<]
TUDelft

Delft University of Technology

On the “Naturalness” of Buggy Code

Ray, Baishakhi; Hellendoorn, Vincent; Godhane, Saheel; Tu, Zhaopeng; Bacchelli, Alberto; Devanbu,
Premkumar

DOI
10.1145/2884781.2884848

Publication date
2016

Document Version
Accepted author manuscript

Published in
Proceedings - 2016 IEEE/ACM 38th IEEE International Conference on Software Engineering Companion,
ICSE 2016

Citation (APA)

Ray, B., Hellendoorn, V., Godhane, S., Tu, Z., Bacchelli, A., & Devanbu, P. (2016). On the “Naturalness” of
Buggy Code. In Proceedings - 2016 IEEE/ACM 38th IEEE International Conference on Software
Engineering Companion, ICSE 2016 (Vol. 1, pp. 428-439). IEEE. https://doi.org/10.1145/2884781.2884848

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1145/2884781.2884848
https://doi.org/10.1145/2884781.2884848

On the “Naturalness” of Buggy Code

Baishakhi Ray*"
Zhaopeng Tu®

SUniversity of Virginia
rayb@virginia.edu

Vincent Hellendoornt”
Alberto Bacchellit

tUniversity of California, Davis
{vjhellendoorn,srgodhane,ptdevanbu } @ucdavis.edu

Saheel Godhanet
Premkumar Devanbuf

“Huawei Technologies Co. Ltd.
tuzhaopeng @gmail.com

Delft University of Technology
A.Bacchelli @tudelft.nl

ABSTRACT

Real software, the kind working programmers produce by the kKLOC
to solve real-world problems, tends to be “natural”, like speech or
natural language; it tends to be highly repetitive and predictable.
Researchers have captured this naturalness of software through sta-
tistical models and used them to good effect in suggestion engines,
porting tools, coding standards checkers, and idiom miners. This
suggests that code that appears improbable, or surprising, to a good
statistical language model is “unnatural” in some sense, and thus
possibly suspicious. In this paper, we investigate this hypothesis.
We consider a large corpus of bug fix commits (ca. 7,139), from 10
different Java projects, and focus on its language statistics, evaluat-
ing the naturalness of buggy code and the corresponding fixes. We
find that code with bugs tends to be more entropic (i.e. unnatural),
becoming less so as bugs are fixed. Ordering files for inspection
by their average entropy yields cost-effectiveness scores compara-
ble to popular defect prediction methods. At a finer granularity,
focusing on highly entropic lines is similar in cost-effectiveness
to some well-known static bug finders (PMD, FindBugs) and or-
dering warnings from these bug finders using an entropy measure
improves the cost-effectiveness of inspecting code implicated in
warnings. This suggests that entropy may be a valid, simple way
to complement the effectiveness of PMD or FindBugs, and that
search-based bug-fixing methods may benefit from using entropy
both for fault-localization and searching for fixes.

1. INTRODUCTION

Our work begins with the observation by Hindle et al [22], that
“natural” code in repositories is highly repetitive, and that this rep-
etition can be usefully captured by language models originally de-
veloped in the field of statistical natural language processing (NLP).
Following this work, language models have been used to good ef-
fect in code suggestion [22, 48, 53, 15], cross-language porting [38,
37, 39, 24], coding standards [2], idiom mining [3], and code de-
obfuscation [47]. Since language models are useful in these tasks,

*Baishakhi Ray and Vincent Hellendoorn are both first authors, and
contributed equally to the work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ICSE 16, May 14 - 22, 2016, Austin, TX, USA

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3900-1/16/05. .. $15.00

DOIL: http://dx.doi.org/10.1145/2884781.2884848

they are capturing some property of how code is supposed to be.
This raises an interesting question: What does it mean when a code
[fragment is considered improbable by these models?

Language models assign higher naturalness to code (tokens, syn-
tactic forms, efc.) frequently encountered during training, and lower
naturalness to code rarely or never seen. In fact, prior work [7]
showed that syntactically incorrect code is flagged as improbable
by language models. However, by restricting ourselves to code that
occurs in repositories, we still encounter unnatural, yet syntacti-
cally correct code; why? We hypothesize that unnatural code is
more likely to be wrong, thus, language models actually help zero-
in on potentially defective code.

