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Filter Design for Autoregressive Moving
Average Graph Filters

Jiani Liu , Student Member, IEEE, Elvin Isufi , Student Member, IEEE, and Geert Leus , Fellow, IEEE

Abstract—In the field of signal processing on graphs, graph fil-
ters play a crucial role in processing the spectrum of graph signals.
This paper proposes two different strategies for designing autore-
gressive moving average (ARMA) graph filters on both directed
and undirected graphs. The first approach is inspired by Prony’s
method, which considers a modified error between the modeled
and the desired frequency response. The second technique is based
on an iterative approach, which finds the filter coefficients by it-
eratively minimizing the true error (instead of the modified error)
between the modeled and the desired frequency response. The per-
formance of the proposed algorithms is evaluated and compared
with finite impulse response (FIR) graph filters, on both synthetic
and real data. The obtained results show that ARMA filters out-
perform FIR filters in terms of approximation accuracy and they
are suitable for graph signal interpolation, compression, and pre-
diction.

Index Terms—Signal processing on graphs, autoregressive mov-
ing average graph filters (ARMA), iterative processing, Prony’s
method.

I. INTRODUCTION

GRAPH signal processing (GSP) extends classical digi-
tal signal processing to signals that live on the vertices

of irregular graphs [1], [2]. Similar to the frequency analy-
sis of temporal signals, the definition of a Fourier-like trans-
form for graph signals [3] is a handle to process these signals
in the so-called graph frequency domain, rather than only in
the vertex domain [4]. In this analogy, the frequency compo-
nents of the graph signal characterize, now, the signal varia-
tion over the graph. The graph Fourier transform (GFT) has
been defined in two ways, i.e., the projection of the graph
signal onto the graph Laplacian eigenspace, see e.g., [1], or
onto the eigenspace of the adjacency matrix, see e.g., [4]. The
first approach suits better undirected graphs characterized by
real-valued graph frequencies, whilst the second approach is
preferred for directed graphs characterized by complex-valued
graph frequencies. Note that instead of the graph Laplacian or
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adjacency matrix, other so-called graph shift operators can also
be considered [5].

Together with the GFT, graph filters are a key tool to process
the graph signal spectrum, i.e., to amplify or attenuate different
graph frequencies. Graph filters find applications in graph signal
denoising [6]–[8], smoothing [9], classification [10], sampling
[11], recovery [12], and graph clustering [13]. Further, they
serve as a basic building block for trilateral graph filters [8],
graph filter banks [14], [15], and graph wavelets [16]–[19]. Fi-
nite impulse response (FIR) graph filters [4], [20]–[22], direct
analogs of temporal FIR filters, are implemented as a polyno-
mial in the graph shift operator, e.g., the graph Laplacian matrix
[1], the adjacency matrix [3], or any modification thereof. To
accurately match some prescribed specifications in the graph
frequency domain, FIR filters require a high filter order lead-
ing to a high implementation cost. Furthermore, being matrix
polynomials of the graph shift operator, their accuracy remains
limited. This issue is especially present when the desired graph
frequency response is characterized by sharp transitions, e.g., a
step function, which is often required in clustering, graph fil-
ter banks, or to discriminate patients with different levels of
adaptability in brain networks [23].

FIR filter design is already a well-established theory. One of
the most popular approaches to fit the graph frequency response
of the FIR filter to a desired spectrum is through solving a linear
least squares (LLS) fitting problem [4], which can be carried
out for undirected as well as directed graphs. However, since
the graph (and thus the set of graph frequencies) is not always
perfectly known, techniques have been established to design
the FIR filter coefficients without the knowledge of the graph
spectrum, by fitting the frequency response over a continuous
range of graph frequencies (we call this the universal design
approach). The Chebyshev polynomial technique is a popular
method in this context, but has only been introduced for undi-
rected graphs in [20]. In this paper, we extend the LLS approach
to a universal design method by gridding not only the real line
(for undirected graphs), but also the complex plane (for directed
graphs) and by subsequently solving the LLS problem for the
graph frequencies that are on the grid.

An alternative to FIR graph filters are infinite impulse re-
sponse (IIR) graph filters, such as the autoregressive moving
average (ARMA) graph filters [24], or the gradient descent IIR
graph filters [25]. These filters are characterized by a rational
graph frequency response, which brings more degrees of free-
dom to the design. However, the aforementioned works focus on
a distributed implementation, which only leads to the modeled
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frequency response after an infinite number of iterations [24],
[25]. Further, the distributed implementation limits the filter
approximation accuracy due to convergence constraints.

To fully exploit the benefits of the rational frequency re-
sponse, in this paper, we focus on a centralized ARMA filter
implementation. In a centralized fashion, the ARMA output can
be simply found by solving a linear system of equations, which
can be carried out efficiently with first order methods [26] or
conjugate gradient (CG) [27]. Based on this centralized im-
plementation, we also propose new ARMA graph filter design
methods, which can be adopted when the graph is known or in
a universal fashion by gridding the frequency domain (as done
for the LLS FIR filter design). The proposed ARMA design and
implementation methods work for undirected as well as directed
graphs. Throughout this work, we will mainly use FIR filters as
a benchmark to assess the performance of the proposed ARMA
filters, being their direct competitors, and propose ARMA filters
as an alternative for the aforementioned applications.

The paper contribution is threefold:
i) We extend the universal LLS strategy to design FIR graph

filters from undirected to directed graphs. For either the nor-
malized Laplacian (undirected graph) or normalized adjacency
(directed graph) matrix, we respectively sample the real interval
from zero to two or the complex unit disc. The first is done uni-
formly, whereas the second is done uniformly in amplitude and
phase such that the obtained graph frequencies either appear in
complex conjugate pairs or are purely real-valued. After the grid
points have been determined, LLS is used to fit the response on
these grid points.

ii) We present an efficient centralized ARMA filter implemen-
tation. ARMA filtering of graph signals is written as a lin-
ear system of equations, which can be solved by efficient off-
the-shelf algorithms, such as CG [27]. We propose the details
of this implementation algorithm and present some simulation
results.

iii) We propose two ARMA graph filter design strategies,
which can be applied to both directed and undirected graphs.
The first one is inspired by Prony’s method [28], where a mod-
ified error between the modeled and the desired frequency re-
sponse is minimized. Meanwhile, the second approach mini-
mizes the true error iteratively following the Steigliz-McBride
idea [28]. As an initial condition, we can use the solution from
the first method, thereby, potentially improving the approxima-
tion accuracy of that solution. The two proposed methods can
also be extended to a universal design by gridding the graph
frequency domain as mentioned earlier.

Several numerical tests validate our findings with both syn-
thetic and real data. We show that the ARMA filters outperform
FIR filters in terms of approximation accuracy, even with fewer
filter coefficients. In our tests with the real Molene temperature
dataset, the ARMA graph filters are used for interpolation pur-
poses (on an undirected graph). With the same dataset, ARMA
filters are also utilized to compress (on a directed graph) and
predict (on both a directed and undirected graph) the graph sig-
nal. The results show that the error resulting from our ARMA
filter design is lower than that resulting from an FIR filter with
the same number of filter coefficients.

Paper outline: Section II reviews some basic concepts of sig-
nal processing on graphs and introduces the concept of univer-
sal graph filter design. In Section III, we introduce the ARMA
graph filtering, and the related ARMA filter implementation.
Section IV contains the filter design problem and the proposed
design strategies, while the simulation results are shown in Sec-
tion V. Finally, the conclusions are drawn in Section VI.

