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SUMMARY

Quantum networks are expected to enable applications that are provably impossible with
classical communication alone, such as generation of secret keys for secure communica-
tion and high-precision distributed sensing. A fundamental resource needed for many of
these applications is shared entanglement among distant parties. Hence, the viability of
an application relies on the underlying protocol for entanglement distribution. Existing
protocols often suffer from long waiting times, as they rely on the success of multiple
random events, each with a low probability of success. Moreover, pre-distribution of
entanglement is difficult, since entanglement degrades over time when stored in memory,
eventually becoming unusable. In this thesis, we address these challenges by designing
efficient entanglement distribution protocols and architectures.

First, we focus on on-demand entanglement distribution, in which the entanglement
distribution process is initiated only after some users request it. We find optimal protocols
that minimize the waiting time for distributing entanglement among two users that are
connected by a chain of two-way quantum repeaters. The performance of these protocols
sets a benchmark for on-demand distribution of quantum states. We also study a multi-
user network of one-way quantum repeaters, and we conclude that finite waiting times
are only achievable when the users are at most a few kilometers apart from each other,
irrespective of the number of repeaters available.

Next, we examine protocols for continuous entanglement distribution, in which
the distribution process is initiated before any user requests. While these protocols can
sometimes lead to resource wastage – as noise in memory renders the entanglement
unusable if distributed too early –, they offer the potential to reduce expected waiting
times compared to on-demand methods. Surprisingly, we find that, when the time
required to distribute entanglement follows a broad probability distribution, initiating
the process preemptively can actually result in longer expected waiting times compared
to an on-demand approach.

Lastly, we propose an architecture for buffering high-quality entanglement, ensuring
it is readily available for use when needed. A key feature of this system is the use of
purification subroutines to prevent the buffered entanglement from degrading over
time due to quantum decoherence. Among other findings, we show that maximizing
entanglement quality upon consumption requires frequent purification, even if this
process often fails and results in the loss of high-quality buffered entanglement.

The results presented in this dissertation were obtained mostly analytically, leveraging
tools from performance analysis, including queueing theory and renewal theory, and
supported by extensive discrete-event simulations. Our theoretical insights provide
benchmarks and identify fundamental limitations of quantum networks, offering valuable
guidance for the design of reliable entanglement distribution systems.

xi





SAMENVATTING

Kwantumnetwerken zullen naar verwachting toepassingen mogelijk maken die bewezen
onmogelijk zijn met alleen klassieke communicatie, zoals het genereren van geheime
sleutels voor veilige communicatie en zeer nauwkeurige gedistribueerde detectie. Een
essentiële hulpbron voor veel van deze toepassingen is gedeelde verstrengeling tussen
partijen die ver van elkaar verwijderd zijn. De levensvatbaarheid van een toepassing
hangt daarom af van het protocol voor verstrengelingsdistributie. Bestaande protocollen
kampen vaak met lange wachttijden, omdat ze afhankelijk zijn van meerdere willekeurige
gebeurtenissen met een lage slagingskans. Daarnaast is pre-distributie van verstrengeling
moeilijk, omdat verstrengeling na verloop van tijd degradeert wanneer opgeslagen in
geheugen, wat het uiteindelijk onbruikbaar maakt. In dit proefschrift pakken we deze
uitdagingen aan door efficiënte verstrengelingsdistributieprotocollen en -architecturen
te ontwerpen.

Ten eerste richten we ons op on-demand verstrengelingsdistributie, waarbij het
proces pas start wanneer gebruikers erom vragen. We ontwikkelen optimale protocollen
die de wachttijd minimaliseren voor het distribueren van verstrengeling tussen twee
gebruikers, verbonden door een keten van tweerichtingskwantumrepeaters. De prestaties
van deze protocollen dienen als referentiepunt voor on-demand distributie van kwan-
tumtoestanden. We onderzoeken ook een multi-user netwerk van eenrichtingskwantum-
repeaters en concluderen dat eindige wachttijden alleen haalbaar zijn als gebruikers niet
meer dan een paar kilometer van elkaar verwijderd zijn, ongeacht het aantal repeaters.

Vervolgens analyseren we protocollen voor continue verstrengelingsdistributie, waar-
bij het proces start vóórdat gebruikers een verzoek doen. Hoewel dit soms leidt tot ver-
spilling van middelen, omdat ruis in het geheugen verstrengeling onbruikbaar maakt
wanneer het te vroeg wordt gedistribueerd, kunnen deze protocollen de gemiddelde
wachttijden verkorten ten opzichte van on-demandmethoden. Verrassend genoeg blijkt
dat wanneer de distributietijd een brede waarschijnlijkheidsverdeling volgt, preventief
starten juist kan leiden tot langere wachttijden dan een on-demand aanpak.

Tot slot stellen we een architectuur voor om hoogwaardige verstrengeling te bufferen,
zodat deze direct beschikbaar is wanneer nodig. Een belangrijk onderdeel van dit systeem
is het gebruik van zuiveringssubroutines om te voorkomen dat de gebufferde verstrenge-
ling degradeert door kwantumdecoherentie. We tonen aan dat het maximaliseren van de
verstrengelingskwaliteit bij gebruik frequente zuivering vereist, zelfs als dit proces vaak
mislukt en resulteert in het verlies van hoogwaardige gebufferde verstrengeling.

De resultaten in dit proefschrift zijn grotendeels analytisch verkregen, met behulp
van hulpmiddelen uit de prestatieanalyse, waaronder wachtrijtheorie en vernieuwings-
theorie, en ondersteund door uitgebreide discrete-gebeurtenissimulaties. Onze theo-
retische inzichten bieden benchmarks, identificeren fundamentele beperkingen van
kwantumnetwerken en bieden waardevolle richtlijnen voor het ontwerp van betrouwbare
verstrengelingsdistributiesystemen.

xiii





PREFACE

Dear reader,

My PhD journey began in November 2020, in the midst of a global pandemic. During
the first year, virtual meetings became the norm. Like many researchers, I found myself
building my own little island of knowledge, with limited connection to others. It was
during these early stages that Kaku arrived. His scars initially made me hesitant to trust
him, but he soon proved to be the sweetest (and most hard-working) feline companion I
could ask for.

As social restrictions gradually eased, those isolated islands of knowledge started to
reconnect, fostering collaboration and renewing a sense of community for researchers
like me who were still finding their feet. I was very fortunate to work alongside researchers
I deeply respect, many of whom I now consider my friends. This journey also led me
on adventures I thoroughly enjoyed, taking me to conferences, workshops, and research
visits in cities such as Chicago, Boston, Paris, Las Vegas, Amherst, Montreux, and Montreal.
These experiences expanded my horizons, exposing me to new perspectives and sending
me back to Delft with fresh and exciting new ideas.

Now, after four years of navigating uncharted territory, I am pleased to bring this
journey to its end.

This dissertation presents an extensive summary of my research. Like most scientific
works, it is not meant to be read in its entirety in a linear fashion. I encourage you to
explore the Table of Contents and focus on the chapters that capture your interest. To
offer a gentle introduction for those new to the field of quantum networks, I have included
a brief introductory chapter. Additionally, each main chapter is self-contained, offering
its own independent introduction for clarity and context.

The results presented in this dissertation address several key questions essential to
the design of quantum networks, but they also open the door to new inquiries. As such, I
hope that these contributions not only provide valuable insights but also spark further
exploration and innovation in the field of quantum networks.

Álvaro G. Iñesta
Delft, November 2024
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1
INTRODUCTION

Quantum networks are expected to enable multi-party applications that are impossible, or
highly inefficient, by using only classical information. Notable examples include quantum
key distribution [12, 59], which allows remote parties to generate secret keys for secure
communication; distributed quantum computing [26, 46], where a coalition of small
quantum computers can perform tasks that would otherwise require a large and powerful
quantum computer; and distributed quantum sensing [74, 152, 202], which can enhance
the precision of certain physical measurements. At the core of most of these applications
is the use of shared entanglement as a critical consumable resource: the parties involved
must share entangled states to successfully execute the application.

Two or more quantum systems are said to be entangled when their individual states
cannot be described independently of each other [138]. A quantum network must be ca-
pable of entangling systems held by parties at remote physical locations, a process known
as entanglement distribution (or delivery). Entanglement is generally distributed using
entangled photons [9, 33]. For example, in the case of bipartite entanglement, one party
may locally generate an entangled pair of particles and send one of them, as a photon, to
the other party. In some situations, the distance between parties is short, spanning only a
few meters, such as when quantum illumination is used to enhance the signal-to-noise
ratio of an image [61, 123]. In other cases, entanglement may need to be distributed over
several kilometers, for example, to improve radar measurements [199, 208], or even across
continental distances, as required for long-range quantum key distribution [124, 181].
Despite recent experimental advances in distributing entanglement over both short and
long distances [16, 109, 118, 180, 207], efficient entanglement distribution remains an
open problem.

A major issue for efficient entanglement distribution is the fragility of quantum states
during transmission and storage:

• N O I S Y C O M M U N I C A T I O N – Photon loss is a well-known challenge in optical
communication networks, hampering the transmission of signals over long dis-
tances. In classical networks, optical amplifiers and repeaters are commonly used

1
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2 1. INTRODUCTION

to strengthen signals and enable long-distance transmission. However, these solu-
tions cannot be applied to quantum communication, as quantum states cannot
be cloned or amplified without altering the information they carry due to the no-
cloning theorem [138].

• N O I S Y S T O R A G E – When stored in memory, quantum states experience quan-
tum decoherence, causing their quality to degrade over time due to environmental
noise [38, 58]. Moreover, the no-cloning theorem prevents the creation of backup
copies of quantum data, adding another layer of complexity. It is also important
to note that local processing of stored quantum states, such as applying quantum
gates, often constitutes an additional source of noise.

Noisy communication and storage has major implications in quantum networks, as it
leads to important timing constraints and challenges in the entanglement distribution
process. Before delving into the specific challenges addressed in this dissertation, we first
introduce the key concepts and terminology. Section 1.1 offers a brief introduction to
the key quantum information concepts used throughout this thesis. Then, in Section 1.2,
we discuss general quantum network principles and establishes the terminology for the
following chapters. In Section 1.3, we outline the main analytical and numerical tools
we use to study the performance of entanglement distribution protocols in quantum
networks. Finally, Section 1.4 presents the key challenges that remained open at the start
of our PhD research and explains how they are addressed in this dissertation.

1.1. QUANTUM PRELIMINARIES

Here, we introduce the basic quantum information concepts employed throughout this
dissertation. This section is adapted from our previous work [50]. For a general reference
on quantum information theory, see, e.g., ref. [138].

In classical computer science, information is generally stored in the form of bits,
discrete binary variables that can take value zero or one. In quantum information theory,
bits are generalized to qubits. Qubits describe systems that can be in a linear combination
of two different states (say, state zero and state one). As a consequence, a qubit must not be
described as a binary variable but as a vector

∣∣ψ〉 ∈C2 with unit norm. We represent these
vectors using the Dirac notation, and we refer to |·〉 as a ket and to its conjugate transpose
|·〉† as a bra, also written as 〈·|. The state of a pure n-qubit system is then described by
a d-dimensional vector

∣∣ψ〉 ∈Cd , with d = 2n . The elements of the basis of the n-qubit
Hilbert space are usually labeled |x〉, with x ∈ {0,1}n . For example, the basis of the two-
qubit space can be written as {|00〉 , |01〉 , |10〉 , |11〉}. We can modify the states of qubits via
quantum gates and measurements. Quantum gates are unitary transformations acting on
the Hilbert space. Some of them are analogous to logic gates – for example, a bit can be
flipped with a NOT gate and a qubit can be flipped from |0〉 to |1〉 with a Pauli X gate [138].
Measurements change the state of the qubit according to some positive operator-valued
measure (POVM), which determines the probability of obtaining each measurement
outcome. For example, if we measure a qubit

∣∣ψ〉 = sinθ |0〉+cosθ |1〉, θ ∈ [0,π], in the
basis {|0〉 , |1〉}, the state of the qubit after the measurement will be either |0〉 or |1〉. For
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formal definitions and further examples of quantum gates and measurements, see, e.g.,
ref. [138].

Noise and quantum operations, such as gates and measurements, modify the state of a
quantum system. When dealing with noisy systems, it is necessary to represent quantum
states using the density matrix formalism instead of kets and bras. The density matrix of
a pure state

∣∣ψ〉
can be written as the outer product ρ = ∣∣ψ〉〈

ψ
∣∣. When the system is not

pure, it is called mixed, and it is written as a mixture of pure states: ρ = ∑
i αi

∣∣ψi
〉〈
ψi

∣∣,
with αi ∈ [0,1] and

∑
i αi = 1. Intuitively, this corresponds to a system with some degree

of uncertainty from a classical point of view. For example, consider a device that prepares
the state

∣∣ψ1
〉

with probability α and the state
∣∣ψ2

〉
with probability 1−α. We can write

the output state of the device as a mixed state α
∣∣ψ1

〉〈
ψ1

∣∣+ (1−α)
∣∣ψ2

〉〈
ψ2

∣∣.
Let us now consider a two-qubit state

∣∣ψ〉 ∈ C4. When one of the qubits is in state∣∣ψ〉
1 ∈ C2 and the other qubit is in state

∣∣ψ〉
2 ∈ C2, we can write the joint state of the

system as the tensor product of the individual qubit states:
∣∣ψ〉 = ∣∣ψ〉

1 ⊗
∣∣ψ〉

2. This is
called a product state. When the two qubits are entangled, it is not possible to describe
their joint state as a tensor product1. One of the intuitive effects of the entanglement
is that, if both qubits are measured, the measurement outcomes will be correlated. We
refer to a two-qubit (mixed) state ρ as an entangled link – in most setups considered in
this thesis, both qubits are situated at distant locations, and the entanglement can be
regarded as “link” connecting them. Entangled links can be entangled to different degrees.
The Bell states are examples of two-qubit maximally entangled (pure) states:∣∣φ+〉= |00〉+ |11〉p

2
,
∣∣ψ+〉= |01〉+ |10〉p

2
,
∣∣ψ−〉= |01〉− |10〉p

2
,
∣∣φ−〉= |00〉− |11〉p

2
. (1.1)

These four states form an orthonormal basis of the two-qubit Hilbert space. Measure-
ments on the individual qubits of any of these states yield maximally correlated outcomes.
Additionally, all two-qubit maximally entangled states are equivalent, since they can be
mapped via single-qubit operations to each other. Therefore, we can measure the quality
of the entanglement of a two-qubit state by measuring how close the state is to one of the
Bell states, say

∣∣φ+〉
. Formally, we do this using the fidelity of the state:

F (ρ) = 〈
φ+∣∣ρ ∣∣φ+〉

, (1.2)

where ρ is the density matrix of an arbitrary two-qubit state.
Lastly, an important type of mixed entangled state is the Bell-diagonal state:

ρBD = FBD

∣∣φ+〉〈
φ+∣∣+λ1

∣∣ψ+〉〈
ψ+∣∣+λ2

∣∣ψ−〉〈
ψ−∣∣+λ3

∣∣φ−〉〈
φ−∣∣ ,

with FBD,λ1,λ2,λ3 ∈ [0,1] subjected to the normalization constraint FBD +λ1 +λ2 +λ3 = 1.
The fidelity of this state is FBD. Bell-diagonal states are relevant because any two-qubit
state can be transformed into Bell-diagonal form while preserving the fidelity by applying
extra noise, a process known as twirling [13]. A specific instance of Bell-diagonal state is
the Werner state [197]:

ρW = F
∣∣φ+〉〈

φ+∣∣+ 1−F

3

∣∣ψ+〉〈
ψ+∣∣+ 1−F

3

∣∣ψ−〉〈
ψ−∣∣+ 1−F

3

∣∣φ−〉〈
φ−∣∣ , (1.3)

1Note that entanglement is a more general concept that not only applies to two-qubit systems, but also to
multi-partite quantum states. In this thesis, however, we restrict ourselves to bipartite entanglement unless
otherwise specified.



1
4 1. INTRODUCTION

(a) (b) (c)

Figure 1.1: Examples of network topology. (a) Arbitrary topology, (b) repeater chain, and (c) tree network. Users
are connected via repeaters (empty circles) and physical links (solid lines). The quantum repeater chain is
investigated in Chapter 2. The quantum tree topology is analyzed in depth in ref. [40] and used in some of the
examples in Chapter 4.

with fidelity F ∈ [0,1]. The Werner state corresponds to a maximally entangled state
that has been subjected to isotropic noise, and it is entangled if and only if F > 1/2 (see
Appendix E.3 from ref. [50]). A recurring assumption in this thesis is that entangled links
are Werner states – this is a worst-case assumption, since we can apply additional noise
to any two-qubit state to transform it into Werner form via twirling [58, 86]. Consequently,
we measure the quality of entangled links using a single parameter, the fidelity, unless
otherwise specified.

Note that, when distributing entanglement in a network, multiple sources of noise
may degrade the fidelity of the quantum states – even when the state is simply stored in
memory its fidelity will decay over time [38, 58, 203]. To alleviate the effects of noise, engi-
neering tools such as cutoffs, quantum error correction, and entanglement purification
are used. We discuss them at the end of the next section.

1.2. OVERVIEW OF QUANTUM NETWORKS

Quantum networks are networked systems that facilitate quantum communication be-
tween multiple parties. Quantum networks are composed of nodes, which are connected
by physical links (see Figure 1.1). These physical links allow for quantum information to
be transmitted from node to node, and they can be realized with optical fibers [174, 206] or
free space [169, 181]. The nodes of the network can be classified into users2 and quantum
repeaters (sometimes called routers or switches, depending on the context). Here, we focus
on the distribution of entanglement among user nodes: after entanglement is distributed,
each user will hold part of a shared entangled state. Quantum repeaters alleviate the
effects of photon loss and enable long-distance entanglement distribution. This can be
achieved in different ways, depending on the type of repeater employed (for a detailed
review see, e.g., refs. [132, 136]):

1. Two-way quantum repeaters generate entanglement between users following a
two-step process that requires two-way communication (see, e.g., [22, 164]): first,
entanglement is generated among each pair of nodes that share a physical link [9,
33], over a path between the two users; then, entanglement swapping is used to fuse

2We use the terms user, user node and end node interchangeably throughout this thesis, unless otherwise
specified.
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short-distance entangled links into long-distance ones [55, 209] – see Figure 1.2 for
an illustration. In general, entanglement generation and swapping are probabilistic,
i.e., they can fail, destroying all entangled links involved.

2. One-way quantum repeaters use quantum error correction to transmit quantum
data using only one-way communication [133, 135]. To distribute an entangled
link among two users, the entangled state must be generated locally by one user,
who then sends half of the state to the other user. This process is conceptually
similar to sending a data packet in classical networks [8, 51], with the key distinc-
tion that the “packet” now contains quantum information rather than a classical
bit string [54]. While one-way quantum repeaters are expected to enable faster
entanglement distribution, they demand more physical resources (to construct
robust encoded quantum states) and typically require shorter distances between
repeaters compared to two-way quantum repeaters.

As of now, quantum networks have not yet been fully implemented for applications
that consume entanglement3. Therefore, it is hard to predict what would be the topology
of such networks. Current research usually focuses on the following topologies:

• The quantum repeater chain (Fig. 1.1b) is a canonical example of network used to
distribute entanglement among two fixed users [22, 44, 91, 96, 102, 167].

• Tree networks are structured such that each user is connected to a repeater, with
repeaters arranged hierarchically, all connecting to higher-level repeaters, except
for the top-most one (Fig. 1.1c). In this topology, any node can be reached from
any other node by following a single, unique path, making route optimization
straightforward [40].

• A particular instance of tree network that has received a lot of scientific attention is
the star network, where all users are directly connected to a central repeater station,
sometimes called quantum switch [6, 89, 179, 187].

• Regular networks typically consist of two-dimensional regular arrangements of
nodes, such as in a square grid. These topologies are commonly considered in the
context of modular quantum computing, where multiple cores are arranged in a
regular pattern and require entanglement between them to operate [2, 41, 80, 157,
177].

Regardless of their topology, the ultimate goal of the networks considered here is to
distribute entangled links among the users. To achieve this, we must design effective
entanglement distribution protocols, which dictate how the network operates (e.g., when
and where to generate short-distance entanglement and when to perform entanglement
swapping). These protocols adhere to one of the following general approaches:

• In on-demand entanglement distribution, users must request entanglement to initi-
ate the protocol. Such requests may include some quality-of-service requirements

3Networks for quantum key distribution have been deployed, but this application does not necessarily consume
entanglement. See, e.g., ref. [34] for a review.
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Entanglement 
swapping

Figure 1.2: Entanglement swapping. Two-way quantum repeaters first establish entanglement between
neighboring nodes, then apply entanglement swapping to extend this short-range entanglement into long-
distance connections.

(e.g., entanglement with fidelity above some threshold). This type of protocol typi-
cally involves solving a routing problem and scheduling a series of operations on a
selected subset of nodes (see, e.g., [22, 63, 91, 140, 187, 189]). In this dissertation,
we focus on protocols for on-demand distribution in Chapters 2 (quantum repeater
chain with two users and two-way repeaters) and 3 (star network with multiple
users and one-way repeaters).

• Protocols for continuous distribution of entanglement are not triggered by user re-
quests. Instead, these protocols distribute entanglement continuously throughout
the network, allowing users to consume entangled links whenever needed [35, 94,
105, 146, 149]. This approach enables applications to continuously operate and con-
sume entanglement in the background. For example, a quantum key distribution
application could run in the background, continuously consuming entanglement
to generate shared key for future use. Continuous-distribution protocols can offer
improved performance over on-demand protocols, potentially meeting entangle-
ment needs at a faster rate. However, this comes at the cost of quantum resource
wastage: if entanglement is shared and stored for too long, its quality degrades
and eventually becomes unusable. Continuous-distribution protocols are inves-
tigated in Chapter 4, where we propose metrics to measure their performance.
In Chapter 5, we compare continuous and on-demand distribution protocols in
terms of both performance and cost (in terms of wasted resources). Additionally,
in Chapters 6 and 7, we propose an entanglement buffering system designed to
support continuous distribution of entanglement.

Intermediate strategies that combine on-demand and continuous-distribution philoso-
phies may also be viable. For instance, the network could continuously distribute entan-
glement under normal conditions but switch to on-demand distribution when saturated
with specific demands, thereby enhancing efficiency in critical scenarios.

Lastly, it is important to note that quantum network applications commonly require
high-quality entanglement. However, quantum operations and storage in quantum
memories are generally noisy processes that degrade the quality of the entanglement.
To overcome the loss of quality in entangled links during their distribution across a
network, three fundamental techniques have traditionally been employed:

• Cutoffs consist in discarding a quantum state after some condition is met. Usually,
this is done after some fixed amount of time since the generation of the quantum
state [43, 91, 116, 160].
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• Quantum error correction involves encoding a quantum state into a higher-dimensional
state from a larger Hilbert space – e.g., a single qubit can be encoded into a five-
qubit state [112]. This delocalization of quantum information makes the encoded
state more robust against noise, and allows for the detection and correction of
errors that may occur during transmission or processing. For a general introduction
to quantum error correction, see, e.g., ref. [69].

• Purification protocols are processes that consume n entangled quantum states
of low quality and output m states with a higher quality, where typically m < n.
Examples can be found in refs. [15, 53, 56]; for a review see, e.g., ref. [205].

1.3. PERFORMANCE ANALYSIS IN QUANTUM NETWORKS

Effective entanglement distribution protocols must deliver high-quality entanglement
as quickly as possible. To design such protocols, we need to define meaningful perfor-
mance metrics, which are essential for optimizing individual protocols and enabling fair
comparisons between different protocols and architectures.

The choice of performance metric(s) heavily depends on the goal of the system. While
the overarching goal is to distribute entanglement, each system may have different specific
requirements. Consider the following examples: (i ) an entanglement-based quantum key
distribution application that can only generate secret key when consuming entangled
links with fidelity above a certain threshold [165] and (i i ) a blind quantum computation
that requires multiple coexisting entangled links to teleport several qubits simultaneously
from a client to a server [49, 115]. In the first example, one may want to ensure that
entangled links have a large enough fidelity, and then optimize the rate at which we
can provide entanglement. In the second example, the focus might be on ensuring that
multiple entangled links can be distributed within a short time frame, followed by an
optimization of their fidelities to minimize errors in the teleportation subroutine. As we
can see, different types of systems and protocols require different performance metrics.
We can classify these metrics in three main categories:

• Quality-based metrics evaluate the quality of the quantum states produced. Com-
mon examples used to study on-demand protocols include the fidelity of the en-
tangled links delivered [138], the distillable entanglement [153, 154], and the nega-
tivity [190]. Similar quantities can be defined to analyze protocols for continuous
distribution of entanglement, such as the average fidelity of entangled links upon
consumption [50].

• Rate-based metrics focus on the rate at which entanglement can be generated.
This includes quantities like the expected time until the first entangled link is
distributed [78, 91, 96], which is relevant for on-demand protocols, and the average
entanglement distribution rate in the steady state [6, 89], applicable to continuous-
distribution protocols.

• Situational metrics can be used in special circumstances. For instance, the avail-
ability [50] measures the fraction of time in which entanglement is available for
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consumption in an entanglement buffering system. In cases where a continuous-
distribution protocol is used to distribute multiple entangled states across a large
network, the performance can be evaluated using the virtual neighborhood size [94],
percolation thresholds [2, 41], and clustering coefficients [25]. Application-specific
metrics can also be used. A notable example is the secret key rate [73, 165], which
quantifies the amount of secret key that can be extracted per unit time in a quan-
tum key distribution application – this metric depends on both the quality of the
entanglement consumed in the application and the rate at which entanglement is
distributed.

A plethora of methods have been employed to evaluate the performance of quantum
network protocols, both analytically and numerically. Regarding analytical methods,
recent studies have used Markov decision processes [78, 91, 101], queueing theory [36, 64,
89], and graph theory [25, 41, 94]. In this dissertation, we borrow techniques from these
three disciplines – for a general reference on these topics, see, e.g., refs. [76, 184]. However,
quantum network systems often become too complex for fully analytical studies, making
Monte Carlo simulations a necessary tool in such cases. Discrete-event simulations are
particularly useful, as quantum network protocols frequently involve a variety of discrete
stochastic processes. For instance, entanglement generation typically happens in discrete
attempts with a low probability of success [148]. Examples of community-built simulators
are NetSquid [45], SeQUeNCe [201], and ReQuSim [193].

1.4. THESIS CONTENTS

Next, we present the main questions that remained unanswered at the start of our re-
search, and we explain how we addressed them. At the end of this section, we also provide
a brief review of our recent works that are not included in this dissertation.

1 O P T I M A L S T R A T E G I E S F O R T W O - W A Y R E P E A T E R C H A I N S – As previously
discussed, two-way quantum repeaters enable long-distance entanglement dis-
tribution by first generating entangled links between adjacent repeaters along a
linear chain, which are then converted into an end-to-end link through entangle-
ment swapping operations. Since entanglement generation is probabilistic, some
links must be stored in memory until neighboring links are available for swapping.
However, prolonged storage degrades entanglement quality, eventually rendering
some states unusable. One approach is to withhold all swaps while discarding old
links (i.e., applying cutoffs) until all links are fresh and ready to be swapped, but
this can lead to excessive waiting. The opposite strategy – swapping as soon as
possible – may also introduce unwanted delays, as fresh links risk being combined
with degraded ones, resulting in low-quality output links that must be discarded
sooner than the original fresh link. This suggests that early, but not premature,
swapping might optimize the overall entanglement distribution rate. Prior to our
work, various repeater chain strategies were explored (see, e.g., refs. [22, 44, 96,
116]), each yielding vastly different distribution rates depending on system parame-
ters. However, no clear answer existed as to which approach was best. This led to a
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fundamental question: which is the optimal strategy to operate a repeater chain in
the presence of decoherence?

In Chapter 2, we find optimal strategies for operating repeater chains that
outperform all known approaches, particularly when swapping operations
succeed probabilistically. Importantly, we assume that links are discarded
after some storage time, to ensure a minimum quality of the end-to-end link.
Our solutions set benchmarks for evaluating practical strategies within the
limitations of existing infrastructure.

2 F U N D A M E N T A L L I M I T S T O O N E - W A Y R E P E A T E R N E T W O R K S – One-way
quantum repeaters have been proposed as a technology capable of achieving fun-
damentally higher entanglement distribution rates than two-way repeaters, albeit
at a higher cost [133, 136]. However, prior research has largely focused on their
design in isolation [7, 18, 135]. When integrated into a network, these repeaters can
route quantum data packets similarly to classical networks [119]. Inspired by the
success of classical packet switching [8, 51], quantum packet switching strategies
have been explored [54]. However, this approach typically allows repeaters to store
and delay packet relay based on network traffic. Given the strict timing constraints
inherent to quantum networks, where delays can significantly degrade quantum
states, a circuit switching approach with a reservation system could offer superior
performance by minimizing the impact of network-induced delays on state deliv-
ery. Can quantum circuit switching be a practical solution? Is it feasible to build a
large-scale, functional quantum network using this approach?

In Chapter 3, we propose a quantum circuit switching protocol for one-way
quantum repeater networks. Among other findings, we show that, despite
the presence of numerous repeaters to mitigate losses, users must remain
within a metropolitan area – only a few kilometers from each other – to ensure
entanglement delivery within a finite time.

3 C O N T I N U O U S E N T A N G L E M E N T D I S T R I B U T I O N – In contrast to on-demand
distribution, investigated in the previous research questions, continuous distri-
bution allocates entanglement to users before they request it. While continuous-
distribution protocols have been proposed [35, 66, 105, 149], they have typically
been evaluated using traditional performance metrics, which may not fully capture
the unique properties of these strategies. For example, the expected time to dis-
tribute end-to-end entanglement is commonly used to assess on-demand protocols.
However, this metric may be less relevant for continuous-distribution protocols, as
entangled links may be distributed but never used if not requested. In such cases,
the rate at which those links are distributed becomes irrelevant, as the focus shifts
to their availability when needed. Furthermore, a comprehensive comparison of
both strategies has been lacking in the literature. This raises important questions:
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how should we measure the performance of continuous-distribution protocols? How
do these protocols compare to on-demand strategies?

In Chapter 4, we introduce two key performance metrics for continuous-
distribution protocols. We then use the concept of Pareto optimality to
formulate a multi-objective optimization problem to maximize performance.
In Chapter 5, we evaluate the performance enhancement that continuous
distribution may provide over on-demand distribution. For this analysis, we
assume a specific request model and we use the expected waiting time to
complete requests as a performance metric. We find that, in certain scenarios,
continuous distribution, which delivers entanglement preemptively before
requests are made, can surprisingly lead to longer waiting times.

4 E N T A N G L E M E N T B U F F E R I N G – Once distributed, users may wish to store en-
tanglement for later use, but quantum states degrade over time due to decoherence.
Purification protocols have been widely studied to address this issue [15, 53, 56,
205]. These protocols have typically been analyzed in static settings, where a fixed
set of input states is assumed, and the goal is to compute the output state after
one or more applications of the protocol. In a networked scenario, however, en-
tangled states are delivered and consumed dynamically, often following stochastic
processes. Is it possible to leverage purification protocols to design a dynamic archi-
tecture that ensures fresh entanglement is available at any time?

In Chapter 6, we develop a systematic framework for the study and design of
entanglement buffers that make use of purification subroutines to store high-
quality bipartite entanglement, introducing two key performance metrics:
the probability that entanglement is available at any given time and the
average entanglement quality upon consumption. We then derive analytical
solutions to study a buffer that only uses two quantum memories.
In Chapter 7, we find closed-form solutions for the performance of a more
general system containing an arbitrary number of quantum memories,
which allows for more sophisticated purification subroutines and boosted
performance. We also show that purification must be performed as frequently
as possible to maximize the average fidelity of consumed entanglement, even
if this often leads to the loss of high-quality entanglement due to purification
failures.

While our work has answered multiple questions, it has also raised many new ones. At the
end of each chapter, we include an outlook section where we discuss specific directions
for future research. In Chapter 8, we provide general concluding remarks and reflect on
the future of the field.

1.4.1. CONTRIBUTIONS NOT INCLUDED IN THIS THESIS

Here, we provide a brief overview of recent works in which we have contributed during
the course of the PhD, but which are not included in this dissertation. These publications,
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while relevant, focus on different aspects of the research that extend beyond the scope of
this thesis.

• In Chapter 2, we identify optimal strategies for operating a chain of quantum re-
peaters with the goal of delivering end-to-end entanglement as quickly as possible.
One of our main assumptions is that classical communication is instantaneous.
In ref. [31] (master’s thesis supervised jointly with Prof. Vardoyan), we relax this
assumption, and we present heuristics for designing repeater chain policies that
maintain strong performance under more realistic engineering constraints, specifi-
cally classical communication delays.

• In ref. [75], we investigate another aspect of entanglement distribution in quantum
repeater chains. Usually, intermediate entangled states are discarded once their
quality has decayed below a certain threshold, after a fixed storage time. In ref. [75],
we propose discarding entangled states at random. We demonstrate that this
strategy, which avoids the need to track and communicate storage times, can
achieve similar end-to-end delivery rates and end-to-end entanglement quality in
certain parameter regimes.

• In ref. [40], we propose using networks with a tree topology, where users are
positioned as the leaves of the tree, for on-demand multi-user entanglement distri-
bution. We show that, although this topology is vulnerable to node deletion, tree
networks require fewer qubits per node to prevent traffic congestion than other
topologies, thereby offering a more efficient solution.

• In ref. [177], we investigate the use of protocols for continuous distribution of
entanglement in networks with a regular topology. A remarkable insight is that the
network’s boundary conditions – whether fixed (nodes are not connected beyond
the physical edges of the network) or periodic (nodes on one edge are connected
to those on the opposite edge) – play a crucial role in determining how much
entanglement the nodes can share at any given time.

• The study of quantum networks often focuses on optimizing the performance of
protocols and architectures. However, in complex systems where analytical solu-
tions are not available, traditional optimization techniques that rely on continuity,
differentiability, or convexity may become inapplicable. In ref. [151], we introduce
an efficient optimization workflow for quantum network systems. Using a net-
work simulator, we train simple machine learning surrogate models that mimic
the system’s behavior, and we optimize the performance of such surrogates. The
solutions found by our algorithm consistently outperform those obtained with
related numerical approaches, such as simulated annealing [104] and Bayesian
optimization [98].
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OPTIMAL POLICIES FOR

ENTANGLEMENT DISTRIBUTION IN

TWO-USER NETWORKS
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Stephanie Wehner

Protocol is how we get on the same page;
in fact, the word is rooted in the Greek protokollon, “first glue”,

which referred to the outer page attached to a book or manuscript.

— Brian Christian and Tom Griffiths

We study the limits of bipartite entanglement distribution using a chain of quantum
repeaters that have quantum memories. To generate end-to-end entanglement, each
node can attempt the generation of an entangled link with a neighbor, or perform an
entanglement swapping measurement. A maximum storage time, known as cutoff, is
enforced on the memories to ensure high-quality entanglement. Nodes follow a policy that
determines when to perform each operation. Global-knowledge policies take into account
all the information about the entanglement already produced. Here, we find global-
knowledge policies that minimize the expected time to produce end-to-end entanglement.
Our methods are based on Markov decision processes and value and policy iteration. We
compare optimal policies to a policy in which nodes only use local information. We find
that the advantage in expected delivery time provided by an optimal global-knowledge
policy increases with increasing number of nodes and decreasing probability of successful
swapping.

This chapter has been published separately in ref. [91].
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2.1. INTRODUCTION

Bipartite entangled states shared between two parties are often required as a basic re-
source in quantum network applications. As an example, in cryptography, bipartite
entanglement can be directly used for quantum key distribution between two parties
[12, 59], but also in multi-party applications such as quantum secret sharing [10]. Bi-
partite entanglement can also be used to generate multipartite entangled states that
are necessary for other applications [29, 107, 145]. As a consequence, a reliable method
to distribute entanglement in a quantum network is crucial for the implementation of
quantum cryptography applications.

Two neighboring nodes in a quantum network can generate a shared bipartite en-
tangled state, which we call an entangled link. This can be done, e.g., by generating an
entangled pair at one node and sending half of the pair to the neighbor via an optical
fiber [174, 206] or free space [169, 181]. Two distant nodes can generate an entangled
link by generating entanglement between each pair of adjacent nodes along a path that
connects them, and then combining these entangled links into longer-distance bipar-
tite entanglement via entanglement swap operations [55, 164]. This path constitutes a
quantum repeater chain (see Figure 2.1). We consider repeater chains in which nodes can
store quantum states in the form of qubits and perform operations and measurements
on them. Experimentally, qubits can be realized with different technologies, such as NV
centers [16, 83, 87, 147, 161] and trapped ions [130, 172].

We focus on a single repeater chain of n equidistant and identical nodes, which could
be part of a larger quantum network. To generate an entangled link between the two
end nodes, also called end-to-end entanglement, we assume the nodes can perform the
following operations: (i ) heralded generation of entanglement between neighbors [9, 16],
which succeeds with probability p and otherwise raises a failure flag; (i i ) entanglement
swaps [55, 164, 209], which consume two adjacent entangled links to generate a longer-
distance link with probability ps; and (i i i ) removal of any entangled link that existed
for longer than some cutoff time tcut, to prevent generation of low-quality end-to-end
entanglement due to decoherence [43, 103, 116, 160, 161]. Note that cutoff times are a key
ingredient, since many applications require quantum states with a high enough quality.

We assume that nodes always attempt entanglement generation if there are qubits
available. Cutoffs are always applied whenever an entangled link becomes too old. How-
ever, nodes are free to attempt swaps as soon as entangled links are available or some
time later, so they must agree on an entanglement distribution policy: a set of rules that
indicate when to perform a swap. We define an optimal policy as a policy that minimizes
the expected entanglement delivery time, which is the average time required to generate

Repeater chain

Node 1 Node 62 4 53
Figure 2.1: A quantum repeater chain that can store two qubits per intermediate node and one qubit per end
node. White circles represent qubits. All nodes are equidistant and identical.
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end-to-end entanglement. Here, we consider optimal global-knowledge policies, in which
nodes have information about all the entangled links in the chain. A policy is local when
the nodes only need to know the state of the qubits they hold. An example of local policy
is the swap-asap policy, in which each node performs a swap as soon as both entangled
links are available.

Previous work on quantum repeater chains has mostly focused on the analysis of
specific policies rather than on the search for optimal policies. For example, [44] provides
analytical bounds on the delivery time of a “nested” policy [22], and [96] optimizes the
parameters of such a policy with a dynamic programming approach. Delivery times can
be studied using Markov models. In [167], the authors introduce a methodology based
on Markov chains to calculate the expected delivery time in repeater chains that follow a
particular policy. Similar techniques have also been applied to other quantum network
topologies, such as the quantum switch [185, 186]. Here, we focus on Markov decision
processes (MDPs), which have already been applied to related problems, e.g., in [102], the
authors use an MDP formulation to maximize the quality of the entanglement generated
between two neighboring nodes and between the end nodes in a three-node repeater
chain. Our work builds on [168], wherein the authors find optimal policies for quantum
repeater chains with perfect memories. Since quantum memories are expected to be
noisy, particularly in the near future, quantum network protocols must be suitable for
imperfect memories. Here, we take a crucial step towards the design of high-quality
entanglement distribution policies for noisy hardware. By formulating a generalized MDP
to include finite storage times, we are able to find optimal policies in quantum repeater
chains with imperfect memories. Our optimal policies provide insights for the design of
entanglement distribution protocols.

Our main contributions are as follows:

• We introduce a general MDP model for homogeneous repeater chains with memory
cutoffs. The latter constraint poses a previously unaddressed challenge: MDP states
must incorporate not only entangled link absence/presence, but also link age.

• We find optimal policies for minimizing the expected end-to-end entanglement
delivery time, by solving the MDP via value and policy iteration.

• Our optimal policies take into account global knowledge of the state of the chain
and therefore constitute a lower bound to the expected delivery time of policies
that use only local information.

Our main findings are as follows:

• The optimal expected delivery time in a repeater chain with deterministic swaps
(ps = 1) can be orders of magnitude smaller than with probabilistic swaps.

• When swaps are deterministic, the advantage in expected delivery time offered by an
optimal policy as compared to the swap-asap policy increases for lower probability
of entanglement generation, p, and lower cutoff time, tcut, in the parameter region
explored. However, when swaps are probabilistic, we find the opposite behavior:
the advantage increases for higher p and tcut.
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• The advantage provided by optimal policies increases with higher number of nodes,
both when swaps are deterministic and probabilistic, albeit the advantage is larger
in case of the latter.

This chapter is structured as follows. In Section 2.2, we explain in detail our repeater
chain model. Then, in Section 2.3 present our main results. In Section 2.4, we discuss the
implications and limitations of our work. In Appendix 2.5, we provide more details on
how to formulate the MDP and how to solve it.

2.2. NETWORK MODEL

We analyze quantum repeater chains wherein nodes can store quantum states in the form
of qubits and can perform three basic operations with them: entanglement generation,
entanglement swaps, and cutoffs.

E N T A N G L E M E N T G E N E R A T I O N . Two adjacent nodes can attempt the heralded
generation of an entangled link (i.e., a shared bipartite entangled state), succeeding
with probability p. Generation of entanglement is heralded, meaning that the nodes
receive a message stating whether they successfully generated an entangled link or not
[9, 16]. We assume that entanglement generation is noisy. Hence, the newly generated
entangled links are not maximally entangled states but Werner states [197]. Werner states
are maximally entangled states that have been subjected to a depolarizing process, which
is a worst-case noise model [58], and they can be written as follows:

ρ = 4F −1

3

∣∣φ+〉〈
φ+∣∣+ 1−F

3
I4, (2.1)

where
∣∣φ+〉= |00〉+|11〉p

2
is a maximally entangled state, F is the fidelity of the Werner state

to the state
∣∣φ+〉

, and Id is the d-dimensional identity. In our notation, the fidelity of a
mixed state ρ to a pure state

∣∣φ〉
is defined as

F (ρ,
∣∣φ〉

) := 〈
φ

∣∣ρ ∣∣φ〉
. (2.2)

We assume that the fidelity of newly generated entangled links is Fnew ≤ 1.

E N T A N G L E M E N T S W A P. Two neighboring entangled links can be fused into a longer-
distance entangled link via entanglement swapping. Consider a situation where node B
shares an entangled link with node A, and another link with node C (see Figure 2.2). Then,
B can perform an entanglement swap to produce an entangled link between A and C
while consuming both initial links [55, 164, 209]. We refer to the link generated in a swap
operation as a swapped link. This operation is also probabilistic: a new link is produced
with probability ps, and no link is produced (but both input links are still consumed) with
probability 1−ps.

The generation of an entangled link between two end nodes without intermediate
repeaters is limited by the distance between the end nodes [132] – e.g., the noise affecting
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A B C

Figure 2.2: Entanglement swap. When node B performs a swap, an entangled link between nodes A and B and
an entangled link between nodes B and C are consumed to produce a single entangled link between A and C.
This operation is essential for the generation of long-distance entanglement.

a photon sent over an optical fiber grows exponentially with the length of the fiber [22].
Therefore, a repeater chain that makes use of entanglement swapping is needed to gener-
ate end-to-end entanglement over long distances.

C U T O F F S. The fidelity of a quantum state decreases over time due to couplings to
the environment [38, 58]. These decoherence processes can be captured using a white
noise model in which a depolarizing channel is applied to the entangled state at every
instant. As a result, the fidelity of a Werner state at time t , F (t ), is given by

F (t ) = 1

4
+

(
F (t −∆t )− 1

4

)
e−∆t/τ, (2.3)

where ∆t is an arbitrary interval of time and τ is a parameter that characterizes the
exponential decay in fidelity of the whole entangled state due to the qubits being stored
in noisy memories. This parameter depends on the physical realization of the qubit. (2.3)
is derived in Appendix 2.6.

In general, quantum network applications require quantum states with fidelity above
some threshold value Fmin. A common solution is to impose a cutoff time tcut on the
entangled links: all entangled links used to generate the final end-to-end link must be
generated within a time window of size tcut [160]. Imposing memory cutoffs requires
keeping track of the time passed since the creation of each entangled link. We call this
time the age of the link. A link is discarded whenever it gets older than tcut. Moreover, we
assume that an entangled link generated as a result of entanglement swapping assumes
the age of the oldest link that was involved in the swapping operation. Another valid
approach to calculate the age of a swapped link would be to re-compute the age based
on the post-swap fidelity, although this would lead to a more complicated formulation
to ensure that all the links that were used to produce a swapped link were generated
within the time window of size tcut. To produce end-to-end links with fidelity above
Fmin on a repeater chain that generates new links with fidelity Fnew, it suffices to ensure
that the sequence of events that produces the lowest end-to-end fidelity satisfies this
requirement. In Appendix 2.7, we show that such a sequence of events corresponds to all
links being simultaneously generated in the first attempt and all the entanglement swaps
being performed at the end of the tcut interval. Analyzing such a sequence of events leads
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to the following condition for the cutoff time:

tcut ≤−τ ln

(
3

4Fnew −1

(4Fmin −1

3

) 1
n−1

)
, (2.4)

where n is the number of nodes. For a full derivation of the previous condition, see
Appendix 2.7.

In this chapter, we consider quantum networks that operate with a limited number of
qubits. Specifically, we use the following additional assumptions:

(i) The chain is homogeneous, i.e., the hardware is identical in all nodes. This means
that all pairs of neighbors generate links with the same success probability p and
fidelity Fnew, all swaps succeed with probability ps, all states decohere according
to some coherence time τ, and all nodes apply the same cutoff time tcut. This
assumption may not hold for some long-distance quantum networks where each
node is implemented using a different technology, but may be directly applicable
to, e.g., small metropolitan-scale networks.

(ii) We assume that each node has only two storage qubits, each of which is used to
generate entanglement with one side of the chain. Each end node has a single
storage qubit. This assumption is in line with the expectations for early quantum
networks, in which nodes are likely to have a number of storage qubits on the order
of the unit (e.g., in [147] the authors realized the first three-node quantum network
using NV centers, each with a single storage qubit).

(iii) We also assume that classical communication between nodes is instantaneous.
This means that every node has global knowledge of the state of the repeater chain
in real time. In general, this is not a realistic assumption. However, given that
classical communication delays decrease the performance of the network, our
results constitute a lower bound on the expected delivery time of real setups and
can be used as a benchmark.

(iv) Time is discretized into non-overlapping time slots. During one time slot: (i ) first,
each pair of neighboring nodes attempts entanglement generation if they have free
qubits; (i i ) second, some time is allocated for the nodes to attempt entanglement
swaps; and (i i i ) lastly nodes discard any entangled link that existed for longer than
tcut time slots. To decide if they want to perform a swap in the second part of the
time step, nodes can take into account the state of the whole chain, including the
results from entanglement generation within the same time slot, since classical
communication is instantaneous. The unit of time used in this chapter is the
duration of a time slot, unless otherwise specified.

A repeater chain under the previous assumptions is characterized by four parameters:

· n: number of nodes in the chain, including end nodes.

· p: probability of successful entanglement generation.
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· ps: probability of successful swap.

· tcut: cutoff time. Note that Fnew, Fmin, and τ are used to determine a proper value
of cutoff time (see condition (2.4)), but they are not needed after that.

In an experimental setup, the value of p is determined by the inter-node distance and
the type of hardware used, as quantum nodes can be realized using different technologies,
such as NV centers [16, 83, 87, 147, 161] and trapped ions [130, 172]. Linear optics setups
generally perform swaps with probability ps = 0.5 [32, 55], while other setups can perform
deterministic swaps (ps = 1) at the cost of a slower speed of operation [147]. The cutoff
time tcut can be chosen by the user, as long as condition (2.4) is satisfied. Note that
(2.4) depends on τ (which depends on the hardware available), Fnew (which depends on
the hardware and the choice of entanglement generation protocol), and Fmin (which is
specified by the final application).

The state of the repeater chain at the end of each time slot can be described using the
age of every entangled link. In Figure 2.3 we show an example of the evolution of the state
of a chain with cutoff tcut = 3, over four time slots:

• In the first time slot (t ∈ [0,1)), all pairs of neighbors attempt entanglement genera-
tion, but it only succeeds between nodes two and three. No swaps can be performed,
and the only link present is younger than the cutoff, so it is not discarded.

• In the second time slot (t ∈ [1,2)), the age of the link between nodes two and three
increases by one. All pairs of neighbors (except nodes two and three) attempt
entanglement generation, which succeeds between nodes four and five.

• In the third time slot (t ∈ [2,3)), the age of both existing links increases by one. All
pairs of neighbors (except nodes two and three and nodes four and five) attempt
entanglement generation, and only nodes five and six succeed. A swap can be
performed at node five but they decide to wait.

• In the fourth time slot (t ∈ [3,4)), the age of every existing link increases by one.
Nodes one and two and nodes three and four attempt entanglement generation but
none of the pairs succeeds. A swap is successfully performed at node five, and a
new link between nodes four and six is generated. This new link assumes the age of
the oldest link involved in the swap operation. Lastly, the entangled link between
nodes two and three is discarded, as its age reached the cutoff time.

2.3. OPTIMAL ENTANGLEMENT DISTRIBUTION POLICIES

As described above, nodes always attempt entanglement generation if there are qubits
available. Cutoffs are always applied whenever an entangled state becomes too old. Since
nodes are free to attempt swaps as soon as entangled links are available or some time later,
they must agree on an entanglement distribution policy: a set of rules that indicate when
to perform a swap. An optimal policy minimizes the average time required to generate end-
to-end entanglement when starting from any state (i.e., from any combination of existing
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Figure 2.3: Example of entangled link dynamics in a repeater chain. Each row represents the state of the chain
at the end of time slot t . Entangled links are represented as black solid lines, with occupied qubits as black
circles. The number above each entangled link is the age of the link. We assume cutoff tcut = 3.

links) and following said policy. In particular, it minimizes the mean entanglement
delivery time, which is the average time required to generate end-to-end entanglement
when starting from the state with no entangled links. We employ the mean entanglement
delivery time as a performance metric.

In a global-knowledge policy, nodes have information about all the entangled links
in the chain. In a local-knowledge policy, the nodes only need to know the state of the
qubits they hold. An example of local policy is the swap-asap policy, in which each node
performs a swap as soon as both entangled links are available.

We model the evolution of the state of the repeater chain as an MDP. We then formulate
the Bellman equations [175] and solve them using value iteration and policy iteration to
find global-knowledge optimal policies. More details and formal definitions are provided
in Appendix 2.5.

Let us now describe the relation between the expected delivery time of an optimal
policy, Topt, and the variables of the system (n, p, ps, and tcut). Repeater chains with
a larger number of nodes n yield a larger Topt, since more entangled links need to be
generated probabilistically. When p is small, more entanglement generation attempts
are required to succeed, yielding a larger Topt. Decreasing ps also increases Topt, since
more attempts at entanglement swapping are required on average. When tcut is small, all
entangled states must be generated within a small time window and therefore Topt is also
larger. Figure 2.4 shows the expected delivery time of an optimal policy in a five-node
chain. Interestingly, ps has a much stronger influence on Topt than p and tcut: decreasing
ps from 1 to 0.5 in a five-node chain translates into an increase in Topt of an order of
magnitude. Similar behavior is observed for other values of n, as shown in Appendix 2.8.

To evaluate the advantages of an optimal policy, we use the swap-asap policy as a
baseline. Early swaps can provide an advantage in terms of delivery time, since swapping
earlier can free up qubits that can be used to generate backup entangled links, as displayed
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Figure 2.4: The expected delivery time increases with lower p, ps, and tcut. Expected delivery time of an
optimal policy, Topt, versus p in a five-node chain, for different values of cutoff (tcut = 2,5,10). Solid lines
correspond to deterministic swaps (ps = 1) and dashed lines correspond to probabilistic swaps with ps = 0.5.

in the first transition in Figure 2.5. However, the age of a swapped link may reach the
cutoff time earlier than one of the input links consumed in the swap, as the swapped
link assumes the age of the oldest input link. Following the example in Figure 2.5 and
assuming tcut = 1, if no swaps are performed, the links between nodes two and three and
between three and four will exist for one more time slot, while the link between nodes four
and five will be removed immediately since it reached the cutoff time. If both swaps are
performed, the swapped link between nodes two and five will be removed immediately
since it reached the cutoff time. Since we have arguments in favor of and against swapping
early, it is not trivial to determine the scenarios in which the swap-asap policy is close to
optimal. Next, we compare the expected delivery times of an optimal global-knowledge
policy and the swap-asap policy.

Figure 2.6 shows the relative difference between the expected delivery times of an
optimal global-knowledge policy, Topt, and that of the swap-asap policy, Tswap, in a
five-node chain. Increasing values of (Tswap −Topt)/Topt mean that the optimal policy
is increasingly faster on average. Note that we restrict our analysis to the parameter
regime p ≥ 0.3 and 2 ≤ tcut ≤ 6 due to the very large computational cost of calculating
the solution for smaller p and larger tcut (for more details, see Appendix 2.5). Let us
first focus on deterministic swaps (Figure 2.6a). The advantage provided by an optimal
policy increases for decreasing p. When p is small, links are more valuable since they are
harder to generate. Therefore, it is convenient to avoid early swaps, as they effectively
increase the ages of the links involved and make them expire earlier. When tcut is small, a
similar effect happens: all entangled links must be generated within a small time window
and early swaps can make them expire too soon. For larger tcut, increasing the age of a
link does not have a strong impact on the delivery time, since the time window is larger.
Therefore, an optimal policy is increasingly better than swap-asap for decreasing tcut. The
maximum difference between expected delivery times in the parameter region explored
is 5.25%.
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Figure 2.5: Swap-asap policies free up qubits, but swapped links expire earlier. Evolution of an example state
when following a waiting policy versus the swap-asap policy during a single time slot. Entangled links are
represented as solid black lines, with occupied qubits in black and free qubits in white. A waiting policy decides
to not perform any swap, while the swap-asap policy decides to swap all three links. The swap frees up qubits
(marked in orange) that can be used to resume entanglement generation either if the swap is successful, as in
the picture, or not. After performing swaps, a cutoff tcut = 1 is applied and links with age 1 are removed, causing
the swapped link to expire.

Interestingly, probabilistic swaps (Figure 2.6b) yield an opposite behavior in the
parameter region explored: optimal policies are increasingly better than swap-asap for
increasing p and tcut (except when p ≤ 0.4 and tcut ≤ 3), and the relative difference in
expected delivery time can be as large as 13.2% (achieved in a five-node chain with
p = 0.9 and tcut = 6). One reason for this may be the action that each policy decides
to perform when the repeater chain is in a full state, which is a situation where each
pair of neighboring nodes shares an entangled link (see state at the top of Figure 2.7).
When swaps are deterministic, the optimal policy chooses to swap all links in a full
state, since end-to-end entanglement will always be achieved. However, when swaps are
probabilistic, an optimal policy generally chooses to perform two separate swaps (see
Figure 2.7), similar to the nested purification scheme proposed in [22]. As an example,
for n = 5, p = 0.9, tcut = 2, and ps = 0.5, the swap-asap policy yields an expected delivery
time of T = 9.35. If, in full states, the swap at the third node is withheld, T drops to
8.34. The swap-asap policy is on average slower than this modified policy by 12.1%.
The action chosen in full states has a stronger influence on T for increasing p. This is
because full states are more frequent for large p: whenever a swap fails, a full state is
soon recovered, since new entangled states are generated with high probability. As a
consequence, an optimal policy is increasingly better than swap-asap for higher p when
swaps are probabilistic. A similar effect happens for large tcut. Note however that the
effect of the action chosen in full states is practically irrelevant in four-node chains (see
Appendix 2.8). Note also that the advantage of an optimal policy in terms of delivery time
is not always monotonic in p and tcut (see Appendix 2.8).

Optimal policies are also increasingly faster than swap-asap for increasing n, as shown
in Figure 2.8. For example, for p = 0.3, ps = 0.5, and tcut = 2, the relative difference in
expected delivery time is 1.7%, 5.9%, and 12.3%, for n = 4, 5, and 6, respectively. This is
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(a) (b)

Figure 2.6: In a five-node chain, an optimal policy performs increasingly better than swap-asap for
lower/higher values of p and tcut when swaps are deterministic/probabilistic. Relative difference between the
expected delivery times of an optimal policy, Topt, and the swap-asap policy, Tswap, in a five-node chain, for
different values of p and tcut. (a) Deterministic swaps (ps = 1). (b) Probabilistic swaps (ps = 0.5).

in line with the fact that, when the number of nodes grows, there are increasingly more
states in which the optimal action to perform is a strict subset of all possible swaps, as
shown in Appendix 2.9. Note that, in three- and four-node chains, the relative difference
in expected delivery time is generally below 1%.

2.4. DISCUSSION

Our work sheds light on how to distribute entanglement in quantum networks using a
chain of intermediate repeaters with pre-configured cutoffs. We have shown that optimal
global-knowledge policies can significantly outperform other policies, depending on
the properties of the network. In particular, we have found and explained non-trivial
examples in which performing swaps as soon as possible is far from optimal. We have
also contributed a simple methodology to calculate optimal policies in repeater chains
with cutoffs that can be extended to more realistic scenarios, e.g., asymmetric repeater
chains, by modifying the transition probabilities of the MDP.

In this work, we have assumed that classical communication is instantaneous. Hence,
our optimal policies may become sub-optimal in setups with non-negligible communica-
tion times, where decisions must be made using local information only. Nevertheless, our
optimal policies still constitute a best-case policy against which to benchmark.

Note also that we have restricted our analysis to repeater chains with less than seven
nodes. This is due to the exponentially large computational cost of solving the MDP
for larger chains (see Appendix 2.12 for further details). However, each entanglement
swap decreases the fidelity of the entangled links. Hence, a large number of swaps limits
the maximum end-to-end fidelity achievable, making chains with a very large number
of nodes impractical. Therefore, we consider the analysis of short chains to be more
relevant.

An interesting extension of this work would be to explore different cutoff policies. For
example, one could allow the nodes to decide when to discard entangled links, or one
could optimize simultaneously over the cutoff and the swapping policy. This may lead to
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Repeater chain

swap-asap nested

Figure 2.7: All possible transitions after performing a swap-asap action or a nested action in a full state,
depending on which swaps succeed. In full states, every pair of neighbors shares an entangled link (solid black
lines, with occupied qubits in black and free qubits in white). The swap-asap policy decides to swap all links,
while the nested approach consists in swapping only at nodes 2 and 4. When swaps are probabilistic, the nested
approach is generally optimal in terms of expected delivery time.

improved optimal policies.
As a final remark, note that we have employed the expected delivery time as the single

performance metric. In some cases, the expected value and the variance of the delivery
time distribution are within the same order of magnitude (some examples are shown in
Appendix 2.10). Therefore, an interesting follow-up analysis would be to study the delivery
time probability distribution instead of only the expected value. Additionally, we put
fidelity aside by only requiring an end-to-end fidelity larger than some threshold value,
via a constraint on the cutoff time. This constraint can be lifted to optimize the fidelity
instead of the expected delivery time, or to formulate a multi-objective optimization
problem to maximize fidelity while minimizing delivery time.

2.5. [APPENDIX] METHODS

We have formulated the problem of finding optimal entanglement distribution policies as
an MDP where each state is a combination of existing entangled links and link ages. Let s
be the state of the repeater chain at the beginning of a time slot. As previously explained,
s can be described using the age of every entangled link. Mathematically, this means that
s can be represented as a vector of size

(n
2

)
:

s = [g 2
1 , g 3

1 , . . . , g n
1 ; g 3

2 , . . . , g n
2 ; . . . ; g n

n−1],

where g j
i is the age of the entangled link between nodes i and j (if nodes i and j do not

share an entangled link, then g j
i = −1). In each time slot, the nodes must choose and

perform an action a. Mathematically, a is a set containing the indices of the nodes that
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Figure 2.8: An optimal policy performs increasingly better than swap-asap in longer chains. Relative difference
between the expected delivery times of an optimal policy, Topt, and the swap-asap policy, Tswap, for tcut = 2
and different values of p, as a function of the number of nodes n. Black lines correspond to p = 0.3, and the
value of p increases in steps of 0.1 with increasing line transparency up to p = 0.9. (a) Deterministic swaps
(ps = 1). (b) Probabilistic swaps (ps = 0.5).

must perform swaps (if no swaps are performed, a =;).
The state of the chain at the end of the time slot is s ′. Since entanglement generation

and swaps are probabilistic, the transition from s to s ′ after performing a happens with
some transition probability P (s ′|s, a). A policy is a function π that indicates the action
that must be performed at each state, i.e.,

π : s ∈S →π(s) ∈A ,

where S is the state space and A is the action space. W.l.o.g., we only consider determin-
istic policies, otherwise a policy would be a probability distribution instead of a function
(see Appendix 2.11 for further details).

Let us define s0 as the state where no links are present and Send as the set of states with
end-to-end entanglement, also called absorbing states. In general, the starting state is s0,
and the goal of the repeater chain is to transition to a state in Send in the fewest number
of steps. When a state in Send is reached, the process stops. Let us define the expected
delivery time from state s when following policy π, Tπ(s), as the expected number of steps
required to reach an absorbing state when starting from state s. The expected delivery
time is also called hitting time in the context of Markov chains (see Chapter 9 from [184]).
A policy π is better than or equal to a policy π′ if Tπ(s) ≤ Tπ′ (s), ∀s ∈S . An optimal policy
π∗ is one that is better than or equal to all other policies. In other words, an optimal policy
is one that minimizes the expected delivery time from all states. One can show that there
exists at least one optimal policy in an MDP with a finite and countable set of states (see
Section 2.3 from [176]). To find such an optimal policy, we employ the following set of
equations, which are derived in Appendix 2.11:

Tπ(s) = 1+ ∑
s ′∈S

P (s ′|s,π) ·Tπ(s ′), ∀s ∈S , (2.5)

where S is the state space and P (s ′|s,π) is the probability of transition from state s to
state s ′ when following policy π. Equations (2.5) are a particular case of what is generally
known in the literature as the Bellman equations.
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An optimal policy can be found by minimizing Tπ(s), ∀s ∈ S , using (2.5). To solve
this optimization problem, we used value iteration and policy iteration, which are two
different iterative methods whose solution converges to the optimal policy (both meth-
ods provided the same results). For more details, see Appendix 2.12, and for a general
reference on value and policy iteration, see Chapter 4 from [175].

We provide an example of how to calculate the transition probabilities P (s ′|s,π) an-
alytically in Appendix 2.13, although this is generally impractical, since the size of the
state space grows at least exponentially with n and polynomially with tcut (as shown
in Appendix 2.14, |S | =Ω(

(tcut)n−2
)
). In the Supplementary Material from ref. [91], we

discuss how to simplify the calculation of transition probabilities with a technique that
we call state bunching.

As a validation check, we also implemented a Monte Carlo simulation that can run
our optimal policies, providing the same expected delivery time that we obtained from
solving the MDP.

2.6. [APPENDIX] DEPOLARIZATION OF WERNER STATES

In this appendix we show that the fidelity of a Werner state in which each qubit indepen-
dently experiences a depolarizing process evolves as

F (t ) = 1

4
+

(
F (t −∆t )− 1

4

)
e−

∆t
τ ,

where t is the time, ∆t is an arbitrary interval of time, and τ is a parameter that character-
izes the exponential decay in fidelity of the whole entangled state due to the qubits being
stored in noisy memories. Note that we assume independent noise on each qubit since,
in our problem, they are stored in different nodes of the repeater chain.

The depolarizing channel [58, 138] is defined as

Ei : ρi → pρi + (1−p)
I2

2
, (2.6)

where ρi is a single-qubit state, 0 ≤ p ≤ 1 (this p is not to be confused with the en-
tanglement generation probability used in the main text of this chapter), and Id is the
d-dimensional identity. Let us assume that each qubit independenlty experiences a
depolarizing channel while stored in memory for a finite time tdep. During an interval
of time tdep, a Werner state ρ with fidelity F is therefore mapped to (E1 ⊗E2)(ρ), where
Ei is a depolarizing channel acting on the i -th qubit. Let us calculate this output state
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explicitly:

(E1 ⊗E2)(ρ) = p2ρ+p(1−p)Tr2(ρ)⊗ I2

2
+p(1−p)

I2

2
⊗Tr1(ρ)+ (1−p)2 I4

4
a= p2ρ+p(1−p)

I2

2
⊗ I2

2
+p(1−p)

I2

2
⊗ I2

2
+ (1−p)2 I4

4

= p2ρ+ (
2p(1−p)+ (1−p)2) I4

4
b= p2 4F −1

3

∣∣φ+〉〈
φ+∣∣+p2 1−F

3
I4 +

(
2p(1−p)+ (1−p)2) I4

4
c= 4F ′−1

3

∣∣φ+〉〈
φ+∣∣+ 1−F ′

3
I4,

(2.7)

with the following steps:

a. We use the fact that the partial trace of a maximally entangled state is a maximally
mixed state. As a consequence, Tri (ρ) = I2

2 , for any Werner state ρ.

b. We use the definition of Werner state: ρ = 4F−1
3

∣∣φ+〉〈
φ+∣∣+ 1−F

3 I4.

c. We define F ′ = 1
4 +p2(F − 1

4 ).

The output state (E1 ⊗E2)(ρ) is a Werner state with fidelity F ′. Then, the application
of n successive transformations E1 ⊗E2 produces a Werner state with fidelity

F (n) = 1

4
+p2n

(
F − 1

4

)
. (2.8)

This can be shown by induction as follows. The base case is proven in (2.7): F (1) =
1
4 +p2(F − 1

4 ). Next, if we assume that (2.8) is true for n = k, we can show that it also holds
for n = k +1:

F (k+1) = 1

4
+p2

(
F (k) − 1

4

)
= 1

4
+p2

(1

4
+p2k

(
F − 1

4

)
− 1

4

)
= 1

4
+p2(k+1)

(
F − 1

4

)
,

where we have used (2.7) in the first step.

