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0. Introduction.

During the recent years numerical models has become a tool for forecasting
morphological changes in alluvial rivers due to natural cause or human
interference. However these models have demonstrated serious short com-
mings, when rivers with graded sediment which are close to the threshold
of motions are considered . Oneof the main reasons is that changes of
transport rate due to changes in grain size distribution are not taken

into account (models for uniform sediment).

The aim of this study has been to develop a numerical model whitout this
restriction; this has been done by taking more grain fractions into con-

sideration. (Model for non - uniform or graded sediment).

This extension of the mathematical model for uniform sediment is described
in chapter 1, where the basic equations of the model for uniform as well
as for non -uniform sediment are derived. The main assumptions in the de-
ductions are that the flow can be considered quasi - steady and that the
sediment transport is a function of the local hydraulic conditions. The
characteristic directions in the model for non -uniform sediment are de-

rived, in case of two grain fractions, and will be briefly analysed.

In chapter 2 the basic equations will be discussed and some models for the
component parts of the mathematical models will be suggested. Here also

some of the general limitations for the morphological computation will

be mentioned.

An extensive numerical analysis of some finite difference methods for a
linear hyperbolic equation is given in chapter 3. A predictor - corrector
method is preferred for the solution of the model for non -uniform sedi-
ment, and the method is tested on the model for uniform sediment in order
to check the applicability to a non -1linear hyperbolic system. Finally the
predictor - corrector method will be applied to the model for non - uniform
sediment after a schematization of the vertical grain size distribution is
carried out. The computational results from the numerical model for non -

uniform sediment will be compared with solutions obtained from the cha-

racteristic method.



In chapter 4 it will be attempted to verify the model by means of a flume
experiment with graded sediment and a measurement from prototype. A sensi-
tivi ty analysis, with respect to the influence of the grain size charac-
teristics and the transport layer thickness on an armoring process, is

carried out.

In chapter 5 the conclusions are summarized and suggestions for conti-

nuation are given.



1. MORPHOLOGICAL MODELS FOR RIVERS.

The mathematical models for forecasting morphological changes in alluvial
rivers consist in principle of an equation of motion and continuity for

each fraction as well as for the water.

Although the variation of the alluvial roughness can have an important
influence when morphological compulation has to be carried out, the bed
roughness is supposed not to vary in time in the following inference of

the mathematical models.

First a morhological model for uniform sediment will be deduced, mainly
in order to get some insight in the complex morphological phenomena and
to ‘justify: description of the water movement by the equations for quasi

steady flow.

Next a model for non-uniform sediment will be inferred, and attention

will be paid to:;he proper definition of some variables in the model. In
case of two sediment fractions the characteristic directions and relations
will be derived and the features with these having influence on a nume-
rical solution of the morphological model will be discussed in broad out-
lines. For a profound discussion of the characteristic of the model:for

non-uniform sediment see Ribberink (1980).

1.1 Model for uniform sediment.

The model consists of an equation of motion and continuity for both
the fluid and the sediment, i.e. there are four equations to relate the

four dependent variables.

u(x,t) time (turbulent fluctuation) and depth averaged
flow velocity

S(x,t) sediment transport

a(x,t) water depth

z(x,t) bed level



1.1.1; Equations -for the water

-~

The equation of motion is the one-dimensional form of the Navier-Stokes

equation for hydrostatical pressure, known as the long wave equation.

where

x space coordinate, possitive in flow direction
t time coordinate
g the gravitational constant
R a friction term, for instance expressed by the Chezy equation
2
Rz - —— (1.1.2)
cta
in which C is the Chezy roughness coefficient, in this deduction supposed

not to vary in time.

The equation of continuity is the classical one for non-.incompressivily

fluids which yields

(1.1.3)

1.1.2. Equétions for sediment

The continuity equation for the sediment yields that a sediment transport
gradient in the flow direction causes a local change of the bed level. The
equation can easily be inferred from fig. 1.1.1where an infinitesimal

‘seqtion of the bed is considered.
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Fig. 1.1.1 Continuity equation for sediment
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(S+Ax§-§’-—S)At+ (z +At§—Z'--Z)Ax=O

3x ot (1.1.4)

where S is the sediment transport per unit width, included the pore

volume.

The equation of motion for the sediment is the so called transport formula,
from which there are existing several (see chapter 2). The different trans-
port formulas are more or less explicit relating the amount of sediment in

transport to the mean flow velocity of the fluid and other parameters

S = f(uy...) (1.1.5)

1.1.3. Mathematical character

The characteristic directions of the set of partial differential equations

can give information about the solution method and the boundary conditions

that have to be apllied

By combining eqs. (1.1.4) and (1.1.5) the transport can be eliminated as

a variable

%% - fu'%%.z 0 (1.1.6)
. (V)
with f = 3U

The total derivatives of the three remaining dependent variables yield

du = >"l'l'd’c & l% dx

Tt d (1.1.7a)
K 3a :
da = St dt + bx‘dx (1.1.7b)

YA 32
dz = 3t dt + ™ dx (1.1.7¢)



The eqs. (1.1.1), (1.1.3), (1.1.6) and (1.1.7) now form a system of linear

equations in the six partial derivatives, which in matrix form reads

1 u 0 g 0 g m%l R
0 a 1 u 0 © WAy 0
9

o f, 0 0 1 0 A 0

1 ¢ 0 0 0 O 3y du/dt (1.1.8)
0 0 1 ¢ 0 © 5’751 da/dt

0 -0 0 0 1 c A%K dz/dt

in which c¢ = %% is the characteristic direction.

As the characteristic directions are propagation velocities for disturban-
ces in the variables, i.e. discontinuities in the derivatives, the set of
equations has no solution along the characteristics. This means, according
to Cramer's rule, that the characteristic directions can be found as the
values for which the determinant : is zero. This can be expressed

in the cubic equation
P-20¢"+ (1 -F2-yrH) P +YF* =0 daliis

in which the following dimensionless quantities are introduced

(b = —3— relative celerity
F = u/(EE Froude number

¥

fu/a dimensionless transport concentration

For realistical values of F and'w de Vries (1976) found three real roots
in eq. (1.1.9). The three roots ¢I,(%_,45 are depicted in fig. (1.1.2) as

a function of F and for liner of equal values onﬂ



wesasas  FROUDE

1
4

V/IATERLENVEL

gL

— wvmme | WATERLEVEL

-— v wmes | GEOLEVE

w
o
@
&
V]
w
@
_ o e
Q
w
4 p3
£
v
A
- o v
O (o] (o]
-— - -

S. ALI¥313D 3AILYITY —~~———

CR F

NUMB

Relative Celerities after de Vries (1976).

s 125

1

Fig.



Interpretating the celerities as directions of information flow it is
seen from fig. (1.1.2) that there have to be two upstream and one down-
stream boundary conditions as there are two positive characteristic direc-

tions and a negative one.

1.1.4. Discussion of celerities

Here the behaviour of the celerities will only be discussed in broad out-

lines; for profound information see de Vries (1976).

For a fixed bed the transport concentration is zero and eq. (1.1.9) can

be reduced to

q)*- 2b+ 1 -F* =0 (1.1.10)

which gives the well known characteristic directions of the long wave

equations
b= 1+ F (1.1.11)

¢z 1 - F-! (1.1.12)

From fig. (1.1.2) it is seen that (% is hardly affected by the mobility
of the bed and for Froude numbers less than + 0.6 nor dkis affected. The
product of the roots in eq. (1.1.9) have to be -YF‘L, from which the
characteristic direction for the bed can be found in case of low Froude
numbers

d):s_ -VF~ v

e Fo1y(1 - F=1) = . 'Fl for F<L+ 0.6 (1.1.13)
+ - - -

In case of supercritical flow it is again seen that (blis not affected
by the mobility of the bed (F > + 1.4) and eq. (1.1.13) is again valid
as an approximation for the bed celerity. Notice that @3 now is negativ,
which is in agreement with observations from nature, where antidunes are
propagating against the flow direction.

For critical flow (F = 1) the celerities read



®=2 and -Q,= =+ |V (1.1.14)

In alluvial streams low Froude numbers are prevailing, and in this case

\ql'b\»q), for F<<1 (1.1.15)

Comparing the three characteristic directions it can be concluded
\C,,L[—> wor dt— 0, thus the partial time derivatives in eqs. (1.1.7a)
and (1.1.7b) can be neglected and therefore eqs.(1.1.1) and (1.1.3) can

be approximated with the equations for quasi steady flow

U 2a 7Z

U$+gax+s—é—x-:R (1.1.16)
a

T M 1 T+ RS (1.1.17)
X X dX .

where q is the discharge per unit width.
The physical interpretation of the neglecting of the time derivatives is
that the flow is changing instantaneous to the new flow situation due to

a change in the bed level.
The system of equations (1.1.4,5,16 and 17) is of a mixed hyperbolic-

parabolic character, because there are two characteristic directions with

infinite velocity and one with the velocity given by eq. (1.1.13).

1.1.5 Linerarization of equations

Although the transport formula is strongly non;linear there can be ob-
tained some insight in the nature of the process from a linearization of

the equations.

The dependent variables are considered to consist of a constant part and

a varying part; for the bed level for instance

o * 2 Zy s 2! (1.1.18)



where z, is the constant part and z' the varying part. The derivation of

the linearized equation is given in appendix A1 and the result is:

32 _piz _ D 3z

3t i ¢ ot - 0© (1.1.19)
fu(u )
with = . (1.1.20)
a(1-F*)
' fu (U ) (1.1.21)
and D:U TI',—
2
in which I, = L’ is the equilibrium bed slope.
C™a,

The character of eq. (1.1.19) can be illustrated by inserting a periodical

solution of the form

S Z (x,t) = Zexp (i k x+rt) (1.1.22)

wher k is the wave number which leads to

r'-(ik)D-ikr'-g-zo
or
1 + 1 % k
Fu= Dk ——mp— ~— (1.1.23)
N 3
1 + E; k

Combining eqs. (1.1.22) and (1.1.23) there occurs a solution similar to
that of a convective diffusion equation, for an initial value z(x,c) = Z-
exp i k x, with an effective diffusion coefficient D, and an effective

propagation velocity C, given by

‘ D
D =z —m——— (1.1.24)
e D.,2 )
1 + (k c)
Clk %)"
'+ DU, - M. (1.1.25)
© ek %)" |

/0
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Fig. 1.1.3. Effective propagation velocity and diffusion coefficient for

bed disturbances.

According to fig. 1.1.3 the linearized equation has a pure convective
character for short waves (large k ) and for long waves a diffusion cha-
racter, but in most cases both features will have an influence. Further
it is noticed that the character of the linearized equation depends on

the parameter

a(1 - FY)

3L (1.1.26)

k2=k
(o]

which is independent of the transport formula.

1.1.6. Non - linearity

The celerity is increasing strongly with the water velocity which will
tend to deform waves: the tails will expand and the fronts compress.
There will be formed a vertical front, a shock wave, and locally the
differential equations will not be valid any longer, but the principles
of conservation of mass and impuls are still valid. For conservation of

mass for instance eq. (1.1.27) is valid.

//
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Fig. 1.1.4. Locally continuity equation

AS
c= (1.1.27)

1.2 Model for non-uniform sediment.

This model also consists of an equation of motion and an equation of con-
tinuity for each sediment fraction and for the fluid. In case of N fractions

therelare 2N + 2 equations to relate the 2N + 2 dependent variables

u(x,t) flow velocity

a(x,t) water depth

z(x,t) bed level

S, 8y(x,t) sediment transport per fraction

P, * PN-1(X,t)  probability of fraction i.

/2



1.2.1. Equations for the water

The water movement is, as for the model for uniform sediment, described
by the equations for quasi steady flow. By combining the equation of
motion and continuity the water depth gradient can be eliminated.

From eq. (1.1.17)

%% : % %% ‘ (1.2.1)

which inserted in eq. (1.1.16) gives

G l&'+ g %% = R (1.2.2)

1.2.2. Equations for sediment

The equation of continuity for an arbitrary fraction i can in a conser-

vative form be written as

i  MZpi
5x "3t =0 (1.2.3)

in which E} is an averaged probability of fraction i. See fig. 1.2.1.

§

Fig. 1.2.1. Continuity equation for fraction i.

/8



The equation of motion for the fractions is the transport formula, which

for fraction i in the most general form reads
Sy = f3(u,p “*Pi**Pp_qy d =rdj=-dy, ") (1.2.4)

where d; is a characteristic grain diameter for fraction i, and it is

convenient to presuppose di+1 > dy.

It is obvious that the sediment transport only depends on the composition
of the sediment in the bed exposed for the flow, i.e. the composition

on the top of the bed forms. See figure 1.2.2.

_\ \l/ Yy
z=0
3 instantaneous bed level
Z time averaged bed level
Zo 'bottom' of bed forms
d = z-2, transport layer
Py averaged probability of fraction i in transport layer
Piz, averaged probability of fraction i below z - level

Fig. 1.2.2. Dune covered bed.

Assumed that the dunes are propagating much faster than the averaged bed
level is changing, i.e. a condition given by eq. (1.2.5), it is seen

- from fig. (1.2.2) that the transport layer is defined as half a signifi-

/Y



‘cant dune height

__i

(1.2.5)

] ]<<

The instantaneous bed level z,(x,t) is defined as the level below which
no grainmovement occurs, and the time averaged bed level is defined as
1

Z(x,t) = =

.
= L Z,(x,t) dt (1.2.6)

where T is an averaging period which must be chosen so big that a repre-
sentative fluctuation of the instantaneous bed level is taken into account,
but so small that the averaged bed level can be considered not changed.
The validity of the averaging process can be expressed in mathematical

terms by eq. (1.2.5).

The z, level is defined as the minimum instantaneous bed level in the
averaging period T, i.e. there is no grainmovement below the z,- level in

the averaging period

2, (x,t) = ming z,(x,t) (1.2.7)

Thé variation of the instantaneous bed level has a stocastical nature.
In prototype and flume experiments deep throughs and high crests are in-
frequently observed. A probability density functinn for the instantaneous

bed level will typically have the form sketched in fig. (1.2.3)

AP (zd

o " >_ -
Zz zm

Fig. 1.2.3. Probability density function for the instantaneous bed level.

—
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The sketch illustates that therehas to be chosen a large averaging period
T to get a representative picture of the fluctuations in the instantaneous
bed level, in which, in case of fast sedimentation or erosion, the time

averaged bed level can change considerable, i.e. eq. (1.2.5) is not valid.

The stocastical fluctuation of the instantaneous bed level has as a conse-
quence that the z, level, and with that the transport layer thickness,

is poorly defined. It does not seem physically reasonable to relate the
transport to the composition of the bed at the levels which are only very
infrequently exposed for the flow. This feature leads to the necessity of
chosing the z, level as the level for which for instance 95% of the in-
stantaneour bed level is above, i.e. only take a certain part of the fluc-

tuations into account.

The composition of the bed is given by the following quantities

15
St
pylx,t) = T L-g lopi*(x,t,z)dzdt | (1.2.8)
and
: %o
pizq(x,t) = z: gb piz.*(x,t,z)dz (1.2.9)

I

in which % indicates local value. It is necessary to know or to assume
something about the composition of the z, level, in order not to have

4
a indeterminable model. From fig. (1.2.2) an expression for the averaged

probability in the continuity equation (1.2.3) can be found
PiZ = p;d+ Pi,, % (1.2.10)

which inserted in the continuity equation gives

i | pid . dPiz, z,
dX 3t ot

=0 (1.2.11)

/6



1.2.3. Characteristics of the set of equations

The deriving of the characteristic directions and the characteristic
relations gives information about the mathematical character of the set
of equations and more insight in the physical process described by these.
The mathematical character gives information about the solution method
which has to be chosen, and the number and direction of the celerities

determines the type and number of boundary conditions.

For the following the continuity equation for the sediment fractions
(1.2.11) will be written in an alternative form (not conservative).

Defining 5}2. as the probability at the z,-1level, i.e.

- WPiz Ze
piz.= T (1.2.12)

the continuity equation becomes

31 (dPi 38 o 3
% st T Pise *Pig 3t

=0 (1.2.13)

from which the variable z, can be elemenated with z, =z =&

384 M Pi WA ¥

where Pj = p; - Eiz.
In appendix A2 a quadratic equation for the two dimensionless celerities,

in case of two fractions is derived for a time independent specific dis-

charge and the transport layer thickness considered as a function of the

local hydraulic parameters 6 (a,u).

The characteristic directions can in this case be found as the roots of

the quadratic equation

¢~ G(A+B+D) + C = 0 | (1.2.15)

/7



where

Q): f% dimensionless celerity

P11z, £y P “Pigz, f‘pl

A= 3U

B = '«'m‘
1-F*

c ‘Vllflpn -uz-f} P
ud(1-r*)

|}
"
I

— 'S— etc.

For a constant transport layer thickness Ribberink (1980) gives a very
profound discussion of the behavior of the celerities. Here only the most

important features for the present purpose will be resumed.

1.2.4. Relative size of the celerities

The difference in magnitude between the characteristic directions has a
large influence on a choice of an efficient numerical method for the pro-
blem. With making some assumption the ratio between the celerities can be
found.

In case of a constant transport layer thickness D‘in eq. (1.2.15) vanishes

and the celerities are then given by

B =t {a+Br VAB) - HC ] -

3 fJaeBs \/7A+B)‘-u<c-AB>'} (1.2.16)

/§



and for C - AB = 0

b, = a

(1.2.17)
(.= B

The condition C - AB = 0 can be shown to be fulfilled for

(Ppp Vi = Pig, Ya)(Fup, + fup ) = 0 (1.2.18)

For a simple transport formula of the form

S; = py fi (U) (1.2.19)

-

I

in which S};} =0

[

(=

eq. (1.2.18) can be written as

S ' it U { 1
Pz, P, fiu-P 2, Pa fou)(f, =f,) =0 (1.2.20)

' 1
which is true in case of uniform sediment %n’,{; and for

-5] .(1-p1) . f‘
Ze g (1.2.21)
pl (1 - p|zo) fa.u .

As f, gives the transport of the finer fraction, it can, for realistic
transport formulas, be concluded that f:u /fiL1'>4 , and eq. (1.2.21) can

then be reduced to

Piy,> P ~ (1.2.22)

Locally the transport formula per fraction can be approximated to a simple

power formula

Sy = pymy U" (1.2.23)

/1



where respectivfly mj and n are not a function of pj and u. Notice that
eq. (1.2.23) is not in contradiction with eq. (1.2.19). Another way to write

the transport of fraction i is

Sy = pio/ Ugs (1.2.24)

where Ug is the average velocity in the transport layer of the grain

with the diameter di.

With these assumption the celerities are now given by

Paz, Ug + Py U
(p.:A: . g'U Zo B (1.2.25)

n_é P, Ugl+ Py UgL

qk: B a U

(1.2.26)

and it is seen

f P il
or Pig,~> 1 and Ugif’ 0 —> 0

for py—>00 and uUg, —0

Resuming the assumptions

d constant

C-AaB=0 —_ p|z°>Pl
Transport locally app. with eq. (1.2.23)

¢

n-—=xI1

a

it is seen that no unrealistic simplification or assumption is made, so
it is concluded that the difference between thetwo celerities can have

a considerable magnitude, a fact which has a large influence on the choice

0



of an efficient numerical method.

-

1.2.5. Mathematical character

The mathematical character of the set of partial differential equations
forming the model for non-uniform sediment depends on the form of the
characteristic directions. In case of respectivily complex, real and
equal or real and different characteristic directions the set of partial

differential equations is elliptic, parabolic or hyperbolic.

In a hyperbolic problem the characteristic directions define an area of
influence and an area of dependence (see fig. 1.2.4), so the here treated
problem is a typical hyperbolic problem, but in some cases complex charac-

teristic directions are found.

C,
area of influence

area of dependence

>
X

Figure 1.2.4. Hyperbolic problem in the x,t -plane

Again with the assumption that the transport layer thickness is constant,
the form of the characteristic directions depends on the sign of the dis-
criminant in eq. (1.2.16), and a necessary but not a sufficient condition

for complex celerities is



C-AB>O0 ‘ (1.2.27)

-~

which, in case of a simple transport formula given by eq. (1.2.19), can

be written as
— —-— ] N
(Pag, P, Tiy = Pig, P fay)(f, - f,) <0 (1.2.28)

| |
Recalling d.A d, , thus f‘,u 7fz|-u and f, >/f,: , the equation can be

reduced to

p'z (1"‘pl) fl
. 7 == >l (1.2.29)
p, (1=py,, fiy
which is only valid for Pi, 7P
o

1.2.6. Physical interpretation of elliptical character

Complex characteristic directions in a from nature hyperbolic system can
heve two causes: the model is describing a physical unstable situation or

there is an error in the formulation of the model.

PhYsical instability

A mathematical indication of a physical instable situation can be that an
infinitesimal disturbance in a variable is amplified. For the bed level

this criterion for instability can be formulated as

8 |
b%zl < 0 | (1.;.30)

or for two fractions

RN

N du 38, YS | dp,
du du

3z " ip, * p; " 3z

( ) < o - (1.2.31)

44



An expression for %% can be obtained from the local energy level

éé + a + z = const. Elim@nating the water depth with help of the continuity

equation for the water and differentiating with respect to the bed level

z, the following expression occurs

u ju _a Ju -
g 3z u dz *1a ¥

or §£= u L (1.2.31)
S TS

p
For a contant transport layer thickness %;% can be deduced from fig. (1.2.5)

: g////// "7
NN

— 1

Pi - piz

AP Faz — g

Figure 1.2.5. Change of composition for small disturbance in bed level.

. P -DP¢
5;; g d‘z" (1.2.32)

Insert the obtained expressions for %5 and%fﬁ— in eq. (1.2.30) the
z z
criterion for instability now yields

B+A+Ar<o (1.2.33)

‘where A and B are given in connection with eq. (1.2.15) and



po(p -p‘ f&pl

For a realistic transport formula a necessary, but not a sufficient con-
dition for the validity of eq. (1.2.33) is also that the transport layer

is coarser than the underlaying layer. For the Meyer - Peter and Muller
transport formula it was found that when eq.(1.2.33)is fulfilled the celeri-
ties are always complex, but it was also found that it is not a sufficient
criterion for elliptic character in the set of parial differential equa-

tions. .

1.2.7. Error in the formulation of the model

A shortcoming in the model, which perhaps underlies the elliptic character,
is that the model can not describe an exchange of sediment between the
transport layer and the z, - layer independent of the change of the z, -
level, i.e. sedimentation of coarse material and erosion of finer mate-
rial at the same time, a process that especially is taking place when

the transport layer is much coarser than the under lying layer. See fig.
-

°°_
‘0.t
.0

2 ey 0
.0 o

060 0% % "
« ® o (]

Zo

Figure 1.2.6. Exchange of sediment between transport layer and z, layer.

The feature can-not be described because the assumption that has to be

made for the piz, is based on the sign of %%? "



It can not be stated with certainty what the actual cause for the ellip-
tic character in the set of partial differential equations is, but for-
tunately there are only problems close to initiation of motion, where it
is especially interesting to ﬁse a model for non-uniform sediment, when
there is chosen a very extreme combination of piz° and the transport layer

thickness.

1.2.8. Characteristic relations

In case of real and unequal characteristic directions the set of partial
differential equations is hyperbolic and can be solved by integration a-
long the characteristics. The relations valid along the characteristics

are a set of ordinary differential equations. Ribberink (1980) found, in

case of a constant transport layer thickness, the characteristic relations

ﬂ"_(cp-Bh% Ry -p Y _(Pﬁp‘\l' sdlc
at T I ) & dJa-rh

(1.2.34)

valid along both the characteristics

Solving the model by numerical integration along the characteristics is
very elaborate, and the method is hardly used for practical appligation.
The principle of the characteristic method can be illustrated by fig.
1.2.7.