Notation: We indicate by normal letters a or A a scalar vari-
able; a bold lowercase letter a will represent a vector variable
and a bold uppercase letter A a matrix variable. We indicate the
absolute value of a by |a| and the 2-norm of the vector a and
matrix A by ‖a‖ and ‖A‖, respectively. ai or [a]i represents
the i-th entry of a, and similarly Ai,j or [A]i,j represents the
(i, j)-th entry of A. a(i) will indicate the value of a after the
i-th iteration. A† represents the pseudo-inverse of the matrix A.
We use “◦” to represent the element-wise Hadamard product.
We indicate the transpose and Hermitian of the matrix A by AT

and AH , respectively. The complex conjugate of a and A are
represented as a∗ and A∗, respectively.

II. PROBLEM STATEMENT

This section recalls some background information that will
be used throughout the paper. We start with some preliminaries
about GSP and graph filtering. Then, we formulate the general
problem of graph filter design for some prescribed spectral re-
quirements on both undirected and directed graphs. The notions
of universal design and a review of the challenges in designing
FIR graph filters conclude the section.

A. Preliminaries

Consider a graph G = (V, E) with V the set of N nodes
(vertices) and E the set of E edges. The local structure of G is
captured by the adjacency matrix A ∈ RN ×N , where [A]j,i �= 0
if there exists an edge between the nodes vi and vj , or by the dis-
crete graph Laplacian Ld = D − A ∈ RN ×N , where D is the
diagonal degree matrix with diagonal entries defined as [D]i,i =
∑N

j=1[A]i,j (in-degree matrix) or [D]i,i =
∑N

j=1[A]j,i (out-
degree matrix). Note that for an undirected graph G, every edge
between vi and vj leads to a similar edge between vj and vi ,
and thus A is symmetric, i.e., [A]i,j = [A]j,i . This means that
also the discrete graph Laplacian Ld is symmetric and there is
no difference between using the in-degree or out-degree matrix.
For directed graphs G, such properties do not hold.

Throughout this paper we will use the adjacency matrix
A as a representative for directed graphs, while for undi-
rected graphs we use as alternative the discrete graph Lapla-
cian Ld = D − A. More specifically, we will use their nor-
malized counterparts, i.e., the normalized adjacency matrix
An = A/‖A‖ for directed graphs and the normalized Laplacian
matrix Ln=D−1/ 2LdD−1/ 2 , for undirected graphs. Note that
other alternatives can also be used. In short, every one of these
graph representations can be referred to as a so-called graph shift
operator S, an operator that forms the basis for processing graph
signals, as we will see next. In this paper, we restrict ourselves to
graphs for which S is real-valued and diagonalizable, and thus
enjoys an eigenvalue decomposition S = UΛU−1 , with U the
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Fig. 1. Directed graph of N = 100 nodes with E = 752 edges having dif-
ferent weights in the interval [0, 3]. Complex-valued frequencies are generated
by the eigenvalue decomposition of the normalized adjacency matrix An. The
“largest” frequency has magnitude one. Some frequencies live on the real axis
while the remaining frequencies appear as conjugate pairs in the complex plane.

eigenvector matrix containing as columns the so-called graph
modes u1 up to uN and Λ the diagonal eigenvalue matrix con-
taining as diagonal entries the so-called graph frequencies λ1 up
to λN (note in this context that ‖S‖ = maxn |λn | = |λmax |).

For undirected graphs, S is symmetric and normal. The graph
frequencies are in this case real-valued, and since S is real-
valued, the graph modes are assumed to be real-valued as well
(note that in some cases, they can be chosen to be complex-
valued, e.g., for undirected circulant graphs, but that is not as-
sumed in this paper). Specifically, for an undirected graph with
S = Ln, the graph frequencies are in the real interval from zero
to two. They can be ordered from small to large, where a smaller
value indicates a lower frequency [1].

For directed graphs, the graph frequencies are complex-
valued but since S is real-valued they either appear in complex
conjugate pairs or are purely real-valued. Moreover, the related
graph modes also appear in complex conjugate pairs or are
purely real-valued. Specifically, for the shift operator S = An,
the graph frequencies are in the complex unit disc. They can be
ordered by the graph total variation of the related graph modes,
which is defined as TVG(un ) = |1 − λn/ |λmax || ‖un‖1 . In
other words, the frequencies are ordered according to the simi-
larity between the nth graph mode and its graph shifted version.
Graph frequencies closer to the point (1, 0) in the complex plane
will represent lower frequencies in this context [4]. See Fig. 1
for an example of a directed graph and its complex-valued graph
frequencies.

We will indicate with the vector x ∈ RN ×1 the real-valued
graph signal, i.e., a signal living on the nodes of the graph G,
where each value xi is associated to the node vi . To obtain the
graph frequency representation of x, the eigenvector matrix U
is used to transform the signal into the graph Fourier domain.
Specifically, the GFT x̂ of x and its inverse are, respectively,
x̂ = U−1x and x = Ux̂. The following property can now be
stated.

Property 1: For either an undirected or directed graph G,
let us denote x̂n as the nth frequency coefficient of the graph
signal x. Then, the frequency coefficient x̂n related to the real-
valued graph frequency (mode) λn (un ) is real-valued as well.
Meanwhile, the frequency coefficients x̂n and x̂n ′ related to the

complex conjugate pair of graph frequencies (modes) λn and
λn ′ (un and un ′ ) form a complex conjugate pair as well.

This property is built on the fact that for a real-valued matrix
S, eigenvalues and eigenvectors appear in complex conjugate
pairs [29], [30]. This also means that if the columns un and
un ′ in the matrix U form a complex conjugate pair, the related
rows in the matrix U−1 form a complex conjugate pair. Thus,
with U−1x, the frequency coefficients x̂n and x̂n ′ appear as a
complex conjugate pair.

For a more in-depth analysis on the basics of the GFT and the
ordering of graph frequencies we redirect the reader to [1], [3],
and [4].

B. Graph Filtering

A graph filter G is a function g(·) applied to the shift operator
S, i.e., G = g(S), that allows an eigendecomposition of G in
the form G = Ug(Λ)U−1 , where g(Λ) is a diagonal matrix
that highlights the filter impact on the graph frequencies Λ.
More specifically, the filter output y for a filter input x can be
written as y = Gx, which in the graph frequency domain can
be translated into ŷ = g(Λ)x̂, where x̂ and ŷ represent the GFT
of the input and output signal, respectively. Hence, g(Λ) has
on the diagonal the frequency response of the filter, which at
frequency λn we denote as [g(Λ)]n,n = ĝn .

Throughout this paper, we will consider different
parametrizations of the graph filter function g(·), and thus we
will often explicitly write this function as g(·;θ), where θ is a
vector that contains the graph filter parameters, i.e., filter coef-
ficients, zeros and poles, or any other set of filter parameters.
Correspondingly, we can also write ĝn explicitly as ĝn (θ). As-
suming now that the desired frequency response at frequency λn

is given by ĥn , the filter parameters θ can be found by solving

min
θ

N∑

n=1

|ĥn − ĝn (θ)|2 . (1)

The desired frequency response ĥn can originate from different
scenarios. For instance, when we focus on graph filter design,
i.e., when we want to design a low pass filter to smooth or de-
noise a graph signal, the desired frequency response ĥn basically
indicates how much we want to attenuate a specific graph mode
and thus it will generally be real-valued and symmetric w.r.t. the
real axis (for both undirected and directed graphs). Also when
we want to do graph signal prediction, as done in [3], we basi-
cally want to design an all-pass filter and set ĥn to be one (and
thus real-valued) everywhere. In this case, the cost function (1)
will also be weighted, as we will show in the simulations, but
the filter design methods that we derive later on can easily be
adapted to this weighting. However, for some GSP applications,
such as compression, the desired frequency response ĥn will be
the GFT of the signal, for which Property 1 holds.