The total time required for these operations is ∆t = ntdep. Therefore, if the fidelity of
the state at time t −∆t was F (t −∆t ), the fidelity at t is given by

F (t ) = 1

4
+p2∆t/tdep

(
F (t −∆t )− 1

4

)
. (2.9)

Finally, we map p ∈ [0,1] to a new parameter τ ∈ [0,+∞) as p2 ≡ e−tdep/τ. Then, we
obtain

F (t ) = 1

4
+

(
F (t −∆t )− 1

4

)
e−

∆t
τ . (2.10)
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2.7. [APPENDIX] CUTOFF AND THRESHOLD FIDELITY

In the design of a quantum repeater chain, we must select a cutoff time tcut such that the
fidelity of any end-to-end entangled link is larger than some threshold Fmin. We show that
this requirement is always satisfied when the cutoff time meets the following condition:

tcut ≤−τ ln

(
3

4Fnew −1

(4Fmin −1

3

) 1
n−1

)
, (2.11)

where τ is a parameter that characterizes the exponential decay in fidelity of the whole
entangled state due to the qubits being stored in noisy memories, Fnew is the fidelity of
newly generated entangled links, Fmin is the minimum desired end-to-end fidelity, and n
is the number of nodes in the chain.

First, we analyze the impact of a late entanglement swap on the fidelity of the output
state. As shown in Appendix 2.6, the fidelity of a Werner state that experiences depolarizing
noise independently on each qubit decays as

F (t ) = 1

4
+

(
F (t −∆t )− 1

4

)
e−∆t/τ, (2.12)

over an interval of time time ∆t . When two Werner states are used as input in an entan-
glement swap, the output state is a Werner state with fidelity

Fswap(F1,F2) = F1 ·F2 + (1−F1) · (1−F2)

3
, (2.13)

where F1 and F2 are the fidelities of the input states [132].
Let us consider two Werner states with initial fidelities F1(t0) and F2(t0), respectively.

On the one hand, if we perform a swap and then wait for some time twait, the final state is
a Werner state with fidelity

Fswap-wait(t0 + twait) = 1

4
+

(
F1(t0)F2(t0)− 1

4
+

(
1−F1(t0)

)(
1−F2(t0)

)
3

)
e−twait/τ, (2.14)

which can be obtained by applying (2.13) first and (2.12) next. On the other hand, if we
wait for some time twait and then perform the swap, we obtain a Werner state with fidelity

Fwait-swap(t0 + twait) = F1(t0 + twait)F2(t0 + twait)+
(
1−F1(t0 + twait)

)(
1−F2(t0 + twait)

)
3

= 1

4
+

(
F1(t0)F2(t0)− 1

4
+

(
1−F1(t0)

)(
1−F2(t0)

)
3

)
e−2twait/τ,

(2.15)

where we have used (2.12) in the second step and performed some basic algebra. Note
that the factor that multiplies the exponential in (2.14) and (2.15) is nonnegative as long
as F1(t0),F2(t0) ≥ 1

4 – if the initial fidelity is 1
4 , the initial state is a maximally mixed state.

By comparing (2.14) and (2.15), we find that an entangled link with larger fidelity is
obtained if we first perform an entanglement swap and then wait for time twait rather
than if we wait for time twait and then perform the swap, since

Fswap-wait(t0 + twait) > Fwait-swap(t0 + twait), ∀twait > 0. (2.16)
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Let us now consider a sequence of m entangled links that can be fused into a single
long link after performing m −1 swaps. Each of the initial links has fidelity Fi , i = 1, ...,m.
We want to calculate the final fidelity, assuming that all swaps are successful. For this, it is
convenient to define a Werner state in terms of the Werner parameter x:

ρ = x
∣∣φ+〉〈

φ+∣∣+ 1−x

4
I4, (2.17)

where
∣∣φ+〉 = |00〉+|11〉p

2
is a Bell state, and Id is the d-dimensional identity. The Werner

parameter x is defined in terms of the fidelity as x = 4F−1
3 . Equation (2.13) can be written

in terms of the Werner parameter of each state:

xswap(x1, x2) = x1x2, (2.18)

where xswap is the Werner parameter of the output state after swapping two Werner
states with Werner parameters x1 and x2. If we apply Equation (2.18) repeatedly to our
sequence of m entangled links, assuming that all swaps happen simultaneously (i.e.,
with no decoherence happening in between swaps), we obtain a final state with Werner
parameter

xfinal = x1x2 . . . xm =
m∏

i=1

4Fi −1

3
. (2.19)

Then, the final fidelity is given by

Ffinal =
3xfinal +1

4
= 1

4
+ 3

4

m∏
i=1

4Fi −1

3
. (2.20)

A similar result was derived in [22], although assuming Fi = F , ∀i .
We are now ready to find a relationship between the cutoff time and the minimum

fidelity in an n-node quantum repeater chain with cutoff time tcut. For this, we need to
identify the sequence of events that produces the end-to-end link with the lowest fidelity.
First, note that all the entangled links that eventually form a single end-to-end link are
created within a window of tcut time slots. According to (2.16), delaying entanglement
swaps has a negative impact on the final fidelity. Therefore, the sequence of events that
produces end-to-end entanglement with the lowest fidelity must be one where all swaps
are performed at the end of the time window, i.e., all swaps are performed when the oldest
link reaches the cutoff time, just before it expires. If any of those swaps were performed
earlier, the final fidelity would be larger. Such a sequence of events produces the lowest
end-to-end fidelity when all the links are as old as possible, i.e., when their age is tcut. If
any of the links were younger, the end-to-end fidelity would be larger. Hence, the lowest
end-to-end fidelity is achieved when all the links are generated simultaneously and all
the swaps are performed when those links are tcut time slots old. In this case, the fidelity
of each link before swapping is given by (2.12):

Fold = 1

4
+

(
Fnew − 1

4

)
e−

tcut
τ , (2.21)

where Fnew is the fidelity of newly generated elementary links. The final fidelity after
swapping all the links can be calculated using (2.20):

Fworst = 1

4
·
[

1+ (4Fold −1)n−1

3n−2

]
. (2.22)
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Finally, we impose that the worst-case end-to-end fidelity must be larger than the
desired minimum fidelity Fmin: Fworst ≥ Fmin. Solving for tcut yields an explicit condition
for the cutoff time:

tcut ≤−τ ln

(
3

4Fnew −1

(4Fmin −1

3

) 1
n−1

)
. (2.23)

When this condition is satisfied, every sequence of events will lead to a large enough
fidelity. Consequently, any policy that we implement on the repeater chain will also
deliver entanglement with a large enough fidelity.

2.8. [APPENDIX] FURTHER COMMENTS ON THE OPTIMAL EX-
PECTED DELIVERY TIME

Here we provide the expected delivery time of optimal policies in three- and four-node
repeater chains. Then, we compare optimal policies to the swap-asap policy in a four-
node chain. We also show that, in longer chains, the relative difference in expected
delivery time is not always monotonic with the probability of successful entanglement
generation p.

Figure 2.9 shows the expected delivery time of an optimal policy, Topt, in three- and
four-node chains, versus p for different values of ps and tcut. The relation between Topt

and the rest of the variables is similar to that of the five-node chain discussed in the
main text. When p is small, more entanglement generation attempts are required to
succeed, yielding a larger Topt. Decreasing ps also increases Topt, since more attempts at
entanglement swapping are required on average. When tcut is small, all entangled states
must be generated within a small time window and therefore Topt is also larger.
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Figure 2.9: The expected delivery time increases with lower p, ps, and tcut. Expected delivery time of an
optimal policy, Topt, versus p for (a) n = 3 and (b) n = 4 and different values of cutoff (tcut = 2,5,10). Solid lines
correspond to deterministic swaps (ps = 1) and dashed lines correspond to probabilistic swaps with ps = 0.5.

In three-node chains, the swap-asap policy is always optimal since there is no reason
to wait after both links have been generated. As the number of nodes increases, policies
have more degrees of freedom that can be adjusted to get an improvement over the swap-
asap policy. Figure 2.10 shows the advantage in expected delivery time of an optimal
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Figure 2.10: The swap-asap policy is close to optimal in four-node chains. Relative difference between the
expected delivery times of an optimal policy, Topt, and the swap-asap policy, Tswap, in a four-node chain, for
different values of p and tcut.
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Figure 2.11: The advantage provided by an optimal policy over swap-asap is not always monotonic with p.
Relative difference between the expected delivery times of an optimal policy, Topt, and the swap-asap policy,
Tswap, in an n-node chain with tcut = 2, for different values of n and p.

policy versus the swap-asap policy in four-node chains. The swap-asap policy is no
longer optimal, as it was in three-node chains, although the largest advantage observed is
below 2%, meaning that the swap-asap policy is still close to optimal. The advantage over
swap-asap increases up to 30% in five- and six-node chains, as shown in Figure 2.8 (main
text) and in Figure 2.11.

Figure 2.11 shows the advantage of an optimal policy over swap-asap in terms of
expected delivery time, versus p and for different number of nodes. When swaps are
deterministic, the advantage is larger for smaller p. The reason is that links are harder to
generate as p approaches zero, and therefore a fine-tuned policy that makes better use
of those scarce resources is expected to be increasingly better than a greedy policy like
swap-asap. When swaps are probabilistic and n > 4, the advantage is not monotonic in
p anymore, as can clearly be seen for n = 6, tcut = 2, and ps = 0.5. On the one hand, the
advantage increases when p approaches zero, due to swap-asap making an inefficient use
of the links, which become a scarce resource. On the other hand, when p approaches one,
the advantage also increases, due to the effect of full states, as discussed in the main text.
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Figure 2.12: An optimal policy acts as the swap-asap policy in a large number of states. Percentage of states in
which the optimal policy found by our solver decides to (a,c) perform all possible swaps or (b,d) not perform
any swap, in a five-node repeater chain with (a-b) ps = 1 or (c-d) ps = 0.5. We only consider states in which at
least one swap can be performed.

2.9. [APPENDIX] ACTIONS CHOSEN BY OPTIMAL POLICIES

Figure 2.12 shows the percentage of states in which an optimal policy decides to perform
all possible swaps (acting as the swap-asap policy) or not perform any swap at all, in
a five-node repeater chain. For this analysis, we only consider states in which at least
one swap can be performed. Although there seem to be some clear trends, these results
cannot be used to determine how close the swap-asap policy is to being optimal, since:

(i) We found one of the possibly many optimal policies, so the swap-asap policy may
be closer to a different optimal policy. This also explains why the plots in Figure 2.12
are not monotonic.

(ii) Even if there is only one state in which two policies differ, this state could have
a large impact on the expected delivery time, as explained in the example of full
states in the main text.

In Figure 2.13 we plot the same quantities for increasing number of nodes. The
percentage of states in which the optimal policy decides to perform all possible swaps,
acting as the swap-asap policy, decreases with increasing n. This agrees with the fact that
the advantage provided by an optimal policy in terms of expected delivery time over the
swap-asap policy increases with increasing n, as shown in the main text. However, the
data from Figure 2.13 alone should not be used to draw any conclusions, since arguments
(i ) and (i i ) also apply to these plots.
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Figure 2.13: The percentage of states in which the optimal policy acts as the swap-asap policy decreases in
longer chains. Percentage of states in which the optimal policy found by our solver decides to (a) perform all
possible swaps or (b) not perform any swap, in a repeater chain with p = 0.3 and tcut = 2. We only consider
states in which at least one swap can be performed.
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Figure 2.14: The delivery time distribution can be heavy-tailed. Delivery time distribution after simulating an
optimal policy in a five-node repeater chain with ps = 0.5, tcut = 2, and (a) p = 0.5 or (b) p = 0.9. The number of
samples is 105. Solid orange lines correspond to the expected delivery time of the optimal policy.

2.10. [APPENDIX] DELIVERY TIME DISTRIBUTION

Here, we show two examples of repeater chains in which the entanglement delivery time
distribution is heavy-tailed. Figure 2.14 shows the delivery time distribution in a five-node
chain with ps = 0.5, tcut = 2, and p = 0.5 (Figure 2.14a) or p = 0.9 (Figure 2.14b). The results
shown here have been calculated by repeatedly simulating the optimal policy in a repeater
chain (source code available at https://github.com/AlvaroGI/optimal-homogeneous-
chain). As shown in the figure, the distribution is heavy-tailed for some combinations of
parameters. In those cases, the average value does not provide an accurate description of
the whole distribution.

https://github.com/AlvaroGI/optimal-homogeneous-chain
https://github.com/AlvaroGI/optimal-homogeneous-chain
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2.11. [APPENDIX] EXPECTED TIME TO REACH AN ABSORBING

STATE

In this appendix, we show that the expected time required to reach an absorbing state in
a discrete Markov decision process (MDP) starting from state s and following policy π,
Tπ(s), satisfies

Tπ(s) = 1+ ∑
s ′∈S

P (s ′|s,π) ·Tπ(s ′),

where S is the state space and P (s ′|s,π) is the probability of transition from state s to
state s ′ when following policy π. We also discuss the difference between deterministic
and stochastic policies.

Let tπ(s) be the time required to reach an absorbing state starting from state s in one
realization of the process, and let

Tπ(s) ≡ E[tπ(s)] =
∞∑

m=0
m Pr[tπ(s) = m] (2.24)

be its expected value. The time required to reach an absorbing state starting from s can
be calculated as the time required to go from state s to any state s ′ plus the time required
to go from s ′ to an absorbing state. Since the Markov chain is discrete, we can write this as

Pr[tπ(s) = m] =
∑

s ′∈S

P (s ′|s,π)Pr
[
tπ(s ′) = m −1

]
. (2.25)

The recursive relation for Tπ(s) can be derived as follows:

Tπ(s)
a=

∞∑
m=0

m Pr[tπ(s) = m] (2.26)

b=
∞∑

m=0
m

∑
s ′∈S

P (s ′|s,π)Pr
[
tπ(s ′) = m −1

]
(2.27)

= ∑
s ′∈S

P (s ′|s,π)
∞∑

m=0
m Pr

[
tπ(s ′) = m −1

]
(2.28)

= ∑
s ′∈S

P (s ′|s,π)
∞∑

m=−1
(m +1)Pr

[
tπ(s ′) = m

]
(2.29)

= ∑
s ′∈S

P (s ′|s,π)
∞∑

m=0
(m +1)Pr

[
tπ(s ′) = m

]
(2.30)

= ∑
s ′∈S

P (s ′|s,π)
∞∑

m=0
m Pr

[
tπ(s ′) = m

]+ ∑
s ′∈S

P (s ′|s,π)
∞∑

m=0
Pr

[
tπ(s ′) = m

]
(2.31)

c= ∑
s ′∈S

P (s ′|s,π)
∞∑

m=0
m Pr

[
tπ(s ′) = m

]+1 (2.32)

d= ∑
s ′∈S

P (s ′|s,π)Tπ(s ′)+1, (2.33)

with the following steps:
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a. We apply Equation (2.24).

b. We apply Equation (2.25).

c. We employ the normalization of the probability distributions:
∑∞

m=0 Pr
[
tπ(s ′) = m

]=
1 and

∑
s ′∈S P (s ′|s,π) = 1.

d. We use Equation (2.24) again.

In the previous derivation, we have implicitly assumed that the policy is determin-
istic: at each state s, the action chosen is always π(s). It can be shown that, in an MDP
with a finite and countable set of states, there exists at least one optimal policy that is
deterministic (see Section 2.3 from [176]). Therefore, since we are solving a finite MDP,
we only need to consider deterministic policies. Optimal random policies can be built by
combining several deterministic optimal policies, provided that there is more than one.

When considering stochastic policies, π is no longer a mapping from a state to an
action but a mapping from a state to a probability distribution over the action space.
The previous derivation remains valid for stochastic policies, although in that case the
transition probabilities must be written as

P (s ′|s,π) = ∑
a∈A

π(a|s)P (s ′|s, a), (2.34)

where A is the action space and π(a|s) is the probability of choosing action a in state s
when following policy π.

2.12. [APPENDIX] DYNAMIC PROGRAMMING ALGORITHMS

To find optimal policies, we formulate a Markov decision process that results in the
Bellman equations, as explained in the main text. These equations can be solved using
a dynamic programming algorithm, such as value iteration and policy iteration. Both
algorithms start with arbitrary values of Tπ(s) (for some policy π and ∀s ∈S , where S

is the state space) and they iteratively update the policy π and the values Tπ(s), ∀s ∈S .
The updated policy is guaranteed to converge to an optimal policy π∗ in a finite number
of iterations in policy iteration and an infinite number of iterations in value iteration
(see Sections 4.3 and 4.4 from [175]). Note that there might be multiple optimal policies,
although this approach finds only one of them. In practice, the algorithms stop when
the updated values differ by not more than some ε> 0 from the values in the previous
iteration. All our results have been calculated using ε= 10−7. In this work, we have applied
both value iteration and policy iteration, which provided the same results (our specific
implementations can be found at https://github.com/AlvaroGI/optimal-homogeneous-
chain). For a detailed explanation of both algorithms, see Sections 4.3 and 4.4 from [175].

In terms of computational cost, policy iteration is generally faster since less iterations
are required. To the best of our knowledge, there are no known tight bounds on the
number of iterations until convergence. However, the computational complexity of a
single iteration in policy iteration is O (|A ||S |2 +|S |3), where A is the action space and
S is the state space, which can be prohibitive for some combinations of parameters [99].

https://github.com/AlvaroGI/optimal-homogeneous-chain
https://github.com/AlvaroGI/optimal-homogeneous-chain
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The computational complexity of one iteration in value iteration is O (|A ||S |2) [99]. In
our problem, the complexity of each iteration increases exponentially with increasing
number of nodes and polynomially with increasing cutoff time (see Appendix 2.14),
and the number of iterations increases with decreasing probability of entanglement
generation and decreasing probability of successful swap, since the estimate of the values
is worse when these probabilities are small. Consequently, to study long chains with large
cutoffs and small probabilities of successful entanglement generation and swap, one may
need to employ approximate methods, such as deep reinforcement learning, which can
find sub-optimal but good enough policies at a lower computational cost.

2.13. [APPENDIX] MARKOV DECISION PROCESS EXAMPLE

Here we provide an example of how to formulate the Markov decision process (MDP) for
a three-node repeater chain with cutoff tcut = 1. Specifically, we calculate each term in
the Bellman equations, which can then be used to find an optimal policy, as explained in
the main text.

We start by listing all the states in which the chain can be found. The sequence of
events during each time slot is the following:

1. First, the ages of all entangled links are increased by 1.

2. Second, entanglement generation is attempted between every pair of neighbors
with qubits available.

3. Third, entanglement swaps can be performed.

4. Lastly, links whose age is equal to tcut are removed. End-to-end links are not
removed.

Since the cutoff is 1, the ages of all links are at most 1. All possible states are listed in
Figure 2.15.

Let us now find the equation for Tπ(s0), the expected delivery time from state s0,
which is given by

Tπ(s0) = 1+ ∑
s ′∈S

P (s ′|s0,π) ·Tπ(s ′),

as explained in the main text and derived in 2.11. For clarity, let us abuse notation and
write Ti to denote Tπ(si ). We can find each term by considering each possible scenario
separately:

• With probability (1−p)2, no links are successfully generated and the state remains
s0. Swaps and cutoffs do not apply to this state. This contributes with a term
(1−p)2T0.

• With probability p(1−p), only one of the links is generated and the state becomes
either s1 or s2. Swaps and cutoffs do not apply to these states. This contributes with
p(1−p)T1 +p(1−p)T2.
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Figure 2.15: There are eleven possible states in a three-node repeater chain with cutoff tcut = 1. Nodes are
labeled 1 to 3 from left to right.

• With probability p2, both links are generated and the state becomes s3. Then, a
swap can be performed and the last term splits into two contributions:

– If the policy decides to perform a swap in node 2, i.e., π(s3) = {2}, the state at
the end of the time slot will be s4 if the swap is successful, and s0 if the swap
fails. These scenarios contribute with p21π(s3)={2}

(
psT4+(1−ps)T0

)
, where1A

is the indicator function that takes value 1 if A is true and value 0 otherwise.

– If the policy decides to not perform the swap, i.e. π(s3) =;, the state remains
s3. The contribution is then p21π(s3)=;T3.

Now, we can write all the terms above in a single equation:

T0 = 1+(1−p)2T0+p(1−p)T1+p(1−p)T2+p21π(s3)={2}
(
psT4+(1−ps)T0

)+p21π(s3)=;T3.
(2.35)

Note that T4 = T5 = 0, since s4 and s5 are absorbing states. Rearranging terms, we obtain

T0 = 1+
[

(1−p)2 +p21π(s3)={2}(1−ps)
]

T0 +
[

p(1−p)
]

T1 +
[

p(1−p)
]

T2 +
[

p21π(s3)=;
]

T3.

(2.36)
Let us now find the equation for s1. At the beginning of the time slot, the age of the

link is increased by 1 and the state becomes s6. After that:

• With probability (1−p), no links are successfully generated. Then, the only existing
link is removed since it is 1 time slot old. This contributes with a term (1−p)T0.

• With probability p, the remaining link is generated and the state becomes s8. Then,
a swap can be performed:

– If the policy decides to perform a swap in node 2, i.e., π(s8) = {2}, the state at
the end of the time slot will be s5 if the swap is successful, and s0 if the swap
fails. These scenarios contribute with p1π(s8)={2}

(
psT5 + (1−ps)T0

)
.
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– If the policy decides to not perform the swap, i.e. π(s8) =;, the state remains
s8, and the link with age 1 is removed afterwards. The state becomes s2 and
the contribution is then p1π(s8)=;T2.

Combining all terms, we obtain

T1 = 1+
[

(1−p)+p1π(s8)={2}(1−ps)
]

T0 +
[

p1π(s8)=;
]

T2, (2.37)

where we have used that T5 = 0.
Due to the symmetry of the problem,

T2 = T1, (2.38)

so we do not need to derive a new equation for T2.
Lastly, we find the equation for s3. At the beginning of the time slot, the age of each

link is increased by 1 and the state becomes s10, in which no more links can be generated.
After that, a swap can be performed:

– If the policy decides to perform a swap in node 2, i.e., π(s10) = {2}, the state at the
end of the time slot will be s5 if the swap is successful, and s0 if the swap fails. These
scenarios contribute with 1π(s10)={2}

(
psT5 + (1−ps)T0

)
.

– If the policy decides to not perform the swap, i.e. π(s10) = ;, the state remains
s10, and both links are removed afterwards, when cutoffs are applied. The state
becomes s0 and the contribution is then 1π(s10)=;T0.

The equation then reads

T3 = 1+
[
1π(s10)={2}(1−ps)+1π(s10)=;

]
T0, (2.39)

where we have used that T5 = 0.
We can write Equations (2.36), (2.37), (2.38), and (2.39) as
T0 = 1+

[
(1−p)2 +p21π(s3)={2}(1−ps)

]
T0 +2

[
p(1−p)

]
T1 +

[
p21π(s3)=;

]
T3,

T1 = 1+
[

(1−p)+p1π(s8)={2}(1−ps)
]

T0 +
[

p1π(s8)=;
]

T1,

T3 = 1+
[
1π(s10)={2}(1−ps)+1π(s10)=;

]
T0.

(2.40)

An optimal policy π∗ can be found by minimizing T0, T1, and T3 in this system of equa-
tions. This can be done, e.g., using iterative algorithms such as value and policy iteration,
as discussed in the main text. In this case, it can be shown that the swap-asap policy
is optimal, i.e., π∗(s3) = π∗(s8) = π∗(s10) = {2}. This also makes sense intuitively: once
both links are generated, waiting provides no advantage in terms of delivery time over
performing the swap immediately. For this policy, the system of equations becomes

T0 = 1+
[

(1−p)2 +p2(1−ps)
]

T0 +2
[

p(1−p)
]

T1,

T1 = 1+
[

(1−pps)
]

T0,

T3 = 1+
[

(1−ps)
]

T0,

(2.41)
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which yields an optimal expected delivery time of

T0 = 1+2p(1−p)

1− (1−p)2 −p2(1−ps)−2p(1−p)(1−pps)
.

As a final remark, note that the expected delivery times from states s6 to s10 were
not necessary to compute T0. In fact, states s6 to s10 cannot exist at the beginning of a
time slot, since the links that exist at the beginning of a time slot are always younger than
tcut (i.e., their age is 0) or are end-to-end links. This is the reason why we do not need to
optimize over T6 to T10.

2.14. [APPENDIX] SCALING OF THE NUMBER OF STATES

In this appendix, we find a lower bound to the number of states in the Markov deci-
sion process discussed in the main text, and show that it scales as Ω

(
(tcut)n−2

)
. Then,

we compare this lower bound to the exact number of states for some combinations of
parameters.

We start by calculating the lower bound. Let us define S (l ) as the set of states in
which only l entangled links are present. By definition,

S =⋃
l

S (l ).

The sets S (l ) do not overlap. Therefore,

|S | =∑
l
|S (l )|. (2.42)

The first term is given by

|S (0)| = 1, (2.43)

since there is only one state without any entangled links.
Since any two nodes could potentially share an entangled link, there are

k =
(

n

2

)
−1 = n2 −n −2

2

possible links in a repeater chain with n nodes (note that we subtract 1 from the combi-
natorial number because there is no need to represent end-to-end links). When one of
those links exists, its age can be anything from 0 to tcut. Therefore, the total number of
different states with only one link is given by

|S (1)| = n2 −n −2

2
(tcut +1) ≥ n2 −n −2

2
tcut. (2.44)

Let us now consider a chain with two links where both are connected to the same
node i . From node i towards one end of the chain, there are i −1 nodes. From i towards
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the other end of the chain, there are n − i nodes. Then, the number of states with two
links where both are connected to node i is given by

|Si (2)| = (i −1)(n − i )(tcut +1)2,

where the last factor accounts for all possible ages of both links. We can find a lower
bound to |S (2)| by considering only the states in which both links are connected to the
same node i , i.e.,

|S (2)| ≥
n−1∑
i=2

|Si (2)|

=
n−1∑
i=2

(i −1)(n − i )(tcut +1)2

=
n−2∑
j=1

j (n − j −1)(tcut +1)2

= (tcut +1)2
n−2∑
j=1

(− j 2 + (n −1) j
)

= (tcut +1)2 n(n −1)(n −2)

6

≥ n(n −1)(n −2)

6
t 2

cut,

(2.45)

where we used the identities
∑m

k=1 k = m(m+1)
2 and

∑m
k=1 k2 = m(m+1)(2m+1)

6 to simplify the
sum.

Next, we compute a lower bound for |S (l )|, l > 2. Let us consider only states with l
adjacent links, i.e., states that have l −1 nodes that hold 2 entangled links. The number of
such states is lower bounded by the different ways in which we can pick those l −1 nodes
from a total of n−2 nodes (end-nodes cannot have two links) and the possible ages of the
l links. Therefore, we can bound |S (l )| as follows:

|S (l )| ≥
(

n −2

l −1

)
(tcut +1)l ≥

(
n −2

l −1

)
t l

cut, l > 2. (2.46)
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Finally, using Equations (2.42) to (2.46), we find a lower bound for |S |:

|S | =
2∑

l=0
|S (l )|+

n−1∑
l=3

|S (l )|

≥
2∑

l=0
|S (l )|+

n−1∑
l=3

(
n −2

l −1

)
t l

cut

≥
2∑

l=0
|S (l )|+ tcut

n−2∑
k=0

(
n −2

k

)
t k

cut − tcut − (n −2)t 2
cut

a≥
2∑

l=0
|S (l )|+ tcut(tcut +1)n−2 − tcut − (n −2)t 2

cut

≥
2∑

l=0
|S (l )|+ t n−1

cut − tcut − (n −2)t 2
cut

≥ 1+ n2 −n −2

2
tcut + n(n −1)(n −2)

6
t 2

cut + t n−1
cut − tcut − (n −2)t 2

cut

where, in step a, we have used the binomial sum:

n∑
k=0

(
n

k

)
xk = (1+x)n .

After some algebra, we find

|S | ≥ 1+ n2 −n −4

2
tcut + (n2 −n −6)(n −2)

6
t 2

cut + t n−1
cut . (2.47)

From the previous result, we conclude that the scaling of the number of states is

|S | =Ω(
(tcut)

n−1).

Figure 2.16 shows the exact number of states versus the cutoff time and the number
of nodes, together with the lower bound (2.47). In these plots, the exact number of states
corresponds to the size of the state space explored by our policy iteration algorithm.

DATA AND CODE AVAILABILITY

The data shown in this chapter can be found at [92]. Our code can be found in the follow-
ing GitHub repository: https://github.com/AlvaroGI/optimal-homogeneous-chain.
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Figure 2.16: The number of states scales at least exponentially with increasing n and polynomially with
increasing tcut. (a) Number of states versus the cutoff time in a four-node chain, and (b) versus the number of
nodes in a chain with cutoff tcut = 1. Solid lines correspond to the number of states found by our policy iteration
algorithm (note that the number of states only depends on n and tcut). The purple solid line is the total number
of states and the green line is the number of states in which a decision can be made (i.e., states in which at least
one swap can be performed). The dashed line corresponds to the lower bound (2.47) to the total number of
states.
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QUANTUM CIRCUIT SWITCHING

WITH ONE-WAY REPEATERS

IN STAR NETWORKS

Álvaro G. Iñesta, Hyeongrak Choi, Dirk Englund, and
Stephanie Wehner

The kind-hearted person held the elevator door for him [...].
Out of kindness, she forced him to quicken his pace,

humiliating him.

— Ignatius Farray

Distributing quantum states reliably among distant locations is a key challenge in the field
of quantum networks. One-way quantum networks address this by using one-way commu-
nication and quantum error correction. Here, we analyze quantum circuit switching as a
protocol to distribute quantum states in one-way quantum networks. In quantum circuit
switching, pairs of users can request the delivery of multiple quantum states from one user
to the other. After waiting for approval from the network, the states can be distributed
either sequentially, forwarding one at a time along a path of quantum repeaters, or in
parallel, sending batches of quantum states from repeater to repeater. Since repeaters can
only forward a finite number of quantum states at a time, a pivotal question arises: is it
advantageous to send them sequentially (allowing for multiple requests simultaneously) or
in parallel (reducing processing time but handling only one request at a time)? We compare

This chapter has been published separately in ref. [89].
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k

time

w

⋮

Parallel QCS(a) (b)

Figure 3.1: In QCS, packets can be distributed (a) sequentially or (b) in parallel. Illustration of a QCS scheme
with (a) sequential and (b) parallel distribution of packets, in a star network with five users and a single central
repeater (big circle). The repeater contains k = 3 forwarding stations (squares), therefore it can forward at most
k = 3 quantum data packets (triangles and pentagons) at a time. In sequential distribution of packets, a single
forwarding station is reserved to meet each of the requests submitted by the pairs of users in orange and blue.
In parallel distribution, all three stations are used in parallel to meet a single request at a time.

both approaches in a quantum network with a star topology. Using tools from queuing
theory, we show that requests are met at a higher rate when packets are distributed in
parallel, although sequential distribution can generally provide service to a larger number
of users simultaneously. We also show that using a large number of quantum repeaters
to combat channel losses limits the maximum distance between users, as each repeater
introduces additional processing delays. These findings provide insight into the design of
protocols for distributing quantum states in one-way quantum networks.

3.1. INTRODUCTION

In the field of quantum networking, the efficient delivery of quantum information be-
tween distant users remains a central challenge [163]. A common strategy is to employ
quantum repeaters to facilitate quantum communication among remote network nodes
[132, 194]. Many repeater architectures require two-way communication and long-lived
quantum memories, as they rely on the distribution of entanglement via heralded gen-
eration [9, 16] and entanglement swaps [55, 164, 209]. Conversely, the so-called third-
generation quantum repeaters use quantum error correction to send quantum data using
only one-way communication [18, 132, 133, 135]. Here, we focus on one-way quantum
networks, which employ third-generation repeaters to distribute quantum states.

In one-way quantum networks, each quantum state that must be delivered to a
remote location (e.g., a data qubit or half of an entangled pair) is encoded and sent over
the network as a quantum data packet, which consists of the encoded state and some
additional metadata (such as the packet destination) [54]. In classical networks, data
packets are commonly distributed across the network according to a packet switching or
a circuit switching protocol [119]. In packet switching [8, 51], users can send data packets
at will, which are then forwarded from one router to the next one whenever possible.
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Routers may store the packets until they are able to forward them. In circuit switching
(see, e.g., [28]), users first request service to the network. Later, the network reserves
one or multiple paths (also called circuits) where routers reserve dedicated resources to
meet that request, and there is in principle no need to store data in intermediate routers.
In classical networks, packet switching has found more success than circuit switching
since it makes better use of the resources in large networks with conflicting routes and
high traffic loads. In quantum networks, quantum data packets can also be distributed
according to a packet switching [54] or a circuit switching protocol. Quantum circuit
switching has been studied in the context of two-way quantum repeaters [4], but not in
the context of one-way quantum networks, to the best of our knowledge.

The main challenge when designing a one-way protocol to distribute quantum states
is decoherence: quantum states have a limited lifetime and cannot be stored indefinitely
in intermediate quantum repeaters. This means that the protocol must ensure rapid
delivery of the quantum data packets. Additionally, some multi-party applications may
need to consume multiple quantum states simultaneously (e.g., to implement verifiable
blind quantum computations, multiple qubits must be sent from a client to a server,
where they must coexist while some operations are performed [49, 115]). In those cases,
the quantum states must be distributed within some time window – otherwise, by the
time the last state is distributed, the quality of the first state would have decayed too much
due to decoherence. Consequently, one-way protocols must prevent large variations in
the time between the delivery of successive quantum data packets to ensure all of them
are delivered within a specific time window. We expect the pre-allocation of resources
in circuit switching to enable the protocol to meet these timing constraints required to
successfully distribute quantum states over a network, regardless of network traffic. In this
work, we introduce quantum circuit switching (QCS) for one-way quantum networks, and
we investigate how to allocate resources for each request to distribute quantum states.

Each quantum repeater has limited capabilities, namely, it can only forward a finite
number of packets, k, at a time (see Figure 3.1). We then say that the repeater has k
forwarding stations, which operate independently and can forward one packet at a time.
When multiple requests need to use the same repeater, the circuit switching protocol
can either (i ) reserve one forwarding station per request and process up to k requests
simultaneously (Figure 3.1a), or (i i ) reserve all k forwarding stations to meet one request
at a time (Figure 3.1b). For simplicity, we omit the intermediate case where more than one
but less than k stations are reserved for each request. In the first approach, quantum data
packets are distributed sequentially, while in the second approach packets are distributed
in parallel (requiring some form of frequency multiplexing).

The performance of both approaches can be measured using the mean sojourn time,
which is the time passed since the request is submitted until it is met – this includes some
waiting time before the request is processed and the service time needed to successfully
distribute all the quantum packets. Packets can be lost while traveling from node to node,
so the total number of packets that need to be sent to successfully deliver a given number
of packets is a priori unknown. As a consequence, the sojourn, waiting, and service times
are random variables. We expect shorter service times when packets are distributed in
parallel rather than sequentially. However, parallel distribution can only serve one request
at a time, and this might entail large waiting times. A natural question arises: in what



3

46 3. QUANTUM CIRCUIT SWITCHING WITH ONE-WAY REPEATERS IN STAR NETWORKS

situations is it actually advantageous to distribute quantum packets in parallel instead of
sequentially? That is, when does parallel distribution provide shorter mean sojourn times?
Addressing this resource-allocation question early on is crucial for the design of efficient
protocols for distributing quantum states within one-way quantum networks. Here, we
answer the question assuming a star network: a simplified topology where all users are
connected via a number of quantum repeaters to a central repeater (similar to a quantum
switch architecture [185, 186]).

Our main contributions are the following:

• We formalize the concept of quantum circuit switching in the context of one-way
quantum networks.

• We provide analytical tools to compute the mean sojourn time of a QCS scheme,
using techniques from queuing theory.

• We compare QCS schemes with sequential and parallel distribution of packets in
a star network, and provide heuristics for the design of QCS protocols in more
complex networks.

Our main findings are the following:

• In star networks with sequential distribution of packets, we can increase the number
of forwarding stations k to increase the number of users supported by the network
(i.e., the maximum number of users that allow requests to be met within a finite
amount of time), which scales as ∼p

k. This is not possible in parallel distribution:
the number of users is capped and cannot be increased indefinitely by adding more
forwarding stations per repeater.

• Parallel distribution generally provides smaller mean sojourn times than sequential
distribution.

• There exists a trade-off between the number of users and the physical distances
between them: too many users and too long distances overload the system and
yield infinite waiting times.

• When there is a large number of users, adding more intermediate repeaters to
combat channel losses and minimize the probability of packet loss does not allow
the users to be located further away. In fact, adding more repeaters limits the size
of the network to smaller scales, since each repeater introduces additional delays.

In Section 3.2, we explain the problem setup: the quantum network and quantum data
packets model, the requests model, and the quantum circuit switching scheme. In 3.3, we
present our main results: we analyze the operating regimes of both packet distribution
strategies and compare their performance. We do this in a variety of scenarios, considering
different quantum repeater architectures based on the financial budget available. Lastly,
in 3.4, we discuss the limitations and the implications of our work.
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Table 3.1: Parameters of a quantum network running a QCS protocol.

Physical topology (star network)

u Number of users

L Distance between each user and the central repeater

N Number of repeaters between each user and the central repeater

Hardware

k Number of forwarding stations per repeater

tfwd Forwarding time per forwarding station and quantum data packet

p Probability of successful packet delivery from user to user

c Speed of light in the physical channels

Requests

n Number of quantum data packets per request

w Request time window

λ0 Request submission rate per pair of users

Quantum Circuit Switching

m Number of packets of the same request distributed concurrently (m = 1
for sequential distribution and m = k for parallel distribution)

3.2. PROBLEM SETUP

In this section, we present the problem setup. In 3.2.1, we discuss our model of quantum
network and quantum data packets. In 3.2.2, we explain how the nodes submit requests
and how to measure the performance of the network in meeting those requests. Lastly,
we formalize the concept of quantum circuit switching in 3.2.3. We provide a summary of
all the parameters introduced in this section in Table 3.1.

3.2.1. QUANTUM NETWORKS AND QUANTUM DATA PACKETS

We consider a quantum network with third-generation quantum repeaters [18, 132, 135,
136]. These type of repeaters use quantum error-correction to distribute quantum in-
formation using one-way communication, as opposed to first- and second-generation
repeaters, which use heralded entanglement generation and two-way communication
[136]. To forward quantum data, a repeater must first decode an incoming logical state
(generally shared as a collection of photons) and correct any errors, then reencode the
state again into multiple physical qubits, and finally send the encoded state to the next
repeater.

We make the following assumptions about the quantum network:

• We consider a quantum network with a star topology, where u users are connected
to a central repeater (see Figure 3.2). This is the simplest case of network where
paths between users intersect, leading to shared resources and routing conflicts.
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One-way network concepts

User

Repeater

Forwarding 
station

L
L0

 forwarding stations 
per repeater
k

 usersu

Figure 3.2: Illustration of a star quantum network. u users are at distance L from a central repeater. There are
N repeaters between each user and the central repeater (N = 2 in the figure), and each of them has k forwarding
stations (squares). The spacing between adjacent nodes is L0 = L/(N +1).

• For simplicity, we assume that all users are at the same physical distance L from
the central repeater (see Figure 3.2). Moreover, there are N repeaters between each
user and the central repeater. All repeaters are placed at distance L0 = L/(N +1)
from each other.

• Users can encode and decode quantum data packets, according to some quantum
code. A quantum data packet consists of a logical qubit and a classical header
containing some metadata, as proposed in ref. [54]. The logical qubit consists of
multiple physical qubits, generally in the form of photons. The classical header pro-
vides relevant information about the routing of the data packet (e.g., the destination
of the packet).

• Each repeater has k forwarding stations that can decode and encode according to
the same quantum code. Each station can receive/send physical qubits from/to
any node. Moreover, each station can only forward (i.e., decode, reencode, and
send) one quantum data packet at a time, which takes time tfwd. After forwarding a
packet, the station can be immediately used to forward another packet from any
source node to any destination node (i.e., there is no downtime).

• Physical qubits can suffer from noise in the encoding and decoding circuits and in
the physical channels. We assume that each packet can be successfully decoded at
destination with probability p (this includes the case in which the encoded qubits
suffered no errors and also the case in which they suffered a correctable number of
errors). With probability 1−p, a number of uncorrectable errors will be detected
at destination and the packet will be discarded. We consider the probability of a
logical error being unnoticed to be negligible, since we assume the main source of
errors to be photon loss in the channels, which can be detected.

3.2.2. REQUESTS AND PERFORMANCE MEASURES

In many quantum network applications, multiple copies of a quantum state need to
be distributed over a short interval of time. For example, verifiable blind quantum
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computing requires multiple qubits to be sent from a client to a server, where they must
coexist while some operations are performed [49, 115]. Another example is verifiable
quantum secret sharing [46], where the parties involved want to verify that the dealer
successfully distributed a quantum secret among them. This verification requires the
dealer to distribute multiple ancillary quantum states to each party that will be consumed
simultaneously (note that other proposals perform the verification stage sequentially
[120]). In these examples, a number of quantum states must be sent from one network
node to another over a short interval of time due to decoherence – otherwise, when
the last state is distributed, the quality of the state that was distributed first would have
decayed too much and would not be useful anymore.

With this type of general application in mind, we define an (n, w)-request as request
for n quantum data packets to be distributed among two users within time w . Each
packet contains a copy of the same quantum state.

We make the following additional assumptions about the requests:

• To simplify the analysis, we assume that all pairs of users make requests with the
same parameters n and w .

• Each pair of nodes submits requests following a Poisson process with rate λ0. The
total request submission rate is then

λ=
(

u

2

)
λ0 = u(u −1)

2
λ0, (3.1)

where u is the number of users.

The performance of protocols for quantum state distribution is typically measured
with the quality of the distributed states and/or the distribution rate (see, e.g., [6, 91, 102,
140]). In our model, quantum data packets are either successfully distributed or a failure
flag is raised, and therefore there is no need to study the quality of the state. The main
quantity of interest in our problem is therefore the rate at which (n, w)-requests are met.
In particular, to measure the performance of the protocol, we propose the mean sojourn
time: the average time passed since a request is submitted until it is met (i.e., until the
n-th quantum packet is successfully delivered within the time window w). The sojourn
time of a request can be computed as the sum of two main contributions:

• Waiting time (Twait): time since the request is submitted until some forwarding
stations are available for the request. The waiting time depends on the number of
requests in the queue at a given time and is a random variable.

• Service time (Tservice): time since the stations are available for the request until the
request is met. Since packets can be lost, the service time is a random variable.

In particular, we are interested in the mean sojourn time, which can be computed as

E
[
Tsojourn

]= E [Twait]+E [Tservice] . (3.2)

In this work, we implicitly refer to the steady-state mean values when we discuss the
mean sojourn time, the mean waiting time, and the mean service time. The steady state
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corresponds to the status of the system where mean values have reached an equilibrium
following a transient period. In the calculation of the sojourn time, one could also add
some control time, which would include the time required to submit a request. We can
assume this control time is independent of the choice of protocol for quantum state
distribution, and therefore we leave it outside of our analysis (if we assume the control
time is constant, our results would just shift towards larger sojourn times).

We now summarize how to compute each term from (3.2):

• To compute the mean waiting time, we model the system as an M/G/s queue –
this is a queue model where request arrivals follow a Poisson distribution and
therefore are Markovian (M), the service time follows a general distribution (G), and
a maximum of s requests can be processed simultaneously. This formulation allows
us to derive analytical solutions and approximations for the mean waiting time in
a variety of situations, although in some cases Monte Carlo methods are required.
See Appendices 3.5 and 3.6 for further details.

• The service time distribution is hard to compute analytically. The reason is that
calculating the number of packets that need to be sent until n are successfully
received over a time window w is a challenging task [49]. When packets are sent
in batches of m (with m ≤ k, since repeaters can only forward at most k packets
simultaneously) and each packet can be lost with probability p, the number of
batches until success is denoted by the random variable Bn,w,p,m . The mean service
time can be computed in terms of the mean value of Bn,w,p,m :

E [Tservice] = 2L

c
+ tfwd

(
2N +E[

Bn,w,p,m
])

, (3.3)

where c is the speed of light in the communication channels. The first term cor-
responds to the time required for a packet (or a batch of packets) to travel from
one user to another. The second term accounts for the total delay introduced by
the forwarding stations, which depends on the number of repeaters, N , and the
expected number of batches required, E

[
Bn,w,p,m

]
. In Appendix 3.5.2, we provide a

derivation of (3.3), and we also explain how to compute the probability distribution
of Bn,w,p,m (in some cases, numerical approximations are required).

Another relevant quantity is the load of the system, which is the ratio between the
request submission rate, λ0u(u −1)/2, and the total rate at which requests are serviced,
k/(mE [Tservice]), where 1/E [Tservice] is the rate at which one request is serviced and k/m
is the number of requests that can be processed simultaneously. The load can be written
as

ρ = λ0u(u −1)m

2k
E [Tservice] . (3.4)

It can be shown that, if and only if ρ > 1, the system is overloaded and the sojourn times
go to infinity (see Chapter 14 from [184]). This happens when requests are submitted at a
higher rate than they are serviced. For example, if the number of users is too large, the
number of requests waiting to be serviced will grow indefinitely and the sojourn times
will go to infinity over time. Therefore, service will only be possible if the load remains
below one.
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3.2.3. QUANTUM CIRCUIT SWITCHING

Quantum circuit switching (QCS) protocols are a particular type of protocol for on-
demand distribution of quantum states. In QCS, each pair of users can submit (n, w)-
requests to the network controller. Incoming requests are placed in a first-in-first-out
queue, where older requests have priority over more recent ones. Once enough resources
are available, a request can leave the queue and some network resources are reserved
to meet that request. In our model, the resources reserved are forwarding stations at
quantum repeaters over a path that connects both users. After this, one of the users can
start sending quantum data packets, which are forwarded from repeater to repeater until
arriving at the other user. This process continues until n packets are successfully delivered
over a sliding time window w (recall that each packet has a probability p of being flagged
with an uncorrectable error). When the process is completed, the forwarding stations
become available and can be assigned to the first request in the queue. Note that we
consider a queue with infinite capacity, as opposed to classical circuit switching, where
the queue has a maximum size and additional requests are rejected (e.g., new calls were
rejected when all lines were occupied in early analog telephone networks) – we do this
because we are interested in understanding the behavior of the system without such a
constraint.

The main degree of freedom in our QCS proposal is the number of forwarding stations
that are reserved for each request:

1. If we reserve only one forwarding station per request, packets must be sent se-
quentially, i.e., m = 1, since each station can only forward one packet at a time
(Figure 3.1a). We call this strategy sequential distribution of packets.

2. An alternative is to reserve multiple forwarding stations, such that multiple packets
can be routed in parallel. We call this approach parallel distribution of packets. For
simplicity, we assume that QCS with parallel distribution reserves all k stations for
each request (Figure 3.1b), i.e., m = k. In practice, this can be done with some form
of frequency multiplexing [43].

In sequential distribution, the service time Tservice is larger, but many requests can be
processed simultaneously (as long as there are k > 1 forwarding stations), which might
yield a shorter waiting time Twait. Conversely, parallel distribution provides a faster service
(i.e., smaller Tservice) at the expense of processing one request at a time, which could entail
a longer waiting time Twait. It is therefore nontrivial to determine a priori whether packets
should be distributed sequentially or in parallel. The first step in the design of efficient
QCS protocols is to answer the following question: should quantum data packets be
distributed sequentially or in parallel? This is the main question we address in this work.

3.3. SEQUENTIAL VS PARALLEL DISTRIBUTION OF QUANTUM

DATA PACKETS

In this section, we explore the situations in which sequential distribution of packets may
be advantageous over parallel distribution and vice versa. We consider two use cases:
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1. Small budget. We consider the more affordable one-way quantum repeater archi-
tecture from ref. [18], which only requires two matter qubits and a single-photon
emitter per forwarding station. The encoding used by this repeater is not fault-
tolerant and therefore can only be used over short inter-repeater distances (L0 ∼ 1
km). Over such a short distance, the scheme is near-deterministic, i.e., we can
assume packets are successfully delivered with probability p ≈ 1. Since we consider
a tight financial budget, we also assume that there is a single central repeater that
is directly connected to the users (i.e., N = 0), which means that the size of the
network cannot be larger than L ∼ 1 km.

2. Large budget. In this case, we employ a more expensive type of forwarding station:
the all-photonic proposal from ref. [139]. This architecture can encode quantum
states using large distance codes, which allows for distribution of packets over
longer inter-repeater distances (L0 > 1 km). Since the financial budget is larger than
before, we can place N repeaters in between each user and the central repeater.
The probability of successful delivery depends on the number of repeaters, N , and
the size of the network, L:

p(L, N ) = 10−
αeff(L0)

10 2L , (3.5)

where L0 = L/(N +1) is the inter-repeater distance, and αeff(L0) is an effective atten-
uation coefficient that depends on the type of encoding used and on the repeater
efficiency. Here, we assume αeff(L0) ≈ 10−6(277L2

0 + 29L4
0) dB/km, which corre-

sponds to forwarding stations that employ the [[48, 6, 8]] generalized bicycle code
[141] and have a 90% efficiency (which incorporates photon-source and detector
efficiencies, on-chip loss, and coupling losses into a single parameter). This encod-
ing and efficiency was also used as an example in ref. [139] – see Appendix 3.8 for
further details. To make good use of the budget available, we choose N following
the strategy from ref. [139], where the authors propose maximizing the number of
repeaters per kilometer divided by the probability p, i.e., they optimize the cost
function (2N +1)/(Lp). For the [[48,6,8]] code and a fixed distance L, the value of
N that minimizes the cost is the one that yields p ≈ 0.7 (e.g., the optimal solutions
for L = 7.5,13,18,30 km are N = 0,1,2,5).

The main motivation behind these two use cases is that they correspond to a scenario
with deterministic delivery of packets over short distances (p = 1, use case 1) and a
scenario with probabilistic delivery over longer distances (p < 1, use case 2).

In the following subsections, we analyze the performance of a QCS protocol in the
previous use cases. In Subsection 3.3.1 we analyze the maximum number of users that
the system can support before sojourn times go to infinity. Then, in 3.3.2, we compare
the performance of sequential and parallel distribution, in terms of the mean sojourn
time, when the budget is small (use case 1) and when it is large (use case 2). Lastly, in
3.3.3, we focus on use case 2 and study the interplay between the number of users and
the distances between them, considering a fixed number of repeaters N . In Appendix 3.7,
we motivate the parameter values chosen in the examples from this section.
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3.3.1. CRITICAL NUMBER OF USERS

Before looking at the performance of sequential and parallel distribution of packets, the
first question we ask is: how many users can be supported by the quantum network?
That is, we want to know the maximum number of users that can be serviced before the
sojourn times go to infinity – what we call the critical number of users, ucrit. We find ucrit

by ensuring that the load of the system (3.4) is below 1, which yields

ucrit =
⌊

1

2
+ 1

2

√
1+ 8k

λ0mE [Tservice]

⌋
, (3.6)

where m = 1 for sequential distribution and m = k for parallel distribution.
In the small-budget situation (use case 1), p = 1 and N = 0. Then, the mean service

time from (3.3) takes a closed form:

E [Tservice]p=1,N=0 =
2L

c
+ tfwd

⌈ n

m

⌉
. (3.7)

This expression can be derived using (3.3) and the fact that E[Bn,w,1,m] = ⌈n/m⌉ (for
further details on the latter, see Appendix 3.5.2). From (3.6) and (3.7), one can show that,
for a small budget, the critical number of users is larger when packets are distributed
sequentially rather than in parallel. This can be seen in Figure 3.3, which shows ucrit

for increasing number of forwarding stations. It is possible to provide service to a larger
number of users (i.e., increase ucrit) by increasing the number of forwarding stations k, but
only when packets are distributed sequentially. In particular, the critical number of users
scales as

p
k. When packets are distributed in parallel, increasing the number of stations

beyond k = n does not allow for an increased number of users. This is a consequence
of the parallel distribution model: we assume that all the forwarding stations are used
simultaneously for a single request. When packet distribution is deterministic (p = 1),
only n forwarding stations are needed to distribute n packets in parallel, and increasing k
beyond this number will not provide any added benefit – those extra forwarding stations
will remain unused.

When the financial budget is large (use case 2), the service time follows a nontrivial
distribution and the mean value cannot be computed with (3.7) anymore. Depending
on the values of p and w , we were able to compute the mean service time analytically
or required Monte Carlo sampling (see Appendix 3.5 for further details). Nevertheless,
the scaling of ucrit with k remains similar to the behavior shown in Fig. 3.3 (we provide
the same plot for a large budget and different combinations of N ,L, w in Appendix 3.9).
We observed that, for most parameter regimes, sequential distribution can still provide
service to a larger number of users than parallel distribution. However, this is not true
in the parameter regime where resources are scarce, namely, when: (i ) packet distribu-
tion is not deterministic (p < 1; specifically in our use case, p ≈ 0.7), (i i ) applications
require many states to be distributed over a short period of time or users have short-lived
quantum memories (small w compared to n), and (i i i ) there are only a few forwarding
stations per repeater (small k). In a situation that meets these three conditions, many
states must be successfully delivered over a short time window. Since each packet has a
nonzero probability of failure, this process can take a very long time when packets are
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Figure 3.3: A network with more forwarding stations k can support more users, but only when distribution
of packets is sequential. Critical number of users, ucrit, vs number of forwarding stations, k, for QCS with
sequential (blue dots) and parallel (orange crosses) distribution of packets, in the small budget use case (see
(3.6) and (3.7)). The critical number of users is the maximum number of users the system can support before
the sojourn time goes to infinity. In sequential distribution, ucrit(k) scales as

p
k. In parallel distribution,

ucrit(k) = constant, ∀k > n. Parameters used in this figure: N = 0, p = 1, n = 7, w = 10, λ0 = 10−4 µs−1, c = 0.2
km/µs, tfwd = 100 µs.

delivered one by one, as successful packets older than the time window are discarded.
Hence, parallel distribution can complete requests much faster and therefore provide
service to a larger number of users. This reasoning only holds if k is small: if there is
a large number of forwarding stations, more users can be served simultaneously with
sequential distribution.

In the large-budget scenario, the asymptotic behavior in k is similar to the small-
budget case. When p < 1, the mean service time is lower bounded by (3.7), and therefore
the critical number of users for p = 1 (small budget) is an upper bound for p < 1 (large
budget). In particular, this means that ucrit cannot scale faster than

p
k with sequential

distribution, and it converges to a constant as k → ∞ with parallel distribution. As
mentioned earlier, we provide some graphical examples in Appendix 3.9.

3.3.2. MEAN SOJOURN TIME

Now we focus on the scenarios in which both sequential and parallel distribution can
provide service within a finite mean sojourn time (MST). The MST can be computed
according to (3.2), which requires calculating the mean waiting time and the mean service
time in advance. In Appendix 3.5 we provide analytical formulas and numerical methods
to compute them.

Figure 3.4 shows the relative difference in MST between sequential and parallel dis-
tribution, for the small-budget use case (Figure 3.4a) and the large-budget use case
(Figure 3.4b). In both use cases, there is a region where both sequential and parallel
distributions are possible. This region is shaded blue/red when sequential/parallel distri-
bution is faster. When the number of users is too large, service is not possible. We indicate
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(a)

(b)

Figure 3.4: Parallel distribution of packets is generally faster. Relative difference in mean sojourn time (MST)
between sequential and parallel packet distribution, for different numbers of users u and forwarding stations k.
(a) Small-budget use case (p = 1; w ≥ n; N = 0, L = 1 km) and (b) large-budget use case (p ≈ 0.7) with N = 0,
L = 7.5 km, and w = 8. Sequential/parallel distribution provides lower MST in blue/red regions. In regions with
an ‘s’/‘p’, only sequential/parallel distribution can provide service (i.e., yield finite MST). In dark regions with
an ‘x’, no service is possible. Parameters used in this figure: n = 7, λ0 = 10−4 µs−1, c = 0.2 km/µs, tfwd = 100 µs.
MSTs in (a) calculated with (3.7). MSTs in (b) calculated with Monte Carlo sampling with 104 samples (the
standard error in the relative difference in MST was below 0.5 for every combination of parameters).
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with an ‘s’/‘p’ those regions where service can only be provided by sequential/parallel
distribution. In dark regions with an ‘x’, service is not possible at all. We draw the following
main observations from the figure:

• In the small-budget use case (Figure 3.4a), increasing the number of users (for fixed
k) leads to a region where only sequential distribution can provide service. If the
number of users keeps increasing, no service is possible at all. In the large-budget
case (Figure 3.4b), we observe a similar behavior, except that there is also a region
where only parallel distribution (instead of sequential) is possible. This is the same
phenomenon that was discussed in the previous section: when p < 1, w is close to
n, and k is small, parallel distribution supports more users. In Appendix 3.10, we
show other examples in which there is a region where only parallel distribution is
possible.

• For a fixed number of forwarding stations k, parallel distribution is faster than se-
quential distribution when the number of users is small. As we increase the number
of users (for fixed k), the advantage of parallel over sequential distribution generally
decreases. For some values of k, sequential distribution eventually becomes slightly
better. This happens because the main feature of sequential distribution is that
multiple requests can be processed simultaneously, and this is particularly benefi-
cial when there is a large number of requests (in our model, a large number of users
implies a large number of requests). In some other cases, parallel distribution is
always better (e.g., in the small-budget example from Figure 3.4a with k > 6). When
parallel distribution has a larger critical number of users (e.g., in the large-budget
case from Fig 3.4b with k = 2,3), the advantage in MST over sequential distribution
can actually increase dramatically as the number of users increases (e.g., increasing
u from 4 to 5 when k = 2, in Figure 3.4b). The reason is that the MST of sequential
distribution diverges as we get close to a region where only parallel distribution is
possible. This can be seen more clearly in Appendix 3.10, where we plot the MST vs
the number of users for fixed k.

• The difference in MST converges to a constant value as k →∞. In fact, the MST
should converge to a constant as k →∞ for both sequential and parallel distribu-
tion. Intuitively, once we have enough forwarding stations to meet all incoming
requests, there is no benefit in increasing the number of stations per repeater. In
Appendix 3.5.3, we discuss this more formally.

From this analysis, we conclude that parallel distribution generally fulfills user re-
quests at a higher rate, although in some situations sequential distribution is preferable
as it can provide service to a larger number of users.

3.3.3. MANY USERS OVER LONG DISTANCES

Next, we investigate the effect of increasing the number of users and the distances between
them. Here, we assume the same all-photonic forwarding stations from ref. [139] as in
the large-budget use case. This means that the probability of successful packet delivery
depends on the distance between users and on the number of repeaters according to (3.5).
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However, as opposed to the large-budget use case, we now consider a fixed but arbitrary
number of repeaters per user, N , to be placed between the user and the central repeater –
that is, we do not choose N according to any cost function optimization. Each repeater
has a fixed number of forwarding stations k. The question we address here is: how far
apart can the users be to provide service to them?

Specifically, we want to analyze the critical distance Lcrit that overloads the system,
i.e., the value of L that makes the load from (3.4) equal to 1. Combining (3.3) and (3.4)
and enforcing L ≥ 0, we find that the critical distance is given by

Lcrit = max
(
0,

ck

λ0u(u −1)m
− ctfwd

2

(
2N +E[

Bn,w,p(Lcrit,N),m
]))

. (3.8)

Recall that m is the number of packets that are sent in each batch (m = 1 for sequential
distribution and m = k for parallel distribution). Note that (3.8) is a transcendental
equation, since p is a function of Lcrit, and it must be solved numerically.

The first observation from (3.8) is that Lcrit decreases (and eventually drops to zero)
for increasing u, regardless of the number of repeaters N . The second term is always
negative, so the critical distance can be upper bounded as

Lcrit ≤ ck

λ0u(u −1)m
. (3.9)

The scaling with the number of users is therefore upper bounded by ∼ u−2. This unveils a
tradeoff between the number of users and the distances between them. When service is
provided to a large number of users, the number of incoming requests will increase and
this will put a higher load on the system. If the distances between users are large, service
times will increase, since packets will need to travel further away, which will also increase
the load. Consequently, we must decrease u to increase L and vice versa. Figure 3.5 shows
an example where we can observe this effect.

We have shown that L and u cannot be scaled up simultaneously when N is fixed, but
what if we add more intermediate repeaters to boost the probability of successful packet
delivery? Would this allow us to place many users further apart? Intuitively, one may
think that this is the case, since a larger number of repeaters N provides a larger success
probability p (see (3.5)). Increasing p means that we will need to send less (batches
of) packets per request, i.e., E[Bn,w,p,m] will be smaller, and consequently the service
time (3.3) should decrease and the critical distance (3.8) should increase. However, this
intuition is not always correct, since each additional repeater introduces an additional
delay tfwd, which directly impacts the service time and the critical distance: both (3.3)
and (3.8) include a linear term in N . These linear terms yield an interesting behavior: the
delays introduced by the repeaters accumulate and the service time eventually increases
(and the critical distance decreases) when increasing the number of repeaters N , despite
the benefit from a larger p. If there are too many repeaters, these forwarding delays may
overload the system, preventing requests from being met within a finite amount of time.

When the number of users is small, increasing the number of repeaters is actually
beneficial: it allows us to increase the distances between users (i.e., larger N provides
larger Lcrit), as can be seen in Figure 3.5. When the number of users is large, service is only
possible if the number of repeaters is small. That is, when increasing the number of users,
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Figure 3.5: Networks with many users cannot cover long distances. Critical distance Lcrit vs number of users
u, for different numbers of repeaters N . Parameters used in this figure: sequential distribution, n = 7, w →∞,
k = 12, λ0 = 10−4 µs−1, c = 0.2 km/µs, tfwd = 100 µs.

Lcrit drops to zero quicker for larger N . As a consequence, for intermediate values of u,
there is an finite value of N that maximizes the critical distance. For instance, when there
are ten users in the example from Figure 3.5, using N = 5 repeaters allows the users to be
further apart than if we used N = 10 repeaters. Note that Figure 3.5 assumes sequential
distribution of packets, although the previous discussion remains general and also applies
to parallel distribution, as shown in Appendix 3.11.

From this analysis we draw two main conclusions:

1. There exists a tradeoff in the implementation of a QCS protocol: the number of
users and the distances between them cannot be scaled up simultaneously. This
tradeoff happens for any number of repeaters N and any function p(L, N ) (see
(3.9)), which means that the tradeoff will exist even with unlimited resources and
ideal hardware.

2. Increasing the number of repeaters to boost the probability of successful packet
delivery is not necessarily desirable, since we must also consider the forwarding
delays.

3.4. OUTLOOK

This chapter lays the groundwork for further exploration and refinement of quantum
circuit switching (QCS) protocols in the context of one-way quantum networks. We
have explored two fundamental resource-allocation strategies: in the first one, quantum
data packets are distributed sequentially, and, in the second one, they are distributed
in batches. We concluded that sequential distribution can generally provide service to
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a larger number of users, although parallel distribution generally meets requests at a
higher rate. We also found a tradeoff between the number of users supported by the QCS
protocol and the size of the network.

Here, we have considered the mean sojourn time as the main quantity to measure pro-
tocol performance. A more detailed characterization of the whole probability distribution
of the sojourn time is left as future work.

Future research could also focus on extending the analysis to more complex network
topologies beyond the star configuration considered here. Investigating the impact of
connectivity patterns on the performance of QCS protocols would provide valuable
insights for real-world quantum network deployment. Moreover, exploring adaptive QCS
strategies that dynamically adjust resource allocation based on traffic conditions (i.e.,
finding an intermediate strategy between sequential and parallel distribution of packets)
could enhance efficiency and scalability.

Different request models must be also investigated in future work. Here, we have
assumed that each pair of users submits requests according to a Poisson process. How-
ever, some networks may experience different types of requests, e.g., peak demands may
happen at specific times of the day. Moreover, each pair of users could request a different
number of packets n to be distributed over a different time window w . Considering a
different request model would potentially lead to different conclusions about the scal-
ability of the network – e.g., we would expect a different scaling of the critical number
of users with the number of forwarding stations, and a different relationship between
critical distance and number of users.

We consider QCS and its integration into one-way quantum networks as a promis-
ing avenue towards practical quantum information processing and quantum internet
applications.

3.5. [APPENDIX] - ANALYTICAL CALCULATION OF THE MEAN

SOJOURN TIME

In this Appendix, we show how to calculate the mean waiting time and the mean service
time of a QCS protocol in a star network (the mean sojourn time can be obtained by
adding both contributions). For that, we model the system as an M/G/s queue. In this
queue model, new requests arrive following a Poisson distribution, i.e., request arrivals are
Markovian (M). Incoming requests are placed in a common queue. Requests in the queue
are processed according to a first-in-first-out policy. Processing a request takes some
service time, which follows a general distribution (G), and a maximum of s requests can
be processed simultaneously. When quantum data packets are distributed sequentially
(m = 1), each of the k forwarding stations is dedicated to meet one request and therefore
s = k (see Figure 3.6a). When packets are distributed in parallel (m = k), all forwarding
stations are reserved to meet one request at a time and therefore s = 1 (see Figure 3.6b).