/
><\

- Figure 1.2.7. Solving with the characteristic method.
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In point 1, 2 and 3 the bed level, composition etc. is known, and the
characteristic directions and the characteristic relations in the three
points can be calculated. Along the characteristic ci,; the characteristic

relation will have the form

dp dz
et Puge = S (1.2.35)

and along c,a,

d ‘
o(-;.it' + P:,L%% = ¥ia (1.2.36)

The space -and time coordinate for the new point, where the characteris-
tics are intersecting, can be calculated from the characteristic directions
and discretizing eqs. (1.2.35) and (1.2.36) the new bed level and the
probability of fraction one can be found from solving two linear equations

with two unknowns.

Because of the non-linear character of the system the new calculated points
will be situated at different time levels and there have to be made linear
interpolations between the old and new points in order to get the bed level

at the same time level for a proper calculation of the flow velocity.

In some cases it is a good approximation to consider the water level as
horizontal, i.e. neglect the friction and the convective terms in the equa-
tion 6f motion for the fluid (1.1.16), and the characteristic method be-
comes a little less unhandy because the right side of eqs. (1.2.35 and 36)
vanish and the flow velocity is only dependent on the bed level, so linear

interpolation is not necessary.

The advantage of the characteristic method is that there is found a very

accurate mathematical solution for the set of partial differential equa-

tions.



2. DISCUSSION ON BASIC EQUATIONS

In the preédious section the model was described in general mathematical
terms, and in the following the component parts of the basic equations

will be discussed.

First the roughness, a very important parameter in the model, will be
treated. Roughness predictors based on global parameters and on the dune
dimensions will be discussed. Further a procedure for correcting for the

influence from the side walls on the bed shear stress will be treated.

Then three transport formulas for uniform sediment will be mentioned, they
will be adapted for heterogeneous sediment and a model for the critical

shear stress will be presented.

Both empirical and theoretical dune height predictors for estimating the
transport layer thickness will be treated, and two methods will be com-

pared with experimental data.

Finally the variable Eiz. eq. (1.2. ) will be discussed, and a brief
description of the mutual interaction between the component parts of the

model will be given together with some other general limits of the model.

S

2.1 Alluvial Roughness

An alluvial river is a river streaming in sediment deposited by the river
itself, and the roughness of a river of that kind is refered to as allu-
vial roughness opposite to hydraulic resistance caused by for instance
rocky protuberances, energy loss in river bends, diffusion between summer

and winter bed etc.
The roughness can be expressed in several ways and in the following it
will be done in terms of the Darcy - Weisbach coefficient and in terms

of the Chézy coefficient, defined as

£ u*
I = 82 a . (2.1.1)
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with f Darcy - Weisbach roughness coefficient

g, 1 M 7

e (2.1.2)
cx 2

with C Chézy roughness coefficient.

By combining eq. (2.1.1) and (2.1.2) a relation between the roughness

coefficients appears

- %8
C = Jﬁ; (2.1.3)

Under certain flow conditions bed forms will develop, which have a
considerable influence on the alluvial roughness. It is convenient to
divide the total alluvial resistance into a skin resistance and a form
resistance. The skin resistance is caused by the friction between the fluid
and the grains in the bed, and the form resistance is due to the expansion
loss behind the tops of the bed forms. In terms of the Darcy - Weisbach

coefficients it reads

\ "

f=f +f (2.1.4)

where f' D. -W. coefficient due to skin friction

<f" D. -W. coefficient due to bed forms.

2.1.1 Bed forms

As outlined before the bed forms have a large influence on the alluvial

boughness, and the occurence of these will be briefly discussed here.

For low flow velocities an alluvial channel has a flat bed and for increa-
singly velocity it will form ripples, dunes and again flat bed. In fig.
2.1.1 the different bed forms are depicted, and fig. 2.1.2 gives a qua-

litative idea of the bed forms influence on the roughness.
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The presence of bed forms depends on hydrodynamic stability and the change
between bed form types can therefore take place all most discontinuous.

For instance is it observed that a small change in temperature, thus change
in viscosity, can cause a change from a dune covered bed into flat bed /

ripples and then influence the roughness considerable.

As the bed form. has such a large influence on the hydraulic resistance

it is convenient to discuss the flow over a dune fig. 2.1.3.

—_—_ —
5

—

Do~

! |

isep. length |

Figure 2.1.3. Sketch of flow over dune or ripple.

Immediately after the crest separation takes place and a zone of free
turbulence is formed. After a certain length, the separation length, the
flow is getting in contact with the bed again. In fig. 2.1.4 the pressure
and shear stress distribution over a dune is depicted. The wmeasurments
are carried out by Raudkivi and the calculated values are obtained from

a boundary layer model.

The resistance the dune is performing on the flow can now be found from

fig. 2.1.4 by integrating the horizontal component parts of the pressure

and the shear stress.

Although it is possible to calculate the roughness from the local dune
dimensions, there has to be used empirical formulas for the roughness

prediction based on the dune dimension because the expences for these

calculations still are large.
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2.1.2. Roughness Predictors based on dune dimensions.

For the present purpose it seems attractive to use a roughness predictor

based on the dimension of the dunes, because there any way has to be per-

formed a dune height prediction for estimating the transport layer thick-

ness.

A summary of the most important empirical relations are given in table

2.1.1.

Hydraulic Resistance

Reference
f f‘"
Vanoni and Hwang (1967) =% - 3.3 1ogL—i_ 2.3
H
. H
Fredsoe (1975) f=1.88 T
Engelund (1978) f"=10, =2 Sﬂ .
AL ""7aal
Van Rijn (1980) e~ .28
Vg
iog 12a

(0.75 10g%+ 1.75)H

where L dune length, H dune height and a water depth

Table 2.1.1. Empirical roughness predictors [13

Comparing around soonmasu{éments from World Flume Data with the calculated

roughness of the four methods in table 2.1.1 it was found that the Fredsoe

method is predicting the roughness relatively bad compared with the three

other methods which were rather reliable D?ﬂ . As a part of the same test

the three methods predicting the roughness good for the World Flume Data

were compared with proto-type measurements performed during a high water

(the flood plains were inundated), in march 1979, in Pannerdgnsch Kanaal.

The results of this test is depicted in figure 2.1.5.
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Figure 2.1.5. Measured and calculated Chézy roughness in Pannerdensch

Kanaal.

The roughness predictors are all underestimating the roughness in the

proto-type. The deviation between measured and calculated values, which

were not found in the test with the flume data, is maybe caused by

- additional resistance in the proto;type: diffusion between stream
branches, vegetation etc.

- unaccurate correction for the resistance of the flood plains

- using an average dune dimension instead of a dominant one.

From table 2.1.1 it is seen that the roughness coefficient is very sensi-
tive to changes in the dune dimensions, which means that the dune dimen-
sion predictions have to be accurate in order to get a good estimation
pf the roughness, but there are no accurate dune dimension predictors
available (see Chapter 2.3). Further more the measurements in the Panner-
densch Kanaal indicate that there has to be chosen dominant dune dimen-
sions, which introduce more uncertainties in the roughness prediction

based on the dune dimensions.

An other group of roughness predictors only uses the specific discharge

(q) bed slope (Iy) and a characteristic grain diameter (dy) in the bed.

2.1.3. Roughness predictors based on q, I, and do-
Several scientists have attempted to obtain a stage discharge relation

for alluvial channels without taking the dune dimensions explicit into

account. The obtained relations are either pure empirical or are based on
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the dividing of the energy loss into two parts (eq. 2.1.4), where then

the skin friction is found from a logarithmic boundary formula

U

— =C +C, In f(Up,dg) (2.1.5)
Upp

where C,, C, are constants,
f g i i
and Ugp, = 3 U - the friction velocity

and the form friction is determined more or less empirical.

None of the roughness predictors are very reliable especially in the dune
region whére the largest applicability is found (20} . White et al (1980)
has carried out a comparison of some of the best predictors of the mea-
sured and calculated roughness for a large number of flume experiments.

In fig. 2.1.6 the result from this test is depicted where the "New Method"
is the method from White et al (1980).

The relative accuracy of the Darcy - Weisbach coefficient is comparable
with the accuracy for the bed slope. The new method is only predicting
the roughness within a margin of error of 80% - 125% in 42% of the cases
and an error on 25% in the bed slope has a large influence on the amount

of sediment there have to be degrated or aggrated before equilibbium is
reached.

Howevér, as the roughness predictors based on the dune dimensions can
not produce a reliable result because the lack of a trustworthy dune
dimension predictor, a predictor based on the hydraulic parameters is
preferred. According to figure 2.1.6 the "New Method" is the best, but
it has the disadvantage that it is not explicit dividing the friction
into a form and skin friction which is convenient for the transport for-
mulas (see Chapter 2.2). The "New Method" is not significant better than
the Engelund - method which has the advantage that it is applicable for
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all bed forms in the lower regime, so the Engelund method will be applied

in the numerical model er morphological changes in rivers.

2.1.4. The Engelund Roughness Predictor

Engelund is applying the basic hypothesis (eq. 2.1.4), and states a similar

relation for the shear stress, which in dimensionless form reads

) 1 (2.1.6)
6= 6+6
where © total dimensionless shear stress
~”
g bt o 18 (2.1.7)
Pgad Ad
A is the relative density of the sediment
©' effictive (skin) dimensionless shear stress
e 12 (2.1.8)
9' Ad ‘. -

1
©" shear stress due to bed forms

in which a' can be interpreted as a boundary layer thickness, and can be

obtained from a boundary layer formula

U [}

= 6+2.5 1n = (2.1.9)
[} kS
Up,
,Z—:
with U'p. = -T"J— = {gal = gAd®'
o' -
28
B & 2.5 1 =l
g246' + kg

in which kg is the Nikuradses grain roughness, experimentally estimated

to ks=2“ d65’r?/2°d50
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To obtain an estimate for the expansion loss Engelund uses the Carnot

formula n

(Ug - Ug)

AH" = m zg

(2.1.10)

where Ug and Uy are respectively the flow velocity over the crests and
over the troughs of the dunes and X is the velocity distribution coeffi-

cient. For
Up = —1— and Uy = —— (2.1.11)
an expression for the energy loss per unit 1length due to the expansion

loss appears

I =

pt g 1 12
L.

L2g a+ Q- 2H

=
X

2 2.
x—o(;— —H—l (2.1.12)
g La

Recalling the definition of the Darcy -Weisbach coefficient (eq. 2.1.1)
it is seen

Hl
i = Qi £2.7.13)

La
Engelund now considers two streams with different slope (distorted verti-
cal scale) and states that the principle of similarity is valid if the

following conditions are fulfilled

62'= 6, dynamic similarity
n

e _6

6, 6,

where 1 and 2 are referring respectivély to stream one and two. Applying
eq. (2.1.13) the second condition can be expressed in terms of the rough-

ness coefficients with

F—:-f‘—.:_T = em— (2.1-1”)

in which %H and RL are the vertical and horizontal length scale.
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With the hypothesis that alluvial streams tend to adjust their roughness
according to the rules of similarity with distorted scale it can be shown
that the total dimensionless shear stress is only a function of the ef-

fective dimensionless shear stress

©=0(6") or ©=06(¢g) (2.1.15)

From extensive flume experiments (12) Engelund obtained an empirical

relation for eq. (2.1.15) in the dune and ripple region
©'= 0.06 + 0.46" (2.1.16)

This empirical relation between the total dimensionless shear stress and

the effective shear stress is depicted in figure 2.1.7 where the experi-

‘mental results also are plotted

o
oL

Tont 002 00¢ nf'l 008 01 62 o 06 03 w0 2 « s

Figure 2.1.7. Relation between effective and totale dimensionless

shear stress (8)

In case of plane bed and standing waves there is no expansion loss and

eq. 2.1.15 becomes

(—)‘: (&) _ ‘ (2.1.17)
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2.1.5. Application of the Engelund roughness predictor.

-

There has to be carried out some modifications of the method before it

is applicable for a numerical model.

The relation, figure 2.177, is a two valued function, which is in agree-
ment with observations from nature, where there is found discontinuous
rating curves [20] , but it is unacceptable in a computer programme. To
avoid the two values problem the modification proposed by Challet and
Cunge (1980) is applied, figure 2.1.8.

A8

134
0.94

0.3

0.1

0.051

Figure 2.1.8. Modified 6'-0 relation.

The modified relation now becomes

® < 0.06 ' =8

0.06<6<0.3 e' = 0.1369"'"z

0.3.£46 < 0.9 8' = 0.06 + 0.40" »
0.9 20 «1.1 8' = 0.6676 %% (2.1.18)
8 =1.1 g' =8
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Equation (2.1.9) has to be solved iterative, but Engelund (1967) proposes

an approximation so a solution can be found explicit

) (2.1.19)

which is approximating eq. (2.1.9) with a 5% margin of error in the in-

terval
al y
13 47(— £.1.5-10
s

Equation (2.1.19) can be written in a alternative form

e.t‘_ 2.8 u

0  giaY%g.y5% ad®

(2.1.20)

Combining eqs. (2.1.18) and (2.1.20) the shear stress, thus the roughness,
can be found explicit, except in the dune region where an iteration has

to be performed, for known flow velocity, slope or water depth.

2.1.6. Roughness coefficient in flumes with different roughnesses of bed

and side walls.

For simulating sediment transport experiments in flumes, where the bed
generaly is much rougher than the side walls, it is important to know

how the total shear force is distributed between the bed and side walls.

Two methods are available for this purpose, the Einstein and the Prandtl/
v. Karman method. The principal assumptions in both methods are that the
flow cross Section can be divided into parts separated with shear-stress-
less surfaces, thus the gravity force is only balanced by the shear stress
along the walls and the bed (eq..2.1.21), and that the roughness relations
(Chézy, Darcy - Weisbach etc.) can be applied to each part of the cross

section as well as to the whole.

/7:/,-6 + (ZW‘Z'Q= pagz‘ (z.1.21)
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2.1.7. The Einstein method.

Einstein assumed further that the mean velocity in all the cross section

parts are the same.

Here the method will be derived for the Chézy roughness relation and for
a case where the wetted perimeter can be divided into n parts each with
constant Chézy roughness. The Chézy equation applied to the total cross

section yields

U=cCyRI (2.1.22)

where R is the hydraulic radius, defined as the total area of the cross

section divided by the wetted perimeter

A
R = '—P— ) (2.1.23)

The Chézy equation applied to each cross section part reads
U=c; VRiI (2.1.24)

By combining egs. 2.1.22 and 2.1.24 an expression for the hydraulic

radius for the cross section parts appears

Ry = R (—CC—_)" (2.1.25)
1

From the definition of the hydraulic radius and eq. 2.1.25

2
P.
A=P-R=3P;R4 =RC"Z—C—,% (2.1.26)
i
from which the mean roughness coefficient can be found
- [ —P__ 73
c = [ b (2.1.27)

Cf‘

The roughness coefficient from the component parts of the cross section

can be obtained from the Colebrook and White formula

4/



C; = 18 log ki + 0.381 (2.1.28)
in which ki Nikuradses roughness for section i (ky 2 105 for concrete)
61 = 11.6 VL viscous sublayer

V gRiI

V- kinematic viscosity.
Whey flume experiments, carried out in a rectangular flume with different
roughness at walls and bed, have to be interpreted the bed shear stress

can be attained from the following trial and error procedure.

Given: a, u, I (thus also R and C)

Guess Ry
? I 4
S
W =
8gR,I
A ~ 12 Ry
Cy = 18 logm— (eq. 2.1.28)

Ry = R ()" (eq. 2.1.25)
W
i
T, = -};— (PgIA-PgIRWZa) : (eq. 2.1.21)

If a flume experiment is simulated the energy line gradient is unknown

and the procedure is different

Given: Cp, Uand 9, = gIRy = g (=)
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Guess C

W
4_——_l
2
Ry = R (-9-) s C = (egs. 2.1.25 and 27)
Cy W\ 2
B(E) +2a

= = (eq. 2.1.24)
! \ &R, I —C%\/E

" 12 Ry g
Cy = 18 log kw:;6?§3;- (eq. 2.1.28)
I i
I & 3
Cy Ry

The method is convergating rather fast. For a good first guess 3 -4 ite-
rations is sufficient to approximate T or I within a 1% margin of

error.

2.1.8._Prandtl / von Karman method.

For this method it is not necessary to assume that the mean velocity is
equal in'all cross section parts. The basic assumption for this method
is that the velocity in a point in the cross section part belonging to
the wall or the bed, only depends on the roughness of respectivily the
wall or the bed. The velocity profile is calculated with the Colebrook -
White formula, and the surfaces separating the cross section parts is

determind with equalizing the velocities.

The velocity profile formula in the transition zone between hydraulic

rough and smooth for the walls yields

U 1 30y
Upy K In 538, +ky (2.1.29)
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and for the cross section part belonging to the bed

Up 1 302
—— o @ ] 2.1.
Urp K " 0.3dp + kp (2.1.30)

in which

K von Karman constant = 2.45

2
K
5vn(fb viscous sulayer thickness respectively at walls and bed
Ky, kp Nikuradses grain roughnesses
Ury, Upp friction velocities
y distance to wall

Z distance to bed

Stating that the surface, which is dividing the cross section, is only
slightly curved, Prandtl and von Karman approximate it to a straight line
with a slope & = y,/a where y, is found from Uy,(y,) = Upfa). By integra-
ting eqs. 2.1.29 and 2.1.30 the mean velocities in the cross section parts
and the discharge are found as a function of , Ry, Rp and ky, which in
combination with the principal assumption, i.e. egs. 2.1.21, 22 and 24,

gives a system from which the roughnesses of bed and walls can be obtained.

The method is also iterative, but complicated and very elaborate compared

with the Einstein method.

2.1.9. Experimental verification.

"Yassin (1953) carried out experiments in order to verify the Einstein
method for the Darcy - Weisbach and the Strickler roughness relations. The
experiments are performed for varying depth width ratios (0.05~1) in three
cases:

1. Both bed and side walls smooth

7



2. Bed rough and side walls smooth

3. Both bed and side walls rough.
The results of the experiments are that the theoretical calculated and
measured values are deviating with a maximum margin of error on 7%, worst
for large depth width ratios. However, there is a scatter between the
measured and calculated values on 3 - 4% even for small depth width ratios,
so a good deal of the 7% deviation can probaly be attributed to experi-

mental inaccuracy.

In [6] the two methods, with the Chézy roughness relation, are compared
with experimental results. From a number of experiments with a constant
Nikuradses roughness for the walls ky = 0.4 x 10-7, with and without
bedforms and with different depth width ratios and discharges the bed and

wall roughness are calculated from a known mean roughness coefficient.

The conclusion from the test was that the two methods can predict Chézy
values for the walls that can differ considerable, but for moderate
depth width ratios the influence from the walls on the bed roughness is
very small: the maximum difference between the two calculated values for

the bed roughness did not exceed 1% (depth width ratio~ 0.5).

Consider the little difference in the quality of the methods it is not
important which one - " :is applied so the relative gimple Einstein
method is prefered, also because one often only has a crude estimate for

the Nikuradses grain roughness for the walls.
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2.2. Sediment transport formula.

The purpose of the transport formula is to relate the amcunt of sediment
in transport to the local hydraulic parameters and to the bed composition.
Before discussion of the different transport models in details it is con-

venient to give defiinitions of some concepts of the sediment transport.

2.2.1. Classification.

The bed material load is defined as the sediment in transport which is
related to the local composition of the bed. The bed material load is
divided into the bed load and the suspended load.

The bed load is the sediment in transport which is sliding, rolling or

Jjumping over the bed.

The suspended load is the part of the bed material load which is moving
without continuous contact with the bed. The concentration of the sus-
pended load will decrease with the distance from the bed. The material

is kept_ in suspension because the turbulent mixing of the flow will ba-
lance the fall velocity of the grains. Although suspended load can have

a considerable influence on morphological processes in rivers no separate

calculation of the suspended load will take place.

The wash load is very fine sediment carried over long distances in sus-
pensién. The wash load is not related to the local bed composition and
can therefore not be predicted by a sediment transport formula. Fortu-
nately the wash load has often a neglectable influence on morphological

changes in alluvial streams.

2.2.2. Initiation of motion.

The forces working on a grain in the bed determining whether it moves or
not. When the acting forces is exceeding the stabilisating forces the

grain start to méve, figure 2.2.1.
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Figure 2.2.1. Forces working on a sediment grain on the treshold of

of movement.

Introducing the friction angle q’ the treshold of movement or the initia-

tion of motion is given by

Fq=Fp=N= tan(p = (W=-F1) tan? (2.2.1)

However the tfeshold of movement is only rarely attained from considerations
about forces on a single grain. Usually the initiation of motion is rela-
ted to the dimensionless shear stress and often assumed to be constant
equal the Shields-value 006,.but also.critical dimensionless shear

stress equal 0.03 is proposed.

2.2.3. Transport mechanism

In sedimentation engineering problems with dune or ripple covered bed
is prevailing, and it is useful to discuss the transport mechanism in

case of bed load for these bed forms.

On a part of the upstream side of the dunes the shear stress is moving
the grain along the surface until they roll over the crest and become
buried on the lee side until they again are exposed for the flow. Evi-
dently grains are degraded on the upstream side and aggrated on the

downstream side and consequently the dune will migrate downstream.
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Figure 2.2.2. Bed load over dune covered bed.

With the assumption that the dunes are migraiting with a constant veloci=-

ty and without changing shape and expression for the local bed load at the

dunes can be found

SX =Cq vy (2.2.2)
where Si local transport included pore
Cq migration velocity of dune
y level above plane through the troughs

In the following some models for the more overall sediment transport 3
will be described, i.e.

T 4 H
1 L
Siz j i jo S’t dydt T >)E.L (2.2.3)

0

==

2.2.4. Sediment transport formulas for uniform sediment.

Several scientists have attempted to obtain a unique relation between

the effective shear stress and the sediment in transport, i.e.
S=f(8') = £(U,C, du....) (2.2.4)

Figure 2.2.3 gives an impression of the large number of available sedi-

ment formulas and the large sceatter between the sediment discharge pre-
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SEDIMENT DISCHARGE, Ibs per sec.per 11,

dicted by these. Note that the scale is logarithmic, comparing for instance
the Shields and the Meyer - Peter and Muller formula it is seen that for

low discharge the ratio between the predicted values is around 100!
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Figure 2.2.3. Transport formulas, after (20)

Regarding the large number of transport models it has been necessary to
restrict the number of transport relations taken into consideration. Two
typical bed load formulas and one bed material load formula are selected

because of their simplicity and practical applicability.

Before presentation of the formulas it is convenient to define two dimen-

sionless parameters.

Dimensionless transport rate

(2.2.5)

= qT
. Q {Agd"
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where  q = the totale transport in volume of material (excluded pore)
per unite time and width
Qp = S(1-§) € the pore volume
d = a characteristic grain diameter

Ripple factor
el
M e

which for the Chézy roughness relation reads

2

&
= (=) (2.2.6)

where Cg is the Chézy coefficient for the grains which can be obtained
from the White - Colebrook formula or a logarithmic resistance formula
from the hydraulic rough zone. Large confusion is prevailing regarding

the choice of a Nikuradses grain roughnecs for tresc formulas.

In the dimensionless notation the Meyer - Peter and Muller transport

formula reads

@ = 8(/46-9@)3/‘ (2.2.7)

in which the characteristic grain diameter is dp and ec is an empirical
constant, which according‘to Meyer - Peter and Muller must not be inter-

preted as the critical shear stress.

ec = 0.04 7
Meyer - Peter and Muller suggest that the Cg is calculated from a boundary
layer equation from the rough zone with kg = dgg, and they found that the

formula were fitting their experimental data better if the ripple factor

was = calculated as

SO
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= (&)
Mg
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The formula has the typical form of a bed load formula with a‘treshold
value. The formula only holds good for small transport rates of coarse
material. The formula is often applied for the lower part of the river
Rhine with acceptable results [15], which however may have something to
do with the fact, that the ripple factor often is used to calibrate the

formula.

The transport model developed by Engeland and Fredsoe (1976) is also a
typical bed load formula

—-—

0.267 4] 1
: @ z 5 [14-(51?5:—) (VE' -0.7V6) (2.2.8)

The authors suggest a characteristic diameter equal dSO'

The formula is so new that no information about results from practical
application is available. The formula is based on a description of physi-
cal processes and the model is modified from experimental data ( ﬁl] and

others).