In any case, whatever the scenario (filter design, prediction,
smoothing, denoising, or compression) or type of graph (undi-
rected or directed), the following property holds.

Property 2: As mentioned above, ĥn is selected either as
real-valued and symmetric w.r.t. the real frequency axis, or as
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the GFT of a signal. The latter means that ĥn is real-valued if
λn is real-valued while ĥn and ĥn ′ form a complex conjugate
pair if λn and λn ′ form a complex conjugate pair (this is due
to Property 1). Put differently, either way we select ĥn , if λn

is real-valued, then ĥn is real-valued whereas if λn and λn ′

form a complex conjugate pair, then ĥn and ĥn ′ form a complex
conjugate pair as well.

C. Universal Filter Design

Since estimating the graph frequencies entails some addi-
tional complexity, graph filters are often designed with no ex-
plicit knowledge of the graph or the graph frequencies. The
desired frequency response is assumed to be a function over
a continuous range of frequencies (the real line for undirected
graphs or the complex plane for directed graphs). Solving the fil-
ter design problem for such a scenario is referred to as universal
filter design. Following the same LLS approach as in (1), this
universal filter design problem can be tackled by discretizing
the related continuous frequency range into a finite set of graph
frequencies. Then, problem (1) can be solved for this finite set
of graph frequencies instead of for the true graph frequencies.

For undirected graphs with S = Ln, we can consider for in-
stance N different grid points in the interval [0, 2]. Note that
depending on the graph, we obtain a different eigenvalue spread,
e.g., the eigenvalues of an Erdős Rényi graph [31] are in general
closely spread around 0 and more widely spread around p, the
link probability of the graph (see Fig. 3(f)). However, since we
want to be independent of the graph topology, we consider a
uniformly-spaced grid in our design. As an example, we show
the graph spectrum for an ideal low pass graph filter with cut-off
frequency λc = 1 in Fig. 2(a) left.

Alternatively, for directed graphs with S = An, the graph
frequencies lie in the complex unit disc. Again trying to avoid
any dependence on the graph, we suggest gridding this disc by
N complex conjugate pairs of points, as shown in Fig. 2(a) right.
Fig. 2(b) again shows an example of an ideal low pass filter in
this context. The cut-off frequency λc is here defined as the
distance from the point (1, 0) in the complex plane, and it is set
as λc = 1 in Fig. 2(b). All graph frequencies with a distance to
(1, 0) that is smaller than λc will be part of the passband since
they yield the “smaller” frequencies.

D. FIR Graph Filters

From [3], an FIR graph filter G of order K can be expressed
as a K-th order polynomial in the graph shift operator

G = g(S;θ) =
K∑

k=0

gkSk , (2)

with θ = g = [g0 , . . . , gK ]T collecting the FIR filter coeffi-
cients. The filter frequency response at frequency λn can be
expressed as

ĝn =
K∑

k=0

gkλk
n . (3)

Fig. 2. (a) (Left) Ideal low pass filter response of universal design for undi-
rected graph (N = 100). (Right) Universal gridding for directed graph asso-
ciated with the normalized adjacency matrix An (N = 100). (b) Ideal low
pass filter response of universal design for directed graph with N = 100. The
complex frequencies lying inside the circle with radius 1 centered at (1, 0) are
“small” frequencies.

By stacking the filter frequency response in ĝ = [ĝ1 , . . . , ĝN ]T ,
we obtain the relation

ĝ = ΨK +1g, (4)

where ΨK +1 is the N × (K + 1) Vandermonde matrix with en-
tries [Ψ]n,k = λk−1

n . Assuming the desired frequency response
is given by ĥ = [ĥ1 , . . . , ĥN ]T , problem (1) can now be written
as the following linear least squares (LLS) problem

min
g

‖ĥ − ΨK +1g‖2 . (5)

The solution of this LLS problem is given by

g = Ψ†
K +1 ĥ, (6)

where Ψ†
K +1 is the pseudo-inverse of ΨK +1 . As shown in [4],

[21], ΨK +1 needs to be well-conditioned for this approach to
work well. This will only be the case for small graph sizes N
and/or small filter orders K. Note that to improve the condi-
tioning, close eigenvalues could be grouped together under the
assumption that the desired filter response on those eigenvalues
is equal. In any case, the FIR filter order K needs to be small
and because of the nature of the polynomial fitting problem, this
will lead to a limited accuracy of the FIR filter.

For (3) to make sense as a graph filter that will be applied to
a real-valued graph signal x, we want the FIR filter coefficients
g to be real-valued. The next Proposition shows that this is the
case.

Proposition 1: Under Property 2, the FIR filter coefficients
g obtained by solving (5) are real-valued.

Proof: The proof can be found in Appendix A. �
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III. ARMA GRAPH FILTER AND IMPLEMENTATION

To improve the approximation accuracy and reduce the num-
ber of required filter coefficients w.r.t. the FIR filter, we now
consider applying an ARMA filter to the graph signal x. In this
section, we first introduce the ARMA graph filtering problem.
Then, a centralized ARMA filter implementation is presented,
and some issues related to the corresponding filter design prob-
lem are highlighted. Solutions to this ARMA filter design prob-
lem are presented in Section IV.

A. ARMA Graph Filter

From [24], and similar to temporal ARMA filters [28], an
ARMA graph filter is characterized by a rational polynomial in
the graph shift operator

G = g(S;θ) =

(
P∑

p=0

apSp

)−1 Q∑

q=0

bqSq , (7)

where θ = [aT ,bT ]T with a = [a0 , . . . , aP ]T and b = [b0 ,
. . . , bQ ]T collecting the ARMA filter coefficients. This allows
us to express the filter frequency response at frequency λn as

ĝn =

∑Q
q=0 bqλ

q
n

∑P
p=0 apλ

p
n

. (8)

Stable ARMA filters are obtained when
∑P

p=0 apSp is invert-

ible, or equivalently, when
∑P

p=0 apλ
p
n is different from zero

for all n = 1, 2, . . . , N . This stability condition is less criti-
cal as in the time domain, which is mainly due to the fact that a
graph signal is finite-length whereas a temporal signal is infinite-
length. Hence, there is no big risk of the filter output growing
unbounded.

Note that for simplicity reasons we define the ARMA filter
coefficients a and b in an ambiguous way since multiplying
both a and b with the same constant will not change the ARMA
graph filter. Hence, whenever we design a and b, we will remove
this ambiguity by constraining the first AR coefficient to be one,
i.e., a0 = 1, which is rather standard.

B. Implementation of ARMA Graph Filter

From (7), it is clear that the relation between the output y and
the input x of an ARMA graph filter is given by

(
P∑

p=0

apSp

)

y =

(
Q∑

q=0

bqSq

)

x. (9)

Hence, by defining the matrices

P =
P∑

p=0

apSp , Q =
Q∑

q=0

bqSq , (10)

we can express (9) in the compact form

Py = Qx. (11)

To compute the filter output y in (11), we can first calculate
the right-hand side denoted for commodity as z = Qx (which

Algorithm 1: Conjugate Gradient.