In Sections 3.5.1 and 3.5.2, we show how to compute waiting and service times,
respectively, in the M/G/s model for QCS. These results are summarized in Tables 3.2
and 3.3. We conclude this Appendix discussing the limit when the number of forwarding
stations goes to infinity (Section 3.5.3).
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Figure 3.6: QCS in a star network can be modeled as an M/G/s queue. Illustration of the queue model of a QCS
scheme with (a) sequential distribution of packets (s = k) and (b) parallel distribution of packets (s = 1), in a star
network with k forwarding stations per repeater. New requests are submitted at rate λ. After some control time
tcontrol, the request is placed in a first-in first-out queue. After some waiting time Twait, the request leaves the
queue and begins being processed. Processing the request takes time Tservice. Sequential distribution (a) can
process up to k requests in parallel, while parallel distribution (b) can only process one at a time. The service
time distribution is given by the distribution of the number of batches of packets that must be sent until the
request is met, Bn,w,p,m (see Appendix 3.5.2).

3.5.1. WAITING TIME

Calculating the waiting time poses a major problem: no general analytical solution is
known for the waiting time of an M/G/s queue. Only for s = 1, a closed-form solution is
known (see, e.g., Chapter 14 from [184]):

E
[
T M/G/1

wait

]= λE
[(

T M/G/1
service

)2
]

2
(
1−λE[

T M/G/1
service

]) , (3.10)

where λ is the request arrival rate (in our problem, λ = λ0u(u − 1)/2, where λ0 is the
request rate per pair of users and u is the number of users). The mean waiting time can
therefore be computed exactly when s = 1, provided that the first two moments of the
service time are known.

Multiple approximations and bounds for the waiting time distribution have been
found for s > 1 (see, e.g., [77]). One of the most well-known approximations is the early
formula from ref. [113]:

E
[
T M/G/s

wait

]≈ C 2
service +1

2
E
[
T M/M/s

wait

]
, (3.11)
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Table 3.2: How to compute the mean waiting time in QCS in star networks, depending on the type of packet
distribution (sequential or parallel) and the number of forwarding stations per repeater (k). We assume that the
first two moments of the service time distribution are known. See Appendix 3.5.1 for further details.

Sequential (s = k) Parallel (s = 1)

k = 1: Closed-form - (3.10) Closed-form - (3.10)

k > 1: Approximation - (3.11) Closed-form - (3.10)

where C 2
service ≡ Var

[
T M/G/s

service

]
/E

[
T M/G/s

service

]2
is the squared coefficient of variation of the

service time distribution, and M/M/s is an auxiliary queuing system with a single queue,
Markovian arrivals (M), exponentially distributed service times (M) with mean µ ≡
E
[
T M/G/s

service

]
, and capacity to process s requests simultaneously. The mean waiting time of

the auxiliary queue can be computed as follows (see Chapter 14 from [184]):

E
[
T M/M/s

wait

]= λs

s!sµs+1z2

(
λs

s!µs z
+

s−1∑
i=0

λi

i !µi

)−1

, (3.12)

with z ≡ 1−λ/(sµ). Refs. [77] and [198] provide empirical evidence that the approximation
(3.11) works well when the service time distribution has a small squared coefficient of
variation C 2

service. We observed empirically that, in the use cases studied in this chapter,
C 2

service is indeed small (see Appendix 3.6) and therefore we expect this approximation
to be accurate. Note also that the approximation assumes the first two moments of the
service time distribution are known.

To study our QCS protocol, we can employ the closed-form solution (3.10) when (i )
packets are distributed sequentially and there is a single forwarding station per repeater
(k = 1) and (i i ) when packets are distributed in parallel. When packets are distributed
sequentially with k > 1, we can only use approximations, such as (3.11), or Monte Carlo
sampling. In practice, the use of both the closed-form solution and the approximation
are restricted to situations in which we can efficiently compute the first two moments of
the service time. We discuss this in the next section.

3.5.2. SERVICE TIME

As introduced in the main text, Bn,w,p,m is the number of batches of quantum data packets
that must be sent from user to user until n packets are successfully distributed within
a time window w , assuming each packet has a success probability p and each batch
contains m packets. The service time can be computed as

Tservice = 2L

c
+ tfwd(2N +1)+ tfwd

(
Bn,w,p,m −1

)
, (3.13)

where L is the distance between each user and the central repeater, c is the speed of light
in the physical channels, tfwd is the forwarding time, and N is the number of repeaters
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Table 3.3: How to compute the first two moments of Bn,w,p,m . Once these moments are known, the first two
moments of the service time can be trivially computed with (3.14) and (3.15). The method used to compute
Bn,w,p,m depends on the type of packet distribution (sequential or parallel), the window size (w), and the
probability of successful packet delivery (p). See Appendix 3.5.2 for further details.

Sequential (m = 1) Parallel (m = k)

p = 1:
Closed-form - (3.17) and

(3.18)
Closed-form - (3.21) and

(3.22)

w →∞:
Closed-form - (3.19) and

(3.20)
Analytical - (3.31), (3.32),

and (3.33)

p < 1 and w <∞:
Analytical but expensive

to evaluate - [49]
Monte Carlo sampling

between each user and the central repeater. The first term corresponds to the time re-
quired for the first packet (or batch of packets) to travel from one user to another, without
considering forwarding delays. The second term corresponds to the delay introduced by
the forwarding stations: each station takes time tfwd to forward a packet, and the packet
(or batch of packets) is forwarded at 2N +1 intermediate repeaters. Therefore, the first
two terms account for the total time since the first packet (or batch of packets) is sent
from one user until it is received by the other user. The third term accounts for the time
it takes to receive the remaining Bn,w,p,m −1 (batches of) packets: a packet (or batch of
packets) is sent every tfwd units of time, to ensure it will arrive at the next repeater when
the previous packet is already processed and leaving the repeater. The mean service time
is then given by

E [Tservice] = 2L

c
+ tfwd(2N +E[

Bn,w,p,m
]
), (3.14)

since Bn,w,p,m is the only random variable involved. As shown in Section 3.5.1, the second
moment of the service time is also required to compute the expected waiting time E[Twait].
The second moment can be computed as

E
[
T 2

service

]=(
4L2

c2 + 8L

c
tfwdN +4t 2

fwdN 2
)

+
(

4L

c
tfwd +4t 2

fwdN

)
E
[
Bn,w,p,m

]+ t 2
fwdE

[
B 2

n,w,p,m

]
.

(3.15)

From (3.14) and (3.15), we conclude that the service and the waiting times can be
efficiently computed if we can efficiently compute the first two moments of Bn,w,p,m .
Next, we discuss how to compute them.
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Consider a sequence of i.i.d. random variables Si , which follow a binomial distribution
with m attempts and probability of success p. The value of Si corresponds to the number
of successful packets delivered in batch i . Let Bn,w,p,m be the number of batches required
until completion, i.e.,

Bn,w,p,m = inf

{
x :

x∑
j=x−w+1

S j ≥ n

}
. (3.16)

It is possible to calculate the probability distribution of Bn,w,p,m analytically when there
is no multiplexing (m = 1) [49]. When m = 1 and p = 1, the solution is trivial since we
deterministically need n batches to successfully deliver n packets (there is only one per
batch). In that case, we have

E[Bn,w,1,1] = n, (3.17)

E
[(

Bn,w,1,1
)2

]
= n2. (3.18)

As shown in ref. [49], in the case of m = 1 and an infinite window (w →∞), Bn,w,p,1

follows a negative binomial distribution, which has the following first two moments:

E[Bn,∞,p,1] = n

p
, (3.19)

E
[(

Bn,∞,p,1
)2

]
= n(1−p)+n2

p2 . (3.20)

For every other combination of values of n, p, and w , and with m = 1, there exists
a nontrivial analytical solution, as shown in ref. [49]. However, computing the solution
involves inverting a matrix whose size scales as O (wn−1). Hence, in practice we need to
employ approximate methods (such as Monte Carlo sampling) for arbitrary values of n,
w , and p.

In the multiplexed case (m > 1), there is no known analytical solution yet for every
combination of n, w , p, and m, to the best of our knowledge. Next, we solve the problem
for two cases: (i ) p = 1 and (i i ) w →∞. In every other case, we employed Monte Carlo
sampling to estimate the probability distribution of Bn,w,p,m when needed. First, the case
p = 1 is again trivial. When packets are always successfully delivered, we need ⌈n/m⌉
batches to deliver n packets. Hence,

E[Bn,w,1,m] =
⌈ n

m

⌉
, (3.21)

E
[(

Bn,w,1,m
)2

]
=

⌈ n

m

⌉2
. (3.22)
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For w →∞, we first calculate the survival function of Bn,∞,p,m as follows:

Pr
[
Bn,∞,p,m > b

] a= Pr

[
b∑

i=1
Si < n

]
(3.23)

b=
m∑

sb=0
Pr

[
b−1∑
i=1

Si < n − sb | Sb = sb

]
Pr[Sb = sb] (3.24)

c=
m∑

sb=0
Pr

[
b−1∑
i=1

Si < n − sb

]
Pr[Sb = sb] (3.25)

d=
m∑

s1,...,sb=0
Pr

[
b∑

i=1
si < n

]
b∏

i=1
Pr[Si = si ] (3.26)

e=
m∑

s1,...,sb=0
Pr

[
b∑

i=1
si < n

]
b∏

i=1

(
m

si

)
p si (1−p)m−si (3.27)

=
m∑

s1,...,sb=0
Pr

[
b∑

i=1
si < n

]
p

∑b
i=1 si (1−p)mb−∑b

i=1 si
b∏

i=1

(
m

si

)
(3.28)

= (1−p)mb
m∑

s1,...,sb=0
Pr

[
b∑

i=1
si < n

](
p

1−p

)∑b
i=1 si b∏

i=1

(
m

si

)
(3.29)

f= (1−p)mb
z1∑

s1=0

z2∑
s2=0

· · ·
zb∑

sb=0

(
p

1−p

)∑b
i=1 si b∏

i=1

(
m

si

)
. (3.30)

(3.31)

with the following steps:

a. We define Si as the number of successes in batch i . Completing the process in
more than b batches (Bn,∞,p,m > b) corresponds to obtaining less than n successful

attempts in the first b batches (
∑b

i=1 Si < n).

b. We use the law of total probability.

c. The number of successes in each batch are independent (i.e., Si are i.i.d.).

d. We apply the previous two steps recursively for every Si .

e. Si follows a binomial distribution with m attempts and probability of success p.

f. We define zi ≡ min
(
m,n −1−∑i−1

j=1 s j

)
.

The survival function (3.31) can then be used to calculate the first two moments of
Bn,∞,p,m as follows:

E[Bn,∞,p,m] =
∞∑

b=0
Pr

[
Bn,∞,p,m > b

]
, (3.32)

E[B 2
n,∞,p,m] =

∞∑
b=1

b2(Pr[Bn,∞,p,m > b −1]−Pr[Bn,∞,p,m > b]
)
, (3.33)

where we used the fact that Bn,∞,p,m is a discrete and positive random variable.
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3.5.3. LIMITS WHEN k →∞
To conclude this Appendix, we show that the mean sojourn time converges to a finite
value when the number of forwarding stations, k, goes to infinity. For that, we only need to
show that the mean waiting time and the mean service time also converge to a constant.

Let us start with the service time. Both E[Tservice] and E[T 2
service] are linear in E[Bn,w,p,m]

and E[B 2
n,w,p,m] (see (3.14) and (3.15)). Next, we prove that these expected values go to a

constant when k →∞:

• When packets are distributed sequentially, m = 1, and both Bn,w,p,m and Tservice are
independent of k. Hence, the first two moments are constant in k.

• When packets are distributed in parallel, m = k. When k → ∞, the number of
packets in each batch of the window problem goes to infinity, and therefore the
probability of successfully distributing a fixed number of packets n in a single batch
goes to 1 (assuming p > 0, otherwise success is never declared). More specifically,
the probability that the number of successes in the first batch, S1, is larger than or
equal to n goes to 1. This can be proven by showing that this probability is lower
bounded by a value that converges to 1:

lim
m→∞Pr[S1 ≥ n] = 1− lim

m→∞Pr[S1 < n]

= 1− lim
m→∞

n−1∑
x=0

Pr[S1 = x]

= 1− lim
m→∞

n−1∑
x=0

(
m

x

)
px (1−p)m−x

= 1− lim
m→∞

n−1∑
x=0

1

x!

(
p

1−p

)x m!

(m −x)!
(1−p)m

> 1− lim
m→∞

n−1∑
x=0

1

x!

(
p

1−p

)x

mx (1−p)m

= 1,

where we have used the following: (i ) Si follows a binomial distribution with m at-
tempts and probability of success p, (i i ) m!/(m−x)! < mx , and (i i i ) limm→∞ mx qm

= 0, for x ≥ 0 and 0 < q ≤ 1. Combining the previous result with (3.16), we obtain
E[Bn,w,p,m] → 1 and E[B 2

n,w,p,m] → 1 when k →∞. Since E[Tservice] and E[T 2
service]

are linear in E[Bn,w,p,m] and E[B 2
n,w,p,m] (see (3.14) and (3.15)), they also converge

to constant values.

The waiting time also converges to a constant as k →∞:

• When packets are distributed sequentially, an infinite number of forwarding sta-
tions means that we can simultaneously process as many requests as desired. Intu-
itively, this means that every incoming request will be immediately processed and
the waiting time will be zero. We leave the formal proof as future work.
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• When packets are distributed in parallel, only one request is processed at a time.
The mean waiting time can be computed using (3.10), which only depends on the
first two moments of the service time. Since we have shown that these converge
to constant values as k → ∞, it is trivial to show that (3.10) also converges to a
constant (assuming λE[T M/G/1

service ] < 1; otherwise, the system is overloaded and the
waiting times go to infinity, as discussed in the main text).

3.6. [APPENDIX] - SQUARED COEFFICIENT OF VARIATION OF

THE SERVICE TIME

As discussed in Appendix 3.5.1, there is no known general solution for the expected
waiting time of an M/G/s queue, with s > 1. Approximations such as (3.11) work well
when the squared coefficient of variation of the service time, C 2

service, takes small values –
in [77], the authors consider large values of C 2

service to be in the order of ≳ 10−100. In this
Appendix, we empirically show that C 2

service takes small values in systems in which the
service time is linear in the number of batches until success of a window problem (this is
the case for our QCS protocols).

First, we write the service time as

Tservice = x + yBn,w,p,m , (3.34)

where x and y are non-negative constants and Bn,w,p,m is the number of batches until
success, as defined in (3.16). In our work, x = 2L/c +2tfwdN , which accounts for the travel
time of a quantum data packet from user to user and for the processing delays introduced
by the repeaters, and y = tfwd, which accounts for the delays in between (batches of)
packets. The first and second moments of the service time are

E [Tservice] = x + yE
[
Bn,w,p,m

]
, (3.35)

E
[
T 2

service

]= x2 +2x yE
[
Bn,w,p,m

]+ y2E
[

B 2
n,w,p,m

]
. (3.36)

For a service time of the form (3.34), the squared coefficient of variation is upper bounded
by the squared coefficient of variation of Bn,w,p,m :

C 2
service =

Var[Tservice]

E [Tservice]2

= E
[
T 2

service

]
E [Tservice]2 −1

=
x2 +2x yE

[
Bn,w,p,m

]+ y2E
[

B 2
n,w,p,m

]
(
x + yE

[
Bn,w,p,m

])2 −1

=
x2 +2x yE

[
Bn,w,p,m

]+ y2E
[
Bn,w,p,m

]2
(
1+C 2

n,w,p,m

)
(
x + yE

[
Bn,w,p,m

])2 −1
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≤
(
1+C 2

n,w,p,m

) x2 +2x yE
[
Bn,w,p,m

]+ y2E
[
Bn,w,p,m

]2(
x + yE

[
Bn,w,p,m

])2 −1

=C 2
n,w,p,m , (3.37)

where we have used the fact that C 2
n,w,p,m ≡ Var

[
Bn,w,p,m

]
/E

[
Bn,w,p,m

]2 ≥ 0.

As a consequence of the bound (3.37), showing that Bn,w,p,m has a small coefficient of
variation is enough to show that the service time also has a small coefficient of variation.
Figure 3.7 shows C 2

n,w,p,m for some parameter regimes of n, w , p, and m that are relevant

in our work. This figure provides empirical evidence that C 2
n,w,p,m is below 1 in the

parameter regimes explored in this work. Consequently, according to [77], the mean
waiting time should be well approximated by (3.11). Note that there are other interesting
features in Figure 3.7 (e.g., C 2

n,w,p,m is non-monotonic in n and m), although we only

focus on the order of magnitude of C 2
n,w,p,m and therefore a detailed study of the behavior

of C 2
n,w,p,m is out of the scope of this work.

(a) (b)

(c) (d)

Figure 3.7: The squared coefficient of variation of the window problem is below 1 for the relevant parameter

regimes. Squared coefficient of variation of Bn,w,p,m , C 2
n,w,p,m ≡ Var

[
Bn,w,p,m

]
/E

[
Bn,w,p,m

]2. In the param-

eter regions explored, C 2
n,w,p,m decreases with increasing window size w and with increasing probability of

success p. The behavior with n and m is nontrivial although the values remain below 1 (in the parameter regions
explored). Each data point is the average over 10 simulations (error bars correspond to the standard error). Each
simulation consisted in the estimation of C 2

n,w,p,m over 103 samples of Bn,w,p,m collected via Monte Carlo
sampling. Parameters used in each subfigure: (a) n = 7, m = 3; (b) n = 7, p = 0.7; (c) p = 0.7, m = 3; (d) m = 1.
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3.7. [APPENDIX] - PARAMETER VALUES

In Table 3.4, we provide a summary of all the parameters involved in the model, including
the specific values that we use in our examples. Next, we motivate the choice of these
numerical values for our examples.

For the number of users u, the number of repeaters N , and the number of forwarding
stations per repeater k, we employ values that are reasonable for early quantum networks,
on the order of magnitude of 1−10. Additionally, the specific values we choose provide
illustrative examples in which the system exhibits interesting and/or useful behavior (e.g.,
if we used the same parameter values but the number of users was much larger than 20,
the mean sojourn times would diverge to infinity and no service would be possible). The
physical size of the network, L, is in the order of magnitude of 1−10 km. A short distance
(1 km) is required for the forwarding stations based on the proposal from ref. [18], while
all-photonic repeaters are expected to work at internode distances of 1−10 km [136, 139].

The forwarding time of each station tfwd is 100 µs in all our examples. We obtain this
value if we consider that: (i ) approximately ten gates (order of magnitude) are needed to
forward a quantum data packet (e.g., the encoding and decoding circuits of the five-qubit
perfect code consist of at most 8 gates each [112]), and (i i ) a quantum gate takes around
1-50 µs (this is the case for qubits realized with color centers, such as nitrogen vacancies –
see, e.g., refs. [100, 147]). The probability of success p depends on L, on N , and also on the
hardware used to implement the forwarding stations, as discussed in the main text. We
assume the physical channels between users are optical fibers in which the speed of light
is approximately 0.2 km/µs [110]. As discussed in the main text, we consider negligible
control time since this would not affect our analysis.

Regarding the requests, increasing the number of requested states, n, would increase
the expected service time. We tested different values of n and did not find any different
behavior from the system. In our examples, we use n = 7. We chose this relatively small
value of n because a large n would increase the runtime of the Monte Carlo sampling
when the analytical solutions cannot be applied. The request window w must be as large
as n (otherwise sequential distribution is not possible and we can only distribute packets
in parallel). We consider values of w that are close to n (7, 8, and 10) and also w →∞. We
do not consider large values of w since the results converge quickly to the infinite window
case due to large values of p being used (in most of our examples, p ≥ 0.7). Lastly, the
value of λ0 = 10−4 µs−1 used in our examples was chosen to illustrate interesting behavior,
for the other parameter values chosen. If λ0 is small, the system can process requests
seamlessly and saturates at a larger number of users (i.e., the critical number of users
increases). If λ0 is large, the opposite happens. Note that, when λ0 = 10−4 µs−1, each pair
of users submits a request every 104 µs (on average): during this time, a single forwarding
station can forward 100 quantum data packets.
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Table 3.4: Parameters of a quantum network running a QCS protocol. In our analysis, we consider a star
topology where user nodes are connected via a central repeater, although our definitions and methods remain
general. The second column provides the parameter values used in our examples.

Physical topology

u 2−20 Number of users

L 1−30 km Distance between each user and the central repeater

N 0−5 Number of repeaters between each user and the central repeater

Hardware

k 1−15 Number of forwarding stations per repeater

tfwd 100 µs Forwarding time per repeater and quantum data packet

p - Probability of successful packet delivery from user to user

c 0.2 km/µs Speed of light in the physical channels

tcontrol 0 Control time

Requests

n 7 Number of entangled pairs per request

w ≥ 7 Request time window

λ0 10−4 µs−1 Request submission rate per pair of users

3.8. [APPENDIX] - ATTENUATION IN ALL-PHOTONIC QUANTUM

REPEATERS

In this work, the probability of successfully delivering a quantum data packet, p, is
assumed to depend on the physical implementation of the forwarding stations, the
distance between repeaters (L0), and the number of intermediate repeaters between
users. In some of the use cases discussed in the main text, we consider the all-photonic
forwarding stations proposed in ref. [139]. In this Appendix, we provide more details
about how this choice of hardware determines the dependence of p on L0. In particular,
we explain how we calculate the effective attenuation coefficient αeff(L0) from (3.5).

In our examples, we consider repeaters that employ the [[48, 6, 8]] generalized bicycle
code [141], which was also used as an example in ref. [139]. Moreover, we include photon-
source and detector efficiencies, on-chip loss, and coupling losses into a single parameter:
the forwarding station efficiency (or transmittance) ηr . We assume ηr = 0.9. This value
was also used as an example in ref. [139]. In forwarding stations with efficiency ηr = 0.9
that use the [[48,6,8]] code, the effective attenuation coefficient can be approximated by

αeff(L0) ≈ 10−6(277L2
0 +29L4

0)dB/km. (3.38)
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We obtained this expression by fitting a fourth order polynomial to the data provided in
ref. [139] (see Fig. 3.8).

0 2 4 6 8 10
Internode distance L0 (km)
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Data for r = 0.9 (from Niu2022)
Fourth-order fit
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Figure 3.8: Effective attenuation coefficient vs internode distance. We fit αeff versus L0 for ηr = 0.9 and the
[[48, 6, 8]] code to the data from Fig 4b from ref. [139] (blue dots, raw data extracted with WebPlotDigitizer [158]).
Fourth order fitting with Plotly: αeff ≈ 10−6(277L2

0 +29L4
0) dB/km (solid line). Direct transmission over optical

fiber experiences an attenuation of 0.2 dB/km (dashed line).

3.9. [APPENDIX] - CRITICAL NUMBER OF USERS WITH PROBA-
BILISTIC PACKET DELIVERY

In this Appendix, we provide more examples of the behavior of the critical number of
users, ucrit, with increasing number of forwarding stations, k, in the large-budget use case
from Section 3.3. Figure 3.9 shows ucrit vs k for w = 7 and w →∞, for N = 0 and N = 5
(corresponding to L = 7.5 and L = 30 km, respectively). In these cases, the probability of
successful packet delivery is p ≈ 0.7. As in the small-budget scenario, ucrit increases with
increasing k for sequential distribution of packets. Conversely, ucrit reaches a maximum
value when packets are distributed in parallel, i.e., we cannot increase ucrit indefinitely by
increasing k, for parallel distribution.

As discussed in the main text, parallel distribution supports more users than sequen-
tial distribution only when the window size is small (i.e., close to the number of states
requested, n) and when there are few forwarding stations per repeater (small k). In Fig-
ure 3.9, we have n = 7, and we observe this behavior when w = 7 but not for w → ∞.
We also observe that, in the parameter regimes explored, this behavior vanishes when
increasing the size of the network: for L = 7.5 km, parallel distribution can support more
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users than sequential distribution for w = 7 and small k; but for L = 30 km, parallel
distribution cannot support more users for any values of w and k. For more examples,
see the Appendix of our paper [89].

N = 0, L = 7.5 km N = 5, L = 30 km

w = 7

w → ∞

Figure 3.9: Scaling of critical number of users with the number of forwarding stations, for probabilistic
quantum data packet delivery. Critical number of users, ucrit, vs number of forwarding stations, k, for QCS
with sequential (blue dots) and parallel (orange crosses) distribution of packets. Star network with N = 0 and
N = 5 (left to right) repeaters between each user and the central repeater, and distance L = 7.5 and L = 30 km
(left to right) between each user and the central repeater. These combinations of N and L are cost efficient (they
minimize N /(Lp)) and yield a probability of successful packet delivery of p ≈ 0.7. Nodes request n = 7 quantum
data packets to be successfully delivered within a time window w →∞ and w = 7 (top to bottom). When the
window size is close to n and only a few forwarding stations per node are available (e.g., bottom left subplot,
small k), parallel distribution supports more users – otherwise, sequential distribution supports more users.
Other parameters used in this figure: λ0 = 10 µs−4, tfwd = 100 µs. Results calculated using (3.6) and (3.3). For
w →∞, E

[
Bn,w,p,m

]
(required to compute (3.3)) was computed using the analytical solution from Appendix

3.5.2 – in the other cases, the probability distribution of Bn,w,p,m was estimated with 106 Monte Carlo samples.

3.10. [APPENDIX] - MEAN SOJOURN TIME WITH ALL-PHOTONIC

REPEATERS

Here, we provide some additional examples of the behavior of the mean sojourn time
(MST) in terms of the number of users, u, and the number of forwarding stations per
repeater, k.

Figure 3.10 shows the MST for sequential and parallel distribution of packets, for
increasing number of users and fixed k. In Figure 3.10a (p = 1, N = 0, L = 1 km, as in
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Figure 3.4a, and k = 7), sequential distribution can support one more user than parallel
distribution (up to 14). Nevertheless, parallel distribution provides a lower MST, although
the advantage decreases as the number of users increases, since we approach the diver-
gence. In Figure 3.10b (p ≈ 0.7, N = 0, L = 7.5 km, as in Figure 3.4b, and k = 2), parallel
distribution can support more users (up to 6, while the MST with sequential distribution
diverges after 5 users). In this case, the advantage in MST provided by parallel distribution
actually increases with increasing number of users, since the divergence happens earlier
when packets are distributed sequentially.

In Figure 3.11, we provide the difference in MST between sequential and parallel distri-
bution vs the number of users and the number of forwarding stations, for the large-budget
use case from the main text. In this use case, we consider the all-photonic forwarding
stations from ref. [139]. The number of intermediate repeaters between each user and
the central repeater, N , is chosen to minimize the cost N /(Lp). As explained in the main
text, the optimal solution is p ≈ 0.7: for L = 7.5 and L = 30 km, we have N = 0 and N = 5,
respectively. In Figure 3.11, we provide the results for window sizes w = 7 and w →∞
(more examples can be found in the Appendix of our paper [89]). As discussed in the main
text and in Appendix 3.9, parallel distribution can support more users than sequential
distribution only when the resources are scarce, i.e., when w is small compared to n and
k is small, and when the distances are also small. In the figure, this effect happens for
w = 7 and L = 7.5 km.

(a) (b)

Figure 3.10: Parallel distribution of packets is generally faster, and sometimes it supports more users. MST
with sequential (blue) and parallel (orange) packet distribution, for increasing number of users u. (a) Small-
budget use case (p = 1; N = 0, L = 1 km) with k = 7 and (b) large-budget use case (p ≈ 0.7) with N = 0, L = 7.5
km, and w = 8, and with k = 2. Parameters used in this figure: n = 7, λ0 = 10 µs−4, tfwd = 100 µs. MST in (a)
calculated with (3.7). MST in (b) calculated using a discrete-event simulation and Monte Carlo sampling with
105 samples (the error bars show the standard error).

3.11. [APPENDIX] - MANY USERS OVER LONG DISTANCES: AD-
DITIONAL EXAMPLES

In this Appendix, we compare sequential vs parallel distribution of packets in terms of
the critical distance. As discussed in Section 3.3.3, increasing the number of repeaters
only increases the critical distance when the number of users is small. Figure 3.5 shows
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N = 0, L = 7.5 km N = 5, L = 30 km

w = 7

w → ∞

Figure 3.11: Parallel distribution of packets is generally faster. Relative difference in mean sojourn time
(MST) between sequential and parallel packet distribution, for different numbers of users u and forwarding
stations k, in the large-budget use case (p ≈ 0.7) with N = 0 and N = 5 (L = 7.5 and L = 30 km, respectively; left
to right subplots), and w →∞ (top) and w = 7 (bottom). Sequential/parallel distribution provides lower MST in
blue/red regions. In regions with an ‘s’/‘p’, only sequential/parallel distribution can provide service (i.e., yield
finite MST). In dark regions with an ‘x’, no service is possible. Parameters used in this figure: n = 7, λ0 = 10 µs−4,
tfwd = 100 µs. For w →∞, MST calculated with (3.7). Otherwise, MST calculated with Monte Carlo sampling
with 107 samples (the standard error in the relative difference in MSTs was below 0.5 for every combination of
parameters).

an example of this phenomenon when using sequential distribution of packets (the same
example is shown in Figure 3.12a for convenience). In Figure 3.12b, we show that the same
conclusions are observed when packets are distributed in parallel. Interestingly, when
the number of users is fixed, sequential distribution (Figure 3.12a) allows for larger dis-
tances between them (i.e., it provides larger Lcrit) than parallel distribution (Figure 3.12b).
We also tested different combinations of parameters (w = 7,8,10 and k = 6,12,18) and
observed very similar qualitative and quantitative behavior.

CODE AVAILABILITY

The code used to generate all the plots in this chapter can be found in the following
GitHub repository: https://github.com/AlvaroGI/quantum-circuit-switching.

https://github.com/AlvaroGI/quantum-circuit-switching
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(a) (b)

Figure 3.12: Networks with sequential distribution of packets can cover longer distances than with parallel
distribution. Critical distance, Lcrit, vs number of users, u, for different numbers of repeaters N in a star
network. (a) Sequential distribution of packets; (b) parallel distribution of packets. Parameters used in this
figure: n = 7, w →∞, k = 12, λ0 = 10−4 µs−1, c = 0.2 km/µs, tfwd = 100 µs. Results calculated using (3.8), where
E
[
Bn,w,p,m

]
(required to solve (3.8)) was computed using the analytical solution from Appendix 3.5.2.
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CONTINUOUS DISTRIBUTION

OF ENTANGLEMENT IN

MULTI-USER NETWORKS

Álvaro G. Iñesta and Stephanie Wehner

There is no way to reward performance
if there’s no good way to measure performance.

— Tynan Sylvester

Entangled states shared among distant nodes are frequently used in quantum network
applications. When quantum resources are abundant, entangled states can be continuously
distributed across the network, allowing nodes to consume them whenever necessary.
This continuous distribution of entanglement enables quantum network applications
to operate continuously while being regularly supplied with entangled states. Here, we
focus on the steady-state performance analysis of protocols for continuous distribution
of entanglement. We propose the virtual neighborhood size and the virtual node degree
as performance metrics. We utilize the concept of Pareto optimality to formulate a multi-
objective optimization problem to maximize the performance. As an example, we solve
the problem for a quantum network with a tree topology. One of the main conclusions
from our analysis is that the entanglement consumption rate has a greater impact on the
protocol performance than the fidelity requirements. The metrics that we establish in this
chapter can be utilized to assess the feasibility of entanglement distribution protocols for
large-scale quantum networks.

This chapter has been published separately in ref. [94].
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4.1. INTRODUCTION

Quantum networks are expected to enable multi-party applications that are provably im-
possible by using only classical information. These applications range from basic routines,
such as quantum teleportation [14, 72], to more complex tasks, such as quantum key dis-
tribution [12, 59] and entanglement-assisted distributed sensing [74, 202]. Some of these
applications may operate in the background (e.g., a quantum key distribution subroutine
that is continuously generating secret key), as opposed to sporadic applications that
are executed after the users actively trigger them. Most quantum network applications
consume shared entanglement as a basic resource. Entanglement distribution protocols
are used to generate and share multipartite entanglement among remote parties. There
are two main approaches to distribute entanglement among the nodes [35, 88]:

• Protocols for on-demand distribution of entanglement distribute entangled states
only after some nodes request them. The request may involve some quality-of-
service requirements (e.g., a minimum quality of the entanglement). This type
of protocol typically involves solving a routing problem and scheduling a set of
operations on a subset of nodes [22, 35, 91, 186, 188].

• Protocols for continuous distribution of entanglement (CD protocols) continu-
ously distribute entangled states among the nodes. These entangled states can be
consumed by the nodes whenever they need them. This allows background appli-
cations to continuously operate and consume entanglement in the background.
In this work, we focus on CD protocols that provide entanglement to background
applications.

On-demand distribution is generally more efficient, since entanglement is only pro-
duced when it is needed. This makes on-demand distribution more suitable for quantum
networks where the quantum resources are limited (e.g., networks with a small number
of qubits per node). As a consequence, previous work, both theoretical [22, 35, 91, 186,
188] and experimental [16, 83, 87, 130, 147, 172, 181], has mostly focused on this type of
protocol in quantum networks with a simple topology or with very limited number of
qubits per node.

On-demand distribution requires a scheduling policy that tells the nodes when to
perform each operation based on specific demands. If the number of nodes involved in
the generation of entanglement is large, the scheduling policies become more complex.
In contrast, the continuous distribution of entanglement does not necessarily require
an elaborate application-dependent schedule. Therefore, CD protocols are expected
to allocate resources faster and prevent traffic congestion in large quantum networks.
Here, we focus on the performance evaluation of CD protocols. Specifically, we consider
protocols that distribute bipartite entanglement among remote nodes. We refer to shared
bipartite entanglement as an entangled link. We focus on entangled links because this is
a basic resource needed in many quantum network applications [10, 12, 59, 115], where
nodes generally need many copies of a bipartite entangled state with high enough quality.
Even when multipartite entanglement is required, it can be generated using entangled
links [29, 107, 127, 145].
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Quantum Networks

Figure 4.1: Illustration of a seven-node quantum network. The nodes are represented as gray circles, and
physical channels connecting neighboring nodes are represented as gray lines. Entangled links are represented
as black lines connecting two occupied qubits (small black circles). The physical topology is static, while the
entangled links are continuously created, discarded, and consumed.

We consider a quantum network with n nodes. Some pairs of nodes are physical neigh-
bors: they are connected by a physical channel, such as optical fibers [174, 206] or free
space [169, 181]. This is depicted in Figure 4.1. To generate long-distance entanglement,
we assume the nodes can perform the following basic operations: (i ) heralded generation
of entanglement between physical neighbors [9, 16], which successfully produces an
entangled link with probability pgen and otherwise raises a failure flag; (i i ) entanglement
swaps [55, 164, 209], which consume one entangled link between nodes A and B and
another entangled link between nodes B and C to generate a single link between A and C
with probability ps; (i i i ) removal of any entangled link that has existed for longer than
some cutoff time tcut to prevent the existence of low-quality entanglement in the network
[43, 103, 116, 160, 161]; and (i v) consumption of entangled links in background applica-
tions at some constant rate pcons. Note that the choice of cutoff time is determined by
the minimum fidelity required by the applications, Fapp. We allow for multiple entangled
links to be shared simultaneously between the same pair of nodes (see Figure 4.1).

Evaluating the performance of a CD protocol is a fundamentally different problem to
evaluating the performance of on-demand protocols, since each type of protocol serves
a different purpose. In on-demand protocols, one generally wants to maximize the rate
of entanglement distribution among a specific set of end nodes and the quality of the
entanglement (or some combined metric, such as the secret key rate [73]). By contrast,
the goal of a CD protocol is (i ) to distribute entanglement among the nodes such that it
can be continuously consumed in background applications and (i i ) to ensure that some
entanglement is available for sporadic applications. To quantify the performance of a
CD protocol, we need metrics that take these goals into account. A simple approach
is to analyze the configuration of entangled links that a CD protocol can achieve. This
configuration is time-dependent due to the dynamic nature of the entangled links. Most
previous work aimed at describing the connectivity of large-scale quantum networks
disregards the time-dependence of the system. As a consequence, previous results do not
depend explicitly on parameters that determine the evolution of the entanglement, such
as the coherence time. For example, in Refs. [25] and [24], the authors study a graph in
which the edges are entangled links that exist at a specific instant. Some authors have
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described the connectivity of a quantum network using percolation theory [2, 41, 47, 48,
128, 144, 200], which also disregards the time-evolution of the entangled states, and often
assumes specific topologies and some form of pre-shared entanglement. Another line
of related work is the use of pre-shared entanglement for on-demand applications [105,
149].

In this chapter, we consider quantum networks with arbitrary topologies where entan-
glement is continuously being generated and consumed. We propose metrics to evaluate
the performance of CD protocols. These metrics take into account the time-dependence
of the system and can be used to optimize the protocol performance.

Our main contributions are the following:

• We define metrics to evaluate the performance of CD protocols in heterogeneous
quantum networks with an arbitrary topology, namely, we define the virtual neigh-
borhood size and the virtual node degree. These metrics provide information about
the number of nodes that are able to continuously run background applications and
about the number of existing backup entangled links to run sporadic applications.

• We provide analytical and numerical tools to compute the performance metrics.

• We provide a mathematical framework to maximize the virtual neighborhood size
of every node in a heterogeneous network, while providing some minimum quality-
of-service requirements (e.g., a minimum number of backup links). We do this via
the concept of Pareto optimality.

• We study the relation between the steady-state performance of the entanglement
distribution protocol and the application requirements (minimum fidelity and link
consumption rate) in a quantum network with a tree topology.

Our main findings are the following:

• The expected virtual neighborhood size rapidly drops to zero when the entangle-
ment consumption rate increases beyond the entanglement generation rate.

• In a quantum network with a tree topology and with high entanglement generation
rate, the consumption rate has a stronger effect on the virtual neighborhood size
than the minimum fidelity required by the applications. In other words, back-
ground applications that require a high consumption rate affect the CD protocol
performance more than applications that require a high fidelity.

• The set of protocol parameters that maximize the virtual neighborhood size is node-
dependent. Consequently, in heterogeneous networks with an arbitrary topology
we need to solve a multi-objective optimization problem.

The structure of the chapter is as follows. In Section 4.2, we define the network model
(physical topology, quantum operations, and quantum resources). In Section 4.3, we
provide an example of a CD protocol. In Section 4.4, we formally define the virtual
neighborhood and the virtual node degree. We apply these definitions to evaluate the
performance of a CD protocol using analytical and numerical methods. As an example,
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we analyze a CD protocol in a quantum network with a tree topology. In Section 4.5, we
discuss the implications and limitations of our work.

4.2. NETWORK MODEL

In this section we describe the physical topology of the network and the quantum opera-
tions that the nodes can perform. We also discuss the background applications require-
ments and the management of quantum resources at each node.

We consider a quantum network with n nodes (see Figure 4.1). Nodes can store quan-
tum states in the form of qubits, and they can manipulate them as we describe below.
Additionally, some nodes are connected by a physical channel over which they can send
quantum states. Qubits can be realized with different technologies, such as nitrogen
vacancy (NV) centers [16, 83, 87, 147, 161], trapped ions [130, 172], or neutral atoms [195],
while physical channels can be realized with optical fibers [174, 206] or free space [169,
181].

P H Y S I C A L T O P O L O G Y. Two nodes are physical neighbors if they share a physical
channel. The physical node degree di of node i is the number of its physical neighbors.
The set of nodes and physical channels constitute the physical topology of the quantum
network. Early quantum networks are expected to have simple physical topologies, such
as a chain where each node is connected to two other nodes [22, 44, 91] and a star topology
where all nodes are only connected to a central node [185, 186]. More advanced networks
are expected to display a more complex physical topology, such as a dumbbell structure
with a backbone connecting two metropolitan areas.

The definitions and methods we develop in this work are general and apply to an
arbitrary physical topology, which can be described using an adjacency matrix A (element
Ai j is 1 if nodes i and j are physical neighbors and 0 otherwise). To illustrate how our
methods can be valuable and effective, we apply them to a quantum network with a
tree topology as an example. In a tree, any node can be reached from any other node by
following exactly one path. This topology is particularly relevant as it has been shown
that it requires a reduced number of qubits per node to avoid traffic congestion [40].

Definition 4.1. A (d ,k)-tree network is an undirected unweighted graph where nodes
are distributed in k levels, with d l nodes in level l ∈ 0,1, . . . ,k −1. Each node in level l is
connected to d nodes in the (l+1)-th level, and is only connected to one node in the (l−1)-th
level.

The total number of nodes in a (d ,k)-tree is n = (d k −1)/(d −1), and the network
diameter is 2k. A (2,3)-tree network is depicted in Figure 4.2.

E N T A N G L E M E N T D I S T R I B U T I O N . The aim of a CD protocol is to distribute shared
bipartite entangled states, which we call entangled links. Ideally, entangled links are
maximally entangled states. However, entanglement generation and storage are generally
noisy processes. Consequently, we assume that entangled links are Werner states [197]:
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8

(2,3)-tree

Level 0

Level 1

Level 2

Figure 4.2: (2,3)-tree network. Each node is represented as a gray circle and is connected to two other nodes in
a lower level.

maximally entangled states that have been subjected to a depolarizing process, which is a
worst-case noise model [58]. Werner states can be written as

ρ = 4F −1

3

∣∣φ+〉〈
φ+∣∣+ 1−F

3
I4, (4.1)

where
∣∣φ+〉= (|00〉+|11〉)/

p
2 is a maximally entangled state, F is the fidelity of the Werner

state to the state
∣∣φ+〉

, and Im is the m-dimensional identity. Here, the fidelity of a mixed
state ρ to a pure state

∣∣φ〉
is defined as

F (ρ,
∣∣φ〉

) := 〈
φ

∣∣ρ ∣∣φ〉
. (4.2)

We consider nodes that operate as first or second generation quantum repeaters [136]:
physical neighbors generate entangled links via heralded entanglement generation using
two-way signaling. This operation produces an entangled link with probability pgen and
otherwise raises a failure flag [9, 16]. The fidelity of newly generated links, Fnew is generally
a function of pgen. For example, in the single-photon protocol [84], Fnew = 1−λpgen, for
some 0 ≤ λ ≤ 1 (as discussed in ref. [49], the value of λ can be tuned by performing a
batch of entanglement attempts as a single entanglement generation step [148]).

Long-distance entanglement between physically non-neighboring nodes can be gen-
erated using entanglement swapping [55, 164, 209], which consumes an entangled link
between nodes A and B, with fidelity FAB, and another one between B and C, with fidelity
FBC, to produce a link between A and C, with fidelity FAC ≤ FAB,FBC. This operation
succeeds with probability pswap (when it fails, both input links are lost and nothing is
produced). Note that entanglement swapping also requires two-way classical signaling.
See Appendix 4.6 for further details on entanglement swapping.

Q U A N T U M A P P L I C A T I O N S . The main goal of a CD protocol is to provide a continu-
ous supply of entanglement for nodes to run applications without the need for explicitly
demanding entanglement. We assume that each pair of nodes that share entanglement is
continuously running quantum applications in the background, consuming entangled
links at a rate pcons. For simplicity, we assume 0 ≤ pcons ≤ 1. Since we will assume time to
be slotted (see Section 4.3), a consumption rate between zero and one can be interpreted
as the probability that, in each time slot, two nodes that share some entangled links con-
sume one link. We consider entanglement purification [57, 81, 188] as an application and
therefore we omit it in our model (purification at the physical link level can be included in
our model by modifying pgen and Fnew accordingly; see Appendix 4.6 for further details).
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Background applications require entanglement of a high enough quality. Specifically,
we assume that they need entangled links with fidelity larger than Fapp.

M I T I G A T I N G D E C O H E R E N C E . The operations involving entangled links and the
storage in memory have a negative impact on the quality of the links. Each entanglement
swap produces a link with a lower fidelity than the input links [132]. To prevent the
fidelity from dropping too low, we must limit the maximum swap distance, defined as
the maximum number of short-distance links that can be combined into longer distance
entanglement via swaps. We denote this maximum number of links as M . Two nodes can
only share entanglement if they are at most M physical links away.

Additionally, the fidelity of entangled links stored in memory decreases over time due
to couplings to the environment [38, 58], making old links unusable for applications that
require high fidelity states. A simple technique to alleviate the effects of noisy storage
consists in imposing a cutoff time tcut: any link that has been stored for longer than the
cutoff time must be discarded [160].

To ensure that the fidelity of every entangled link is above Fapp in a network where
new links are generated with fidelity Fnew, it is enough to choose the values of tcut and M
such that [91]

tcut ≤−T ln

(
3

4Fnew −1

(4Fapp −1

3

) 1
M

)
, (4.3)

where T is a parameter that characterizes the exponential decay in fidelity of the whole
entangled state due to the qubits being stored in noisy memories (see Section 2.7 for a
derivation of (4.3)). In our analysis, we choose the largest cutoff that satisfies (4.3). For
further details on the noise model, see Appendix 4.6.

L I M I T E D Q U A N T U M R E S O U R C E S . Nodes have a limited number of qubits. These
qubits can be used for communication (short coherence times) or for storage (long
coherence times) [11, 114]. Here, we assume a simplified setup where every qubit can
be used for entanglement generation and for storage of an entangled link. Intuitively,
nodes with a larger number of physical neighbors should have more resources available,
to establish entanglement with many neighbors simultaneously. We assume that the
maximum number of qubits that node i can store is di r , where di is the physical node
degree of node i and r ∈N is a hardware-dependent parameter that limits the maximum
number of qubits per node.

We make an additional simplifying assumption: each qubit can only generate entan-
glement with a fixed neighboring node. The physical motivation behind this assumption
is the lack of optical switches in the node. This assumption allows us to uniquely identify
each qubit using a three-tuple address (i , j ,m). The first index, i ∈ {0, ...,n −1}, corre-
sponds to the node holding the qubit. The second index, j ∈ {0, ...,n −1}, is the node with
which the qubit can generate entanglement (i ̸= j ). The third index, m ∈ {0, ...,r −1}, is
used to distinguish qubits that share the same indices i and j . A graphical example is
shown in Figure 4.3.
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Qubit addresses - CD protocols

1
2

3 4

0 (2,0,0)
(2,0,1)
(2,4,0)
(2,4,1)

(2,3,0)
(2,3,1)

Figure 4.3: Qubit addresses. Each qubit is identified by a qubit address consisting of three values (i , j ,m): i is
the node holding the qubit, j is the neighboring node that can generate entanglement with that qubit, and m
is used to distinguish qubits with the first two indices i and j . In this example, each node has two qubits per
physical neighbor, i.e., r = 2.

4.3. PROTOCOL FOR CONTINUOUS DISTRIBUTION OF ENTAN-
GLEMENT

The operations discussed above – entanglement generation, swaps, entanglement con-
sumption, and application of cutoffs – are performed following a specific protocol for
continuous distribution of entanglement (CD protocol). Here we consider a basic CD
protocol that we will use to test our performance optimization tools. We assume a syn-
chronous protocol: time is divided into non-overlapping time slots and each operation
is allocated within a time slot. This is a common assumption in the field of quantum
networking (see, e.g., Refs. [91, 171]), since nodes generally have to agree to perform
synchronized actions for heralded entanglement generation. In what follows, we focus
on the Single Random Swap (SRS) protocol, which is described in Algorithm 1. In this
protocol, (i ) entanglement generation is attempted sequentially on every physical link;
(i i ) swaps are performed using links chosen at random; and (i i i ) every pair of nodes
that shares an entangled link consumes one link per time step with probability pcons.
The protocol has a single parameter, q ∈ [0,1], which determines how many nodes must
perform a swap at each time step (if q = 0, no swaps are performed; if q = 1, every node
must perform a swap if possible; if 0 < q < 1, a random subset of nodes may perform
swaps). In step 3.2 of the SRS protocol, the condition A j k = 0, ensures that swaps will
generally not connect physical neighbors.

In step 5, we remove links that have too low fidelity since they were produced after
swapping too many shorter links. To stop these links from forming in the first place,
we would need to consider a more complex swapping policy where nodes are allowed
to coordinate their actions (or a simple policy where communication is assumed to be
instantaneous).

In Table 4.1 we provide a summary of the network and protocol parameters. In the next
section we present our performance metrics and how to use them to tune the protocol
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Table 4.1: Parameters of the quantum network. The number of nodes is given by the size of the adjacency
matrix A. When considering a (d ,k)-tree topology, the adjacency matrix A can be replaced by d and k. The
cutoff time tcut is given by pgen, Fnew, Fapp, and M via (4.3).

Physical topology

A Physical adjacency matrix

Hardware

pgen Probability of successful heralded entanglement generation

Fnew Fidelity of newly generated entangled links

pswap Probability of successful entanglement swap

r Number of qubits per node per physical neighbor

Software (application related)

Fapp Minimum fidelity to run background applications

M Maximum number of short-distance links involved in a sequence of
swaps

pcons Probability that two nodes sharing some links consume one of them in
each time slot

CD protocol

q Probability of performing swaps according to the SRS protocol

parameter(s) for an optimal performance. Note that our methods can be applied to any
other (synchronous and non-synchronous) CD protocol.

4.4. PERFORMANCE EVALUATION

As previously discussed, a CD protocol must ensure that as many pairs of nodes as
possible share entangled links, such that they can run quantum applications at any time.
Ideally, the protocol should also provide many links between each pair of nodes, as this
would allow them to run more demanding applications (e.g., applications that consume
entanglement at a high rate) or to have spare links to run sporadic one-time applications.
These notions of a good CD protocol motivate the definition of the following performance
metrics.

Definition 4.2. In a quantum network, the virtual neighborhood of node i , Vi (t), is the
set of nodes that share an entangled link with node i at time t. Two nodes are virtual
neighbors if they share at least one entangled link. The virtual neighborhood size is
denoted as vi (t ) := |Vi (t )|.
Definition 4.3. In a quantum network, the virtual node degree of node i , ki (t), is the
number of entangled links connected to node i at time t .

The virtual neighborhood size and the virtual node degree combined are useful met-
rics to evaluate the performance of a CD protocol. The size of the virtual neighborhood
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Algorithm 1 - SRS entanglement generation protocol.

Inputs:

- Quantum network with an arbitrary configuration of entangled links and

· physical adjacency matrix A;

· probability of successful entanglement generation pgen;

· probability of successful swap ps;

· maximum swap distance M ;

· probability of link consumption pcons.

- q : probability of performing a swap.

Outputs:

- Quantum network with updated configuration of links.

Algorithm:

1: Cutoffs are applied and old links are removed.
2: Entanglement generation is attempted at every physical link if enough qubits are

available. One entangled link is generated at each physical link with probability pgen.
3: Swaps are performed. Every node i does the following, in parallel to each other:

3.1: Pick at random a qubit entangled to some qubit in another node j .
3.2: Pick at random a qubit entangled to some qubit in node k ̸= j , and with A j k = 0.

If not possible, go to step 4.
3.3: With probability q , perform a swap on both qubits, which succeeds with proba-

bility ps. If it fails, both links involved in the swap are discarded.
4: Classical communication: every node gains updated information about every qubit

(where it is connected to) and about every entangled link (link age and number of
swaps used to create the link).

5: Long links removal: links that were produced as a consequence of swapping more
than M elementary-level links are removed.

6: Consumption: each pair of nodes that share links consume one of them with proba-
bility pcons.
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of node i corresponds to the number of nodes that can run background applications
together with node i . Since our model includes consumption of entanglement in such
applications, the virtual degree provides information about how many resources are left
to run sporadic applications.

The definitions above are similar to the notions of node neighborhood and node
degree in classical graph theory. However, the configuration of entangled links changes
over time, and therefore performance metrics from graph theory are ill-suited for this
problem, as they generally do not include this type of time-dependence. In contrast to
those metrics, vi (t ) and ki (t ) are not random variables but stochastic processes, i.e., the
value at each time slot is a random variable.

When consuming entanglement at a constant rate, the steady state of the system
is of particular interest since it will provide information about the performance of the
protocols in the long term. In Appendix 4.7, we show that, when running the SRS pro-
tocol (Algorithm 1), the network undergoes a transient state and then reaches a unique
steady-state regime (the proof also applies to similar CD protocols that use heralded en-
tanglement generation, entanglement swaps, and cutoffs). In what follows, we will focus
on evaluating the performance of the protocol during the steady state via the steady-state
expected value of the virtual neighborhood size, vi ≡ limt→∞E

[
vi (t)

]
, and the virtual

node degree, ki ≡ limt→∞E
[
ki (t )

]
.

Next, in Subsection 4.4.1, we analyze the behavior of vi and ki in the absence of swaps.
In 4.4.2, we analyze the relationship between these metrics and the protocol parameter
q in a tree-like network (although our methods are general and apply to any arbitrary
topology) and we find the optimal q that maximizes the virtual neighborhood size of the
nodes in the lowest level of the tree. In 4.4.3, we provide a mathematical framework, based
on Pareto optimization, to provide a good quality of service in heterogeneous networks.

4.4.1. NO SWAPS

To gain some intuition about the dynamics of the network and to set a benchmark, we
consider the SRS protocol with q = 0, i.e., no swaps. In the absence of swaps, only physical
neighbors can share entanglement, and the virtual neighborhood size and the virtual
node degree of node i in the steady state are given by

vi ≡ lim
t→∞E

[
vi (t )

]= di

1− 1−pcons
1−pgen

λr

1− pcons
pgen

λr
, (4.4)

ki ≡ lim
t→∞E

[
ki (t )

]= di pgen

r + pcons(1−pcons)
pgen−pcons

(λr −1)

pgen −pconsλr , (4.5)

where λ≡ pcons(1−pgen)
pgen(1−pcons) ; pgen is the probability of successful entanglement generation at

the physical link level; pcons is the link consumption rate; di is the physical node degree
of node i ; and r is the number of qubits available at node i per physical neighbor. (4.4)
and (4.5) are derived in Appendix 4.8 using general random walks. Note that in the
derivation we assume large enough cutoffs, such that links are consumed with a high
enough probability before reaching the cutoff time.
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(a) (b)

Figure 4.4: Larger consumption rates decrease the virtual neighborhood size and the virtual node degree.
Expected virtual neighborhood size (a) and virtual node degree (b) in the steady state in a quantum network with
no swaps, with cutoff tcut = 10/pcons time steps, and with five qubits per node per physical channel (r = 5). Both
quantities are normalized by the physical degree of node i , di . The curves were calculated using (4.4) and (4.5).

In the absence of swaps, both vi and ki are proportional to the physical node degree
di but independent of the rest of the physical topology. This allows us to study these
performance metrics without assuming any specific physical topology. Figure 4.4 shows
the analytical solution for vi and ki when each node has five qubits per physical neighbor
(r = 5). The figure shows a transition from large to small virtual neighborhood size when
increasing pcons beyond pgen. When the consumption rate is smaller than the generation
rate, the size of the virtual neighborhood saturates and converges to the number of
physical neighbors. When pcons increases beyond pgen, the virtual neighborhood size
goes to zero. A similar behavior is observed for the virtual degree, which takes larger
values for pcons < pgen. The same behavior is observed for different values of r , as shown
in Appendix 4.8.

We conclude that, when the consumption rate is below the generation rate and the
cutoffs are large enough, each node can produce sufficient entangled links with its neigh-
boring nodes for background applications and an extra supply of links for sporadic
applications.

In Appendix 4.8, we use simulations to show that E
[
vi (t )

]
and E

[
ki (t )

]
indeed converge

to the steady-state values predicted by our analytical calculations as t goes to infinity.

4.4.2. HOMOGENEOUS SET OF USERS

Let us now consider a more general setting: the SRS protocol with q > 0. Nodes are now
allowed to perform swaps with some probability q . In this setup, a natural question arises:
what value of q should we choose to achieve the best performance?

First, let us recall how we measure the performance. We use the expected virtual
neighborhood size in the steady state, vi , to determine the number of nodes that can
run applications with node i in the background. We want to maximize vi . The expected
node degree ki determines the number of additional entangled links that can be used
for sporadic applications. Whenever possible, we will try to have a large ki too, although
maximizing ki is not the purpose of a CD protocol (in fact, ki is maximized when no
swaps are performed, since they always reduce the total number of entangled links, even
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when they are successful). In what follows, we show how to optimize the SRS protocol
in a quantum network with a (2,3)-tree topology (although our methods apply to any
quantum network and any CD protocol). This tree network is particularly interesting
because it corresponds to a dumbbell network, which could be used to model users
(level-2 nodes) in two metropolitan areas (level-1 nodes) connected by a central link via
the level-zero node. If we assume distances of the order of 10 km, the communication
time over optical fibers is of the order of 1 ms. Hence, the time step must be at least of
the order of 1 ms. For demonstration purposes, we assume a coherence time of T = 2000
time steps, which is of the order of 1 s. As a reference, state-of-the-art coherence times
lie between milliseconds (e.g., T ≈ 11.6 ms in the NV centers experiment from ref. [147])
and seconds (e.g., T ≈ 50 s in the trapped-ion experiment from ref. [82]). Additionally,
also for demonstration purposes, we assume probabilistic entanglement generation,
deterministic swaps, maximum swap distance M = 4 (such that every node can share
links with every other node), and background applications that can be executed with
low fidelity links (Fapp = 0.6). We analyzed the system by simulating the evolution of the
network over time and using Monte Carlo sampling. For further details about how we
find the steady state and how we compute expectation values from simulation data see
Appendix 4.9.

Figure 4.5 shows vi and ki for three different nodes. Due to the symmetry of the topol-
ogy, every node in the same level of the tree has the same statistical behavior. Therefore,
we can describe the behavior of the whole tree network by looking at one node per level.
When no swaps are performed (q = 0), the virtual neighborhood size vi (Figure 4.5a) is
upper bounded by the number of physical neighbors di (di = 2,3, and 1, for nodes in
level 0, 1, and 2, respectively). Increasing q leads to an increase in vi , which reaches a
maximum value before decreasing again. If too many swaps are performed (q close to
1), then vi decreases, since each swapping operation consumes two links and produces
only one. The maximum virtual neighborhood size, maxq vi , is achieved at a different
value of q for each node. The virtual node degree ki (Figure 4.5b) behaves qualitatively
in a similar way for every node: it is maximized at q = 0 and, as we perform more swaps
(increasing q), more links are swapped and fewer links remain in the system. A similar
behavior was observed for larger trees and for probabilistic swaps (see Appendix 4.10).

In some cases, we may be only interested in providing a good service to a subset of
nodes U , the user nodes. The users run applications but also perform swaps to support
the entanglement distribution among other pairs of users. The only purpose of the rest
of the nodes (repeater nodes) is to aid the users to meet their needs. In the literature,
users that consume entanglement, but do not perform swaps to help other nodes, are
generally called end nodes. Here we assume every node is a user or a repeater node.
When some nodes are users and some are repeaters, the performance metrics of repeater
nodes become irrelevant and we want to maximize vi , ∀i ∈U . When the set of users is
homogeneous (i.e., all user nodes have the same properties), the statistical behavior of all
users is the same and we can formulate a single-objective optimization problem where
we want to maximize vi for a single i ∈U . For example, in a tree quantum network, users
are generally the nodes at the lowest level [40]. In the example from Figure 4.5, the lowest-
level nodes are the level-2 nodes (green line with crosses). If the level-2 nodes are the only
users, the performance of the protocol is optimized for q ≈ 0.65, which maximizes their
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(a) (b)

Figure 4.5: The virtual neighborhood size of every node cannot be maximized simultaneously. Expected
virtual neighborhood size (a) and virtual node degree (b) in the steady state in a (2,3)-tree network running the
SRS protocol vs the protocol parameter q . The value of q that maximizes the virtual neighborhood size, indicated
by the dotted lines, is node-dependent. The virtual node degree decreases monotonically with increasing q ,
since more links are consumed in swaps when q is large. Other parameter values used in this experiment:
pgen = 0.9, Fnew = 0.888, pswap = 1, r = 5, T = 2000 time steps, M = 4, pcons = pgen/4 = 0.225, Fapp = 0.6,
tcut = 56 time steps (given by (4.3)). Results obtained using a network simulation and Monte Carlo sampling
with 106 samples. Error bars are not shown since they are smaller than the line width – the standard errors are
below 0.003 and 0.006 for the vi and ki , respectively. The standard error is defined as 2σ̂/(Nsamples)0.5, where σ̂
is the sample standard deviation and Nsamples is the number of samples.

vi . The protocol optimization problem also becomes a single-objective optimization
problem in other networks with a strong symmetry, such as regular networks [177].

In Figure 4.6 we consider a (2,3)-tree network where the users are the nodes at the
lowest level, and we study the influence of the background application requirements
(Fapp and pcons) on the maximum expected virtual neighborhood size of the users. Here,
we assume that the entanglement generation rate is much larger than the consumption
rate (pgen ≥ 3pcons). Otherwise, links are consumed shortly after they are generated and
the behavior of the system is not interesting, as discussed in 4.4.1. From the figure, we
observe that the consumption rate has a stronger effect on the virtual neighborhood. For
example, for Fapp = 0.8, decreasing pcons from 0.3 to 0.1 increases the maximum expected
virtual neighborhood size by 20.3%. However, when decreasing Fapp from 0.8 to 0.5, the
maximum increase in vi is 3.5% (for pcons = 0). The consumption rate has a bigger effect
on the virtual neighborhood because it directly impacts the configuration of virtual links,
while Fapp only affects links via the cutoff. In this case, the smallest cutoff is 17 time steps
for Fapp = 0.8 and the largest is 411 time steps for Fapp = 0.5. When the generation rate is
large, virtual neighbors are likely to share multiple entangled links. In that case, cutoffs
barely impact the virtual neighborhood size since links can be regenerated quickly and
they are only removed after some time tcut. However, link consumption can still have a
strong impact on the virtual neighborhood size since any link can be consumed at any
time step. If the cutoffs are very close to unity (e.g., when applications require a fidelity
Fapp > 0.8), the cutoff value may strongly affect the virtual neighborhood size.
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Figure 4.6: The consumption rate has a stronger impact on the performance than the application fidelity
when the entanglement generation rate is high. Maximum virtual neighborhood size (maximized over q) of a
layer-2 node in a (2,3)-tree network vs the application fidelity, Fapp, and the consumption rate, pcons. Other
parameter values used in this experiment: pgen = 0.9, Fnew = 0.95, pswap = 1, r = 5, T = 2000 time steps, M = 4.
The cutoff time tcut is given by (4.3). Results obtained using a network simulation and Monte Carlo sampling
with 104 samples. The maximum error is 0.015 (the error is defined as 2σ̂/N 0.5

samples, where σ̂ is the sample

standard deviation and Nsamples is the number of samples). Note that maxq (vi ) should be monotonic in Fapp
and pcons but in this plot we observer small deviations due to the sample size.

4.4.3. HETEROGENEOUS SET OF USERS: MULTI-OBJECTIVE OPTIMIZATION

In a more general topology, the user nodes may have different properties and different
physical degrees. In that case, the size of the virtual neighborhood of each user may
be maximized for a different value of q . Hence, optimizing the protocol for node i
generally means that the protocol will be suboptimal for some other node j ̸= i . This
leads to a multi-objective optimization problem where we must find a tradeoff between
the variables that we want to maximize. In such a problem, optimality can be defined in
different ways [126]. A practical definition is the Pareto frontier:

Definition 4.4. Let U be the set of user nodes. Let θ⃗ ∈Θ be a combination of parameter
values describing the topology, the hardware, and the software of the quantum network,
whereΘ is the parameter space. Let vi (⃗θ), with i ∈U , be the set of variables that we want
to maximize. The Pareto frontier is defined as

P =
{
θ⃗

∣∣∀θ⃗′ ∈Θ ∃i s.t. vi (⃗θ) ≥ vi (⃗θ′)
}

. (4.6)

Lemma 4.1. If the parameter space is non-empty, i.e., Θ ̸= ;, then the Pareto frontier is
non-empty, i.e., P ̸= ;.

Proof. If Θ ̸= ;, there exists some θ⃗ j = argmax
θ⃗∈Θ

(
v j (⃗θ)

)
, for any j ∈U . Then, v j (⃗θ j ) ≥

v j (⃗θ′), ∀θ⃗′ ∈Θ, which means that θ⃗ j ∈ P . Since θ⃗ j always exists, we conclude that P ̸=
;.

Note that the parameter spaceΘ can be a constrained space, i.e., it does not necessarily
include all combinations of parameters values. For example, combinations of parameters
that are experimentally unfeasible may be excluded fromΘ. The Pareto frontier achieves
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a tradeoff in maximizing every vi , i ∈U . For all the points θ⃗ in the Pareto frontier, we
cannot obtain an increase in vi (⃗θ) without decreasing or keeping constant some other
v j (⃗θ). Moreover, Lemma 4.1 ensures that there is at least one point θ⃗ in the Pareto frontier.

Note that the Pareto frontier may allow situations in which the distribution of entan-
gled links is not equitable (e.g., one user may maximize its virtual neighborhood size at
the expense of another user minimizing it). To avoid such situations, we can explicitly
take into account quality-of-service requirements from every user node. An example of
simple requirement from node i is to have some minimum number of virtual neighbors
ci . Then, the set of points that meet the quality-of-service requirements can be written as

Q =
{
θ⃗

∣∣ vi (⃗θ) ≥ ci

}
. (4.7)

An example of more specific requirement is to keep the number of entangled links be-
tween two specific nodes always above a certain threshold.

Definition 4.5. The optimal region P∗ is the set of parameters that are in the Pareto frontier
and meet the quality-of-service requirements, i.e.,

P∗ = P ∩Q, (4.8)

where P is the Pareto frontier and Q is the set of points that meet the quality-of-service
requirements.