The Engelund - Hansen formula [1d is a total transport formula based on

- a principle of similarity from which is found that the dimensionless

transport rate is only a function of the dimensionless effective shear stress

and the roughness. In the derivation of the model the Engeland - Hansen
relation between the total and effective shear stress (eq. 2.1.16) is

applied so the transport rate appears as a function of the total shear

stress

S 2.8
d = 0.05 98—6 for 6> Oc (2.2.9)

The characteristic diameter is according to Engeland and Hansen equal to

the geometrical mean diameter (dg ).
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The formula is based on a large number of flume experiments and has there-
fore a large applicability, but the formula is not very reliable close to
initiation of motion. The transport formula has been succesfully applied
to Dutch rivers when sediment in transport both in suspension and as bed

load are present.

A quantitative comparison of the three formulas is given in figure 2.2.4

with the assumptions
C=35 m%/s

0'= 0.06 + 0.40"

€, = 0.06 for Engeland - Fredsoé
Og = | thus d = dso
/\Q
1-
Engelund - Hansen Mcyer-Peler
& Muller
164
: Engelund - Fredsge
162
10> , "
10’2 ) -1 rd
0 e

Figure 2.2.4. Transport rate as a function of the total dimensionless

shear stress.
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2.2.5. Transport formula for non -uniform sediment.

-

Only few transport formulas for non uniform sediment are available, and
most of them modified versions of models for uniform sediment. The most

general form of a formula for non -uniform sediment reads

SJ.:fl (U, P ...pN_,', d ...odN, C) (2.2.10)

The transport formulas per sediment fraction that will be discussed

here are adaptions of the already mentioned formulas for uniform sediment.
It is assumed that the formulas are valid for each fraction, using the
total or effective shear stress made dimensionless with the characteris-

tic diameter of fraction i instead of with the mean diameter

e‘ - T dgo

F—gbdi = egi— (2.2.11)

The difference in the amount of sediment available for transport is taken
into account by multiplying with the probability of fraction i in the
transport layer. Further there is the possibility to normalize the trans-
port of each fraction, so the sum of the transport is equal to the total
transport predicted by the transport formula for uniform sediment using the

characteristic diameter of the whole mixture.

In the non -dimensionless form the Meyer - Peter and Muller transport

formula per fraction without normalization reads

8 UL e a/J.. |
S; =Py T-¢ VgA (,MC,,A - 9.d3) (2.2.12)

which shows that the composition of the sediment in transport is finer
than the sediment in the transport layer. This selective transport es-
pecially takes place for low flow velocities, where the shear stress for
the courser grain is of the same order of magnitude as the €ritical shear
stress. For the same reason it is understood that the predicted amount

of sediment in transport close to initiation of motion is very sensitive
to the choice of a critical value, and to describe sorting processes it is

very important to have the proper value for the critical shear stress.
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The transport of fraction i can written in an alternative way

i = pyé Ug; (2.2.13)

where Ugi is the mean velocity of grainsize i in the transport layer. As
a consequence of the selective transport the mean velocity of finer grains

must be larger than the velocity of coarser ones

Ugi > Ugieq (2.2.14)

As migrating dunes are not considerably deformed the coarser grain must
have a larger averaged rest period between being in transport than the
finer. Consequently the coarser grains must dominate in the infrequently
occuring deep troughs in the bed, a feature that is recognized in flume

experiments, figure 2.2.5.

Az« A

-~
-~

Z) , dsg

A4

where p(z,) is the probability of a certain instantaneous bed level Z,

Figure 2.2.5. Vertical gradient in mean diameter in transport layer.

The vertical sorting in the transport layer may be an explanation for the

fact, fhat dunes are overtaken and disappearing. After a deep trough

sy



in the bed‘thepewill, at the following dune, be relative much coarse se-

diment in transport which will tend to slow down the migration of the dune.

Due to the poorly defined transport laver and the vertical sorting in

the dunes, experimental measured transport layer composition has to be
interpreted with caution. If for instance samples are taken at the surface
of the bed along the channel, samples taken in the troughs must be weigh-
ted higher than the transport taken at the crests. A similar procedure
have to be made when deep samples are taken, and in this case also a pro-

blem about how deep to take the samples occurs.

The selective transport is illustrated in figuhe 2.2.6 in case of two
fractions %% = 1.5. The probabilitylof the sediment in transport of rfrac-
tion one Pp = S / (S, +S,) is depicted versus the probability of fraction
one in the transport layer for equal values of the dimensionless shear
stresé for fraction two. Notice that the selective transport for the Enge-"~
land —Hansen formula is independent of the shear stress, due to the ab-
sence of a critical value, which does not seem very reasonable close to
initiation of motion, but the formula is also known not to be reliable

in this area. The two bed load formulas give for small shear stresses

transport that is much finer than the sediment in the bed.

From flume experiments with graded sediments, and even very low transport
rates, it is found that the sediment in transport is only sligthly finer
than the sediment in the bed, but selection of the grains is taking place

otherwise armouring would not occur.

Pantelopulos (1957) carried out some experiments with non - uniform sedi-
~ment, and he calculated, with a transport formula, what the critical shear

stress should be for resulting in the measured transport of each fraction,
figure 2.2.7

The critical shear stress is almost constant, thus in the dimensionless
from € = constant /dj, which inserted in the Meyer - Peter and Miller
formula (eq. 2.2.12) gives a transport where the dependency of the grain

diameter vanishes!
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Figure 2.2.7. Critical shear stress in micture [/8] .

The only little difference in the compositions may be explained by varia-
tion in the critical shear stress. Day (1980) found from flume experiments

that same sized paricles required a larger shear force to begin movement

in coarser mixtures than in finer ones.

2.2.6. Critical shear stress in a mixture.

The observed variation of the critical shear stress in a mixture compared
with the uniform case is caused by differences in the drag and friction

forces on the grains figure 2.2.1.

The friction angle for a grain may depend on the ratio between the grain
diameter and the mean grain diameter in the bed. It seems reasonable to
assume that the friction angle, and thus the dimensionless shear stress,
will be smaller for a grain larger than the mean diameter and the other

way arround, figure 2.2.8

From physical considerations Egiazaroff (1957) and (1965) finds an ex-

pression for the dimensionless critical shear stress of a spherical grain,

\

s7



U —U

i F
ooo&%zgoooooo DO@%OO@ ®

Ff = N-tang
<P,

Figure 2.2.8. Variation of static friction angle.

which is a part of a mixture. Neglecting the 1lift force eq. 2.2.1 becomes

for a spherical grain
B carpu - (I gAf) tan @ | (2.2.15)

where U, is a velocity close to the grain. Assuming complete turbulence
(the drag coefficient "Cy = 0.4) and a logarithmic ve}ocity profite

Egiazaroff finds, for uniform sediment, with putting the critical shear
stress equal to the Shields value, the point of application of the drag

force on the particle Z = 0.63d . Now assuming that the velocity profile

"is determined by the mean grain diameter (Nikuradses grain roughness) and

that the point of application is the same for a grain in a mixture
Zy = 0.63di , he derives an expression for the critical shear stress.

. ec- = — (2.2.16)

Y (log 19 )

The assumption complete turbulence means that the grain diameter is lar-
ger than the viscous sublayer thickness, which might not be a very good

approximation for small grain sizes.

In the article from (1957) Egiazaroff correctly finds an expression for
the threshold of movement depending on the friction angle, and in the
second (1965) he is referring to the first article, but now coming up

with an expression without the friction angle (tan? = 1), and then he
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is obtaining eq. 2.2.16. However, Egiazaroff's theory gives a qualitative
correct variation of the -dimensionless critical shear stress: increased,
compared with the uniform case, for diameters smaller than the mean dia-

meter and decreased for larger grains.

In figure 2.2.6 the selective transport is illustrated for Egiazaroff's
theory applied to the Meyer - Peter and Muller and the Engeland - Fredsoe
formulas. Eq. 2.2.16 is multiplied by a factor (0.77) so it, in case of
uniform sediment, yields the same critical shear stress as the one pro-
posed by Meyer - Peter and Muller. The theory gives a picture of the com-
position of the sediment in transport, which qualitative is in much better
agreement with experimental results. The extreme values in the graphs

(O - aoq7. ) is because eq. 2.2.6 is approaching the effective shear
stress, i.e. S, =» 0 "faster" than S, 0 for p,—> 0. The last feature
‘also seems to be qualitative in agreement with experimental results. Day
(1980) rfound from experiments that the Shield characteristics were chang-

ing very sudden.
Ashida and Michire (1973) carried out a few experiments in order to verify

Egiazaroff's theory and they found good agreement betweern measured and

calculated values, except for small diameters (d, /dy £ 0.4) ‘jé].

2.2.8. Conclusion

The transport formulas must be applied with caution because they are of
more or less empirical nature, and therefore only applicable for the
range of grainsize, gradation, flow velocity etc. in which they are

verified.

The Egiazaroff's theory is based on very simplified considerations. The
trend the theory shows in the selection of grains can be expected to be
even more pronounced because of the neglecting of the variation of the

friction angle.

The theory is poorly verified because it is difficult to measure the cri-

tical shear stress directly. It is often done by calculating the critical
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value with a transport formula from measured shear stresses, and composition

which brings uncertanities into the estimation of the critical shear stress.
For large shear stresses it does not make sense to use the Meyer - Peter

and Muller formula for non -uniform sediment because no selection of the

grains takes place.
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2.3. Transport layer thickness. R

-

The transport layer thickness is an important parameter in the model for
non - uniform sediment. The thickness has influence on the speed of changes
in the composition, which can be seen from the characteristic directions
eq. (1.2.2) where the transport layer thickness appears in the denominater.

thus decrasing speed of changes for increasing transport layer thickness.
Existing dune height predictors can be used, if the transport layer thick-

ness is interpreted as the half of the mean dune height. Here two theore-

tiéal and three empirical dune height predictors will be discussed.

2.3.1. Theoretical models.

The development of bed forms depend on hydrodynamic stability, and theo-
retical formulas for the dune dimensions deduced from a stability approach

are availatle, but they do not give reliable results Dg].

Suzuki (1976) obtaines an explicit formula for the transport layer thick-
ness from considerations about the celerities in case of two fractiocns.
It was shown that A and B (eq. 1.2.2/) are exact appraximations for the
two celerities in case of uniform sediment (d‘ = dL)' Interpreting the
celerities as propagation velocities of changes in the bedlevel and com-
position it seems physical reasonable to assume that the two celerities

are equal for d, =d,.

For simple transport formulas eq. (1.2.1%) the celerities read

1 '
" P:_zofl + Dz, fr . S (2.8, 1)
= A= e B
[
é U d, —>dg §u

and C, =B = V"*% > 'V/

1-F d, —>d, 1-F

= (2.3.2)

From A =B an expression for the transport layer thickness occurs
S
S - oy (1= (2.3.3)



or for the dune height depth ratio

H __S ¥
_ = = (1-F* .3.
"oy ¢ ) (2.3.4)

If the celerity in the model for uniform sediment (eq. 1.1.1) is inter-
preted as the mean grain velocity Ug in the transport layer the same

equation for the transport layer thickness appears, as

S = ugé (2.3.5)

and C=Ug = (2.3.6)

Fredsoe (1979) approaches the problem from a hydrodynamic point of view.
For bed load alone the local transport at a dune is given by eq. 2.2.2,
and the migration velocity of the dune can be obtained from the dune

height and the transport at the crest

Ca = 7q _ (2.3.7)

where C4 is the migration velocity of the dune and Stop is the transport

at the top of the dune. Combining eqs. 2.2.2 and 2.3.7 gives
Sp = 8. (2.3.8)
L 7 Stop H
where y is the distance above a plane through the troughs. From measurements it

is found that the roughness is constant close to the crest, so the local

variation in the bed shear stress is given by

} .
61 _etop = (2.3.9)
top

Neglecting the contraction of the water level over the crest, i.e.

F = 0, eq. 2.3.9 becomes

H . 2 Z
Op = Bpop (1-3)71 (1-%) (2.3.10)
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The transport is only dependent on the local effective shear stress

because only bed load is' considered

ds ')Si }91_551 2etop

dx I0L  )x

; AL, Fy=d 0 (1 -
with (1-—) (1-%) ~ (1

Differentiating eq. 2.3.8 and combining with eq. 2.3.11

predictor appears

H H
a 7 T 2a )
' dsS 3S
As _ 29de- 26 T

written like

H .

H
. /(1 ~%a

) =

900

[55) or

"2a

(2.3:11)

the dune height

(2.3.11)

equation 2.3.11 can be

(2.3.12)

" The absence of the dependency of the Froude number, due to the neglecting

of the contraction of the flow over the crests, does not introduce any

large error, because the formula is any way only valid for bed load,

where the Froude number is normally very small.

The method is for most transbort formulas very unhandy to work with

because the shear stress at the top of the dune is depending on the dune

height, and the method is therefore iterative.

The two theoretical methods need to be combined with a transport formula.

For the Meyer - Peter and Miller formula (eq. 2.2.7 ) a handy expression

occur as
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The Suzuki method with eq. 2.3.13 now becomes

H By 9 5.
— =5 - -F) (2.3.14)

H H 1 Oc 1 15” 0
- _ - (1 - -6
2 /(1-2a) - 3(1 otop) 3(1 (.1_H fe) (2.3.15)
2a

2.3.2. Emperical relations.

Several empiriéal relations are available and the most important are

resumed in table 2.3.1.

.‘ H o Oc
Yalin (1964) - ® 7 (1~ 3 )
19
Allan (1968) % = 0.086 aOI
Gill  (1971) 1=&(1-F’~)(1-@)
a 8 @

A = shape factor, %4,84 %

Table 2.3.1. Empirical dune height predictors [uﬂ

The Allen method is independent at the shear stress and is not giving
flat bed when there is no transport, so this formula is not applicable
close to initation of motion. Yalin and Gill suggest relations with same
dependence of the shear stress as the two theoretical with the Meyer -
Peter and Muller formula do. The Yalin method is indicating a maximum
dune height on 1/6 of the water depth, which is not in agreement with
observations. The Gill method is some kind of modification of eq. 2.3.14

and no general rules for chosing the coefficients are available.
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The conclusion is that the empirical formulas can not be expected to give
a qualitative better result than the theoretical ones, and these has the

advantage that differenﬁ transport formulas can be applied.

2.3.3. Comparison of theoretical models.

In figure 2.3.1 the dune height depth ratio predicted by the two theore-
tical methods are depicted against the effective shear stress (@, = 0.06
for the Engeland - Fredsoe and 9(:= 0.047 for the Meyer - Peter and Muller
method). The general trend shows that the Suzuki method is predicting
higher dunes than the Fredsoe method, independent ofﬂwhich transport for-
mula there is applied. Further the figure illustrates that it is very im-
portant to héve a accurate estimate for the critical shear stress, when

~dune height prediction has to be performed for low shear stresses.

In figuke 2.3.2 the method is compared with results from flume experiments,
carried out at Fort Collins ljr] , where bed load was prevailing. The
effective shear stress is calculated with a boundary layer formula

(eq. 2.1.9). The general trend is here that both methods are overestima-

ting lower dunes and under estimating high ones.

" The very systematical deviation between the calculated and measured values
may be used to make empirical modification of the methods. For instance
for dune height depth ratios less than 0.4 the Fredsoe method, with the
Meyer - Peter and Muller transport formula applied, gives an empirical
relation

(y = z,98 (0 (2.3.16)

a ‘meas a ‘cafk.

with a correlation coefficient 0.83. However, this relation is only based
on 11 measurments, and no independent experimental results has been com-

pared with eq. 2.3.16 for verification.
As mentioned is the transport layer thickness equal half a significant

dune height. This proper dune height can be estimated experimentally in

two ways:
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From measurements in unsteady experiments, and numerical simulation of the
experiment with different transport layer thicknesses until the right one
is found. This method hoﬁever demands a reliable transport formula.

With help of tracers, i.e. earmarked grains, in steady experiments. The
tracers is feed into the flume-at the upstream end, and the time of arrival
at the downstream end is registrated. The mean grain velocity can now be
calculated, and the transport layer thickness can be obtained from eq. 2.3.5

The grain velocity will have a large dispersion, and the mean velocity will

therefore be poorly defined.

Considering the uncertainty in the definition of the transport layer and
the scatter in the calculated dune height, no preference based on relia-
bility can be made for a transport layer thickness predictor. On account

of simplicity the Suzuki method must be prefered.

2.4. The variables Eiz
0

In order to have a determinable model it is necessary to assume something

or have knowladge about the variables ;izo eq.(1.2.12)

In case o a constant transport layer thickness)

‘piz° ‘Az, 1is the amount of sediment of fraction i there is picked up
from the 2z,-layer into the transport layer. For sedimentation Eiz°‘525

is the amount of sediment leaving the trasport layer into the z, - layer,
figure 2.4.1. 4

- 7 -E.Zo 7- AZO h ’

‘Figure 2.4.1. Composition at z, - level: ;i
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In case of erosion it is evident that the vertical distribution in the
composition of the z,-layer has to be known, and the composition at z, -

level can during an erosion process for instance be approximated by
Pig, =2 { Py o (Zo)+ Py, 4 (Zo-aD) (2.4.1)
where % indicates local value.

In case of sedimentation a problem occurs becaumse the flow is mixing the
sediment in the transport layer, and no quantitative knowledge about the
veftical distribution in the transport layer is available. It was shown
in Chapter 2.2 that there is a vertical gradient in the composition of
the transporﬁ 1ayer(figure 2.2.5) but how much coarser the sediment in
the bottom of the transport layer is, compared with the averaged compo-
sition, is not known, so as a doubtful approximation

= 9.7
Piz. = Pi for 3t >0 (2.4.2)
or during a sedimentation process

Eiz = 3 (pi (t) +py (t +At)} (2.4.3)

" The stringent division between a displacement of the Z,- level in posi-
tive and negative direction is necessary for lack of a better approach,
but it is not physical correct, as coarser grains canleéve the transport
layer into the 2z, -layer, when at the same time finer particles are picked
up, figure 1.2.6 . To remedy this problem the model for non uniforh se-
diment should be extended with an equation of motion and continuity in

vertical direction describing this exchange!

2.5. Interaction between the elements.

The different component parts of the model for non -uniform sediment

described in the prev-ious are in mutual interaction.

The dune height has a large influence on the total roughness and which

part of the total shear stress that is due to the skin friction, see

T
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for instance table 2.1.1. Further on the bed composition has influence on
the roughness (eq. 2.1.9)‘. The dune height effects the speed of composi-
tion changes (eq. 1.1./%) . Both the roughness and the composition effects
the sediment transport (eq. 2.2.10) and at last the sediment transport

has influence on the dune height (eq. 2.3.4) . This mutual interaction is

illustrated in figure 2.5.1.

Dune height Coinposition Roughness

Sediment tran.

Figure 2.5.1. Mutual interaction.

If an error or unaccuracy is introduced in one of the elements, it will
influence the accuracy of all the system. Especially the roughness is a
very sensitive parameters in the system, because it determines the bed
slope, and thus how much sediment that must be degraded or aggrated be-

fore equilibrium is reached.
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Considering the mutual interaction the computational results must be in-
terpreted with caution, because the component parts, although they are

a part of a consistent system, are estimated from different approaches.

2.2.6. Unsteady Conditions.

The transport formulas and the roughness predictors are more or less
empirical and based on results from steady experiments, and they should

therefore be applied for unsteady cases with caution.

Here again the roughness is the questionable element. As the transport
rate in relative low the change of the dune dimensions due to a change

in the hydraulic conditions must take a considerable time. This phenonema
has been a subject for reasarch at the.Hydraulic Laboraty de Voorst and
in figure 2.5.2 a result from this study is reproduced. The graphs shows
a discharge wave and the development in the Chézy - coefficient and the

dune dimensions.

1750 (g

750
60

40
0.6

0.2

-‘—-9’
time

Figure 2.5.2. Measurements from Pannerdensch Kanaal during a flood T3]

A river will as good as never be in equilibrium due to the continuous

changing discharge, and therefore only processes with a large time scale,

7/
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3. MUMERICAL MODELLING

-

In the morphological model for non - uniform sediment choices have to be
made for a transport formula, a transport layer thickness, a roughness
predictor, significant sediment properties, initial and boundary condi-
tions, which all introduce sources of uncertainty. In order to obtain

some insight in the complex physical process it has to be required that

“the numerical errors are not dominant, i.e. numerical errors have to be

an order of magnitude smaller than errors from physical sources.

In excess of the above mentioned accuracy demands it is required, that
it is not elaborate to change the transport formula, the formula for the
transport layer thickness and to use different boundary conditions.

Further more the calculation work has to be reasonable small.

First an extensive numerical analysis of some of the available numerical

solution methods will be carried out ana a method will be chosen.

The back -water calculation will be described, and the chosen method will
be applied to the morphological model for uniform sediment in order to

see whether the method behaves according to expectations.

Then the numerical method will be applied to the model for non - uniform

sediment after a schematization of the vertical grain size distribution
is carried out. The numerical model for non - uniform sediment will be
described, and the limitations of the model will be mentioned. Finally
some results from the numeriqal model will be compared with calculations

carried out with the characteristic method.

3.1. Numerical analysis.

In principle there are two different methods available for numerical
solution of a set of partial differential equations: the finite difference

and the finite elements method.

The major force of a finite elements method is that it is not necessary

to use a constant space step, so the grid can be refined in areas where
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large changes are expected. In the present case where a propagating wave
has to be described, this advantage is not important, and as the finite
elements methods are more elaborate to work with than most finite diffe-
rence methods, the following analysis will only be based on finite diffe-

rence methods.

The model for non -uniform sediment can in principle be written like

v v
g—t‘-+£2—‘;:F {2.1.1}

where V and F are vector and A is a matrix. The set of partial differen-
tial equations is (in most cases) of hyperbolic character and the Eigen -
values in A will therefore be real and positive, thus eq. 3.1.1 can be

transformed into

=
A

=

0

+ D

=G (3.1.2)

Q-
et
a
>

where W and G are vector and D a diagonal matrix, i.e. the model for non -
uniform sediment can be transformed into a number of non - linear hyper-

bolic equations.

The tools for numerical analysis of non -linear system are poorly developed,

-s0 the analysis will be based on a simple linear wave

[T
4}
+
O
01v
>N
n
o

(3.1.3)

where C is constant.

Because of this simplification the analysis only gives a rough estimate
for the expected accuracy, and therefore a sensitivity analysis has to
be performed in order to get some insight into the reliability of the

numerical model results.

3.1.1. Finite difference methods.

In order to get a numerical solution the set of equations has to be dis-

cretized in some way. This is done by giving a funtion a finite number of
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function - values in a grid. In this case it has to be a two dimensional

(space - time) grid.

AT
J-1 j j+1
n+1
A n
At
—Y n+1
<At >
>X ’

Figure 3.1.1. Definition sketch, Two dimensional grid.

The derivatives can be represented in several ways, i.e. there can be

interpolated in different ways between the grid points. For instance

(22 Ziz%j-1
XL AX

(backward difference)

Zj+1—23
AX

n

(foreward difference)

_Zij+1mZ5-1
2AX

(central difference)

Applying the differences to the space and time derivatives in eq. 3.1.3,

among other, the following difference equations appears.

Modified Lax scheme

A L L A L
j RIS 3 M 5 Rt Il o =5 RS (3.1.4)
1 At 22X oAt




Upstream (Lelevier) scheme

Zn+1 _ Zn Zn _ Zn

J J J “J-1_ .
l - + C AT =0 (3.1.5)

Crank - Nicholson scheme

n+1 n+1 n+1 Zn _Zn
e _l___i+cie il_.g_+(1_e)__\Lj-_1.}:o
L (e M aax

(3.1.6)
Four points scheme
1 n n+1 _n (n+1 n+1
o AL z, =2 2 =2
3 i e L, cfe—tl
1-6 At paY” A X
(1-8 -LL-JJ' (3.1.7)

The two first mehtioned schemes are explicit, because they lead to one
new value at time level n+1 from known values at time level n. The Crank -
Nicholson and four points schemes are coupling the values at level n+1

in a set of equation, which has to be solved together with the boundary

~ conditions. The schemes are therefore called implicit schemes. Another
possibility is to use the predictor - corrector method, i.e. use an ex-

plicit in the first iterarion and an implicit in the following

In order to make a qualified choice of a finite difference method it is

necessary to make an estimate of their characteristics.