1 Input: y(0) , x, coefficients ap , bq

2 accuracy ε, number of iterations T
3 Initialization: z, Py(0) (using Sky(0) = S(Sk−1

y(0)))
4 d(0) = r(0) = z − Py(0) ,
5 δ(0) = δnew = r(0)T r(0)

6 Iteration: while i < T and δnew > ε2δ(0)

7 ω(i) = δn e w

d( i )T Pd( i )

8 y(i+1) = y(i) + ω(i)d(i) ,
9 r(i+1) = r(i) − ω(i)Pd(i)

10 δold = δnew , δnew = r(i+1)T r(i+1)

11 ϕ(i+1) = δn e w

δo l d , d(i+1) = r(i+1)

+ϕ(i+1)d(i)

12 i = i + 1
13 Output: y(i+1)

corresponds to pre-filtering x with an FIR filter) and then y is
found by simply solving the linear system

Py = z. (12)

Note that there are several efficient methods to solve (12), like
first order methods [26], the power method [32], and conjugate
gradient (CG) [27]. Their computational cost reduces signifi-
cantly for sparse matrices S, i.e., for sparse graphs [33].

In this work we consider the CG method [27] to implement
ARMA graph filters in the vertex domain. As shown in Algo-
rithm 1, the CG approach has a computational complexity that
scales linearly in the number of edges E. Specifically, we first
need to compute z = Qx, which by following the efficient im-
plementation [34] requires Q multiplications with the shift op-
erator S since the terms can be computed as Skx = S(Sk−1x)
leading to an overall complexity of O(QE). Then, in each itera-
tion i of the CG it is required to compute the term Pd(i) , which
if computed in the same way as z requires a computational effort
of order O(PE). Thus, if considering that the CG is arrested
after T iterations, the overall implementation cost of the ARMA
graph filter is of order O((PT + Q)E). We would like to high-
light that the ARMA filter output with CG is computed without
explicitly building the matrices P and Q, and only considering
their application to a specific vector.

In Section V, we analyze the tradeoff between the computa-
tional implementation cost and approximation accuracy induced
by the CG approach.

IV. ARMA GRAPH FILTER DESIGN

This section contains the proposed ARMA filter design meth-
ods. We start with a discussion of the ARMA design problem,
followed by two approaches inspired by Prony’s method, and
finally an iterative approach.

A. ARMA Design Problem

As discussed in Subsection II-B, we would like to find the
ARMA filter coefficients a and b such that a desired frequency
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response ĥn is matched, where the latter can be a desired filter
shape (for filter design, smoothing, or denoising) or the GFT of
a graph signal (for compression or prediction). In this context,
note that many desired responses ĥn already have the shape of
an ARMA filter, e.g., for Tikhonov denoising or interpolation,
which means no explicit fitting is required in that case.

More specifically, adapting (1) to our ARMA filter design
problem, we want to minimize the following error

en = ĥn −
∑Q

q=0 bqλ
q
n

∑P
p=0 apλ

p
n

. (13)

Since (13) is nonlinear in a and b, classical approaches like
Prony’s method [28] consider minimizing the following modi-
fied error

e′n = ĥn

(
P∑

p=0

apλ
p
n

)

−
Q∑

q=0

bqλ
q
n . (14)

The latter is clearly not equivalent to (13) but it is linear in a
and b.

In the sequel, our goal will be to find a and b that mini-
mize (13) or (14) in the mean square sense, subject to a0 = 1
as mentioned before. Similar to the FIR filter, if we want the
ARMA filter to make sense as a graph filter that will be applied
to a real-valued graph signal x, we want the ARMA filter coef-
ficients a and b to be real-valued. We will show that this is the
case for the different proposed approaches. Finally, note that,
similar to Prony’s method [28], the non-convex stability con-
straint

∑P
p=0 apλ

p
n �= 0 will be ignored in the rest of the paper,

but it can easily be checked after the design.

B. Methods Inspired by Prony

Prony’s LS: To start, let us first stack en from (13) in the
vector e = [e1 , . . . , eN ]T , which can be expressed as

e = ĥ − diag(ΨP +1a)−1ΨQ+1b. (15)

As we mentioned before, this nonlinear function is hard to
handle and thus we focus on the modified error. Stacking e′n
from (14) in the vector e′ = [e′1 , . . . , e

′
N ]T , we obtain the sim-

pler linear expression

e′ = ĥ ◦ (ΨP +1a) − ΨQ+1b (16)

= [ΨP +1 ◦ (ĥ1T
P +1)]a − ΨQ+1b, (17)

where “◦” represents the element-wise Hadamard product and
1P +1 is the (P + 1) × 1 all-one vector.

Minimizing ‖e′‖2 over a and b leads to the following LLS
problem

min
a,b

∥
∥
∥
∥[ΨP +1 ◦ (ĥ1T

P +1),−ΨQ+1]
[
a
b

]∥
∥
∥
∥

2

, s.t. a0 = 1, (18)

which can be solved efficiently. The next Proposition shows that
the obtained a and b vectors are real-valued.

Proposition 2: Under Property 2, the ARMA filter coeffi-
cients a and b obtained by solving (18) are real-valued.

Proof: The proof is similar to the proof of Proposition 1.�

Prony’s projection: Since Prony’s LS approach addresses the
modified error (14) and not the desired error (13), we here con-
sider a way to partly overcome this limitation, and potentially
improve the approximation accuracy of (18). We use the or-
thogonal subspace projection approach [35] to rephrase (16) as
a function of only the denominator coefficients a. Then, with
the obtained solution for a, the original error (13) can be min-
imized to find the numerator coefficients b. This approach can
be interpreted as Shanks’ method similar to that used in [24].

Let us start by considering the orthogonal projection matrix
onto the orthogonal complement of the range of ΨQ+1

P⊥
ΨQ + 1

= IN − ΨQ+1Ψ
†
Q+1 , (19)

where ΨQ+1 is better conditioned than ΨK +1 used to design an
FIR graph filter, because Q < K and removing columns from
a tall matrix improves its condition number. Then, the modified
error (16) can be reshaped as

e′′ = P⊥
ΨQ + 1

[ΨP +1 ◦ (ĥ1T
P +1)]a − P⊥

ΨQ + 1
ΨQ+1b, (20)

where the second term on the right hand side of (20) is zero.
As shown in [36], [35], this projection operator preserves the
solution for a when minimizing (20) instead of (16). Hence,
after the projection, the LLS problem for solving a becomes

min
a

‖P⊥
ΨQ + 1

[ΨP +1 ◦ (ĥ1T
P +1)]a‖2 , s.t. a0 = 1. (21)

The reason why we prefer solving (21) over (18) for finding
a solution for a is the computational complexity. Finally, the
vector b can be obtained using (13) after plugging in the solution
for a obtained from (21). In other words, b is found by solving

min
b

‖ĥ − diag(ΨP +1a)−1ΨQ+1b‖2 . (22)

As before, we can again show that this solution for a and b is
real-valued.

Proposition 3: Under Property 2, the ARMA filter coeffi-
cients a and b obtained by solving (21) and (22) are real-valued.

Proof: The proof is similar to the proof of Proposition 1.�
We would like to remark that this version of Prony’s pro-

jection approach has a conceptual difference with the method
presented in [24]. While in [24] the desired frequency response
is first fitted with an FIR filter and then the denominator co-
efficients are found to match that response, we here aim at
approaching directly the desired response rather than its FIR
approximation. In parallel to the classical literature [28], our
approach can be considered as a reshaping of the Padé approx-
imation which first is solved for the denominator coefficients
a and then for the numerator coefficients b. As we show in
Section V, the Prony’s projection approach improves in general
the approximation accuracy of (18).

C. Iterative Approach

In this section, we present the iterative approach to design the
ARMA coefficients. The idea consists of updating recursively
the filter coefficients, while minimizing the original error (13).
We first reformulate the problem to make it amenable to our
iterative approach and then use a variant of the Steigliz-McBride
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method [28] to implement an iterative algorithm that can be
utilized for finding the ARMA graph filter coefficients.