This notion appears plausible; highly experienced programmers
can often intuitively zero-in on “funny-looking" code, when trying
to diagnose a failure. If statistical language models could capture
this capability, then they could be a useful adjunct in a variety of
settings: they could improve defect prediction; help provide an im-
proved priority ordering for static analysis warnings; improve the
performance of fault-localization algorithms; or even recommend
“more natural” code to replace buggy code.

To investigate this phenomenon, we consider a large corpus of
7,139 bug fix commits from 10 different projects and focus on its
language statistics, evaluating the naturalness of defective code and
whether fixes increase naturalness. Language models can rate prob-
abilities of linguistic events at any granularity, even at the level of
characters. We focus on line-level defect analysis, giving far finer
granularity of prediction than typical statistical defect prediction
methods, which most often operate at the granularity of files or
modules. In fact, this approach is more commensurate with static
analysis or static bug-finding tools, which also indicate potential
bugs at line-level. For this reason, we also investigate our lan-
guage model approach in contrast and in conjunction with two well-
known static bug finders (namely, PMD [10] and FindBugs [14]).

Overall, our results corroborate our initial hypothesis that code
with bugs tends to be more unnatural. In particular, the main find-
ings of this paper are:

1. Buggy code is rated as significantly more “unnatural” (im-
probable) by language models.

2. This unnaturalness drops significantly when buggy code is
replaced by fix code.

3. Furthermore, we find that above effects are substantially stron-

ger when:
o the buggy code fragment is shorter (fewer lines), and

o the bug is “short-lived", viz. more quickly fixed.
4. Using cost-sensitive measures, inspecting “unnatural” code

indicated by language models works quite well: Performance
is comparable to that of static bug finders FindBugs and PMD.

5. Ordering warnings produced by the FindBugs and PMD tools,
using the “unnaturalness” of associated code, significantly
improves the performance of these tools.

Our experiments are mostly done with Java projects, but we
have strong empirical evidence indicating that the first two find-
ings above generalize to C as well; we hope to confirm the rest in
future work.

2. BACKGROUND

Our main goal is evaluating the degree to which defective code
appears “unnatural” to language models and the extent to which
this can enable programmers to zero-in on bugs during inspections.
Furthermore, if language models can help pinpoint buggy lines, we
want to identify how their performance and applicability relate to
commonly used fault-detection methods. To this end, we explore
the application of language models, first to file-level defect pre-
diction (comparing with statistical defect prediction methods) and
then to line-level defect prediction, comparing their performance
with popular Static Bug Finders (SI3F). In this section, we present
the relevant technical background and the main research questions.

2.1 Language Modeling

Language models assign a probability to every sequence of words.

Given a code token sequence S = tita...tn, a language model
estimates the probability of this sequence occurring as a product of
a series of conditional probabilities for each token’s occurrence:

N
P(S) = P(t1) - [P(tiltr, ..., tio1) 1)
=2

P(t;|t1,...,ti—1) denotes the chance that the token ¢; follows
the previous tokens, the prefix, h = t1,...,t;—1. The probabilities
are impractical to estimate, due to the huge number of possible
prefixes. A common fix is the ngram language model, using the
Markov assumption to condition just on the preceding n — 1 tokens.

Prgram(ti|h) = P(tilti—nt1,...,tiz1) 2

This we estimate from the training corpus as the fraction of times
that t; follows the prefix t;—n+1,...,ti—1. This is reversible: we
can also compute each token given its suffix (the subsequent to-
kens). We compute entropies based on both prefix and suffix token
sequences to better identify the buggy lines (Section 3.3).

The ngram language models can effectively capture the regu-
larities in source code and have been applied to code suggestion
tasks [22, 2]. Tu et al. [53] improved such language models by
considering that software tends to be repetitive in a local context.
They introduced a cache language model ($gram) that deploys an
additional cache-list of ngrams extracted from the local context,
to capture the local regularities. The ngrams extracted from each
file under test form its local context in the cache model. We use
the state of the art $gram to judge the “improbability” (measured
as cross-entropy) of lines of code.