Vreugdenhil (1979) shows the steps in a numerical solution of a problem,

and the errors introduced at these steps. (see figufe 3.\.2).

3.1.2. Consistency and truncation error.

The differenve equation is an approximation to the differential equation.

The mégnitude of the error which is introduced by this approximation,
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|
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Figure 3.1.2. Numerical properties [2ﬂ

called the truncation error, can be estimated by applying a Taylor series

for the difference equation.

For the Crank - Nicholson

the differences leads to

scheme (eq. 3.1.6) , the Taylor series applied to

(3.1.8)

(3.1.9)

Zn+1_Zn "
SR R VAN b A RPN S b2
At Lo bt + ZAtatl + 6 At )t"‘ + ...
n n
20X T X 6 d%° e
By combining eqgs. 3.1.8 and 9 with last term in eq. 3.1.6.

Zn+1__Zn+1 5
Jr1-79=1 87 1 42372 At T 32y, 32
24X X AR et aax [(at+§Atgx‘L+ woed g
-(ét+§At)X1’+ .-.)j_.‘
YRR Y Yz, 3+ 2
'3X+6Ax;x1 At )X)t+§Atl_—;x§t o 4 (3.1.10)



The time derivatives in the Taylor series can be transformed into space

deriva tives. By differentiating eq. 3.1.3 with t

2 5 a2y Lok g3y . Led 22
2% - 2 (cd2) = ~c (32) e (-c3)

or general

m
Xm (3.1.11)

[
3
N
o
N

n

(-c)"

(>4
prd

3
(%

Summating the Taylér series for the differences and apply eq. 3.1.11 the

"Modified Equation" for the Crank - Nicholson scheme occurs

. (3.1.12)

in whichg-= C —% is the Courant number. For fixed Courant number (space
and time step ratio) and & f 3 the truncation error decrease linear with

A%, and the scheme is said to be of first order. For © = % the scheme is

of second order. When the truncation error — 0 for 4x and At -0

the scheme is consistent.

In appendix A3 the modified equation for the predictor (Modified Lax,
o= 0) - corrector (Crank - Nicholson) is derived. There the modified

equation is also derived for the Upstream scheme as predictor and the
Four points scheme as corrector, although this implicit scheme does not

seem so attractive for a predictor - corrector method because of the two

time differences.

The modified equation for the difference schemes can be written in the

general form

3z
ol

7 X* bg  a® >Z
i J"AAt ’l‘a>xt‘3AAt ;\’J§X° =0 (3:1.13)

where the higher order terms are neglected. The expressions for ‘Al and
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Aﬂ for the mentioned schemes are given in table 3.1.1 and depicted as

a function of the Courant number in figure 3.1.3 and 3.1.4.

-

Method : AL Ay

eq. 3.1.4

Lax, =1 ' : 1- o* 20(1-a?)
Modified Lax, =0 *%pB A -0(1- oL3p)
Lax-Wendroff, = 0 -0(1- 07
Upstream g(1-0) -0(0-1)(20-1)
4 points (26-1)0* 10-(2-66466"%)
Crank-Nicholson .(C—N) (e-1)0" g(ot3e0L1)
Pre(Lax, =0) - Co(C-N) (20-1)T* -0(1- 73
Pre(Upstr.) - Co(4 p.) (ho-1)Tq ~-0(1- 04

Table 3.1.1. Truncation error. Partially after Vreugdenhil (1981)

If the third order term is neglected in the modified equation, it is a
convective diffusion equation, which explains why this sometimes is called

a pseudo - viscosity approach.

From figure 3.1.3 it is seen that the implicit schemes and the predictor
(Lax) = corrector (Crank - Nicholson) method are rather good concerning
numerical diffusion. These schemes have as the Modified;—Lax the advan-
tage that the amount of numerical diffusion can be regrulated with res-
pectively Genuiﬂp Further it is seen that the Lax scheme has extreme
much damping for small Courant number. The predictor (Upstream) - correc-
tor (Four points) has a negative diffusion coefficient for low Courant

number, which will cause exponential growing solutions, and the method
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will be left out of consideration because of this unstable character. (In
the following there will- be refered to the predictor (Lax, &« = 0) - cor-
certor (Crank - Nicholson) method as the predictor - corrector method or

short PC.)

A A 2
14 1 Lax
2 Modified Lax,p =0.05
3 Upstream
4 Pr(Lax)-Co(C-N), Crank- Nicholson

and four points
Pr(Upstream)-Co( four points)

0.5-

Y

1.5

Fig. 3.1.3. Truncation error - Az

The third derirative is known to propagate secondary waves, which can
be illustrated with the following. In a general form the modified equa-

tion can be written as

Qs

1 A
2, ¢ _p 3z _ . 32 _ (3.1.14)
oX num yx?% num  yyo

«
o,

Applying a periodical solution of the form

Z(x,t) = 2! A(ikx = rt) (3.1.15)



Lax

Modified Lax,P =0.05
Upstream

Four points
Crank-Nicholson
Lax~-Wendroff, Pr-Co methods
and four points

]
2
3
4
5
6

Fig. 3.1.4. Truncation error - A,



where k is the wave number, the following expression appears

I 2
r =D mk +1k(C+Cnumk

- ) (3.1.16)

Inserted in eq. 3.1.15 this leads to

| 2 " R
Z(x,8) =2'exp (=D k*t) exp ik {x-(C__Kk"+O)t|  (3.1.17)

nu
Comparing with the corresponding solution for the simple linear wave
(eq. 3.1.3)

Z(x,t) ='Z'exp ik(x=-ct) (3.1.18)

‘
'

it is seen that the solution is differing especially for short waves
(big k). Secondary waves will propagate up - or down - stream depending on

the sign of )g, but fortunately eq. 3.1.17 provides most damping for these
small wave lengths.

From figure 3.1.4 it is seen that the schemes without central space
differences are giving rather little propagation of secondary waves,
especially the upstream scheme. Further it is noticed that the predictor -
corrector method has a better characteristic than the fully implicit

scheme (Crank - Nicholson).

3.1.3. Stability.

Although the difference scheme is consistent the result might not be
reasonable. There can occur explosively growing oscillations in the cal-

culations. Figure 3.1.5 gives a physical explanation for these instabili-
ties

In figure 3.1.5a the point (j, n+ 1) is not situated in the area of
influence from the point (j -1, n) it is calculated, unlike in figure
3.1.5b where the new point is seen to get sufficient information. This

is called the Courant - Frederichs - Levy criterion for stability in ex-

plicit schemes.
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‘areq of area of
influence influence
' 3
o= A s
At
Ax£ Ax/c ! 7.\.\'(
v Y v : Y
< Ax cAx >
SN
, “X >y
st at
a. Qg: CAx >1 . b. o CAx <1
Figure 3.1.5. CFL criterion for stability for explicit schemes.
At
g=Cco & , | _ (3.1.19)

The CFL -criterion is a necessary but not a sufficient condition for sta-

bility for explicit schemes.

The criterion does not apply to implicit schemes because the area of in-
fluence is taken into account at the same time (figure 3.1.6). This is

one of the major forces of this kind of schemes.

AT

area of influence from
level n and the boundary
condition( s)

¢ o n+1

///;///J//J/

n

\
g

Figure 3.1.6. Area of influence for implicit schemes.

From table 3.1.1 a (not sufficient) stability criterion for the implicit
schemes and the predictor - corrector method can be seen. The numerical
diffusion coefficient (A,) has to be positive, otherwise it would lead to

an exponential growing solution. The criterion yields

g3



o> 0.5 (3.1.20)

3.1.4. Discretization error and convergence

The discretization error is often more dominant than the truncation
error, but it is infortunatly difficult to say anything exact about the
magnitude of it. The method is said to be convergent if the discretization

error — 0 for Ax and At— 0.

As a consequence of the equivalence theorem it can be stated that the
discretization error is of the same order (in space and time step) as
the truncation error if the method is stable. The theorem yields (Abbot,
1979):

"Given a properly posed initial value problem and a
finite difference approximation to it that satisfies
the consistency condition, stability is the necessary

and sufficient condition for convergence."

The order of the method does not have to tell much about the actual mag-
nitude of the errbr, which also depends on the coefficients, for the
truncation error the Ay and Ajcoefficients. Another way to estimate the

accuracy of a numerical method is treated below.

3.1.5. Accuracy on wave propagation

The simple linear wave (eq. 3.1.3) with a initial value

2(x,0) = Z'exp ik x (3.1.21)
v 2l :

in which k = T is the wave number and L the wave length, has a analytical
solution given by eq. 3.1.18. If a finite difference scheme is applied
to the simple linear wave and the initial value the numerical solution

will after one wave period differ from the analytical one as outlined in
figure 3.1.7.
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initial value

analytical solution after
one wave period

7 - amplltude-error
/
% / s \ \§numer1cal solution
/ _/ -
: !/ /7 Ty
\ /
N L
o g™
. —

o fase error
Figure 3.1.7. Numerical and analytical solution after one wave periode.

In order to say something quantitatively about the magnitude of the am-
plitude andvfase error after one wave periode, it is presupposed that the

numerical solution has the form
z0 = Z'Pmexp ik jax (3.1.22)
J

where is a complex propagation factor, defined as
Z
P= J /Zn (3.1.23)
i.e. it is assumed that also the numerical solution is sinusiodal.

The method can easily be extended to an arbitrary initial value, with

instead considera single component of the Fourier - series for the solution

n n_i : 2
ZJ=ZP Z, exp (i jkax) _ (3.1.24)
The number of steps in one wave periode T = %? is
L2
" % at Toy (3.1.25)

in which ‘{: kK AX.
After one wave periode the numerical solution is given by
n
t. z'p“t exp (iJf) (3.1.26)
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and the relative amplitude and fase is now determined by the following

expressions

Damping factor per wave period

1 n '
P 4 B P (3.1.27)

Zl
Relative propagation velocity

-
op = —are O - @) arg (p) (3.1.28)

s T =

In appendix Al the complex propagation factor, the damping factor and the
relative propagation velocity are derived for the predictor - corrector

method. The complex propagation factor is found to be:

N
N S =)lelMsintt o4 (3.1.29)
X=1

where N is the number of iterations in the predictor - corrector mehtod.

A stabilityrequirement is that no periodic component of the Fourier -
series for the numerical solution must grow in time, which is known as the

von Neumann stability criterion

|pi< for all { (3.1.30)

It can be shown that the criterion is most critical for sind= 1 and
the criterion then becomes for the predictor - corrector method with 2

iterations (PC 2)

o*%gﬁeii (and © > 3) (3.1.31)

and for PC 3

] +V7+ 4026-1T

2 9%

o< (and 6 > %) (3.1.32)
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The predictor - corrector method with 3 iterations can be shown to have

a larger area of stability (0,0) than any other number of iteration. The

areas of stability for the predictor - corrector method are depicted in
N T

figure 3.1.8.

area- of stebility

) : . . v >
05 06 07 0.8 09 1 8

Figure 3.1.8. Area of stability for predictor - corrector method.

In téble 3.1.2 the complex propagation factor, the damping factor, the
relative propagation velocity and the stability criterion are resumed for

the various difference schemes.

The required number of points per wave length to obtain a certain accuracy

can be found as follows
[1-dl<€ (3.1.33)
and similar for the relative propagation velocity. The principle can be
illustrated with the damping factor for the Crank - Nicholson scheme,
PC etc.

|1- {1-(ee-nmoglf<e for §<<T7 (3.1.34)

which is only valid for large wave lengths because only the first com-

ponent of the Taylor - series is applied: sinfx

The number of points per wave length ny, is given by

L 27
n, = e E ?? (3.1.35)
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Scheme Eq. E) Stability d '(nkz>2) c. (nijr2)
Modified Lax 3.1.L 1-o-acosf-i osin g o] 1-—71;—5(0(r a? 1+# (32 T21)
Upstream 3.1.5 1-0+0ros¥-1i Osin a <1 1= 1=Q) 1+2 213 -2 -1)
. 1-(1-@)igsint 1 2z ! 2
- 5 25 = -1)T - = e
Crank-nicholson 3.1.6 T+ 6icsin § 6z23 1-(26-1) 1 62’(14—20‘1(1 36+30%))
: ; 1-(1-0)21 otan3{ 1 ot 1<% 4 N
Four points 3.1.7 142160 tanl { =3 1-(20-1) 1+72 E(1-L T(1-36+306%) )
_______________ P e ]
Predictor-Cor. 3.1.4+6 1+5§(—i)16} 1CT131nl[
2 iterations 1-9abin®f-i0sin{ fig. 1-(20-1)7TY | 1- #f{1+20*(1-30))
3.8 z
3 iterations 1- ©08in*f -i(0sinf-0*0sin’ ) 1-(20-1)7T¢ | 1-f F(1+20%(1-36+30%))

Table 3.1.2. Simple wava propagation accuracy. Partially after Vreugdenhil (1979).




which inserted in eq. 3.1.34 gives the desired relation

20-1) 2
n, > -(——{-—)-770— for n, > 2 (3.1.36)
For the mentioned schemes the approximated number of points per wave length

for [1-d| = 2% is given in 3.1.9 and |1'Cr-l = 3% in figure 3.1.10.

The upstream and the Lax schemes are very bad concerning the amplitude
‘accuracy for Courant number not equal unity, which makes them inappli-
cable for the present problem,because there are more celerities in the
set of equationé, and furthermore the celerities are difficult to calcu-
late for more than two fractions. For the same reason the Lax - Wendroff
cannot be applied because the weight ( & in eq. 3.1.4 )has to be calcula-

ted from the Courant number at each step.

From figure 3.1.10 it is seen that no scheme is remarkable better than
the others, still the four points scheme is giving the best propagation

velocity accuracy for moderate Courant number.

The stability limit in Courant number for the predictor - corrector method
with 3 iterations does not make this method significant less applicable
than the implicit.schemes, because these schemes are becoming very inac-
curate for large Courant numbers, which will result in an accuracy limit

in Courant number for the implicit schemes.

3.1.6. Numerical and physical diffusion.

For long waves the linearized equation for the model for uniform sediment
(eq. 1.1./9) has character of a diffusion equation with a diffusion coeffi-
cient Dph given by eq. 1.1.2/.

The presence of the numerical diffusion leads to an additional accuracy
criterion, which yields that the numerical diffusion must be much smaller

than the physical

. oxt
Phum = 24t Au & Dph L5 hedTd
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4 4 points, C-N and PC ©=0.55

Fig. 3.1.9. Damping factor.
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Fig. 3.1.10. Relative propagation velocity.
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From numerical solution of diffusion problems it is known that oscillation

can be expected for too large space steps, which can be illustrated with

-

the following.

Consider a stationary diffusion equation with a constant diffusion - coeffi-- -

- cient D and propagation velocity 6

¢ _pZ_ (3.1.38)
oX

o Xt

with the boundary conditions Z(0) = 0 and Z(L) = 1 eq. 3.1.38 has the analy-

tical solution
&y

.exp ( D

Z(x) =

(3.1.39)
exp (%%) =1

Therefore it does not seem f@refetched to presuppose a numerical solution
of the form

Z. L o (301.”0)

from a finite difference scheme

Z, ., -7, Z, =22 .+12,
g+ j-=1 J+1 3 j=1
c -D =0
24X 2
AX
Inserting eq. 3.1.40 in the difference scheme and divide by Zj-1 a qua-
dratic equation for r appears
C 2 D 1, _
> x (r 1) ~ (r 2r +1) = 0 (3.1.41)
with the roots- -
r =1 and r, = 31;215
| I - ol
2 PAX (3.1.41)
fn which P = 2% 4o the osll Peclet number.
ax D
The numerical solution will now be
. ; 2+P % 3
- J - e R - -
Zy = AgJd .+ Br A+B(2_Px) (3.1.43)

where A and B can be found from the boundary conditions. For €5x7>2
n, becomes negative and the numerical solution will be oscillating. Thus

a restriction for the space step
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g = 2 . (3.1.44)

The criterion can be expected to apply to the order of magnitude of the

physical diffusion coefficient.

3.1.7. Non - linear phenomena.

-The analysis in the previous has been based on a linear wave, but it isa
well known fact that the morphological models are strongly non - linear.
Consequently waves tend to deform and shocks will occur, i.e. the charac-

teristics are intersecting.

If one of the difference schemes is applied to a non - linear wave of the

form

QZ , ,PRZ _

St VA ol 0 (3.1.45)
there will occur product - terms like (Zg) P, Zg 3 (Zg )p- Zg_1 etc.

.Considering a component of the Fourier - series for the solution (eq. 3.1.24)
it is seen that the product - terms are generating waves with a higher

wave number
(Zg)pzl:].1 ~ (exp ijkax)p exp i jk ax=exp ij(1+p)kax
(3.1.46)

i.e. thereare generated harmonics with wave number (p+ 1) k. The phenomena

is resulting in short wave oscillation around the shock front.

The secondary waves makes it desirable to have a scheme which causes dam-
ping of waves with higher wave numbers and hardly influencing longer
waves. A scheme with this quality is called a dissipate scheme. The lowest
number of points per wave length is two, and recalling eq. 3.1.35 it is
seen 'i: 1 for qx = 2. From table 3.1.2 it is seen that all the schemes

except the four point schemes has f) = 1 for nx = 2, thus they are not

dissipate.
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A graph for Ip‘ as a function of n_ is called a amplitude portait, and
in figure 3.1.11 this relation is depicted for the predictor - corrector
method with 3 iterations.

\ |P|

S

d=0.5
=1

061 - /a=15

0.4

0.1

Y

Ll L} L}
Z 3 4 & 8 10 15 20 Ny
Figure 3.1.11. Amplitude protrait for PC 3 with = 0.70.
The space derivative in eq. 3.1.45 can be written in the conservative form

1
pdz 1 dzP*
2 S T oa S (3.1.47)

A backward difference applied to both the left and right side in eq. 3.1.47,
and integrated over the thotal length gives

J ' dJ
P 1 p+1 p+1
w7 camemianss 7 - -
5%1(Zj) (Zj j_1)=F 1+p §i1 ( j) (Zj-1)

1 L p+1 : p+1 (3.1.48)
L {(zJ) - (z) ™"
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If the derivative is written in the conservative form the integrated’

value only depends on the values at the boundaries, and the over all mass

balance is insured.

The scheme also has to be in conservative form, which is not the case for

the Modified Lax and the Lax - Wendroff in the form they have mentioned in

here, but they can very easily be written in a conservative form.

The error that is introduced in the mass balence, when the equations or

schemes are applied in a non - conservative form, can have a considerable

magnitude, when the variables locally are varyihg much, i.e. when there is

formed a shock.

3.1.8. Conclusion and preference.

A choice has to be made for an efficient finite difference method with

the following points in mind: programme flexibility, numerical diffusion,

secondary waves, accuracy, stability and representation of shocks. In table

3.1.3 the different methods quality with respect to these points are

resumed.

Method Flexibility | Diffusion | Sec. waves Aecurecy Stebility Dissipate Remarks
Lax - - - - -
Modified Lux + 0 - - - Hot wpplicabie
: - because more

wWordro - = - i
Lux=Wendroff O o celeritias
“Upstrean .0 + % - -
Four ypoints + 4 S+ + +
Crark-Nicholson + - + + -
Predictor-correcetor 4 o + o -

Table 3.1.3.

The implicit.

scheme

has the important disadvantage that a system of

non - linear equations has to be solved at every time step, which makes

it necessary to form the Jacobi - Matrix for the Newton iteration process.

It will then be very elaborate to change for instance a transport formula:

to calculate the derivatives of the transport formula with respect to the

o~
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variables and to place it at the right place in the Jacobi - Matrix. The
derivatives can also be calculated numerical but the computational work
will be very large. Further more the iteration itself can be expected to

cost a lot in calculation time.

It is desired to have some numerical diffusion in the scheme because of
the secondary waves, but at the same time it must be much smaller than
the physical diffusion. This criterion excludes the Lax scheme and makes

the schemes were the amount of damping can be regulated applicable.

For the accuracy it can be recalled that the amplitude accuracy is very
bad for the explicit schemes except for Courant number close to unity,
and with more celerities in the problem waccurate solutions ¢can be expec-
ted.

The implicit schemes has the advantage that they are stable for larger
Courant number, but as the accuracy decreases for increasing Courant
number . this force is only of major force when the wave lenghts are very

long, i.e. there are many points per wave length.

It is also desirable to have a dissipate scheme in order to avoid oscilla-

tion of undamped short waves.

From a purely numerical point of view (accuracy etc.) the four point
scheme is seen to have the best characteristics, but considering the loss
of flexibility in the computational model the predictor - corrector method

is chosen. This method is also among the better.

The predictor - corrector method with three iterations requires more grid
points than the four points scheme in order to obtain the same accuracy
(figure 3.1.10), but the calculation time costing Newton iteration is
avoided, so the predictor - corrector method is expected to be Jjust as
efficient as the four points scheme. Concerning secondary waves the pre-
dictor - corrector mehtod is slightly worse than the four points scheme
(figure 3.1.4), but this is not expected to be critical because the damp-

ing can be varied.



Thus the predictor - corrector method will be applied to the numerical
model, with the possibility to vary the number of iterations. At the
downstream boundary the predictor (upstream) - corrector (four points) will

be applied.

As mentioned, this analysis is based on simplified assumptions and there-
fore only giving a rough guide-line for the qualities of the methods.
A numerical model for uniform sediment is developed in order to see whether

the predictor’'- corrector method is working according to expectations.

3.2. Numerical model for uniform sediment.

The numerical analysis in the previous was based on a linear wave, but

bécause the morphological model for non - uniform sediment is strongly non

linear, a simple numerical model for uniform sediment is developed in

order to see whether the predictor - corrector method can reproduce a non

linear system.

The influence from the numerical parameters will be evaluated, but before
discussion of the results of this test, some attention must be paid to

the application of the numerical method to the morphological model.

The’model for uniform sediment consists in principe of two coupled partial
differential equations (eqs. 1.1.6 and 1.2.2 ), and the computational mo-

del will involve numerical solution of the differential equations for the
back - water curve on each step in the predictor - corrector iteration. The

flow in the calculation is illustrated in figure 3.2.1.

In appendix D a list and a short description of the programme for the

computational model for uniform sediment can be found.
The reliability of the computational results ofcourse depends on the

accuracy of the flow velocity calculation, so it is necessary to discuss

the back - water calculation.
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Figure 3.2.1. Flow chart in numerical model for uniform sediment.

3.2.1. Back -water calculation.

The flow velocity is, for a given bed level and for Froude number less

than one, calculated from the differential equation

Gg—:+g§—)z(=R (3.2.1)
where G = U(1-F2) = U-%&
2 2
. and R:-g'—U;:_g—%-—
C™a CTq

with the boundary conditions: specific discharge (q) and downstream wa-

terlevel (H).

The back -water calculation was not expected to be critical concerning
accuracy and stability. Therefore a simple iterative finite difference

method is applied. In the first iteration the flow velocity is treated

explicit

7¥
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J

V= U, - [g(Zj—Zj_1)+R(Uj_1, Ci_y)ax]/G,

(3.2.2)
and implicit in the following iteration steps
U, s U, .= (z,-2, .)+R(UX C, ,)-ax7) /G(u*
. B [e NENEY j=3" "3-% b U3
(3.2.3)
C _1-+C
where % indicates predicted value and C _ , = — ] and
U, ., +U*
u* B 2 M | .
J-3 2

No numerical analysis is carried out for this numerical method, but a
convergence test is performed for vertical steps in the bed level, which

are expected to be the most critical cases.

Case 1 Case 2

0.20 m AZ

==}
"

0.03 m I 0.04

1
30 m®/s

O
"

0.10 m /s C

Figure 3.2.2. Test Cases.

_The numerical parameters that can influence the accuracy are the number
of iterations (NI) and the space step (ax). The accuracy is estimated
from comparing the flow velocity in the grid point immediately upstream
for the step in the bed level. This velocity is é function of the number
of iterations and the space step: U(Ax, NI).