Problem reformulation: The focus in the previous section was
on solving (14). This of course comes with a lack of optimality,
since our aim is to solve (13). In the iterative approach, instead,
we focus directly on minimizing (13).

To ease the notation, let us define

βn =
Q∑

q=0

bqλ
q
n and αn =

P∑

p=0

apλ
p
n ,

and rewrite the original error (13) as

en = ĥn − βn

αn
. (23)

Then, by defining γn = 1/αn , we have

en = ĥn − βnγn , (24)

which can be equivalently expressed as

en = (ĥnαn − βn )γn . (25)

Note that the expression (25) is linear in αn , βn and γn , if each
of them is treated as a separate variable. To avoid inversion is-
sues when αn = 0, we can consider γn = 1/(αn + ρ) for some
ρ ≈ 0. Note that if γn is fixed, en becomes linear in the variables
αn and βn . This will be our starting point to minimize en recur-
sively. In each iteration, having found a new set of solutions for
αn , βn we can then find ap and bq as well as update γn .

To follow the convention of the previous sections, we
write (25) in a more convenient vector form, by defining
the vectors α = [α1 , . . . , αN ]T , β = [β1 , . . . , βN ]T , and γ =
[γ1 , . . . , γN ]T . Then, the error vector e = [e1 , . . . , eN ]T con-
taining the original error for all graph frequencies can be
written as

e = [ĥ ◦ α − β] ◦ γ. (26)

Iterative algorithm: Let α(i) and β(i) respectively denote the
estimates of the vectors α and β, at the i-th iteration. We can
then find the value of γ as an element-wise inversion of α(i) ,
which we label as γ(i) ,

γ(i) =
[

1
α

( i )
1 +ρ

1
α

( i )
n +ρ

· · · 1
α

( i )
N +ρ

]T

. (27)

Using this value for γ, we obtain the updated error

e(i+1) = (ĥ ◦ α) ◦ γ(i) − β ◦ γ(i) , (28)

which is linear in the unknown variables α and β. Minimizing
this error leads to the updated values α(i+1) and β(i+1) . This
procedure is then repeated till a desirable solution is obtained.

To formalize this iteration, and express it as a direct func-
tion of the true filter coefficients a and b, we can reformulate
(28) as

e(i+1) = H(i)a − B(i)b, (29)

where H(i) = (γ(i)1T
P +1) ◦ ΨP +1 ◦ (ĥ1T

P +1) and B(i) =
(γ(i)1T

Q+1) ◦ ΨQ+1 . The specific derivations that lead to (29)
can be found in Appendix B.

Algorithm 2: Iterative Approach.

1 Input: a(0) , ĥ, number of iterations τ ,
threshold δc

2 Initialization: γ(0) ,H(0) ,B(0) , ĝ(0) , e(0)

3 Iteration : while i < τ and δ < δc

4 solve min
a,b

∥
∥
∥
∥
[
H(i) ,−B(i)

]
[
a
b

]∥
∥
∥
∥

2

s.t. a0 = 1.
5 return a(i+1) , b(i+1)

6 compute ĝ(i+1) , e(i+1) , δ = ‖e(i+1)

−e(i)‖
7 update γ(i+1)

8 i = i + 1
9 Output: a(i+1) , b(i+1)

With this in place, the filter coefficients at the (i + 1)-th iter-
ation are found by solving

min
a,b

∥
∥
∥
∥
[
H(i) ,−B(i)

]
[
a
b

]∥
∥
∥
∥

2

s.t. a0 = 1. (30)

The solutions a(i+1) and b(i+1) are again real-valued as shown
in the following Proposition.

Proposition 4: Under Property 2, the ARMA filter coeffi-
cients a and b obtained by solving (30) are real-valued.

Proof: The proof is similar to the proof of Proposition 1.�
For the above two design methods, the design cost of Prony’s

method is related to the LLS solution which requires O((P +
Q + 1)2N) operations, while for the iterative approach, the total
design cost is τ times leading to a cost of O(τ(P + Q + 1)2N).
Since the number of nodes N is much smaller than the number
of edges E, the design cost is smaller than the implementation
cost. Algorithm 2 summarizes the iterative approach.

Remark 1: We stop the iterations when δ, representing the
error difference between two successive iterations, is smaller
than a given threshold δc . However, depending on the specific
combination of P and Q, the method does not always converge
fast enough or it does not converge at all. For those cases, we
consider a maximum number of iterations τ and search for the
minimum error over all iterations. We then assume that this
iteration provides the solution to the problem. As we will see in
the numerical section, for a fixed order K, the best performance
for P + Q ≤ K always leads to a significant improvement in
approximation accuracy over the former methods. However, for
a fixed order K, some combinations of P,Q yield instabilities
around the cut-off frequency. The latter is especially present in
Prony’s method. Therefore, a search over different combinations
of P,Q is recommended.

Remark 2: For γ(0) = 1, the LLS procedure (18) can be seen
as a special case of the iterative approach. With γ(0) = 1, the
formulation of the iterative approach degenerates into the LLS
solution, and the approximation error changes from the original
error (13) to the modified error (14). However, since Prony’s
projection approach leads to better results that Prony’s LS ap-
proach, we prefer the latter to initialize the iterative approach.
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V. NUMERICAL DATA

In this section, we present our numerical evaluation of the
proposed methods and compare them with the FIR graph filters.
The performance is tested with both synthetic and real data. Our
tests with the Molene dataset1 show that ARMA filters are more
suitable than FIR filters for lossy data compression, where we
can save up to 50% of memory with very little error. Further, we
apply ARMA filters in the context of prediction (as in [3]) and
we show that ARMA graph filters outperform FIR graph filters,
where with only 4 bits we achieve a reconstruction error of 10−3 .
Throughout our simulations we make use of the GSPBox [37].

A. Synthetic Simulation Results

In this section, we evaluate the performance of the proposed
design algorithms in approximating a desired frequency re-
sponse. The performance is assessed for two different settings,
namely a universal filter design (see Section II-C) and a filter de-
sign for an Erdős Rényi (ER) graph. For both cases we consider
N = 100 grid points / nodes.2 In both settings, the goal is to
approximate the ideal low-pass frequency response introduced
in Section II and illustrated in Fig. 2.

Universal design: For the universal design, we follow the
approach discussed in Section II. For an undirected graph, we
consider S = Ln and sample the interval [0, 2] uniformly. For
a directed graph, we consider S = An and sample the complex
unit disc uniformly in amplitude and phase. We assume N =
100 grid points for both types of graphs.

Design for Erdős Rényi graph: For the undirected ER
graph [31], we assume that a pair of nodes is connected with a
probability p = 0.1 and the shift operator is again S = Ln. Due
to the graph randomness, we always average the results over
100 different realizations.

In the sequel, we analyze the design methods proposed in
Section IV and compare them to the related FIR filter design.
If not mentioned otherwise, we design the FIR filter using the
LLS approach of (6) (FIR-LLS, or simply FIR). The univer-
sal FIR design for undirected graphs sometimes also follows
the Chebyshev design of [20] (FIR-Cheby). We compare the
ARMA(P,Q) filter to a FIR(K) graph filter where P + Q ≤ K
is satisfied. We look for all combinations of P and Q that satisfy
P + Q ≤ K and pick the combination leading to the best result.
Since we want the overall order of the designed ARMA graph
filter to be small, we only investigate the range 2 ≤ K ≤ 30. We
measure the approximation accuracy with the root normalized
mean square error (RNMSE) of the frequency response of the
filter:

RNMSE =
‖ĥ − ĝ‖
‖ĥ‖ . (31)

Note that, for a directed graph with complex frequencies, since
the filter response can be complex-valued, we only compute the

1Access to the raw data is through the link: https://donneespubliques.
meteofrance.fr/donnees_libres/Hackathon/RADOMEH.tar.gz

2We remark that more grid points / nodes, i.e., N = 300, 1000, result in
similar errors and trends as for N = 100.

approximation error for the amplitude (absolute value) of the
filter response under the assumption that the desired frequency
response is real.