As an example, we consider a (2,3)-tree network where the nodes in levels 1 and 2
are users. Due to the symmetry of the topology, we only need to explicitly optimize vi

for one node in each level. In this case, it is possible to provide a graphical representa-
tion of the Pareto frontier and the optimal region. Figure 4.7 shows the expected virtual
neighborhood size in the steady state for a level-1 user and a level-2 user in a quantum
network with a (2,3)-tree topology running the SRS protocol with probabilistic entangle-
ment generation, deterministic swaps, and entanglement consumption at a fixed rate.
Each data point corresponds to a different value of the protocol parameter q . The data
points highlighted with blue crosses form the Pareto frontier P . In this example, we want
the users in the first and second level to have an expected virtual neighborhood size larger
than 3 and 1.6, respectively. Then,

Q =
{
θ⃗

∣∣ v1 (⃗θ) ≥ 3, v2 (⃗θ) ≥ 1.6
}

. (4.9)

The regions shaded in red correspond to forbidden regions where the quality-of-service
requirements are not met. That is, the points in the white region are in Q. The data points
in the optimal region P∗ are the blue crosses in the white region. This corresponds to
q ∈ [0.4,0.65]. All these values of q can be considered optimal, as they are part of the
Pareto frontier and meet the minimum user requirements.

As a final remark, note that we have used this multi-objective optimization framework
to optimize the performance of a single-parameter CD protocol. However, it can also be
used to choose from several CD protocols. This method can be applied to heterogeneous
quantum networks with arbitrary topologies.
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Figure 4.7: The optimal region determines the combinations of parameters that provide an optimal perfor-
mance. Virtual neighborhood size of a level-1 node, v1, and a level-2 node, v2, in a (2,3)-tree network running the
SRS protocol for different values of the protocol parameter q (for q = 0, we have v1 = 3 and v2 = 1; we increase
q in intervals of 0.05 following the black line up to q = 1). The data points with blue crosses form the Pareto
frontier P . The regions shaded in red are forbidden by the quality-of-service requirements (c1 = 3, c2 = 1.6).
The optimal region P∗ is formed by the blue crosses in the white region. Other parameter values used in this
experiment: pgen = 0.9, Fnew = 0.888, pswap = 1, r = 5, T = 2000 time steps, M = 4, pcons = pgen/4 = 0.225,
Fapp = 0.6, tcut = 56 time steps (given by (4.3)). Results obtained using a network simulation and Monte Carlo

sampling with 106 samples. Error bars are not shown since they are smaller than the line width – the standard
errors are below 0.003 and 0.002 for v1 and v2, respectively. The standard error is defined as 2σ̂/(Nsamples)0.5,
where σ̂ is the sample standard deviation and Nsamples is the number of samples.

4.5. DISCUSSION

In this chapter we have introduced metrics to evaluate the performance of protocols
for continuous distribution of entanglement. The virtual neighborhood of a node is the
set of nodes that share entanglement with the node, and the virtual degree of a node is
the number of entangled states it shares with other nodes. The goal of the protocol is
to maximize the size of the virtual neighborhood of every user. Here, as an example, we
have considered a simple tree network and we have demonstrated how to formulate a
single-objective and a multi-objective optimization problem that can be used to optimize
the performance when the set of users is homogeneous and heterogeneous, respectively.

In our calculations, we assumed that background applications consume entanglement
at a given rate. We found that, when the entanglement generation rate is large, the
consumption rate has a stronger impact on the size of the virtual neighborhood than the
fidelity requirements imposed by the quantum applications.

Our formulation also allows the study of protocols that continuously distribute en-
tanglement to maintain a supply of high quality pre-shared entanglement. Specifically,
the SRS protocol described in Algorithm 1 delivers pre-shared entanglement when the
consumption rate is set to zero. This can be useful to determine the feasibility of quan-
tum network protocols that assume pre-shared entanglement among the nodes of the
network. In this case, an application that uses the available entanglement would disrupt
the distribution of entangled states and would bring the system to a new transient state.
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Hence, an additional useful metric would be the time required to converge to a steady
state after such a disruption. We leave this analysis for future work.

We also leave the generalization of the network model and the protocol as future work.
As an example, one can consider nodes that have a pool of qubits that can be used for
any purpose, instead of having r specific qubits that can generate entanglement with
each physical neighbor. One can also define node-dependent protocols, where each node
follows a different set of instructions.

Lastly, note that we expect the coexistence of protocols for on-demand and continuous
distribution of entanglement in large-scale quantum networks. Continuous distribution
can be used to supply entanglement to applications running at a constant rate while
on-demand distribution can support this process during peak demands from sporadic
applications.

4.6. [APPENDIX] FURTHER DETAILS ON THE NETWORK MODEL

E N T A N G L E M E N T S W A P. Two nodes that are not physical neighbors cannot generate
entanglement directly between them. Instead, they rely on entanglement swap operations
to produce a shared entangled state between them [55, 164, 209]. As an example, consider
two end nodes A and B, which are not physically connected but share a physical link with
an intermediate node C. To generate an entangled link between A and B, they need to first
generate entangled links between A and C, and also between C and B. Then, node C can
perform a Bell state measurement to transform links A-C and C-B into a single entangled
link between A and B. When both input links are Werner states with fidelities F1 and F2,
the output state in a swap operation is also a Werner state with fidelity [132]

Fswap(F1,F2) = F1 ·F2 + (1−F1) · (1−F2)

3
. (4.10)

Note that this operation generally decreases the fidelity: Fswap(F1,F2) ≤ F1,F2.
Additionally, entanglement swaps can be either probabilistic [32, 55, 62] or determin-

istic [147], depending on the hardware employed. With probability ps, the swap operation
succeeds and both input states are consumed to produce a single entangled link. With
probability 1−ps, the swap operation fails: both input states are consumed but no other
entangled state is produced.

P U R I F I C A T I O N . If the fidelity of an entangled state is not large enough for a specific
application, nodes can run a purification protocol to increase its fidelity. In general, these
protocols take as input multiple entangled states and output a single state with larger
fidelity [57, 81, 188].

For simplicity, we do not consider any kind of purification in our analysis. Neverthe-
less, it is possible to integrate purification of entangled states at the physical link level
into our model by decreasing the value of pgen, to account for all the states that must be
prepared in advance to perform the purification protocol. This would also impact the
fidelity of newly generated links, Fnew, which would correspond now to the fidelity of the
links after purification at the physical link level. The cutoff time would also need to be
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adjusted, since the time step would take a longer time (it would have to include more
than one entanglement generation attempt). If physically distant nodes require larger
fidelity links, they can run a purification subroutine as part of the application once they
have generated enough entangled links.

C U T O F F T I M E S . Quantum states decohere, mainly due to environmental couplings
[38, 58]. Decoherence decreases the fidelity of states over time. We consider a depolarizing
noise model, which is a worst-case scenario (other types of noise can be converted to
depolarizing noise via twirling [30, 58, 86]). As shown in Section 2.6 and in Appendix A
from ref. [91], if we assume that each qubit of a Werner state is stored in a different
memory and experiences depolarizing noise independently, the fidelity of the Werner
states evolves as

F (t +∆t ) = 1

4
+

(
F (t )− 1

4

)
e−

∆t
T , (4.11)

where F (t ) is the fidelity of the state at time t , ∆t is an arbitrary interval of time, and T is
a parameter that characterizes the exponential decay in fidelity of the whole entangled
state.

When the fidelity of the entangled links drops below some threshold, they are no
longer useful. Hence, a common practice is to discard states after a cutoff time tcut to
prevent wasting resources on states that should not be used anymore [160]. We refer to
the time passed since the creation of a quantum state as the age of the state. Whenever
the age of an entangled state equals the cutoff time, the state is removed, i.e., the qubits
involved are reset. As shown in Section 2.7 and in ref. [91], to ensure that any two nodes
that are at most M physical links away will only share entangled states with fidelity larger
than Fapp, the cutoff time must satisfy

tcut ≤−T ln

(
3

4Fnew −1

(4Fapp −1

3

)1/M
)
, (4.12)

where Fnew is the fidelity of newly generated entangled links. This condition assumes that
the output state in a swap operation takes the age of the oldest input link.

4.7. [APPENDIX] EXISTENCE OF A UNIQUE STEADY STATE

In this Appendix, we show that there is a unique steady-state value for the expected
number of virtual neighbors and expected virtual degree of any node when a quantum
network is running CD Protocol 1, under the assumption that entanglement generation is
probabilistic (pgen < 1).

We consider the stochastic processes vi (t ) and ki (t ), which correspond to the number
of virtual neighbors of node i and the virtual degree of node i , respectively. The expected
values over many realizations of the processes are denoted as E

[
vi (t )

]
and E

[
ki (t )

]
.

The state of the network can be represented using the ages of all entangled links
present in the network (the age is measured in number of time slots). This can be written
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as an array s with 1
2 r

∑n−1
i=0 di components, since there are n nodes and each node i

can store up to r di entangled links, where di is the physical degree of node i and r is a
hardware-dependent parameter that limits the maximum number of qubits per node.
Since we impose cutoff times on the memories, each of the components of this vector can
only take a finite set of values. Let S be the set of all possible states, which is also finite.

Given a state s(t) at time t ∈ N (recall that we consider discrete time steps in our
protocols), the transition to a new state only depends on the number of available mem-
ories at each node for generation of new links and on the number of available links for
performing swaps and for consumption in applications. Hence, the transition does not
depend on past information:

Pr
[
s(t +1) =σ | s(0), s(1), . . . , s(t )

]= Pr
[
s(t +1) =σ | s(t )

]
.

Consequently, the state of the network can be modeled as a Markov chain with the
following three properties:

1. The chain is irreducible, since every state is reachable from every other state. If
pgen < 1, there is a nonzero probability that no links are generated over many time
slots until all existing links expire due to cutoffs and therefore the network returns
to the starting state with no links – from this initial state, every other state can be
reached.

2. The chain is aperiodic. A sufficient condition for an irreducible chain to be aperiodic
is that Pr

[
s(t +1) =σ | s(t ) =σ]> 0 for some state σ ∈S [184]. When entanglement

generation is probabilistic (pgen < 1), the state with no entangled links satisfies the
previous condition (if all entanglement generation attempts fail, the network will
remain in a state with no links), and therefore the chain is aperiodic.

3. The chain is positive recurrent (i.e., the mean time to return to any state is finite),
since it is irreducible and it has a finite state space S (see Theorem 9.3.5 from
ref. [184]).

According to Theorem 9.3.6 from ref. [184], from the three properties above we can
conclude that there exists a unique steady-state probability distribution, i.e., the following
limit exists: limt→∞ Pr

[
s(t ) =σ]

, ∀σ ∈S .
Let us now compute the expected number of virtual neighbors in the steady state:

vi ≡ lim
t→∞E

[
vi (t )

]= lim
t→∞

n∑
v=0

v ·Pr
[
vi (t ) = v

]
=

n∑
v=0

v · lim
t→∞Pr

[
vi (t ) = v

]
=

n∑
v=0

v · lim
t→∞

∑
σ∈S

Pr
[
vi (t ) = v | s(t ) =σ] ·Pr

[
s(t ) =σ]

=
n∑

v=0
v · ∑

σ∈S

lim
t→∞Pr

[
vi (t ) = v | s(t ) =σ] · lim

t→∞Pr
[
s(t ) =σ]

= ∑
σ∈S

lim
t→∞Pr

[
s(t ) =σ] · n∑

v=0
v · lim

t→∞Pr
[
vi (t ) = v | s(t ) =σ]

.

(4.13)
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Let us define a function κ(s; i , j ) that takes as input a state s and two node indices i and
j . This function returns the number of entangled links shared by nodes i and j in state
s. The virtual neighborhood size of node i at time t , vi (t), is given by the state of the
network at time t , s(t ), and it can be written as

vi (t ) = vi (s(t )) = ∑
j∈V \{i }

min
(
1,κ

(
s(t ); i , j

))
.

Consequently,

Pr
[
vi (t ) = v | s(t ) =σ]={

1, if v =∑
j∈V \{i } min

(
1,κ(σ; i , j )

)
0, otherwise

. (4.14)

Using (4.14), we can write (4.13) as

vi =
∑
σ∈S

lim
t→∞Pr

[
s(t ) =σ] ∑

j∈V \{i }
min

(
1,κ(σ; i , j )

)
, (4.15)

The expected virtual degree can be calculated similarly but using its corresponding
definition, ki (s(t )) =∑

j∈V \{i }κ
(
s(t ); i , j

)
:

ki ≡ lim
t→∞E

[
ki (t )

]= ∑
σ∈S

lim
t→∞Pr

[
s(t ) =σ] ∑

j∈V \{i }
κ
(
σ; i , j

)
. (4.16)

Since we have shown that the probability distributions that appear in (4.15) and (4.16)
exist and are unique, then the quantities vi and ki also exist and are unique. That is,
there is a unique steady-state value for the expected number of virtual neighbors and the
expected virtual degree of any node i .

From our simulations, we also expect a unique steady state for pgen = 1. The main
difficulty in proving its existence is that the Markov chain is not always irreducible (the
state with no links may not be reachable from some other states since links are generated
at maximum rate). However, if one can show that there is a unique equivalence class (i.e.,
a unique set of states that are reachable from each other) that is reached after a finite
number of transitions, the derivation above may be applicable to this equivalence class,
which would constitute an irreducible Markov chain.

Lastly, note that in practice one may find an initial transient state with periodic behav-
ior. This happens in quasi-deterministic systems, i.e., systems in which all probabilistic
events (e.g., successful entanglement generation) happen with probability very close to 1.
In quasi-deterministic systems, all realizations of the stochastic processes are identical
at the beginning with a very large probability. For some combinations of parameters,
these processes may display a periodic behavior with a period on the order of the cutoff
time. Over time, each realization starts to behave differently due to some random events
yielding different outcomes. Consequently, the periodic oscillations will dephase, and
they will cancel out after averaging over all realizations. In the example from Figure 4.8,
we find that both E

[
vi (t )

]
and E

[
ki (t )

]
are periodic with period approximately tcut. The

amplitude of the oscillations vanishes after a few periods.
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(a) (b)

Figure 4.8: A transient state with periodic oscillations may exist in quasi-deterministic systems. Evolution of
vi and ki in a quantum network with a (2,3)-tree topology running the SRS protocol described in the main text.
Each line (purple, blue, and green) corresponds to a node in a different level of the tree (level 0, 1, and 2). The
error for each solid line is shown as a shaded region, although it is hard to notice since its maximum value is
0.040 in (a) and 0.084 in (b) – the error is defined as 2σ̂/(Nsamples)0.5, where σ̂ is the sample standard deviation
and Nsamples is the number of samples. Other parameters used in this experiment: pgen = 0.99, Fnew = 0.88,
pswap = 1, r = 5, T = 2000 time steps, M = 4, pcons = 0.01, q = 0.2, Fapp = 0.6, tcut = 20 time steps. Numerical

results obtained using a network simulation and Monte Carlo sampling with 103 samples.

4.8. [APPENDIX] ANALYTICAL PERFORMANCE METRICS IN THE

ABSENCE OF SWAPS

In this Appendix, we consider a CD protocol with the same structure as the SRS protocol
(see Algorithm 1 from the main text) in the absence of swaps and with a large enough
cutoff time (tcut > r and tcut ≫ 1/pcons, where the cutoff is measured in number of time
steps). As discussed in the main text, when no swaps are performed, we can derive closed-
form expressions to gain some intuition about the dynamics of the network and to set a
benchmark. Here, we show that the virtual neighborhood size and the virtual node degree
of node i in the steady state are given by

vi ≡ lim
t→∞E

[
vi (t )

]= di

1− 1−pcons
1−pgen

λr

1− pcons
pgen

λr
(4.17)

and

ki ≡ lim
t→∞E

[
ki (t )

]= di pgen

r + pcons(1−pcons)
pgen−pcons

(λr −1)

pgen −pconsλr , (4.18)

where λ≡ pcons(1−pgen)
pgen(1−pcons) ; pgen is the probability of successful entanglement generation at

the physical link level; pcons is the link consumption probability; di is the physical node
degree of node i ; and r is the number of qubits per physical link available at each node.

We define wi j as the number of entangled links shared between nodes i and j (similar
to the definition of κ in Appendix 4.7). In the absence of swaps, nodes i and j can only
share entangled links if they are physical neighbors, since the only mechanism available
is heralded entanglement generation. If i and j are not physical neighbors, then wi j = 0.
The entangled links shared between nodes i and j can be consumed in some application
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or discarded when applying cutoffs. However, we also assume that entangled links are
always consumed before they reach the cutoff time, i.e., tcut ≫ 1

pcons
(cutoff measured in

number of time steps). This assumption allows us to model wi j using the general random
walk shown in Figure 4.9:

• The maximum value for wi j is the number of qubits available per physical link, r .
This state is reachable even when entanglement generation is done sequentially,
since links can be stored for longer than r time steps (we assume tcut > r ).

• The probabilities of transition forward are pk = pgen(1−pcons), ∀k < r , and pr = 0.

• The probabilities of transition backwards are q0 = 0, qk = pcons(1−pgen), ∀0 < k < r ,
and qr = pcons.

• The no-transition probability is zk = 1−pk −qk , ∀k.

0 1 · · · w · · · r

p0 p1 pw

z0 z1 zw zr

qrqwq1

Figure 4.9: General random walk modeling the number of entangled links wi j between nodes i and j in the
absence of swaps.

The steady-state probability distribution of this Markov chain is given by [184]

lim
t→∞Pr

[
wi j (t ) = w | Ai j = 1

]=


(
1+∑r

k=1

∏k−1
m=0

pm
qm+1

)−1
, w = 0(

1+∑r
k=1

∏k−1
m=0

pm
qm+1

)−1 ∏w−1
m=0

pm
qm+1

, w > 0
, (4.19)

where Ai j is a binary variable that indicates if nodes i and j are physical neighbors
(Ai j = 1) or not (Ai j = 0). After some algebra, the previous equation can be rewritten in
terms of the original variables of the problem:

lim
t→∞Pr

[
wi j (t ) = w | Ai j = 1

]=

π0, w = 0

π0ρ
w , 0 < w < r

π0ρ
r (1−pgen), w = r

, (4.20)

where

π0 ≡
pgen −pcons

(1−pgen)(pgenρr −pcons)
and ρ ≡ pgen(1−pcons)

pcons(1−pgen)
. (4.21)
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The expected value of wi j is

lim
t→∞E

[
wi j (t ) | Ai j = 1

]= lim
t→∞

r∑
w=0

w ·Pr
[
wi j (t ) = w | Ai j = 1

]
=

r∑
w=0

w · lim
t→∞Pr

[
wi j (t ) = w | Ai j = 1

]
a=π0

r−1∑
w=0

wρw + rπ0ρ
r (1−pgen)

=π0
ρ− rρr + (r −1)ρr+1

(1−ρ)2 + rπ0ρ
r (1−pgen)

= pgen

(pgen −pcons)(pgenρr −pcons)

·
(
r (pgen −pcons)ρr +pcons(1−pcons)(1−ρr )

)
,

(4.22)

where we have used (4.20) in step a.
The virtual neighborhood size of node i is defined in terms of the variables wi j as

vi (t ) =∑n
j=1 min(wi j (t ),1), and the expectation value can be calculated as follows:

vi ≡ lim
t→∞E

[
vi (t )

]= lim
t→∞E

[ n∑
j=1

min(wi j (t ),1)
]
=

n∑
j=1

lim
t→∞E

[
min(wi j (t ),1)

]
a=

n∑
j=1

lim
t→∞

r∑
x=0

x ·Pr
[

min(wi j (t ),1) = x
]

=
n∑

j=1

r∑
x=0

x · lim
t→∞Pr

[
min(wi j (t ),1) = x

]
b=

n∑
j=1

lim
t→∞Pr

[
min(wi j (t ),1) = 1

]= n∑
j=1

lim
t→∞Pr

[
wi j (t ) > 0

]
c=

n∑
j=1

lim
t→∞Pr(Ai j = 1) ·Pr

[
wi j (t ) > 0 | Ai j = 1

]
d=

n∑
j=1

Ai j lim
t→∞

(
1−Pr

[
wi j (t ) = 0 | Ai j = 1

])
e=

n∑
j=1

Ai j (1−π0)

f= di (1−π0)

g= di

pr+1
gen (1−pcons)r −pgen(1−pgen)r−1pr

cons(1−pcons)

pr+1
gen (1−pcons)r − (1−pgen)r pr+1

cons

= di

1− 1−pcons
1−pgen

λr

1− pcons
pgen

λr
,

(4.23)
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where λ≡ pcons(1−pgen)
pgen(1−pcons) , di is the physical degree of node i , and n is the total number of

nodes, and with the following steps:

a. We use the definition of expected value and the fact that wi j (t ) ≤ r .

b. We use the fact that min(wi j (t ),1) ∈ {0,1}.

c. We use the law of total probability, i.e., Pr(X ) =∑
n Pr(Yn)·Pr(X |Yn). Moreover, if two

nodes i and j are not physical neighbors (Ai j = 0), they cannot share any entangled
links due to the absence of swaps, i.e., Pr

[
wi j (t ) > 0 | Ai j = 0

]= 0.

d. Given the topology, Ai j is a binary variable with a fixed value. Therefore, Pr(Ai j =
1) = Ai j .

e. We use (4.20).

f. The physical node degree of node i can be computed as di =∑n
j=1 Ai j .

g. We use (4.21).

The virtual degree of node i is defined in terms of the variables wi j as ki (t ) =∑n
j=1 wi j (t ),

and the expectation value can be calculated in a similar way to vi :

ki ≡ lim
t→∞E

[
ki (t )

]= lim
t→∞E

[ n∑
j=1

wi j (t )
]
= lim

t→∞

n∑
j=1

E
[
wi j (t )

]
a= lim

t→∞

n∑
j=1

Ai j ·E
[
wi j (t ) | Ai j = 1

]
b= lim

t→∞E
[
wi j (t ) | Ai j = 1

] · n∑
j=1

Ai j

c= di · lim
t→∞E

[
wi j (t ) | Ai j = 1

]
d= di pgen

r + pcons(1−pcons)
pgen−pcons

(λr −1)

pgen −pconsλr ,

(4.24)

where λ≡ pcons(1−pgen)
pgen(1−pcons) , and with the following steps:

a. We use the law of total probability, i.e., Pr(X ) = ∑
n Pr(Yn) ·Pr(X |Yn). Moreover, if

two nodes i and j are not physical neighbors (Ai j = 0), they cannot share any
entangled links due to the absence of swaps, i.e., Pr

[
wi j (t ) > 0 | Ai j = 0

]= 0. Given
the topology, Ai j is a binary variable with a fixed value, therefore, Pr(Ai j = 1) = Ai j .

b. In a homogeneous network with no swaps, wi j depends on Ai j but is otherwise
independent of the nodes i and j . Hence, E

[
wi j (t ) | Ai j = 1

]
does not depend on j .

This can also be seen in (4.22).

c. The physical node degree of node i can be computed as di =∑n
j=1 Ai j .

d. We use (4.22) and rearrange terms.
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(a) (b)

Figure 4.10: The expected virtual neighborhood size and the expected virtual node degree converge to the
steady-state analytical values in the absence of swaps. In this example, we ran the SRS protocol (Algorithm
1 from the main text) with q = 0 (i.e., no swaps) on quantum network with (2,3)-tree topology. Nodes 0, 1,
and 2 correspond to nodes in levels 0, 1, and 2 of the tree, respectively (i.e., they have physical node degrees
d0 = 2, d1 = 3, and d2 = 1, respectively). Each solid line corresponds to each of the three nodes. The dashed
lines correspond to the expected steady-state values predicted by Equations (4.23) and (4.24) for each of the
nodes. The standard error for each solid line is shown as a shaded region, although it is hard to notice since
its maximum value is 0.017 in (a) and 0.056 in (b). Other parameters used in this experiment are pgen = 0.2,
Fnew = 0.9, r = 5, T = 2000 time steps, pcons = 0.1, Fapp = 0.6, tcut = 221 time steps (given by (4.3)). Numerical

results obtained using a network simulation and Monte Carlo sampling with 104 samples.

(4.23) and (4.24) can be used to study the performance of the protocol in the limit of
large number of resources (r →∞). When pgen > pcons we find

lim
r→∞vi = di , and lim

r→∞ki = lim
r→∞r di =∞. (4.25)

This means that, when the generation rate exceeds the consumption rate, the virtual
neighborhood size will eventually saturate and every node will share entanglement with
every physical neighbor. In particular, the average number of entangled links will increase
infinitely (for large but finite r , ki reaches a maximum value of ∼ r di ). When pgen < pcons,

lim
r→∞vi = di

pgen(1−pcons)

pcons(1−pgen)
, and lim

r→∞ki = di pgen
1−pcons

pcons −pgen
. (4.26)

In Figure 4.4 from the main text, we plot the expected virtual neighborhood size and
expected virtual degree for r = 5, focusing on the interplay between pgen and pcons. Both
quantities decrease with increasing consumption rate, as one would expect, and quickly
drop to zero for pcons > pgen.

Lastly, Figure 4.10 shows an example of the convergence of E
[
vi (t)

]
and E

[
ki (t)

]
to

vi and ki over time, respectively. The time-dependent quantities have been calculated
using a simulation on a quantum network with a (2,3)-tree physical topology. The dashed
lines correspond to the steady-state values in the absence of swaps predicted by (4.23)
and (4.24).
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4.9. [APPENDIX] STEADY STATE OF A STOCHASTIC PROCESS

In this Appendix we provide an algorithm to find the steady-state expected value of
a stochastic process given a set of samples. In our work, we employ this algorithm to
estimate the steady-state expected value of the virtual neighborhood size, limt→∞E

[
vi (t )

]
,

and the virtual node degree, limt→∞E
[
ki (t )

]
, from numerical simulations.

Finding the steady state of a stochastic process using realizations of the process is
not a trivial task. Algorithm 2 can be used to estimate the start of the steady state of a
stochastic process given N realizations of the process. The algorithm ensures that the
expected values of the process at any two times in the steady state are arbitrarily close
with a large probability. We provide formal definitions and a proof below.

Algorithm 2 - Steady state estimation.

Inputs:

- X N (t ), t = t0, t1, ..., tM−1: sample mean of a stochastic process X (t ) over N
realizations at t = t0, t1, t2, ..., tM−1.

- a: minimum value of the stochastic process X (t ).

- b: maximum value of the stochastic process X (t ).

- w : minimum size of the steady state window.

Outputs:

- α: the steady state is assumed to start at t = tα. The protocol aborts if it is not
possible to find an α such that α≤ M −w .

Algorithm:

1: Define the error as ε← b−ap
N

.

2: Define the steady state window: W ← {M −w, M −w +1, M −w +2, ..., M −1}.
3: Calculate ∆i j ← 2ε−|X N (ti )−X N (t j )|, ∀i , j ∈W and i ̸= j .
4: If ∆i j < 3

2ε for any i , j , then abort (steady state not found).
5: for z in [1, 2, ..., M-w] do
6: k ← M −w − z.
7: Calculate ∆i k ← 2ε−|X N (ti )−X N (tk )|, ∀i ∈W .
8: If ∆i k < 3

2ε for any i , then α← k +1 and go to step 12.
9: W ←W ∪ {k}

10: end for
11: α← k.
12: return α.
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Theorem 4.1. Let X (t ) ∈ [a,b], with a,b ∈R, be a stochastic process with constant steady-
state mean, i.e., limt→∞E

[
X (t )

]= X∞ <∞. Let X N (tk ) be a sample mean over N samples
at time tk ∈ {t0, t1, ..., tM−1}, with t0 < t1 < ... < tM−1. Consider a minimum size of the steady-
state window w. When N →∞, Algorithm 2 with inputs X N (tk ), a, b, and w, finds α such
that

Pr
[
E
[

X (ti )
] ∈ ICi j

]
≥ 0.815, ∀i , j ≥α

for an interval of confidence ICi j =
(

max
(
X N (ti ), X N (t j )

)− ε, min
(
X N (ti ), X N (t j )

)+ ε )
,

with ε= b−ap
N

, or the algorithm aborts.

Proof. Let us consider a stochastic process X (t ) ∈ [a,b] with constant steady-state mean,
i.e., limt→∞E

[
X (t)

] = X∞ <∞, and with finite variance σ(t)2. Assume that we have N
realizations of the process where we took samples at times t0 < t1 < t2, . . . . We denote
the value taken in realization n ∈ {0,1, ..., N −1} at time t as xn(t ). We define the sample
average as

X N (t ) = 1

N

N−1∑
n=0

xn(t ). (4.27)

The Central Limit Theorem states that the distribution of
p

N
(
X N (t )−E[X (t )

])
con-

verges to a normal distribution N (0,σ(t)2) as N approaches infinity. After rescaling
and shifting this distribution, we find that E

[
X (t)

]
converges to a normal distribution

N
(
X N (t ),σ(t )2/N

)
as N approaches infinity. By the properties of the normal distribution,

Pr

[
E
[

X (t )
] ∈ (

X N (t )− 2σ(t )p
N

, X N (t )+ 2σ(t )p
N

)]
> 0.95. (4.28)

The values of X (t ) are constrained to the interval [a,b], and therefore the standard devia-
tion is upper bounded by [17]

σ(t ) ≤ (b −a)/2. (4.29)

Let us define the error as ε= b−ap
N

, and the interval of confidence for the expected value of

X (ti ) as

ICi =
(

X N (ti )−ε, X N (ti )+ε
)

(4.30)

Using (4.28), (4.29), and (4.30), we can write

Pr
[
E
[

X (ti )
] ∈ ICi

]
> 0.95. (4.31)

This result means that the expected value is arbitrarily close to the sample mean with
high probability. Next, we need to show that any two expected values in the time window
defined by the algorithm are arbitrarily close to each other to conclude that the window
captures the steady-state behavior.

Let us define the interval of confidence i j as the overlap in the intervals of confidence
for the expected values of X (ti ) and X (t j ):

ICi j =
(

max
(
X N (ti ), X N (t j )

)−ε, min
(
X N (ti ), X N (t j )

)+ε )
. (4.32)
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The size of this interval of confidence is

∆i j = 2ε− ∣∣X N (ti )−X N (t j )
∣∣. (4.33)

We provide a graphical intuition in Figure 4.11.Intervals of confidence

ε

ε

ε

εXN(i)

XN( j)

ji

Δij

Figure 4.11: Graphical intuition for the interval of confidence i j used to identify the steady state. X N (i )
corresponds to the sample mean at i , ε is the error, and∆i j is the size of the interval of confidence i j (highlighted
in yellow).

Algorithm 2 finds the smallest α such that α≤ M −w and ∆i j ≥ 3
2ε, for any i , j > α.

Then, we say that the steady state starts at tα. If α does not exist, the algorithm aborts.
Next, we show that the condition stated in the theorem,

Pr
[
E
[

X (ti )
] ∈ ICi j

]
≥ 0.815, ∀i , j ≥α, (4.34)

is equivalent to ∆i j ≥ 3
2ε, for any i , j >α. We proceed as follows:

Pr
[
E
[

X (ti )
] ∈ ICi j

]
a= Pr

[
E
[

X (ti )
] ∈ (

X N (ti )−ε, X N (ti )+∆i j −ε
) ]

b=
∫ X N (ti )

X N (ti )−ε
fN (xi )dxi +

∫ X N (ti )+∆i j −ε

X N (ti )
fN (xi )dxi

c≥
∫ X N (ti )

X N (ti )− 2σ(t )p
N

fN (xi )dxi +
∫ X N (ti )+∆i j −ε

X N (ti )
fN (xi )dxi

d≥ 0.95

2
+

∫ X N (ti )+∆i j −ε

X N (ti )
fN (xi )dxi

e≥ 0.475+
∫ X N (ti )+ ε

2

X N (ti )
fN (xi )dxi

f≥ 0.475+
∫ X N (ti )+ σp

N

X N (ti )
fN (xi )dxi

g≥ 0.475+ 0.68

2
= 0.815

(4.35)
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with the following steps:

a. Without loss of generality, assume X N (ti ) ≥ X N (t j ).

b. Let fN (xi ) be the probability distribution function of E
[

X (ti )
]
. As previously shown,

when N goes to infinity, this distribution converges to N
(
X N (ti ),σ(t)2/N

)
. We

assume N is sufficiently large.

c. Using (4.29): ε= b−ap
N

≥ 2σ(t )p
N

.

d. The probability that a normally distributed random variable takes a value between
the mean and two standard deviations away is larger than 0.95

2 , i.e.,
∫ µ
µ−2σ f (z)d z =∫ µ+2σ

µ f (z)d z ≥ 0.95
2 , where f (z) is the probability distribution of Z ∼N (µ,σ2).

e. The algorithm only considers i and j such that ∆i j ≥ 3
2ε.

f. Using (4.29) again: ε≥ 2σ(t )p
N

.

g. The probability that a normally distributed random variable takes a value between
the mean and one standard deviation away is larger than 0.68

2 , i.e.,
∫ µ
µ−σ f (z)d z =∫ µ+σ

µ f (z)d z ≥ 0.68
2 , where f (z) is the probability distribution of Z ∼N (µ,σ2).

Note that the validity of this method depends on the number of samples N , which
must be sufficiently large in order to apply the Central Limit Theorem.

In our simulations, we employ Algorithm 2 to check the existence of the steady state
in the virtual neighborhood size, vi (t ), and the virtual node degree, ki (t ), of every node
i . After identifying the steady state, we take the average at the final simulation time
as an estimate for the expected steady-state value, i.e., limt→∞E

[
vi (t)

]≈ v i ,N (tM−1) and

limt→∞E
[
ki (t)

]≈ k i ,N (tM−1), where v i ,N (t ) and k i ,N (t ) are the sample averages at time t .
The virtual neighborhood size of node i is upper bounded by b = min(r di ,n), where r di

is the total number of qubits at node i and n is the total number of nodes. The virtual
degree of node i is upper bounded by b = r di . In this work, each simulation was run over
10tcut time steps, and the window used to estimate the steady state was w = 2tcut.

When the standard error is very small and the mean value is slowly converging to the
steady-state value, the overlaps between intervals of confidence (∆i j ) may be too small.
Then, our algorithm may abort, indicating that there is not steady state. In practice, we
would like the algorithm to declare that the steady state has been reached once we are
close enough to the steady-state value. To prevent the algorithm from aborting in such a
situation, we can increase the value of b to increase the size of the interval of confidence
(ε) in the algorithm.

We considered employing other data analysis techniques, such as bootstrapping and
data blocking [178], to improve our estimates. However, we decided to not use them since
(i ) bootstrapping would require running the simulations over many more time steps to
be able to take many samples spaced an autocorrelation time; and (i i ) data blocking
requires a much larger storage space.
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As a final remark, we measure the error in the estimate of the expected steady-state
values using the standard error ϵ= sN /

p
N , where sN is the sample standard deviation.

In particular, the error bars used in this work correspond to ±2ϵ, which provide a 95%
interval of confidence.

Figure 4.12 shows an example of our algorithm finding the steady state of the virtual
neighborhood size when running the SRS protocol in a network with a tree topology. The
virtual neighborhood size of three nodes is shown in different colors. Dots correspond to
the time tα at which the algorithm declares that the steady state has been reached.

0 50 100 150 200 250 300
Time

0

1

2

3

v i

Level 0 node Level 1 node Level 2 node

Figure 4.12: Algorithm 2 can identify the steady state of a stochastic process. Evolution of the average virtual
neighborhood size in a quantum network with a (2,3)-tree topology running the SRS protocol described in
the main text. Each line (purple, blue, and green) corresponds to a node in a different level of the tree (level 0,
1, and 2). Dots indicate that the steady state has been reached, according to Algorithm 2. The error for each
solid line is shown as a shaded region, although it is hard to notice since its maximum value is 0.029 (the error
is defined as 2σ̂/Nsamples, where σ̂ is the sample standard deviation and Nsamples is the number of samples).
Other parameters used in this experiment: pgen = 0.9, Fnew = 0.88, pswap = 1, r = 5, T = 2000 time steps, M = 4,
pcons = 0.225, q = 0.1, Fapp = 0.6, tcut = 56 time steps. Numerical results obtained using a network simulation

and Monte Carlo sampling with 103 samples. The simulation was run over 560 time steps (only the first 300 are
shown here) and the steady-state window was 112 time steps.

4.10. [APPENDIX] EXTRA EXPERIMENTS ON A TREE NETWORK

Here, we provide more examples of the dependence of the virtual neighborhood size, vi ,
and the virtual node degree, ki , on the SRS protocol parameter q (probability that a node
performs a swap). In the main text, we discuss the dependence on q using a network
with the following baseline set of parameters: (2,3)-tree topology, pgen = 0.9, Fnew = 0.888,
pswap = 1, r = 5, T = 2000 time steps, M = 4, pcons = 0.225, Fapp = 0.6, tcut = 56 time
steps. Figure 4.13 shows similar plots for networks with slightly different combinations of
parameters that correspond to larger trees, smaller consumption rate, and probabilistic
swapping. In all situations we observe the same qualitative behavior as in the baseline
case: the value of q that maximizes the virtual neighborhood size is node-dependent, and
ki is monotonically decreasing with increasing q .



4

106 4. CONTINUOUS DISTRIBUTION OF ENTANGLEMENT IN MULTI-USER NETWORKS

(g) (h)

(e) (f)

(c)

(a) (b)

(d)

Figure 4.13: Our performance metrics show the same qualitative behavior for different combinations of
parameters. Expected virtual neighborhood size (a, c, e, g) and virtual node degree (b, d, f, h) in the steady
state in a tree network running the SRS protocol vs the protocol parameter q . The value of q that maximizes the
virtual neighborhood size is indicated by the dotted lines. Baseline parameters: (2,3)-tree topology, pgen = 0.9,
Fnew = 0.888, pswap = 1, r = 5, T = 2000 time steps, M = 4, pcons = 0.225, Fapp = 0.6, tcut = 56 time steps. The
subfigures in each row correspond to a different experiment: (a,b) (3,3)-tree, (c,d) (2,4)-tree, (e,f) pcons = 0.1,
and (g,h) pcons = 0.1 and pswap = 0.5. Results obtained using a network simulation and Monte Carlo sampling

with 103 samples. The error in the error bars is defined as 2σ̂/Nsamples, where σ̂ is the sample standard deviation
and Nsamples is the number of samples.
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DATA AND CODE AVAILABILITY

The data shown in this chapter can be found in ref. [93]. Our code can be found in the
following GitHub repository: https://github.com/AlvaroGI/optimizing-cd-protocols.
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THE VIABILITY OF

PREEMPTIVE DELIVERY OF

QUANTUM RESOURCES

Álvaro G. Iñesta and Stephanie Wehner

The inspection paradox is
a common source of confusion,

an occasional cause of error,
and an opportunity for clever experimental design.

— Allen Downey

Quantum network applications often rely on the use of specific quantum states as con-
sumable resources, such as entangled states shared among remote parties. Ensuring the
reliable and efficient delivery of these resource states is critical for the success of such appli-
cations. Here, we analyze the performance of two strategies for the delivery of quantum
resource states: on-demand protocols, where resource delivery is triggered upon request,
and continuous-delivery protocols, where resources are preemptively delivered without
prior knowledge of when consumption requests will arrive. To evaluate these protocols,
we use two key performance metrics: the expected completion time, defined as the time
between a request arrival and the successful delivery of a resource state, and the wastage,
which measures the number of delivered resources that go unused. Continuous-delivery
protocols can significantly reduce completion times at the cost of increased resource wastage
– when resources are delivered in advance, they may have to be discarded upon delivery due
to insufficient storage capacity, or after some time due to decoherence. We derive analytical
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expressions and approximations to evaluate the performance metrics for both types of
protocol. Surprisingly, we find that, in certain scenarios, preemptive delivery of resource
states can paradoxically increase the expected completion time. This phenomenon occurs
when the time required to distribute a single resource state follows a broad probability
distribution. Our findings offer insights into the efficient delivery of quantum resource
states and identify the conditions under which preemptive delivery is beneficial.

5.1. INTRODUCTION

Quantum network applications commonly rely on the use of specific quantum states
as consumable resources, with entangled states being a particularly prevalent type. For
example, in the verifiable quantum secret sharing from refs. [46, 120], the dealer, who
wants to distribute a secret quantum state among a number of parties, must also dis-
tribute multiple ancillary entangled states that are later consumed to verify the correct
distribution of the secret.

The delivery1 of quantum resource states among remote parties is typically a slow
and stochastic process [67, 87, 110, 118, 147]. As an example, consider the state-of-
the-art experiment from ref. [147], where three physically distant qubits, realized with
nitrogen vacancy centers, are entangled to produce a tripartite GHZ state. In this work,
the lifetime of the generated entangled state (approximately 11.6 ms) is of the same
order of magnitude as the average time required to deliver the GHZ state (over 11.8 ms).
This can negatively impact the performance of quantum network applications that are
waiting to consume the resource states. For instance, consider an application in which
entanglement is needed to teleport some quantum data to a remote location with high
quality [14]. If the quantum data is stored in memory for a long and unknown period
of time while waiting for entanglement to be delivered, its quality will degrade due to
decoherence [38, 58], potentially compromising the success of the application. In such
cases, ensuring rapid delivery of entanglement is crucial to enable the reliable execution
of the application.

Quantum resource states, including entangled states, can be distributed among re-
mote parties using a delivery subroutine, which takes time D to deliver the resource
state after being triggered. We consider two primary strategies to trigger this subroutine:
on-demand and continuous delivery [35]. In on-demand (OD) protocols, the delivery sub-
routine is initiated only after users explicitly request the resource, which is immediately
consumed upon delivery. In the context of bipartite entanglement delivery, such strate-
gies are sometimes referred to as “generate-when-requested”. OD protocols have been
extensively studied in multiple contexts, including end-to-end entanglement delivery in
quantum repeater chains [22, 44, 91, 167], entanglement distribution in star networks uti-
lizing a quantum switch [65], and entanglement routing within larger networks [140, 142,
187, 188]. In continuous-delivery (CD) protocols, the subroutine is triggered repeatedly,
without the need for users to make explicit requests. This approach ensures that resource
states are continuously delivered, allowing users to consume them whenever necessary.

1In this chapter, we use the term delivery of quantum states rather than distribution (as we do in other chapters)
to enhance clarity, as the latter term will be frequently used to refer to probability distributions.
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CD protocols have been explored for bipartite entanglement delivery across arbitrary
networks [94, 177], and for pre-entangling specific sets of network nodes to facilitate
subsequent on-demand delivery [66, 149]. Additionally, adaptive CD protocols, which
determine where in the network entanglement should be delivered based on past events,
have been proposed as an efficient alternative to naive CD approaches [105]. Note that
OD and CD protocols may be ill-defined in certain scenarios. For example, in refs. [179,
186], users can request a steady delivery of resource states at a fixed rate. In this case,
an OD protocol may need to trigger the delivery subroutine continuously, temporarily
functioning as a CD protocol.

One would expect CD protocols to provide faster service than OD protocols, since they
start delivering resources preemptively, before any request arrives. However, if quantum
states are delivered, stored and left unused for an extended period, they will undergo de-
coherence [38, 58], eventually rendering them unusable and leading to resource wastage.
In ref. [35], OD and CD protocols are compared in the context of entanglement routing,
where the goal is to deliver bipartite entanglement between two users in a network. The
study concluded that pre-distributing entanglement with a CD protocol can outperform
OD protocols in terms of average latency (defined as the time needed to deliver bipartite
entanglement between two specific pairs of users), particularly when there is a small
number of requests. Here, we compare the performance of OD and CD protocols in a
more abstract setting. We assume the objective is to deliver quantum resource states to an
arbitrary but fixed number of parties. The entire delivery process is characterized by the
probability distribution of the delivery time D , which encapsulates all network properties
and constraints. Our central goal is to answer the following general question: should we
deliver quantum resources preemptively, even if this leads to resource wastage?

We first define relevant performance metrics to compare both types of protocol.
Namely, we use the expected request completion time (time since a request arrives until a
resource state is provided, see Definition 5.1) and the wastage (number of wasted resource
states per request, see Definition 5.2). We provide analytical expressions to compute these
quantities. Then, we study a setting in which users cannot store delivered resources for
later use – that is, resources must be consumed or discarded upon delivery. Our main
findings are the following:

• When the delivery time D follows a broad distribution, preemptive resource delivery,
as employed in CD protocols, paradoxically leads to longer request completion
times compared to OD protocols. We show that this occurs when the standard
deviation of D exceeds its expected value. We also provide an intuitive example to
understand this behavior.

• We show that the number of wasted resource states per completed request in CD
protocols is proportional to the expected time between consumption requests and
inversely proportional to the expected value of D , while being zero for OD protocols.

In Section 5.2, we introduce the parameters of the problem and the model we use for
OD and CD protocols. In Section 5.3, we formally define our performance metrics, and we
derive analytical expressions to compute them. Then, in Section 5.4, we study a network
in which the users cannot store any resource states, i.e., resources must be immediately
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Quantum 
Network

Figure 5.1: We model the quantum network as a black box. The network can trigger a delivery subroutine that
takes time D to deliver a resource state to the users.

consumed or discarded upon delivery. Lastly, we discuss the main insights and future
research directions in Section 5.5.

5.2. MODEL FOR QUANTUM RESOURCE STATE DELIVERY

Here, we consider a quantum network whose goal is to deliver resource states to a set
of users, which they need in order to run an application. The resource state is generally
an entangled state. For example, bipartite entanglement may be requested to perform
entanglement-based quantum key distribution [59], or a cluster state may be needed for
a measurement-based quantum computation [23, 155]. However, the resource state may
also consist of multiple copies of an entangled state, i.e., it can be a tensor product of
multiple entangled states. In our model, the number of users and the specific resource
state being generated are irrelevant, as long as they are always the same: we assume that
the same set of users will always ask for the same resource state. In fact, we model the
whole network as a black box that can run a subroutine to deliver the resource state, as
illustrated in Figure 5.1.

After being triggered, the delivery subroutine takes time D to deliver the resource
state. The subroutine is likely to involve multiple stochastic processes and therefore D
is a random variable – for example, end-to-end entanglement generation over a two-
way repeater chain requires successful entanglement generation attempts among each
pair of adjacent repeaters [22]. The probability distribution of D depends on multiple
factors, such as the physical properties of the network and the specific delivery subroutine
employed. We assume the network operates in some steady state where the probability
distribution of D is arbitrary but remains fixed over time, a common assumption in the
literature – characterizing this probability distribution for different quantum networking
systems has been a frequent topic of research (see, e.g., [44, 96, 103, 167]).

Every time the users need to consume a resource state, they must submit a consump-
tion request – when a request is submitted, we say that the request has arrived in the
system. We assume that the times between request arrivals are independent and iden-
tically distributed (i.i.d.), and we represent them with R, a random variable following
an arbitrary probability distribution. If a request arrives and a resource state is already
available, the state is consumed immediately to meet the request. If a request arrives
when no resources are available, the request is put in a first-in first-out queue. Whenever
a resource state is delivered, it is assigned to the first request in the queue and the request
is marked as completed.
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When the rate at which requests arrive exceeds the rate at which resources can be
delivered, the system becomes unstable and the number of requests waiting in the queue
goes to infinity over time. To prevent this undesirable behavior, we assume the following:

Assumption 5.1. On average, resource states are delivered at a rate exceeding the arrival
rate of consumption requests, i.e.,

E [D] < E [R] . (5.1)

For further details about the relationship between condition (5.1) and the stability of the
system, see, e.g., Chapter 14 from ref. [184].

As introduced earlier, the delivery subroutine can be triggered when a request arrives
or in advance. This leads to two general types of protocols [35], which we define as follows:

• In an on-demand delivery (OD) protocol, the arrival of a request triggers the subrou-
tine responsible for resource state delivery. While the queue is empty, the network
remains idle and the subroutine is not executed. However, when requests are
present in the queue, the subroutine is called sequentially, processing each request
until the queue is cleared. This is illustrated in Figure 5.2a.

• In contrast, a continuous-delivery (CD) protocol proactively triggers the subroutine
in advance, aiming to provide faster service. Unlike the on-demand approach,
the CD protocol may continue generating resource states even when the requests
queue is empty. Specifically, we assume that the delivery subroutine is triggered
immediately after the completion of the previous subroutine execution, ensuring a
steady flow of resource state delivery. This is illustrated in Figure 5.2b.

Alternative strategies could blend these two philosophies, triggering the delivery subrou-
tine in advance but not continuously, potentially guided by live network traffic informa-
tion. While these approaches might improve protocol performance, our work focuses on a
preliminary analysis of fundamental strategies, leaving the exploration of such advanced
methods for future research.

CD protocols preemptively trigger the delivery subroutine, and thus are generally
expected to provide resource states for incoming requests more quickly than OD protocols.
This is depicted in the example from Figure 5.2. There, requests arrive at the same time in
both cases. However, under the CD protocol, the delivery subroutine is already underway
when the requests arrive, resulting in requests 1 and 2 being completed faster than in the
OD protocol. Later, we will demonstrate that this intuition does not always hold true: CD
protocols can, in fact, result in longer completion times, depending on the probability
distribution of D .

Despite the potential advantage in completion times, CD protocols can become
inefficient if resources are delivered significantly faster than requests arrive: unused
resource states may accumulate in memory and eventually must be discarded, as their
quality degrades over time due to decoherence. In the next section, we propose two
performance metrics to measure the rate at which requests are completed and also the
amount of resource wastage. These metrics are then used to evaluate the benefits and
drawbacks of preemptively distributing quantum resource states.
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Figure 5.2: Illustration of OD and CD protocol operations over time. (a) In an OD protocol, the delivery
subroutine is triggered only when requests are present in the queue, ensuring resource-efficient delivery. (b)
In a CD protocol, the delivery subroutine is triggered continuously. This can result in resource wastage: in
this example, we assume the users lack memory to store quantum states, and therefore the second resource
delivered has to be discarded. Here, the CD protocol completes requests 1 and 2 faster than the OD protocol.

5.3. PERFORMANCE METRICS

In our work, the primary goal of resource delivery protocols is to deliver resources and
fulfill requests as quickly as possible. To evaluate performance, we first propose the
expected completion time as the main metric. Additionally, we introduce a second
quantity to assess the efficiency of the protocol by measuring the amount of wasted
resources.

5.3.1. EXPECTED COMPLETION TIME

We define the completion time of the i -th request, denoted as Ti , as the time passed since
the arrival of the request until the delivery of a resource state that fulfills the request.
The completion time of the i -th request depends on the number of requests already in
the queue at the time of its arrival, as these requests must be completed before the i -th
one can be processed, and also on the delivery time of the subroutine. Both the queue
size and the delivery time are random variables. Consequently, Ti is a random variable.
To evaluate the performance of resource delivery protocols, we focus on the expected
completion time as the primary metric. Specifically, we consider the expected completion
time in the steady state2:

2The completion times form a stochastic process (Ti , i ∈N), and these random variables are not i.i.d. in general.
That is, E[Ti ] is not necessarily equal to E[T j ], i ̸= j . However, in the long run, E[Ti ] typically converges to
a fixed value. There are exceptions in certain pathological cases, where the expected completion time may
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Definition 5.1. The expected completion time is defined as

E[T ] = lim
i→∞

E[Ti ], (5.2)

where Ti is the arrival time of the i -th request.

Equivalent performance metrics have been defined in related works. Examples in-
clude the expected rate at which resources are delivered (equivalent to E[T ] when all
resources are immediately consumed upon delivery) [35, 140, 142, 187]; the average la-
tency (inverse of E[T ]) [35, 105]; and the mean sojourn time (equivalent to E[T ] when the
network can be modeled as a queueing system, see Chapter 3) [89]. A related performance
metric is the probability of rejecting requests [36, 42, 65, 111], which we do not use since
we assume requests are never rejected. Lastly, note that the term “completion time” has
been used in some cases to refer to what we call delivery time [191].

In Section 5.4, we derive analytical solutions and approximations for the expected
completion time of OD and CD protocols.

5.3.2. WASTED RESOURCES

As previously discussed, quantum states that are delivered and stored for an extended
period before use are subject to decoherence, eventually rendering them unusable. More-
over, if no quantum memories are available for storage when a resource state is delivered,
the excess resources must be discarded immediately. CD protocols may encounter this
issue: if the delivery subroutine generates resource states significantly faster than re-
quests arrive, some resources might need to be discarded. Next, we define a quantity that
measures this resource wastage.

We define Nd(t ) as the total number of resource states distributed in the time interval
(0, t ] when running a CD protocol. This protocol operates such that the delivery subrou-
tine is triggered immediately after the completion of the previous delivery. Consequently,
the times between resource deliveries are i.i.d. random variables with the same distri-
bution as D. Similarly, let Nr(t) denote the total number of requests that arrive within
(0, t ]. The interarrival times between consecutive requests are also i.i.d. and follow the
same distribution as R . Both {Nd(t ), t ≥ 0} and {Nr(t ), t ≥ 0} are counting processes. More
specifically, they are renewal processes, since the time between consecutive events –
whether resource deliveries (D) or request arrivals (R) – are i.i.d. random variables. We
define the ratio of extra deliveries per request in the interval (0, t ] as

W (t ) := Nd(t )

Nr(t )
−1, (5.3)

and we use the value of this ratio in the steady state to measure resource wastage.

Definition 5.2. The wastage of a CD protocol, W , is defined as the value of W (t) in the
steady state, i.e., W := limt→∞W (t ).

By definition, the wastage W is the number of extra resource states delivered per
request, in the steady state. As we show in Lemma 5.1, W can also be conveniently
computed as the ratio between interrarrival times.

diverge to infinity, as we show later in Section 5.4.
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Lemma 5.1. The wastage can be computed as

W = E [R]

E [D]
−1. (5.4)

Proof. We can show this as follows:

W := lim
t→∞W (t ) = lim

t→∞
Nd(t )/t

Nr(t )/t
−1

a.s.= E [R]

E [D]
−1, (5.5)

where the definition of W (t) is applied in the second step, and the strong law of large
numbers is applied to the renewal processes {Nd(t ), t ≥ 0} and {Nr(t ), t ≥ 0} in the last step
(see Section 10.2, Theorem 1, from [76]).

From Lemma 5.1, we observe that W exists as long as E[R] <∞ and E[D] > 0, which we
assume to be the case. Recall that we also assume E [D] < E [R] to ensure system stability
(see assumption (5.1)). As a result, the wastage W is a positive quantity. When a protocol
delivers resource states much faster than requests arrive, i.e., E[D] ≪ E[R], the wastage W
becomes large, since the protocol generates an excess of resource states. On the other
hand, if E[D] is close to E[R], then W remains close to zero, indicating that the CD protocol
is efficient in terms of wasted resources.

Wastage is an operational metric to quantify the use of resources, motivated by an
engineering perspective. Related metrics include the cost of replenishing entanglement
(i.e., the time required to regenerate some entangled state) [166] and the percentage of
quantum memories in use within storage nodes, which may store entanglement pre-
distributed via a CD protocol [149]. More fundamental quantities, which are used to
quantify certain quantum effects such as entanglement, are defined within quantum
resource theories (see, e.g., [39] for a review).

5.4. PERFORMANCE ANALYSIS WITH MEMORYLESS USERS

In this section, we explore a scenario in which users lack memories to store delivered
resource states. In this setting, resource states must be either immediately consumed
or discarded upon delivery. We consider this a worst-case scenario for CD protocols:
we expect them to provide a greater advantage over OD protocols in terms of expected
completion time when memories are available, as these memories allow for resource
states to be delivered in advance and stored for later use. Analyzing the no-memory case
serves as a useful baseline for comparing the performance of CD and OD protocols. Even
in this restrictive scenario, one would expect CD protocols to achieve shorter expected
completion times than OD strategies, since CD protocols initiate the delivery subroutine
no later than their OD counterparts. However, our analysis reveals a surprising result:
preemptively distributing resource states, as in CD protocols, can result in longer request
completion times. This happens when the probability distribution of the delivery time D
is broad – specifically, when the standard deviation is larger than the mean, as we show
next.

FA S T- D E L I V E R Y R E G I M E . Let us start considering the fast-delivery regime, in which
E[D] ≪ E[R]. In this regime, the average resource delivery time is much shorter than the
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average interarrival time of requests. As a result, the request queue is expected to remain
empty most of the time, allowing incoming requests to be processed almost immediately
upon arrival3. This observation allows us to estimate the expected request completion
time of an OD protocol in the fast-delivery regime as approximately equal to the expected
delivery time, that is,

E [T ]OD ≈ E [D] , if E [D] ≪ E [R] , (5.6)

where the subindex ‘OD’ indicates that this is the expected request completion time of an
on-demand protocol. It is worth noting that the approximation (5.6) remains valid when
the users have quantum memories since, in OD protocols, resources are only delivered
upon request and can be consumed immediately, eliminating the need for storage.

When running a CD protocol in the fast-delivery regime, incoming requests are also
likely to encounter an empty queue. As a result, the next delivered resource after a request
arrival will typically be consumed to fulfill that request. The request completion time
can be estimated as the interval between the request arrival and the subsequent resource
delivery. As previously discussed, calls to the delivery subroutine are independent and
executed sequentially, and therefore resource deliveries form a renewal process. Conse-
quently, the expected completion time corresponds to the mean residual waiting time of
such a process4, which is given by [184]:

E [T ]CD, no memories ≈
E [D]

2
+ Var[D]

2E [D]
, if E [D] ≪ E [R] . (5.7)

Comparing (5.6) and (5.7), we find a striking result: in certain cases, the preemptive
delivery of quantum resources, as in CD protocols, can result in larger expected com-
pletion times compared to on-demand delivery. In fact, OD protocols, which trigger the
delivery subroutine at a later time than their CD counterparts, yield a lower completion
time when the following condition is satisfied:

E [T ]OD < E [T ]CD, no memories ⇔ Std[D] > E[D], if E [D] ≪ E [R] , (5.8)

where Std[D] :=p
Var[D] denotes the standard deviation of the delivery time D. When

the delivery time follows a broad distribution, in which the standard deviation is larger
than the expected value, CD protocols (without the use of quantum memories) cannot
complete requests faster than OD protocols, on average. This phenomenon is closely
related to the inspection paradox, a well-known and counterintuitive result in renewal
theory (see, e.g., ref. [184]).

The previous result may come as a surprise, as one would expect that triggering the
delivery subroutine in advance would lead to shorter completion times. Let us provide an
intuitive example of why the continuous execution of the delivery subroutine negatively
impacts E[T ]. Consider a delivery subroutine that delivers resource states after one unit of
time with probability 0.95, and takes 100 units of time otherwise. This could be a scenario
in which the network can quickly deliver a resource state deterministically, except when

3In fact, in our model, incoming requests can always be processed upon arrival if the delivery time is smaller
than the request interarrival time, i.e., if there exists some t such that Pr(D < t ) = 1 and Pr(R < t ) = 0.

4The residual time at a given instant t is defined as the amount of time remaining between the current time t
and the next epoch of the renewal process (in our case, until the next delivery).
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it malfunctions, with probability 0.05, in which case it requires 100 units of time to fix
the failure and deliver the state. In this case, the expected delivery time is E[D] = 5.95
and the standard deviation is Std[D] = 21.58, and therefore on-demand delivery must
lead to a shorter expected completion time than continuous delivery, as dictated by (5.8).
If the delivery subroutine is triggered when a request arrives, as in OD protocols, 95%
of the requests will take one unit of time to complete, while the other 5% will take 100
units of time – recall that, in the fast-delivery regime approximation, we assume that
incoming requests find an empty queue and are processed immediately. This leads to
E[T ]OD = 5.95. Conversely, if we continuously perform deliveries, the system is likely to
encounter a malfunction at some point and get stuck fixing it: the system will spend, on
average, 95 units of time performing a quick delivery for every 500 units of time that are
spent fixing a malfunction and performing a slow delivery (5% of the executions take 100
units of time each). Hence, requests are substantially more likely to arrive within a slow
execution of the subroutine than during a quick one. Specifically, the probability of a
request arriving within a slow execution is 500/595 ≈ 0.84. This imbalance results in a
significantly larger expected completion time under the CD protocol compared to the OD
protocol: E[T ]CD, no memories ≈ 42.08 > E[T ]OD.

In Figure 5.3 we present another example. In this case, we consider a delivery sub-
routine with a running time that follows a lognormal distribution: D ∼ LogNormal(µ,σ2),
where µ ∈R and σ> 0. The mean value and the standard deviation are given by

E[D] = eµ+
σ2
2 , Std[D] = eµ+σ

2/2
√

eσ2 −1. (5.9)

We choose this specific distribution for two reasons: (i ) the delivery time D must be
positive, which excludes common distributions, like the normal distribution, that allow
negative values, and (i i ) the lognormal distribution provides flexibility to continuously
adjust the parameter σ while keeping E[D] fixed, allowing the distribution to become
progressively broader until condition (5.8) is met. Using (5.8), we find that on-demand
delivery provides a lower expected completion time E[T ] whenσ>p

ln2. In Figure 5.3, we
show E[T ] in terms of σ, with µ=−σ2/2 (such that E[D] = 1), in the fast-delivery regime.
The curves are calculated using (5.6) and (5.7). The insets display the shape of the delivery
time distribution for σ= 0.2,

p
ln2,1.2. We observe that, as the distribution broadens, the

CD protocol provides increasingly larger E[T ], becoming worse than the OD protocol for
σ>p

ln2.
Deterministic delivery subroutines are of special interest, since E[T ]CD, no memories is

minimized when Var[D] = 0 (for a fixed E[D], see (5.7)). In this case, E[T ]CD, no memories ≈
E[D]/2, whereas E[T ]OD ≈ E[D] (see (5.6)). That is, when delivery times are deterministic
and users lack quantum memories, CD protocols achieve the greatest advantage in terms
of expected completion time, and can complete requests on average twice as fast as OD
protocols. Deterministic delivery subroutines are a practical reality. For example, the
deterministic delivery of bipartite entanglement has been experimentally demonstrated
using nitrogen-vacancy centers in diamond [87].

Lastly, we highlight that, in the fast-delivery regime, CD protocols suffer from signifi-
cant resource wastage, W . In fact, in the limit of ultra-fast delivery, where E [R]/E [D] →
∞, the number of resources wasted per request in a CD protocol diverges to ∞, as
shown in Lemma 5.1. Consequently, even if the delivery time distribution is such that
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Figure 5.3: In the fast-delivery regime, preemptive distribution of quantum resources is detrimental when
the delivery time distribution is broad. (Main plot) Expected completion time, E[T ], of an OD protocol (blue
dash-dotted line) and a CD protocol (solid orange line) versus the parameter σ. The delivery time follows a
lognormal distribution, D ∼ LogNormal(µ,σ2), where µ=−σ2/2 (such that E[D] = 1 for any value of σ). The
users have no memories to store resource states for later use. We consider a fast-delivery regime in which
E[D] ≪ E[R], and use the analytical solutions from (5.6) and (5.7). (Insets) Shape of the probability distribution
of D for σ= 0.2,

p
ln2,1.2, from left to right.

E[T ]CD, no memories < E[T ]OD, the excessive resource wastage in CD protocols may justify the
use of an OD protocol, despite its higher expected completion time.

S L O W - D E L I V E R Y R E G I M E . In the previous analysis we concluded that preemptive
delivery of resources can be detrimental when E[D] ≪ E[R]. This raises a natural question:
what if resource deliveries are not orders of magnitude faster than request interarrival
times? Do CD protocols show a clear advantage in such cases? Next, we show that the
insights drawn from the E[D] ≪ E[R] regime largely extend to the slow-delivery regime as
well.

First, let us explain how to compute E[T ] outside the fast-delivery regime. An OD
protocol can be modeled as a GI/G/1 queue since (i ) the time in between requests arrivals
follows a general distribution (GI), (i i ) the time to process and complete a request is given
by the running time of the delivery subroutine, D, which follows a general distribution
(G), and (i i i ) requests are placed in a common queue and processed one at a time, in
order of arrival. The expected completion time corresponds to the mean sojourn time of
this queueing model, which is the addition of the time that a request waits in the queue
(waiting time) and the time taken by the delivery subroutine to deliver a resource state and
complete the request (service time). Approximations and numerical solutions exist for the
GI/G/1 queue (see, e.g., ref. [184] for an overview). Here, we focus on a specific case that
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can be solved analytically: when request arrivals follow a Poisson process, meaning that
the interarrival times R are exponentially distributed. In this case, the expected request
completion time can be computed as the mean sojourn time of an M/G/1 queue, which
is given by [184]

E [T ]OD = E [D]+ E
[
D2

]
2(E [R]−E [D])

, if R ∼ Exp(1/E[R]) . (5.10)

Recall that this solution only applies when the stability condition (5.1) is met – otherwise
E [T ]OD diverges to infinity. Recall also that OD protocols do not benefit from the use
of quantum memories, making (5.10) applicable even when users have memories to
store resource states. Regarding CD protocols in the slow-delivery regime, we estimate
E [T ]CD, no memories using a discrete-event Monte Carlo simulation5.

Figure 5.4 shows E[T ] for both types of protocol, versus E[R]. In this figure, we assume
D ∼ LogNormal(µ,σ2), with µ = −σ2/2 (such that E[D] = 1 for any value of σ) and σ =
0.2,

p
ln2,1.2 (subplots from left to right). We observe a number of interesting features:

• As E[R] decreases and approaches E[D] (in this case, E[D] = 1), E[T ] diverges to
infinity. As mentioned earlier, if E[R] < E[D], requests would accumulate over time
as the system cannot deliver resources fast enough, and completion times would
grow to infinity. This behavior was the reason why we imposed Assumption 5.1.

• When E[R] is large, E[T ] converges to the approximations (5.6) and (5.7) derived
for the fast-delivery regime (dotted and dashed lines in Figure 5.4). In fact, the
approximation E [T ]OD ≈ E [D] from (5.6) can be rigorously derived by taking the
limit E[R] →∞ in the analytical solution (5.10). This serves as a validation check for
such approximations.