2.2 Line-level defect detection: SBF

Static Bug-Finders (SBF) use syntactic and semantic proper-
ties of source code to locate common errors, such as null pointer
dereferencing and buffer overflows. They rely on methods rang-
ing from informal heuristic pattern-matching to formal algorithms
with proven properties; they typically report warnings at build time.
Most of the pattern-matching tools [10, 14, 13, 9] require users to
specify the buggy templates. Others [51, 32] can automatically
infer rules by mining existing software; they raise warnings if vi-
olations of the rules occur. Most (e.g., PMD and FindBugs) are

unsound, yet fast and widely used, compared to more formal ap-
proaches. Generally, SBF produce false positives and false nega-
tives, which reduce their cost-effectiveness [23, 26].

Both SBF and our model (fairly imperfectly) indicate potential
defect locations; our goal is to compare these approaches and see
whether they can be combined.

2.3 Evaluating Defect Predictions

We take the simplified view that SBF and $gram are compara-
ble, in that they both select suspicious lines of code for manual re-
view. We therefore refer to language model based bug prediction as
NBF (“Naturalness Bug Finder"). With either SBF or NBF, hu-
man code review effort, spent on lines identified as bug-prone, will
hopefully find some defects. Comparing the two approaches re-
quires a performance measure. We adopt a cost-based measure that
has become standard: AUCEC (Area Under the Cost-Effectiveness
Curve) [4]. Like ROC, AUCEC is a non-parametric measure that
does not depend on the defects’ distribution. AUCEC assumes that
cost is inspection effort and payoff is the number of bugs found.

Given a model (SBF or NBF) that predicts buggy lines, we rank
all the lines in decreasing order of their defect-proneness score.
Thus, the best possible model would place the buggiest lines at
the top of the list. This approach helps reviewers to inspect a
smaller portion of code (i.e. cost), while finding a disproportion-
ately larger fraction of defects (i.e. payoff). We normalize both cost
and payoff to 100% and visualize the improvement that a predic-
tion model provides when compared against a random guess using a
‘lift-chart’ [55]. In this chart, cost (on the x-axis) refers to the per-
centage of the code-base inspected at prediction time, and payoff
(on the y-axis) indicates the portion of the known bugs (discovered
by data gathering) already in the code, that are covered by warned
lines. AUCEC is the area under this curve. Under uniform bug dis-
tribution across SLOC, inspecting x% of lines of code at random
will, in expectation, also yield x% of the bugs, i.e., random selec-
tion produces a diagonal line on the lift chart. The corresponding
AUCEC when inspecting 5% of lines at random is 0.00125".

Inspecting 100% of SLOC in a project is probably unrealistic.
Prior research has assumed that 5% (sometimes 20%) of the code
could realistically be inspected under deadline [44]. Additionally,
Rahman et al. compare SBF with DP (a file level statistical defect
predictor) by allowing the number warnings from SBF to set the
inspection budget (denoted AUCECL) [43]. They assign the DP
the same budget and compare the resulting AUCEC scores. We
extend this approach to our comparison of SBF and NBF. To
understand how NBF’s payoff varies with cost, we first measure
its performance for both 5% and 20% inspection budget. We then
compare AUCECs of NBF and SBF at both the 5% budget and
under AUCECL budget.

Finally, we investigate defect prediction performance under sev-
eral credit criteria. A prediction model is awarded credit, ranging
from O to 1, for each (ipso facto eventually) buggy line flagged as
suspicious. Previous work by Rahman et al. has compared SBF
and DP models using two types of credit: full (or optimistic) and
partial (or scaled) credit [43], which we adapt to line level defect
prediction. The former metric awards a model one credit point for
each bug iff at least one line of the bug was marked buggy by the
model. Thus, it assumes that a programmer will spot a bug as soon
as one of its lines is identified as such. Partial credit is more con-
servative: for each bug, the credit is awarded in proportion to the
fraction of the bug’s defective lines that the model marked. Hence,

!Calculated as 0.5 * 0.05 * 0.05. This could be normalized dif-
ferently, but we consistently use this measurement, so our compar-
isons work.