Performance analysis: In Fig. 3 we show the RNMSE for the
Prony’s inspired methods and the iterative approach. Specifi-
cally, the depicted RNMSE in Fig. 3(a) (b) and (e) are related
to the best combination (P,Q) for each particular K such that
P + Q = K. The iterative approach is initialized with the so-
lution of Prony’s projection method (21) and (22), to show
its potential in improving the RNMSE. Additionally, the FIR,
ARMAK [24] and IIR [25] performances are plotted as a bench-
mark.

Based on these results, we can make the following
observations:

i) We can notice that the FIR (FIR-LLS or FIR-Cheby) ap-
proximation errors for both universal designs (Fig. 3(a), (b)) and
the design for the ER graph (Fig. 3(e)) are the highest, except
when K ≤ 5. Further, the FIR approximation accuracy, even
when designed for the specific set of ER graph frequencies,
does not improve with the order K. We believe that this effect
is due to the eigenvalue spread of the ER graph, since some of
its eigenvalues are more closely spaced than in a uniform grid
(see e.g., Fig. 3(f)).

ii) Compared to Prony’s method, the iterative approach has
a larger design cost but improves the approximation for higher
order K. Prony’s method gives a comparable performance to
the iterative approach only up to K = 8. We see that Prony’s
LS approach is not suitable for the ER graph when K ≤ 5,
while for a universal design approach its performance is close
to that of Prony’s projection method. This highlights that the LS
approach should be avoided in graphs that have closely spaced
eigenvalues. On the other hand, this issue is overcome by Prony’s
projection method which gives a small RNMSE also for values
K ≤ 5.

iii) As an example, we take the order K = 16 to show the
difference in performance between FIR graph filters and ARMA
graph filters in Fig. 3(c), (d). It is remarkable to highlight that the
iterative approach outperforms the FIR by several orders, where
the latter has a comparable performance only for K ≤ 3. Such
a finding shows that the ARMA graph filters are more suitable
for applications demanding higher approximation accuracies.

iv) We observe a smaller RNMSE for undirected graphs com-
pared to directed graphs. This is because we can do a fitting on
the real line instead of in the complex plane. In contrast to
undirected graphs, notice that for directed graphs, as shown
in Fig. 3(b), all ARMA graph filter design approaches yield a
similar performance.

v) As highlighted in Fig. 3(a), an important role is played
by the MA order Q (which is generally larger than P ). We
observe that a higher Q improves the stability of the ARMA
filters, specifically for Prony’s projection method and the iter-
ative approach where the numerator coefficients are found by
minimizing the true error.

vi) If the frequencies are different, the Vandermonde ma-
trix Ψ is theoretically full rank (invertible) but generally ill-
conditioned. Although this issue is encountered for both FIR
and ARMA graph filters, ARMA filters improve the condition-
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Fig. 3. RNMSE of the proposed design methods for different orders K (such that P + Q = K ) in approximating an ideal low-pass frequency response. (a)
Universal design by gridding the spectrum in N = 100 (S = Ln) points. For the ARMA filters, the order Q is shown in the plot. (b) Universal design with
N = 100 (S = An) points. (c) Comparison of FIR and ARMA with same order K = 16 for an undirected graph. The graph filters correspond to Fig. 3(a). (d)
Comparison of FIR and ARMA with same order K = 16 for a directed graph. The FIR graph filter (left) and ARMA graph filter (right) correspond to the green
and pink lines in Fig. 3(b). The desired frequency response is shown in the plot as red points. (e) Results for the average of 100 Erdős Rényi graphs with N = 100
nodes and p = 0.1. (f) Eigenvalue occurrence of 100 Erdős Rényi graph realizations.

ing of the matrix because the filter orders P and Q can be
selected much lower than the FIR filter order K. Hence, the
solution of our design methods has uniqueness, but there might
be a conditioning problem when the orders are increased.

vii) For the universal design (Fig. 3(a)) and ER graph
(Fig. 3(e)), we also compare our approach with the methods
in [24], [25]. The ARMAK graph filter [24] has the same or-
der for the nominator and denominator, therefore, we adopt the
same value K as the order for both the nominator and denomi-
nator. Note that this leads to a total order that is twice the order
of our ARMA(P,Q) (recall that K = P + Q). For the univer-
sal design, we further compare our approach with the universal
Butterworth filter [25]. The IIR graph filter [25] is then tested on
the ER graph. We follow the scenario of [25] and use a denom-
inator of degree 4, leading to a nominator of degree (K − 4).
The results show that for low orders (K < 12), the IIR graph
filter [25] has a similar performance to our iterative approach.

However, with an increasing order K > 12, our design method
offers a better approximation accuracy.

Iterative approach: We now analyze in more detail the itera-
tive approach to highlight its benefits in improving the ARMA
filter accuracy compared to Prony’s projection approach. We
consider two cases with monotonic convergence, namely, an
ARMA(9, 10) (characterized by an RNMSE of order 10−2 in
Prony’s projection method, Fig. 3(a)) and an ARMA(4, 9) (char-
acterized by an RNMSE of order 10−1 in Prony’s projection
method, Fig. 3(a)) which are considered due to their low orders.
For both cases, we initialize the iterations with the solution of
Prony’s projection method. Note that ARMA(9, 10) is the best
combination P,Q of order K = 19, while ARMA(4, 9) is not
the best combination for order K = 13. We also consider two fil-
ters, the ARMA(9, 11) and ARMA(14, 9) to illustrate that even
without monotonic convergence, the approximation accuracies
can be improved with our iterative approach.
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Fig. 4. RNMSE of the iterative approach for the universal design with
N = 100 points. Performance evaluation for different ARMA filters which
are a few particular cases illustrating monotonic convergence, nonmonotonic
convergence, and no convergence.

In Fig. 4 we show the approximation error as a function of
the iteration index and we can immediately notice that for those
filters with monotonic convergence, the approximation errors re-
duce in a few iterations. More specifically, for the ARMA(9, 10)
the iterative approach reduces the error from 10−2 to 10−4 .
It is also worth noticing that using the iterative approach, the
ARMA(9, 10) outperforms also the ARMA(11, 17), which is
the best filter that can be designed with Prony’s projection
method (within the considered range). Similarly, the iterative
approach improves the approximation accuracy for the low order
filter ARMA(4, 9). Indeed, its performance is now comparable
with all other ARMAs and FIRs with much greater orders. As
we mentioned in the previous section, for the non-converging
filters, we pick the best approximation result during the itera-
tive procedure, e.g., the performance in the 6-th iteration of the
ARMA(14, 9) filter, which is better than the performance of the
ARMA(9, 10) filter.

We remark that the above results concern the approximation
accuracy of the filter irrespective of their implementation costs.
In the sequel, we address some implementation aspects.