• Interestingly, the qualitative relative performance of OD and CD protocols in the
fast-delivery regime still holds when E[R] is small. For example, when the dis-
tribution is peaked (left subplots in Figure 5.4), E [T ]CD, no memories < E [T ]OD for any
E[R], and not only in the limit E[R] ≫ E[D]. Moreover, we observe that, when
Std[D] = E[D] (central panel in Figure 5.4), both types of protocol provide the same
expected completion time for any value of E[R].

In Appendix 5.6, we study another example in which requests arrive according to a
Poisson process but delivery times follow a Gamma distribution, and we extract similar
conclusions. We also show that, when requests are Poisson-distributed and delivery times
follow an exponential or an Erlang distribution, CD protocols always provide lower E[T ]
than OD approaches. Note that it is also possible to derive analytical solutions for E [T ]OD

when requests arrivals are not Poisson-distributed. In Appendix 5.7, we calculate E [T ]OD

for R following an arbitrary distribution and D following an exponential distribution.
To summarize, we have demonstrated that the spread of the delivery time distribution

is a key factor in designing an efficient protocol. In particular, CD protocols perform
best with sharply peaked distributions, whereas OD protocols are more effective than
CD strategies when the distribution is broader. Moreover, as discussed in the context of

5Our code can be found in our repository: https://github.com/AlvaroGI/anticipating-quantum-needs.

https://github.com/AlvaroGI/anticipating-quantum-needs
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Figure 5.4: Preemptive distribution of quantum resources can be either advantageous or detrimental de-
pending on the delivery time distribution, regardless of whether we are in the fast-delivery regime. (Bottom
subplots) Expected completion time, E[T ] of an OD protocol (blue line) and a CD protocol (orange line with
markers) versus the expected request interarrival time, E[R]. The delivery time follows a lognormal distribution,
D ∼ LogNormal(µ,σ2), withσ= 0.2,

p
ln2,1.2 (from left to right) and µ=−σ2/2 (such that E[D] = 1 for any value

of σ). The users have no memories to store resource states for later use. We compute E[T ] with (5.10) for the
OD protocol and with a discrete-event Monte Carlo simulation for the CD protocol (error bar sizes are smaller
than line width). The fast-delivery (E[D] ≪ E[R]) approximations from (5.6) and (5.7) are shown as dotted and
dashed lines, respectively. (Top subplots) Shape of the probability distribution of D for σ= 0.2,

p
ln2,1.2, from

left to right.

the fast-delivery regime, resource wastage is an important consideration when selecting
a delivery strategy. As shown in Lemma 5.1, the wastage grows linearly in E[R]. Hence,
for small values of E[R], the wastage may not significantly influence the choice between
CD and OD protocols, as opposed to the fast-delivery regime, in which the large wastage
associated with CD protocols makes it a critical factor to consider.

5.5. OUTLOOK

In this chapter, we analyzed and compared protocols for on-demand (OD) and continu-
ous delivery (CD) of quantum resource states, focusing on two key performance metrics:
the expected request completion time, E[T ], and the amount of wasted resources, W .
Specifically, we studied a situation in which users have no memories to store delivered
resource states for later use. We found a particularly surprising result: under certain
delivery-time probability distributions, preemptive delivery of resource states can para-
doxically increase the expected request completion time. This counterintuitive finding
highlights the nuanced interplay between delivery strategies and system performance,
offering a wide range of follow-up research directions.
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First, introducing quantum memories for storing resource states could significantly
improve the expected request completion time of CD protocols. If memory lifetimes are
short, E[T ] is likely to converge to the results derived in this thesis for the memoryless case.
However, even short-lived memories could enable continuous-delivery (CD) protocols
to consistently outperform on-demand (OD) strategies in terms of E[T ]. An interesting
extension of this idea would be to analyze how the use of entanglement buffers, such as
those proposed in ref. [50], influences the performance of the system. These buffers could
potentially mitigate the limitations of short memory lifetimes, enhancing the efficiency
of CD protocols.

A basic assumption we made here is that incoming requests are placed in a common
queue, which they only leave after all previous requests have been completed. Relaxing
this assumption introduces opportunities to explore more complex dynamics. For in-
stance, allowing requests to leave the queue after a timeout or imposing a finite queue
capacity could introduce new challenges, such as dropped requests and increased wastage.
Introducing different types of requests, such as different sets of users requesting distinct
types of resource states, and understanding their effect on the performance of the system
would also be a necessary step towards designing protocols for realistic networks.

Lastly, hybrid protocols that dynamically combine OD and CD strategies based on net-
work conditions and user requirements could provide major performance improvements.
By adaptively switching between strategies, these protocols could optimize completion
times while keeping the wastage low. Exploring such adaptive approaches might reveal
new design principles for quantum resource state delivery.

5.6. [APPENDIX] POISSON REQUESTS AND GAMMA-DISTRIBUTED

DELIVERY TIME

Here, we consider a system in which requests arrive according to a Poisson process and
delivery times follow a Gamma distribution. We obtain the same conclusions found in
Section 5.4, where we assumed delivery times followed a lognormal distribution. The
main conclusion is again that, when the delivery time distribution is broad, OD protocols
outperform CD protocols in terms of expected completion time.

We consider a delivery subroutine whose running time follows a Gamma distribution:
D ∼ Gamma(k,θ), where k > 0 is the shape parameter and θ > 0 is the scale parameter.
The probability density function is given by

fD(d ;k,θ) = d k−1e−d/θ

θkΓ(k)
, d > 0, (5.11)

where Γ(k) = ∫ ∞
0 t k−1e−t d t is the Gamma function. The mean value and the standard

deviation are given by
E[D] = kθ, Std[D] =

p
kθ. (5.12)

When k is an integer, the distribution becomes an Erlang distribution: a sum of k indepen-
dent exponentially distributed random variables, each with mean θ. In particular, when
k = 1, the Gamma distribution simplifies to an exponential distribution with mean θ.
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Figure 5.5: Additional example with Gamma-distributed delivery times: preemptive distribution of quantum
resources can be either advantageous or detrimental depending on the delivery time distribution, regardless
of whether we are in the fast-delivery regime. (Bottom subplots) Expected completion time, E[T ] of an OD
protocol (blue line) and a CD protocol (orange line with markers) versus the expected request interarrival time,
E[R]. The delivery time follows a Gamma distribution, D ∼ Gamma(k,θ), with θ = 0.2,1,5 (from left to right) and
k = 1/θ (such that E[D] = 1). The users have no memories to store resource states for later use. We compute E[T ]
with (5.10) for the OD protocol and with a discrete-event Monte Carlo simulation for the CD protocol (error
bar sizes are smaller than line width). The fast-delivery (E[D] ≪ E[R]) approximations from (5.6) and (5.7) are
shown as dotted and dashed lines, respectively. (Top subplots) Shape of the probability distribution of D for
θ = 0.2,1,5, from left to right.

FA S T- D E L I V E R Y R E G I M E . When E[D] ≪ E[R], we know from condition (5.8) that on-
demand delivery provides a lower expected completion time E[T ] if and only if Std[D] >
E[D]. In the case of Gamma-distributed delivery times, this condition becomes the
following:

E [T ]OD < E [T ]CD, no memories ⇔ 0 < k < 1. (5.13)

This means that, when requests arrive according to a Poisson process and delivery times
follow an exponential or an Erlang distribution, CD protocols provide (on average) faster
service than OD approaches.

S L O W - D E L I V E R Y R E G I M E . Outside the fast-delivery regime, we compute E [T ]OD

using (5.10) and estimate E [T ]CD, no memories using a discrete-event Monte Carlo simulation.
We show three examples in Figure 5.5, with θ = 0.2,1,5 (from left to right) and k = 1/θ
(such that E[D] = 1 in all three cases). The top panels show the shape of the delivery
time distributions. When the distribution is peaked (θ = 0.2), the CD protocol provides
lower E[T ]. Both CD and OD protocols yield the same E[T ] when the delivery time
distribution is exponential (θ = 1). When the distribution is broad (θ = 5), OD protocols
are advantageous.
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5.7. [APPENDIX] EXPONENTIALLY-DISTRIBUTED DELIVERY TIME

In this appendix, we derive analytical solutions for the expected completion time of an
OD protocol, assuming exponentially-distributed delivery times.

If we use an OD protocol and the delivery time D follows an exponential distribution,
the system can be modeled as a G/M/1 queue. The completion time corresponds to the
sojourn time of the G/M/1 queue, which is also exponentially distributed [184]:

T ∼ Exp

(
1−ξ
E [D]

)
, (5.14)

with ξ being the unique solution in the interval (0,1) to

ξ=
∫ ∞

0
e−(1−ξ)t/E[D] fR(t )d t , (5.15)

where fR is the probability density function (pdf) of the request interarrival time. The
integral from (5.15) is known as the Laplace-Stieltjes transform of fR, evaluated at (1−
ξ)/E [D]. If E [D] < E [R] (which is our only assumption about the probability distributions
of D and R, see (5.1)), it can be shown that there is indeed a unique solution ξ in the
interval (0,1) [3]. The expected request completion time is then given by the expected
value of the exponential distribution from (5.14):

E [T ]OD = E [D]

1−ξ , if D ∼ Exp(1/E[D]) . (5.16)

Let us consider an example in which the integral from (5.15) has a simple form. In this
example, we assume that R follows an Gamma(k,θ) distribution. In this case, E [R] = kθ,
and the integral from (5.15) can be solved as follows:

ξ=
∫ ∞

0
e−(1−ξ)t/E[D] fR(t )d t

a=
∫ ∞

0
e−(1−ξ)t/E[D] t k−1

θkΓ(k)
e−t/θd t

= 1

θkΓ(k)

∫ ∞

0
t k−1e−((1−ξ)/E[D]+1/θ)t d t

b= 1

θkΓ(k)

(
1

(1−ξ)/E [D]+1/θ

)k ∫ ∞

0
uk−1e−udu

c=
(

E [D]

(1−ξ)θ+E [D]

)k

,

(5.17)

with the following steps:

(a) We use the pdf of the Gamma function, given in (5.11).

(b) We apply a change of variables: u = ((1−ξ)/E [D]+1/θ)t .

(c) We use the definition of the Gamma function: Γ(k) = ∫ ∞
0 t k−1e−t d t .
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Equation (5.17) can be efficiently solved for ξ using a numerical solver. When k = 1, R
is exponentially distributed, which leads to ξ= E [D]/E [R], and we recover the solution
from (5.10), which we derived for R following an exponential distribution and D following
an arbitrary distribution.

The analysis from this appendix, where we have considered D ∼ Exp(E[D]−1) and R ∼
Gamma(k,θ), can also be used to validate the fast-delivery approximation (5.6) derived in
the main text. In the fast-delivery regime, E[D] ≪ E[R] = kθ. This is achieved when, e.g.,
k →∞ (with fixed E[D] and θ) or θ→∞ (with fixed E[D] and k). Taking one of these limits,
we find that ξ→ 0 in the fast-delivery regime. Using (5.16), this yields E [T ]OD → E [D], as
we predicted in the estimate (5.6).

CODE AVAILABILITY

Our code can be found in the following GitHub repository:
https://github.com/AlvaroGI/anticipating-quantum-needs.
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ENTANGLEMENT BUFFERING WITH

TWO QUANTUM MEMORIES

Álvaro G. Iñesta*, Bethany Davies*, and Stephanie Wehner

Pura simpleza, riqueza en la mesa.
[Pure simplicity, abundance at the table.]

— Ana Tijoux

Quantum networks crucially rely on the availability of high-quality entangled pairs of
qubits, known as entangled links, distributed across distant nodes. Maintaining the quality
of these links is a challenging task due to the presence of time-dependent noise, also known
as decoherence. Entanglement purification protocols offer a solution by converting multiple
low-quality entangled states into a smaller number of higher-quality ones. In this work,
we introduce a framework to analyze the performance of entanglement buffering setups
that combine entanglement consumption, decoherence, and entanglement purification.
We propose two key metrics: the availability, which is the steady-state probability that
an entangled link is present, and the average consumed fidelity, which quantifies the
steady-state quality of consumed links. We then investigate a two-node system, where
each node possesses two quantum memories: one for long-term entanglement storage, and
another for entanglement generation. We model this setup as a continuous-time stochastic
process and derive analytical expressions for the performance metrics. Our findings unveil
a trade-off between the availability and the average consumed fidelity. We also bound these
performance metrics for a buffering system that employs the well-known bilocal Clifford

* These authors contributed equally.
This chapter has been published separately in ref. [50].
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purification protocols. Importantly, our analysis demonstrates that, in the presence of
noise, consistently purifying the buffered entanglement increases the average consumed
fidelity, even when some buffered entanglement is discarded due to purification failures.

6.1. INTRODUCTION

The functionality of quantum network applications typically relies on the consumption
of entangled pairs of qubits, also known as entangled links, that are shared among distant
nodes [194]. The performance of quantum network applications does not only depend on
the rate of production of entangled links, but also on their quality. In a quantum network,
it is therefore a priority for high-quality entangled states to be readily available to network
users. This is a challenging task, since entangled links are typically stored in memories
that are subjected to time-dependent noise, meaning that the quality of stored entangled
links decreases over time. This effect is known as decoherence.

A common way of overcoming the loss in quality of entangled links is to use entan-
glement purification protocols [15, 53, 56, 205]. An m-to-n entanglement purification
protocol consumes m entangled quantum states of low quality and outputs n states with
a higher quality, where typically m > n. The simplest form of purification schemes are
2-to-1, also known as entanglement pumping protocols. One downside of using purifi-
cation is that there is typically a probability of failure, in which case the input entangled
links must be discarded and nothing is produced.

In this work, we take a crucial step towards the design of high-quality entanglement
buffering systems. The goal of the buffer is to make an entangled link available with a
high quality, such that it can be consumed at any time for an application. We develop
methods to analyze the performance of an entanglement buffering setup in a system with
entanglement consumption, decoherence, and entanglement pumping. We introduce
two metrics to study the performance: (i) the availability, which is the steady-state
probability that a link is available, and (ii) the average consumed fidelity, which is the
steady-state average quality of entangled links upon consumption. We measure the
quality of quantum states with the fidelity, which is a well-known metric for this [138].

We use these metrics to study a two-node system where each of the nodes has two
quantum memories, each of which can store a single qubit (see Figure 6.1). This system
is of practical relevance since early quantum networks are expected to have a number
of memories per node of this order (e.g., in [100] and [204], entanglement purification
was demonstrated experimentally between two distant nodes, each with the capability
of storing two qubits). We study a system where each node has one good (long-term)
quantum memory, G, and one bad (short-term) memory, B, per node. We therefore refer
to this entanglement buffering setup as the 1G1B system. The good memories are used to
store an entangled link between the nodes that can be consumed at any time. The bad
memories are used to generate a new entangled link between the nodes. The new link
may be used to pump the stored link with fresh entanglement.

Calculating the temporal evolution of the fidelity of an entangled link is generally
a difficult task, since the fidelity depends on the history of operations that have been
applied to the link in the past. By modelling the state of the 1G1B system as a continuous-
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Figure 6.1: Illustration of the entanglement buffering system with two quantum memories (1G1B system).
Each of the nodes has two memories (G and B). Memory G is used to store the buffered link. An entangled link
is generated at a rate λ in memory B. If memory G is empty when the new link is generated in B, the link is
immediately transferred to G. If memory G is occupied, the new link generated in B is immediately used to purify
the buffered link with probability q (otherwise, the new link is discarded). The pumping protocol consumes
the link in B to increase the quality of the buffered link in G, and it succeeds with probability p (otherwise, it
destroys the link in G). The buffered link is consumed at a fixed rate µ. The quality of the entanglement stored in
G decays exponentially with rate Γ. Formal definitions of the problem parameters can be found in Section 6.3.

time stochastic process, we are able to find analytical solutions for the availability and
the average consumed fidelity of the system. We illustrate the application of these re-
sults in a simplified scenario where purification has a linear action on the quality of the
buffered link.

Our main contributions are the following:

• We propose two metrics to measure the performance of an entanglement buffering
system: the availability and the average consumed fidelity.

• We provide a simple closed-form expression for the availability in the 1G1B system.

• We develop an analytical framework to calculate the average fidelity of the links
consumed in a 1G1B system. We provide a closed-form expression for pumping
schemes that increase the fidelity of the entangled link linearly with the initial
fidelity.

Our main findings are the following:

• We confirm the intuition that, except in some edge cases, there is a trade-off be-
tween availability and average consumed fidelity: one must either consume low-
quality entanglement at a higher rate, or high-quality entanglement at a lower rate.

• Consider a situation where bilocal Clifford protocols are employed (this is one of the
most popular and well-studied classes of purification protocols [52]). Then, if the
noise experienced by the quantum memories is above certain threshold, pumping
the stored link with fresh entanglement always increases the average consumed
fidelity, even if the stored link is often discarded due to a small probability of
successful pumping. We provide an explicit expression for this noise threshold,
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which depends on the purification protocol employed and the fidelity of newly
generated links.

The structure of the chapter is the following. In Section 6.2, we provide a short
overview of related work. In Section 6.3, we explain the physical setup and provide a
formal definition of the 1G1B system as a stochastic process. In Section 6.4, we define
the performance metrics of interest and provide analytical expressions that enable their
computation. In Section 6.5, we analyze the system in the case where the pumping
protocol produces an output state whose fidelity is a linear function of the fidelity of one
of the input states. In Section 6.5.1, we use these results to bound the performance of the
1G1B system, in the case where bilocal Clifford protocols are employed for entanglement
pumping. Lastly, in Section 6.6, we discuss the implications of this work and future
research directions.

6.2. RELATED WORK

The performance analysis of quantum networks is unique because of the trade-off be-
tween the rate of distribution of entangled links and the quality of distributed links, both
of which are important for the functionality of networking applications. This leads to in-
teresting stochastic problems, which are important to understand the parameter regimes
of a possible architecture. For example, [91, 116, 167] deal with the problem of generating
an end-to-end entangled link across a chain of quantum repeaters, where both the rate
of production and the quality of the end-to-end links are quantities of interest. Another
example is the problem of generating multiple entangled links between two users with
a high quality, which is treated in [49, 150]. In these works, the time between success-
fully generated entangled links is modelled by a geometric distribution. However, the
time taken up by an entanglement generation attempt is generally small compared to
other relevant time scales [122, 147]. Hence, a simplifying assumption that we make in
this work is that the time between entanglement generation attempts is exponentially
distributed. This is a common assumption in the quantum networking literature (see,
e.g., [36, 137, 187]), because it can enable the finding of closed-form relations between
physical variables and protocol parameters. Here, we introduce and find expressions for
the values of two key performance metrics in the steady state.

Previous work that incorporates entanglement purification schemes into the analysis
of quantum network architectures typically involves numerical optimization methods
(see, e.g., [189]), or only considers specific purification protocols [21]. By contrast, in this
work we focus on presenting the purification protocol in a general way, and finding closed-
form solutions for the performance metrics of interest (albeit for a simpler architecture).
This is an important step towards an in-depth understanding of how one can expect
purification to impact the performance of a near-term quantum network.

Other works have introduced the concept of entanglement buffering (preparing quan-
tum links to be consumed at a later time) over a large-scale quantum network [94, 149].
To the best of our knowledge, the only work with a similar set-up to ours is [60], which
was developed in parallel and independently of our work. There, the authors study the
steady-state fidelities of a system involving two memories used for storage (good memo-
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ries), and one memory used for generation (bad memory). This work differs from ours in
multiple ways. For example, the analysis is done in discrete time and it is assumed that
the fidelity takes a discrete set of values, whereas we do not make this assumption since
we work in continuous time. Additionally, consumption of entanglement is not included
in the system studied in [60], which may impact the steady-state behavior.

Lastly, we note that previous work generally assumes a specific protocol for entan-
glement buffering between each pair of nodes, and does not address the following fun-
damental question: what is the best way to buffer entanglement between two users in a
quantum network? To the best of our knowledge, we address this question for the first
time.

6.3. THE 1G1B (ONE GOOD, ONE BAD) SYSTEM

We now define the 1G1B system. In Section 6.3.1, we describe and motivate the model of
the system. In Section 6.3.2, we define the variables of interest precisely. This facilitates
the definition of the performance metrics in Section 6.4.

6.3.1. SYSTEM DESCRIPTION

Below we provide a list of assumptions that model the 1G1B system, and provide motiva-
tion for each assumptions. An illustration of the system is given in Figure 6.1.

1. Each of the nodes has two memories: one long-term memory (good, G) and one
short-term memory (bad, B). The B memories are used to generate new entangled
links. The G memories are used as long-term storage (entanglement buffer).

This is motivated by the fact that storage (G) and communication (B) qubits are often
present in experimental scenarios, where the former is used to store entanglement
and the latter is used to generate new links [11, 100, 114].

2. New entangled links are generated in memory B according to a Poisson process
with rate λ. New entangled links always have the form ρnew.

Physical entanglement generation attempts are typically probabilistic and heralded
[9, 16]. In other words, the attempt can fail with some probability and, when this
occurs, a failure flag is raised. Therefore, the generation of a single link may take
multiple attempts. The time taken by an attempt is typically fixed (this is both the
case in present-day quantum networks [147] and an assumption that is commonly
made in the theoretical analysis of quantum networks [49, 91, 94]). Then, the
time between attempts follows a geometric distribution. Since the probability of
successful generation and the length of the time step is often small compared to
other relevant time scales [121, 147], we use a continuous approximation, i.e., that
the time between arrivals are exponentially distributed. This is a Poisson process
(see, e.g., Chapter 6.8 from [76]).

3. When a link is newly generated in memory B, if memory G is empty (no link
present), the new link is immediately placed there. If memory G is not empty, the
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nodes immediately either (i) attempt pumping with probability q , or (ii) discard
the new link from memory B (probability 1−q).

This step is included because it may not always be a good idea to carry out pumping,
due to there being a possibility of this failing.

4. Links stored in memory G are Werner states.

Werner states take the simple form

ρW = F
∣∣φ+〉〈

φ+∣∣+ 1−F

3

∣∣ψ+〉〈
ψ+∣∣+ 1−F

3

∣∣ψ−〉〈
ψ−∣∣+ 1−F

3

∣∣φ−〉〈
φ−∣∣ ,

where
{∣∣φ+〉

,
∣∣ψ+〉

,
∣∣φ−〉

,
∣∣ψ−〉}

denote the Bell basis. A Werner state corresponds
to maximally entangled state that has been subjected to isotropic noise. The state
in the good memory is therefore fully described by one parameter: the fidelity F
to the target state

∣∣φ+〉
. Any state can be transformed into a Werner state with the

same fidelity by applying extra noise, a process known as twirling [13, 86]. Hence,
this assumption constitutes a worst-case model.

5. While in memory G, states are subject to depolarizing noise with memory life-
time 1/Γ.

Depolarizing noise can also be seen as a worst-case noise model [58]. After a time t
in memory, this maps the state fidelity F to

F → e−Γt
(
F − 1

4

)
+ 1

4
.

6. Consumption requests arrive according to a Poisson process with rate µ. When a
consumption request arrives, if there is a stored link in memory G, it is immedi-
ately used for an application (and therefore removed from the memory). If there
is no link available, the request is ignored.

This means that the time until the next consumption request arrives is independent
of the arrival time of previous requests, and it is exponentially distributed. This
assumption is commonly made in the performance analysis of queuing systems
(see, e.g., Chapter 14 from [184]).

7. Assumptions about pumping:

(a) Pumping is carried out instantaneously.

This is because the execution time is generally much lower than the other
timescales involved in the problem. For example, in state-of-the-art setups,
an entangled link is generated approximately every 0.5 s [147], while entangle-
ment pumping may take around 0.5 ·10−3 s [100]. If the nodes are far apart,
classical communication between them would only add a negligible contri-
bution to the purification protocol (e.g., classical information takes less than
10−4 s to travel over 10 km of optical fiber).
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(b) Suppose that the link in memory G has fidelity F and the link in memory B
is in state ρnew. If pumping succeeds, the output link has fidelity J (F,ρnew),
and remains in the good memory. If pumping fails, all links are discarded
from the system. Here, the jump function J(F,ρnew) ∈ [0,1] is dependent on
the choice of purification protocol. Given the assumption that one of the links
is a Werner state, the form of this function is

J (F,ρnew) = ã(ρnew)F + b̃(ρnew)

p(F,ρnew)
, (6.1)

with
p(F,ρnew) = c(ρnew)F +d(ρnew) (6.2)

where ã, b̃,c,d are functions ofρnew. Here, p(F,ρnew) is the success probability
of purification. See Appendix 6.7 for an explanation of why the jump function
and success probability take this form.

(c) Pumping succeeds with probability p, which is constant in the fidelity of
memory G. We see from the above that this is a special case, and that in general
the probability of purification success varies linearly with the fidelity of the
good memory. However, performing the analysis with a constant probability
of success does allow us to find bounds on the operating regimes of the system
by considering the best-case and worst-case values of p (see Section 6.5.1).
Combining this with Assumption 7b, we see that this is effectively equivalent
to setting c(ρnew) = 0. The jump function is then linear in the fidelity of
memory G, and can be written as

J (F,ρnew) = a(ρnew)F +b(ρnew),

where a := ã/p and b := b̃/p.

Implicit in the above is that the process of entanglement generation, pumping and con-
sumption ((2),(3),(6) and (7b)) are independent. We provide a summary of the parameters
involved in the 1G1B system in Table 6.1.

6.3.2. SYSTEM DEFINITION

In this subsection, we define the state of the system mathematically, which will be the
main object of study in the rest of this work. We view the state of the system as the number
of rounds of pumping that the link in memory has undergone. From now on, when we
refer to 1G1B, we refer to the stochastic process that evolves according to the following
definition.

Definition 6.1 (1G1B system). Let s(t ) be the state of the 1G1B system at time t . This takes
values

s(t ) =
{
; if there is no link in memory,

i ≥ 0 if there is a link in memory which is the result of i successful pumping rounds,

(6.3)
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Table 6.1: Parameters of the 1G1B system. See main text for detailed explanations.

Hardware

λ Rate of heralded entanglement generation (time between suc-
cessful attempts is exponentially distributed with rate λ)

ρnew Entangled state produced after a successful entanglement gener-
ation

Γ Rate of decoherence (fidelity of the entangled link decays expo-
nentially over time with rate Γ)

Application

µ Rate of consumption (specified by application)

Pumping protocol

q Probability of attempting pumping immediately after a success-
ful entanglement generation attempt (otherwise the new link is
discarded)

p Probability of successful pumping

J (F,ρnew) Jump function: fidelity of the output state following successful
pumping (F is the fidelity of the Werner state stored in the good
memory)

where i = 0 corresponds to a link in memory that has not undergone any pumping. Assume
that the system starts with no link, i.e., s(0) = ;. The system transitions from state ; to
state 0 when a new link is generated and placed in the good memory, which was previously
empty. The rate of transition from ; to 0 is then given by the entanglement generation rate
λ. Pumping success occurs when a new link is produced (rate λ), pumping is attempted
(probability q), and pumping succeeds (probability p). Therefore, the transition from state
i to i +1 occurs with rate λqp. The final allowed transition is from i to ; which occurs due
to consumption or purification failure, which occurs with rate µ+λq(1−p).

We also refer to the state i ≥ 0 as the i th purification level. Since the transitions
between each state in 1G1B occur according to an exponential distribution with rate
that is only dependent on the current state of the system, this is a continuous-time
Markov chain (CTMC) on the state space {;,0,1, ...}. The resulting CTMC and the rate of
transitions is depicted in Figure 6.2. This is the main object of study in our work.

; 0 1 2 ...

λ λqp λqp λqp

µ+q(1−p)λ

Figure 6.2: The transitions of the 1G1B system.
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Recall that we are also interested in the fidelity of the link in memory. This is depen-
dent not only on the state s(t ) ∈ {;,0,1, ...}, but also on the time spent in the states leading
up to the current purification level. This motivates the following definition.

Definition 6.2. Suppose that s(t) = i . Then, we define random variable T⃗ (t) to be the
length-(i +1) vector storing the times spent in the recent purification levels 0,1, . . . , i leading
up to the current one, where time T j (t ) was spent in the most recent visit to state j ( j ≤ i−1),
and time Ti (t ) is the time spent so far in state i . See Figure 6.3 for a depiction of this.

We also need a framework with which to compute the fidelity at time t . Recalling
assumption (5) of Section 6.3.1, we denote decoherence by the following.

Definition 6.3. Let D t : [0,1] → [0,1] denote the action of depolarizing noise on the state
fidelity F . This has action

D t [F ] = e−Γt
(
F − 1

4

)
+ 1

4
.

We now formally define the jump function.

Definition 6.4. After successfully applying purification to a Werner state with fidelity F
and a general two-qubit state ρnew, the output state has fidelity J (F,ρnew). We refer to J as
the jump function of the protocol. The general form of this is given in (6.1).

We note that every purification protocol has a corresponding jump function. The
exact form of J is dependent on the choice of pumping protocol, but in general is a
continuous rational function of F , taking values in [0,1].

We also need to compute the fidelity after many rounds of decoherence and pumping.
This essentially means composing D t and J .

Definition 6.5. Let F (i )(t0, ..., ti ) denote the fidelity after spending time t0, ..., ti in each
purification level 0,1, ..., i . This may be defined recursively as

F (i )(t0, ..., ti ) = D ti

[
J (F (i−1)(t0, . . . , ti−1),ρnew)

]
, (6.4)

with F (0)(t0) = D t0 [Fnew], where Fnew is the fidelity of ρnew.

Note that F (i ) is a continuous and bounded function of its inputs, since the same is
true for D t and J . We are now equipped to define the fidelity of the system.

Definition 6.6. The fidelity of the 1G1B system at t is given by

F (t ) =
{

F (i )(T⃗ (t )) if s(t ) = i ≥ 0,

0, if s(t ) =;.
(6.5)

Note that this formulation can also be adapted to incorporate a system where we
apply a different pumping protocol in each state of the CTMC. In that case, we would
employ a more general recurrence relation:

F (i )(t0, . . . , ti ) = D ti

[
J (i )(F (i−1)(t0, . . . , ti−1),ρnew)

]
, (6.6)
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0 t

T0(t) T1(t) T3(t)T2(t)

F(t)

1G1B

Figure 6.3: Example of the evolution of the fidelity of the buffered entanglement over time. The fidelity
experiences a sudden boost every time a pumping protocol is successful. Then, it decays exponentially due to
decoherence. Each state in the CTMC is identified by the number of times the current buffered link has been
purified. If s(t ) = i , the random variables {T j (t ) : j = 0,1, ..., i −1} are the times spent in each state of the CTMC
immediately leading up to the current state, and Xi (t ) is the time so far spent in state i .

where the J (i ) is the jump function corresponding to the pumping protocol applied in state
i of the CTMC. For simplicity, however, we study recurrence relations of the form (6.4).
This may be used to model the situation where the same pumping protocol is applied
every time, or provide bounds for using multiple protocols, as we do in Section 6.5.1.

6.4. PERFORMANCE METRICS

In this section, we define two metrics to evaluate the performance of an entanglement
buffering system: the availability and the average consumed fidelity. We also provide
analytical expressions for both metrics in the 1G1B system.

6.4.1. AVAILABILITY

A natural measure for the quality of service provided to users is the probability that a
consumption request may be served at any given time. If there is a link stored in the
good memories, the consumption request is immediately served. However, if there is no
entanglement available, the request is ignored. Letting P (s(t ) = i ) be the probability that
the system is in state i at time t , we define the steady-state distribution as

πi := lim
t→∞P (s(t ) = i ). (6.7)

Then, we define our first performance metric as follows.

Definition 6.7 (Availability). The availability A is defined as

A := 1−π;, (6.8)

which is the probability that there is a link in memory in the limit t →∞.

This definition can be applied to any entanglement buffering setup. In the 1G1B
system, the availability is well-defined, as shown in Appendix 6.8. Moreover, it is possible
to derive a closed-form expression for the availability, as stated in the proposition below.
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Proposition 6.1. Consider the 1G1B system (Definition 6.1). The availability is given by

A = 1−π; = λ

λ+µ+λq(1−p)
, (6.9)

and the rest of the steady-state distribution is given by

πi = λi+1q i p i

(µ+λq)i+1
π;. (6.10)

See Appendix 6.8 for a proof of this proposition. We note that this can be derived
in a straightforward manner using the balance equations for a CTMC. Instead, we use
renewal theory, for two reasons. Firstly, this approach ties in neatly with the proof of the
formula for the average fidelity (see the next subsection). Secondly, this approach provides
a formula for the availability that is more general, as it also applies to the case where
entanglement generation is described by a general random variable instead of being
exponentially distributed. See Appendix 6.8 for the general formula for the availability.

6.4.2. AVERAGE CONSUMED FIDELITY

The quality of service of an entanglement buffering system can also be measured in terms
of the quality of the entanglement provided to the users. Therefore, the average fidelity of
the entangled links upon consumption can be used as an additional metric to assess the
performance of the system.

Definition 6.8 (Average consumed fidelity). The average consumed fidelity is the average
fidelity of the entangled link upon consumption, in the steady state. More specifically,

F := lim
t→∞E

[
F (t ) | s(t ) ̸= ;]

. (6.11)

In the definition of F , we condition on not being in ; since consumption events do
not happen when there is no link present. As before, this performance metric can be
applied to any entanglement buffering setup. In the case of the 1G1B system, it is possible
to derive an analytical expression for F which explicitly depends on the steady-state
distribution. The formula is given in the following theorem.

Theorem 6.1. In the 1G1B system, the average consumed fidelity can be written as

F = 1

A

∞∑
i=0

ciπi , (6.12)

where πi = limt→∞ P (s(t ) = i ), and

ci = E
[

F (i )(Q0,Q1, ...,Qi )
]

(6.13)

where A is the availability, Q0,Q1, . . . ,Qi are i.i.d. random variables with Q0 ∼ Exp(µ+λq),
and F (i ) is given in Definition 6.5.
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1G1B

0 timeY1

¬∅ ¬∅
Y2Z1 Z2 Y3 Z3

¬∅∅ ∅ ∅

0 time
¬∅ ¬∅∅ ∅ … t

C(t)
T1 T2 T3 T4

Figure 6.4: An example timeline of the 1G1B process. Black dashes are link generation and removal. Shorter
purple dashes are pumping rounds. If there is a link present at time t , the random variable C (t ) is the total time
spent so far in ¬; (link present). Pumping rounds occur within the time C (t) as a Poisson process with rate
λqp. This may be used to characterize the distribution of T⃗ (t) in the limit t →∞, which is needed to prove
Theorem 6.1.

Sketch proof of Theorem 6.1. A first step is to expand by conditioning on the value of s(t ),

E[F (t )|s(t ) ̸= ;] =
∞∑

i=0
E[F (t )|s(t ) = i ]P (s(t ) = i |s(t ) ̸= ;)

= 1

P (s(t ) ̸= ;)

∞∑
i=0

E[F (t )|s(t ) = i ]P (s(t ) = i ) .

In Proposition 6.5 (Appendix 6.8.2), we show that, when t →∞, the limit can be brought
inside of the sum, and so

F = lim
t→∞E[F (t )|s(t ) ̸= ;]

= 1

A

∞∑
i=0

πi · lim
t→∞E

[
F (t )|s(t ) = i

]
,

where we have used the definition of the steady-state distribution and the availability (see
(6.7) and (6.8)). The values πi may be computed using Proposition 6.1. The remaining
work is then to show that

lim
t→∞E

[
F (t )|s(t ) = i

]= E[
F (i ) (Q0, . . . ,Qi )

]
, (6.14)

which essentially requires the characterization of the limiting distribution of T⃗ (t ), since
from Definition 6.6 we recall that E

[
F (t )|s(t ) = i

]= E[
F (i )

(
T⃗ (t )

)∣∣s(t ) = i
]

. This is achieved
with the following result: conditional on s(t) = i , T⃗ (t) → (Q0, . . . ,Qi ) in distribution as
t →∞, where the Q j are i.i.d. random variables with Q0 ∼ Exp(µ+λq). There are two
main steps to show this (see Figure 6.4 for graphical intuition):

1. Let C (t ) be the total time spent so far in ¬; (link in memory G) at the time t . The
first step is to show that C (t) → C in distribution as t → ∞, where C ∼ Exp(µ+
λq(1−p)). This is shown with renewal theory. For more details, see the results of
Appendix 6.8.1.

2. Characterize the limiting distribution of the time spent in each purification level
within the time C (t). These are the T j (t). We use the fact that pumping rounds
occur as a Poisson process within the time C (t ). For more details, see the results of
Appendix 6.8.2.
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Finally, since F (i ) is a continuous function of its inputs, (6.14) follows.

For the full proof, see Appendix 6.8. The particularly simple form of (6.13) can be
attributed to the fact that in a CTMC, the time spent in a state is not influenced by the
state to which the system transitions. As an example, in the CTMC from Figure 6.5, the
time spent in state B before a transition does not depend on the transition itself, and this
time is exponentially distributed with rate rB A + rBC . In the 1G1B system, the times spent
in the states j = 0,1, . . . , i −1 leading up to state i are all exponentially distributed with
rate λqp +µ+λq(1−p) =µ+λq . As a consequence, the average fidelity after i successful
purifications, ci , does not depend on the probability of successful purification p.

A B C

rBC

rB A

Figure 6.5: In a CTMC, the time spent in a state is independent of the transition that happens next. In this
example, the time spent in state B before leaving is exponentially distributed with rate rB A + rBC .

Having systematic closed-form expressions for the functions F (i ) enables the efficient
computation of ci and, therefore, F . The calculation of F (i ) in closed-form for a general
J is quite involved, since the recurrence relation (6.4) becomes a rational difference
equation with arbitrary coefficients. However, in the following sections we consider a
jump function which is linear, for which it is possible to find a closed-form solution for F .

6.5. ENTANGLEMENT BUFFERING WITH A LINEAR JUMP FUNC-
TION

In a purification protocol with a linear jump function, the output fidelity is a linear
function of the fidelity of one of the input entangled links. When the probability of
successful purification is constant with the fidelity of the good memory, as we assume
in 1G1B, this implies that the jump function is linear. This is shown in Appendix 6.7. In
this section, we compute a closed-form solution for the average consumed fidelity in a
1G1B system assuming a linear jump function. Then, we analyze the performance of the
system using the performance metrics defined in Section 6.4 (availability and average
consumed fidelity). In Section 6.5.1, we focus on bilocal Clifford protocols, an important
type of purification scheme. For a given value of target availability, we provide upper
and lower bounds on the average consumed fidelity that can be achieved by any bilocal
Clifford protocol in the 1G1B system.

Purification protocols with linear jump functions are relevant for two main reasons:

(i) Purification protocols are generally more effective within some range of input fi-
delities (the increase in fidelity is larger when the input fidelities are within some
interval). If the system operates within a small range of fidelities, one may approxi-
mate the true jump function with a linear jump function.
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(ii) One can find linear jump functions that upper and lower bound a set of jump
functions of interest. These may then be used to upper and lower bound a fidelity-
based performance metric (such as the average consumed fidelity) of a system that
has the freedom to employ any of these jump functions.

In Appendix 6.10, we demonstrate (ii) in the case where bilocal Clifford protocols are
employed in the 1G1B system. The output fidelity of a bilocal Clifford protocol can be
upper and lower bounded by nontrivial linear functions when one of the input states is a
Werner state (using some additional minor assumptions).

Consider a pumping scheme that takes as input a Werner state with fidelity F and
an arbitrary state ρnew. In the 1G1B system, these are the states in the good and the bad
memories, respectively. A linear jump function can be written as

J (F,ρnew) = a(ρnew)F +b(ρnew), (6.15)

with 0 ≤ a(ρnew) ≤ 1 and (1− a(ρnew))/4 ≤ b(ρnew) ≤ 1− a(ρnew), as shown in Proposi-
tion 6.6. In what follows, we implicitly assume that a and b depend on ρnew.

We now derive a closed-form solution for the average consumed fidelity of 1G1B when
the jump function is linear, using Theorem 6.1. The formula requires knowledge of the
steady state distribution {πi : i =;,0,1, ...}, and the expected fidelities ci , as defined in
(6.13). Recall that we assume a constant p, and therefore the steady-state distribution is
independent of the jump function. Hence, we can use the formula for πi from Proposition
6.1. The work then lies in computing the ci , which are dependent on the choice of jump
function, recalling their definition in (6.13). From the same equation, we see that the first
step to compute ci is to find an explicit solution for the function F (i ). The linear jump
function (6.15) allows us to do this by solving the recurrence relation (6.4). The explicit
form of F (i ) is provided in the following proposition (see Appendix 6.9.2 for a proof).

Proposition 6.2. Consider a 1G1B system with J (F,ρnew) = aF +b and F (0)(t0) = D t0 (Fnew),
where Fnew is the fidelity of the state ρnew. Then,

F (i )(t0, ..., ti−1, ti ) = 1

4
+

i∑
j=0

m(i )
j e−Γ(t j +t j+1...+ti ) (6.16)

where the constants m(i )
j are given by m(0)

0 = Fnew − 1
4 , and

m(i )
j =

{
ai− j

( a
4 +b − 1

4

)
, if j > 0,

ai
(
Fnew − 1

4

)
if j = 0.

(6.17)

for i > 0.

In the following Lemma, we use the formula for F (i ) (found in Proposition 2) and
combine this with Theorem 6.1 to derive a closed-form expression for ci , and therefore
for the average consumed fidelity.

Lemma 6.1. Consider a 1G1B system with J(F,ρnew) = aF +b and F (0)(t0) = D t0 (Fnew),
where Fnew is the fidelity of the state ρnew. Then, the average fidelity after i ≥ 0 purification
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rounds is given by

ci = 1

4
+

(
Fnew − 1

4

)
·aiγi+1 +

(
a

4
+b − 1

4

)
γ

1−aiγi

1−aγ
, (6.18)

where α=µ+λq and γ=α/(α+Γ). Moreover, the average consumed fidelity is given by

F linear =
1
4Γ+bλqp +Fnew

(
µ+λq(1−p)

)
Γ+µ+λq(1−pa)

. (6.19)

The closed-form solution (6.19) is obtainable since F = 1
A

∑∞
i=0πi ci is a geometric

series with the linear jump function, as can be seen from the form of πi and ci as found
in Proposition 6.1 and Equation 6.18. In the following proposition, we see how F varies
with p and q .

Proposition 6.3. The quantity F linear has the following properties:

(a) F linear is a monotonic function of q;

(b) F linear is a monotonic function of p;

We provide a proof of Lemma 6.1 and Proposition 6.3 in Appendix 6.9.2. We now
have closed-form expression for A and F linear, which allows for a thorough analysis of
the performance of the 1G1B system with the linear jump function. In particular, the
following conclusions may already be drawn.

• Result (a) from Proposition 6.3 implies that the average consumed fidelity is maxi-
mized for q = 0 or q = 1. Consider a 1G1B system with a fixed set of parameters and
a pumping scheme with a linear jump function. If the pumping protocol is good
enough (e.g., when b ≥ Fnew(1−a), as explained in Appendix 6.9.2), then pumping
every time a link is generated (q = 1) maximizes the average consumed fidelity.
Sometimes, the pumping protocol chosen may impact the average consumed fi-
delity negatively and in that case one should never pump entanglement (q = 0) to
increase the average consumed fidelity.

• Result (b) from Proposition 6.3 provides similar insights: a pumping protocol with a
good jump function always benefits from a larger probability of success, i.e., F linear is
maximized for p = 1. When the protocol is detrimental, failure (p = 0) benefits the
overall procedure, since it frees the good memory and allows for a fresh entangled
link to be allocated there.

When the jump function is good (i.e., when F linear is monotonically increasing in q), we
observe a trade-off between F linear and the availability A, which is a decreasing function
of q , as can be seen from (6.9). This behavior is shown in Figure 6.6. If we rarely purify
(small q), a low-quality entangled state (small F linear) will be available most of the time
(large A). In that case, the average consumed fidelity can be lower than the fidelity of
newly generated links, since the entanglement is not being purified often enough to
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Figure 6.6: Trade-off between average consumed fidelity and availability. When the pumping is good enough
(see discussion in main text), the average consumed fidelity F (black line) increases with increasing purification
probability q , while the availability A (orange line) decreases. The dashed line corresponds to the fidelity
of newly generated links (Fnew = 0.8). Other parameters used in this example (times and rates in the same
arbitrary units): λ= 1, µ= 0.1, p = 0.75, Γ= 1/40, J(F,ρnew) = (1/3)F + (1+Fnew)/3, ρnew = Fnew

∣∣φ+〉〈
φ+∣∣+

(1−Fnew)
(∣∣ψ+〉〈

ψ+∣∣+ ∣∣ψ−〉〈
ψ−∣∣+ ∣∣φ−〉〈

φ−∣∣)/3. This jump function corresponds to a linear approximation of
a specific bilocal Clifford protocol (the DEJMPS protocol) in the high-fidelity regime [53].

compensate the noise introduced by the memory over time (in Figure 6.6, the average
consumed fidelity is below the dashed line for small q). When purification is performed
more often (larger q), the quality of the stored entanglement will be higher (larger F linear),
at the expense of a more limited availability (smaller A), since purification can fail and
destroy the entanglement stored in the long-term memory. This trade-off disappears
when the pumping scheme is deterministic (p = 1): the availability remains constant
when varying q since purification will always succeed and the stored entanglement will
not be destroyed. Note that, if the system is dominated by decoherence (Γ≫ λ,µ), the
average consumed fidelity will always be smaller than F0.

As a validation check, we also implemented a Monte Carlo simulation of the 1G1B
system, which provided the same availability and average consumed fidelity that we
obtained analytically (our code is available at https://github.com/AlvaroGI/buffering-
1G1B; see also Appendix 6.11, where we compare simulation results to the bounds derived
in the next section).

6.5.1. OPERATING REGIMES OF BILOCAL CLIFFORD PROTOCOLS

In this subsection, we study the operating regimes of the 1G1B system, under the as-
sumption that the pumping protocol employed is a bilocal Clifford protocol [52, 95].
Firstly, we find upper and lower bounds for the availability. Then, for a desired value of
the availability within these bounds, we find lower and upper bounds for the average
consumed fidelity that can be provided by bilocal Clifford protocols. This analysis finds
limits to the performance of the 1G1B buffering system.

https://github.com/AlvaroGI/buffering-1G1B
https://github.com/AlvaroGI/buffering-1G1B
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Bilocal Clifford protocols are one of the most well-studied types of protocol [52, 68,
95]. One of their main advantages is that they are relatively simple to execute, since they
involve a basic set of gates. To the best of our knowledge, bilocal Clifford circuits have
been the only purification protocols implemented experimentally so far (see, e.g., [100,
204]). In Appendix 6.10 we provide further details on bilocal Clifford protocols.

Let us start our performance analysis by discussing the availability. The maximum
value that can be achieved by any protocol (bilocal Clifford or not) is λ/(λ+µ), as can
be seen from (6.9). This maximum value is obtained when there is no pumping or the
pumping protocol succeeds deterministically, i.e., when q = 0 or p = 1. The availability
is lower bounded by λ/(2λ+µ), and the minimum value is attained when a pumping
protocol is always applied and it never succeeds, i.e., when q = 1 and p = 0.

To find bounds for the average consumed fidelity, we first need to bound the jump
functions of all bilocal Clifford protocols, which we do in the following Lemma. We only
consider nontrivial protocols, i.e., we do not consider bilocal Clifford protocols with
J(F,ρnew) = F or J(F,ρnew) = Fnew, where Fnew is the fidelity of ρnew. The former trivial
jump function corresponds to a protocol that leaves the buffered link untouched, while
the second trivial jump function corresponds to a protocol that replaces the buffered link
by the newly generated link.

Lemma 6.2. Let J(F,ρnew) be the jump function of a nontrivial bilocal Clifford protocol
(J(F,ρnew) ̸= F and J(F,ρnew) ̸= Fnew, where Fnew is the fidelity of ρnew). Assume ρnew is a
Bell-diagonal state:

ρnew = Fnew
∣∣Φ+〉〈

Φ+∣∣+λ1
∣∣Ψ+〉〈

Ψ+∣∣+λ2 |Ψ−〉〈Ψ−|+λ3 |Φ−〉〈Φ−| , (6.20)

with Fnew +λ1 +λ2 +λ3 = 1. Let us define F∗ as

F∗ = 2Fnew −1+
√

(2Fnew −1)2 −2λmin(1−2Fnew −2λmin)

2(2Fnew −1+2λmin)
, (6.21)

where λmin = min(λ1,λ2,λ3). Then, for all F ∈ [ 1
4 ,F∗], the jump function is lower bounded

as follows:
alF +bl ≤ J (F,ρnew) (6.22)

where

al = 2(4F∗−1)[2Fnew − (Fnew +λmin)(Fnew +λmax)]+4(λmax −λmin)(1−F∗)

(4F∗−1)[(4Fnew +4λmax −2)F∗+2−Fnew −λmax]
, and

bl = Fnew +λmax

2
− al

4
, (6.23)

with λmax = max{λ1,λ2,λ3}. For F ∈ [1/4,1], the jump function is upper bounded as

J (F,ρnew) ≤ auF +bu, (6.24)

with

au = 4(1−Fnew)

3
, and bu = 4Fnew −1

3
. (6.25)
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Moreover, the success probability of the protocol is bounded by p l ≤ p ≤ pu, where

p l = 1

2
, and pu = Fnew +max(λ1,λ2,λ3). (6.26)

A proof of Lemma 6.2 can be found in Appendix 6.10. We show this by considering
propoerties of the jump functions of bilocal Clifford protocols, which may be found
explicitly. Note that, despite the fact that we assume that newly generated entangled links
are Bell-diagonal, other forms of the density matrix are also valid in practice, since they
can be brought to Bell-diagonal form by adding extra noise [13, 86]. Note also that the
lower bound for the jump function (6.22) only applies when the fidelity of the buffered
link is below F∗, but this is always the case in the 1G1B system, as shown in Appendix 6.10.

If we regard Fnew as a fixed parameter, the upper and lower bounds to the jump
function (6.22) and (6.24) are linear in F , and the bounds to the success probability
(6.26) are constant. It is now possible to find an upper and lower bound for the average
consumed fidelity by combining Lemmas 6.1 and 6.2, as we do in the following corollary.

Corollary 6.1. The average consumed fidelity of the 1G1B system when using any (nontriv-
ial) bilocal Clifford protocol is lower bounded by

F l =
1
4Γ+blλqp +Fnew

(
µ+λq(1−p l)

)
Γ+µ+λq(1−p lal)

, (6.27)

and upper bounded by

F u =
1
4Γ+buλqp +Fnew

(
µ+λq(1−pu)

)
Γ+µ+λq(1−puau)

(6.28)

where al, bl, p l, au, bu, and pu, are given by (6.23), (6.25), and (6.26).

Now, we analyze the limits of the performance of the 1G1B system using the bounds
on F from Corollary 6.1. Let us start with a 1G1B system with perfect memories, i.e.,
with Γ = 0. This corresponds to an ideal situation that we can use as a benchmark:
once we introduce noise, the average consumed fidelity will be lower than in this ideal
case. Figure 6.7(a) shows the achievable combinations of average consumed fidelity and
availability for Fnew = 0.8, generation rate λ= 1, and consumption rate µ= 0.1. Below, we
list some important observations that may be drawn from this figure:

• The regions shaded in grey correspond to unattainable values of average fidelity
and availability, and they apply to any pumping scheme (bilocal Clifford or not). The
average consumed fidelity cannot be larger than the one provided by a hypothetical
protocol with jump function J (F,ρnew) = 1 and probability of success p = 1, which
is applied with probability q = 1 (however, such a protocol does not exist).

• The performance of a 1G1B system that uses any bilocal Clifford protocol is con-
tained within the region shaded in blue and yellow. The yellow/blue line cor-
responds to a hypothetical protocol with jump function and success probability
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saturating the lower/upper bounds from (6.22) and (6.26). For a fixed target avail-
ability, the blue line provides an upper bound on the maximum average consumed
fidelity that can be achieved by using bilocal Clifford protocols. Here, we observe
again the tradeoff between both performance metrics: if our target availability
is very close to the maximum value, we cannot increase the average consumed
fidelity beyond Fnew (dotted line); but as we decrease the desired availability, we
can achieve a higher consumed fidelity until we reach a maximum value.

• As a reference, we show the performance of the replacement protocol (red star):
in such a protocol, every time a new link is generated in the bad memory, the link
in the good memory is replaced by the new one, without any form of purification.
The replacement protocol is not bilocal Clifford because success is always declared
(in bilocal Clifford circuits, success depends on some measurement outcomes
[52]). This simple protocol achieves maximum availability, given by A =λ/(λ+µ).
However, since no purification is performed, this protocol cannot increase the
fidelity above the initial value Fnew. In the absence of decoherence, the replacement
protocol is equivalent to applying no purification at all (q = 0).

In Figure 6.7(b), we perform a similar analysis for a 1G1B system in which the good
memory has a finite lifetime, i.e., Γ> 0. This is a more realistic scenario. The following
observations may be drawn from this figure:

• Imperfect memories decrease the average consumed fidelity but do not affect the
availability. The availability is unaffected by the decoherence experienced by the
entangled links, and therefore can take the same range of values as in Figure 6.7(a).

• The replacement protocol no longer provides an average fidelity Fnew. Instead,
the average fidelity is lower than Fnew since the quality of the state stored in the
good memory decreases over time and is never increased beyond Fnew due to the
absence of purification. However, the replacement protocol performs better than
no pumping at all (q = 0). This is because the system can improve its fidelity every
time a new link is produced, instead of waiting for a consumption event.

• In the presence of noise, the lower and upper bounds for bilocal Clifford protocols
also shift towards lower values of average fidelity. Both the upper and lower bounds
take their minimum value at q = 0. This means that, in the presence of noise, any
pumping protocol will increase the average consumed fidelity, i.e., any pumping
(q > 0) is better than no pumping (q = 0), even if it succeeds with the lowest-
possible probability. This is in contrast to when there is no noise (Figure 6.7(a)),
where the lower bound takes its minimum at q = 1 and no such conclusion can be
drawn. In fact, this conclusion (any pumping is better than no pumping) always
applies when the amount of noise, Γ, is above the following threshold:

Γ> 4µp
Fnew(1−a)−b

4Fnew(1−p)+ (4b +a)p −1
, (6.29)

where a, b, and p are given by the choice of purification protocol (see (6.15)). In
Appendix 6.9.3 we compute this threshold analytically.
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As a final remark, in Appendix 6.11 we compare the bounds from Corollary 6.1 to
simulations which do not assume the probability of successful purification to be constant.
The simulation values lie within the bounds. This finding provides empirical evidence
that the bounds are still useful when lifting the assumption about a constant probability
of success.
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Figure 6.7: Noise in the memories decreases the average consumed fidelity but does not affect the availability.
Bounds on the performance of a 1G1B system with a bilocal Clifford protocol, and with (a) noiseless memories
(Γ= 0) or (b) noisy memories (Γ= 5 ·10−2 a.u.). For a given target availability, the average consumed fidelity
is within the blue/yellow region (see Corollary 6.1). Availability is maximized for q = 0 (q is the probability of
purification after successful entanglement generation), and it decreases for increasing q . White regions cannot
be achieved by bilocal Clifford protocols. Striped regions cannot be achieved by any pumping protocol. Red
star: performance of the replacement protocol (buffered link is replaced by new links). Dotted line: fidelity of
newly generated entangled links. Parameters used in this example (times and rates in the same arbitrary units):
λ= 1, µ= 0.1, Fnew = 0.8, ρnew = Fnew

∣∣φ+〉〈
φ+∣∣+ (1−Fnew)

(∣∣ψ+〉〈
ψ+∣∣+ ∣∣ψ−〉〈

ψ−∣∣)/2.
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6.6. CONCLUSIONS AND OUTLOOK

Our work sheds light on how to buffer high-quality entanglement shared among remote
nodes in a quantum network. We have proposed two metrics to measure the performance
of an entanglement buffering system: the availability and the average consumed fidelity.
The availability corresponds to the fraction of time in which entanglement is available for
consumption. The average consumed fidelity measures the quality of the entanglement
upon consumption. We have used these performance metrics to analyze the 1G1B system,
an entanglement buffering setup that uses two quantum memories per node. One of
these memories has a finite lifetime and is used to buffer the entanglement, while the
other memory is only used for entanglement generation. Entanglement generated in the
bad memory can be used to pump the entanglement stored in the good memory. We
have modelled the system as a continuous-time stochastic process and derived analytical
expressions for both performance metrics. Our results confirm the intuition that, except
in some edge cases, there is a trade-off between consuming entanglement at a high rate
(high availability) and consuming high-quality entanglement (high average consumed
fidelity). Remarkably, we found that, in a practical scenario (i.e., when the pumping
protocol is bilocal Clifford and there is noise in the good memory), pumping the buffered
entanglement is better than no pumping in terms of average consumed fidelity, even if
the pumping has some probability of failure.

An assumption that allows us to find analytical solutions for our performance metrics
is that the success probability of purification is constant over time. The model would
be more realistic if the probability of successful purification was dependent on the state
fidelity at that time, since this is the case for most protocols (in particular, the probability
of successful purification is typically lower for input states with lower fidelity). This may
mean that, realistically, the computation of the average fidelity when conditioning on
successful purification may bias the system towards higher fidelity. However, we believe
the comparison of our model (constant success probability) with a more realistic one
incorporating this effect (success probability dependent on F (t )) to be beyond the scope
of this work, since we expect this to greatly complicate the analysis of the problem.

Our proposed metrics can be used to evaluate the performance of other entangle-
ment buffering systems. An interesting extension of this work would be to compare the
performance of the 1G1B system to a bipartite entanglement buffering setup with n
quantum memories per node. In such a system, one could employ more advanced purifi-
cation protocols that consume more than two entangled states. We also expect that the
mathematical framework developed in this work can be used to initiate the performance
analysis of more complex systems. We leave this as future work.

6.7. [APPENDIX] GENERAL FORM OF JUMP FUNCTION

In this appendix, we explain the form (6.1) and (6.2) of the jump function and success
probability for a general purification protocol, for two input states ρW and ρnew, where

ρW = F
∣∣φ+〉〈

φ+∣∣+ 1−F

3

∣∣ψ+〉〈
ψ+∣∣+ 1−F

3

∣∣ψ−〉〈
ψ−∣∣+ 1−F

3

∣∣φ−〉〈
φ−∣∣
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is a Werner state and ρnew is a general two-qubit state. Suppose that the purification
protocol is described by a sequence of (possibly noisy) quantum operations that are
described by a CPTP mapΛ, and the final measurement outcome that signals success has
measurement operator Msucc. From, e.g., Chapter 2.4 of [138], the output state is then
given by

ρ′ = MsuccΛ
(
ρW ⊗ρnew

)
M †

succ

p(F,ρnew)
, (6.30)

where
p(F,ρnew) = Tr

[
MsuccΛ

(
ρW ⊗ρnew

)
M †

succ

]
. (6.31)

We next rewrite the Werner state as

ρW = F
∣∣φ+〉〈

φ+∣∣+ (1−F )ρ⊥

= ρ⊥+F
(∣∣φ+〉〈

φ+∣∣−ρ⊥)
where

ρ⊥ = 1

3

(∣∣ψ+〉〈
ψ+∣∣+ ∣∣ψ−〉〈

ψ−∣∣+ ∣∣φ−〉〈
φ−∣∣) ,

and p is the probability of success. We therefore have

MsuccΛ
(
ρW ⊗ρnew

)
M †

succ = MsuccΛ
(
ρ⊥⊗ρnew

)
M †

succ

+F ·MsuccΛ
((∣∣φ+〉〈

φ+∣∣−ρ⊥)⊗ρnew
)

M †
succ,

and taking the trace of the above yields

p(F,ρnew) = d(ρnew)+F · c(ρnew),

where c and d are obtained from the choice of purification protocol, i.e., from Λ and
Msucc. Similarly, the output fidelity of upon success is given by

〈
φ+∣∣ρ′ ∣∣φ+〉= F · ã(ρnew)+ b̃(ρnew)

p(F,ρnew)
,

where

ã(ρnew) = 〈
φ+∣∣MsuccΛ

((∣∣φ+〉〈
φ+∣∣−ρ⊥)⊗ρnew

)
M †

succ

∣∣φ+〉
,

b̃(ρnew) = 〈
φ+∣∣MsuccΛ

(
ρ⊥⊗ρnew

)
M †

succ

∣∣φ+〉
.

This confirms the form (6.1) and (6.2) for the jump function and success probability.

6.8. [APPENDIX] FORMULAE FOR PERFORMANCE METRICS

In this appendix, we prove Proposition 6.1 and Theorem 6.1, which provide the formulae
for our two performance metrics (availability and average consumed fidelity). First, in
6.8.1, we describe the stochastic process in the 1G1B setup in a simplified form and we
provide some intermediate results that are necessary for the main proofs. Then, in 6.8.2,
we employ the results from 6.8.1 to prove Proposition 6.1 and Theorem 6.1.
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6.8.1. SIMPLIFIED 1G1B

We now only view the 1G1B system as taking one of two states: ; (no entangled link in
memory G), or ¬; (link in memory G). The system then alternates between these two
states. For an illustration, see Figure 6.8.

1G1B

0 timeY1

¬∅ ¬∅
Y2Z1 Z2 Y3 Z3

¬∅∅ ∅ ∅

0 timeY1

¬∅
Z1 Zn−1 Yn

¬∅∅ ∅… t

C(t)

0 timeR1 R2 R3 R4
C̃

C

Figure 6.8: The simplified 1G1B process. The system alternates between the states ¬; (link in memory G)
and ; (no link in memory G). The system starts in ¬;. The times spent in ¬; and ; are denoted by Yi and Zi ,
respectively.

More formally, the simplified 1G1B process is the following.

Definition 6.9 (Simplified 1G1B). Let r (t ) ∈ {;,¬;} denote the state of simplified 1G1B at
time t . Suppose that r (0) =¬;, i.e., the system starts when there is a link in memory F. Let
Y1 be the time until this first link is removed, and let Z1 be the time for which the system is
empty until a fresh link is produced again. Let {Yi }i≥1 be the times spent in ¬; until the
link was removed from memory G (due to consumption or failed purification), and {Zi }i≥1

be the times which the system spent in ; until a link was produced. Then, according to our
model of 1G1B, the Yi are i.i.d. and exponentially distributed with rate β :=µ+λq(1−p),
and the Zi are i.i.d and exponentially distributed with rate λ.

Recall that λ is the rate of generation of new entangled links, µ is the rate of con-
sumption of links in memory G, q is the probability of immediately using new links for
pumping, and p is the probability of successful pumping.

We will write the distribution functions as FY (t) = P (Y1 ≤ t) = 1− e−βt , and FZ (t) =
P (Z1 ≤ t) = 1 − e−λt . The process Xi := Yi + Zi defines a renewal process, which we
introduce with the following definition.

Definition 6.10. A renewal process {N = N (t ) : t ≥ 0} is a process such that

N (t ) = max{n : An ≤ t } (6.32)

where A0 = 0, An = X1 + ...+Xn for n ≥ 1, and Xi is a sequence of i.i.d. and strictly positive
random variables.

The value An is referred to as the nth arrival time of the process, and the values Xi are
known as the interarrival times. From now on, we also use A0 = 0, An = X1 + ....+Xn to
denote the nth time at which a fresh link is produced, causing the system to move from ;
into ¬;.

The renewal function is central to renewal theory, which we define below. Throughout,
we use the convention dg (x) ≡ g ′(x)dx for differentiable functions g .

Definition 6.11. Let N (t) be a renewal process. Then, the renewal function is m(t) :=
E[N (t )].
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We will derive formulae for the availability and average consumed fidelity using this
mathematical framework. An important result that we will use in order to do this is
the renewal theorem, which we state below. This result assumes that the Xi are not
arithmetic. If X1 is arithmetic, this essentially means that X1 only takes values in a set
{mk : m = 0,±1, ...}, with k > 0. For more details of arithmetic random variables, see
Chapter 10 of [76].

Theorem 6.2 (Renewal Theorem/ Theorem 10.1.11 from [76])). Consider a renewal process
as given in Definition 6.10. Let FX be the distribution function of the random variable X1,
where X1 is not arithmetic. Let H(t) be a bounded function. Consider solutions f to the
renewal-type equation

f (t ) = H(t )+
∫ t

0
f (t −x)dFX (x). (6.33)

Then, a solution is

f (t ) = H(t )+
∫ t

0
H(t −x)dm(x). (6.34)

If H is bounded on finite intervals then f is bounded on finite intervals, and (6.34) is the
unique solution of (6.33) with this property.

The renewal-type equation often arises when studying renewal processes, as we will
see further on. The following result may be derived using Theorem 6.2, and is useful when
taking the infinite limit.

Theorem 6.3 (Key renewal theorem/Theorem 11.2.7 from [76]). If g : [0,∞) → [0,∞) is
such that

(a) g (t ) ≥ 0 for all t ,

(b)
∫ ∞

0 g (t )dt <∞,

(c) g is a non-increasing function,

then

lim
t→∞

∫ t

0
g (t −x)dm(x) = 1

E[X1]

∫ ∞

0
g (x)dx,

whenever X1 is not arithmetic.

We are now partially equipped to show the formulae for the availability and average
fidelity. Next, we show a set of intermediate results that we will need for the main proofs.