)
9
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Fig. 3.2.3. Accuracy of back-water calculation.



The results from the test is depicted in figure 3.2.3. In the upper part
of the figure an impression of the dicretization error can be obtained:
Ulax, NI=>ee) / U(ax —> 0,. NI—**°) is depicted ver'susA—‘Ix- . In the lower
part the speed of convergence of the iteration is sketched: Uax = 0.20 m,
NI) /U( x = 0.20 m, NI-=>==). Note that the vertical scale is different in
the graphs.

During the same test it was found that the accuracy indeed was worse in
the sketched cases, than when the steps in the bed are spread over more
grid points. The trend outlined in figure 3.2.3 were also found to be the
same. In the cases where are changes in flow velocities on + 15%, which
is of the order of magnitude, as expected in morphological compretations,

so it does not seem farfetched to generalize from the test cases.

It is then concluded that the discretization and "convergence'" errors
tend to neutralize each other in case of a sedimentation wave. This

is also the case for an erosion wave when an even number of iterations
is chosen. Further it is noticed that the space step does not have such

a large influence on the accuracy as the number of iterations has.

The flow velocity is already after two iterations approximated within an
margin of error on 2% , and for three iterations the accuracy is so good

that inaccuracy in computational results must be attributed to inaccuracy

in the predictor - corrector method.

3.2.2. Test of predictor - corrector method.

The test is carried out in case of a propagating sedimentation wave and
in case of an erosion wave, both with a normal back -water calculation
and with horizontal water level. When the flow velocity is calculated
with horizontal water level the numerical results are compared with the
solution obtained from the characteristic method. Finally the filling -
in of a dredged trench will be calculated with the numerical model with
the predictor - corrector wethod and compared with a computation carried
out with the Modified Lax scheme. In all cases the transport is calcu-
lated with the Engelund - Hansen formula. The initial and boundary con-

ditions for the examples are resumed in table 3.2.1.
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Initial situation Boundary conditions Flow vel.
Example I Cmnm /s am [ ap-, S calc.
1 a 10—3 30 0.118| 0.25| 2E-5 back-water
b 0 - - - - horizontal
2 0 - - - | 3E-6 -
- bed lev
3 10 Lo h.7 5.00 fixed back-water

Table 3.2.1. Examples for sensitivety analysis.

The examples are computed with different combinations of the numerical
parameters. In table 3.2.2 the numerical parameters are given together

with the numerical properties discussed in chapter 3.1.

The computational results are given in figure 3.2.4 to 3.2.10. In the
overview plots the bed level is indicated with "Z" and the water level
with "H". The flow velocity ié not recalculated after last correction of
the bed level, so the flow velocity (U) water depth (A) and sediment
transport (S) belongs to the bed level (Z) at the previous iteration step.
When calculation is performed with horizontal water level the Froude num-
ber is zero, because the convective term in the equation of motion for

the water is neglected. The celerity is in the programme computed from

eq. 1.1.3, 4, 5 with Froude number calculated from the local flow velocity
and depth, so the Courant number (COU) in the output must in case of hori-

zontal water level be multiplied by (1 -E;-)

re fig. The influence from the weight © can be seen. For ©= 0.50 the

3.24 numerical diffusion coefficient is equal zero, but the absolute
value of the complex propagation factor provides a little dam-
ping. The method is not dissipate and secondary waves witﬁ 2 points
per wave length were expected, but there is only harmonics with

n, = 4. The explanation herefore is maybe that the harmonics
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e -
. . m%" lo AX® l P’ m%‘ S lad B [
Figure x (m) t (s) e No. it. o D um 2, T ny= Dphys P Ex.
3.2.3.8] 0.2 300 0.7 3 0.84 18.8 =1 <10 0.75 2.02 5.53 | .1 a
3:.2.3.b = = 0.6 = = 9.41 - 0.85 = - -
3.2.3.c - = 0.5 = = 0 - 0.95 = = -
3.2.4.a 0.2 600 0.7 3 1.68 37.6 6.80 1.17 2.02 5.53 | 1 a
3.2.4.b - 300 - - 0.84 18.8 -1.10 0.75 - - -
3. 2.4 ¢ - 150 - - 0.42 9.41 -3.07 0.96 - - -
3.2.5.8] 0.2 300 0.7 3 0.84 18.8 -1.10 0.75 2..02 5.53 (1 a
3.2:5:b 0.4 e - - 0.42 - =123 0.96 = 10.06 -
3.2.5.¢c| 0.6 - - - 0.28 - -31.0 0.98 - 16.59 -
3.2.6.a| 0.2 600 0.7 3 1.43 27.4 3.32 0.43 ? ? 1 b
3.2.6.b - 300 - - 0.71 13.4 -1.56 0.84 = = =
3.2.7.a| 0.2 300 0.7 3 0.71 13.4 -1.56 0.84 ? ? b
3.2.7.b - = = 2 - = o 0.92 = = =
3.2.8. 0.2 600 0.7 3 0.51 3.51 -0.84 0.93 ? ? 2
3.2,9 5.0 3600 0.8 3 0.90 1690 -990 0.56 2 103 0.29 3

Table 3.2.2. Numerical parameters for sensitivity analysis.
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with three to six points per wave length is damped so much (see
figure 3.1.11) that, when waves with nx = 2 are generated
according to eq. 3.1.46, there is hardly any amplitude
any longer. This would mean, that if there is started with a
shock in the initial conditions, harmonics with n = 2 will be

found (see figure 3.2.10).

re fig. Influence from time step. The Courant number and so the numerical
3.2.5 diffusion coefficient increases for increasing time step. For
Courant number greater than one the propagation velocity of se-
condary waves becomes positive and secondary waves downstream
of the front were expected, but due to the large diffusion coef-
ficient they seem to have a wave length which causes immediately
damping. The calculation carried out with AT = 600 has O = 1.68
and é? = 0.70 which is not in the area of stability (figure 3.1.8).
For Courant number around 0.50 there is very little damping and
the ;Eg- coefficient has a maximum (figure 3.1.4) so it can be

recommended to increase the time step.

re fig. Influence from space step. The numerical diffusion coefficient
3.2.6 is independent of the space step, but the propagation velocity
for the secondary waves increase strongly with increasing space

step.

re fig. Calculation with horizontal water level compared with solution

3.2.7 from the characteristic method (eq. 1.1.27). Both calculations
seem to be very accurate, but A T = 600 s must be prefered be-
cause thereare less secondary waves. Comparing with figure 3.2.U4

the influence from the bed friction on the damping can be seen.

re fig. Three iterations in the predictor - corrector method does not only

3.2.8 have the advantage that the stability area is larger (figure 3.1.8),
than when only two iterations are performed, but it is also provi-
ding much more damping of small wave lengths. The numerical diffu-
sion coefficient is the same in both cases, but the absolute

value of the complex propagation factor is smaller for three

iterations than for two.
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re fig.
3.2.9

re fig.
3.2.10

For an expanding wave there are hardly generated secondary waves,
further more they are propagating upstream out of the region. The
deviation betweén the numerical solution and the one from the
characteristic method is because there cannot be any sharp corners

in the numerical solution, due to the numerical diffusion.

Fillingx-in of dredged trench. In the comparison between the mo-
dified Lax scheme and the predictor - corrector method the same
time and space step are applied and in both cases the upstream

boundary condition is a fixed bed level.

The calculation carried out with the modified Lax scheme is pro-
vided with much more numerical diffusion than the one with the
predictor - corrector method although there is chosen a very large
©. Therefore is the solution with the predictor - corrector in a
mathematical sense the best, but, as outlined in the figure, there
are secondarywaves with a very large amplitude. '

The fixing of the upstream bed level may act like a reflection
point for the secondary waves which not only would explain the
large amplitude but also that the fluctuations are more irregular

than in the other Test cases.

The modified Lax scheme is applied in a conservative form, but
there is a trend that the trench is propagated further in the
calculation with the predictor - corrector method. This may be
caused by the secondary waves in the bed level which causes a
fluctuation in the water level and thus influences the calcula-

ted transport at the upstream boundary.

In this case secondary waves with two points per wave length are
found, which may be caused by the reflection point, but the reason
could also be that these are started with a shock in the initial

situation (see re figure 3.2.4)

The accuracy is, anyway for a sedimentation wave, not decreasing

so much for increasing Courant number as expected according to
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Fig. 3.2.9. Comparison with characteristic method.
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Filling-in of a dredged trench.
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figufe 3.1.9 and 3.1.10. The presence of physical diffusion in the
model for uniform sediment does not seem to cause any problems

(eqs. 3.1.37 and 44).

In a problem with more celerities, as in the model for non -uniform sedi-
ment, it can'be expected that the stability criterion applies to the largest
celerity, when a smaller celerity maybe can cause secondary waves. It is
then desirable to have a numerical method where the secondary waves could

be suppressed without having to calculate with Courant number close to or
exceeding unity. The four points scheme has this quality, but the little
flexibility and the expected increased calculation time for a fully impli-
cit scheme justify the application of the predictor - corrector method to

the model for non -—uniform sediment. Besides the secondary waves only
influence the accuracy considerable if the upstream boundary condition is

a fixed bed level.

3.3. Numerical model for non -uniform sediment.

Before applying the predictor - corrector method to the model for non -
uniform sediment a simplification of the model will be carried out and
the model will be modified in order to be able to simulate flume experiments

where sand feeding by elevator takes place.

3.3.1. Schematization of vertical grain distribution.

The vertical composition in the z, - layer will be schematized for simpli-

fication of the model.

When the infrequently deep throughs in the bed (which are not considered
as a part of the transport layer) are occuring the finer material will be
washed out. The vertical grain distribution will therefore typical have

the form outlined in figure 3.3.1.
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actual schematizated

v

'Figure 3.3.1. Vertical grain size distribution.

In case of erosion the composition at the Z, - level is in the schematiza-

ted form given by (Z is herevertical coordinate)

pj_z er‘ Z 2—20
]
— |
Pi, (2) ={pi, +aps for 2 - <2<z, (3.3.1)
{
Pi, for 7 4 7,-8

where Pi, isthe depth averaged composition of the Z, - layer. Pi, is
o ©

a function of time and Ap; constant.

The placing of the coarse layer (d’) is fixed in the initial condition,

and when ever the Z, -level is eroding in this layer the composition is
given by Pig, %zspi. Consequently the coarse layer can only be applied in
case of pure erosion. If for instance first erosion takes place until below
Zo-é’and here after sedimentation to above this level then the coarse

layer will be regenerated.

In case of sedimentation the material leaving the transport layer is con-
sidered to be uniform mixed over the Z, layer in the schematization there
is applied to the model. The consequence of this is that the model cannot
treat first sedimentation and then erosion correctly. However if the re-
ference level is chosen close to the Z, - level the pomposition of the Zo~-

layer will be much influenced by the sedimentated material, and the model

can be used to show a trend.
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3.3.2. Sand elevator.

It has been considered important that the numerical model is able to si-
mulate flume experiments where sand feeding is taking place by elevator.
This is equivalent by adding a source term in the continuity equation
per fraction and setting the sandinput at the upstream boundary equal
Zero.

38y  37%pi .
SX 5t © v piz,, for X <Xl_ (3.3.2)

where V is the sand elevator velocity and Xl.is the length of the elevator.

When the numerical method is applied to the sand elevator in a equilibrium
situation it is necessary to weight the velocity of the first grid point.
This is because the upstream sand input in the computational model is
applied outside the region (X = -aX), in order to inable the application
of the Crank - Nicholson scheme in the first point as well. The weight of
the velocity in the first grid point in a equilibrium situation can be

obtained from figure 3.2.2.
j= -1 0o 1 2 3 4

=0 S2=SL'_

= S1=V(xl—2 x)

2x =wV S51=Vw 2 x

Figure 3.2.2. Weight of sand elevator velocity. - _1_5_235
: X
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The length of the sand elevator is small compared with the length of the
flume, so when the sand glevatbr is used one is forced to apply a very
small space step, which increases the calculation time considerably. How-
ever the influence from the sand elevator on the wave lengths in bed level
and .composition is a local phenomena, so there can first be calculated a
short time with the sand elevator, and then start a new calculation with
normél sand input as boundary condition and applying a larger time and

space step.

\

3.3.3. The structure in the programme.

A couple of different flows in the programme are possible, and the one

that . is expected to be most efficient is chosen (see flow chart p /& ).

For a given transport layer composition and bed level at time level n

the back - water calculation is carried out and the transport per fraction
is calculated. As outlined in chapter 2.4 is it necessary to know whether
there is a positive or negative displacement of the Z, -level, so the
new bed level is predicted by summating the transport per fraction and

use the equation of continuity from the model for uniform sediment.

Hereafter the composition at time level n+ 1 ¢ould be predicted by help
of the continuity equation for each fraction, but as'this procedure costs
much calculation time, it was decided first to calculate the predicted
transport at time level n+ 1 with predicted flow velocity and the compo-
sition at time level n, and then go on with a traditional predictor -

corrector iterations.

The roughness predictions takes place in connection with the transport
calculation because it is most convenient. The consequence of this is
that the flow velocity is calculated with the roughness from the previous
iteration step and phe transport with the new roughness. This lagging
does not introduce any serious error because the roughness only changes

a little during one iteration step. Further more the lagging seems to be

in agreement with the trend outlined in figure 2.5.2. -
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In appendix B a users guide for the numerical model can be found and in

appendix C a short programme documentation.

3.3.4. Sensitivity analysis.

Four. examples are calculated with the numerical model for different
combinations of the numerical parameters, and the computational results
are compared with solution obtained from the characteristic method.

\
The transport is calculated with the Meyer - Peter and Muller formula
(ripple factor/u = 0.5), two fractions and horizontal water level. The
initial and boundary conditions for the examples are resumed in table

3.3.1.

., The principle of the calculation with the characteristic method is dis-
cribed in chapter 1.2. From each point two celerities are issued. Where
the celerities from the foot and from the top of the steps in bed level

and composition are intersecting a temporary equilibrium developes.

z,p,

xY v X

\V1'

Figure 3.3.3. Temporary equilibrium.
The examples are in the characteristic method calculated with a increased

number of points at the wave in the initial condition, until the conver-

gated solution is found. In example 1 and 2 the two celerities are
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Initial condition

Celerities (m/h)

2 (m) {’| : ‘
Example I X (m) l > X (m) (S (m) qa (m*/¢) h (m) ®max  “min

kK 2 ) - 7
; ——/////)P:_ y—//////_a 0.01 0.1376 0.140 1.65 0.06
2 o s D | 0.20 same same 0.38  0.00L
3 ._///////:f— —% | (.10 0.25 0.50 3.20  0.30

0 v —
0.10 0.1376 0.40 0.50 0.025

L ks o1 -
< 2 o- k 2 .5

LV B

C=30 m?/s dq=0.4 mm

Table 3.3.1. Test cases

4,=1.0 mm (1.2 mm in Ex 3)




calculated with Froude number calculated from the local water depth and
flow velocity, although the Froude number is equal zero due to the hori-
zontal water level. Thisjgives a trend, that the processes are going
faster, and conservation of mass cannot be expected, when the solution is

compared with the results from the numerical model.

In example 1 and 2 the calculation with the characteristic method is
carried out with Eiz, = pj in order to reduce the number of variables.
This is not physical correct in case of erosion. The procedure in the
numerical model there is computing the composition is brought in agreement

with ;izo = Py

In the calculation performed with the numerical model the upstream boundary
condition is the equilibrium transport of each fraction. The results from

the sensitivity analysis are depicted in the figures 3.3.4 to 3.3.9.

EX 1.
re fig. Here a very pronounced change in composition takes place, due to
3.3.4 the small transport layer thickness. Recall that total agreement
between the results from the two calculation methods is not ex-
pected. The secondary waves upstréam of the front are suppressed
very good with © = 0.70, but it provides much numerical diffusion
especially for large time steps, which is the reason for the big

difference in the computed results.

EX 2.
re fig. The same parameters is used as in EX 1 except the transport layer
343%5 " thickness. The difference in the processes must not only be at-
tributed to the transport layer thickness, because with Eizo = Py
also the vertical grain distribution in the Z, - layer is different.
In this example the changes especially take place‘in the bed level.
The process is going much slower, because the transport layer

thickness appears in the denominater in the celerities.

The calculation carried out with <I;ax = 0.66 and (T;ax = 1.32
gives almost the same result, a completely different trend as in
the computations for example 1, so it seems to cause the model

_less trouble to compute large changes in bed level than in com-
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re fig.
3.3.6

re fig.
3.3+

re fig.

3.3.8

re fig.
3.3.9

position. For © = 0.7 the stability criterion yields according
to the numerical analysis T < 1.50, but the model can almost

compute with ogax . 2.65.

Ex. 2. Here is the same trend as in the numerical model for uni-
form sédiment: for increasing space step trouble with secondary

waves occurs.

Comparing the two figures for example 2 it is seen, that it is
more efficient to decrease the space step than the time step. In
figure 3.3.6 no benifit in accuracy was won when the time step
is halved (curve 1 and 2) but here a little accuracy is won by

halving the space step (cure 3 and 4).

Ex. 3. Here both pronounced changes in bed level and composition
takes place and the accuracy is very good even for relative large -
space steps and Courant nuhbers. Both the calculated and composition
behaves according to expectations: hardly any secondary waves for
the small space step, and the amount of numerical diffusion is

the same for equal time steps.

Ex. 4. A shock front. The expected influence from the numerical
diffﬁsion coefficient is found in the reproduction of the shock
front, but there is surprisingly little secondary waves. For
0= % the propagation velocity for secondary waves should be at
maximum (figure 3.1.4) and very little numerical damping is

present.

Infinite accurate calculations can be carried out by decreasing
the time and space steps. A very little © can be permitted be-
cause of the absence of secondary waves (A@ is equal zero for

0= 1, but there is more celerities in the problem).

Ex. 4. The propagating of the wave is compared with eq. 1.1.27,
and this seem to Be accurate as well. Notice that the temporarily
equilibrium is not éxpanding, because the differential equations

do not apply after the shock is formed.
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3.3.5. Conclusion.

The predictor - corrector method is able to produce accurate results,
although more calculation effort than expected has to be contributed.
Luckily the secondary waves do not seem to cause so much trouble as

first assumed.

It is concluded that the reliability of the computational results are not
influenced by numerical errors, if the model is used with caution, i.e.
the accuracy is tested by applying different space and time steps. The’
numerical model can therefore be used to study the model for non - uniform
sédiment as uncertanities is the computational result can be attributed

to inaccuracy in the model or in the component parts of it.

Ny

0.044-

002}

1 2 . 3 4 5
At=1800 s Ax=0.5m g,z1.0 6 =0.7

Fig 3.3.9. Example U
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4, APPLICATION OF THE MODEL.

The numerical model is é powerful means to forecast morphological changes

in alluvial rivers, if the computational results are interpreted with cau-
tion.Measurements have to be carried out in order to verify and to cali-

brate the model and the consequence of varying the parameters in the model
must-be investigated by means of a sensitiv@ty analysis in order to get

some insight into the reliability of the computational results.

It will be attempted to verify the model with two examples: one measurement
from prototype and one flume experiment. The examples are unfortunately

not typical cases where a model for non -uniform sediment has its largest
applicability, because the shear stresses in the examples are so large

that only very little selective transport takes place, bu; it were the

only examples available.

In the first example the filling - in of a dredged trench in the river
IJssel will be simulated. This process has been the subject for extensive
tieasurement and the initial and boundary conditions are therefore very
reliable. The second example is a simulation of a flume experiment, but

here only superficial information has been available.

In-cases were it is especially interesting to calculate with a model for
non - uniform sediment no experimental results or measurments from proto-
type were available. A sensitivity analysis, with attention to the trans-
port layer thickness and the grain size characteristics,tis> carried out
for an example concerning an imaginary river, where the upstream sediment
supply is cut of. This is a case similar to what occurs downstream of a

dam, when all the sediment is trapped in the reservoir.

4.1. Filling - in of a dredged trench [27]

In the framework of the River Reaserch Group of the joint hydraulic re-
search programme T.0.W. (Toegepast Onderzoek Waterstaat) a reaserch pro-
Ject was carried out with the aim (among other things) to study dune
migrations and migration velocity and in order to verify a numerical

model for uniform sediment.
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As a part of the project a trench was dredged during April 1980 in the
river IJssel close to Deventer, the Netherlands. In figure 4.1.1 the di-

mensions of the trench are ilustrated.

- L= 1 34 «lo™? '
=/, £
— e L :
A o T = ~0.020é (é:'
\
M= guio=S :
: I
K 200m > Tom > K ~m K 20 2

Figure 4.1.1. Dimensions of trench.

4,1.1. Field measurements

Extensive measurements were carried out of the sediment transport (suspen-
ded and bed load), the water level, the discharge and the bed profile were
regulated during the filling in of the trench. In figure 4.1.2 the extent

of the study reach is depicted, with indications of where the measurements

were performed.

942.700 H

940.630

S, a

239,000 H
Figure 4.1.2. Extent of study reach.
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Bed profile

The recording of the bed profile shows a maximum dune height on + 1.5 m
with an averaged value + 0.4 m. The averaged dune length is 40m and the
migration velocity about 4m/ day, thus an averaged dune will travel it's
own length in 10 days. Consequently the transport layer thickness does not
depend on the average dune height as much as the actual dune height, and
the transport layer thickness is therefore chosen as 0,75m (15% of water

depth) in the simulations.

The discharge is measured in km. 940.100 during two periods of each three
weeks in order to obtain the local discharge from the water level (rating
curve). Several velocity profiles are measured and integrated over the
width. The discharge is divided into two parts, one belonging to the cross-
section part with movable bed and the other belonging to the part with
fixed bed. This division is a procedure which introduces some uncertainty
in the estimation of the specific diséharge. The variation of the specific
discharge is very well approximated by the hydrograph which is depicted

in figure 4.1.3.

Hn
o

st

2 Hry b June 20 Tuiy 3l 71

Figure 4.1.3. Boundary conditions for computations.
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Water level

The water level is recorded continuously at km 939.100 and 942.700. During
the period with constant discharge the difference in water level is ap-
proximately Ah = 0.280m, thus a energy line gradient I = 7.8)(10’5‘
which indicates a Chezy - roughness C = 39 m% / s. During the flood period
Ah = 0.270m which gives C = 40 m% / s, so the variation in roughness can
be neglected.

The downstream water level is measured so far from the trench that it has
been desirable to perform a back -water calculation in order to reduce

the reach in the calculation. The back - water calculation is carried out
with C = 40 m% / s and the downstream boundary is hereafter at km. 941.200,
were no significant changes in bed level is expected. A schematized varia-

tion of the water level is given in figure 4.1.3.

The bed load is measured with a BTMA - sampler and the suspended load with
a DF. During the period with constant discharge the total transport was
approximately S = O.25>(10'qﬁnb/ s (large dispersion) from which around
15% was transported in suspension. As bed load is so dominating it is

still posible to use bed - load transport . formulas.

Bed samples were taken regularly, but only the samples from before the
dredged of the trench are evaluated, so no information about the vertical
grain size distribution and the time dependent changes in composition is
available. Thé geometrical mean diameter is estimated to dg = 0.6 mm
aqd the grain size distribution is well approximated to a log. -norm.
distribution with<Té = 1.7. These grain size characteristics are used in

the computation as initial values of the transport and the Z, - layer com-

position.
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4.1.2. The computational results

The computations are in &all cases carried out with 3 predictor - corrector
iterations, three iteration in the back - water calculation,® = 0.70 and
a space stepax = 10m. The time step wasat = 3 days, except in the cal-
culations with the Engelund - Hansen formula during the period with the

flood wave where stability problem forced to apply At = 1.5 days.

i B o was‘éxpected that the Engelund - Hansen formula would give the best
result because both bed and suspended load was present. In figure 4.1.4
the predicted béd level and relative change in diameter in the transport
layer ('rel d' = dg /0.6 mm) calculated with the Engelund - Hansen formu-

la in a normalized form with 1 and 3 fraction is depicted.

djy ) ) = —=
ll-ﬂq\ dm‘_o PN \\\\
. 7 , \\ ~
4 7 = —
A A=
‘ N S~ — 7
\ \\\.,//(=Imw11/a\ /
\ A 4
Oﬂf' \ / \ //4’2/
\ ¢ \ /
\ I, \ /
\ / \ 7/
\\.II Sosn -‘,

2 (m)

3, 00

2,00

T T T ) )
940.6 940.9 940.8 140.9 94/.0

— | froclom
- 3 &n ‘;'"’
—  uasurdd

Y

Figure 4.1.4. Calculation with Engelund - Hansen formula.
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'The trend is, independent of the number of fraétions, that the formula
gives far too much transport. The calculation with 3 fractions shows a
more gradual sedimentatién front because the sedimentated material has
approximately the same composition as the sediment in transport (recall
that the selective transport is independent of the shear stress, figure
2.2.6). Thus the sedimentated material is finer than the original bed

mateﬁial, and the transport - capacity is therefore larger. The opposite

is the case for the erosion wave.