CG implementation performance: We now aim at analyzing
the ARMA implementation performance using the CG approach
w.r.t. its implementation cost. We implement the universally
designed ARMA filter using CG on the ER graph with link
probability p = 0.1 and consider two different sizes: N = 100
and N = 1000. We again use the universally designed FIR and
IIR graph filters as benchmarks. The ARMA filter coefficients
are designed universally using the iterative approach with 100
grid points, whereas the FIR filter is designed using LLS also
with 100 grid points and the IIR filter following the Butterworth
approach [25]. The filter is applied to a white input and the
desired frequency response (low pass filter) is compared to the
division of the filter output and the input in the frequency do-
main. In Fig. 5, we show the performance of the ARMA filter
(Algorithm 1) when the CG is halted after T iterations such
that PT + Q ≤ K holds, i.e., the ARMA filter has a smaller
or the same implementation cost compared to the FIR filter.
For the CG, we set ε = 10−3 . The IIR filter has the same order
K as the FIR filter and is given a maximum number of itera-
tions of T = 30. The results show that the ARMA filter has a
lower approximation error than other alternatives with a similar

Fig. 5. RNMSE of the ARMA graph filter implementation on an Erdős Rényi
graph with N = 100 and N = 1000. Performance evaluation for the tradeoff
between computational cost and approximation accuracy. For CG, the complex-
ity of the ARMA implementation is limited by P T + Q ≤ K .

or smaller complexity. Since we here compare the filters for a
similar implementation complexity, the RNMSE gap is smaller
compared to the previous scenario in Fig. 3(a) and (e). To high-
light the benefits of the universal design approach, we consider
the ER graph with two different sizes. In Fig. 5, we notice that
when increasing the filter order (K > 16), the performance of
the ARMA graph filter for different size graphs becomes similar.
Even for the case with N = 1000, the universal design based on
100 grid points is a wise choice and yields a good performance.

Although the aforementioned results are obtained using syn-
thetic data, they highlight the potential of ARMA filters to im-
prove the performance w.r.t. FIR graph filters. The above results
can be useful in practice for spectral clustering, building graph
filter banks, or designing graph wavelets, where we propose the
use of ARMA filters instead of FIR filters.

As we will see next, this improvement in performance of
ARMA filters is also present in real data applications.

B. Graph Signal Interpolation

We now illustrate the performance of ARMA graph filters
in interpolating the missing values in the Molene weather data
set. The data set contains hourly observations of temperature
measurements collected in January 2014 in the region of Brest
(France). The undirected graph containing the 32 cities (nodes)
is built according to [38], which accounts for the smoothness
of the data w.r.t. the graph structure. We consider that a portion
of the graph signal is missing and by exploiting the smoothness
prior we aim to reconstruct the overall graph signal from noisy
measurements.

Experimental set up: Given x′ the observed signal and x the
original graph signal, this interpolation problem is formulated
as [39], [40]:

min
x

‖T(x − x′)‖2
2 + ωxT Lnx (32)

where T is a diagonal matrix with Tii = 1 if xi is known and
Tii = 0 otherwise; ω is the weight for the prior. The optimal
solution of (32) is

x̃ = (T + ωLn )−1x′, (33)

which by considering P = T + ωLn is solved through the
ARMA graph filter (12). We consider the CG to implement
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Fig. 6. RNMSE of the ARMA graph filter for interpolation of the Molene
data set, where ω = 1, 2. As two comparisons, the ideal graph filter and FIR
filter with order K = 20 are shown with the same values of ω.

(33) where ε is set to 10−2 and the maximum number of iter-
ations T to 20. As a comparison, for the FIR graph filter, the
coefficients are found as the solution of

min
gk

∥
∥
∥
∥
∥
(T + ωLn )−1 −

K∑

k=0

gkLk
n

∥
∥
∥
∥
∥

2

F

(34)

where the gk values represent the FIR coefficients.
Results: In Fig. 6, we show the RNMSE between the recon-

structed signal x̃ and the original one x as a function of the
portion of missing data. Additionally, to construct the observed
signal x′, we add a zero-mean Gaussian noise with variance
σ2 = 10−2 to the original signal x and randomly wipe off sig-
nals up to the specific percentage. The performance is averaged
over all 744 observations. We plot the numerical RNMSE for
different percentages and two ω values. These results show that
the RNMSE reduces for the ARMA graph filter when the per-
centage of the known values increases. As a comparison, we
notice that the ARMA graph filter offers a similar performance
to the ideal graph filter. The FIR graph filter (K = 20) yields a
worse result in this case.

C. Data Compression With Graph Filters

Our goal, in this subsection, is to show that ARMA filters
of low orders can be used to represent the data and perform
compression.

Experimental set up: We consider fitting a small order ARMA
graph filter to each data realization and then store the filter
coefficients instead of the actual data. We now create the graph as
a directed 6-nearest neighbor connection. In the directed graph,
each vertex is connected to its six closest nodes by means of
directed edges [4]. The weight of the edge between vm and vn

is given as

[A]n,m =
e−d2

n , m

√∑
k∈Nn

e−d2
n , k

∑
l∈Nm

e−d2
m , l

(35)

where dn,m represents the geometric distance between nodes
vn and vm and Nn , Nm represent the sets of neighbors of node
vn and vm . Note that the resulting matrix A is normal, i.e.,
‖A‖ = 1. For every data realization x, we take the GFT to have
x̂ and fit it to an ARMA(P,Q) graph filter. The filter coeffi-
cients are derived using the iterative approach with the initial

Fig. 7. RNMSE between the data spectrum and the filter frequency response
as a function of filter order K . (a) Illustration of the RNMSE of the ARMA
graph filter and the same order FIR filter for the 50th observation. The order
Q is shown in the plot and P + Q = K . (b) Average RNMSE over all 744
temperature realizations (one month) for different filter orders. For the ARMA
filter, each error bar shows the standard deviation of the approximation error for
order K .

condition given by Prony’s projection method. We measure the
compression performance as the RNMSE between the com-
pressed signal and the real one x. As a benchmark, we again
consider the FIR(K) with K = P + Q.

Results: In Fig. 7(a), we show the RNMSE as a function
of K for the 50-th observation. We observe that the ARMA
filter achieves a smaller RNMSE than the FIR filter even for
small orders K. As expected, when K approaches N , we have a
smaller error but we also see that the gap in performance between
the ARMA and FIR filters increases. This result goes in line with
what we obtained in the previous section for synthetic data.

To further quantify the above observations, Fig. 7(b) depicts
the average performance over all observations. We still notice
that the ARMA graph filters achieve a smaller RNMSE than
FIR graph filters and that the RNMSE decreases for higher
values of K. With the above approach, a compression ratio of
25% (K = 23) is achieved with an RNMSE of 10−1 . Note that
next to signal compression, the ARMA model can also be used
to reconstruct the graph power spectrum of stationarity graph
signals from a subset of the nodes [41].

Remark 3: To achieve further compression one can exploit
also the stationarity of the signal over time. Thus, instead of
fitting a graph filter to each individual observation, one approach
may consider fitting a joint graph-temporal filter [42], [43] to
the time-varying data.

D. Linear Prediction With ARMA Filters

Inspired by [3], we also test linear prediction (LP) on graphs
using ARMA graph filters. We consider the Molene data set
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and again compare the ARMA graph filters with the FIR graph
filters [3]. The considered problem contains two parts, namely
the forward (prediction) part and the backward (synthesis) part.
In the forward filtering, the residual between the graph signal
and the filter frequency response is calculated and quantized.
Next, the backward filter considers building an approximation
of the graph signal from the quantized residual. For the ARMA
filters we use a variant of the iterative approach to find the filter
coefficients, while for the FIR filter we follow [3]. For the graph
shift operator S, we consider both the directed graph created by
(35) and the undirected graph [38].

