the bottom right corner.

The origin of the CT device system is located at the upper top left voxel. Without any
translation applied this is also where its origin in the world system will be located. However
we want the origin of the world coordinate system to align with the center of the CT image.
Using the dimensions of the 3D volume (RCT,CCT and SCT)we can create the translation
matrix necessary as in Eq. A-3.

T lCTdevice→world =


1 0 0 −RCT ∗∆xCT/2
0 1 0 −CCT ∗∆yCT/2
0 0 1 −SCT ∗∆zCT/2
0 0 0 1

 (A-3)
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Figure A-4: World coordinate system

By cascading the previous matrices one can transform a CT image from the initial CT coor-
dinate system to the world coordinate system,

CTworld = T lCTdevice→world ∗RCTmm→CTdevice ∗ SCT→CTmm ∗ CT. (A-4)

XA coordinate system The XA system has three dimensions. The first two dimensions
behave in the same manner as in the CT system. However now the third dimensions does not
depict position between front and back but denotes the index of the frame in the sequence,
moving further in the sequence means moving forward in time. Hence a point XA(r, c, f) thus
denotes the pixel at row r(position between head to feet), column c(position between patient
right to left) and frame f(sequence index).
The XA coordinate system can be observed in Fig. A-5 (only the first frame of a sequence is
plotted).

Figure A-5: XA coordinate system
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XA-mm coordinate system As of yet in the XA system, the distance between subsequent
rows and columns is just one unit. Using the pixel spacing we compose the scaling matrix
necessary to travel to a correct mm representation as stated in Eq. A-5. In performing this
transformation each frame of XA: XA(r, c) thus becomes XA(x, y) by using

SXA→XAmm =


∆xXA 0 0 0

0 ∆yXA 0 0
0 0 0 0
0 0 0 1

 . (A-5)

Figure A-6: XA-mm coordinate system

X-ray device 2D coordinate system The orientation of the dimensions in the X-ray device
2D system differs from the XA-mm system. Specifically the first dimension x should denote
direction from left to right while y goes from head to feet. To get the proper orientation we
apply the following rotation matrix as displayed in Eq. A-6.

RXAmm→X−ray2D =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 (A-6)

Note that the X-ray device 2D coordinate system is our 2D representation of the detector
plane. Our goal is a correct alignment of the DRR (projection of the CT image) in this coor-
dinate system with the XA image. The X-ray device 2D coordinate system can be observed
in Fig. A-7. We can transform our XA(r, c) image in the XA-mm coordinate system to the
image XA(x, y) in the X-ray 2D device coordinate system by using RXAmm→X−ray2D.

By cascading previous matrices one can transform a XA image from the initial XA coordinate
system to the X-ray 2D Device coordinate system,

XAX−ray2D = RXAmm→X−ray2D ∗ SXA→XAmm ∗XA. (A-7)
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Figure A-7: X-ray device 2D coordinate system

X-ray device 3D coordinate system Off course the detector plane is also defined in 3D as
depicted in Fig. A-8, it can also be seen in Fig. A-4 in the top left corner. We can travel from
our 3D representation to the 2D one by applying a rotation and translation as in Eq. A-12.
As for the rotation matrices. The C-arm system (see Fig. A-9) has two angles, called the tilt
and skew (see Fig. A-10). Theoretically there also is a third angle, however this angle was not
stated for any patients in the training and testsets and assumed zero. A future incorporation
of this angle should not introduce any problems.
The tilt of the C-arm represents a rotation about the y-axis whereas the skew of the C-arm
represents a rotation about the x-axis. Eq. A-8 and Eq. A-9 denote the necessary elementary
rotation matrices to achieve the rotation about both axis. Eq. A-10 denotes the combination
of the matrices.
Now the translation matrix incorporates the distance from the isocenter to the center of the
detector plane. The center of the detector plane is located at xoff = ∆xXA∗0.5∗CXA and yoff =
∆yXA∗0.5∗RXA. Furthermore the isocenter is located at a distance of IOD = SID−SOD mm
from the detector plane center. Here, SID stands for the source image distance (distance
between source and detector plane), SOD stands for the source object distance (distance
between source and isocenter) and IOD stands for the image object distance (distance between
detector plane and isocenter). The translation TlX−ray3D→X−ray2D is depicted in Eq. A-
11. The cascade of TlX−ray3D→X−ray2D and RX−ray3D→X−ray2D forms TX−ray3D→X−ray2D, the
transformation matrix necessary to travel from the X-ray device 3D system to the X-ray
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device 2D system.