In figure 4.1.5 results from computations with the Meyer - Peter and Muller

and the Engelund - Fredsoe bed load formulas are depicted.
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Figure 4.1.5. Calculations with bed - load formulas.
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The calculation with these bed load formulas gives toolittle transport.
The calculations with the Meyer - Peter and Muller formula with 1,3 and 5
fractions do not exhibit.any noticable difference in bed level, although
the coarsest grain is inmobile in the calculations with 3 and 5 fraction
during the period with low discharge. The reason herefore is that the

bed composition is only changed sligthly.

’

The roughness predictor is applied in the calculation with the Engelund -
Fredsoe transport formula. During the period with low discharge there is
predicted a Chézy - coefficient C = T7 m%/s, thus the roughness is serious
under estimated. The roughness prediction is performed in one of the areas
where the modification'of the method is applied. If the relation between
the effective and total shear stress from the dune region (eq. 2.1./6) was
used in stead of the modification it would have resulted in a roughness
coefficient C = 59 m%/s. During the flood the roughness is calculated to
C = 40 m%/swhichis in excellent agreement with the observed roughness

coefficient.

The general trend in these examples is that the number of fractions in
the calculations does not influence the computed bed level, and a model
for uniform sediment would suite just as well. Only necessary information
about bed composition changes could justify a calculation with the.model

for non -uniform sediment in preference of a model for uniform sediment.

A computation with a calibrated Meyer - Peter and Miller formula in a model
for uniform sediment is performed as a part of the research project. This
',calcUIation did predict the position of the trench very well in the two
first months, but then the aéreement stops. The reason is maybe that there
is supplied much sedimeﬁt from the sides due to contraction of the flow

during the period with the increased flow velocities (see figure 4.1.6)

4.1.3. Discussion

In the present case the gradation of the sediment has been too small or
the shear stress too large to justify the application of the model for
non - uniform sediment. Further more the calculations were carried out with-

out considering the variation.of the critical shear stress due to the
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" gradation (Egiazaroff's theory), which has resulted in an exaggeration

of the changes in composition.

__>'—\
> e S VERREE ., —paar
- /‘—"-;\

Figure 4.1.6. Contraction of flow.

The relative bad prediction of the bed level must entirely be attributed
Lo the unreliability of the transport formulas, because the change of

the bed composition has a neglegible influence.

The roughness predictor did under estimate the roughness in case of low
flow conditions, a trend which is amplified by the modification which
has been applied to the roughness predictor. The bad prediction of the
roughness is maybe because the bed and flow are not in equilibrium in
the initial condition, i.e. bed form and slope belong to another flow

situation.

4.2. Flume experiment with graded sediment

In 1972 Agostino carried out a serie of experiments wigh graded sediment
in a 30 m long and 0;5 m wide flume at theLaborato}y of Fluid Mechanics

Delft University of Technology.

The information which is used for the simulation of the experiment is
obtained from disorderly notes Agostino made about the experiments.This
has introduced some uncertanities in the boundary conditions which have

been applied in the computations. There was no information about how the
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bed composition is measured, but measurements from the equilibrium situa-
tions exhibit a large dispersion, which indicates that the bed samples are

taken in a single point and not averaged over a dune.

The experiments were carried out with a mixture of two grain sizes with
geometrical mean diameter respectively 1.00 mm and 1.75 mm. The initial
condition ‘for.the here concerned experiment was the equilibrium situation
from the previous experiment he had made. The downstream boundary conditions
in that experiment was a water level h = 0.28 m above reference level,
which resulted in a equilibrium water depth a = 0.139 m for the specific
discharge q = 0.09 m*/s. The bed slope was I = 0.0029 which indicates

a mean roughness.coefficient Cm = 4o m%/s. The sediment was supplied by
a 1 m long sand elevator with the speed 0.86 x 107°m/s. The composition

in the sand elevator were 60% fine and 40% coarse sediment, which resul-
ted in 58.8% of the fine grains in the transport layer. The boundary con-
ditions for/the present experiment were (apparently) a raise of the down-
stream water level (h = 0.30 m) and a change of the composition in the

sand elevator into 40% of the finer fraction.

4.2.1. The Coﬁputations

In order to apply a transport formula it is‘necessary to obtain the bed
roughness coefficient, which has been done from the Einstein side -walls
correction prgcedure (see chapter 2.1). The water temperature was around
20 C (Y= 1.0%1 x 10~%m /s) and the Nikuradses grain roughness for the
side-;walis (éoncrete) has been estimated to kg = 1 x 10~ m. The calcu-
lated bed roughness coefficient Cb % 33,2 m%Vs has been keept constant

during the computations.

It was considered important that the transport formula was giving the
correct transport in the equilibrium situation, and the Meyer - Peter and
Muller formula with Egiazaroff's theory was calibrated by means of a

coefficient Fj before the effective shear stress

Qi = 8(Fi/u9-ec) (4.2.1)
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The calibration factors for both fractions appeared to be of approximately
the same magnitude (F, = 0.765 and F, = 0.856). The calculation of the

ripple factor is based on the diameter of the coarse fraction.

The computations are carried out with different transport layer thickness-
es and both with(Ax = 0.40 m) and without (ax = 1.20 m, at = 2500 s)
sand elevator. Invall cases there are used 3 predictor -corrector itera-
tions, 3 iterations in the back - water calculation (with Einstein side -
walls correction procedure) and @ = 0.7. The. calculated bed level and

probability of fraction one are depicted in the figures 4.2.1 to 4.2.3.

From the figures it cén be seen that there is occuring sedimentation si-
multarneous all over the flume, due to the increased downstream water level,
and thus decreasing flow velocity in the flow direction. This almost para-
llel raise of the bed level is superposed by a low propagating sedimenta-
tion front caused by the change of composition. This front is not very sig-
Inificant because the transport capacity of the flow hardly is effected by
the grain size. Further is it noticed that a very significant wave in

composition is propagating in downstream direction.

The influence from the sand elevator can be seen from figure 4.2.1. As
expected the sand elevator has only minor effect on the computational
result. Before the sedimentation front there is a slightly lower bed

level, because the sediment supply in the initial condition is decreased
due to the coarser sediment in the elevator. This is only a local pheno-
mena as the transport capacity of the flow is increasing fast when the bed
level in the sand elevator raises. The steeper front in the composition-
wave can maybe be attributed to numerical effects, because the calculations
with the sand elevator ére carried out with smaller time and space step,

thus less numerical diffusion.

In figure 4.2.2 and 4.2.3 the influence from the transport layer thickness
on the propagation velocity of the wave are demonstrated. The general
trend is that both the calculated bed level and probability of fraction
one is lower than the measured values. It is difficult to recognize any
front in the measured composition, but if the points in figure 4.2.2 for

X = 12m and X = 15m are interpreted as a wave then the transport layer

thickness equal 25% of the water depth seems to apply the best. In figure
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4.,2.3 no front at all can be found in the measured values, only the trend

that the composition becomes finer in down stream direction.

-~

4.2.2. Discussion

The measurements in equilibrium indicates that the sediment in transport
is only slightly finer than the sediment in the transport layer, and the
same trend was expected in the upstream end of the flume after some time,

but this does not seem to happen.

The explanatibn herefore may be that the samples of the bed are taken too
deep, i.e. below the transport layer, where the coarse layer from the
previous experiment is situated. The reason could also be that the model’
does not apply because the changes do occur too fast. If the migration
velocity of a dune is estimated to the ratio between the total transport
and the transport layer thickness (0.25 - a), then one dune will appro-
ximately travel the length of the flume during the simulation period,

thus the grain sorting depends on the dimensions of the individual dunes.

A cause of the diSappointing result may for a deal be attributed to in-
flow phenomenas in the flume: the dunes need time to grow, the flow have

to be tranquil etc.

With the large numbers uncertainties in the experimental conditions the

model cannot be rejected on the basis of this experiment.

p

4.3. Sensitivily analysis

The largest applicability for a model for non -uniform sediment is for
erosion processes in case of low shear stresses were selective transport
takes place. No measurements fromproto type or flume experiments were
available, and therefore a sensitivity analysis is carried out, with the
specific aim to demonstrate the influence of the transport layer thick-
ness and theé;rain size characteristics on the development of the bed

level.
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Different transport layer thickness predictors and grain size distributions
will be applied to a case where the upstream sediment supply is cut and

only clear water is reléaseq into the river. In this case the upstream

part of the bed level will érode gradually, until the bed forms vanishand the
transport capacity of the river becomes zero. For these low shear stresses
first of all the finer grains will be eroded and the coarser will remain,
which Fesults in a change of the grain size distribution in the transport

layer, i.e. armoring.

The chosen examples concerns a reach of 5 km of an imaginary river, but
it has been attempted to approximate a typical Dutch river regarding flow
parameters. Only the grain size distribution has been changed in order to
obtain different transport capacities. The characteristics of the case

studied are as follows:

- Bed level gradient I =6.26x10" J

- Specific discharge q=3 . 54 m¥/s

- Down stream water level h = 7.00m

- Down stream bed level at t =0 2 = 2.00 m

- Constant Chézy roughness C = 40 m%/s

- Geometrical mean diameters dp = 0.6 to 1.2 mm
- Gradation f?é = 1.64 to 2.4 mm.

It is assumed that the grain size is logarithmic - normal distributed and
no vertical gradient in the composition of the bed is present in the ini-

tial condition.

4.3.1. The computational results.

The Suzuki traﬁsport layer formula is applied with some modifications_
because stability problems and heavy secondary waves occured when the
formula was used in its proper form. It was estimated that the minimum
transport layer thickness would be a few times the @éximum grain size

for (almost) zero transport, but it was in this case necessary to take
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a minimum thickness equal 0.10 m in order to keep the computation time

at a reasonable level. Still the celerities are very large, which was
expected because the Lranspoyt layer thickness appears in the dinominater
of the celerities, and large space steps have been applied in order to be

\
able to use a reasonable time step.

The computational results are depicted in the figures 4.3.1 to 4.3.4. The
relative diameter ('rel d') isthe arithmetical mean diameter in the trans-
port layer divided by the initial value. In table 4.3.1 the grain size
diameter of the fractions characteristics as well as some of the numerical
parameters in the computations are resumed. In all cases there have been
applied 3 predictor-—corrector iterations, 3 iterations in the back - water
calcuiation and &= 0.70. The number in the table referes to the tables

in the figures

Figure No. ax(m) At (months) No. fr. d; (mm)
4.3.1 1 200 -2 1 0.6
2 200 y ' 3 0.3, 0.6, 1.2
3 200 o 3 same
4 200 b | -3 same
4.3.2 1 200 8 3 0.6, 1.2, 2.4
2 800 1 3 | same
3 4oo 1 3 0.45, 0.9, 1.8
4 400 " 3 same
4.3.3 | 1 800 1 1 0.9
2 800 1 3 ©0.45,0.9, 1.8
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Figure No. ax(m) At(months) No. fr. di(mm)

3 800 3 5 0.4, 0.6, 0.9, 1.35, 2.02
4.3.4 1 800 ) 5  0.4,0.6,0.9, 1.35, 2.025

2 800 1 5 same

3 800 ' 1 5 0.225, 0.45, 0.9, 1.8, 3.6

Table 4.3.1. Variable parameters in the computations.

In figure 4.3.1 a case where the upstream sediment supply is only reduced
and the composition is kept the same as in the initial condition is de-
picted. In the calculationswith the Engelund - Fredsoe transport formula
the roughness predictor of Engelund (1967) is applied. The figure shows

a considerable influence of the type of transport formula and illustrates
that it is necessary to chose one transport formula in order to determine
the influence of the transport layer thickness on the bed level. As
Egiazaroff's theory is expected to give the right trend in the selective
transport close to initiation of motion the theory will be applied and
for simplicity together with the Meyer - Peter and Muller transport formula.
In the figure the changes of bed composition is rather small and it is
necessary to increase the mean diameter or the gradation in order to

obtain significant changes.

The influence of relating the transport layer thickness to the transport
rate appears clearly from figure 4.3.2. In this case no transport is
released at the upstream boundary and the bed will erode until the trans-
port capacity is zero. When the transport rate is decreasing the trans-
port layer thickness calculated by the Suzuki method will decrease as
well. The composition of the transport layer will change faster, and the
transport capacity becomes zero for a remarkable higher bed levels compared
with the calculation with the thick transport layer. The influence of

the méan diameter is demonstrated, but the examples with dgp = 1.2 are
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not so typical because already in the initial condition there is no trans-

port of the coarsest fraction (d = 2.4 mm.).

Z

A

“x (km)

- Situation after 6 years -
(f: 20% of water depth

dgo = 0.6 mm 1 1.64 mm

1. Engelund - Fredsoé , 1 fraction
2. Engelund - Fredsoé , 3 fractions
3. Meyer - Peter and Muller , 3 fractions

. Meyer - Peter and Muller with Egiazaroff. th. , 3 fractions.

Figure 4.3.1. Influence f‘r‘om'tr'ansport formula.
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Meyer - Peter and Muller with Egiazaroffs theory

o—g = 1.64 mm 3 fractions

1s J= 20% of water depth, dg = 1.2 mm
2. be Suzuki dgp= 1.2 mm

3. d= 20% of water depth , dg = 0.9 mm
b, c{by .Suzuki s dgp= 0.9 mm

Figure 4.3.2. Influence from transport layer thickness and mean diameter.
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‘The trend outlined in figure 4.3.2 in the armoring of the bed does not
change if the number of fractions considered in the computation are
increased above the 3 fractions. In figure 4.3.3 the results from com-
putation carried out with 1,3 and 5 fractions are deﬁicted. This graph
demonstrates unmistakable the force of a model for non -uniform sediment
as the predicted bed level from the calculations are distinctly different.
Although all cases have the same gradation the computation with 5 fraction
carried out with a larger maximum and smaller minimum diameter, shows

a difference in calculated bed level which can probaly be attributed to
the following fact: the mobi}ity of the coarsest fraction is smaller and
the finest fraction is carried away faster, thus the armoring is occuring
at an earlier stage. The reason that 3 fractions are sufficient to give

a good qualitative picture is probably becausethe gradation is rather

small.

The influence of the gradation on the bed level is studied in figure 4.3.4.
It seems that the gradation has a considarable influence on the equili-
brium situation. In Lhe computation with q~g = 1.64 and(Fé = 1.75 the
same grain fractions are applied. The armoring occurs earlier for

(ﬁé = 1.75 Dbecause there is more fine material available for transport
and the grain size distribution changes faster. Some of the effects can
be attributed to the representation of the grain size distribution in
the calculations. In the example with large gradation Egiazaroff's theory
provided a hiding effect asthere was no transport of the finest fraction.
Although the hiding effect probably is present in nature, it does not
seem bhysical correct that there is no transport at all of the finest

fraction.

It was attempted to calculate a few examples concerning erosion protection
by means of sﬁpplying the coarse part of the initial transport at the
upstream boundary. In the examples it was expected that the erosion would
be followed by a slow propagating sedimentation front. However the model.
did not succeed to produce a stable solution for this case. The reason

is maybe that the sedimentated material in the first grid point is not
transported away because the critical shear stress increases, due to the

coarser and less graded transport layer. The bed level in this point will
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Figure 4.3.3. Infuence of the number of fractions
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therefore raise considerably until the transport finally starts which,
according to figure 2.%.6, happens very sudden. This shock leads to

secondary waves, which may have caused the instabilities.

4.3.2. Discussion

The calculated examples are not supposed to give a correct picture of

the armoring process taking place in nature, because a lot of very impor-
tant factors have been neglected. In this connection the stability of the
armor layer, due to the fluctuating discharge and the variation of the
roughness caused by the vanishing bed forms can be mentioned. Further more
-the calculations are carried out with a transport formula and a model for
the critical ;hear stress which are not verified at all for the cases they

have been applied to.

Observations from nature show that the armor layer has a thickness of a
few times the maximum grain size and allmost only consists of theis coar-
sest grain. This trend is not found in the computational results which

indicates that Egiazaroff's theory does not apply for cases with armo.ring.

However the examples demonstated that the armoring occurs faster, anq

thus less erosion, if the transport layer thickness can be varied (Suzuki),
for larger gradation, larger mean diameter and more fractions, a trend
which seems to be physical reasonable. The examples also showed the

necessity of using a model for non - uniform sediment for these cases.

Extensive measurements and experiments must be carried out and models for
the sediment transport, transport layer thickness and critical shear stress
must be developed for conditions very close to initiation of motion be-

fore reliable results concerning armoring can be obtained from a numerical

model.

The computations have demonstrated some short comings of the numerical
methods. The stability limit (figure 3.1.9) causeé ah inconvenient small
time step, in these processes which are taking place over long time
periods. Further more the secondary waves seem to have an unexpected large

influence on the stability in the calculations.
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5. Conclusions and suggestions for continuation

5.1 Conclusions

A flexible numerical model for morphological computations

in rivers with graded sediment is designed. After a numerical
analysis was carried out a predictor-corrector method was
chosen in this model; it is providing a good accuracy for

the hyperbolic problem with more celerities compared with

the expected accuracy of a traditional explicit finite

difference method.

However the numerical model does exhibit some shortcomings.
When there is computed with relativily small courant numbers
secondary waves becomes very annoying. Furthermore the
computational effort that has to be contributed is inconvé-
niently large when computations are carried out close to the
threshold of motion, when the difference in magnitude of the
characteristic directiorSis big. In this extreme case even

small secondary waves seem to cause instabilisties.

The mathematical model is not fully developed; espeéially

in case of erosion of relatively fine sediment, the model

cannot account for exchange of sediment between the transport
layer and the passive layer. Further there is still uncer-

tainty about the proper definition of some of the variables in the

model (e.g. transportlayerthichness).

The application of the model for non-uniform sediment is
especially justified close to the threshold of motion. No
significant difference in the predicted bed level appears, whether
the calculations are carried out with one or more fractions in
cases where the characteristic dirg¢ctions are of the same mag-

nitude, i.e. when the shear stresses are far from the critical

value.

The necessity of a model for non-uniform sediment is demonstrated
in examples where the upstream sediment supply is cut and the

bed level erodes until the transport capacity vanishes. The
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influence of applying different transport layer thichnesses
and grain size characteristics and the devélopment of an
amor layer is investigated and a physical reasonable trend
is obtained when the transport layer thickness is related

to the transport rate (Suzuki).

The model cannot be expected to give reliable results in
cases when very fast changes takes place because the develop-
ment of grain size characteristics will then depend on the

dimensions of the individual dunes.

The unreliability of the component parts of the model and the
shortcoming in the formulation of the model makes it necessary
to carry out an extensive sensitivity analysis when the model

is applied for practical problems.

Suggestions for continuation

The usefulness of the computational model can be improved by
applying a solution method which has better numerical characte-
ristics concerning stability and secondary waves. A pfedictor—
corrector method with other finite difference methods may fulfill
these demands. The alternative to apply an implicit scheme does
not seem so attractive because the required computation time

will be enormeous.

As the computational tool for the model for non-uniform sediment
is available it would be desirable to verify the model with

experiments and if necessary to modify the model.

The very pronounced effect the development of an amor layer has
on the bed level makes it desirable to develop reliable models
for the sediment transport rate and for the transport layer-

thickness close to the threshold of motion.

In order to avoid the elliptical character of the model and
the belonging unstable solutions attention should be paid to
the phenomenon of exchange of sediment between the transport-

layer and the underlying passive layer.
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Appendix A

Contents: A 1. Linearization of model for uniform
sediment.

A 2. Celerities in model for non - uniform
sediment in case of two fractions.

A 3. Modified Equations for the predictor -
corrector method.

A l4. Complex propagation factor, damping
factor and relative propagation
velocity for the predictor-—correcﬁor

- method.
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A 1. Linearisation of model for uniform sediment.

The model for uniform sediment is given by the following partial differen-

tial equations

g—€+f‘u%—g=0 , (A1.1)
UA_U+gb£+gs).§+g£:_=o‘ (A1.2)
a)’(”:o (A 1.3)
in. which £, = 9L S = £(U)
u = aU ’ o=

The variables is considered to consists of a varying part (2', a' and U')
and a constant part (Z,, a,, and U, ) . Applying this princip to the par-
tial differential equations and neglecting products term of second order
(a,>> a', etc.) eq. A 1.3 becomes

a
ua + a‘,Ul =0 or a =--—20' (A1.4)

Applying the princip to eq. A 1.2 leads to:

! ' I 142
U a 7 (u, +U")
Wil sl 2 ¢ gt
c%(a, +a')
' da' z! Uf*'2U.Ua a'
= & -_—) =~
Yo 6X+g x *&3x *& 2 (1 aa)
Ca,p
Ju' da' YA Uo ' a'
oV L°a 94 20 -U. —) =0 A1.5)
Uo X + g X + g X +8C)_a° (Uo"' oao) (

By combining with eq. A 1.4, multiplying with i aﬁd differentiating
L]

with respect to X the following expression occurs
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£, (U, g-i%') A’XU; + g jz)z(kﬂu 3g fy, c?aa, %Z— =0 (A1.6)
?q. A1.1 gives

fuo%(i =-‘>5—Ztl~ . (A1.7)
and differentiated with X

g, AU Yz (A1.8)

o ax” - éXét
Inserting eqs. A1.7Tand 8 ineqA 1.6 gives the linearised equation

3 , Oz A U’
- (G -gUO ) sXot T g fu, dxt Sgcza

]
_ééz_t - 0 (A1.9)

which can be written as

YA AR &
ot dx% T C oaX)t

=0 (A1.10)‘

U, fue
where D = =T (I, is the equilibrium bed slope)
o

and C =1,

A 2. Celerities in model for non - uniform sediment in case of two fractions

In case of two fractions and a constant specific discharge the model for

non - uniform sediment can be reduced to

Sl p —_ Z »
%T+CS -é-a—t‘—+ pllzogz+ P, %%:o (A2.1)
35, JP - ¥z S

—)T -5—)—1_:— + plz. ;c- - P, ’Sf =0 (A2.2)
S :f(U,p,....) (A2.3)
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S; = 6, (U, p, -0n) (A2.4)

$= (a,v) (A2.5)
L Q2 _

G +85; ° R (A2.6)

dal _ daU _

Sx = 3¢ © 0 (A2.7)

:Si can be eliminated from the model by subsituting A2.3 and 4 in res-

'pectivily A 2.1 and 2, which leads to

U oB (9P o oZ M
fluax * fip, x* 63t * Pz st *Hh =0 (A2.8)
3u )T L TH- I AN V. 3
fzu aX+ f}/pl 3% Cs 3t +p,_z° 3t P, £ = 0 (A2.9)
3fi 3 f
where I T £, b, =S_I;l‘— etc.