Experimental set up: For the ARMA filter, given the graph
signal x, the residual r related to signal prediction is given by

r = x − g(S)x = x −
(

P∑

p=0

apSp

)−1 (
Q∑

q=0

bqSq

)

x. (36)

Notice that next to the constraint a0 = 1 we had before, it is im-
portant to set b0 = 0 in order to avoid the trivial solution. Similar
to Prony’s method, we can derive also a modified residual as

r′ =

(
P∑

p=0

apSp

)

x −
(

Q∑

q=0

bqSq

)

x. (37)

To relate this prediction problem to filter design, we can look
at the residual and modified residual in the frequency domain,
leading to

r̂ = x̂ ◦ (1N − diag(ΨP +1a)−1ΨQ+1b), (38)

and

r̂′ = x̂ ◦ [1N ◦ (ΨP +1a) − ΨQ+1b]. (39)

Hence, up to the element-wise multiplication with x̂, this resid-
ual r̂ and modified residual r̂′ look like the error e in (15) and
modified error in e′ in (16), respectively, with ĥ replaced by the
all-one vector 1N . As a result, all previous design methods can
still be used. They only need to be adapted with an appropriate
weighting (coming from x̂) and with the constraint b0 = 0.

Once the filter coefficients that (approximately) minimize
the residual r are found, this residual is quantized with B bits
(resulting in rq) and forwarded. Then, by applying the backward
filter H = (I − g(S))−1 to the residual, the approximated signal
x̃ = Hrq is constructed at the receiving side.

We consider ARMA graph filters for K ≤ 10 (K = P + Q)
and for every order K, the residual r is quantized with different
numbers of bits. From the B bits, we spend one bit on the sign,
b = �log2(max([r]i))� bits on the integer part, and the rest of
the (B − b − 1) bits on the decimal fraction.

Results: We quantify the performance in terms of RNMSE
between the predicted signal x̃ and the original one x.

The average approximation error over all 744 realizations is
shown in Fig. 8(a) as a function of the number of bits (B) used
in the quantization for K = 3. We can notice that in a direct
comparison with the FIR filters the approximation error of the
ARMA graph filters is more than one order of magnitude lower.
For both filters, as expected, more quantization bits B lead to
a better approximation accuracy. Such findings suggest once

Fig. 8. Average RNMSE of linear prediction on the Molene temperature data
set. (a) Average RNMSE of the approximated signal as a function of the number
of bits (B) for filter order K = 3. (b) Average RNMSE of the estimated signal
for different order ARMA filters evaluated for B = 3, 5, 7.

again that ARMA filters are more suitable than FIR filters for
applications demanding higher approximation accuracies.

To better highlight the performance of the ARMA filters,
in Fig. 8(b) we show the RNMSE as a function of the filter
order K for different values of B. These results show that the
approximation error for K > 4 remains constant, similar to what
was observed for FIR filters in [3]. This observation suggests that
small order filters are preferred for this application. Note that
the performance for directed and undirected graphs is almost
the same. The directed graph gives the best performance with
K = 3 while for K > 3 the undirected graph gives a lower error.
To conclude, we can say that using an ARMA graph filter with
K = 4 and B = 7 (instead of 16 bits) we can reconstruct the
data with an error of order 10−2 and save 62.5% in transmission
costs.

VI. CONCLUSIONS

In this work, we have presented ARMA graph filters as well as
different methods to perform the filter design on both directed
and undirected graphs. The first two filter design approaches
are inspired by Prony’s method which focus on minimizing
some modified errors. The third one iteratively minimizes the
original error of the design problem. The iterative approach
can be initialized with the solution from one of the previous
methods, which suggests that its performance can be improved
by the iterative approach. Our theoretical findings are surrogated
by numerical results on both synthetic and real data. In a direct
comparison with the FIR graph filters, ARMA filters have shown
to be more suitable for filter approximation, data interpolation,
data compression and linear prediction on graphs.

Authorized licensed use limited to: TU Delft Library. Downloaded on September 02,2021 at 12:14:51 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: FILTER DESIGN FOR AUTOREGRESSIVE MOVING AVERAGE GRAPH FILTERS 59

APPENDIX A

Since we assume that the shift operator S is real-valued and
diagonalizable, the graph frequencies λn (eigenvalues) can be
grouped into three sets: 1 ≤ n ≤ M , M + 1 ≤ n ≤ 2M and
2M + 1 ≤ n ≤ N . The first and second groups are complex
conjugate pairs while the last group consists of the real-valued
frequencies. Note that this classification only changes the order
of the frequencies, and has no influence on the results of the
filter coefficients gk .

Thus, we can split the Vandermonde matrix ΨK +1 and
write (5) as

min
g

‖ĥ − ΨK +1g‖2

= min
g

‖[ĥH
1 , ĥH

2 , ĥT
3 ]T − [ΨH

1 ,ΨH
2 ,ΨT

3 ]T g‖2

where the three blocks of matrices and vectors belong to the
three different groups.

With 1 ≤ n ≤ M , we use the nth and (M + n)th frequencies
to represent a conjugate pair for the first and second groups
of frequencies. Since λn = λ∗

M +n , the corresponding elements
inside the Vandermonde matrix satisfy [Ψ1 ]n,k = [Ψ2 ]∗M +n,k ,
and thus we have Ψ1 = Ψ∗

2 .
According to Property 2, for the frequency pair λn = λ∗

M +n ,

the corresponding desired frequency response satisfies ĥn =
ĥ∗

M +n and thus, we also have ĥ1 = ĥ∗
2 . Meanwhile, for 2M +

1 ≤ n ≤ N , we have a real-valued Ψ3 and a real-valued ĥ3
since the corresponding frequencies λn inside this range are
real-valued.

Now, we can rewrite the solution of (5) as

ĝ = Ψ†
K +1 ĥ

= (ΨH
1 Ψ1 + ΨH

2 Ψ2 + ΨT
3 Ψ3)−1(ΨH

1 ĥ1

+ ΨH
2 ĥ2 + ΨT

3 ĥ3)

= (ΨH
1 Ψ1 + ΨT

1 Ψ∗
1 + ΨT

3 Ψ3)−1(ΨH
1 ĥ1

+ ΨT
1 ĥ∗

1 + ΨT
3 ĥ3).

It is obvious that ΨH
1 Ψ1 + ΨT

1 Ψ∗
1 and ΨH

1 ĥ1 + ΨT
1 ĥ∗

1 are
real-valued. Hence, solving (5) leads to a real-valued solution.

APPENDIX B

The error of the iterative approach on α and β is given by

e(i+1) = γ(i) ◦ (ĥ ◦ α) − β ◦ γ(i) (40)

By extending α and β, we can rewrite (40) as

e(i+1) = γ(i) ◦ ĥ ◦ (ΨP +1a) − (ΨQ+1b) ◦ γ(i) (41)

The first term in the right hand side of (41) can be expressed as

γ(i) ◦ ĥ ◦ (ΨP +1a) = γ(i) ◦ [ĥ ◦ (ΨP +1a)]

= γ(i) ◦
{

[ΨP +1 ◦ (ĥ1T
P +1)]a

}

= [(γ(i)1T
P +1) ◦ ΨP +1 ◦ (ĥ1T

P +1)]a. (42)

Similarly, the second term in the right hand side of (41) is
rewritten as

(ΨQ+1b) ◦ γ(i) =[(γ(i)1T
Q+1) ◦ ΨQ+1]b. (43)

Finally, we define (42) and (43) as H(i)a and B(i)b, respec-
tively. This trivially leads to (29).
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