Proposition 6.4. Let p(t ) = P (r (t ) =¬;) be the probability that a link is available at time
t in the simplified 1G1B process. Then,

lim
t→∞p(t ) = E(Y1)

E(Y1)+E(Z1)
. (6.35)
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Proof. We proceed by conditioning on the value of X1. Now,

p(t ) = P (r (t ) =¬;∩X1 > t )+P (r (t ) =¬;∩X1 < t ). (6.36)

Notice that the event {r (t ) =¬;∩X1 > t } occurs if and only if Y1 > t . Further, if x < t , then

P (r (t ) =¬;|X1 = x) = p(t −x), (6.37)

since the process starts afresh at time x. Then, (6.36) becomes

p(t ) = 1−FY (t )+
∫ t

0
p(t −x)dFX (x), (6.38)

where dFX (x) ≡ F ′
X (x)dx. We now see that this is of the form (6.33) with H(t ) = 1−FY (t ),

and so by Theorem 6.2,

p(t ) = 1−FY (t )+
∫ t

0
(1−FY (t −x))dm(x). (6.39)

Taking the infinite limit,

lim
t→∞p(t ) = 1−1+ lim

t→∞

∫ t

0
(1−FY (t −x))dm(x). (6.40)

It can be seen that H(t ) = 1−FY (t ) satisfies the conditions (a)-(c) required by Theorem
6.3, so we may apply this Theorem to take the limit:

lim
t→∞p(t ) = 1

E[X1]

∫ ∞

0
(1−FY (x))dx (6.41)

= 1

E[X1]

∫ ∞

0
P (Y1 > x)dx = E[Y1]

E[X1]
. (6.42)

Finally, using E[X1] = E[Y1 +Z1] = E[Y1]+E[Z1] suffices to show (6.35).

Recall that the average fidelity of the system at a given time t is dependent on the time
spent in each purification level leading up to this point. Therefore, in order to understand
the average fidelity we first of all look at the current lifetime in this simplified setting.

Definition 6.12 (Current lifetime). Consider the simplified 1G1B system. Let C (t ) be the
time spent so far in a state at time t . More formally,

C (t ) =
{

t − AN (t ), if r (t ) =¬;,

t − AN (t ) −YN (t )+1, if r (t ) =;.
(6.43)

The first case (r (t) =¬;) is of most interest here, because it corresponds to when a
link is in memory and is subject to decoherence. See Figure 6.9 for an illustration of this
concept. In the following Lemma, we characterize the distribution of C (t ), conditional on
being in the state ¬;.
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1G1B

0 timeY1

¬∅ ¬∅
Y2Z1 Z2 Y3 Z3

¬∅∅ ∅ ∅

0 timeY1

¬∅
Z1 ZN−1 YN

¬∅∅ ∅… t

C(t)

0 timeR1 R2 R3 R4
C̃

C

Figure 6.9: Current lifetime of the simplified 1G1B process. The random variable C (t ) denotes the time spent
so far in the current state at time t . This is most interesting when r (t ) =¬;, because it tells us the age of a link
in memory.

Lemma 6.3. Consider the simplified 1G1B system. The limiting distribution of C (t ) condi-
tional on there being a link is given by

lim
t→∞P (C (t ) > x|r (t ) =¬;) = 1

E[Y1]

∫ ∞

x
(1−FY (s))ds, (6.44)

which is an exponential distribution with parameter β when Y1 ∼ Exp(β).

Proof. Writing

P (C (t ) > x|r (t ) =¬;) = P (C (t ) > x ∩ r (t ) =¬;)

P (r (t ) =¬;)
, (6.45)

we see that the bottom of the fraction has already been dealt with in Proposition 6.4. We
therefore focus on

G(t , x) := P (C (t ) > x ∩ r (t ) =¬;). (6.46)

Conditioning on X1, we see that

G(t , x) = P (C (t ) > x ∩ r (t ) =¬;∩X1 > t )+P (C (t ) > x ∩ r (t ) =¬;∩X1 ≤ t ). (6.47)

Now, the event {C (t ) > x ∩ r (t ) =¬;∩X1 > t } occurs if and only if Y1 > t > x. Moreover, if
y < t then the process starts afresh from time y , and

P (C (t ) > x ∩ r (t ) =¬;|X1 = y) =G(t − y). (6.48)

Then, noting that G(t , x) = 0 for t < x, (6.47) becomes

G(t , x) =1{t≥x}(1−FY (t ))+
∫ t

0
G(t − y)dFX (y), (6.49)

which is in the form of (6.33) with H(t ) =1{t≥x}(1−FY (t )). Then, by Theorem 6.2, G(t , x)
is given by

G(t , x) =1{t≥x}(1−FY (t ))+
∫ t

0
1{t−y≥x}(1−FY (t − y))dm(y) (6.50)

which has limit

lim
t→∞G(t , x) = 0+ lim

t→∞

∫ t−x

0
(1−FY (t − y))dm(y) (6.51)

= lim
s→∞

∫ s

0
(1−FY (s +x − y))dm(y), (6.52)
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letting s = t − x. Then, noting that g (s) = 1− FY (s + x) satisfies conditions (a)-(c) of
Theorem 6.3, we may apply this to find

lim
t→∞G(t , x) = 1

E[X1]

∫ ∞

0
g (s)ds = 1

E[X1]

∫ ∞

0
(1−FY (s +x))ds (6.53)

= 1

E[X1]

∫ ∞

x
(1−FY (s))ds. (6.54)

From Proposition 6.4, we observe that

E[X1] = E[Y1]

limt→∞ P (r (t ) =¬;)
.

We can use this to rewrite (6.54) as follows:

lim
t→∞P (C (t ) > x|r (t ) =¬;) = 1

E[Y1]

∫ ∞

x
(1−FY (s))ds, (6.55)

which we notice is only dependent on the distribution of Y1. In the case Y1 ∼ Exp(β), as
considered in the 1G1B system,

lim
t→∞P (C (t ) > x|r (t ) =¬;) =β

∫ ∞

x
e−βs ds = e−βx , (6.56)

and so conditional on there being a link, the current lifetime approaches an exponential
distribution.

We have now characterized the availability (Proposition 6.4) and current lifetime
(Lemma 6.3) for the simplified 1G1B system. However, note that both Proposition 6.4
and Lemma 6.3 assumed that the system starts in the state r (0) =¬;. This was necessary
in order to satisfy all of the conditions (a)-(c) of Theorem 6.3. The result below states
that Theorem 6.3 still holds, even if the renewal process is delayed, which means that the
first arrival has a different distribution to the others. For more details of delayed renewal
processes, see [76] or [129].

Definition 6.13. Let {Xi }i≥1 be independent positive random variables such that {Xi }i≥2

have the same distribution. Let A0 = 0, An = ∑n
i=1 Xi , and N d = max{n : An ≤ t }. Then,

N d(t ) is a delayed renewal process.

Definition 6.14. Let N d be a delayed renewal process. Then, md(t) := E[N d(t)] is the
delayed renewal function.

Theorem 6.4 (Key renewal theorem for delayed renewal processes/Theorem 1.20 of [129]).
Consider a delayed renewal process N d(t ). If g : [0,∞) → [0,∞) satisfies the same conditions
(a)-(c) of Theorem 6.3, then

lim
t→∞

∫ t

0
g (t −x)dmd(x) = 1

E[X2]

∫ ∞

0
g (x)dx. (6.57)
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A consequence of Theorem 6.4 is that even for delayed renewal processes, the limiting
distribution is the same as for the non-delayed case. Therefore, the results of Proposition
6.4 and Lemma 6.3 hold even when the distribution of X1 is not the same as {Xi }i≥2.
In particular, they still hold when the process starts in ;. This is summarized with the
following corollary.

Corollary 6.2. Consider the simplified 1G1B process, now altered to start in r (0) =;. Let
Z0 be the time for which the system is empty until the first fresh link is produced. Let Y1 be
the time in which this link is present in memory until it is removed again, and so on. Let
the probability of finding a link at time t be p(t ) = P (r (t ) =¬;). Then,

lim
t→∞p(t ) = E[Y1]

E[Y1]+E[Z1]
= λ

λ+β , (6.58)

and the distribution of the current lifetime of a link satisfies

lim
t→∞P (C (t ) > x|r (t ) =¬;) = 1

E[Y1]

∫ ∞

x
(1−FY (s))ds = e−βx . (6.59)

Recalling that β=µ+λq(1−p), we see that the formula for the availability in Proposi-
tion 6.1 is already shown by (6.58).

6.8.2. AVAILABILITY AND AVERAGE CONSUMED FIDELITY IN 1G1B

Here, we compute the availability and the rest of the steady-state distribution of the 1G1B
system (Proposition 6.1), as well as the average consumed fidelity (Theorem 6.1).

In order to calculate the average fidelity, we not only need the time spent in ¬;, but
also the times spent in each pumping level leading up to the current one.

From 1G1B (Definition 6.1), one may define a simplified 1G1B system as

r (t ) =
{
¬; if s(t ) ≥ 0

; if s(t ) =;.

For the characterization of the fidelity of the link in memory at time t , F (t), we
are interested in the successful pumping attempts that occur in the the time interval
[AN (t ), AN (t ) +C (t)), where C (t) is the current lifetime (Definition 6.12). In 1G1B, the
successful pumping attempts are a Poisson process with rate δ := λpq . Since the rate
is constant for all t , the number of successful pumping attempts within the interval
[AN (t ), AN (t ) +C (t )) has the identical distribution as the number of successful pumping
attempts in the time interval [0,C (t)). From Corollary 6.2, we see that C (t) converges
in distribution to C ∼ Exp(β). In the following Lemma, we characterize the number of
successful pumping attempts that occur within the time C , and the time spent between
each pair of consecutive pumping rounds. See Figure 6.10 for an illustration. An observa-
tion that we use below is that within the time interval [0,C ), the times at which pumping
occurs form a separate renewal process, which is convenient for notation.
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Figure 6.10: Number of pumping rounds. We are interested in the number of pumping rounds that have been
carried out while a link is in memory. Here, C is the (limiting) distribution of the current lifetime in memory
(see Figure 6.9), and Ri is the time between the (i −1)th and i th pumping round.

Lemma 6.4. Consider a renewal process Ñ (t ) with arrival times S0 = 0, Sn =∑n
i=1 Ri , with

R1 ∼ Exp(δ). Let C ∼ Exp(β) be independent of the Ri . Let M = N (C ) be the number of
arrivals that have occurred by time C . Let C̃ := C −SM be the current lifetime at time C .
Then,

1. The distribution of M is given by

P (M ≥ m) =
(

δ

β+δ
)m

, (6.60)

or equivalently

P (M = m) =
(

δ

β+δ
)m (

β

β+δ
)

. (6.61)

2. Conditional on M = m, the random variables (R1, ...,Rm ,C̃ ) are mutually indepen-
dent and identically distributed as Exp(β+δ).

Proof. 1. We proceed by induction. Letting FR := P (R ≤ x) We have

P (M ≥ 1) = P (C > R1) =
∫ ∞

0
P (C > R1|R1 = x)dFR (x)

=
∫ ∞

0
e−βx ·δe−δx dx = δ

δ+β ,

where we have used P (C > R1|R1 = x) = P (C > x) = e−βx and R1 ∼ Exp(δ). Then,
assuming (6.60),

P (M ≥ m +1) = P (C > Sm+1)

= P (C > Rm+1 +Sm)
a= P (C > Rm+1)P (C > Sm),

= P (C > R1)P (M ≥ m)

b=
(

δ

β+δ
)(

δ

β+δ
)m

=
(

δ

β+δ
)m+1

.
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In step (b), we have used the inductive assumption. In step (a) we have made use
of the memoryless property of the exponential distribution: Since Rm+1 and Sm are
positive and independent random variables, this has as a consequence

P (C > Rm+1 +Sm) =
∫ ∞

0

∫ ∞

0
dFR (r )dFSm (s)P (C > r + s)

=
∫ ∞

0

∫ ∞

0
dFR (r )dFSm (s)P (C > r )P (C > s)

= P (C > Rm+1)P (C > Sm). (6.62)

Finally, (6.61) follows from

P (M = m) = P (M ≥ m)−P (M ≥ m +1)

=
(

δ

β+δ
)m

−
(

δ

β+δ
)m+1

=
(

δ

β+δ
)m (

β

β+δ
)

.

2. We firstly note that for any events E1, E2, E3, it holds that

P (E1 ∩E2 ∩E3) = P (E1 ∩E2)−P (E1 ∩E2 ∩¬E3), (6.63)

where ¬E denotes the complement of the event E . Now, consider the events

E1 =
{

Ri > xi ∀i = 1, . . . ,m +1
}

, E2 =
{

C ≥ xm+1 +
m∑

i=1
Ri

}
, E3 =

{
C <

m+1∑
i=1

Ri

}
.

Now,

E1 ∩E2 ∩E3 =
{

R1 > x1, . . . , Rm > xm ,Rm+1 > xm+1 ∩
m+1∑
i=1

Ri >C ≥ xm+1 +
m∑

i=1
Ri

}
a=

{
R1 > x1, . . . , Rm > xm ,C̃ > xm+1 ∩

m+1∑
i=1

Ri >C ≥
m∑

i=1
Ri

}
b=

{
R1 > x1, . . . , Rm > xm ,C̃ > xm+1 ∩M = m

}
,

where in (a) we have used the definition of C̃ , and in (b) we have used the definition
of M . Then, by (6.63), we see that

P
(
R1 > x1, . . . , Rm > xm ,C̃ > xm+1 ∩M = m

)
= P

(
R1 > x1, . . . , Rm+1 > xm+1 ∩C ≥ xm+1 +

m∑
i=1

Ri

)

−P

(
R1 > x1, . . . , Rm+1 > xm+1 ∩C ≥

m+1∑
i=1

Ri

)
. (6.64)
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By the independence of the Ri , this is equivalent to

(6.64) =
[

P

(
C ≥ xm+1 +

m∑
i=1

Ri

∣∣∣R1 > x1, ...,Rm+1 > xm+1

)

−P

(
C ≥

m+1∑
i=1

Ri

∣∣∣R1 > x1, ...,Rm+1 > xm+1

)]m+1∏
i=1

P (Ri > xi ) , (6.65)

and we now use the memoryless property of the exponential distribution (see the
argument leading to (6.62)) to rewrite as

(6.64) =
[

P
(
C ≥ xm+1

∣∣Rm+1 > xm+1
) m∏

i=1
P

(
C ≥ Ri

∣∣Ri > xi
)

−
m+1∏
i=1

P
(
C ≥ Ri

∣∣Ri > xi
)]m+1∏

i=1
P (Ri > xi ) , (6.66)

which, using that P (Ci ≥ Ri
∣∣Ri > xi )P (Ri > xi ) = P (Ci ≥ Ri > xi ), becomes

(6.64) =
[

P (C ≥ xm+1 ∩Rm+1 > xm+1)−P (C ≥ Rm+1 > xm+1))

] m∏
i=1

P (C ≥ Ri > xi ) ,

= P (Rm+1 >C ≥ xm+1)
m∏

i=1
P (C ≥ Ri > xi ) ,

where we have again made use of (6.63) to rewrite the factor on the left. Now,

P (C ≥ R1 > x1) =
∫ ∞

x1

P (C ≥ y)dFR (y)

=
∫ ∞

x1

e−βy ·δe−δy = δ

β+δe−(β+δ)x1 ,

and by symmetry

P (R1 ≥C > xm+1) = β

β+δe−(β+δ)xm+1 .

We therefore see that

(6.64) = β

β+δe−(β+δ)xm+1 ·
m∏

i=1

[
δ

β+δe−(β+δ)xi

]
= β

β+δ ·
(

δ

β+δ
)m m+1∏

i=1
e−(β+δ)xi = P (M = m)

m+1∏
i=1

e−(β+δ)xi .

It therefore follows that

P
(
R1 > x1, . . . , Rm > xm ,C̃ > xm+1

∣∣M = m
)= m+1∏

i=1
e−(β+δ)xi ,

which suffices to show the second result.
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Recalling that C (t ) converges in distribution to C , we now adapt Lemma 6.4 to apply
to C (t ). In order to do this, we use the following result (for a proof, see Chapter 7 of [76]).

Theorem 6.5 (Continuous mapping theorem). Let {Xn} be a sequence of random variables
taking values in Rk . If Xn → X in distribution as n →∞ and g : Rk → Rl is continuous,
then g (Xn) → g (X ) in distribution as n →∞.

Corollary 6.3. Suppose that C (t) and X are independent random variables, and C (t)
converges in distribution to C as t →∞. Then,

lim
t→∞P (C (t ) > X ) = P (C > X ). (6.67)

Proof. Consider a sequence of times {tn}n≥1 such that 0 < t1 < t2 < ... and limn→∞ tn =∞.
Let Cn :=C (tn). Then, Cn →C in distribution. Moreover, since Cn and X are independent
for all n, the pair (Cn ,−X ) → (C ,−X ) in distribution. Now, the function g :R2 →R, with
g (x, y) = x + y is continuous. Then, by Theorem 6.5, Cn −X →C −X in distribution, and
so

lim
n→∞P (Cn −X > 0) = lim

n→∞P (C (tn)−X > 0) = P (C −X > 0).

Since this is true for all such sequences {tn}, the result follows.

In the following corollary, we let the current lifetime be dependent on the parameter
u to avoid confusion with the time of the renewal process (which is denoted as t ).

Corollary 6.4. Consider a renewal process N (t) with arrival times S0 = 0, Sn = ∑n
i=1 Ri ,

with R1 ∼ Exp(δ). Suppose that C (u) converges in distribution to C ∼ Exp(β) as u →∞. Let
M(u) = N (C (u)) be the number of arrivals that have occurred by time C (u). Let C̃ (u) :=
C (u)−SM(u) be the current lifetime at time C (u). Then, the results of Lemma 6.4 still hold
in the limit u →∞. In particular,

1. The limiting distribution of M(u) is that of M,

lim
u→∞P (M(u) ≥ m) = P (M ≥ m) =

(
δ

β+δ
)m

. (6.68)

2. Conditional on M(u) = m, the random variables (R1, ...,Rm ,C̃ ) converge in distri-
bution to mutually independent and identically distributed Exp(β+δ) as u →∞,
i.e.,

lim
u→∞P (X1 > x1, ..., Xm > xm ,C̃ (u) > xm+1|M(u) = m) =

m+1∏
i=1

e−(β+δ)xi , (6.69)

Proof. 1. Making use of Corollary 6.3, we have

lim
u→∞P (M(u) ≥ m) = lim

u→∞P (C (u) > Sm) = P (C > Sm) =
(

δ

β+δ
)m

.
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2. One may use exactly the same arguments as were used to obtain (6.65), only replac-
ing C with C (u) and M with M(u), to show that

P
(
R1 > x1, . . . , Rm > xm ,C̃ (u) > xm+1 ∩M(u) = m

)
=

[
P

(
C (u) ≥ xm+1 +

m∑
i=1

Ri

∣∣∣R1 > x1, ...,Rm+1 > xm+1

)

−P

(
C (u) ≥

m+1∑
i=1

Ri

∣∣∣R1 > x1, ...,Rm+1 > xm+1

)]m+1∏
i=1

P (R1 > xi ) .

By Corollary 6.3, in the limit u →∞ this satisfies

lim
u→∞P (R1 > x1, ....,Rm > xm ,C̃ (u) > xm+1 ∩ M(u) = m)

=
[

P

(
C ≥ xm+1 +

m∑
i=1

Ri

∣∣∣R1 > x1, ...,Rm+1 > xm+1

)

−P

(
C ≥

m+1∑
i=1

Ri

∣∣∣R1 > x1, ...,Rm+1 > xm+1

)]m+1∏
i=1

P (R1 > xi ) = (6.65).

It then follows that

lim
u→∞P (R1 > x1, ....,Rm > xm ,C̃ (u) > xm+1

∣∣∣M(u) = m)

= lim
u→∞

P (R1 > x1, ....,Rm > xm ,C̃ (u) > xm+1 ∩M(u) = m)

P (M(u) = m)

= P (R1 > x1, ....,Rm > xm ,C̃ > xm+1 ∩M = m)

P (M = m)
=

m+1∏
i=1

e−(β+δ)xi ,

by Lemma 6.4.

For the case when C (u) is the current lifetime of simplified 1G1B, the random variable
(R1, . . . ,Rm ,C̃ (u)) by definition has the same distribution as T⃗ (u). Recall that T⃗ (u) con-
tains the times spent in each purification level leading up to the current one at time u in
1G1B (Definition 6.2). This leads to the following results.

Corollary 6.5. Conditional on s(t) = i , T⃗ (t) converges in distribution to (Q0, . . . ,Qi ) as
t →∞, where the Q j are i.i.d. random variables with Q0 ∼ Exp(β+δ).

We now continue with the formulae for the performance metrics. The availability
in the 1G1B system was given in Proposition 6.1 and the average consumed fidelity was
given in Theorem 6.1. Next, we prove both of them.

Proof of Proposition 6.1. From Corollary 6.2, we see that

A = lim
t→∞P (s(t ) =¬;) = λ

λ+µ+λq(1−p)
.



6

160 6. ENTANGLEMENT BUFFERING WITH TWO QUANTUM MEMORIES

Further, for i ≥ 0

P (s(t ) = i ) = P (s(t ) = i |s(t ) ̸= ;) ·P (s(t ) ̸= ;).

Letting C (t ) denote the current lifetime of simplified 1G1B at time t , and M(t ) denote the
number of purifications that have occurred within this time, by Corollary 6.4 it follows
that

P (s(t ) = i ) = P (M(t ) = i ) ·P (s(t ) ̸= ;) → P (M = i ) · A

as t →∞. Recalling the distribution of M as found in Lemma 6.4, we obtain

lim
t→∞P (s(t ) = i ) =

(
λqp

µ+λq

)i

· µ+λq(1−p)

µ+λq
· A

= λi+1q i p i

(µ+λq)i+1
· µ+λq(1−p)

λ+µ+λq(1−p)
.

We note that this result can also be derived with the global balance equations of a CTMC.
Here, we chose to use the derivation with renewal theory since it offers a more general
formula for the availability (see (6.58)) and ties in more neatly with the derivation of the
formula for the average consumed fidelity, as we will see below.

The following proposition will be helpful in the proof of Theorem 6.1 (formula for
average consumed fidelity).

Proposition 6.5. Let {pi (t )}i≥0 and {ei (t )}i≥0 be such that for all i , limt→∞ pi (t ) =πi and
limt→∞ ei (t ) = ci . Suppose also that for all t , 0 ≤ ei (t ) ≤ 1, 0 ≤ pi (t ) ≤ 1 and

∑
i=0 pi (t ) = 1.

Then

lim
t→∞

∞∑
i=0

ei (t )pi (t ) =
∞∑

i=0
ciπi . (6.70)

Proof of proposition 6.5. To show (6.70), it suffices to show that for any ϵ> 0, there exists
a T such that for all t > T , ∣∣∣∣ ∞∑

i=0
ei (t )pi (t )−

∞∑
i=0

ciπi

∣∣∣∣< ϵ. (6.71)

We firstly bound the sum using the triangle inequality,∣∣∣∣ ∞∑
i=0

ei (t )pi (t )−
∞∑

i=0
ciπi

∣∣∣∣= ∣∣∣∣ ∞∑
i=0

ei (t )(pi (t )−πi )+ (ei (t )− ci )πi

∣∣∣∣
≤

∞∑
i=0

ei (t )|pi (t )−πi |︸ ︷︷ ︸
(A)

+
∞∑

i=0
|ei (t )− ci |πi︸ ︷︷ ︸

(B)

. (6.72)

We then show that (A) → 0 and (B) → 0 as t →∞. We firstly show that

lim
t→∞

∞∑
i=0

∣∣pi (t )−πi
∣∣= 0. (6.73)
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Note that, since
∑∞

i=0 pi (t ) = 1, it follows that
∑∞

i=0πi = 1. Then, choose N such that

N∑
i=0

πi > 1− ϵ

2

and choose T1 such that
N∑

i=0

∣∣pi (t )−πi
∣∣< ϵ

2
, ∀t > T1

which is possible since the sum is finite. Then ∀t > T1,∣∣∣∣1− N∑
i=0

pi (t )

∣∣∣∣= ∣∣∣∣1− N∑
i=0

(
πi − (πi −pi (t ))

)∣∣∣∣
<

∣∣∣∣1− N∑
i=0

πi

∣∣∣∣+ N∑
i=0

|πi −pi (t )| < ϵ

2
+ ϵ

2
= ϵ. (6.74)

Now, choose T2 such that ∀t > T2,

|pi (t )−πi | < ϵ

N
, ∀i = 0, ..., N

and let T = max{T1,T2}. Then, ∀t > T,

∞∑
i=0

|pi (t )−πi | =
N∑

i=0
|pi (t )−πi |+

∑
i>N

|pi (t )−πi |

< N · ϵ
N

+ ∑
i>N

pi (t )+ ∑
i>N

πi

< ϵ+ϵ+ ϵ

2
,

from (6.74). This suffices to show (6.73). Combined with the fact that the ei are bounded,
it follows that (A) → 0. We now show that (B) → 0, i.e.,

lim
t→∞

∞∑
i=0

|ei (t )− ci |πi = 0. (6.75)

To show this, let ϵ> 0. Choose N such that
∑N

i=0πi > 1−ϵ. Choose T such that

N∑
i=0

|ei (t )− ci | < ϵ, ∀ t > T.

This is possible since the LHS is a finite sum. Then,

∞∑
i=0

|ei (t )− ci |πi =
N∑

i=0
|ei (t )− ci |πi +

∑
i>N

|ei (t )− ci |πi

<
(

N∑
i=0

|ei (t )− ci |
)
·
(

N∑
i=0

πi

)
+ ∑

i>N
πi

< ϵ(1−ϵ)+ϵ∀ t > T,

which shows (6.75).
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Combining these results ((A) → 0 and (B) → 0) in (6.72)) suffices to show Proposition
6.5. We are now ready to prove Theorem 6.1 (formula for average consumed fidelity).

Proof of Theorem 6.1. We firstly expand out the average consumed fidelity (Definition
6.8) as a sum by conditioning on the value of s(t ),

F := E[F (t )|s(t ) ̸= ;] =
∞∑

i=0
E[F (t )|s(t ) = i ]P (s(t ) = i |s(t ) ̸= ;)

= 1

P (s(t ) ̸= ;)

∞∑
i=0

E[F (t )|s(t ) = i ]P (s(t ) = i ) . (6.76)

Recall that we are interested in the limit t →∞ of the above. Note that from Proposition
6.1, we know the limiting values of P (s(t ) ̸= ;) and P (s(t ) = i ). We now claim that

lim
t→∞E[F (t )|s(t ) = i ] = E

[
F (i ) (Q0,Q1, ...,Qi )

]
(6.77)

where Q0,Q1, . . . ,Qi are i.i.d. random variables with Q0 ∼ Exp(µ+λq), and F (i ) is given in
Definition 6.5. We use the following result:

Theorem 6.6 (Theorem 7.2.19 of [76]). Let Xn be a sequence of random variables. Then,
Xn → X in distribution if and only if E[g (Xn)] → E[g (X )] for all bounded continuous
functions g .

Recall that conditional on s(t ) = i , we have F (t ) = F (i )
(
T⃗ (t )

)
(from Definition 6.6). As

mentioned in Section 6.3, F (i ) is a continuous and bounded function. Therefore, (6.77)
follows by combining Theorem 6.6 and Corollary 6.5.

From Proposition 6.5, we therefore see that

lim
t→∞E[F (t )|s(t ) ̸= ;] = lim

t→∞
1

P (s(t ) ̸= ;)

∞∑
i=0

E[F (t )|s(t ) = i ]P (s(t ) = i )

= 1

A

∞∑
i=0

lim
t→∞E[F (t )|s(t ) = i ] lim

t→∞P (s(t ) = i )

= 1

A

∞∑
i=0

ciπi ,

where ci = E
[
F (i ) (Q0,Q1, ...,Qi )

]
and πi = limt→∞ P (s(t ) = i ).

6.9. [APPENDIX] AVERAGE CONSUMED FIDELITY WITH A LINEAR

JUMP FUNCTION

In this appendix we focus on linear jump functions. In 6.9.1, we provide bounds for the
coefficients of a linear jump function. In 6.9.2, we first prove Proposition 6.2. Then, we
use that Proposition to derive the average consumed fidelity in a 1G1B system that uses a
pumping protocol with a linear jump function, which we denote by F linear (i.e., we show
Lemma 6.1). We also show that F linear is monotonic in the probability of pumping q and
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the probability of successful pumping p (Proposition 6.3). Lastly, in 6.9.3, we discuss
in which situations F linear is monotonically increasing in q , and we compute the noise
threshold (6.29) discussed in Section 6.5.1 (above this threshold, any purification is better
than no purification).

6.9.1. BOUNDS ON THE PARAMETERS OF A LINEAR JUMP FUNCTION

Proposition 6.6. Consider a jump function that is linear with the fidelity of one of the
input states, i.e.,

J (F,ρ) = a(ρ)F +b(ρ), (6.78)

where F is the fidelity of one of the input states and ρ is the second input state. Then, the
coefficients a(ρ) and b(ρ) must satisfy

0 ≤ a(ρ) ≤ 1 and
1

4

(
1−a(ρ)

)≤ b(ρ) ≤ 1−a(ρ).

Proof. First, we require J(F,ρ) ≤ 1, which is equivalent to b ≤ 1− a. We also require
J (F,ρ) ≥ 1/4, which leads to b ≥ (1−a)/4. By imposing that the upper bound on b has to
be larger than the lower bound, we find that a ≤ 1. Finally, since we want jump functions
that increase with increasing F , we want a ≥ 0.

6.9.2. DERIVATION OF AVERAGE CONSUMED FIDELITY WITH A LINEAR JUMP

Proof of Proposition 6.2. Here, we consider a 1G1B system with J(F,ρnew) = aF +b and
F (0)(t0) = D t0 (Fnew), where Fnew is the fidelity of the state ρnew. Our goal is to find an
analytical solution for the fidelity of the entangled link after i consecutive successful
purifications, F (i )(t0, ..., ti−1, ti ). The time passed between purification j and j +1 is given
by t j . After the i -th purification the system spent time ti without any transitions (i.e., no
purification or consumption events). We show in this proof that F (i ) is given by

F (i )(t0, ..., ti−1, ti ) = 1

4
+

i∑
j=0

m(i )
j e−Γ(t j +t j+1...+ti ) (6.79)

where the constants m(i )
j are given by m(0)

0 = Fnew − 1
4 , and

m(i )
j =

{
ai− j

( a
4 +b − 1

4

)
, if j > 0,

ai
(
Fnew − 1

4

)
if j = 0.

for i > 0.
We proceed by induction. For i = 0, we have

F (0)(t0) = D t0 (Fnew) = e−Γt0

(
Fnew − 1

4

)
+ 1

4
, (6.80)
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from which we see that m(0)
0 = Fnew − 1

4 . If we assume that (6.79) is true for some i , using
the recursive relation from (6.4) we can show that (6.79) is also true for i +1:

F (i+1)(t0, ..., ti ) = D ti+1

(
J (F (i ),ρ)

)
= D ti+1

(
aF (i ) +b

)
= e−Γti+1

(
aF (i ) +b − 1

4

)
+ 1

4

= 1

4
+

(
a

4
+b − 1

4

)
e−Γti+1 +

i∑
j=0

am(i )
j e−Γ(t j +...+ti+ti+1),

from which it follows that

m(i+1)
j = am(i )

j (0 ≤ j ≤ i )

m(i+1)
i+1 = a

4
+b − 1

4

Then, by the inductive assumption, m(i+1)
0 = ai+1

(
Fnew − 1

4

)
, and m(i+1)

j = ai+1− j
( a

4 +b − 1
4

)
for j > 0.

Proof of Lemma 6.1. Here we consider a 1G1B system with J (F,ρnew) = aF+b and F (0)(t0) =
D t0 (Fnew), where Fnew is the fidelity of the state ρnew. Our goal is to find a closed-form
solution for the average fidelity after i ≥ 0 purification rounds, ci , and for the average
consumed fidelity, F linear.

We defined ci as the average value of F (i ) (see (6.13)). Using the expression for F (i )

from Proposition 6.2 (also given in (6.79)), we can evaluate ci as follows

ci :=
∫ ∞

0
dti fα(ti ) ...

∫ ∞

0
dt0 fα(t0)F (i )(t0, ..., ti−1, ti )

=
∫ ∞

0
dti fα(ti ) ...

∫ ∞

0
dt0 fα(t0)

[
1

4
+

i∑
j=0

m(i )
j e−Γ(t j +...+ti−1+ti )

]

=1

4
+

i∑
j=0

m(i )
j

( α

α+Γ
)i− j+1

=1

4
+

(
Fnew − 1

4

)
·aiγi+1 +γ

(
a

4
+b − 1

4

) i∑
j=1

ai− jγi− j ,

where α= µ+λq , fα(ti ) =αe−αti (since the times ti are exponentially distributed with
rate α), γ=α/(α+Γ). Using the fact that this is a geometric series, we may now obtain a
closed-form solution for ci :

ci = 1

4
+

(
Fnew − 1

4

)
·aiγi+1 +γ

(
a

4
+b − 1

4

)
1−aiγi

1−aγ
. (6.81)
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The final formula for the average fidelity may then be computed with the results of
Proposition 6.1 and Theorem 6.1 as

F linear = lim
t→∞E (F (t )|s(t ) ̸= ;) = 1

1−π;

∞∑
i=0

ciπi

= 1

4
+ γ

1−aγ
·
(

a

4
+b − 1

4

)
+ γ

(1−π;)
·
(

Fnew − 1

4
−

a
4 +b − 1

4

1−aγ

) ∞∑
i=0

πi (aγ)i ,

(6.82)

where the constant terms are no longer in the sum since

1

1−π;

∞∑
i=0

πi = 1,

by the normalization of the steady state distribution. Recalling the distribution of π from
Proposition 6.1, we may evaluate the sum as a geometric series,

∞∑
i=0

πi (aγ)i = λ

µ+λq

∞∑
i=0

(
λqpaγ

µ+λq

)i

π;

= λ

µ+λq
· 1

1− λqpaγ
µ+λq

π;

= λ

µ+λq −λqpaγ
π;.

We may now substitute this into (6.82) to obtain a closed-form solution for the average
fidelity,

F linear = 1

4
+ γ

1−aγ
·
(

a

4
+b − 1

4

)
+γ ·

(
Fnew − 1

4
−

a
4 +b − 1

4

1−aγ

)
λ

µ+λq −λqpaγ

π;
1−π;

= 1

4
+ γ

1−aγ
·
(

a

4
+b − 1

4

)
+γ ·

(
Fnew − 1

4
−

a
4 +b − 1

4

1−aγ

)
µ+λq(1−p)

µ+λq −λqpaγ

=
1
4Γ+bλqp +Fnew

(
µ+λq(1−p)

)
Γ+µ+λq(1−pa)

,

(6.83)

which completes the closed-form solutions for our two performance metrics in this set-up
(in the last step we used Mathematica to simplify the expression).

Proof of Proposition 6.3. To show (a), we compute the partial derivative of the average
consumed fidelity with respect to q :

∂F linear

∂q
=λΓ

(
4Fnew(1−p)+ (4b +a)p −1

)+4µp
(
b −Fnew(1−a)

)
4
(
Γ+µ+λq(1−ap)

)2 . (6.84)

Since the sign of the derivative does not depend on q , we conclude that F linear is monotonic
in q .
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To show (b), we proceed similarly:

∂F linear

∂p
=λq

4(b −Fnew)(Γ+µ+λq)+a
(
Γ+4Fnew(µ+λq)

)
4
(
Γ+µ+λq(1−ap)

)2 . (6.85)

Since the sign of this derivative does not depend on p, we conclude that F linear is mono-
tonic in p.

6.9.3. NOISE THRESHOLD

In the previous section, we showed that F linear is monotonic in q and p (Proposition 6.3).
Nevertheless, note that F linear can be monotonically increasing or decreasing in q and
in p depending on the values of the other parameters. For a pumping protocol with a
good enough jump function, F linear becomes increasing in q . A sufficient condition is for
the jump function to satisfy b ≥ Fnew(1−a), as we show next. The partial derivative with
respect to q from (6.84) can be written as follows:

∂F linear

∂q
= λ

x2

(
Γy +4µpz

)
, (6.86)

where x = 2(Γ+µ+λq(1−ap)), y = 4Fnew(1−p)+ (4b +a)p −1, and z = b −Fnew(1−a).
Using the fact that b ≥ (1−a)/4, we find that y ≥ 0. A sufficient condition for the partial
derivative to be positive is that z ≥ 0, i.e., if b ≥ Fnew(1−a), then the average consumed
fidelity is monotonically increasing in q . Moreover, we can conclude that, if the noise
is above certain threshold (Γ>−4µpz/y), the derivative is positive and the pumping is
always beneficial, even if it succeeds with a very small probability.

6.10. [APPENDIX] BOUNDS FOR BILOCAL CLIFFORD PROTO-
COLS

In this appendix, we find bounds to the output fidelity and the probability of success of
2-to-1 purification protocols. In particular, we show Lemma 6.2, where upper and lower
bounds on the jump function and the success probability of any bilocal Clifford protocol,
taking as input a Werner state ρW and a Bell-diagonal state ρBD. We define the fidelity of a
state ρ as F (ρ,

∣∣φ+〉
) = 〈

φ+∣∣ρ ∣∣φ+〉
, where

∣∣φ+〉= (|00〉+ |11〉)/
p

2 is one of the Bell states.
We find the bounds for a system with the following restrictions.

• We consider 2-to-1 purification protocols, i.e., protocols that take two bipartite
entangled states as input and output a single bipartite state. This allows us to use
these bounds directly for the analysis of the 1G1B system.

• We restrict the pumping protocols to bilocal Clifford protocols [52, 95], which are a
well-known type of purification scheme. We provide more details about this type of
protocol in Section 6.10.1.
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• We assume that one of the input states is a Werner state (in the 1G1B system, this
is the state in the good memory, which suffers from depolarizing noise) and the
other input state is Bell-diagonal (in the 1G1B system, this is the state generated via
heralded entanglement generation and placed in the bad memory). Mathematically,
the input states can be written, respectively, as

ρW = F
∣∣φ+〉〈

φ+∣∣+ 1−F

3

∣∣ψ+〉〈
ψ+∣∣+ 1−F

3

∣∣ψ−〉〈
ψ−∣∣+ 1−F

3

∣∣φ−〉〈
φ−∣∣ ,

ρBD = FBD

∣∣φ+〉〈
φ+∣∣+λ1

∣∣ψ+〉〈
ψ+∣∣+λ2

∣∣ψ−〉〈
ψ−∣∣+λ3

∣∣φ−〉〈
φ−∣∣ ,

with F,FBD,λ1,λ2,λ3 ∈ [0,1] subjected to the normalization constraint FBD +λ1 +
λ2 +λ3 = 1, and with the Bell states defined as

∣∣φ+〉= |00〉+ |11〉p
2

,
∣∣ψ+〉= |01〉+ |10〉p

2
,
∣∣ψ−〉= |01〉− |10〉p

2
,
∣∣φ−〉= |00〉− |11〉p

2
.

Note that any bipartite state can be brought to Bell-diagonal form while preserving
the fidelity by means of twirling (adding extra noise) [13, 86].

• We only consider newly generated states with fidelity to some Bell state larger than
1/2, i.e., we assume FBD > 1/2 (note that FBD > 1/2 is equivalent to λi > 1/2 for
some i , since the states are equivalent upon some Pauli corrections). As shown in
6.10.3, this is a necessary and sufficient condition for the existence of entanglement
(otherwise, the state is not useful for purification).

• We assume the Werner state has fidelity F > 1/4, since the good memory is initially
occupied with a state with fidelity larger than 1/2, and this fidelity can decay at
most to 1/4 due to depolarizing noise (see Definition 6.3).

In Section 6.10.1, we provide a formal definition of bilocal Clifford protocols. Then, in
Section 6.10.2, we prove Lemma 6.2, where bounds are found for the jump function and
success probability of bilocal Clifford protocols in a system with the above restrictions.

6.10.1. BILOCAL CLIFFORD PROTOCOLS

Bilocal Clifford protocols [52, 95] take n bipartite states as input and outputs a single
bipartite state. They consist of the following steps:

1. C T ⊗C † is applied to the state, where C is some Clifford circuit. A Clifford circuit
consists of Hadamard gates, phase gates S, and CNOTs [70, 71]. If the state is held
by two separate parties, one of them applies C T and the other one applies C †.

2. All of the qubit pairs except one are measured (in a 2-to-1 protocol, one qubit pair
is measured and the other one is kept).

3. Depending on the parity of the measurement outcomes, success or failure is de-
clared. Local unitaries may be performed after a success.
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One of the main advantages of bilocal Clifford protocols is that they are relatively
simple to execute in practice, since they involve a basic set of gates. Additionally, any
stabilizer code C can be mapped to a bilocal Clifford circuit that applies C T ⊗C †, allowing
the analysis of bilocal Clifford circuits from a quantum error-correction perspective
[68]. This type of protocol also includes well-known purification protocols, such as
DEJMPS [53].

6.10.2. LINEAR BOUNDS FOR BILOCAL CLIFFORD PROTOCOLS

In this appendix, we prove Lemma 6.2, where bounds on the jump function and success
probability of every bilocal Clifford protocol are found. Consider pumping two states of
the form

ρW = F
∣∣Φ+〉〈

Φ+∣∣+ 1−F

3

(∣∣Ψ+〉〈
Ψ+∣∣+|Ψ−〉〈Ψ−|+ |Φ−〉〈Ψ−|) (6.87)

ρBD = FBD

∣∣Φ+〉〈
Φ+∣∣+λ1

∣∣Ψ+〉〈
Ψ+∣∣+λ2 |Ψ−〉〈Ψ−|+λ3 |Φ−〉〈Ψ−| . (6.88)

Using the methods from [95], we can find the analytical expressions for the output fidelity
and success probability for every bilocal Clifford protocol. The restriction to bilocal Clif-
ford protocols and Bell-diagonal states allows us to do this enumeration of analytical
functions efficiently [68, 95]. There are only seven protocols that provide a unique combi-
nation of J and p, as shown in Table 6.2. We refer to the i -th jump function and success
probability as Ji (F,ρBD) and pi (F,ρBD), for i = 1, ...,7.

Table 6.2: Jump function and success probability for all 2-1 bilocal Clifford protocols, with input states given
in (6.87) and (6.88) .

Protocol Jump function Success probability

1 (4λ1+3λ2+3λ3−3)F−λ1
(4λ2+4λ3−2)F−λ2−λ3−1

2
3 (1−2λ2 −2λ3)F + 1

3 (1+λ2 +λ3)

2 (3λ1+4λ2+3λ3−3)F−λ2
(4λ1+4λ3−2)F−λ1−λ3−1

2
3 (1−2λ3 −2λ1)F + 1

3 (1+λ3 +λ1)

3 (3λ1+3λ2+4λ3−3)F−λ3
(4λ1+4λ2−2)F−λ1−λ2−1

2
3 (1−2λ1 −2λ2)F + 1

3 (1+λ1 +λ2)

4 F FBD +λ1

5 F FBD +λ2

6 F FBD +λ3

7 FBD
2
3 F + 1

3

We see that for these particular input states, J4, J5 and J6 produce no change in the
fidelity of ρW. They also have a non-unity success probability. It would therefore be
advantageous to simply perform no action instead of attempting Protocols 4-6. Similarly,
J7 assumes the fidelity of the Bell-diagonal state, which is the same change as performing
replacement. Since replacement can be achieved with probability one, it does not make
sense to perform Protocol 7. Therefore, the only remaining ‘non-trivial’ protocols are Pro-
tocols 1-3. In the following, we therefore find bounds for the jump function of Protocols
1-3. Notice that there is symmetry in the λi : J2 and p2 can be obtained by permuting
(λ1,λ2,λ3) in J1 and p1, and similarly for J3 and p3.

In the following, we show Lemma 6.2.
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Figure 6.11: Linear bounds for the jump function of bilocal Clifford protocols (black dashed lines). The jump
functions shown are J1-J3 (red lines), J4-J6 (identity operation, black line), and J7 (probabilistic replacement,
blue line). F∗ is the highest fidelity achievable by pumping a low-fidelity Werner state with the fixed Bell-
diagonal state ρBD. The lower bound holds in the range [1/4,F∗]. The upper bound holds in the range [1/4,1].
Here, FBD = 0.75 and ρBD = (0.75,0.125,0.833,0.0417).

Proof of Lemma 6.2. We firstly show the linear lower bound (i.e., the formulae given in
(6.23)). We assume that λ1 ≥λ2 ≥λ3. Then, by symmetry in the λi , one may retrieve the
bound by setting λmin =λ3 and λmax =λ1. In order to show this bound, we make use of
the following collection of results. It is important to note that when showing all of the
following results, ρBD is fixed.

1. Proposition 6.7, Corollory 6.6, Proposition 6.8 – the formula for F∗ is derived
(Equation 6.21). This is the maximum achievable fidelity achievable in the 1G1B
system, with fixed Bell-diagonal input state ρBD. Therefore, at any given time t ,
the fidelity F (t ) of the stored link in the 1G1B system (see Definition 6.6) satisfies
F (t ) ≤ F∗.

2. At F = F∗, Protocol 3 provides the best output fidelity,

J1
(
F∗,ρBD

)≤ J2
(
F∗,ρBD

)≤ J3
(
F∗,ρBD

)
(Proposition 6.7 and Corollary 6.6).

3. At F = 1/4, Protocol 1 provides the best output fidelity, i.e.,

J3
(
F∗,ρBD

)≤ J2
(
F∗,ρBD

)≤ J1
(
F∗,ρBD

)
,

since Ji (1/4,ρBD) = (FBD +λi )/2.

4. For i = 1,2,3, Ji (F,ρBD) is a concave function of F (Proposition 6.9).
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In particular, the third result means that any straight line taken between two points on Ji

must lie below the curve itself. The linear lower bound is the linear function connecting
the points (

F∗, J1(F∗,ρBD)
)

,

(
1

4
, J3

(
1

4
,ρBD

))
, (6.89)

which is given by

JLB(F,ρBD) =
(

J1(F∗,ρBD)− FBD+λ3
2

F∗− 1
4

)(
F − 1

4

)
+ FBD +λ3

2
,

where we have used the fact that Ji (1/4,ρBD) = (FBD +λi )/2. Letting λmax =λ1 and λmin =
λ3, this may be rearranged into the form

JLB(F,ρnew) = alF +bl,

with al and bl given in Lemma 6.2 (in (6.23)). When choosing the points in (6.89), we are
joining the line corresponding to the lowest of the Ji for both F = 1/4 and F = F∗. By the
concavity property, this is therefore a lower bound for all of the Ji in the region [1/4,F∗].
See Figure 6.11 for an illustration of this lower bound.

We now show the upper bound. We choose this to be the linear function connecting
the points (1/4,FBD) and (1,1), which is given by

JUB(F,ρnew) =
(

1−FBD

1− 1
4

)(
F − 1

4

)
+FBD,

and may be rearranged into the form

JUB(F,ρnew) = auF +bu,

with au and bu given in Lemma 6.2 (in (6.25)). We show that this is an upper bound with
the following steps. Again, for ease of notation, we exploit the symmetry in λi and assume
that λ1 ≥λ2 ≥λ3.

1. In the domain F > 0, the jump functions J1, J2 and J3 intersect at the same point

Fint. Moreover, for i = 1,2,3, Ji (Fint,ρBD) =
√

FBD
2 < FBD. (Proposition 6.7).

2. In the domain F ∈ [Fint,1], the jump function outputting the highest-fidelity out-
come out of protocols 1-3 is J3 (Corollary 6.6).

3. For i = 1,2,3, Ji is an increasing and concave function of F (Proposition 6.9).

4. Consider the tangent to J3 at F = 1. This lies below JUB in the range F ∈ [1/4,1]
(Proposition 6.10).

By result (3) from the above list (concavity), we see that the tangent to J3 at F = 1 upper
bounds J3 for all F . By result (2) from the above list, this also upper bounds J1 and J2

in the range F ∈ [Fint,1]. Therefore, by result (4), JUB upper bounds J1, J2 and J3 in the

range F ∈ [Fint,1]. Moreover, for F < Fint, by results (1) and (3), Ji (F,ρBD) ≤
√

FBD
2 < FBD ≤



6.10. [APPENDIX] BOUNDS FOR BILOCAL CLIFFORD PROTOCOLS

6

171

JUB(F,ρBD), by the definition of JUB (JUB runs through the point (1/4,FBD) and is increasing).
This suffices to show that the upper bound holds.

Finally, we show the bounds for pi . Recalling that FBD +λ1 +λ2 +λ3 = 1, we have

∂

∂F
p1(F,ρBD) = 2

3
(1−λ2 −λ3) = 2

3
(2FBD +2λ1 −1)

≥ 2

3
(2FBD −1) > 0.

Therefore, p1(F,ρBD) is an increasing function of F . By symmetry, p2 and p3 are also
increasing functions of F . Since the fidelity F (t) of the 1G1B system always lies in the
region F (t) ∈ [1/4,F∗], it follows that at any point in time, the success probability p of
purification may be bounded with

pi

(
1

4
,ρBD

)
≤ p ≤ pi

(
F∗,ρBD

)
.

Below are the collection of results that were used to show the bounds on the jump
functions.

Proposition 6.7. In the domain F > 0, jump functions 1-3 intersect exactly once at the

same point Fint, such that Ji (Fint,ρnew) =
√

FBD
2 < FBD.

Proof. We firstly compute the intersection point of jump functions 1 and 2. This occurs at
the F value which satisfies

(4λ1 +3λ2 +3λ3 −3)F −λ1

(4λ2 +4λ3 −2)F −λ2 −λ3 −1
= (3λ1 +4λ2 +3λ3 −3)F −λ2

(4λ1 +4λ3 −2)F −λ1 −λ3 −1
,

or alternatively, recalling that FBD +λ1 +λ2 +λ3 = 1,

(λ1 −3FBD)F −λ1

(2−4FBD −4λ1)F −2+FBD +λ1
= (1 ↔ 2),

where to obtain the RHS we exchange labels 1 and 2 of the LHS. This is equivalent to

((λ1 −3FBD)F −λ1) ((2−4FBD −4λ2)F −2+FBD +λ2)− (1 ↔ 2) = 0,

which simplifies to

(λ1 −λ2)
(
(2−16FBD)F 2 + (8FBD −4)F +2−FBD

)= 0. (6.90)

Then, ifλ1 ̸=λ2, the points of intersection depend only on FBD and therefore are symmetric
in λ1, λ2 and λ3. The points of intersection are given by

F = 4FBD −2±3
p

2FBD

2(8FBD −1)
(6.91)
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and recalling that FBD ∈ (1/2,1], the solution lying in the domain of interest (F > 0) is

Fint = 4FBD −2+3
p

2FBD

2(8FBD −1)
.

Then, since Fint is symmetric in λ1, λ2 and λ3, all jump functions intersect at the point
Fint. One may also show that

Ji (Fint,ρnew) =
√

FBD

2
,

, e.g., using software such as Mathematica. Since FBD < 1/2, we have√
1

2
<

√
FBD ⇔

√
FBD

2
< FBD.

We now continue with the following corollary.

Corollary 6.6. Suppose that λ1 ≥λ2 ≥λ3. Then, for F ≥ Fint,

J3(F,ρBD) ≥ J2(F,ρBD) ≥ J1(F,ρBD), (6.92)

Proof. From Proposition 6.7, J1, J2 and J3 will not intersect again for F > Fint. Therefore,
their ordering remains the same for all F > Fint. The jump function outputting the largest
fidelity in this range will therefore also have the largest limit as F →∞. We see that

lim
F→∞

Ji (F,ρBD) = 3FBD −λi

4FBD +λi −2
,

which is a decreasing function of λi . Therefore, λ3 = min{λ1,λ2,λ3} gives the largest limit,
and J1 satisfies (6.92).

From Proposition 6.7 and Corollary 6.6, we know which of J1, J2 and J3 provide the
best fidelity for F ∈ [1/2,1]. With the following proposition, we see that for some lower
fidelities, it is better to replace with the bad link rather than choose to pump.

Proposition 6.8. The largest fidelity obtainable by pumping a low-fidelity Werner state
with ρBD and bilocal Clifford protocols is

F∗ = 2FBD −1+
√

(2FBD −1)2 +2λmin(2FBD −1+2λmin)

2(2FBD −1+2λmin)
, (6.93)

where λmin = min{λ1,λ2,λ3}.
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Proof. Consider applying pumping protocol i ∈ {1,2,3}. This stops improving the Werner
state fidelity at the value of F such that

F∗ = Ji (F∗,ρBD)

⇔ F∗ = (λi −3FBD)F∗−λi

(2−4FBD −4λi )F∗−2+FBD +λi

⇔ 0 = (2−4FBD −4λi )F 2 + (4FBD −2)F +λi ,

which has solutions

F = 2FBD −1±
√

(2FBD −1)2 +2λi (2FBD −1+2λi )

2(2FBD −1+2λi )
,

one of which is positive and one negative. Recalling that for F > 1
2 , the jump function

taking the largest value is Ji with λi =λmin, means that the maximum fidelity achievable
is (6.93).

Proposition 6.9. For any ρBD with FBD > 1/2, , for i = 1,2,3 Ji (F,ρBD) is a strictly concave
and increasing function of F .

Proof. We differentiate Ji . Firstly, consider derivatives of functions of the form

y = ax +b

cx +d
.

This may be rewritten as

y = a

c
+ b − ad

c

cx +d
.

Then,
dy

dx
= ad −bc

(cx +d)2 ,
d2 y

dx2 =−2c
ad −bc

(cx +d)3 . (6.94)

To check the sign of these functions, we must therefore check the sign of ad−bc . Recalling
that Ji may be rewritten as

Ji (F,ρBD) = (3FBD −λi )F +λi

(4FBD +4λi −2)F +2−FBD −λi
,

in this case,

a = 3FBD −λi > 3

2
− 1

2
= 1

b =λi < 1

2
c = 4(FBD +λi )−2 ≤ 4 ·1−2 = 2

d = 2− (FBD +λi ) ≥ 2−1 = 1
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and it follows that ad −bc > 1 ·1−2 ·1/2 = 0. Then, since

c = 4FBD +4λi −2 > 4 · 1

2
+4λi −2 = 4λi ≥ 0,

it follows from (6.94) that

∂

∂F
Ji (F,ρBD) > 0,

∂2

∂F 2 Ji (F,ρBD) < 0.

Therefore, Ji is a strictly concave and increasing function of F .

Proposition 6.10. Suppose that λ1 ≥λ2 ≥λ3. Consider the tangent to J3(F,ρBD) at F = 1.
Denote this by Jtan(F,ρBD). Then, this lies below JUB for all F ∈ [1/4,1], i.e.,

Jtan(F,ρBD) ≤ JUB(F,ρBD),

where

JUB(F,ρBD) = 4(1−FBD)

3
F + 4FBD −1

3

is the linear upper bound from Lemma 6.2.

Proof. We firstly compute the formula for the tangent to Ji at F = 1. Recalling the formula
(6.94), this has gradient

∂

∂F
J3(F,ρBD)

∣∣
F=1 =

ad −bc

(c +d)2 = 6FBD −3(FBD +λ3)2

(3(FBD +λ3))2 = 2FBD

3(FBD +λ3)2 − 1

3
.

Since the tangent runs through the point (1, J3(1,ρBD)), it has formula

Jtan(F,ρBD) =
(

2FBD

3(FBD +λ3)2 − 1

3

)
(F −1)+ FBD

FBD +λ3
,

where we have used Ji (1,ρBD) = FBD/(FBD +λi ). We note that at F = 1,

JUB(1,ρBD) = 1 ≥ FBD

FBD +λ3
= Jtan(1,ρBD).

Therefore, to show the proposition, it suffices to show that

JUB

(
1

4
,ρBD

)
≥ Jtan

(
1

4
,ρBD

)
, (6.95)

since both JUB and Jtan are linear in F and therefore intersect at most once. Now,

JUB

(
1

4
,ρBD

)
− Jtan

(
1

4
,ρBD

)
= FBD −

(
2FBD

3(FBD +λ3)2 − 1

3

)(
−3

4

)
− FBD

FBD +λ3

= FBD − 1

4
+ FBD

2(FBD +λ3)2 − FBD

FBD +λ3
.

Now, let x := FBD +λ3, and

h(x) := FBD − 1

4
+ FBD

2x2 − FBD

x
.
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By the assumption that λ3 = min{λ1,λ2,λ3} and the condition FBD +λ1 +λ2 +λ3 = 1, it
follows that

λ3 ∈
[

0,
1−FBD

3

]
, and x ∈

[
FBD,

1+2FBD

3

]
. (6.96)

To prove the proposition, it therefore suffices to show positivity of h for x in the range
(6.96). We start by establishing the monotonicity of h:

∂

∂x
h(x) =−FBD

x3 + FBD

x2 =−FBD

x3 (1−x) ≤ 0,

since x = FBD +λ3 ≤ 1. We therefore see that h is decreasing. To show that h is positive in
the range (6.96), it therefore suffices to show that

h

(
1+2FBD

3

)
≥ 0.

We have

h

(
1+2FBD

3

)
= FBD − 1

4
+ 9FBD

2(1+2FBD)2 − 3FBD

1+2FBD

= FBD − 1

4
+6FBD

(
3
4 − 1

2 (1+2FBD)

(1+2FBD)2

)

= FBD − 1

4
+6FBD

1
4 −FBD

(1+2FBD)2

=
(
FBD − 1

4

)(
1− 6FBD

(1+2FBD)2

)
.

Then, since FBD > 1
2 , we have

h

(
1+2FBD

3

)
> 0 ⇔ 1− 6FBD

(1+2FBD)2 > 0

⇔ (1+2FBD)2 > 6FBD

⇔ 4F 2
BD −2FBD +1 > 0

⇔ (1−2FBD)2 +2FBD > 0,

which holds. We therefore see that

h(x) ≥ h

(
1+2FBD

3

)
> 0

for all x in the range (6.96), and therefore

JUB

(
1

4
,ρBD

)
− Jtan

(
1

4
,ρBD

)
> 0.

This suffices to show the proposition.
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6.10.3. ADDITIONAL PROOFS

Lemma 6.5. A Bell-diagonal state

ρ =λ0
∣∣φ+〉〈

φ+∣∣+λ1
∣∣ψ+〉〈

ψ+∣∣+λ2
∣∣ψ−〉〈

ψ−∣∣+λ3
∣∣φ−〉〈

φ−∣∣ ,

with λ0 +λ1 +λ2 +λ3 = 1, is entangled if and only if λi > 1/2 for some i .

Proof of Lemma 6.5. We will analyze the entanglement of a Bell-diagonal state using the
Peres-Horodecki criterion, which states that a bipartite, 2×2 dimensional quantum state
ρ is entangled if and only if the partial transpose of ρ has at least one negative eigenvalue
[85, 143]. A Bell-diagonal state can be written in the Bell basis as

ρ =λ0
∣∣φ+〉〈

φ+∣∣+λ1
∣∣ψ+〉〈

ψ+∣∣+λ2
∣∣ψ−〉〈

ψ−∣∣+λ3
∣∣φ−〉〈

φ−∣∣ .

In the computational basis, {|00〉 , |01〉 , |10〉 , |11〉}, the Bell-diagonal state can be written as

ρ =


λ0 +λ3 0 0 λ0 −λ3

0 λ1 +λ2 λ1 −λ2 0

0 λ1 −λ2 λ1 +λ2 0

λ0 −λ3 0 0 λ0 +λ3

 .

The partial transpose of this density matrix is given by

ρPT =


λ0 +λ3 0 0 λ1 −λ2

0 λ1 +λ2 λ0 −λ3 0

0 λ0 −λ3 λ1 +λ2 0

λ1 −λ2 0 0 λ0 +λ3

 .

The eigenvalues of the partial transpose are ξi = 1−2λi , i = 1,2,3,4. One of the eigenvalues
is negative iff λi > 1/2 for some i . Therefore, according to the Peres-Horodecki criterion,
the state is entangled iff λi > 1/2 for some i . Since these λi correspond to the fidelity of ρ
to one of the Bell states (e.g., F (ρ,

∣∣φ+〉
) ≡ 〈

φ+∣∣ρ ∣∣φ+〉=λ0), we conclude that the state is
entangled iff the fidelity to one of the Bell states is larger than 1/2.

6.11. [APPENDIX] NUMERICAL SIMULATIONS

In our analytical calculations, we assumed a purification protocol with constant success
probability (which implies a linear jump function, as shown in Appendix 6.7). This allowed
us to derive bounds for the performance of any 1G1B entanglement buffering system
that uses bilocal Clifford protocols. However, the success probability of these purification
protocols is in general linear in the fidelity of the buffered state (see Appendix 6.7). In
this appendix, we compare the analytical bounds, which assume a constant success
probability, to the actual values obtained via a simulation that considers the true (linear,
non-constant) success probability.

Our discrete-event simulation keeps track of the buffered link, which decoheres until
an event is triggered. These events could correspond to a consumption request (which
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consumes the buffered memory) or a successful entanglement generation (which is fol-
lowed by pumping, with probability q). When purification is performed, it succeeds with
a probability that depends linearly on the fidelity of the buffered link (see Appendix 6.7).

To compute the average consumed fidelity and the availability, we run the simulation
Nsamples times. In each realization i of the process, we let the system evolve over tsim

units of time until convergence to a steady state, and we record the fidelity of the buffered
link Fi (tsim) (if the memory is empty, the fidelity is set to zero, as was specified in Defini-
tion 6.6). Then, we estimate the average consumed fidelity as the average fidelity of the
buffered link at tsim (conditional on the buffered link being present):

F ≈ F
′ ≡

∑Nsamples

i=1 Fi (tsim)

N ′
samples

, (6.97)

where

N ′
samples =

Nsamples∑
i=1

1Fi (tsim)>0 (6.98)

is the number of samples in which Fi (tsim) > 0 (1 is the indicator function). We measure
the error in the estimate using the standard error:

εF =

√√√√√√∑N ′
samples

i=1

(
Fi (tsim)−F

′)2

N ′
samples

(
N ′

samples −1
) , (6.99)

which corresponds to the square root of the unbiased sample variance divided by the
number of samples. The availability is estimated as the proportion of samples in which
there is a buffered link at time tsim:

A ≈ A′ ≡ 1

Nsamples

Nsamples∑
i=0

1Fi (tsim)>0, (6.100)

Note that A′ is the average of a binary random variable. We can therefore model this
random variable as Bernoulli-distributed with probability of success A′. This yields a
variance A′(1− A′), which allows us to compute the standard error as

εA =
√

A′(1− A′)
Nsamples

. (6.101)

Next, we study again the example from Figure 6.7, and we compare the bounds
discussed in the main text with the results from our simulation. In Figure 6.12, we
show the same lower and upper bounds (yellow and dark blue lines, respectively) from
Figure 6.7. We simulated three buffering systems, each of them using the unique bilocal
Clifford protocols 1, 2, and 3 from Table 6.2 (we neglect protocols 4-7 since they are trivial).
We emphasize that these simulations consider the true probabilities of success (which are
linear but non-constant in the fidelity of the buffered link) and the true jump functions
(rational in the fidelity of the buffered link) of the purification protocols. Figure 6.12
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shows the availability and average consumed fidelity attained by each of these systems,
for different values of q . We first note that protocols 2 (blue circles) and 3 (red crosses) are
equivalent. This is due to the symmetry of the newly generated state considered in this
example, ρnew = Fnew

∣∣φ+〉〈
φ+∣∣+ (1−Fnew)

(∣∣ψ+〉〈
ψ+∣∣+ ∣∣ψ−〉〈

ψ−∣∣)/2. More importantly,
the performance of the simulated systems lies within the analytical bounds, which were
derived assuming a constant probability of success. This serves as empirical evidence
that our simplified model is still useful when lifting the assumption about a constant
probability of success, and can guide the design of more complex and realistic buffering
systems.

CODE AVAILABILITY

Our code can be found at https://github.com/AlvaroGI/buffering-1G1B.
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Figure 6.12: Bounds derived assuming a constant probability of success still apply when the assumption is
lifted. (a) Noiseless memories (Γ= 0) or (b) noisy memories (Γ= 5 ·10−2 a.u.). For a given target availability,
the average consumed fidelity is within the blue/yellow region (see Corollary 6.1). Availability is maximized
for q = 0 (q is the probability of purification after successful entanglement generation), and it decreases for
increasing q . White regions cannot be achieved by bilocal Clifford protocols. Striped regions cannot be achieved
by any pumping protocol. Black star: performance of the replacement protocol (buffered link is replaced by
new links). Dotted line: fidelity of newly generated entangled links. Solid lines with markers: performance of
the 1G1B system obtained via simulation, using the true jump functions and true probabilities of success of
purification protocols 1, 2, and 3 from Table 6.2, (q = 0 for the rightmost data point, decreasing in intervals of
0.111 until reaching q = 1 in the leftmost data point). The simulation considers a linear probability of success,
unlike the analytical calculations, in which this probability is assumed to be constant. Parameters used in this
example (times and rates in the same arbitrary units): λ= 1, µ= 0.1, Fnew = 0.8, ρnew = Fnew

∣∣φ+〉〈
φ+∣∣+ (1−

Fnew)
(∣∣ψ+〉〈

ψ+∣∣+ ∣∣ψ−〉〈
ψ−∣∣)/2. Numerical parameters used in the simulation: tsim = 50, Nsamples = 104.
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ENTANGLEMENT BUFFERING WITH

MULTIPLE QUANTUM MEMORIES

Álvaro G. Iñesta*, Bethany Davies*, Sounak Kar and
Stephanie Wehner

Now, here, you see, it takes all the running you can do,
to keep in the same place.

If you want to get somewhere else,
you must run at least twice as fast as that!