By applying eq. A 2.5 and that the specific discharge is constant, theé

time derivative of the transport layer thickness becomes

o
c

¥ . (§, -6,

3t ~ u a)

T (A2.10)

(U

38 ¥
30 and (‘5 ‘)—

where csu

Equation A2.10 inserted in eqs. A 2.8 and 9 forms, together with eq. A 2.6
and the total differential for the remaining dependent variable, a system
of linear equations in the six partial dericatives. In matrix form the

system yields (see eq.A2.11)

The characteristic directions are propagation velocities for infinitesimal

disturbances in the variables. Consequently the characteristic directions

~are the values of ¢ fdr' which the determinant of the matrix is vanishing.
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- a
b, O $ iy Pdy-2d,) | Pz 0
- a
P,, 0 -8 fi, -R Wy-2d) 1 | [dz79x 0
0 g 0 0 0 G dp, /3t R
) = (A2.11)
1 c 0 0 0 0 ap, /dx dz / dt
0 0o 1 c 0 0 U /9t dp, / dt
0 0o o0 0 1 ¢ oU / ox du / dt
in which c= &

This leads to a quadratic equation in ¢, because the celerities belonging
to the flow has a infinte speed
2

-c G he

vo {e@,-28)p (ri +f V-0, £ =B, £ ) -

P, P, p, 22z, Ip,

g (f;u+f;u)} - {g(flp flu-f!p fLu)} ol (A2.12)
(

The quadratic equation can be written in a simplified form by introducing

the following dimensionless’broperties

\1u' - —2u
i~ a
a2 P2z B TP, fip,
du
\%'*V&
Bz —
- P*

)55



\{/‘ f"pl - %f'Pl

ud(1-F%)

-

g p " f"pn ( géu 'éa)

D=-P
. 1
and recalling
-y - 88 _ 828 (pZ _
G=1U i (F 1)
The quadratic equation can now be written as
d* - (a+B+D)P +C=0 (h2.13)
A 3. Modified equations for the predictor - corrector methods
For the predictor - corrector method, with the Lax scheme (X=0) as predic-
tor and the Crank - Nicholson scheme as corrector, the difference equations
yield
7% _ 70 gh _ g 1
S R | ¥l Jj-1 _
p: A C A =0 (A3.1)
n+1 n n n
Z -7, ASIPRER A A
S M A /0 5 Tk Bl +(1_9)faﬂ__za-_1}=o
At 24x 24X
(A3.2)
where x denotes predicted value.
The predicted value can be found from eq. A 3.1
n ZrT+‘I_Zl’}1
7% = 70 o P i O |4 .
! 5 cat e (A3.3)

Applying eq. A 3.3 and a Taylor series the second term in eq. A 3.2 becomes

7% _o% n _,n LI S
S S TG el S TR PO Bl
240X © 2AX -

-2

(2AX)Z



_92 1, 229% -
6X 61.\x éx’: + .. =CAt (‘)x’~ + 3 e

+ es) (A 3.4)

The remaining differences in eq. A 3.2 is the same as for the Crank -
Nicholson scheme egs. 3.1.6The modified equation appears by summating

the Taylor series for the differences

C 3 axt g gy 22 1o )°z

> -
ét ax 2 At Qx" 6 At (G-U) éx° + ... =0

(A 3.5)

There is two possibilities for the predictor (upstream) - corrector (four
points) method, because the predicted values can be applied in two ways

in the four points scheme. The difference equations becomes

3, O z’?-z’f1
py —l—u Lol . (A 3.6)
At AX
2%1-2'.’1 ik z% - 2%
R B o j+ j b +17 %5 _
c: 3} o + = } + C {9 = + (1-06)
z'fﬂ-zrf
= 0 A 3.
—‘]——J-Ax (A3.7)
or Zn+1_ n Z*-Zn n
A Jj+1 i+1 J J __J__J_+1 _
c: (e e {e—l——l+(1-e> }= o

(A3.8)

It seems more for the hand laying to apply eq. A 3.8 as correcter, because
the calculation is then going in the direction of the characteristic, but

it can be shown that they give almost the same modified equation.

The predicted value is found from eq. A 3.6 and inserted in eq. A 3.8.
After multiplying with two the following differences appear

Zn+1 g0
i I - ¥ 1 3z 1,y
2t = ,t+%A_t atz'+6A/ibt3+.“



32 4 opxt 53%2 1 ax® 3*2Z
=¥ ar 9T -F At 0"——DX3+... (A3.9)
=z
: = - & blz 1 b}z
C_J_.lj___: C 1 — -— 2
3 = 3 (6 AX ‘)x"+ g AX 5x°+”.) (A3.10)
7 2D
P W 32 _ 2 2, 2 37
2C —~5 = 2C(ax Ax xL+3AX ax°+"') (A3.11)
n n n n n n n
.28, .+Z, %, =2 Z2,-2,
- 260¢C 2\;1 =2 . _yeoc ( JAXJ” - =L =2
X
¥z y*z
= = U00C (3ax — - IAax*=— 4+ ..) A3.12
wr ax* b 312

By summating the Taylor series for the differences the modified equation

appears
32 o9z, ax 3*z
TR TR A {(u<9-1)o~l-0‘}—x-1
1 Ax> 1 2 3%z
- € Gt (cr’-;eCf-m e E—— (A3.13)

If instead eq. A 3.7 is applied as corrector the modified equation becomes

PYA 3z _ , ax* L %z
o823 22 fuo-notoo) &2
1 2 3
- A’; (0"-0“)%)(—25+ (A3.14)

i.e. only differing on the coefficient for the third derivative.

The second derivative provides numerical diffusion, and it is seen that the

diffusion coefficien? becomes negative for
040« 561 (A 3.15)

which means that the scheme is unstable for thé&# value of the Courant

number.
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A 4. Complex propagation factor for the predictor - corrector method.

The difference schemes for the predictor - corrector method is given by

n n n
VA A ' =l
p d.c JZAX d=1 . g (Ab.1)
n+1 .n n n
Al VA2 A,
N B | g+ j-1 _oy —J*1 _j-1{
or =l w o {p-T N e ey ol g
(AL.2)

By isolating Zg in eq. A 4.1 and divide by Zg the complex propagation
factor for the first iteration (prediction) appears

n n

7% 2 -2

p': Z‘l = 1 —O’“""J——‘]— (A4.3)
3 n
J ZZj

Recalling the presupposed form of the numerical solution

n

zj=p“ ex?ijf_ (A4.4)
which inserted in eq. A 4.3 gives
L _ ,-<%

P,_ 1_O—.L__é_

- 2' 1 =10 sin} C(Ak.5)

Applying the same procedure the complex propagation factor for the second

iteration (correction) can be found
fi= 1 -o*fep,i sir;f + (1-9) i sing} (A4.6)
=1 -Q'O'"Zsin"z - i0 sinf¥
The following expression for the complex propagation factor may apply

P 1+ ¥ (-1let oA sints (A14.7)
ke 21

where L is the number of iterations.
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The applicability of eq. A 4.7 can be demonstrated. As it apply for 1 and

2 iterations the requirement is that it apply for L+ 1 iterations aswell:

1
-

-a {6, i sinf + (1-0) i sin¥

PL+1 B

3 — ,
= 1 - i/—-z {—c')'(e'[ /O'/sin'{z}i(re sin +Q(1-0) i sin'z

Al

n
—
+

(-1)Tosin zf_ [ - 1)161"0'@111%8 ]
by

L+1
14 (-1)191'10“4;1#5 (A4.8)
A=/

The damping factor per wave periode can be found for Z <<—2E_ by applying

a Taylor series to the absolute value of the complex propagation factor

/A
e o ottt R

I
~(1+024%)0¢ =1+ 770§ (A4.9)
For L= 2 the damping factor becomes as for the Crank - Nicholson scheme
17
d, = J&,nt = [(1 -0 C)"zsin"f)'z +0"zsin"Zj_0“E
¥ 270t
. [om
~[1-(20- 1)0’2(1—3 ) ] &1 - (20 - 1)770E (A 4.10)
The relative propagation velocity for 1 iteration if for f << !ZT:

c_ = -(0‘1)"' Arctan (-0sin{)

i

5

~ -(O"[)"[—O'('Z- g’-&...) + g (*{-l-+ ..)3]

3 6
2,2
1-—2—(1+2a4) (A4.11)
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For two iterations the relative propagation factor yields

-0 sin
1-60 %in*Y

5T @ q)~! Arctan (

3
'O_(Z‘l‘”') >
- -1 - oy, e
Bt = SR [1_ ( +..) MR (/’W‘f‘*'“ f]

~ /-—6/-1’“[“0‘2(29'/)] (A4.12)

For three and more iterations the relative propagation factor becomes,

as for the Crank - Nicjolson scheme

-Usinf (1-0%0*sin*f)
1- @0 *sin*§

c =- () Arctan

(”)-:[-cr( I - %)(1 ~0a*th
. 1- 607"

o1 1-90‘2 ]
3 1-9(7‘

2
-%f[1+2<f‘(1-39+39‘)] (A4.13)

R
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Model for non-uniform sediment
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/62

Appendix B



1. General remarks

The programme, which is in the language FORTRAN, is developed by Kim Wium
Olesen at The Delft University of Technology at the department for Fluid
Mechanics in 1980 - 1981.

2. The structure of the programme

The programme consists of a main programme (MAIN) and ten subroutines.
MAIN is primarily reading the input data, controling the flow in the cal-

culation and calling subroutines.

3. The function of the programme

The programme is used to simulate the time
dependent morphological changes in alluvial stream . With- " non-uniform
sediment from knowledge about the initial situation and the variation of

the boundery conditions.

The calculation is based on the following input data:
a. Model parameters
b. Parameters describing the initial condition (bed level, depth
averaged composition in transport layer and in the z, -layer and
the Chezy - roughness as a function of the space coordinate.
c. Parameters describing the boundary conditions ( down - stream
water level, upstream sand input per fraction or sand 1ift velo-

city and the specific discharge) as a function of time.

The programme is integrating step -wise forward in time with the predic-
tor - corrector method for a finitedifference scheme. For each time step
the programme is calculating the ‘

a. Flow velocity

b. Sediment transport for each fraction

c. The transport layer thickness

d. New bed level

e. New composition of bed

/63



The major part of the input data is written out in the head of the output
and in the list of the initial condition (T =0). This list must always be

checked because the programme does not control the input data.

4. Input

The programme and the input data have to be supplied with suitable job

control cards depending on the system the programme is ran at.

The input data have to start with a job control card followed by
a. three cards with model parameters
b. cards with parameters describing the initial situation
c. cards for the boundary conditions

and at last another job control card.

Before calculation can be performed the dimension statement in MAIN

(1 90 - 120) has to be corrected: | |
substituted * with the number of fractions (see documentation MAIN). Fur-
ther the wished transport formula (SFUN ), transport layer thickness
(DELFUN) and the back - water calculation with or without side walls cor-
rection (BAWA) must be checked and if necessary changed into the wanted

subroutine.

a. Model Parameters

Card 1: DELTAX, DELTAT, JDIM, TETA

DELTAX: (real) space step (m)
The choice of a space step depends on which wavelengths
‘that' are important for the purpose of the calculation.
If the sand 1ift is used as boundary condition then see
coments for Card 18. Attension to the fact that the
calculation time is increasing proportional to (DELTAX)'Z.
DELTAT: (real) time step (s)
No stringent criterion for chosing the proper time step

can be given. Experience with the model is of large use.
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The following procedure can be applied for a first guess
for the time step.

Estimate the maximum total transport Spzx and calculate

c=5 Dmax
Gmax
and Courant number equal unity gives

DELTAT = DELTAT / C

('celerity' for Engeland - Hansen formula)

Here after a small part of the total region (saving calcu-
lation time)in whichlarge changes in bed level or com-
position is expected, must be tested with time steps in
the neighbourhood of the first guess, until the largest
time step giving sufficient accuracy is found.
JDIM: (integer) The number of grid points (=)
JDIM =L / DELTAX + 1, where L is the length of the region.
TETA: (real) Weight (=)
The weight is influencing the numerical diffusion in
the model, thus also the accuracy. TETA = 0.5 gives the
most accurate result, but there will be much secondary
waves in the solution. TETA =0.70 is in many cases a

good choice. TETA > 0.50 for stability.

Card 2: IT 1, IT2

IT 1: (integer) number of iterations in back - water calcu-
lation (-).
IT 1 equal an odd number gives the best accuracy. In
case of relative small flow velocity gradients IT 1= 1
gives a sufficient good accuracy. IT 1=3 gives an ex-
cellent result.

IT 2: (integer) number of predictor - corrector iterations (-=).

. IT2=2 is minimum for stability, but for more than one

fraction IT2=3 (or more) is recommended.

Card 3: TMAX, EPS 1, EPS 2, TOP, FAC

TMAX: (real) maximum time (s).

If last output is required at a certain time T then

-—
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EPS 1:

EPS 2:

TOP:

FAC:

TMAX = T - DELTAT.

(real) stop criterion for bed level (m).

EPS 1 is the minimum change in bed level between two
time steps for continuing calculation. See FAC.

(real) stop criterion for composition (-).

EPS2 is the minimum change in a probability of a frac-
tion in the transport layer. See FAC.

(real) time between output (s).

Output costs a lot in calculation time.

(real) factor for calling subroutine BIG (-).

If calculation have to be performed until equilibrium
is reached, the subroutine BIG (see documentation) is
called after time = FAC - TMAX. If FAC > 1 BIG will not
be call.

b. Initial condition

Card 5a:

Card 5b:

Card 5x:

Card 6:

IDIM:

D(1)

D(2)

D(I)

D(i):

(integer) number of fractions I(-).

(real) characteristic grain diameter of fraction i (m).

x1, x2

x 1, x2: (real) break points (m).

If x1 and x2 are equal zero the probability of each
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fraction, both in the transport layer and in the 2z, -
layer and the Chezy - roughness is constant all over the
region and the bed level has a constant slope. If x 1

or x2 is not equal zero the composition, roughness and
"bed slope is varying over the region and more input data

is required.

IF x1=0 ANO x2=0
Card Ta: p1
Card Tb: p2
Card Tx: pI
pi: (real) probability of fraction i all over in the trans-

port layer (-).
Card 8a: plzo
Card 8x: pIzo

pizo: (real) depth averaged probability of fraction i in the

zo -layer (-).

Card 9: C
C: (real) the Ch&zy - coefficient (m32/s).

Card 10: SLOPE, YO

SLOPE: (real) bed slope (-).

/67



YO: (real) downstream bed level (m).

Note: the maximum bed level must not exced 100m with-

out changing in format statement 130 in subrou-

tine WRITE.

IF x14 0 or x24 0

The variation in the initial situation is calculated in the subroutine
BED. In the present version the variation is in linear sSteps and x 1 and

x 2 are break points. If x1=0 or x2=1L respectivily 1 and &3 can be

chosen arbitrarily. See figure.

or c¢

ﬂ\z, pi’ pj_z

Y

0 XI X2 L

where &, > 0, &,< 0 and X, >0

Card Ta: Ky, O(z/, Ky, p /;jo,
Card Tb: 0612_) onz)OL;M) ”/o.z_

Card Tx : X,z J OC)_Z jOCJ]:jfz/OJ

& %o o;, /%0,': (real) parameters for calculating the probability of

fraction i in the transport layer as a function of the

space coordinate.
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§ 0 / { lo} w23
s = amnt > X4 = A
Note ‘/?,{' - 74(_ f’“/ Y

Card 8a: oL, , o, y Xy, ryo,

Card 8x: d,z/ OLZ[ ) OLan /701

O(,() o(n-)o(bl-)q/o,(r-eal) parameters for calculating the probability of

fraction i in the z -layer.

Card 9: ey, on)oLJ)fyo

au az,“gj’y": (real) parameters for the éhezy coefficient.

Card 10: OC,)OL,_jO(,ijyo

o(’)al)o(a//yp: (real) parameters for the bed level. Note: the maximum
bed level must not exced 100m without changing in formal

statement 130 in subroutine. WRITE
Card 11: DELACC
DELACC: (real) thickness of coarse layer (m).
DELACCfO only in case of erosion.

If no coasse layer DELACC = 0, and the cards 12a - 12 x

must be canceled.

IF DELACC ¥ O

Card 12a: DELTAP (1)

Card 12b: DELTAP (2)
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‘Card 12x: DELTAP (I)

DELTAP (i): (real) probability in coarse layer (-).
The composition in the coarse layer is given by

‘ . s oL
Pi, + DELTAP (i). Note: éaDELTAp (i) = 0O
e

Card 13: ITYPEH

ITYPEH: (integer) parameter chosing the type of variation of
the downstream water level. With present version of

subroutine BOUND.

=1 constant
= 2 sinusiodal
= 3 linear stebs
IF ITYPEH = 1
Card 14: H
H : (real) time independent downstream water level (m).
IF ITYPEH 1
Card 14: HPARM (1), HPARM (2),.eeeeee....HPARM (6)

HPARM: (real array, dimension 6) parameters for calculating
the time dependent value of the down stream water level.

See documentation for subroutine BOUND.

Card 15: ITYPEQ

ITYPEQ: (integer) Specific discharge €lse as for I TYPEH

/70



IF ITYPEQ = 1

Card 16: Q

Q: (real) time independent specific discharge (m%/s).

IF ITYPEQ = 1

Card 16: QPARM (1), QPARM (2),.ccvecnnn.n. QPARM (I)

QPARM: (real array, dimension 6) see HPARM.

Card 17: ITYPES

ITYPES: (integer) Parameters chosing the type of variation of
the sand input per fraction at the upstream boundary
1 constant
2 sinusiodal
=3 linear steps
4  sand lift.

IF ITYPES = 1

Card 18: B0 141}, SOV L2Y eanvnnuns SO 1(1)

SO 1: (real array, dimension IDIM). Array containing the time
| independent sand input of each fraction including popes

at upstream boundary (mi/s).

IF ITYPES = 2 OR__ITYPES = 3

Card 18a: SPARM (1,1), SPARM (1,2)eeevennnenn SPARM (1,6)

Card 18b: SPARM (2,1), SPARM (2,2)uureennn... SPARM (2,6)
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Card 18c: SPARM (I,1), SPARM (I1,2)¢¢ceeesee..SPARM (I,6)
SPARM: (real -2 - array, dimension IDIM, 6) SPARM (i,1).....
SPARM (i,6) is the parameters for calculating the time
dependent variation of sand input of fraction i at up-

stream boundary. See subroutine BOUND.

IF ITYPE = 4

Card 18: TEMP (1), TEMP (2).....TEMP (6), XLIFT

TEMP: (real array, dimension 6) parameters for calculating
the time dependent sand 1ift velocity. The variation is

of the type 3 =linear steps (line 1820 in MAIN).

XLIFT: (real) The length of the sand 1ift (m). The space step
must be chosen so the sand lift is ending right in be-

tween to grid points, i.e. XLIFT / DELTAX = 11, 2% etc.

5. Output

In the head of the output the name of the applied transport formula and
transport layer thickness formula followed by the model parameters, the
grain diameters, the thickness of the coasse layer and eventually 'DEL-
TAP' are printed. Last in the head the type of and the parameters for the
variation of the boundary conditions are written out. This first part of

the output is performed by subroutine HEAD.

Her after a.list and a plot of the calculated values at time = 0, 1 - TOP,
2+ TOP........TMAX + DELTAT follows. These outputs start with the time
and the present boundary conditions. Next a table is printed: in first
column the space coordinate (x) followed by the z, -level (zo), the trans-
port layer thickness (DEL), bed level (z), water depth (A), flow velocity
(U) and transport per fraction included pore volume (Si). In table two

the space coordinate (x), the arithmical mean grain diameter, the proba-
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bility of the fractions in the transport layer (Pi) and in the z, - layer
(pzoi) is written out.

The tables are followed by two over view plots with at the left side of

the plots a list of the space coordinates. The first piot shows from right
to left the water level (H), the bed level (z), the z, - level (D) and if
there is a coasse layer an indication of the bottom of the coarse layer
(o). The plot is provided with a specification of the scale of the plot.
The second plot outliner the composition of the transport layer ( = 1,2..)
indicates the cumultative probability of fraction ¢ in the transport z,-

layer. The scale is one + equal 1% (see example on output)
The plots are only suitable for a surveyw because they can only solute
the half of the scale, i.e. an accuracy on a half procent in the second

plot.

The output at the different time levels are performed by subroutine
WRITE.
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Example on output
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Appendix C

Documentation and list of programme for non - uniform

sediment.

Contents:

MAIN
WRITE
HEAD
INTEG
SFUN
DELFUN
BOUND
BED
BIG
BAWA
SUM
PRCO
PSTAR
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1.,Purpose

Calculate morphological changes in alluvial streams.

2. Usage

See Users Guide.

3. Description of parameters

(only the most important parameters not appearing in the Users Guide

will be meﬁtioned.)

P1, P2 (real-2-array)

PZ01, PZ02 (real-2-array)

S1, S2 (real-2-array).
SSUM1, SSUM2 (real array)
Z1, Z2 (real array)

DELTA 1, DELTA 2 (real array):

U (real array)

Z00 (real array)

S01, S02 (real array)
SOSUM1, SOSUM2 (real)

D (real array)
C (real érray)
IN, JN (alfa-array)

T (real)
TT (real)
TC (real)

.
.

composition of transport layer at respec-
tivily old and new time level. First index
is the number of fractions, second is the
space coordinate.

composition of 2z, ~layer at old and new
time level.

transport per fraction.

sum of ﬁransport per fraction.

bed level.

transport layer thickness.

flow velocity

position of coarse layer.

boundary condition, transport per fraction.
sum of transport per fraction at upstream
boundary.

grain diameters.

Chézy roughness coefficients.

name of respectivily transport formula
and transport layer - thickness formula.
time.

print time.

time plus delta t.
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4, Procedure required

None.

Method

5.

See flow charts, Users Guide and documentation for subroutines.

Remark

6.

*¥ in DIMENSION statement 190 - 120 is the number of fractions, which

must be substituteded.
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Read input data 1 150-1450
and save initial
condition in Z1,
P1, PZ01 and C

Calculate boundary 1 1530-1780
conditions f(TIME)

(1])

Calculate new bed 1 1800-2190
level and composition
and if T=0 make output

1 2220 2270
Output ves

AN

Make output

72=71 1 2360-2440
S;:;\\\no PZ02=PZ01
? P2=P]
///// T=T+DELTAT

Make output

( STOP )

Flow chart MAIN programme

/30



21,P1,PZ01

Back-water
u(z1)

- Transport
s1(u,Pl)
Roughness
BU;..)

Transport layer
DELTAl ( S1,U,C)

Predict new bed level
z2(z1, S1, S1)

~

Back-water

U(z2)
no
Transport Transport
52(U,P1) $2(U,P2)
Roughness Roughness
CllUyes) C{U;..)

Correct new bed level
22(Z1, S1, S2)

Transport layer
DELTA2( S2,U,C)

New composition

P2(P1,S1,S2,DELTAl ,DELTA2)
PZ02 (P1,P2,PZ01)

{ZZ,PZ,PZOZ;
©

Flow chart:calculation of new bed level and composition
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WRITE ﬂ810225.03)

1. Purpose

Making output of the time dependent variables.
2. Usage
Call WRITE (S22, p2, PZ02, Z2, DELTA?2, ZOO, U, D, SO2, JDIM, IDIM,

C,pELACC ., T, DELTAX, Q, H, V2, XLIFT).

3. Description of parameter

'all parameters unchanged on exit'.

4. Procedures required

Subrouline INTEG

5. Method

See subroutine and output description.
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HEAD (801030.01)-

———— —— — — — — — — — — — — — — — — — — — — — —— — — — o—— — — — — — — — —

1. Purpose
Making the head of the output.

2. Usage .
Call HEAD (IN, JN, DELTAT, DELTAX, JDIM, IDIM, TETA, IT1, IT2,
TMAX, EPS1, EPS2, TOP, ITYPEH, H, HPARM, ITYPEQ, Q,
QPARM, ITYPE S, SO1, SPARM, TEMP, XLIFT, DELACC,
DELTAP, FAC, D). '

3. Description of parameters

'all parameters unchanged on exit'.

4, Procedure required

none

5. Method

See subroutine and output description.
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INTEG (801111.01)

1. Purpose

Rounding a real number up or down and put it equal one if the value

is larger than 120 and smaller than one.

2. Usage
Call INTEG (A,L).

3. Description of parameters
A (real) 'unchanged on exit'

L (integer) roundet value of A 'changed on exit'.

4. Procedure required

none

5. Method

See comments.