Ry =


cos(α) 0 sin(α) 0

0 1 0 0
−sin(α) 0 cos(α) 0

0 0 0 1

 (A-8)

Rx =


1 0 0 0
0 cos(β) −sin(β) 0
0 sin(β) cos(β) 0
0 0 0 1

 (A-9)

RX−ray3D→X−ray2D = (Ry ∗Rx) =


cos(α) 0 −sin(α) 0

sin(α)sin(β) cos(β) cos(α)sin(β) 0
sin(α)cos(β) −sin(β) cos(α)cos(β) 0

0 0 0 1

 (A-10)

Tl =


1 0 0 yoff
0 1 0 xoff
0 0 1 IOD
0 0 0 1

 (A-11)

TX−ray3D→X−ray2D = TlX−ray3D→X−ray2D ∗RX−ray3D→X−ray2D (A-12)

The missing link at this moment is to get from World coordinate system where our CT is
currently stationed, to the X-ray device 2D coordinate system. We can achieve this by mul-
tiplying one matrix to the previous stage. This matrix P projects a 3D point onto a 2D
plane. Now with the angles of the scanning device represented in RX−ray3D→X−ray2D and the
necessary offset from patient to detector plane represented in T lX− ray3D→ X− ray2Dl, all
that is left to the matrix P is projecting the 3D points to the detector plane. The matrix can
be viewed in Eq. A-13.
Combining matrices RX−ray3D→X−ray2D, TlX−ray3D→X−ray2D and P we can construct our trans-
formation matrix Tworld→X−ray2D as in Eq. A-14 to transform any 3D point or image from
the world coordinate system to the detector coordinate system.

P =


SID 0 −yoff 0

0 SID −xoff 0
0 0 0 0
0 0 −1 SID

 (A-13)

Tworld→X−ray2D = P ∗ Tl ∗R (A-14)
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Figure A-8: X-ray device 3D coordinate system

Figure A-9: C-arm Figure A-10: The skew(top image)
and tilt(bottom image) of the C-arm
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Appendix B

Construction of a DRR

This appendix deals with the projection of the 3D CT image onto the 2D detector plane. It
involves the computation of a synthetic X-ray image, called a Digitally Reconstructed Radio-
graph(DRR). We achieve this by casting X-rays through the CT image using the scanning
geometry at the time of the intervention. The DRR pixel values will simply be a summation
of the encountered CT voxel values along the rays.

Now we can go about the construction of the most accurate DRR by starting with interpo-
lating each voxel to a small enough size, by doing so the projection will be well defined. No
’sub voxel’ will influence more than one pixel. However in practice this approach takes a lot
of computational power.
A computationally less expensive approach is to only project the voxel centers and splat the
projections with an appropriate kernel created to represent the projection of a complete voxel.
We go about the construction by first interpolating the most center voxel. Then we derive
a kernel from the projections of the interpolated voxel points. Finally, to counter the effect
that using the same kernel becomes less accurate for voxels far away from the center, we also
apply a Gaussian blur on the kernel with a standard deviation of 33% of the original kernel
size.

Fig. B-1 shows the result of projecting the voxel centers using Tworld→X−ray2D without splatting
with the mentioned kernel. Fig. B-2 shows the result of projecting the voxel centers using
Tworld→X−ray2D with splatting.
Throughout this thesis, all DRRs are created using the splatting technique.
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Figure B-1: DRR without voxel splatting Figure B-2: DRR with voxel splatting
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Experiment results
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