— the Red Queen

Entanglement buffers are systems that maintain high-quality entanglement, ensuring it is
readily available for consumption when needed. In this work, we study the performance
of a two-node buffer, where each node has one long-lived quantum memory for storing
entanglement and multiple short-lived memories for generating fresh entanglement. Newly
generated entanglement may be used to purify the stored entanglement, which degrades
over time. Stored entanglement may be removed due to failed purification or consumption.
We derive analytical expressions for the system performance, which is measured using
the entanglement availability and the average fidelity upon consumption. Our solutions
are computationally efficient to evaluate, and they provide fundamental bounds to the
performance of purification-based entanglement buffers. We show that purification must
be performed as frequently as possible to maximize the average fidelity of entanglement
upon consumption, even if this often leads to the loss of high-quality entanglement due

* These authors contributed equally.
This chapter has been published separately in ref. [90].
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to purification failures. Moreover, we obtain heuristics for the design of good purification
policies in practical systems. A key finding is that simple purification protocols, such
as DEJMPS, often provide superior buffering performance compared to protocols that
maximize output fidelity.

7.1. INTRODUCTION

Entanglement is a fundamental resource for many quantum network applications, includ-
ing some quantum key distribution protocols [12, 59], distributed quantum sensing [61,
123, 152, 199], and coordination tasks where communication is either prohibited or in-
sufficiently fast [20, 27]. Pre-distributing entanglement between remote parties would
eliminate the need to generate and distribute entangled states on demand, saving time
and resources [35, 66, 94, 149]. However, entanglement degrades over time due to deco-
herence, preventing long-term storage.

Entanglement buffers are systems that store entanglement until it is needed for an
application. Passive buffers, which store entanglement in quantum memories, are con-
strained by the coherence time of these memories [5]. To overcome this limitation,
purification-based entanglement buffers have been proposed [50, 60] (note that ref. [50]
is contained in Chapter 6). These systems store entangled states and employ purification
protocols to ensure the states remain high quality, mitigating the effects of decoherence.
Purification protocols take m low-quality entangled states as input and produce n higher-
quality states as output, typically with m > n [15, 53, 56, 205]. These protocols often
involve some probability of failure, in which case all the input states are lost and no
entanglement is produced. Here, we focus on purification-based buffers.

As proposed in ref. [50] (Chapter 6), the performance of an entanglement buffer can
be measured with two quantities: the availability (probability that entanglement is avail-
able for consumption when requested, see Definition 7.2) and the average consumed
fidelity (average quality of entanglement at the time of consumption, see Definition 7.3).
As well as having practical utility, entanglement buffers are a useful theoretical tool in
order to understand the impact of several important interacting processes that occur in
a quantum network: ongoing generation, purification, and consumption of entangle-
ment. Of major interest is the impact of the entanglement purification protocol on the
performance of the system. Since the success probability of entanglement purification
typically depends on the fidelity of the input states, any rate and fidelity metrics are
inherently coupled in systems making use of purification. This coupling adds complexity
to analytical calculations. Consequently, most analytical studies on the performance of
quantum networking systems exclude purification, and its impact on performance is
typically explored with numerical methods [79, 189]. Nevertheless, as is a main result in
this work, for entanglement buffering systems closed-form solutions are obtainable for a
fully general purification protocol. One may then efficiently compute the performance
of a particular purification policy, as well as make formal statements about how often
purification should be applied to the buffered entanglement.

Here, we study the 1GnB system: a purification-based entanglement buffer with one
good (long-lived) memory and n bad (short-lived) memories. The good memory can
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store entanglement, which can be consumed at any time by an application. In contrast,
bad memories can generate entanglement concurrently but cannot store it; they act as
communication qubits. For instance, carbon-13 nuclear spins in diamond can serve as
good memories with coherence times up to 1 min [19], while electron spins in nitrogen-
vacancy centers may function as communication qubits, with coherence times generally
below 1 s [1].

Each time entanglement is generated in some of the bad memories, the system may
choose to immediately use it to purify the entanglement stored in the good memory. If pu-
rification is not attempted, the newly generated entanglement is discarded. We illustrate
the 1GnB system in Figure 7.1. Note that the physical platform must enable easy access to
stored entanglement for consumption and purification. However, network activities, such
as repeated entanglement generation attempts and purification, may introduce additional
noise, reducing memory lifetimes. For example, in ref. [147], even when the carbon-13
nuclear spin used as a storage qubit is protected from network noise by applying stronger
magnetic fields, it exhibits a shortened lifetime of approximately 11.6 ms.

The 1GnB buffering system is a generalization of the 1G1B system that was originally
proposed in [50] (Chapter 6). 1G1B is a system with only one good quantum memory
and one bad memory. Here, we generalize the work from Chapter 6 in three main ways.
Firstly, we now consider several (n) bad memories. Including several bad memories in
our model now means that there is the possibility of generating multiple entangled links
in the same entanglement generation attempt, for example via frequency [5, 37, 196] or
time multiplexing [108, 131], which are commonly proposed ways of improving the rate
of entanglement generation [43, 134, 182]. Moreover, the simultaneous generation of
multiple links opens up the use of stronger purification protocols, thereby providing an
improvement to system fidelity metrics as well as the rate. Note again that the physical
implementation of the buffer must allow for such multiplexing and for purification of
the generated entanglement. The second generalization from previous work is that we
now model the system in discrete time rather than continuous time, which is more
accurate to real-world systems, as entanglement generation typically happens in discrete
attempts (see, e.g., refs. [9, 16, 180, 207]). Finally, we now derive our solutions for a
fully arbitrary purification protocol. In particular, the solutions for performance metrics
presented in ref. [50] (Chapter 6) only apply for purification protocols with a constant
probability of success (i.e., the success probability must be independent of the fidelity
of the buffered quantum state). However, in this work, we remove this assumption
and derive closed-form solutions for the availability and the average consumed fidelity
of buffers that use arbitrary purification protocols. This is in contrast to [60], where
although performance metrics are derived analytically and the probability of success is
not necessarily constant, their computation requires solving a linear system of equations,
which has dimension that scales with system parameters such as the memory lifetime.

Here, we firstly provide analytical expressions for the availability, A, and the average
consumed fidelity, F , of the 1GnB system (see model description in Section 7.2). Then,
we use these expressions to find fundamental limits to the performance of entanglement
buffers. Lastly, we investigate how the 1GnB system should be operated: because there
is a large amount of freedom in the choice of purification protocols, it is not clear what
purification strategies should be employed to maximize A and F . For example, would it
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Figure 7.1: Illustration of the 1GnB buffering system. Entanglement generation is attempted in every bad
memory (B1, . . . , Bn ) simultaneously in each time slot. Each memory succeeds with probability pgen. The good
memory, G, stores entanglement, which decoheres at rate Γ. When G is full and new entanglement is generated
in any of the B memories, a purification subroutine is applied with probability q . Entanglement is consumed
from G with probability pcon in each time slot.

be beneficial to use a purification subroutine that provides a larger fidelity boost (which
could increase F ) if this comes at the cost of a higher probability of failure (which means
losing high-quality entanglement more frequently, decreasing A and maybe also F )? Our
main findings are the following:

• MONOTONIC PERFORMANCE – We show that, to maximize the average consumed
fidelity, purification must be performed as much as possible, i.e., every time entan-
glement is generated in any of the bad memories. This holds even if the purification
protocol has a large probability of failure. Nevertheless, there is a tradeoff between
both performance metrics, since the availability decreases when purification is
performed more frequently.

• FUNDAMENTAL BOUNDS – We provide upper and lower bounds for the availability
and the average consumed fidelity of a 1GnB system, which constitute fundamental
limits to the impact that a purification policy can have on the performance.

• SIMPLE CAN BE BETTER THAN OPTIMAL – Simple purification protocols can greatly
outperform advanced purification protocols that maximize the fidelity of the output
entangled state. For example, we find that a buffering system using the 2-to-1
purification protocol from ref. [53] (known as DEJMPS) can outperform a system
using the n-to-1 optimal bilocal Clifford protocol from ref. [95], in terms of both
availability and average consumed fidelity.
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7.2. THE 1GnB SYSTEM

In this section, we provide a short description of the entanglement buffering setup (see
Figure 7.1). The goal of the system is to buffer bipartite entanglement shared between
two nodes. These nodes could be, for example, two end users in a quantum network or
two processors in a quantum computing cluster. We refer to bipartite entanglement as an
entangled link between the two nodes. In the 1GnB system:

• Each node has one long-lived memory (good, G) and n short-lived memories (bad, B).

• The G memories are used to store the entangled link. We assume the link stored in
memory is a Werner state (any bipartite state can be transformed into a Werner state
with the same fidelity by applying extra noise, a process known as twirling [13, 86]).
Such a state can be parametrized with its fidelity to the target maximally entangled
state, F .

• The entangled link stored in G is subject to depolarizing noise with memory life-
time 1/Γ, which causes an exponential decay in fidelity with rate Γ. That is, if the
link in memory has an initial fidelity F , after time t this reduces to

F 7→
(
F − 1

4

)
e−Γt + 1

4
. (7.1)

• Before each entanglement generation attempt, the system checks if a new con-
sumption request has arrived. The arrival of a new consumption request in each
time step occurs with probability pcon. If there is a link stored in memory G when
a consumption request arrives, the link is immediately consumed and therefore
removed from the memory. This takes up the entire time step. If there is no link
available, the request is discarded and the system proceeds with the entanglement
generation attempt.

• The B memories are used to generate new entangled links. In the literature, these
are usually called communication or broker qubits [11]. This communication qubit
can be, for example, the electron spin in a nitrogen-vacancy center [16, 114, 161].
Every time step that is not taken up by consumption, entanglement generation is
attempted in all n bad memories simultaneously, e.g., using frequency or spatial
multiplexing, and each of them independently generates an entangled link with
probability pgen. This means that, after each multiplexed attempt, the number
of successfully generated links follows a binomial distribution with parameters
(n, pgen). Each of these new links is of the form ρnew, which is an arbitrary state that
depends on the entanglement generation protocol employed (see, e.g., refs. [9, 33,
97, 180]).

• When k ≥ 1 entangled links are generated in the B memories and the G memory is
empty, one of the links is transferred to the G memory. If the G memory is occupied,
the new links may be used to purify the link in memory. The system decides to
attempt purification with probability q . If the system does not decide to purify,
the new links are discarded. If the system decides to attempt purification and this
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Table 7.1: Parameters of the 1G1B system. See main text for further details.

Hardware

n Number of short-lived memories.

pgen Probability of successful entanglement generation attempt.

ρnew Bipartite entangled state produced after a successful entanglement
generation. This state has fidelity Fnew.

Γ Rate of decoherence.

Application

pcon Probability of consumption request.

Purification policy

q Probability of attempting purification immediately after a success-
ful entanglement generation attempt (otherwise the new links are
discarded).

Jk (F ) Jump function. Given a buffered link with fidelity F , Jk (F ) is the fi-
delity immediately following a successful purification using k newly
generated links. Rational function with coefficients ak ,bk ,ck ,dk –
see (7.3).

pk (F ) Probability of successful purification using k newly generated links.
Linear function with coefficients ck ,dk – see (7.4).

succeeds, then the resultant link in the G memory is twirled, converting it into the
form of a Werner state with the same fidelity.

Table 7.1 summarizes all variables of the system. Next, we discuss how to model the
purification strategy.

7.2.1. PURIFICATION POLICY

The main degree of freedom in the 1GnB system is the choice of purification protocol.
This is given by the purification policy.

Definition 7.1. The purification policy π is a function that indicates the purification
protocol that must be used when k links are generated in the B memories,

π : k ∈ {1, . . . ,n} 7→π(k) ∈Pk+1, (7.2)

where Pm is the set of all m-to-1 purification protocols.

Protocol π(k) of purification policy π is the (k +1)-to-1 purification protocol that is
used when k new links are generated in the B memories (examples of basic protocols can
be found in refs. [15, 52, 53]; see ref. [57] for a survey). The purification protocol updates
the fidelity of the buffered link from F to Jk (F ), where

Jk (F ) = 1

4
+ ak (ρnew)

(
F − 1

4

)+bk (ρnew)

ck (ρnew)
(
F − 1

4

)+dk (ρnew)
. (7.3)
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We call Jk the jump function of protocol π(k). The protocol succeeds with probability

pk (F ) = ck (ρnew)

(
F − 1

4

)
+dk (ρnew), (7.4)

otherwise all of the links (including the buffered one) are discarded and the G memory
becomes empty. In Appendix 6.7, the forms (7.3) and (7.4) for the output fidelity and
success probability are justified, given that the buffered link is a Werner state with fidelity
F and any other input state is given by the same arbitrary density matrix ρnew. We
therefore see that the action of any purification protocol on the fidelity of the buffered
link is determined by the four parameters ak (ρnew), bk (ρnew), ck (ρnew), dk (ρnew). In
Appendix 7.8, we discuss the values that these coefficients can take. As an example, we
also provide the explicit form of these coefficients for the well-known 2-to-1 DEJMPS
protocol [53].

Lastly, note that purification policy π employs protocol π(k) when k new links are
generated. However, this does not mean that all the new links are used in the protocol.
For example, a policy may simply replace the link in memory with a newly generated link
and ignore the rest of the new links.

7.2.2. FIDELITY OF THE BUFFERED ENTANGLEMENT

Given the system description, we now view 1GnB as a discrete-time stochastic process. In
particular, at time t the state of the system is the fidelity F (t ) of the buffered link, as this is
the only quantity that can change over time. If there is no link in the buffered memory at
time t , we let F (t) = 0. This is for notational convenience, as recalling the decoherence
(7.1), one can never reach zero fidelity if there is a link present.

We now describe the behavior of F (t ) when moving from time t to time t +1:

• Let us consider first F (t) = 0. If entanglement generation is unsuccessful, in the
next time step the fidelity will remain at that value: F (t +1) = 0. If entanglement
generation is successful, in the next time step the fidelity will be Fnew, where
Fnew = 〈Φ00|ρnew |Φ00〉 is the fidelity of freshly generated links. We will assume
that Fnew > 1/4.

• If F (t) > 0, then in the next time step this could evolve in one of the following
ways: (i ) if no purification is attempted then the fidelity simply decoheres by one
unit of time according to (7.1); (i i ) if k new links are generated and purification is
successfully performed, the fidelity decoheres by one time step and is then mapped
according to the corresponding jump function (7.3); (i i i ) if a consumption request
has arrived or if purification fails, the link is removed and the system becomes
empty.

In Figure 7.2, we illustrate an example of how the fidelity may evolve.

In the following subsection, we define the two performance metrics: the availability
and the average consumed fidelity. We then present simple closed-form solutions for
these two performance metrics in the 1GnB system.
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1GnB

T( j+1)con
tT( j)conT( j−1)con

F(t)

Figure 7.2: Example dynamics of the 1GnB system. Here, the fidelity F (t ) of the link in the G memory is plotted
against time. The vertical lines represent discretization of time. The jumps in fidelity occur when the link is
purified successfully. In between purifications, the link is subject to decoherence and the fidelity decreases. The
link in the G memory is removed due to either failed purification or consumption. When there is no link in

memory, F (t) = 0. The j -th consumption request arrives at time T
( j )
con. The green tick (red crosses) represent

when a consumption request is (is not) served.

7.2.3. BUFFERING PERFORMANCE

The first step towards the design of useful entanglement buffers is to determine a suitable
way to measure performance. Here, we define two performance metrics for entanglement
buffers – these quantities were proposed in ref. [50] (Chapter 6), where they were used to
study the 1G1B system. Then, we provide exact, closed-form expressions for these two
performance metrics in the 1GnB system.

Our first metric is the availability. A user is able to consume entanglement only
when there is a link available in memory G at the time of requesting the entanglement.
Therefore, an important performance measure is the probability that entanglement is
available when a consumption request arrives.

Definition 7.2 (Availability). The availability A is the probability that there is an entangled
link present in memory G when a consumption request arrives. This is defined as

A = lim
m→∞

1

m

m∑
j=1

1link exists(T ( j )
con), (7.5)

where T ( j )
con is the arrival time of the j -th consumption request, and 1link exists(t) is and

indicator function that takes the values one if there is a link stored in memory G at time t ,
and zero otherwise.

The availability may be seen as a rate metric: it determines the rate at which entangle-
ment can be consumed. The second performance metric is the average consumed fidelity,
which captures the average quality of consumed entanglement.

Definition 7.3 (Average consumed fidelity). The average consumed fidelity is the average
fidelity of the entangled link upon consumption, conditional on a link being present. More
specifically,

F = lim
m→∞

∑m
j=1 1link exists

(
T ( j )

con

)
·F−(T ( j )

con)∑m
j=1 1link exists(T ( j )

con)
, (7.6)
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where

F−(t ) =
{

e−Γ
(
F (t −1)− 1

4

)+ 1
4 , if F (t −1) > 0,

0, if F (t −1) = 0.
(7.7)

is the fidelity of the link stored in memory G at the end of the previous timestep at time t −1

(and therefore consumed at time t), and T ( j )
con is the arrival time of the j -th consumption

request.

The indicator function in the numerator of (7.6) is included for clarity, but is not
necessary: if there is no link in memory at time t , then F (t) = 0 by definition. We note
that the Definitions 7.2 and 7.3 are presented differently to how they were in Chapter 6
and in ref. [50]. This is because the new definitions have a clearer operational meaning,
as they are from the viewpoint of the consumer. However, in Appendix 7.6 we show that
these metrics are equivalent for the 1GnB system.

As our first main result, we derive analytical solutions for the availability and the
average consumed fidelity in the 1GnB system.

Theorem 7.1 (Formula for the availability). The availability of the 1GnB system is given by

A = E[Tocc]

E[Tgen]+E[Tocc]
, almost surely, (7.8)

where Tgen is the time to generate new entangled links and Tocc is the time from when the G
memory becomes occupied until it is emptied due to consumption or to failed purification.
The expected values are given by

E[Tgen] = 1

1− (
1−pgen

)n (7.9)

and

E[Tocc] = 1− Ã+ C̃ (Fnew − 1
4 )[

(1− Ã)(1− D̃)− B̃C̃
]
P̃

, (7.10)

with

Ã := q(1−pcon)ã

eΓ− (
1−q +q

(
1−pgen

)n)
(1−pcon)

, B̃ := q(1−pcon)b̃

pcon +q
(
1− (

1−pgen
)n)

(1−pcon)
,

C̃ := q(1−pcon)c̃

eΓ− (
1−q +q

(
1−pgen

)n)
(1−pcon)

, D̃ := q(1−pcon)d̃

pcon +q
(
1− (

1−pgen
)n)

(1−pcon)
,

P̃ := pcon +q
(
1− (

1−pgen
)n)

(1−pcon),

and

ã :=
n∑

k=1
ak ·

(
n

k

)
(1−pgen)n−k pk

gen, b̃ :=
n∑

k=1
bk ·

(
n

k

)
(1−pgen)n−k pk

gen,

c̃ :=
n∑

k=1
ck ·

(
n

k

)
(1−pgen)n−k pk

gen, d̃ :=
n∑

k=1
dk ·

(
n

k

)
(1−pgen)n−k pk

gen.
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Proof. See Appendix 7.7.

From Theorem 7.1, we see that the availability depends on all the parameters of
the system (listed in Table 7.1), including the noise level Γ. The latter may come as a
surprise, since one would expect noise to have an impact on the average consumed
fidelity but maybe not on the availability, which is only affected by processes that fill or
deplete the G memory. These processes are entanglement generation, failed purification,
and consumption. In our model, the probability of failed purification depends via (7.4)
on the fidelity of the buffered link, which is in turn affected by the level of noise. As a
consequence, noise has an indirect effect on the availability.

Theorem 7.2 (Formula for the average consumed fidelity). The average consumed fidelity
of the 1GnB system is given by

F = w̃Fnew + x̃

ỹFnew + z̃
, almost surely, (7.11)

with

w̃ := pcon +q(1−pcon)

(
p∗

gen +
1

4
c̃ − d̃

)
,

x̃ := 1

4

[
eΓ−1+q(1−pcon)

(
−ã +4b̃ − 1

4
c̃ + d̃

)]
,

ỹ := q(1−pcon)c̃,

z̃ := eΓ−1+pcon +q(1−pcon)

(
p∗

gen − ã − 1

4
c̃

)
,

where p∗
gen = 1− (1−pgen)n , and ã, b̃, c̃ , and d̃ are given in Theorem 7.1.

Proof. See Appendix 7.7.

We note that both A and F have been defined as random variables in Definitions 7.2
and 7.3. However, as shown in Theorems 7.1 and 7.2, these quantities are almost surely
deterministic functions of the system parameters. For clarity and convenience, we will
adopt a slight abuse of notation and treat A and F as deterministic functions. This
convention will be maintained throughout the remainder of the text.

7.3. BUFFERING SYSTEM DESIGN

In this section, we discuss our main findings after analysing the performance of the 1GnB
system. In Subsection 7.3.1, we study the impact of a general purification protocol on
the system performance. In particular, it is shown that the availability and the average
consumed fidelity are monotonic in the parameter q that determines how frequently
the system attempts purification. In the remaining subsections, we investigate how the
choice of purification policy impacts the performance of the buffering system, and we
provide heuristic rules for the design of a good purification policy.
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7.3.1. MONOTONIC PERFORMANCE

Each time a B memory successfully generates entanglement, there is the opportunity to
purify the buffered link. This is controlled by the parameter q , which is the probability that,
after some fresh links are successfully generated, they are used to attempt purification
(otherwise they are discarded). If purification is never attempted (q = 0), the fidelity of
the buffered link will never be increased, although the buffered link will never be lost to
failed purification. If purification is always attempted (q = 1), the availability and average
consumed fidelity might be affected as follows:

• Purifying more often means risking the loss of buffered entanglement more fre-
quently, since purification can fail. This suggests availability may be decreasing
in q . However, many purification protocols have a probability of success that is
increasing in the fidelity of the buffered link, F . This means that, when purification
is applied more frequently to maintain a high-fidelity link, subsequent purification
attempts are more likely to succeed. Consequently, it is not clear that the availability
is decreasing in q .

• The fidelity of the buffered link increases after applying several purification rounds.
However, if purification is applied too greedily, we may lose a high-quality link and
we would have to restart the system with a lower-quality link. If a consumption
request then arrives, it would only be able to consume low-quality entanglement.
Hence, it is not clear that the average consumed fidelity is increasing in q .

In the following, we address the previous discussion and show that, if purification is always
attempted (q = 1), the availability is actually minimized, while the average consumed
fidelity is maximized. More generally, we show that A and F are both monotonic in
q , given some reasonable conditions on the jump functions Jk . The following results
(Propositions 7.1 and 7.2) may be used to answer an important question about the 1GnB
system: how frequently should we purify the buffered state in order to maximize A (or F )?
That is, what value of q optimizes our performance metrics?

Proposition 7.1. The availability is a non-increasing function of q, i.e.,

∂A

∂q
≤ 0. (7.12)

Proof. See Appendix 7.10.

As previously explained, the monotonicity of the availability in q is not a trivial result,
and it has fundamental implications. It allows us to derive upper and lower bounds that
apply to 1GnB systems using any purification policy.

Corollary 7.1. The availability is bounded as

p∗
gen · (γ+pcon)

ξ+ξ′ ·p∗
gen +ξ′′ · (p∗

gen)2 ≤ A ≤
p∗

gen

p∗
gen +pcon

, (7.13)

with p∗
gen := 1− (1−pgen)n , γ := eΓ−1, ξ := γpcon +p2

con, ξ′ := 1+2γ+ (2−γ)pcon −2p2
con,

and ξ′′ := 2(1−pcon)2. Moreover, the upper bound is tight, and is achieved when q = 0 for
any purification policy.
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Figure 7.3: The upper bound on the availability is tight and it converges to the lower bound in the limit of
small generation probabilities. Upper and lower bounds on the availability from (7.13), versus the effective
generation probability p∗

gen = 1− (1−pgen)n . The availability can only take values within the shaded region. In
this example we use Γ= 1 and pcon = 0.7.

Proof. See Appendix 7.10.

We refer to p∗
gen as the effective generation probability, since it corresponds to the

probability that at least one new link is generated in a single (multiplexed) attempt. The
upper bound from (7.13) only depends on the effective generation probability and the
probability of consumption. This bound is achievable with any purification policy: to
maximize the availability, it suffices to never purify (q = 0). A special case are deterministic
policies (those with pk (F ) = 1, ∀k), which achieve this bound for any q . This upper bound
coincides with the tight upper bound found in previous work for a 1G1B system [50]. Note
that the 1G1B analysis from ref. [50] (Chapter 6) was done in continuous time, where
rates were used instead of probabilities. In this framework, the maximum availability was
λ/(λ+µ), where λ was the (non-multiplexed) entanglement generation rate and µ was
the consumption rate.

Unlike the upper bound, we note that the lower bound from (7.13) may not be tight.
We believe that the availability at q = 1 of a policy that always fails purification (ck = dk = 0,
∀k) constitutes a tight lower bound for any other purification policy. We leave this proof
as future work.

Figure 7.3 shows the upper and lower bounds for the availability from (7.13) versus
p∗

gen for two different noise levels. As discussed, only the lower bound is affected by noise.
In particular, we have observed that the gap between the bounds is reduced when the
noise level increases. Another remarkable feature is that, when p∗

gen approaches zero,
both upper and lower bounds are equal to p∗

gen/pcon to first order in pgen. Hence, in the
limit of small effective generation probabilities, the availability also satisfies

A ≈
p∗

gen

pcon
. (7.14)
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Proposition 7.2. The average consumed fidelity is a non-decreasing function of q, i.e.,

∂F

∂q
≥ 0, (7.15)

if Jk (Fnew) ≥ Fnew, ∀k ∈N.

Proof. See Appendix 7.11.

As previously explained, the monotonicity of F in q is not a trivial result. In fact, this
behavior is only certain for purification policies composed of protocols that can increase
the fidelity of a newly generated link. That is, when k new links are generated, the protocol
applied satisfies Jk (Fnew) ≥ Fnew. This is a reasonable condition: otherwise, we would be
applying purification protocols that decrease the fidelity of new links.

Proposition 7.2 also allows us to derive useful upper and lower bounds that apply to
1GnB systems using any purification policy.

Corollary 7.2. The average consumed fidelity is bounded as

γ+4Fnewpcon

4γ+4pcon
≤ F ≤

γ+4Fnewpcon +3(1−pcon)p∗
gen

4γ+4pcon
, (7.16)

with γ := eΓ−1. Moreover, the lower bound is tight and is achieved when q = 0 for any
purification policy.

Proof. See Appendix 7.11.

We see that the tight lower bound from (7.16) does not depend on the number of mem-
ories n, the probability of successful entanglement generation pgen, or the purification
policy. This is because this bound corresponds to q = 0. In such a case, no purification
is applied, and the consumed fidelity only depends on the initial fidelity (Fnew) and the
amount of decoherence experienced until consumption (given by Γ and pcon).

The bounds on F can be used to determine if the parameters of the system need
an improvement to meet specific quality-of-service requirements. For example, let us
consider Figure 7.4, which shows the bounds for pcon = 0.7 and two different values of
Γ. If noise is strong (Γ = 1 in this example), we observe that values of p∗

gen below 0.5

yield F < 1/2, which means that, on average, the consumed link will not be entangled
(see Section 6.10.3). Hence, if the consumption request rate is pcon = 0.7, we need to
increase p∗

gen beyond 0.5 (by increasing the number of B memories, n, or the probability
of successful entanglement generation, pgen) or to decrease the noise experienced in
memory G in order to provide a useful average state. When the noise level is Γ = 0.1,
Figure 7.4 shows that F > 0.85. Moreover, for p∗

gen > 0.3, the upper bound is above
Fnew, which means that a smart choice of purification policy may allow us to buffer
entanglement with F > Fnew. Ultimately, this means that, in this regime, an entanglement
buffer with faulty memories may be able to keep entanglement at higher fidelities than a
perfect memory.
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Figure 7.4: The upper bound on the average consumed fidelity marks unachievable values for any purification
policy. Upper and lower bounds on the average consumed fidelity F from (7.16), versus the effective generation
probability p∗

gen = 1− (1−pgen)n . F can only take values within the shaded region. In this example we use
pcon = 0.7.

7.4. CHOOSING A PURIFICATION POLICY

In previous studies of entanglement buffering, the choice of purification policy was
restricted by the properties of the system. For example, in ref. [50] (Chapter 6 the 1G1B
system was studied, where only 2-to-1 purification protocols can be implemented, and
the jump function was assumed to be linear in the fidelity of the buffered link. Other
works include simplifying assumptions (e.g., in ref. [60], a buffer is studied that employs
the purification protocol proposed in ref. [162]). The 1GnB buffering system offers more
freedom in the choice of purification protocols. In a 1GnB buffer, each entanglement
generation attempt is multiplexed and can generate up to n new links at a time. When
k ≤ n new links are produced, any (k +1)-to-1 purification protocol can in principle be
implemented. This provides an extra knob that can be used to tune the performance of
the system to the desired values. In this section, we investigate the impact that specific
purification policies have on the system and we provide guidelines on how to choose
a suitable purification policy. Note that an exhaustive optimization problem would
be extremely computationally expensive to solve due to the large space of purification
policies – optimizing over ak , bk , ck , dk is not easy, since it is not certain that every
combination of those parameters corresponds to an implementable purification circuit.

7.4.1. SIMPLE POLICIES: IDENTITY, REPLACEMENT, AND CONCATENATION

There are two trivial deterministic policies (pk = 1, ∀k) that we will use as a baseline:

• In the identity policy, the system does not perform any operation on the buffered
link, which yields an output fidelity Jk (F ) = F , ∀k > 0. This is equivalent to setting
q = 0. As discussed in Section 7.3.1, the identity policy therefore maximizes the
availability and minimizes the average consumed fidelity.

• In the replacement policy, the system replaces the buffered entangled link by a new
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Figure 7.5: The ordering in a concatenated policy matters. Example of two different orderings when the
buffered link (G) and three newly generated links (B) are used. We call ordering (a) “concatenated DEJMPS”.
Ordering (b) is often called “nested” [22].

link, yielding an output fidelity Jk (F ) = Fnew, ∀k > 0. This corresponds to ak = 0,
bk = Fnew −1/4, ck = 0, and dk = 1. Since this policy is deterministic, from the dis-
cussion in Section 7.3.1 we find that the replacement policy also provides maximum
availability for any value of q . Since F is maximized for q = 1 (Proposition 7.2), we
will only consider a replacement policy that always chooses to replace the link in
memory when a new link is generated. That is, the replacement policy implicitly
assumes q = 1.

Another simple strategy is the DEJMPS policy. This policy consists in applying the
well-known 2-to-1 DEJMPS purification protocol [53] using the buffered link and a newly
generated link as inputs. If more than one link is successfully generated, we use only one
of them and discard the rest. We provide the purification coefficients ak , bk , ck , and dk

for this policy in Appendix 7.8.1. One of the main drawbacks of the DEJMPS policy is that
it does not take full advantage of the multiplexed entanglement generation, as it only uses
one of the newly generated links and discards the rest. A technique that could improve
the performance of the policy is concatenation, which consists in applying DEJMPS to
all links (the buffered one and the newly generated ones) subsequently until only one
link remains, which will be stored in memory G. Note that the concatenation of DEJMPS
subroutines can be applied using different orderings of the links (see Figure 7.5). This
order determines the output fidelity and probability of success [183], which affects the
performance of the buffering system. In what follows, we consider the concatenated
DEJMPS policy, where DEJMPS is applied sequentially to all the newly generated links
and the buffered link is used in the last application of DEJMPS, as in Figure 7.5a. In our
analysis, we found that different orderings provided qualitatively similar behavior of our
two performance metrics (see Appendix 7.12.1 for further details).

Figure 7.6 shows the performance of several policies: identity, replacement, DEJMPS,
and concatenated DEJMPS ×N . The latter is a policy that concatenates DEJMPS up to
N times and discards any extra links: if k ≤ N links are generated then k concatenations
are performed, and if k > N links are generated, N concatenations are performed. We
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Figure 7.6: Concatenating simple purification policies decreases A but may increase F . Performance of 1GnB
systems with different purification policies, in terms of availability A and average consumed fidelity F . The
shaded area corresponds to unattainable values of A and F (see (7.13) and (7.16)). Lines and markers show the
combinations of A and F achievable by different purification policies: identity (square marker), replacement
(star marker), DEJMPS (dashed line), and concatenated DEJMPS (solid lines). Concatenation can boost F (e.g.,
the maximum F of twice-concatenated DEJMPS is larger than DEJMPS), but excessive concatenation may
eventually lead to a drop in F . Parameter values used in this example: n = 10, pgen = 0.5, Fnew = 0.9 (ρnew is a
Werner state), pcon = 0.1, and Γ= 0.02.

note that concatenated DEJMPS ×1 is just the same as the DEJMPS policy. DEJMPS
and concatenated DEJMPS are plotted for q ∈ [0,1]. The maximum average consumed
fidelity is indicated with a dot, and it is achieved when q = 1. The first observation
from this figure is that a higher level of concatenation decreases the availability. This
is because it requires multiple DEJMPS subroutines to succeed, which decreases the
overall probability of successful purification. However, a higher level of concatenation
can significantly increase the average consumed fidelity F . For example, the maximum
F that DEJMPS can achieve is 0.915, while concatenated DEJMPS ×2 leads to F = 0.937
(for q = 1). Nevertheless, for the parameter values explored, we also find that increasing
the number of concatenations beyond two often reduces both A and F . This behavior is
shown more explicitly in Figure 7.7, where we plot the maximum F versus the maximum
number of concatenations N . In this example, the number of B memories is n = 10, and
therefore it is only possible to perform up to 10 concatenated applications of DEJMPS. We
observe that F is maximized for two concatenations. The same was observed for different
parameter values – in some edge cases, F increases with more concatenations, although
the increase is marginal (see Appendix 7.12.2 for further details). In conclusion, this result
shows that even if many new links are successfully generated in parallel, it can sometimes
be beneficial to use only one or two of them for purification while discarding the rest.
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Figure 7.7: Excessive concatenation worsens the performance. Maximum average consumed fidelity F
achieved by a purification policy that concatenates DEJMPS a limited number of times. Zero concatenations
corresponds to an identity policy (no purification is performed). One concatenation corresponds to the DEJMPS
policy. Excessive concatenation may decrease F . Parameter values used in this example: n = 10, pgen = 0.5,
Fnew = 0.9 (ρnew is a Werner state), pcon = 0.1, and Γ= 0.02.

7.4.2. SIMPLE POLICIES CAN OUTPERFORM COMPLEX POLICIES

In the previous section, we found that implementing a simple 2-to-1 protocol, even when
multiple links are generated in the B memories, can provide a better performance than
using all of the newly generated links for purification with concatenated 2-to-1 protocols.
A follow-up question arises: what if we employ more sophisticated (k +1)-to-1 protocols
instead of simply concatenating 2-to-1 protocols? Can we then improve the performance of
the buffer? This is the question that we explore next.

Much recent work has focused on the search for optimal purification protocols [95, 106,
159], where optimal protocols are typically defined as those which maximize the output
fidelity, or in some cases the success probability. Here, we evaluate the performance
of a 1GnB system with some of these protocols, and we find a surprising result: simple
protocols like DEJMPS can vastly outperform these more complex protocols in terms
of buffering performance. In particular, we consider the bilocal Clifford protocols that
maximize the output fidelity, given in ref. [95]. We refer to this policy as the optimal bilocal
Clifford (optimal-bC) policy. In Appendix 7.8.2, we discuss the details of this policy and
provide its purification coefficients ak , bk , ck , and dk .

Figure 7.8 shows the performance of the optimal-bC policy in comparison to DEJMPS
and twice-concatenated DEJMPS. The optimal-bC policy provides a significantly lower
availability, A, without providing any advantage in average consumed fidelity, F . In other
words, for any desired A, using DEJMPS or twice-concatenated DEJMPS always provides
a larger F than the optimal-bC policy. If we want to increase A as much as possible,
the replacement policy is better than any other, as discussed earlier. We say that the
performance of DEJMPS, twice-concatenated DEJMPS, and replacement forms the Pareto
frontier [126], which informally is the set of best achievable values for A and F for this
collection of protocols. We tested different parameter combinations and found that the
Pareto frontier was often made of DEJMPS, concatenated DEJMPS, and replacement.
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Figure 7.8: Simple policies perform better despite discarding freshly generated entanglement. Performance
of 1GnB systems with different purification policies, in terms of availability A and average consumed fidelity F .
The shaded area corresponds to unattainable values of A and F (see (7.13) and (7.16)). Lines and markers show
the combinations of A and F achievable by different purification policies: identity (square marker), replacement
(star marker), DEJMPS (solid line), twice-concatenated DEJMPS (dashed line), and optimal-bC (dotted line).
Parameter values used in this example: n = 5, pgen = 0.8, Fnew = 0.7 (ρnew is a Werner state), pcon = 0.1, and
Γ= 0.02.

The reason for these simple policies to outperform the optimal-bC policy is that the
optimal bilocal Clifford protocols maximize the output fidelity at the expense of a reduced
probability of success. At some point, the sacrifice in the probability of success can
outweigh the benefit of a larger output fidelity, thereby reducing the overall performance
of the buffer in terms of both A and F .

Our comparison between simple and optimal purification protocols is by no means
an exhaustive study. However, it shows that purification protocols that maximize only
the output fidelity (or probability of success) must not be blindly used in more complex
systems involving many impacting factors such as decoherence and consumption, such
as entanglement buffers. In fact, we find that discarding some of the newly generated
links and applying a 2-to-1 protocol can provide larger A and F than using all of the
links in a more sophisticated purification subroutine. Note that this does not mean
that multiplexed entanglement generation is not useful: even if we only employ 2-to-1
protocols, multiplexing boosts the effective entanglement generation rate, which allows
for a more frequent purification of the buffered link.

Additionally, we also tested other complex policies that use (suboptimal) k-to-1 proto-
cols, such as the 513 EC policy, which uses a 5-to-1 protocol based on a [[5,1,3]] quantum
error correcting code. In Appendix 7.9, we explain this policy in detail and show that it
can outperform DEJMPS and twice-concatenated DEJMPS in some parameter regions.
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7.4.3. FLAGS CAN IMPROVE PERFORMANCE

As discussed in the previous sections, concatenating protocols multiple times does not
necessarily improve the performance of the buffer (neither in terms of A nor F ). The
reason is that, when concatenating, a single failure in one of the purification subroutines
(in our examples, DEJMPS) leads to failure of the whole concatenated protocol. This
can be easily solved: instead of considering the concatenated protocol as a black box
that only succeeds when all subroutines succeed, what if we condition the execution of
each subroutine on the success/failure of previous subroutines? Consider for example the
concatenated protocol from Figure 7.5a. If any of the DEJMPS subroutines fails, the whole
protocol fails and the buffered link has to be discarded. However, we can fix this by raising
a failure flag whenever any of the first two subroutines fails. If this flag is raised, the third
subroutine is not executed and we leave the buffered link untouched. The flagged version
of a concatenated protocol has a larger probability of success, but may also have a lower
output fidelity. This means that it is not clear a priori what is the impact of flags on the
buffer performance. Next, we analyze a simple case in which we conclude that flags can
be either beneficial or detrimental depending on the parameters of the system, such as
the level of noise Γ, and not only on the purification policy itself.

Let us consider a policy that operates as follows. For simplicity, we assume that newly
generated states ρnew are Werner states with fidelity Fnew. When k new links are generated
and there is already a link stored in memory G:

1. If k = 1, we apply the replacement protocol, which has coefficients a1 = 0, b1 =
Fnew −1/4, c1 = 0, and d1 = 1.

2. If k ≥ 2, we apply the DEJMPS protocol to two of the fresh links and discard the
rest. Then, we replace the link in memory with the output from the DEJMPS
subroutine, without checking whether it was successful or not. This means that the
output fidelity of the protocol is the same as the output fidelity from the DEJMPS
subroutine. Since replacement is deterministic, the success probability of this
protocol is also the same as the success probability of the DEJMPS subroutine.
The purification coefficients for k ≥ 2 are therefore given by ak = 0, bk = a(ρnew) ·
(Fnew −1/4)+b(ρnew), ck = 0, and dk = c(ρnew) · (Fnew −1/4)+d(ρnew), where a, b,
c, and d are the coefficients of the DEJMPS protocol (given in Appendix 7.8.1).

Now, let us consider a flagged variant of the previous policy, with coefficients a′
k , b′

k , c ′k ,
and d ′

k . It works as follows:

1. When k = 1 new links are generated, we still apply the replacement protocol.

2. When k ≥ 2 links are generated, the DEJMPS protocol is applied to two of the fresh
links, and the rest are discarded. Then, the link in memory is replaced with the
output from the DEJMPS subroutine, but only if the subroutine succeeds (otherwise,
the buffered link is left untouched). This protocol is now fully deterministic, since
we always end up with a buffered link (either the old buffered link or the output of
a successful DEJMPS subroutine). Consequently, c ′k = 0, and d ′

k = 1. The output
fidelity of this protocol can be computed as the weighted average between the
fidelity of the link in memory and the output fidelity of the DEJMPS subroutine –
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Figure 7.9: Flagged protocols boost the availability but may decrease the average consumed fidelity. Avail-
ability A and average consumed fidelity F versus the noise level Γ, for a ’DEJMPS + Replacement’ policy and its
flagged version. In the first policy, the buffered link is lost when a DEJMPS subroutine fails. The second policy
incorporates a flag that prevents this from happening – it succeeds deterministically at the expense of a lower
output fidelity. The flagged policy yields larger A, but may decrease F in some parameter regimes (e.g., when Γ
is large). Parameter values used in this example: n = 2, pgen = 1, Fnew = 0.7 (ρnew is a Werner state [197]), and
pcon = 0.1.

the first term must be weighted by the probability of failure of the subroutine, and
the second term by the probability of success. Then, the remaining purification
coefficients can be computed as a′

k = 1−c(ρnew) · (Fnew −1/4)−d(ρnew) and b′
k =

a(ρnew) · (Fnew −1/4)+ b(ρnew), where a, b, c, and d are the coefficients of the
DEJMPS protocol (given in Appendix 7.8.1).

By introducing the flags, we have created a protocol with probability of success p ′
k = 1 ≥

pk , where pk is the probability of success of the original protocol. However, it can be
shown that the output fidelity of the flagged protocol is J ′k (F ) ≤ Jk (F ), where Jk is the
jump function of the original protocol. This holds when DEJMPS can improve the fidelity
of the newly generated links, i.e., when J(Fnew) ≥ Fnew, where J is the jump function of
DEJMPS. The opposite regime is not interesting, since DEJMPS is decreasing the fidelity
of the links and we would be better off not purifying.

As shown in the previous example, internal flags increase the probability of success of
purification protocols, which should boost the availability of the buffer. However, flags
may have the side effect of reducing the output fidelity, and therefore it is not clear what
is their impact on the average consumed fidelity. In Figure 7.9, we show the performance
of a 1GnB system using the policy described above, versus the level of noise in memory G.
We show A (orange lines) and F (black lines) for the original policy (solid lines) and the
flagged policy (dashed lines). As expected, the availability is larger for the flagged policy.
The behavior of F is more interesting. When the level of noise is low, the flagged policy
provides better performance, since it prevents high-quality entanglement from being lost
to a failed purification. However, when noise is strong, flagging becomes detrimental in
terms of F : the buffer is likely to store low-quality entanglement due to the strong noise,
and flags prevent the buffered link from being discarded earlier due to failed purification
and being replaced by a fresh link.
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In conclusion, internal flags are a solid tool to improve the availability of entanglement
buffers based on concatenated purification protocols. However, they may decrease
the average consumed fidelity in some parameter regimes. Hence, flagged purification
policies should not be assumed to be better than their non-flagged counterparts, and
their performance should be carefully evaluated before being adopted.

7.5. OUTLOOK

In this chapter, we have studied the behavior of entanglement buffers with one long-lived
memory and n short-lived memories (1GnB system). In particular, we have provided
analytical expressions for the two main performance measures: the availability and the
average consumed fidelity. These expressions provide valuable insights, such as the
fundamental limits to the performance of 1GnB systems discussed earlier.

Since our analytical solutions are not computationally expensive to evaluate, we ex-
pect our buffering setup to be easy to incorporate in more complex network architectures,
such as quantum repeater chains or even large-scale quantum networks. Additionally,
larger buffering systems with multiple long-lived memories, e.g., an mGnB setup, can be
implemented with multiple 1GnB systems in parallel.

Due to the vast freedom in the choice of purification policy, there are multiple ways in
which our analysis of purification strategies for entanglement buffers can be extended.
Notably, determining the optimal ordering in which simple protocols should be applied
to newly generated links (e.g., concatenated, nested [22], or banded [183]) is left as future
work. Additionally, finding policies that optimize availability or average consumed fidelity
remains an important open question.

7.6. [APPENDIX] A NOTE ON THE VIEWPOINT

In this appendix, we provide three further ways to compute the performance metrics
A and F . The initial (and most natural) definitions of the performance metrics (see
Definitions 7.2 and 7.3) consist in averages from the viewpoint of the network user, who
consumed the links. In Lemma 7.1, we show that the averaging may only be done over a
single cycle of the renewal process. In Lemma 7.3, we show that the performance metrics
can also be computed as limiting values when time goes to infinity. Lastly, in Lemma 7.2,
it is shown that one may compute the metrics by averaging over time, regardless of
consumption arrival times.

We denote the arrival time of the j -th consumption request as T ( j )
con. From now on, we

write

1l.e.(F ) ≡ 1link exists(F ) =
{

1 if F > 0,

0 if F = 0.
(7.17)

In the following, we let N0 denote the natural numbers containing zero, and N=N0 \ {0}.
Recall that F = {F (t ), t ∈N0} is a discrete-time stochastic process. The value F (t ) is defined
to be the fidelity at the beginning of the time step [t , t +1). Then, since consumption

removes the link from the G memory, at each consumption time we have F (T ( j )
con) = 0.
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However, the consumed fidelity at this time depends on the value of the fidelity at time

T ( j )
con −1. We therefore introduce some new notation to more easily treat this issue.

In order to do this, we firstly note that associated with F there is an equivalent
continuous-time stochastic process {Fcont(s) : s ≥ 0} that is obtained from F with the
following procedure: given t ∈N,

(i) if F (t ) > 0, then for s ∈ [t , t +1), Fcont(s) may be deduced by applying decoherence
(7.1) to F (t );

(ii) if F (t ) = 0, then Fcont(s) = 0 for s ∈ [t , t +1).

Conversely, F may be obtained from Fcont by taking its values at integer times.
From Fcont, for t ∈N, we define another discrete time process F−,

F− := {
Fcont(t−) : t ∈N}

, (7.18)

where t− denotes taking the left-hand limit. In particular, the consumed fidelity F−(t)
takes the value of the fidelity at the end of the time step [t −1, t). The values of F− may
also be deduced directly from F as

F−(t ) =
{

e−Γ
(
F (t −1)− 1

4

)+ 1
4 , if F (t −1) > 0,

0, if F (t −1) = 0.
(7.19)

We note that the evolution of {F−(t ), t ∈N} may be deduced directly from {F (t ), t ∈N} via
(), and vice-versa. The value F−(t) may be interpreted as the state of the system ‘just
before’ time t , and F (t ) the state ‘just after’. Each completely captures the behavior of the
1GnB system.

We then restate the original definitions 7.2 and 7.3 of availability, A, and average
consumed fidelity, F , below.

Definition 7.4 (Performance metrics, viewpoint of network user). We have

A = lim
m→∞

1

m

m∑
j=1

1l.e.

(
F−(T ( j )

con)
)

, (7.20)

and

F = lim
m→∞

∑m
j=1 F−(T ( j )

con) · 1l.e.

(
F−(T ( j )

con)
)

∑m
j=1 1l.e.

(
F−(T ( j )

con)
) . (7.21)

We now present a second way to compute the performance metrics, which is the form
that is used to derive the solutions for A and F in Theorems 7.1 and 7.2 (see Appendix 7.7).
To show this result, we use the fact that F (t ) is a regenerative process. Informally, every
time the link in the G memory is removed from the system, the process ‘starts again’, in the
sense that the stochastic properties from that point onwards are the same as when starting
from any other time when the G memory is empty. This stems from the fact that entangled
link generation and consumption request arrivals are assumed to be Markovian.
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Definition 7.5 (Regenerative process, informal). A regenerative process {X (t), t ≥ 0} is a
stochastic process with the following properties: there exists a random variable V1 > 0 such
that

(i) {X (t +V1), t ≥ 0} is independent of {X (t ), t ≤V1} and V1;

(ii) {X (t +V1), t ≥ 0} is stochastically equivalent to {X (t ), t ≥ 0} (i.e., these two processes
have the same joint distributions).

For a formal definition of a regenerative process, see, e.g., [170]. If the process is
regenerative, it may also be shown that there is a sequence of regeneration cycles V0 = 0,
{Vk } such that the sequence regenerates at each cycle, i.e., {X (t ), t ≥ 0} and {X (t+Vk ), t ≥ 0}
are stochastically equivalent.

We now show that our process F is regenerative. Let us assume the system starts when
a new link is freshly generated and moved to the G memory, such that F (0) = Fnew. The
system then evolves as follows: the link in the G memory may undergo some purification
rounds, between which it is subject to decoherence, and then is eventually removed from
the G memory after time T (1)

occ due to either purification failure or consumption. The time
T (1)

occ is the time during which the G memory is occupied. In particular,

T (1)
occ := min

{
t : F (t ) = 0

}
. (7.22)

After the link is removed, the system will then attempt entanglement generation until
a successful generation. Let the time from which the G memory is emptied until a new
link is produced be T (1)

gen. By the assumption that entanglement generation attempts are

independent and Bernoulli, T (1)
gen ∼ Geo(1− (1−pgen)n). When a fresh link is generated

at time t = T (1)
occ +T (1)

gen, we have F (T (1)
occ +T (1)

gen) = Fnew and, from this time on, the process

behaves equivalently to how it did from time t = 0. Letting V1 = T (1)
occ +T (1)

gen, we see that
F (t) is regenerative. All regeneration cycles {Vk } may each be split into two phases: we
have Vk = T (k)

occ +T (k)
gen, where T (k)

occ is the time during which the memory is occupied, and

T (k)
gen is the time during which the memory is empty and entanglement generation is being

attempted. We note that since F− is in one-to-one correspondence with F via (), then F−
is also regenerative with the same cycle lengths.

For the following results, we note two important properties of the process {Vk }. Firstly,
the mean cycle length E[V1] = E[T (1)

occ]+E[T (1)
gen] is finite: this may be seen by the fact that

T (1)
gen is geometrically distributed (and therefore E[T (1)

gen] <∞) and that T (1)
occ is bounded

above by the time until the next consumption request, which is geometrically distributed,
and so E[T (1)

occ] ≤ E[T (1)
con] <∞. The second important property is that the {Vk } are aperi-

odic, which means that V1 takes values in a set of integers that have greatest common
denominator equal to one. Again, this may be seen by the fact that consumption and
entanglement generation are assumed to be geometric. If pgen < 1, the value of V1 has
a non-zero probability of taking any value inN\ {1} and therefore satisfies this property.
The same holds if pgen = 1, and there is a non-zero probability of either no purification
or successful purification. The cases where the {Vk } are periodic may be accounted for
separately:
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(A) If pgen = 1 and pcon = 1, a link will deterministically be generated when in the empty
state, and deterministically consumed in the following time step. The fidelity F (t )
then deterministically alternates between 0 and Fnew, and the cycle length is always
two. We therefore have

A = 1

2
, F = e−Γ

(
Fnew − 1

4

)
+ 1

4
. (7.23)

(B) If pgen = 1, q = 1 and ck = dk = 0, then we have deterministic link generation, and
the system always decides to purify. However, purification always fails. The fidelity
then again deterministically alternates between 0 and Fnew, and the cycle length is
two. We note that even if purification is always attempted and always fails, then if a
consumption request arrives, this will take priority over purification and the link
will be consumed with fidelity e−Γ

(
Fnew − 1

4

)+ 1
4 . Then, F will also take this value.

Moreover, by applying the PASTA property in discrete time [125], we have A = 1/2.
Our metrics then take the values (7.23), as in case (A).

We note that our formulae, as given in Theorems 7.1 and 7.2, still hold for the above cases.
The solutions for edge case (A) are obtained by inputting pgen = 1 and pcon = 1. Edge case
(B) can be dealt with in the same way: take pgen = 1, q = 1 and the limit ck ,dk → 0. Note
that the jump function (7.3) must still be well-defined, and so necessarily we must also
take ak ,bk → 0. We then obtain (7.23). Although the proof in the general case may not be
immediately applied in these cases, our formula still holds.

Lemma 7.1 (Performance metrics, single cycle). Suppose that the 1GnB system parameters
are not in edge cases (A) or (B). The performance metrics in Definition 7.4 may be written
in terms of the properties of a single cycle:

A = E[T (1)
occ]

E[T (1)
occ]+E[T (1)

gen]
a.s. (7.24)

and
F = E[F−(T (1)

occ)|C1] a.s. (7.25)

where C1 is the event where the first link is removed due to consumption (and not failed
purification), or equivalently C1 ≡ {T (1)

occ = T (1)
con}.

Proof. Let F−∞ be a random variable with distribution given by

P
(
F−
∞ ∈ B

)= lim
t→∞

1

t

t∑
s=1

1B (F−(s)) . (7.26)

Then, as F− is a regenerative process with finite mean and aperiodic cycle length, by, e.g.,
part (a) of Theorem 1 from [192], the above quantity exists and may be computed in terms
of the properties of a single cycle as

P
(
F−
∞ ∈ B

)= 1

E[V1]
E

[
V1∑

s=1
1B (F−(s))

]
. (7.27)
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Letting B be the event where a link is present in the G memory, we then see that

P
(
F−
∞ > 0

)= 1

E[V1]
E

[
V1∑

s=1
1l.e. (F−(s))

]
(7.28)

= 1

E[T (1)
occ]+E[T (1)

gen]
·E[

T (1)
occ

]
. (7.29)

We now show that the above expression is equal to A. Since the interarrival times of
consumption requests are i.i.d. and follow a geometric distribution, we make use of the
PASTA property in discrete time [125] to see that the availability from the point of view of
the consumer in Definition 7.2 is equal to the time average as given above, i.e.,

A = lim
t→∞

1

t

t∑
s=1

1l.e. (F−(s)) = P(F−
∞ > 0), a.s. (7.30)

Then, (7.24) is shown by combining (7.30) with (7.29).
We now show the identity for F . For this, we also use the regerative property. We

define W0 = 0 and Wk to be the time at which the k-th cycle ends,

Wk :=
k∑

j=1
V j . (7.31)

Then, the sequence of times at which the link is removed from the G memory is

{Wk−1 +T (k)
occ}k≥1. (7.32)

We then define the subsequence

{Wik−1 +T (ik )
occ }k≥1 (7.33)

to be the times at which link removal is due to consumption (and not purification failure).
We recall that in our model, when a consumption request arrives, it immediately removes
the link from the G memory. Then, (7.33) are precisely the times at which consumption
requests arrive to find a link in the G memory. In particular,

{Wik−1 +T (ik )
occ }k≥1 =

{
T (k)

con : F−
(
T (k)

con

)
> 0

}
k≥1

, (7.34)

recalling that {T (k)
con} is the sequence of arrival times for consumption requests. Recalling

Definition (7.4) of F , we then see that

F = lim
m→∞

∑m
k=1 F−(T (k)

con) · 1l.e.

(
F−(T (k)

con)
)

∑m
k=1 1l.e.

(
F−(T (k)

con)
)

= lim
m→∞

∑M(m)
k=1 F−

(
Wik−1 +T (ik )

occ

)
∑M(m)

k=1 1
, (7.35)
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where we have used the identity (7.34), and defined M(m) ≤ m as

M(m) =
∣∣∣{T (k)

con : F−
(
T (k)

con

)
> 0, k ≤ m

}∣∣∣ .

Then, M(m) is the number of consumption requests up to time T (m)
con that arrive when a

link is stored in memory. We now show that limm→∞ M(m) =∞ a.s. so that we can apply
SLLN to the above expression. To see this, recall that {Vk }k≥1 are the i.i.d. interarrival times
of a renewal process N (t ) = sup{k : Wk ≤ t }. Since |E[V1]| <∞, we have that limt→∞ N (t ) =
∞ a.s. (see 10.1.2 of [76]). Within each of these cycles, the link is removed from memory
exactly once. The probability that this is due to consumption is bounded below by
pcon > 0, because for each cycle it is possible to consume directly after link generation,
which occurs with probability pcon. Recalling the sequence of times when the link is
removed due to consumption as given in (7.34), the number of these events may therefore
be bounded below by a subsequence

{W jk−1 +T ( jk )
occ }k≥1 ⊆ {Wik−1 +T (ik )

occ }k≥1 (7.36)

such that the jk − jk−1 is geometrically distributed with parameter η≥ pcon. We therefore
see that

lim
k→∞

|{W jk−1 +T ( jk )
occ }k≥1| =∞ a.s. (7.37)

and therefore by (7.36), the total number of times when the link is consumed diverges to
infinity almost surely. From (7.35), we then have

F
a.s.= lim

M→∞
1

M

M∑
k=1

F−
(
Wik−1 +T (ik )

occ

)
a.s.= E

[
F−(T (1)

occ)|C1
]

,

where we have used the fact that the sequence {F−(Wik−1 +T (ik )
occ )}k≥1 is i.i.d. since the

process is regenerative, and the strong law of large numbers.

In the final lemma of this section, we see that the above metrics are equal to the time
averages over the whole process. This follows from a version of the well-known PASTA
property (Poisson Arrivals See Time Averages) in queuing theory [125], which we can
employ because the arrival of consumption requests in each time step is assumed to be a
Bernoulli process.

Lemma 7.2 (Performance metrics, time average). Suppose that the 1GnB system param-
eters are not in edge cases (A) or (B). The performance metrics in Definition 7.4 may be
computed using an average over time, i.e.,

A = lim
t→∞

1

t

t∑
s=1

1l.e. (F−(s)) , (7.38)

and

F = lim
t→∞

∑t
s=1 F−(s) · 1l.e. (F−(s))∑t

s=1 1l.e. (F−(s))
. (7.39)
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Proof. The identity for A is a direct application of the PASTA property in discrete time [125],
which we also saw in the proof of Lemma 7.4.

For the second equality, from (7.21) we firstly rewrite F as

F = lim
m→∞

1
m

∑m
j=1 F−

(
T ( j )

con

)
1
m

∑m
j=1 1l.e.

(
F−

(
T ( j )

con

)) = F tot

A
, (7.40)

where

F tot := lim
m→∞

1

m

m∑
j=1

F−
(
T ( j )

con

)
is the average fidelity seen by users, without conditioning on the fidelity being nonzero.
In (7.40), we have removed the indicator function from the sum in the numerator by

recalling that F−(T ( j )
con) = 0 if the j -th consumption request does not find a link in memory.

Then, since F tot = F · A and by Lemma 7.4 both F and A converge, the PASTA property
can be applied and we have that

F tot = lim
t→∞

1

t

t∑
s=1

F−(s), a.s. (7.41)

Then,

F = F tot

A
= limt→∞ 1

t

∑t
s=1 F−(s)

limt→∞ 1
t

∑t
s=1 1l.e.

(
F−(s)

) (7.42)

= lim
t→∞

∑t
s=1 F−(s)∑t

s=1 1l.e.
(
F−(s)

) (7.43)

= lim
t→∞

∑t
s=1 F−(s)1l.e.

(
F−(s)

)∑t
s=1 1l.e.

(
F−(s)

) a.s. (7.44)

In the following, we show that our performance metrics may be computed as limiting
values of properties of F (t). Note that this was the definition used in Chapter 6 and in
ref. [50].

Lemma 7.3 (Performance metrics, limiting values). Suppose that the 1GnB system pa-
rameters are not in edge cases (A) or (B). Then, our performance metrics may be computed
as

A = lim
t→∞P(F−(t ) > 0) a.s. (7.45)

F = lim
t→∞E [F−(t )|F−(t ) > 0] a.s. (7.46)
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Proof. Since F−(t) is a regenerative process with finite mean and an aperiodic cycle
length, it follows that the limiting distribution is well-defined in the following sense. As in
the proof of Lemma 7.4, we let F−∞ be a random variable with distribution given by (7.26).
Then, by, e.g., parts (a) and (b) of Theorem 1 of [192], we have

lim
t→∞P(F−(t ) ∈ B) = P(F−

∞ ∈ B). (7.47)

We therefore see that

lim
t→∞P(F−(t ) > 0) = P(F−

∞ > 0) = A, (7.48)

where we have used the identity for A which we saw in (7.30) in the proof of Lemma 7.4.
This shows (7.45).

To show the identity for F , we make use of the renewal-reward theorem (see, e.g.,
10.5.1 of [76]). From the previous discussion, associated with the regenerative process
{F (t), t ∈N} with cycle times {Wk }, there is a renewal process N (t) = sup{k : Wk ≤ t }. We
then define the reward R̃k as the sum of fidelity over the k-th cycle,

R̃k =
Wk∑

t=Wk−1+1
F−(t ). (7.49)

Then, the cumulative reward up to time t is given by

C̃ (t ) =
t∑

s=1
F−(s) (7.50)

=
N (t )∑
k=1

R̃k +E(t ), (7.51)

where we have defined

E(t ) =
t∑

s=WN (t )+1
F−(s) (7.52)

to be the remainder of the reward that is not contained in a full cycle. Then, we see that

C̃ (t )

t
≤ 1

t

N (t )+1∑
k=1

R̃k

=
∑N (t )+1

k=1 R̃k

N (t )+1
· N (t )+1

t
. (7.53)

We will now the strong law of large numbers (SLLN) for both terms in the above product.
In particular, the convergence of (N (t )+1)/t may be seen by noticing that

∑N (t )
k=1 Vk

N (t )
· N (t )

N (t )+1
< t

N (t )+1
≤

∑N (t )+1
k=1 Vk

N (t )+1
(7.54)
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and using SLLN shows that the upper and lower bound converge to E [V1]. From (7.53),
we therefore see that

lim
t→∞

C̃ (t )

t
≤ E

[
R̃1

]
E [V1]

(7.55)

=
E
[∑V1

t=1 F−(t )
]

E [V1]
a.s. (7.56)

Similarly,

lim
t→∞

C̃ (t )

t
≥ lim

t→∞

∑N (t )
k=1 R̃k

N (t )+1
· N (t )

t
(7.57)

= E
[
R̃1

]
E [V1]

a.s. (7.58)

Combining (7.41), (7.50), (7.56) and (7.58), we therefore see that

F tot = lim
t→∞

1

t

t∑
s=1

F−(s) = lim
t→∞

C̃ (t )

t
=
E
[∑V1

t=1 F−(t )
]

E [V1]
a.s. (7.59)

Moreover, using part (b) of Theorem 1 from [192] , we see that

lim
t→∞E [F−(t )] =

E
[∑V1

t=1 F−(t )
]

E [V1]
, (7.60)

and therefore F tot = limt→∞E [F−(t )]. Then, we have

lim
t→∞E [F−(t )|F−(t ) > 0] = lim

t→∞
E [F−(t )1l.e. (F−(t ))]

P(F−(t ) > 0)
(7.61)

= lim
t→∞

E [F−(t )]

P(F−(t ) > 0)
(7.62)

= F tot

A
= F . (7.63)

7.7. [APPENDIX] DERIVATION OF FORMULAE FOR PERFORMANCE

METRICS

In this appendix, we prove Theorems 7.1 and 7.2, which contain the formulae for the
availability and the average consumed fidelity of the 1GnB system.

For these derivations, we work with the following change of variable.

Definition 7.6 (Shifted fidelity). The shifted fidelity H of the 1GnB system is given by

H := F − 1

4
, (7.64)

where F is the fidelity of the link in the G memory.
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This will simplify our calculations because under decoherence, the shifted fidelity
changes due to a multiplicative exponential factor. In particular, given an initial value h
of the shifted fidelity, after t time steps this reduces to

h → e−Γt h. (7.65)

We see that the shifted fidelity does not inherit linear terms under decoherence, in contrast
to the fidelity, which decays according to (7.1). This will simplify our derivations.

After successful (k +1)-to-1 purification, the value h of the shifted fidelity undergoes
a jump given by

J̃k (h) := Jk

(
h + 1

4

)
− 1

4
= ak h +bk

ck h +dk
(7.66)

where we have used (7.3). Similarly, the probability of successful purification is

p̃k (h) := pk

(
h + 1

4

)
= ck h +dk . (7.67)

Therefore, J̃k and p̃k are the jump function and success probability of the corresponding
purification events for the shifted fidelity.

Finally, we notice that the range for the fidelity F ∈ [0,1] translates to H ∈ [− 1
4 , 3

4

]
. In

particular, we have H < 0 if and only if there is no link in the G memory.
We have fully characterized the dynamics of the shifted fidelity in 1GnB (decoherence,

purification, and link removal). Our two key performance metrics may then be rewritten in
terms of H . Recall that with the assumption Fnew > 1/4, and the depolarizing decoherence
model (7.1), a link exists at time t if and only if F (t ) > 1/4, or equivalently H(t ) > 0. Let us
again denote the indicator function when acting on the shifted fidelity as

1link exists(H) ≡ 1l.e.(H) =
{

1 if H ≥ 0,

0 if H < 0.

Recalling Definition 7.2, the availability may then be written as

A = lim
m→∞

1

m

m∑
j=1

1l.e.

(
H(T ( j )

con)
)

. (7.68)

Recalling Definition 7.3, the average consumed fidelity may be rewritten as

F = lim
m→∞

∑m
j=1 F (T ( j )

con) · 1l.e.