888%8 c SUBROUTINE INTEG(AsL):

00030 C SUEROUTINE CUTTING OFF AND ROUNDING UF OR DOWN» AND
888%8 E CHECKNING FOR OVER AND UNDERFLOW IN LINE
00060 C X¥801111.01.,KWOxx

00070 C

00080 C1 CUT OFF

00090 L=A

00100 C1

00110 C2 RESIDUAL > 0.5

00120 =A-

00130 IF (C +GE. 0.5) L=L+1

00140 C2

00150 C3 STILL ROOM IN LINE )

00140 IF ((L +GT, .120) JOR. (L +LT. 1)) L=1
00170 C3

00180 RETURN

00190 END
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1. Purpose

Calculating the transport and correcting the roughness

2. Usage
Call SFUN (S1, U, D, P1, IN, JDIM, IDIM, Q, C)
Call SFUN (S2, U, D, P2, IN, JDIM, IDIM, Q, C)

3. Description of parameters
S (real-2-array) g transpbrt per fraction
'‘changed on exit'
U (real-array) : flow velocity
'unchanged on exit!'
D (real-array) : grain diameters
'unchanged on exit'

P (real-2-array)

composition of transport layer

'unchanged on exit!'

..

IN (alfa-array) name of transport formula

. 'changed on exit'

JDIM (integer) : number of space-step. Dimension of S, P,
U, and C
'unchanged on exit'

IDIM (integer)

..

number of fractions. Dimension of S, P
and D
'unchanged on exit'
Q (real) : specific discharge
'unchanged on exit!
C (real-érray) : Chézy coefficient

'changed on exit!

4, Procedures required

none
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Method

5.

Roughness calculated with the Engeland - Hansen method. Transport

calculated with the Meyer - Peter and Miuller formula.
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DELFUN (801111.01)

1. Purpose
Calculating the transport layer thickness as a function of the total

transport, roughness coefficient, flow velocity and depth.

2. Usage _
Call DELFUN (SSUM1, DELTA1, JN, Q, JDIM; C) or
Call DELFUN (SSuUM2, DELTA2, JN, Q, JDIM, C)

3. Description of parameters.
S (real array) ¢ total transport
'‘unchanged on exict!'

U (real array)

flow velocity
'unchanged on exit!'
DELTA (real array)

..

transport layer thickness
'changed on exit'

C (real array) : Chézy roughness coefficient
'unchanged on exit!'

JN (alfa array)

name of transport layer thickness formula
'changed on exict!
Q (real) . _ : specific discharge
- 'unchanged on exit!
JDIM (real)

‘number of space step, dimension of S, U,
DELTA, and C '

'unchanged on exict!

4. Procedure required

none

5. Method

Here transport layer thickness equal 25% of water depth.
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BOUND (801029.01)

1. Purpose
Calculating the boundary conditions (Sj, H, Q, V) as a function of

time. Here linear step and sinusiodal.

2. Usage
Only use if ITYPEy =1
Call BOUND (ITYPEy, yPARM, T, y)

where y is S;, H, Q or V.

3. Description of parameters
ITYPE (integer) : Choice of type of variation
'unchanged exict'
PARM (real array) : 6 parameters to describe the time
dependent variation

'unchanged on exict!'

T (real) : time
'unchanged on exict'
y (real) ¢ Calculated value for the boundary

condition

‘changed on exict'

4, Procedure required

none

5. Method

See comments in subroutine.

6. Remark

Generaly six variables to describe the time dependent variation of the

boundary condition. Subroutine head is prepared for these two types

of variation.
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B ED (801028.01)
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1. Purpose
Calculating the initial conditions: bed level, Chézy-coefficients and

composition. Here version 1 - linear steps.

2. Usage
Only use if x1 4+ 0 and x2 % O
Call BED (ALFA1, ALFA2, ALFA3. X1, X2, Z1, JDIM, DELTAX, YO)

3. Description of parameters
ALFA1, ALFA2, ALFA3 (real) : Slopes ALFA1 for X < X1
ALFA2 for X1 <« X < X2
ALFA3 for X>X2
'unchanged on exict'
X1, X2 (real)

..

Break points

'unchanged on exict!'

Z (real array) ' : Bed level, Chézy coefficients or probabi-
lity of a fraction in the transport layer
or in the z,-layer.

'changed on exict!'

Dimension of Z-array

..

JDIM (integer)
o 'unchanged on exict'
YO (real) : Value for Z (JDIM)

‘unchanged on exict!

4. Procedure required

none

5. Method

See coments in subroutine.
6. Remark

Generaly four parameters (ALFA1, ALFA2, ALFA3, yo) to calculate the

initial conditions.-
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BIG (801028.01)
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1. Purpose

Stop calculation if equilibrium is reached

2. Usage
Called after a fraction of the maximum time TMAX-FAC
Call BIG (P1, P2, Z1, Z2, JDIM, IDIM, EPS1, EPS2. STOP)

3. Description of parameters
P1, P2 (real-2-array) : Composition of transport layer at res-
pectivily old and new time level
'unchanged on exit!
21, Z2 (real-2-array) : bed level at old and new time level
'unchanged on exit!

JDIM (integer) dimension of Z1, Z2, P1 and P2

'unchanged on exit'

IDIM (integer) : : dimension of P1 and P2
'unchanged on exit!'

EPS1, EPS2 (real) : stop criterions. Ma change in respecti-
vely bed level and bed composition

'unchanged on exit'

STOP (real) is taking the value one if equilibrium
is reached.

'changed on exict!'

4., Procedure required

none

5. Method
If the largest change in bedlevel is less than EPS1 the largest change

in the bed composition is found and if that is less than EPS2 then

STOP = 0. Otherwise STOP = 1.
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6. Remark

If there is little damping the routine has to be used with caution

because of the secondary waves.
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BAWA (801028.03) back water calculation.

1. Purpose
Calculating the depth averaged flow velocity for given bed level,

Chézy roughness, discharge and down stream water level.

2. Usage
Call BAWA (z1, U, JDIM, Q, C, H, DELTAX, IT1)
Call BAWA (z2, U, JDIM, Q, C, H, DELTAX, IT2)

3. Description of parameters
Z (real array) : bed level
'unchanged on exict!'

U (real array)

flow velocity

'unchanged on exict'

JDIM (integer) : dimension of Z, U and C
'unchanged on exict'

Q (real) » : specific discharge

'unchanged on exict!

C (real array) Chézy roughness coefficient for the bed

'changed on exict'
H (integer) : Down stream water level

'unchanged on exict!'
DELTAX (real)

Space step
'unchanged on exict'
IT1 (integer) : number of iterations

'unchanged on exict'

4. Procedure required

none

5. Method
The flow velocity is calculated with an iterative finite difference
. method. In the first iteration the flow velocity is treated explicit

and implicit in the following iterations. Side wal! correction is per-

formed with
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the Finstein method.

Remark

6.

The width (B), the Nekusudses sand roughness (AKW) and the cinematic

viscosity (VISC) must be changed into the present values.
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1. Purpose
Summa ting the transport per fraction to get the total transport for

prediction of new bed level.

2. Usage
Call SuUM (S1, SSuM, JDIM, IDIM)
Call SUM (S2, SSUM, JDIM, IDIM)

3. Description of parameters
S (real-2-array) : transport per fraction

'unchanged on exict'

SSUM (real - array)

total transport
'changed on exict!

JDIM (integer) dimension of S and SSUM

'unchanged on exict'

IDIM (integer) dimension of S

'unchanged on exict'

4. Procedure required

none

5. Method

Simple summation

888;8 c SUBROUTINE SUM(SsSSUM»JDIM,IDIN)
888%8 g SURROUTINE CALCULATING THE TOTAL TRANSFORT
00050 C X80 . K
88040 € I eron surnmy

(IDIMsJD
00088 € IM»JDIM)y SSUMCJDINM)
00090 DO 200 Ii1=1,JDIM
00100 SSUM(I1)=0.,0
0118 86100 123 non

1)=8 2 1)+SS

00130 100 CONTINUE ! bt
00140 200 CONTINUE
00150 RETURN
00160 _ END
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PRCO (801028.02)_. Predictor - Corrector - iteration.

—— — — — — — — — — f—— — — — — f— t— —— — — — — — — — — —— —— t— — — — — — — — —

1. Purpose
Calculating the bed level at new time level for given transport and

bed level at old time level and predicted transport at new time level.

2. Usage
Predictor:
Call PRCO (ssSuM1, SsuM1, z1, Z2, JDIM, DELTAX, DELTAT, TETA, SOSUM1,
sosuMi, V1, Vi1, XLIFT)
Corrector:
Call PRCO (SsuM1, SsuMm2, Z1, Z2, JDIM, DELTAX, DELTAT, TETA, SOSUM1,
sSosumM2, V1, V2, XLIFT)

3. Description of parameters

SSUM1 (real array)

total transport at old time level
_ ‘unchanged on exict!'.
SSUM2 (real array)

predicted total transport at new time
level
'unchanged on exict'

Z1 (real array)

bed level at old time level
'unchanged on exict'

72 (real array) : corrected bed level at new time level
'changed onexict'

JDIM (integer) dimension of SSUM1, SSUM2, Z1 and Z2

'unchanged on exict!
DELTAX (real) : space step
'unchanged on exict'
DELTAT (real) . : time step
'unchanged on exict'
weight, TETA at new time level, (1 -TETA)
at old

TETA (real)

'unchanged on exict'

SOSUM1, SOSUM2 (real) total transport at upstream boundary at

respectitily old and new time level
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V1, V2 (real)

XLIFT (real)

h. Procedure required

none

5. Method

'unchanged on exict!
source / sink term in continuity equation
(sand 1ift velocity)
‘unchanged on exict'
length of sand 1lift

'unchanged on exict!

The new bed level is calculated with predictor - corrector method

'inside' for the Crank - Nicholson scheme and at the down stream

boundary with the four point scheme.

6. Remark

If the bed level and composition is fixed at the upstream boundary

(boundary condition) lines 120-140 have to be changed into

z2 (1) = z21(1).

0 SUBROUTINE FRCO(SSUM1ySSUN2yZ1422, D TAX)DELTAT»TETA
§§8§§ . : 2odlA1SERNGHE 20 DRI PES
gocio ¢ SUBROUTINE MAKING THE FREDICTOR CORRECTOR ITERATION {
J
00080 € ¥¥B801028,02,KWOX¥ ,
90080 - DIMENSION SSUM1(JDIM), SSUM2CJDIM)y Z1CJDIM)» Z2CJDIM)
00100 . W=(XLIFT-2¥DELTAX) /(2XDELTAX)
00110 C1 AT THE UFSTREAMEO CRANK-NICHOLSON SKEME
00120 Z2¢1)=21(1)~DELT ELTAX)*((1-TETA)X(SSUN1(2)-SOSUK1)
00130 FTETAX(SSU OSUM2))+((1-TETAIXVI+TETAXV2)
00140 % KDELTATXW
00150 W=1
00140 C1
00170 C2 *INSIDE®' CRANK-NICHOLSON SKEME
00180 12=J0TN-1
00190 D0 100 I1=2,I2
00200 CO SAND LIFT
00310 IF ((V1 .EQ +AND, (V2 (EQ, 0)) GO TO S50.
00520 Y=(I1-1)%0E
00230 IF (Y JLE. T) GO TO 10
00240 W=0
00550 10 IF (Y JNE. T) 60 TO SO
00240 W=0.5
00270 CO
00280 ~ S0 Z2(I1)=21( AT/ (2XDELTAX) %
00290 % (1 SSUMI(IL1+1)-SSUML(IL1-1))+
00300 T TET (I1+1)-8SSUM2(I1-1)))
00310 & +C¢C VI4TETAXVU2) KDELTATHW
00320 100 CONTINUE
00330 c2
00340 C3 AT THE DOWNST NDARY 4-POINTS SKEME
00350 Z2¢JDIM)I=Z1(J JOTM=1)4Z1(JDIM-1)-DELTATX2/DELTAXK
00350 8 (1~ SUM1 (JITH)-SSUMLCJDIN-1))+
00270 H TETA JOIM)=SSUM2CJDIN-1)))
00380 C3
00390 RETURN
00400 end
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PSTAR (801026.01)

Purpose

Calculating the new composition of the transport layer and the Zy-layer
for given old and new: transport per fraction, bed level and transport
layer thickness and for given old composition of the transport layer

and the Zy-layer.

Usage

Call PSTAR (s1, s2, P1, P2, PzO1, Pz02, Z1, Z2, DELTA1, DELTA2, SO1,
so02, z00, DELACC, JDIM, IDIM, TETA, DELTAX, DELTAT, DELTAP,
V1, V2, XLIFT)

Description of parameters
S1, S2 (real-2-array) : transport per fraction at respectively
old and new level
'unchanged on exict!'
P1 (real-2-array) : Composition of transport layer at old
' time levél
'unchanged on exict!'

P2 (real-2-array) Composition of transport layer at new

.

time level
'changed on exict'

PZ01 (real-2-array) : Composition of Zg-layer at old time level
'unchanged on exict'

PZ02 (real-2-array)

Composition of Zp-layer at new time level
‘changed on exict!'
Z1, 22 (real array) : Bed level at respecti&ely old and new
time level
'unchanged on exict
DELTA1, DELTA2 (real array): Transport layer thickness at old and new
time level
'unchanged on exict!'.
S01, S02 (real array) ¢ Sand indput per fraction at upstream

boundary

9/



'unchanged on exict'

700 (real array) Position of coarse layer
‘unchanged on exict!'

DELACC (real)

Initial thickness of coarse layer

'unchanged on exict!'

Dimension of 21, Z2, DELTA1, DELTA2, Z0O,
S1, S2, P1. P2, PZ01 and PZO2

JDIM (integer)

'unchanged on exict'
IDIM (integer) : Dimension of S01, SO02, DELTAP, S1, S2, P1,
' P2, PZO1 and PZO2.
'unchanged on exict'

TETA (real) Weight

..

'unchanged on exict!'

DELTAX (real) : Space step
'unchanged on exict'

DELTAT (real) : Time step
'unchanged on exict!'

DELTAP (real array) : Composition in coarse layer
Poop = DELTAP (%) + PZO1 (%)

'unchanged on exict!'
V1, V2 (real)

Sand 1ift velocity at respectively old and
new time level

'unchanged on exict'

XLIFT (real) ) : Length of sand 1lift

'unchanged on exict!'

Procedure

none

Method
The new composition is calculated with the predictor-corrector (Crank-

Nicholson) method applied on the continuity equation per fraction. See
flow chart.

Remark

If the bed level and composition is fixed at the opstream boundary

(boundary condition) lines 180-190 have to be changed into B = 0.
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Appendix D

List and description of rumerical model for uniform sediment.

The numerical model is desinged with the following simplifications:
- The roughness is constant in space and time

- The boundary conditions are not varying in time.

The programme consists of a MAIN programme and four subroutines. In MAIN
the input parameters are read, the transport is calculated with the Enge-
lund - Hansen formula, the subroutinés are called and the flow in the calcu-

lation is controlled.

In the subroutine STBAWA the back - water calculation is carried out and
the predictor - corrector iterations in STPRCO. In STHEAD the head of the
output is made and in STWRITE the outputs at the different time level are

produced.

The output starts with a head were the ngmerical parameters, the grain
diameter, Chézy - coefficient and the initial and boundary conditions are
listed. The output at the different time levels starts with the time in
seconds followed by a list with from left to right: space coordinate (X),
bed level (Z), water depth (A), flow velocity (U), the Courant number
(COU) and the sédiment transport included pore volume (S). In a overview
plot an indication of the bed level "Z" and the water level "H" are
plotted.

The flow velocity is not recalculated after last corrections of the bed
level, so the flow vélocity, water depth and water level in the output

belongs to the previous iteration step.
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Appendix E

Literature Survey

A literature survey is carried out in order to get some insight into the
already performed numerical modelling for morphological processes in rivers,
and maybe obtain some inspiration for a choice of a numerical method. A

model for uniform and some fcr non -uniform sediment will be treated.

E 1. Chollet and Cunge (1980)

Chollet and Cunge developed a one dimensional numerical model for uniform
sediment with a variable roughness. Roughness predictors in morphological
models are often of the simple Manning - Strickler type (Manning's n a
function of d50), but here the Engelund and Einstein roughness predictors
are applied after a few modifications are carried out. Also the sediment

transport is calculated by the formulas of Engelund and Einstein.

The computation involves in this case not only solution of the back - water
curve, continuity equation for sediment and the transport calculation, but

also a calculation of the roughness
F(R, U, a) = 0 ' (E1.1)

There is, opposite to most other numerical models for river morphology,
applied an implicit finite difference method: the four point scheme The
derivatives in the differential equations are approximated as outlined in

chapter 3 and the functions (for instance E 1.1) are discretized like

n+1 n+1 n n
.+1-+F. F.+1+-F.
gt J
F(x,t)e © + (1=9) =l (8 9.2)
2 o .

in which the notation from chapter 3 is applied.

The transport formulas and roughness predictors are linearized with respect

to the'bed level (AZ) and the water level (Ah). For each reach ax (each

09



time the four points scheme is applied) a system of two linear algebraric

equations occurs

A, Ahj+B| AZJ.+C.AhJ.+1+D, AZJ.+1+H‘ =0
(E1.3)
A,,Ahj+BLAZJ.+C;Ahj+1+D1_AZJ.+1+H,, =0
n+1 n
where Z, =12 - 7. etc.
A J J Jj o’

In case of N calculations points there are 2(N - 1) equations and 2N

unknown, which is sufficient as there are two boundary conditions.

The four points scheme has very good numerical characteristics: dissipate,
stable for @ > 3 and it is rather accurate; but the linearization must be

Jjustified by applying a small time step. The linearization is in fact the

same as only make one Newton - iteration.

The linearization of the transport formula and roughness predictor can be
very elaborate, which makes this solution method very little flexible.
Further more if the method were applied to the model for non - uniform sedi-
ment, the number of algebraric equations (eq. E 1.3) would increase con-

siderable and so the calculation time.

E 2. Deigaard (1980)

Deigaard developed a one dimensional numerical model for non - uniform
sediment in order to study the longitudinal grain sorting in alluvial
rivers due to different transport rates of grains with different sizes.
The initial profile of the rivers are decribed by a decreasing exponen-
tial function, which causes two time scales in the model: one for the
change in grain size and one for the longitudinal bed profile, the last
one much the largest. This implies that the bed composition is in some
sort of temporarily equilibrium. The aim of the study has been to obtain

this quasi-steady grain size distribution.



The set of equation Deigaard uses is

3Pi oSz 5%
‘SST*piat*ax'o (E2.1)
S; = pi-fla, I, dj,eees) (E2.2)

where a is constantover the reach - equal downstream water depth. The trans-
port layer thickness is equal 15% of the water depth and the transport is

calculated with the Engelund - Fredsoe (1976) transport model.

The continuity equation per fraction only applies in case of sedimentation

because Biz = Py (chap 2.0. As the model only is used to obtain an equi-
o

librium in composition the choice of a transport layer thickness only

influences the time scale and not the equilibrium situation (%ﬁ% ~0).

The computations are carried out with the upstream scheme, which, according
to the numerical analysis in chapter 3, is very inaccurate for Courant
number not close to unity, and only stable for Courant numbers less than

one. The damping factor per wave length for the upstream scheme is
d=1-7% (1-0) (E2.3)

The numerical model is only applied to problems were the wave lengths are
very large, i.e. there is many points per wave length and {—7 0, so the
accuracy is not a problem -also because the celerities have the saﬁe

magnitude. Due to the long wave lengths is it not critical that the con-

tinuity equation per fraction (eq. E2.1) is in a non - conservative form.

The scheme has the advantage that it is providing very little secondary
waves, so it seems very suitable for the cases it is applied to, but for

a general numerical model, where also short waves can have interest, the

scheme is not applicable.

E 3. Schen [17)

The model has been developed in order to study the influence of hydraulic

£



sorting on the longitudinal grain size distribution in aggrading and degra-
ding alluvial streams. The more specific aim has been to explain the fact,
that the cumulative distribution curve for the sediment in the bed exhibit
three straight lines divided by two discontinuity points’by means of Ein-

stein hiding factor.

The flow velocity is calculated by the Manning formula

1
—14—2& a'h 12 (E3.1)

U =
where Manning's n is calculated using Strickler's formula
%
n = 0.0342 dj (E 3.2)
The continuity equation per sediment fraction is the one derived in
chapter 1.2 and the transport layer is chosen constant equal 2 inch, so

a reliable time scale cannot be expected.

Schen applies the following explicit finite difference scheme

n n t
Azj = -AzJ+1 +2C (zj-zj+1) " (E 3.3)
i whieh Z, = 20 a2? |
J J J

The scheme is in fact a four point scheme with @ = 0. The complex pro-

paéétion factor is

P.—.]-iZO’tan% ‘ : (E3.4)
and
[{)[ " \/1 + MO"ltanLg > 1 (E 3.5)

Although the bed friction has a positive influence on the stability is it
incomprehensible how Schen can compute with such a unstable scheme, es-
pecially because he is carrying out calculations in which there are
relative short wave lengths. Never the less he is obtaining computational

results from which he suggests a modification of Einstein hiding factor.



E4. HEC -6, US Army Corps of Engineering (1977)

The HEC - 6 is a commercial programme for non - uniform sediment developed
by W.A. Thomas. In the model Einstein's bed load formula is applied, but
also silt and clay transport are considered. The model has a lot of
sophistry: consolidation of clay and silt, Carnot formula for expansion
losser etc. It is a one dimensional quasi steady flow model, where the
flow cross section is divided into a part which has a moveable bed and
one which does not. The model does not simulate the roughness but it does

allow variation of Manning's n with the discharge.

The bottom of the transport layer is defined as the equilibrium depth,
i.e. the level for which there would be zero transport of the finest
grain there is stabel in the top (armor) layer. The trend in this defi-
nition is in agreement with the models described in chapter 2.3, as the
transport layer thickness depreases for increasing grain diameter, but,
in cases where there is no armor layer, it seems to be an unreasonable

approach.
The stability of the armor layer is tested at each step, and if it is
found unstable the grains are considered to be complete mixed over the

new transport layer.

The applied numerical method is

| 1
gl g sy -8
] =al®l =t 4
AL + > 0 (EL4.1)
where Sg+% is a weighted avarage of the transport between the two time

levels, i.e. the Crank - Nicholson scheme. It does not appear very clearly

in [19] whether eq. E4.1 is solved with a predictor - corrector method or

with a fully implicit scheme.

The computation of the morphological changes are based on a lot of assump-

tions there hardly have been veryfied. In this respect can be mentioned:

- Einsteins transport formula involves a hiding factor which has been the

subject of modification for several scientists.
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- It seems more reasonable to define the transport layer thickness as half
a significant dune height, when there is no armor layer.

- The complete mixing of the destructed armour layer is not always taking
place, as experiments show that a part of the unstable armour layer re-

mains intact at the river bottom.
Emmett and Thomas (1978) has applied the model to a reservoir,.and found

that extensive data collection had to be carried out in order to calibrate

the model to obtain reliable results.
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List of main symbols.

o

num

el
=

n ® = U= M 9. U 0
=

-

water depth -

celerity, propagation velocity
relative propagation velocity
numerical damping factor
characteristic diameter of fraction i
Darcy - Weisbach roughness coefficient
water level

Jjax: space coordinate

wave number

nat: time coordinate

probability of fraction i in transportlayer
probability of fraction i in z_ - layer
specific discharge

flow velocity

bed level

z-d, Z, =level

Chezy roughness coefficient

numerical difussion coefficient

physical difussion coefficient

Froude number

dune height

cell Pleclet number

friction term in back-water curve

total sediment transport include pore volume

sediment transport of fraction i includet pore volume

dimensionless space step

Courant number

complex propagation factor

weight in implicit finite difference schemes
dimensionless shear stress

effective dimensionless shear stress

g ripple factor

space step

time step

I

(m7s)
(m/s)
(m)
(m)

(m¥s)
(m7s)
(m7s)
(-
(m)
(=)
(m/sH
(m7s)

(nf7s)

e e e e e e e e
B N I N e T



[ < T

dimensionless celerity
dimensionless transport rate
dimensionless transport concentration

transport layer thickness
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