(
F (T ( j )

con)
)

∑m
j=1 1l.e.

(
F (T ( j )

con)
)

= lim
m→∞

∑m
j=1

(
1
4 +H(T ( j )

con)
)
· 1l.e.

(
H(T ( j )

con)
)

∑m
j=1 1l.e.

(
H(T ( j )

con)
)

= lim
m→∞

1

4
+

∑m
j=1 H(T ( j )

con) · 1l.e.

(
H(T ( j )

con)
)

∑m
j=1 1l.e.

(
H(T ( j )

con)
)


= 1

4
+H . (7.69)
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T0 = 0

S1 S2 S4S3

H(t)

1GnB

Time

H0 = Hnew

3/4

T1 T2 T3 T4
−1/4

H1

H2
H3

Figure 7.10: Example dynamics of shifted fidelity in the first cycle of 1GnB. We assume that H(0) = Hnew, or
equivalently that a freshly generated link is transferred to memory at time t = 0. The {Ti }i≥0 are defined to be
the times at which there are changes in the (shifted) fidelity that are not due to decoherence. We let Tocc be the
first time at which the link is removed from the G memory. In the example, Tocc = T4.

We have now written F in terms of H , where

H := lim
m→∞

∑m
j=1 H(T ( j )

con) · 1l.e.

(
H(T ( j )

con)
)

∑m
j=1 1l.e.

(
H(T ( j )

con)
)

 (7.70)

is the average consumed shifted fidelity. Finding a formula for F then reduces to finding a
formula for H .

From now on, we will assume that the system starts with shifted fidelity H(0) = Hnew,
where

Hnew := Fnew − 1

4
(7.71)

is the state of the G memory immediately after transferring a freshly generated link
into memory. Note that Hnew is a constant, as newly generated links are assumed to
be identical. The subsequent dynamics of the system will then be as follows: the link
may undergo decoherence followed by purification a number of times, until the link is
removed. The removal is due to either consumption or purification failure. After the link
is removed, entanglement generation will be attempted until success, at which point
a link is transferred to the G memory with shifted fidelity Hnew. See Figure 7.10 for an
illustration of this.

Definition 7.7. We define T0 = 0, {Ti }∞i=1 to be the times at which H (equivalently, F )
experiences a change that is due to purification, consumption or entanglement generation
(or alternatively, any change that is not due to decoherence). Let Si := Ti −Ti−1 denote the
times between each jump.

We also refer to the {Ti } as the jump times. See Figure 7.10 for a depiction.
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Now, recall that both the time until entanglement generation and consumption are
assumed to be geometrically distributed. Then, the distribution of Si is then given by

Si =
{

min
{
τ(i )

pur,τ(i )
con

}
if H(Ti−1) ≥ 0

T (i )
gen if H(Ti−1) < 0,

(7.72)

where T (i )
gen, τ(i )

pur, and τ(i )
con are independent random variables with the following distribu-

tions

T (i )
gen ∼ Geo

(
1− (1−pgen)n)

τ(i )
pur ∼ Geo

(
q(1− (1−pgen)n)

)
τ(i )

con ∼ Geo(pcon). (7.73)

Here, starting at jump time Ti−1, T (i )
gen is the time until a new link is generated and trans-

ferred to memory, τ(i )
pur is the time until there is a successful generation and the system

decides to attempt purification, and τ(i )
con is the time until there is a consumption request.

Definition 7.8. For i ≥ 0, we define Hi := H(Ti ) to be the shifted fidelity at the jump times
of the process. See Figure 7.10 for an illustration.

Since we assume that the system starts with a freshly generated link in memory, we
have H0 = Hnew. We note that {Hi }i≥0 is a Markov chain.

Definition 7.9. Let Tocc be the first time at which the link in the G memory is removed
from the system. In particular, Tocc = TN , where

N = min
{
i : Hi < 0

}
. (7.74)

Note that N is finite a.s. since it is upper bounded by the time until the first consump-
tion request arrives, which follows a geometric distribution.

In Appendix 7.6, we saw that F (t) is a regenerative process, meaning that it can be
broken down into i.i.d. cycles Vk = T (k)

occ +T (k)
gen, where T (k)

occ are the times during which the

G memory is occupied and T (k)
gen are the times during which the G memory is empty. We

note that in Definition 7.9, Tocc = T (1)
occ. From now on, we also refer to Tgen ≡ T (1)

gen.
It follows straightforwardly that H(t) = F (t)−1/4 is a regenerative process with the

same cycles as F (t ). We saw in Lemma 7.1 that the performance metrics may be rewritten
in terms of the statistical properties of one cycle. This result also holds for H , which we
restate below. Recalling the notation introduced in Appendix 7.6 for F−, we will also use
the equivalent notation for H−, i.e.,

H−(t ) = F−(t )− 1

4
. (7.75)

Lemma 7.4 (Performance metrics for H , single cycle). The availability is given by

A = E[Tocc]

E[Tocc]+E[Tgen]
a.s. (7.76)
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and the average consumed (shifted) fidelity is given by

H = E
[

e−ΓSN HN−1|τ(N )
con ≤ τ(N )

pur

]
a.s. (7.77)

where C1 ≡ {τ(N )
con ≤ τ(N )

pur} is the event that the link is consumed at time Tocc.

Proof. The identity (7.76) follows directly from Lemma 7.1. In the same Lemma, we saw
that

F = E[F (T (1)−
occ )|C1], (7.78)

where C1 is the event that the first link is removed due to consumption, and we recall the
notation

F−(t ) = e−Γ
(
F (t −1)− 1

4

)
+ 1

4
,

which is necessary to capture the fidelity when consumed at time t , since the discrete-time
stochastic process is defined such that H(T (1)

occ) = 0. The value of H−(T (1)
occ) is given by

e−ΓSN HN−1, where HN−1 is the value of the shifted fidelity at the previous jump time (see
Definition 7.7) and SN is the time the link spends decohering in memory from that point
until the link is removed from memory (see Definition 7.9). For the conditioning, we recall
from (7.72) that C1 ≡ {τ(N )

con ≤ τ(N )
pur}.

By properties of geometric random variables, we already know that

E[T (1)
gen] = 1

1− (1−pgen)n .

To solve for our two performance metrics, it is then sufficient to find formulae for E[Tocc]

and E
[

e−ΓSN HN−1|τ(N )
con ≤ τ(N )

pur

]
. This is what we accomplish with the following results.

Definition 7.10. For i ≤ N , let Ui denote the event that purification is attempted at the i th
jump time, and Ri ⊆Ui denote the event that purification is attempted and succeeds at the
i th jump time.

Lemma 7.5. Let x and y be given by

x :=
∞∑

i=1
E

[
Hi

i∏
j=1

1R j

]
, y :=

∞∑
i=1

P(N > i ) . (7.79)

Then,

E[Tocc] = 1+ y

pcon +q
(
1− (

1−pgen
)n)

(1−pcon)
(7.80)

and

E[e−ΓSN HN−1|τ(N )
con ≤ τ(N )

pur] = (Hnew +x)(pcon +q
(
1− (

1−pgen
)n)

(1−pcon))

(1+ y)
(
eΓ−1+pcon +q

(
1− (

1−pgen
)n)

(1−pcon)
) . (7.81)
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Proof. Denoting U c
N =

{
τ(N )

con ≤ τ(N )
pur

}
and using properties of the conditional expectation,

we may write

E[e−ΓSN HN−1|τ(N )
con ≤ τ(N )

pur] =
E[e−ΓSN HN−11U c

N
]

P(U c
N )

. (7.82)

The denominator P(U c
N ) may be rewritten as

P(U c
N ) = E[1U c

N
]

i= E
[
1U c

1
+

∞∑
i=2

1U c
i

i−1∏
j=1

1R j

]
ii= E

[
1U c

1

]
+

∞∑
i=2

E
[
1U c

i
|R1, ...,Ri−1

]
E

[
i−1∏
j=1

1R j

]
iii= E

[
1U c

1

](
1+

∞∑
i=1

E

[
i∏

j=1
1R j

])
iv= P

(
U c

1

)(
1+

∞∑
i=1

P(N > i )

)
= P

(
U c

1

)(
1+ y

)
. (7.83)

In the above, we have used the following steps:

i. One may partition the event U c
N by conditioning on the value of N as

U c
N =

∞⋃
i=1

(
U c

i ∩ {N = i }
)

.

Now, notice that we have U c
i ∩ {N = i } exactly when successful purification occurs

i −1 times, and the link is consumed. Therefore,

U c
i ∩ {N = i } =U c

i ∩
(
∩i−1

j=1R j

)
. (7.84)

Since the U c
i ∩ {N = i } are mutually exclusive, it follows from the above that

1U c
N
=

∞∑
i=1

1U c
i ∩{N=i }

=
∞∑

i=1
1

U c
i ∩

(
∩i−1

j=1R j

)

= 1U c
1
+

∞∑
i=2

1U c
i

i−1∏
j=1

1R j . (7.85)

ii. We use linearity of taking the expectation and take the expectation inside the sum,
which is possible by the monotone convergence theorem (see 5.6.12 of [76]). Then,
we express the joint probability in terms of conditional probabilities.
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iii. We have used the fact that

E
[
1U c

i
|R1, ...,Ri−1

]
= P(τ(i )

con ≤ τ(i )
pur) = P(τ(1)

con ≤ τ(1)
pur) = E

[
1U c

1

]
.

iv. Notice that N > i if and only if the first i jump times are due to successful purifica-
tion. Therefore,

{N > i } ≡∩i
j=1R j .

We therefore have

E

[
i∏

j=1
1R j

]
= E[

1{N>i }
]= P (N > i ).

Secondly, we rewrite the numerator of (7.82) in a similar way:

E[e−ΓSN HN−11U c
N

]
i= E

[
e−ΓSN HN−1 ·

(
1U c

1
+

∞∑
i=2

1U c
i

i−1∏
j=1

1R j

)]
ii= E

[
Hnewe−ΓS11U c

1
+

∞∑
i=1

e−ΓSi+1 Hi 1U c
i+1

i∏
j=1

1R j

]
iii= HnewE

[
e−ΓS11U c

1

]
+

∞∑
i=1

E
[

e−ΓSi+11U c
i+1

|R1, ...,Ri

]
E

[
Hi

i∏
j=1

1Ri

]
iv= E

[
e−ΓS11U c

1

](
Hnew +

∞∑
i=1

E

[
Hi

i∏
j=1

1R j

])
= E

[
e−ΓS11U c

1

]
(Hnew +x) . (7.86)

In the above, we have used the following steps:

i. We have again made use of (7.85), and H0 := Hnew.

ii. Again making use of (7.84), we have noticed that the indicator function selects the
value of N as

e−ΓSN HN−1 · 1U c
i

i−1∏
j=1

1R j = e−ΓSN HN−1 · 1U c
i ∩{N=i }

= e−ΓSi Hi−1 · 1U c
i

i−1∏
j=1

1R j .

iii. We have used linearity of the expectation, and take the expectation inside the sum,
which is possible by the monotone convergence theorem (see 5.6.12 of [76]). Then,
we express the joint probability in terms of conditional probabilities.

iv. We have again used the fact that, conditioned on R1, ...,Ri−1, e−ΓSi 1U c
i

are identically
distributed, for all i ≥ 1.
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We now directly evaluate the multiplying factor in the above expressions. Using the
partition U c

1 =⋃∞
i=1{U c

1 ,S1 = i },

E
[

e−ΓS11U c
1

]
= E

[
e−ΓS11U c

1

∣∣U1

]
P(U1)+

∞∑
i=1

E
[

e−ΓS11U c
1

∣∣U c
1 ,S1 = i

]
P(U c

1 ,S1 = i )

= 0+
∞∑

i=1
e−iΓP(U c

1 ,S1 = i ). (7.87)

Recalling that U c
1 = {τ(1)

con ≤ τ(1)
pur}, we now evaluate

P(U c
1 ,S1 = i ) = P(i = τ(1)

con, i ≤ τ(1)
pur)

= P(i = τ(1)
con) ·P(i ≤ τ(1)

pur)

= (1−pcon)i−1pcon ·
(
1−q(1− (1−pgen)n)

)i−1 , (7.88)

where we have used the fact that τ(1)
con and τ(1)

pur are independent, and have distributions
as given in (7.73). Therefore, combining (7.87) and (7.88), it follows that

E
[

e−ΓS11U c
1

]
=

∞∑
i=1

e−Γi (1−pcon)i−1pcon ·
(
1−q

(
1− (

1−pgen
)n))i−1

= pcone−Γ
∞∑

i=0
e−Γi (

1−q
(
1− (

1−pgen
)n))i

(1−pcon)i

= pcone−Γ

1−e−Γ
(
1−q

(
1− (

1−pgen
)n))

(1−pcon)
, (7.89)

where to obtain the first equality we have relabelled the summing index, and to obtain
the second equality we have used the formula for a geometric series. By setting Γ= 0 in
the above, we also obtain

E
[
1U c

1

]
= P(U c

1 ) = pcon

1− (
1−q

(
1− (

1−pgen
)n))

(1−pcon)

= pcon

pcon +q
(
1− (

1−pgen
)n)

(1−pcon)
. (7.90)

Then, combining (7.83), (7.86) (7.89), (7.90) allows us to rewrite (7.82) as

E[e−ΓSN HN−1|τ(N )
con ≤ τ(N )

pur] = (Hnew +x)(pcon +q
(
1− (

1−pgen
)n)

(1−pcon))

(1+ y)
(
eΓ− (

1−q
(
1− (

1−pgen
)n))

(1−pcon)
) .

This shows (7.81). We now show (7.80) using a similar method: firstly, we again condition
on the value of N . Recalling Definitions 7.7 and 7.9, we may rewrite TN as

TN =
∞∑

i=1
Si · 1{N≥i } = S1 +

∞∑
i=2

Si

i−1∏
j=1

1R j ,
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where we have again used {N ≥ i } ≡∩i−1
j=1R j to obtain the second equality. Taking expecta-

tions, it follows that

E[TN ] = E
[

S1 +
∞∑

i=2
Si

i−1∏
j=1

1R j

]

= E [S1]+
∞∑

i=2
E [Si |R1, ...,Ri−1]E

[
i−1∏
j=1

1R j

]

= E [S1]

(
1+

∞∑
i=1

E

[
i∏

j=1
1R j

])
= E [S1]

(
1+ y

)
, (7.91)

where we have used the same reasoning as was used to obtain (7.83) and (7.86). It now
only remains to compute E[S1]. Recalling that S1 = min{τ(1)

con,τ(1)
pur}, we see that

P(S1 > i ) = P(τ(1)
con > i ,τ(1)

pur > i )

= P(τ(1)
con > i )(τ(1)

pur > i )

= (1−pcon)i · (1−q(1− (1−pgen)n))i ,

where we have used the fact that τ(1)
con and τ(1)

pur are independent random variables, and
their distributions which are given in (7.73). Then, we may rewrite the expectation as

E[S1] =
∞∑

i=0
P(S1 > i ) =

∞∑
i=0

(1−pcon)i · (1−q(1− (1−pgen)n))i

= 1

1− (1−pcon)(1−q(1− (1−pgen)n))

= 1

pcon +q(1−pcon)(1− (1−pgen)n)
,

where we have used the formula for a geometric series to evaluate the sum. Rearranging
terms and combining the above with (7.91), we may then write this as

E[TN ] = 1+ y

pcon +q(1−pcon)(1− (1−pgen)n)
,

which shows (7.80).

Lemma 7.6. Let x and y be defined as in (7.79). Then,

x =−Hnew + B̃ − D̃ Hnew +Hnew

(1− Ã)(1− D̃)− B̃C̃
, y =−1+ 1− Ã+ C̃ Hnew

(1− Ã)(1− D̃)− B̃C̃
, (7.92)

where Ã, B̃ , C̃ , D̃ are defined in Theorem 7.1 in the main text.
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Proof. We firstly define the quantities

xi := E
[

Hi

i∏
j=1

1R j

]
, yi := P(N > i ) , (7.93)

which means that, recalling (7.79), x and y may be rewritten as

x =
∞∑

i=1
xi , y =

∞∑
i=1

yi . (7.94)

We now show that there is a recursive relationship between the {xi } and the {yi }. We firstly
rewrite xi by conditioning on the value of Hi−1. In particular, recalling that ∩i

j=1R j =
{N > i }, we have

xi = E
[

Hi

i∏
j=1

1R j

]
= E

[
Hi 1∩i

j=1R j

]
= E[

Hi 1{N>i }
]

.

Then, one may partition by conditioning on the value of Hi−1 in the following way:

{N > i −1} =⋃
h

{Hi−1 = h, N > i −1}.

We may then rewrite xi as

xi = E
[
Hi 1{N>i }

∣∣N ≤ i −1
]

P(N ≤ i −1)

+∑
h
E
[
Hi 1{N>i }

∣∣Hi−1 = h, N > i −1
] ·P(Hi−1 = h, N > i −1)

= 0+∑
h
E
[
Hi 1{N>i }

∣∣Hi−1 = h, N > i −1
] ·P(Hi−1 = h, N > i −1). (7.95)

We now focus on evaluating E
[
Hi 1{N>i }

∣∣Hi−1 = h, N > i −1
]
. We do this for h > 0, as this

is the only relevant range in the above formula. We firstly notice that this expression may
be rewritten as

E
[
Hi 1{N>i }

∣∣Hi−1 = h, N > i −1
]= E[

Hi

i∏
j=1

1R j

∣∣Hi−1 = h,∩i−1
j=1R j

]
= E

[
Hi 1Ri

∣∣Hi−1 = h,∩i−1
j=1R j

]
= E[

Hi 1Ri

∣∣Hi−1 = h
]

, (7.96)

where to obtain the final equality we have used the Markovian property of the system:
given the information that Hi−1 = h > 0, this is sufficient to understand the future behavior
{Hk }k≥i . This follows from the fact that {Hi } is a Markov chain.

Recall that Ri is the event where the i th jump time is due to a purification round
succeeding. Given that in the above expression we are conditioning on the value Hi−1,
the random variables on which Hi depends are therefore the time Si until the next round
of purification, and the number of links Li that are used for this purification (recalling
that this number determines which purification protocol is used). We must therefore take
the expectation over these two random variables.
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Definition 7.11. For i < N (the i -th successful purification round), let Li be the number of
links that were produced in the bad memories just before time Ti .

We then expand the expectation (7.96) to condition on the values taken by Si and Li :

E
[
Hi 1Ri

∣∣Hi−1 = h
]=∑

t ,k
E
[
Hi 1Ri

∣∣Hi−1 = h,Si = t ,Li = k,Ri
] ·P(Si = t ,Li = k,Ri |Hi−1 = h)

=∑
t ,k

J̃k
(
e−Γt h

) ·P(Si = t ,Li = k,Ri |Hi−1 = h), (7.97)

where, recalling (7.66), J̃k is the jump function corresponding to the (k +1)-to-1 purifica-
tion protocol from our purification policy. To evaluate (7.97), it now remains to compute
the probability distribution in the weighted sum. We again condition, to find

P(Si = t ,Li = k,Ri |Hi−1 = h) =P(Ri |Ui ,Si = t ,Li = k, Hi−1 = h)

·P(Ui ,Si = t ,Li = k|Hi−1 = h)

=p̃k (e−Γt h) ·P(Ui ,Si = t ,Li = k|Hi−1 = h), (7.98)

where p̃k determines the probability of successful purification when employing the
(k +1)-to-1 protocol, recalling its definition in (7.67). Now, recalling the distribution of Si

from (7.72),

P(Ui , Si = t , Li = k|Hi−1 = h) =P(τ(i )
con > t , τ(i )

pur = t , Li = k)

=P(τ(i )
con > t ) ·P(τ(i )

pur = t , Li = k)

=(1−pcon)t · (1−q(1− (1−pgen)n))t−1

·q

(
n

k

)
pk

gen(1−pgen)n−k , (7.99)

where we have used the fact that τ(i )
pur and Li are independent of τ(i )

con.
Combining (7.97), (7.98) and (7.99) yields

E
[
Hi 1Ri

∣∣Hi−1 = h
]=∑

t ,k

(
n

k

)
J̃k

(
e−Γt h

)
p̃k

(
e−Γt h

) · (1−pcon)t

· (1−q(1− (1−pgen)n))t−1 ·q ·pk
gen(1−pgen)n−k

=∑
t ,k

(
n

k

)(
ak e−Γt h +bk

) · (1−pcon)t · (1−q(1− (1−pgen)n))t−1

·q ·pk
gen(1−pgen)n−k

=∑
t

(
ãe−Γt h + b̃

) · (1−pcon)t · (1−q(1− (1−pgen)n))t−1 ·q, (7.100)

where in the first step, we have made use of the expressions (7.66) and (7.67) that define
the purification jump function and success probability for the shifted fidelity. In the
second step, we have defined

ã =
n∑

k=1
ak ·

(
n

k

)
(1−pgen)n−k pk

gen, b̃ =
n∑

k=1
bk ·

(
n

k

)
(1−pgen)n−k pk

gen.
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Now, using the fact that (7.100) is a geometric series (starting from t = 1), we obtain

E
[
Hi 1Ri |Hi−1 = h

]= Ãh + B̃ , (7.101)

where

Ã = q(1−pcon)ã

eΓ− (
1−q +q

(
1−pgen

)n)
(1−pcon)

, B̃ = q(1−pcon)b̃

pcon +q
(
1− (

1−pgen
)n)

(1−pcon)
.

(7.102)
Combining (7.95) and (7.101), we may then write

xi =
∑
h

(Ãh + B̃) ·P(Hi−1 = h, N > i −1)

= Ã ·E[Hi−11N>i−1]+ B̃ ·P(N > i −1)

= Ãxi−1 + B̃ yi−1,

which is our first recursion relation for {xi } and {yi }. We now write down an analogous
recursion relation for yi . We use the same method as for the xi . In particular, using

yi = P(N > i ) = E [1N>i ] ,

we again expand the expectation while conditioning on the value of Hi−1 in a step analo-
gous to (7.95):

yi =
∑

h>0
E
[
1{N>i }|Hi−1 = h, N > i −1

] ·P(Hi−1 = h, N > i −1). (7.103)

In a step analogous to (7.96), we rewrite the conditional expectation as

E
[
1{N>i }|Hi−1 = h, N > i −1

]= E[
1Ri |Hi−1 = h

]
. (7.104)

We then expand the above with the distributions of Si and Li to obtain

E
[
1Ri |Hi−1 = h

]=∑
t ,k

1 ·P(Si = t ,Li = k,Ri |Hi−1 = h)

=∑
t ,k

1 · p̃k (e−Γt h)P(Ui ,Si = t ,Li = k|Hi−1 = h)

=∑
t ,k

1 ·
(

n

k

)
· p̃k (e−Γt h) · (1−pcon)t · (1−q(1− (1−pgen)n))t−1

·q ·pk
gen(1−pgen)n−k ,

where in the second step we have used (7.98) and in the last step we have again used the
conditional distribution in (7.99). Using again the definition for p̃k as given in (7.67), one
may simplify the above to obtain

E
[
1Ri |Hi−1 = h

]= ∑
t>0

(c̃e−Γt h + d̃) · (1−pcon)t · (1−q(1− (1−pgen)n))t−1 ·q, (7.105)
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where we have defined

c̃ =
n∑

k=1
ck ·

(
n

k

)
(1−pgen)n−k pk

gen, d̃ =
n∑

k=1
dk ·

(
n

k

)
(1−pgen)n−k pk

gen.

One may again use a geometric series to evaluate (7.105), to obtain

E
[
1Ri |Hi−1 = h

]= C̃ h + D̃ , (7.106)

where

C̃ = q(1−pcon)c̃

eΓ− (
1−q +q

(
1−pgen

)n)
(1−pcon)

, D̃ = q(1−pcon)d̃

pcon +q
(
1− (

1−pgen
)n)

(1−pcon)
.

(7.107)
Combining (7.103), (7.104) and (7.106) then yields

yi =
∑

h>0
(C̃ h + D̃) ·P(Hi−1 = h, N > i −1)

= C̃ ·E[
Hi−11{N>i−1}

]+ D̃ ·P (N > i −1)

= C̃ xi−1 + D̃ yi−1,

which completes our second recursion relation for the {xi } and {yi }. We now combine
these to find expressions for x and y . Given the initial values

x0 = E [H01N>0] = E [Hnew ·1] = Hnew

and
y0 = P(N > 0) = 1,

it follows that

x =
∞∑

i=1
(Ãxi−1 + B̃ yi−1) = Ã(x +Hnew)+ B̃(y +1)

y =
∞∑

i=1
(C̃ xi−1 + D̃ yi−1) = C̃ (x +Hnew)+ D̃(y +1).

We therefore have a linear system of equations for x and y , which may be written as(
x

y

)
=

(
Ã B̃

C̃ D̃

)(
x

y

)
+

(
ÃHnew + B̃

C̃ Hnew + D̃

)
, (7.108)

which has solution(
x

y

)
= 1

(1− Ã)(1− D̃)− B̃C̃

(
1− D̃ B̃

C̃ 1− Ã

)(
ÃHnew + B̃

C̃ Hnew + D̃

)
, (7.109)

providing us with the formulae for x and y . These may be simplified in the following way:

x = (1− D̃)(ÃHnew + B̃)+ B̃(C̃ Hnew + D̃)

(1− Ã)(1− D̃)− B̃C̃
=−Hnew + B̃ − D̃ Hnew +Hnew

(1− Ã)(1− D̃)− B̃C̃

y = C̃ (ÃHnew + B̃)+ (1− Ã)(C̃ Hnew + D̃)

(1− Ã)(1− D̃)− B̃C̃
=−1+ 1− Ã+ C̃ Hnew

(1− Ã)(1− D̃)− B̃C̃
,

which are in the final form for x and y , as given in (7.92).
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Proof of Theorems 7.1 and 7.2. We combine Lemmas 7.4, 7.5 and 7.6. From Lemma 7.4,
we recall that our performance metrics may be written in terms of properties of the first
cycle. From Lemma 7.5, we recall that these may be written in terms of x and y . Finally,
in Lemma 7.6 we have found formulae for x and y . In order to write down the availability,
we firstly combine (7.80) and (7.92), to find

E[Tocc] = E[TN ] = 1+ y

pcon +q(1−pcon)(1− (1−pgen)n)

= 1− Ã+ C̃ Hnew(
(1− Ã)(1− D̃)− B̃C̃

)
P̃

= 1− Ã+ C̃ (Fnew − 1
4 )(

(1− Ã)(1− D̃)− B̃C̃
)

P̃

where P̃ := pcon +q(1−pcon)(1− (1−pgen)n). This suffices to show Theorem 7.1.
In order to write down the average consumed fidelity, we combine (7.81) and (7.92),

to obtain

H
a.s.=

[
B̃ − D̃ Hnew +Hnew

] · [pcon +q
(
1− (

1−pgen
)n)

(1−pcon)
][

1− Ã+ C̃ Hnew
] · [eΓ− (

1−q
(
1− (

1−pgen
)n))

(1−pcon)
]

= q(1−pcon)(b̃ − d̃ Hnew)+Hnew
(
pcon +q

(
1− (

1−pgen
)n)

(1−pcon)
)

q(1−pcon)(c̃Hnew − ã)+eΓ− (
1−q

(
1− (

1−pgen
)n))

(1−pcon)

where we have used the formulae (7.102) and (7.107) for Ã, B̃ , C̃ , and D̃ . The above may
be rewritten as

H
a.s.=

q(1−pcon)(b̃ − d̃ Hnew)+Hnew

(
pcon +qp∗

gen(1−pcon)
)

q(1−pcon)(c̃Hnew − ã)+eΓ− (
1−qp∗

gen
)

(1−pcon)
(7.110)

=
[

pcon +q(1−pcon)
(
p∗

gen − d̃
)]

·Hnew +q(1−pcon)b̃[
q(1−pcon)c̃

] ·Hnew +eΓ−1+pcon +q(1−pcon)
(
p∗

gen − ã
) , (7.111)

where we have let p∗
gen = 1− (1−pgen)n be the effective probability of link generation. We

now convert the above to F . Recalling that Hnew = Fnew −1/4, it follows that

F = H + 1

4

a.s.=
[

pcon +q(1−pcon)
(
p∗

gen − d̃
)]

· (Fnew − 1
4 )+q(1−pcon)b̃[

q(1−pcon)c̃
] · (Fnew − 1

4 )+eΓ−1+pcon +q(1−pcon)
(
p∗

gen − ã
) + 1

4

=
[

pcon +q(1−pcon)
(
p∗

gen + c̃
4 − d̃

)]
·Fnew + 1

4

[
eΓ−1+q(1−pcon)

(−ã +4b̃ − c̃
4 + d̃

)]
[
q(1−pcon)c̃

] ·Fnew +eΓ−1+pcon +q(1−pcon)
(
p∗

gen − ã − c̃
4

) ,

which is our formula for the average consumed fidelity in terms of the system parameters,
as is given in Theorem 7.2.
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7.8. [APPENDIX] PURIFICATION COEFFICIENTS

Here, we discuss the values that the coefficients ak , bk , ck , and dk of a purification
protocol k are allowed to take. Note that these coefficients are in general functions of the
newly generated state, ρnew, although here we do not write this dependence explicitly for
brevity. Then, in Subsection 7.8.1, we provide explicit expressions for the coefficients of
the DEJMPS policy discussed in the main text.

The probability of success of the protocol is given by

pk (F ) = ck

(
F − 1

4

)
+dk , (7.112)

where the fidelity of the buffered state F can take values between 1/4 (fully depolarized
state) and 1 (perfect Bell pair). Since pk is a probability, we must enforce 0 ≤ pk ≤ 1. At
F = 1/4, this yields

0 ≤ dk ≤ 1. (7.113)

At F = 1, it yields

−4

3
dk ≤ ck ≤ 4

3
(1−dk ). (7.114)

Combining (7.113) and (7.114) yields

−4

3
≤ ck ≤ 4

3
. (7.115)

The jump function (output fidelity) of the protocol is given by

Jk (F ) = 1

4
+ ak

(
F − 1

4

)+bk

ck
(
F − 1

4

)+dk
. (7.116)

This output fidelity must also be between 1/4 (fully depolarized state) and 1 (perfect Bell
pair). This condition can be written as 0 ≤ ak

(
F − 1

4

)+bk ≤ 3
4 pk . At F = 1/4, this yields

0 ≤ bk ≤ 3

4
dk . (7.117)

Combining (7.117) and (7.113) yields

0 ≤ bk ≤ 3

4
. (7.118)

Similarly, the condition on the jump function at F = 1 can be written as

−4

3
bk ≤ ak ≤−4

3
bk +

3

4
ck +dk . (7.119)

Combining (7.119) with (7.113), (7.114), and (7.117), we find

−1 ≤ ak ≤ 1. (7.120)
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7.8.1. DEJMPS AND CONCATENATED DEJMPS POLICIES

As explained in the main text, the DEJMPS policy applies the well-known 2-to-1 DEJMPS
purification protocol [53] to the buffered link and one of the newly generated links (and
discarding the rest). This policy is given by the following purification coefficients:

ak = 1

6

(
5ρ00 +ρ11 +ρ22 −3ρ33

)
,

bk = 1

24

(
3ρ00 −3ρ11 −3ρ22 +5ρ33

)
,

ck = 2

3

(
ρ00 −ρ11 −ρ22 +ρ33

)
,

dk = 1

2

(
ρ00 +ρ11 +ρ22 +ρ33

)
,

(7.121)

∀k ∈ {1, ...,n}, where ρi i are the diagonal elements of ρnew in the Bell basis
{∣∣φ+〉

,
∣∣φ−〉

,∣∣ψ+〉
,
∣∣ψ−〉}

. Note that we define the Bell states as follows:∣∣φ+〉= |00〉+ |11〉p
2

,
∣∣φ−〉= |00〉− |11〉p

2
,
∣∣ψ+〉= |01〉+ |10〉p

2
,
∣∣ψ−〉= |01〉− |10〉p

2
. (7.122)

Regarding a concatenated or a nested DEJMPS policy, one can find the purification
coefficients by applying (7.121) recursively. For each round of DEJMPS, the coefficients
ρi i in (7.121) are the diagonal elements of the output state from the previous application
of DEJMPS. These diagonal elements are given by [53]

ρ00 =
σ00σ

′
00 +σ33σ

′
33

P
,

ρ11 =
σ00σ

′
33 +σ33σ

′
00

P
,

ρ22 =
σ11σ

′
11 +σ22σ

′
22

P
,

ρ33 =
σ11σ

′
22 +σ11σ

′
22

P
,

(7.123)

with P = (σ00 +σ33)(σ′
00 +σ′

33)+ (σ11 +σ22)(σ′
11 +σ′

22), where σi i and σ′
i i are the Bell

diagonal elements of the two input states, σ and σ′.

7.8.2. OPTIMAL BILOCAL CLIFFORD POLICY

In the main text, we compare the concatenated versions of the DEJMPS policy to the
optimal bilocal Clifford (optimal-bC) policy. When there is a buffered link in memory and
k new links are generated, the optimal-bC policy operates as follows:

• When k = 1, DEJMPS is applied, using the buffered link and the newly generated
link as inputs.

• When k > 1, the optimal k-to-1 purification protocol from ref. [95] is applied to all k
new links. Then, the resulting state is used for DEJMPS, together with the buffered
link. This is illustrated in Fig. 7.11b.
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The reason why we apply an optimal bilocal Clifford protocol followed by DEJMPS
is because these bilocal Clifford protocols have been shown to be optimal when the
input states are identical. Hence, they ensure that the second link used in the final
DEJMPS subroutine has maximum fidelity (see ref. [95] for a comparison of the output
fidelity using the optimal protocol versus concatenated DEJMPS). This combined protocol
(optimal k-to-1 followed by DEJMPS, Fig. 7.11b) is not necessarily the (k+1)-to-1 protocol
that yields the largest output fidelity. However, one would expect it to provide better
buffering performance than a simple concatenation of DEJMPS subroutines (Fig. 7.11a) –
nevertheless, in the main text we show that this intuition is incorrect.

Let us now show how to compute the purification coefficients ak , bk , ck , and dk of
the optimal-bC policy:

• When k = 1 new links are generated, the purification coefficients a1, b1, c1, and d1

are given by (7.121), as in the DEJMPS policy.

• When k > 1, we first apply the optimal bilocal Clifford protocol, which outputs a
state σk , with diagonal elements in the Bell basis σk,i i . The probability of success
of this subroutine is θk . Then, the state σk is used as input for a final DEJMPS
subroutine. Using (7.121), we obtain

ak = 1

6θk

(
5σk,00 +σk,11 +σk,22 −3σk,33

)
,

bk = 1

24θk

(
3σk,00 −3σk,11 −3σk,22 +5σk,33

)
,

ck = 2

3θk

(
σk,00 −σk,11 −σk,22 +σk,33

)
,

dk = 1

2θk

(
σk,00 +σk,11 +σk,22 +σk,33

)
.

(7.124)

In the example discussed in the main text, we consider n = 4. We also consider the
newly generated links to be Werner states [197] with fidelity Fnew, i.e.,

ρnew = Fnew
∣∣φ+〉〈

φ+∣∣+ 1−Fnew

3

∣∣φ−〉〈
φ−∣∣+ 1−Fnew

3

∣∣ψ+〉〈
ψ+∣∣+ 1−Fnew

3

∣∣ψ−〉〈
ψ−∣∣ .

(7.125)
Under these assumptions, the values of σk,00 (fidelity of the output state from the optimal
bilocal Clifford protocol) and θk are given explicitly in ref. [95]:

θ2 = 8

9
F 2

new − 4

9
Fnew + 5

9
,

θ3 = 32

27
F 3

new − 4

9
F 2

new + 7

27
,

θ4 = 32

27
F 4

new − 4

9
F 2

new + 4

27
Fnew + 1

9
,

(7.126)
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Figure 7.11: The optimal bilocal Clifford policy applies an optimal protocol followed by DEJMPS. Illustration
of two purification policies: (a) concatenated DEJMPS and (b) optimal bilocal Clifford.

σ2,00 = 1

θ2
·
(

10

9
F 2

new − 2

9
Fnew + 1

9

)
,

σ3,00 = 1

θ3
·
(

28

27
F 3

new − 1

9
Fnew + 2

27

)
,

σ4,00 = 1

θ4
·
(

8

9
F 4

new + 8

27
F 3

new − 2

9
F 2

new + 1

27

)
,

(7.127)

where Fnew is the fidelity of the newly generated Werner states. The rest of the diagonal
elements of σk can be found using the code provided in our repository1. For Fnew = 0.7,
which we use in the example from the main text, we have

σ2,11 = 0.20589

σ2,22 = 0.02941

σ2,33 = 0.02941

,


σ3,11 = 0.14287

σ3,22 = 0.03571

σ3,33 = 0.03571

and


σ4,11 = 0.04545

σ4,22 = 0.04545

σ4,33 = 0.04545

. (7.128)

The calculations from ref. [95] can also be used to obtain θk and σk for k > 4, al-
though their methods become infeasible for k > 8 due to the large computational cost, as
discussed in their paper.

7.9. [APPENDIX] BUFFERING WITH THE 513 EC POLICY

In this appendix, we compare the performance of a 1GnB system that uses a concatenated
DEJMPS policy to a system that uses the 513 EC policy. When there is a buffered link in
memory and k new links are generated, the 513 EC policy operates as follows:

• When k = 1, DEJMPS is applied, using the buffered link and the newly generated
link as inputs.

1https://github.com/AlvaroGI/buffering-1GnB; the code we provide to find the diagonal elements of σk is
based on the methods from ref. [95].

https://github.com/AlvaroGI/buffering-1GnB
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• When k = 5, the purification protocol based on the [[5,1,3]] quantum error-correcting
code [112] from ref. [173] is applied to all k new links. Then, the output state is
twirled into a Werner state (that is, it is transformed into Werner form while pre-
serving the fidelity) and used for DEJMPS, together with the buffered link.

• Otherwise, twice-concatenated DEJMPS is applied.

This policy is heavily based on twice-concatenated DEJMPS, with the main difference
being that, when k = 5, a different protocol is applied. Note that, when k = 5, we apply
some twirling after the purification step to be able to use the results reported in ref. [173],
where they provide the output fidelity and the success probability of the protocol but not
the full density matrix of the output state.

The purification coefficients of the 513 EC policy can be computed as follows:

• When k ̸= 5, this policy applies DEJMPS or concatenated DEJMPS. Hence, ak , bk ,
ck , and dk can be found as explained in Appendix 7.8.1.

• When k = 5, the purification coefficients are given by the output fidelity and proba-
bility of success of the 513 EC protocol reported in Figure 3 from ref. [173]. Since we
apply this protocol followed by twirling and DEJMPS, we can use (7.121) to compute
the purification coefficients of the whole protocol:

a5 = 1

6θ
(5σ00 +σ11 +σ22 −3σ33) ,

b5 = 1

24θ
(3σ00 −3σ11 −3σ22 +5σ33) ,

c5 = 2

3θ
(σ00 −σ11 −σ22 +σ33) ,

d5 = 1

2θ
(σ00 +σ11 +σ22 +σ33) ,

(7.129)

where σ is the output state of the 513 EC protocol after twirling: σ00 is the output
fidelity from the 513 protocol (reported in Figure 3 from ref. [173]), and σ11 =σ22 =
σ33 = (1−σ00)/3 (since we twirl the output state); and θ is the probability of success
of the 513 EC protocol (reported in Figure 3 from ref. [173]).

Figure 7.12 shows the performance of the 513 EC policy versus DEJMPS and twice-
concatenated DEJMPS. In this example, twice-concatenated DEJMPS also includes twirling
before the final round of DEJMPS, to make the comparison with the 513 EC policy fairer.
In Fig. 7.12a, we assume Fnew = 0.86 (according to Figure 3 from ref. [173], this corre-
sponds to θ = 0.869 and σ00 = 0.864), and in Fig. 7.12a, we assume Fnew = 0.95 (according
to Figure 3 from ref. [173], this corresponds to θ = 0.981 and σ00 = 0.978). Similar to the
optimal-bC policies discussed in the main text, we observe that the 513 EC policy can be
outperformed by DEJMPS, twice-concatenated DEJMPS, and replacement (Figure 7.12a).
In some parameter regions, the 513 EC may provide better performance (Figure 7.12b),
although this behavior may not be achievable experimentally, as it requires both large
pgen and large Fnew – in commonly used entanglement generation protocols, there is a
tradeoff between these two parameters, see, e.g., ref. [84].
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(a)

(b)

Figure 7.12: The 513 EC policy may perform better than DEJMPS when new links are generated with a very
large fidelity. Performance of 1GnB systems with different purification policies, in terms of availability A and
average consumed fidelity F . In (a), newly generated links are Werner states with fidelity Fnew = 0.86, while in (b)
we assume Fnew = 0.95. The shaded area corresponds to unattainable values of A and F (see (7.13) and (7.16)).
Replacement (star marker) and identity (square marker) policies provide maximum availability. Lines represent
the achievable values when using one of the following policies: DEJMPS (solid line), twice-concatenated DEJMPS
with twirling (dashed line), and 513 EC (dotted line). See main text for a detail explanation of these policies.
Parameter values used in this example: n = 5, pgen = 1, pcon = 0.1, and Γ= 0.02.
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7.10. [APPENDIX] MONOTONICITY OF THE AVAILABILITY

In this appendix, we show that the availability of the 1GnB system (given in Theorem 7.1)
is monotonically decreasing with increasing probability of purification q (Proposition 7.1).
This means that the availability is maximized when no purification is performed. If any
purification is performed, the availability can only decrease, until reaching its minimum
value at q = 1. Using these ideas, we compute upper and lower bounds for the availability
in Section 7.10.1 below.

Proof of Proposition 7.1. We start by taking the partial derivative of the availability:

∂A

∂q
= E[Tgen](

E[Tgen]+E[Tocc]
)2

∂E[Tocc]

∂q
, (7.130)

where we have used (7.8), (7.9), and (7.10). Since the first term in 7.130 is always positive,
the sign of ∂A/∂q is the same as the sign of ∂E[Tocc]/∂q . Hence, we only need to show
that ∂E[Tocc]/∂q ≤ 0. Next, we write E[Tocc] explicitly in terms of q :

E[Tocc] = ε+ε′q
δ+δ′q +δ′′q2 , (7.131)

where

ε := γ+pcon,

ε′ := (1−pcon)
(
p∗

gen − ã +Hnewc̃
)

,

δ := εpcon,

δ′ := (1−pcon)
(
γp∗

gen +2pconp∗
gen −pconã − (γ+pcon)d̃

)
,

δ′′ := (1−pcon)2
(
(p∗

gen)2 −p∗
genã −p∗

gend̃ + ãd̃ − b̃c̃
)

,

(7.132)

with γ := eΓ−1, p∗
gen := 1− (1−pgen)n and Hnew := Fnew − 1

4 . The derivative of E[Tocc] can
be written as

∂E[Tocc]

∂q
= ε

(
ε′pcon −δ′

)−2εδ′′q −ε′δ′′q2(
δ+δ′q +δ′′q2

)2 . (7.133)

To prove that ∂E[Tocc]/∂q ≤ 0, we will now show that all three terms in the numerator
are negative.

FIRST TERM FROM (7.133) - The first term can be expanded as follows:

ε
(
ε′pcon −δ′

)=−ε(1−pcon)
(
γ(p∗

gen − d̃)+pcon(p∗
gen − d̃ −Hnewc̃)

)
≥ 0, (7.134)

where, in the last step, we have used the following: (i ) 0 ≤ pcon ≤ 1, (i i ) γ := eΓ−1 ≥ 0,
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(i i i ) d̃ +Hnewc̃ ≤ p∗
gen, and (i v) d̃ ≤ p∗

gen. Inequality (i i i ) can be shown as follows:

d̃ +Hnewc̃ =
n∑

k=1
(dk +Hnewck )

(
n

k

)
(1−pgen)n−k pk

gen

≤
n∑

k=1

(
n

k

)
(1−pgen)n−k pk

gen

=
n∑

k=0

(
n

k

)
(1−pgen)n−k pk

gen − (1−pgen)n

= 1− (1−pgen)n = p∗
gen,

(7.135)

where we have used the definition of c̃ and d̃ from Theorem 7.1 and the fact that dk +
Hnewck ≤ 1 (this is the success probability of purification protocol k when the link in
memory has fidelity Fnew). Inequality (i v) can be shown in a similar way:

d̃ =
n∑

k=1
dk

(
n

k

)
(1−pgen)n−k pk

gen

≤
n∑

k=1

(
n

k

)
(1−pgen)n−k pk

gen

=
n∑

k=0

(
n

k

)
(1−pgen)n−k pk

gen − (1−pgen)n

= 1− (1−pgen)n = p∗
gen,

(7.136)

where we have used dk ≤ 1 (upper bound from (7.113)).

SECOND TERM FROM (7.133) - Regarding the second term in the numerator of (7.133),
we first note that, since pcon ≥ 0 and γ ≥ 0, then ε ≥ 0. Moreover, q ≥ 0 by definition.
Consequently, the second term in the numerator of (7.133) is negative if and only if δ′′ ≥ 0,
which in turn is equivalent to (p∗

gen)2 −p∗
genã −p∗

gend̃ + ãd̃ − b̃c̃ ≥ 0. This can be shown as
follows:

(p∗
gen)2 −p∗

genã −p∗
gend̃ + ãd̃ − b̃c̃

i≥ (p∗
gen)2 −p∗

genã −p∗
gend̃ + ãd̃ − b̃

4

3
(p∗

gen − d̃)

=
(

p∗
gen −

4

3
b̃ − ã

)
(p∗

gen − d̃)

ii≥ 0,

(7.137)

with these steps:

i. We use b̃ ≥ 0 (which follows from the lower bound in (7.118)) and c̃ ≤ (p∗
gen−d̃)/Hnew

(shown in (7.135)). This last inequality must hold for any Hnew ∈ [0,3/4], and
therefore c̃ ≤ 4(p∗

gen − d̃)/3.

ii. To show that the first factor is non-negative, we use ã+4b̃/3 ≤ d̃+Hnewc̃ ≤ p∗
gen. The

first inequality can be shown using the definitions of ã, b̃, c̃ , and d̃ from Theorem 7.1
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and the upper bound from (7.119); while the second inequality was shown in (7.135).
The second factor (p∗

gen − d̃) is also non-negative, as shown in (7.136).

THIRD TERM FROM (7.133) - Lastly, the third term in the numerator of (7.133) is
negative if and only if ε′ ≥ 0, since we just showed that δ′′ ≥ 0. Moreover, ε′ ≥ 0 ⇔
p∗

gen − ã +Hnewc̃ ≥ 0. The latter can be shown as follows:

p∗
gen − ã +Hnewc̃

i= p∗
gen +

n∑
k=1

(−ak +Hnewck )

(
n

k

)
(1−pgen)n−k pk

gen

ii≥ p∗
gen +

n∑
k=1

(
−

(
3

4
−Hnew

)
ck −dk

)(
n

k

)
(1−pgen)n−k pk

gen

iii≥ p∗
gen +

n∑
k=1

(
4

3
Hnew(1−dk )−1

)(
n

k

)
(1−pgen)n−k pk

gen

iv≥ p∗
gen −

n∑
k=1

(
n

k

)
(1−pgen)n−k pk

gen

v= 0,

(7.138)

with these steps:

i. We use the definitions of ã and c̃ from Theorem 7.1.

ii. We use ak ≤ 3ck /4+dk , which can be shown using the upper bound from (7.119) in
combination with the lower bound from (7.118).

iii. We use ck ≤ 4(1−dk )/3 (upper bound from (7.114)).

iv. We note that Hnew(1−dk ) ≥ 0, since Hnew ≥ 0 (by definition) and dk ≤ 1 (as shown
in (7.113)).

v. We recall the definition p∗
gen := 1− (1− pgen)n = ∑n

k=0

(n
k

)
(1− pgen)n−k pk

gen − (1−
pgen)n .

We have now shown that all three terms in the numerator of (7.133) are negative.
Therefore, ∂E[Tocc]/∂q ≤ 0 and, consequently, ∂A/∂q ≤ 0.

7.10.1. UPPER AND LOWER BOUNDING THE AVAILABILITY

Since ∂A/∂q ≤ 0, the availability is upper bounded by the value it takes when q = 0. From
(7.131), we have

E[Tocc]
∣∣

q=0 =
1

pcon
. (7.139)

Combining this with (7.8), we obtain

A ≤ A
∣∣

q=0 =
p∗

gen

p∗
gen +pcon

, (7.140)

with p∗
gen := 1− (1−pgen)n .
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To evaluate A at q = 1, we first use (7.8) and (7.131) to write it as follows:

A ≥ A
∣∣

q=1 =
p∗

genη

p∗
genη+∆

, (7.141)

with η := ε+ε′, ∆ := δ+δ′+δ′′, with ε,ε′,δ,δ′,δ′′ defined in (7.132).
The solution from (7.141) constitutes a lower bound for the availability. However, η

and ∆ implicitly depend on the parameters of the purification policy, ak , bk , ck , and dk ,
k ∈ {0, ...,n}. Next, we find a more general and meaningful lower bound that applies to any
purification policy.

We start by noting that

• ε≥ 0 (since pcon ≥ 0 and γ≥ 0),

• ε′ ≥ 0 (as shown in (7.138)),

• δ≥ 0 (since ε≥ 0),

• δ′ ≥ 0 (this can be shown using the fact that d̃ ≤ p∗
gen, shown in (7.136), and ã ≤ p∗

gen,
which can be shown in a similar way as (7.136) and using (7.120)),

• and δ′′ ≥ 0 (as shown in (7.137)).

As a consequence, none of the factors in (7.141) can be negative: p∗
gen ≥ 0 (by definition),

η≥ 0, and ∆≥ 0. This means that we can find a lower bound for A
∣∣

q=1 by lower bounding
η and upper bounding ∆. We first lower bound η:

η= γ+pcon + (1−pcon)
(
p∗

gen − ã +Hnewc̃
)
≥ γ+pcon, (7.142)

where we have used p∗
gen − ã +Hnewc̃ ≥ 0, which was shown in (7.138).

Regarding ∆, we proceed as follows:

∆=δ+δ′+δ′′

=(γ+pcon)pcon + (1−pcon)
(
(γ+2pcon)p∗

gen −pcon(ã + d̃)−γd̃
)

+ (1−pcon)2
(
(p∗

gen)2 −p∗
gen(ã + d̃)+ ãd̃ − b̃c̃

)
i≤(γ+pcon)pcon + (1−pcon)

(
γp∗

gen +2pconp∗
gen −pconã

)
+ (1−pcon)2

(
(p∗

gen)2 −p∗
genã + ãd̃ − b̃c̃

)
ii≤(γ+pcon)pcon + (1−pcon)

(
γp∗

gen +2pconp∗
gen +pconp∗

gen

)
+ (1−pcon)2

(
(p∗

gen)2 + (p∗
gen)2 + ãd̃ − b̃c̃

)
=(γ+pcon)pcon + (1−pcon)

(
γ+3pcon

)
p∗

gen + (1−pcon)2
(
2(p∗

gen)2 + ãd̃ − b̃c̃
)

iii≤(γ+pcon)pcon + (1−pcon)
(
γ+3pcon

)
p∗

gen + (1−pcon)2
(
2(p∗

gen)2 +p∗
gen

)
=(γ+pcon)pcon + (1−pcon)

(
1+γ+2pcon

)
p∗

gen +2(1−pcon)2(p∗
gen)2

(7.143)

with these steps:
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i. We use −(γ+ pcon)d̃ ≤ 0 and −p∗
gend̃ ≤ 0, which follows from d̃ ≥ 0 (shown in

(7.113)).

ii. Using the lower bound from (7.120) and following a similar derivation as in (7.136),
one can show that ã ≥−p∗

gen. This implies that −pconã ≤ pconp∗
gen and −p∗

genã ≤
(p∗

gen)2.

iii. We use ãd̃ − b̃c̃ ≤ p∗
gen. This can be shown as follows:

ãd̃ − b̃c̃ ≤−4

3
b̃d̃ + 3

4
c̃ d̃ + d̃ 2 − b̃c̃ ≤−4

3
b̃d̃ + (1− d̃)d̃ + d̃ 2 − b̃c̃ ≤ d̃ ≤ p∗

gen, (7.144)

where we have used the upper bound from (7.119) in the first step; d̃ ≥ 0 (see (7.113))
and the upper bound from (7.114) in the second step; b̃ ≥ 0 (see (7.118)) and the
lower bound from (7.114) in the third step; and (7.136) in the last step.

Lastly, combining (7.141) with the bounds from (7.142) and (7.143), we obtain

A ≥ A
∣∣

q=1 =
p∗

genη

p∗
genη+∆

≥
p∗

gen

(
γ+pcon

)
ξ+ξ′p∗

gen +ξ′′(p∗
gen)2 , (7.145)

with ξ := γpcon +p2
con, ξ′ := 1+2γ+ (2−γ)pcon −2p2

con, and ξ′′ := 2(1−pcon)2. This lower
bound is general and applies to every 1GnB system, no matter which purification policy
it employs.

7.11. [APPENDIX] MONOTONICITY OF THE AVERAGE CONSUMED

FIDELITY

In this appendix, we show that the average consumed fidelity of the 1GnB system (given
in Theorem 7.2) is monotonically increasing with increasing probability of purification q
(Proposition 7.2), as long as the purification policy is made of protocols that can increase
the fidelity of newly generated links (i.e., Jk (Fnew) ≥ Fnew, ∀k ∈ {1, ...,n}). This means that
the average consumed fidelity is maximized when purification is performed every time a
new link is generated (q = 1). Using these ideas, we compute upper and lower bounds for
the average consumed fidelity in Section 7.11.1.

Proof of Proposition 7.2. Recalling from (7.69) that F = H+1/4, showing the monotonicity
of H is equivalent to showing the monotonicity of F . We firstly rewrite the formula for H
as given in (7.110),

H =
q(1−pcon)

[
b̃ − d̃ Hnew +Hnewp∗

gen

]
+Hnewpcon

q(1−pcon)
[
c̃Hnew − ã +p∗

gen
]+eΓ−1+pcon

,

where p∗
gen = 1− (1−pgen)n . Now consider functions of the form g (x) = αx+β

γx+δ . This is
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non-decreasing if and only if

dg

dx
= αδ−βγ

(γx +δ)2 ≥ 0

⇔αδ−βγ≥ 0.

We therefore see that H is non-decreasing in q if and only if

(1−pcon)
([

b̃ − d̃ Hnew +Hnewp∗
gen

]
(eΓ−1+pcon)−Hnewpcon

[
c̃Hnew − ã +p∗

gen

])
≥ 0,

or equivalently

(eΓ−1)
(
b̃ − d̃ Hnew +Hnewp∗

gen

)
+pcon

(
b̃ − d̃ Hnew − c̃H 2

new + ãHnew
)≥ 0 (7.146)

We now show this by considering the two parts of the expression:

(a) b̃ − d̃ Hnew +Hnewp∗
gen ≥ 0

Recall that the jump functions J̃k map the shifted fidelity h as

J̃k (h) = ak h +bk

ck h +dk
. (7.147)

When the input state is completely mixed (h = 0), the probability of successful
purification is

p̃k (0) = dk ,

and so we must have 0 ≤ dk ≤ 1. If dk > 0, the output fidelity when inputting a
completely mixed state then satisfies

J̃k (0) = bk

dk
≥ 0

which implies b ≥ 0. If d = 0, the output fidelity as the input state approaches the
completely mixed state is

lim
h→0

ak h +bk

ck h
,

and since this is bounded, it must be the case that b = 0. Therefore,

b̃ =
n∑

k=1
bk ·

(
n

k

)
(1−pgen)n−k pk

gen ≥ 0

and

d̃ =
n∑

k=1
dk ·

(
n

k

)
(1−pgen)n−k pk

gen

≤
n∑

k=1

(
n

k

)
(1−pgen)n−k pk

gen = 1− (1−pgen)n = p∗
gen.

Combining the above, we obtain

b̃ − d̃ Hnew +Hnewp∗
gen ≥ Hnew(p∗

gen − d̃) ≥ 0.
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(b) b̃ − d̃ Hnew − c̃H 2
new + ãHnew ≥ 0

We have that

b̃ − d̃ Hnew − c̃H 2
new + ãHnew =

n∑
k=1

(
n

k

)
(1−pgen)n−k pk

gen

· (bk −dk Hnew − ck H 2
new +ak Hnew)

=
n∑

k=1

(
n

k

)
(1−pgen)n−k pk

gen

·
(

ak Hnew +bk

ck Hnew +dk
−Hnew

)
(ck Hnew +dk )

=
n∑

k=1

(
n

k

)
(1−pgen)n−k pk

gen

· ( J̃k (Hnew)−Hnew
) · p̃k (Hnew),

which is non-negative if all jump functions J̃k satisfy

J̃k (Hnew) ≥ Hnew,

or equivalently Jk (Fnew) ≥ Fnew Since Γ≥ 0, we therefore see that (7.146) holds.

7.11.1. UPPER AND LOWER BOUNDING THE AVERAGE CONSUMED FIDELITY

Here, we only consider purification policies made of protocols that can increase the
fidelity of newly generated links (i.e., Jk (Fnew) ≥ Fnew, ∀k ∈ {1, ...,n}). For these policies,
∂F /∂q ≥ 0. A tight lower bound can be found by setting q = 0 in (7.11):

F ≥ F
∣∣

q=0 =
γ/4+Fnewpcon

γ+pcon
, (7.148)

where γ := eΓ−1.
An upper bound for F can be found by upper bounding it maximum value, which

occurs at q = 1. Using (7.110), we can write the maximum value as

F
∣∣

q=1 =
1

4
+

(1−pcon)(b̃ − d̃ Hnew)+Hnew

(
pcon +p∗

gen(1−pcon)
)

(1−pcon)(c̃Hnew − ã)+γ+pcon + (1−pcon)p∗
gen

, (7.149)

where p∗
gen = 1− (1−pgen)n . Using (7.117) and (7.136), it can be shown that b̃ − d̃ Hnew ≤

p∗
gen(3/4− Hnew). Moreover, from (7.138), we know that Hnewc̃ − ã ≥ −p∗

gen. Applying
these two inequalities to (7.149), we find the upper bound:

F ≤ F
∣∣

q=1 ≤
1

4
+

Hnewpcon + (3/4)(1−pcon)p∗
gen

γ+pcon
= γ/4+Fnewpcon

γ+pcon
+ 3

4

(1−pcon)p∗
gen

γ+pcon
.

(7.150)
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7.12. [APPENDIX] CONCATENATED PURIFICATION

In this appendix, we discuss further features of 1GnB buffers that use concatenated
purification policies. In 7.12.1, we consider different orderings for the purification sub-
routines that are being concatenated. In 7.12.2, we show that increasing the number of
concatenations is beneficial when noise in memory is very strong.

7.12.1. DIFFERENT CONCATENATION ORDERINGS

As stated in the main text, we tested different orderings of the concatenated purification
subroutines. In Figure 7.5, we showed two different orderings for a concatenated DEJMPS
policy: sequentially concatenated DEJMPS and nested DEJMPS. Here, we consider a
policy that applies a nested DEJMPS protocol to all the newly generated links, and then
uses the output state to purify the link in memory with a final round of DEJMPS. This
policy is only defined when the number of links generated is a power of 2. Hence, we
assume n = 4 bad memories and deterministic entanglement generation (pgen = 1) in
the following example. Figure 7.13 shows the performance of this policy compared to
concatenated versions of DEJMPS (in which DEJMPS is applied sequentially to all links, as
shown in Figure 7.5a). The performance of all policies shown is qualitatively similar. We
also observe that, in this case, nesting is better than concatenating as much as possible,
but it is worse than concatenating twice.
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Figure 7.13: Different concatenation orderings seem to yield qualitatively similar performance. Performance
of 1GnB systems with different purification policies, in terms of availability A and average consumed fidelity F .
The shaded area corresponds to unattainable values of A and F (see (7.13) and (7.16)). Lines and markers show
the combinations of A and F achievable by different purification policies: identity (square marker), replacement
(star marker), DEJMPS (solid line), twice-concatenated DEJMPS (dashed line), thrice-concatenated DEJMPS
(dotted-dashed line), and nested DEJMPS (orange dotted line). Parameter values used in this example: n = 4,
pgen = 1, Fnew = 0.7 (ρnew is a Werner state), pcon = 0.1, and Γ= 0.02.
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7.12.2. INCREASING NUMBER OF CONCATENATIONS

In the main text, we showed that using some newly generated entangled links in the
purification protocol and discarding the rest may provide a better buffering performance
than implementing a more complex protocol that uses all the newly generated links.
In particular, we showed that increasing the maximum number of concatenations in a
concatenated DEJMPS policy does not necessarily lead to better performance. The reason
was that, as we increase the number of concatenations, the overall probability of success
of the protocol decreases. Nevertheless, this effect is irrelevant when noise is strong: the
quality of the buffered entanglement decays so rapidly that we need a protocol that can
compensate noise with large boosts in fidelity, even if the probability of failure is large.
This is shown in Figure 7.14, where we display the maximum average consumed fidelity
(i.e., assuming purification probability q = 1, see Proposition 7.2) versus the number of
concatenations. When no purification is applied (zero concatenations), F is below 0.5,
meaning that the good memory stores no entanglement, on average (see Section 6.10.3).
As we increase the number of concatenations in the purification protocol, F increases,
although the increase is marginal. Note that this is a consequence of the strong noise
experienced by the buffered entanglement – in Figure 7.7 we showed the same plot but
considering a lower noise level and the conclusions were different: increasing the number
of concatenations eventually led to a decrease in average consumed fidelity.
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Figure 7.14: Additional concatenation may improve the performance when noise is strong. Maximum average
consumed fidelity F achieved by a purification policy that concatenates DEJMPS a limited number of times.
Zero concatenations corresponds to an identity policy (no purification is performed). One concatenation
corresponds to the DEJMPS policy. Parameter values used in this example: n = 10, pgen = 0.5, Fnew = 0.9 (ρnew
is a Werner state), pcon = 0.1, and Γ= 0.2.

CODE AVAILABILITY

The code used to perform the analysis and generate all the plots shown in this chapter
can be found in the following GitHub repository: https://github.com/AlvaroGI/buffering-
1GnB. This repository also includes a discrete-event simulator of a 1GnB system that we

https://github.com/AlvaroGI/buffering-1GnB
https://github.com/AlvaroGI/buffering-1GnB
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used to validate our analytical results.
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CONCLUSIONS

In this dissertation, we aimed to guide engineering efforts, through theoretical insights,
towards practical entanglement distribution in quantum networks. Over the course of our
research, we learned important lessons. The following results are of particular relevance,
as they offer crucial guidance for quantum network design and naturally give rise to
research directions that could play a fundamental role in advancing the field in the near
future.

• Optimal strategies for entanglement distribution in simplified settings serve as
valuable benchmarks for assessing more realistic strategies constrained by practical
limitations. The methods and results from Chapter 2 are particularly useful for
benchmarking entanglement distribution policies in quantum repeater chains.
However, the computational cost of algorithms for finding optimal policies can be
prohibitive. For example, the complexity of the algorithms used in Chapter 2 grows
exponentially with the number of repeaters in the chain. Consequently, finding
optimal policies in complex quantum networks may require alternative methods,
such as reinforcement learning [175], which, despite not guaranteeing optimality,
can yield sufficiently good solutions. This approach has gained increasing attention
in recent years (see, e.g., refs. [78, 117, 156]).

• In Chapter 3, we discuss how to employ one-way quantum repeaters and a quan-
tum circuit switching approach to meet entanglement needs over metropolitan
distances. While the alternative strategy – quantum packet switching – has been ex-
plored in the literature [54], an in-depth quantitative comparison between circuit
switching and packet switching in quantum networks remains an open ques-
tion, to the best of our knowledge. This is a necessary step to determine the most
effective way of operating a network of one-way quantum repeaters.

• In some parameter regimes, protocols for continuous entanglement distribution
are able to meet entanglement requests at a much faster rate than on-demand
strategies, as discussed in Chapter 5. However, this type of protocol may also lead

239
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to a waste of entangled states: if entanglement is distributed much earlier than
needed, it will degrade due to decoherence and may need to be discarded. Con-
sequently, continuous distribution is often overlooked in favor of less wasteful
on-demand schemes. This concern is particularly valid given that state-of-the-art
quantum technologies are costly and shared entangled states are highly valuable.
Looking ahead, we hope that the cost of entanglement distribution will decrease
as technology matures, and therefore we encourage the community to consider
continuous-distribution protocols as a viable alternative that can provide en-
hanced performance at the expense of wasting some entanglement.

• Lastly, we expect our work on entanglement buffers to open new avenues towards
efficient entanglement-distribution in larger networks, as they allow users to dis-
tribute entanglement in advance and keep it protected from time-dependent noise
by continuously applying purification subroutines. The closed-form solutions
found in Chapter 7 for the performance of purification-based buffers are par-
ticularly relevant, as they can be evaluated with negligible computational cost
across all parameter regimes. This enables seamless integration of entanglement
buffers into the study of complex systems, from quantum computing clusters to
continental-scale quantum networks.

We would like to conclude this dissertation with a short reflection on the societal relevance
of our work. Large part of our contributions aims to enable networking applications that
require entanglement shared among remote parties, such as cryptographic primitives [12,
59], protocols for distributed quantum computing [26, 46], and distributed quantum
sensing experiments [74, 152, 202]. Consequently, the long-term impact of our results
will only become clear as quantum technologies mature and we agree on the relevance
of such applications. This process will not only depend on scientific and technological
considerations but also on the needs and values of a rapidly evolving society.
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