Table 1: Summary data per project used in Phase-I

Ecosystem Project Description Study Period #Files NCSL #Unique bug-fixes

Atmosphere Web socket framework Oct-11 to Oct-12 4,073 427,901 664

Elasticsearch Distributed search engine Jul-14 to Jul-15 30,977 5,962,716 498

Github Facebook-and- Android SDK for Dec-11 to Dec-12 1,792 172,695 71
roid-sdk (facebook) Facebook application

Netty Network application framework ~ Aug-12 to Aug-13 8,618 1,078,493 530

Presto SQL query engine Jul-14 to Jul-15 10,769 2,869,799 346

Derby Relational database Jul-06 to Jul-07 7,332 6,053,966 1,352

Lucene Text search engine library Jan-12 to Jan-13 29,870 7,172,714 1,639

Apache OpenJPA Java Persistence API Jul-09 to Jul-10 3,849 4,869,620 567

Qpid Messaging system Apr-14 to Apr-15 7,350 4,665,159 277

Wicket Web framework Jul-10 to Jul-11 9,132 2,070,365 1,189

Overall Sep-01 to Jul-14 113,762 35,343,428 7,139

partial credit assumes that the probability of a developer finding
a bug is proportional to the portion of the bug that is marked by
the model. It should be noted the AUCEC is non-parametric under
partial credit, but not under full credit, as it depends on the de-
fect distribution; however we get the same overall result under both
regimes.

2.4 Research Questions

Our central question is whether “unnaturalness” (measured as
entropy, or improbability) indicates poor code quality. The abun-
dant history of changes (including bug fixes) in OSS projects allows
the use of standard methods [50] to find code that was implicated
in bug fixes (“buggy code”).

RQ1. Are buggy lines less “natural” than non-buggy lines?

Project histories contain many bug fixes, where buggy code is
modified to correct defects. Do language models rate bug-fix code
as more natural than the buggy code that was replaced (i.e., was bug
fix code rated more probable than the buggy code)? Such a finding
would also have implications for automatic, search-based bug re-
pair: if fixes tend to be more probable, then a good language model
might provide an effective organizing principle for the search, or (if
the model is generative) even generate possible candidate repairs.

RQ2. Are buggy lines less “natural" than bug-fix lines?

Even if defective lines are indeed more often rated improbable
by language models, this may be an unreliable indicator; there may
many be false positives (correct lines marked improbable) and false
negatives (buggy lines indicated as natural). Therefore, we investi-
gate whether naturalness (i.e. entropy) can provide a good ordering
principle for directing inspection.

RQ3. Is “naturalness" a good way to direct inspection effort?

One can view ordering lines of code for inspection by ‘natural-
ness’ as a sort of defect-prediction technique; we are inspecting
lines in a certain order, because prior experience suggests that cer-
tain code is very improbable and thus possibly defective. Tradi-
tional defect-prediction techniques typically rely on historical pro-
cess data (e.g., number of authors, previous changes or bugs); how-
ever, defectiveness is predicted at the granularity of files (or meth-
ods). Thus, we may reasonably compare naturalness as an ordering
principle with SBF, which provide warnings at the line level.

RQ4. How do SBF and NBF compare in terms of ability to
direct inspection effort?

Finally, if SBF provides a warning on a line and it appears un-
natural to a language model, we may expect that this line is even
more likely a mistake. We therefore investigate whether naturalness
is a good ordering for warnings provided by static bug-finders.

RQS5. Is “naturalness" a useful way to focus the inspection effort
on warnings produced by SBF?

3. METHODOLOGY

We now describe the projects we studied, and how we gathered
and analyzed the data.

3.1 Study Subject

We studied 10 OSS Java projects, as shown in Table 1: among
these are five projects from Github, while the others are from the
Apache Software Foundation. We chose the projects from differ-
ent domains to measure AN/BF’s performance in various types of
systems. All projects are under active development.

We analyzed NBF’s performance in two settings: Phase-I con-
siders N/BF’s ability to find bugs, based on continuous usage dur-
ing active development (see Section 3.2). We chose to analyze each
project for the period of one-year which contained the most bug-
fixes in that project’s history; here, we considered both development-
time and post-release bugs. Then, for the chosen one-year dura-
tion, we extracted snapshots at 1-month intervals. A snapshot cap-
tures the state of the project at a given point in time. Thus, for
each project we studied 12 snapshots, in total analyzing 120 snap-
shots across 10 projects, including 113,762 distinct file versions,
and 35.3 Million total non-commented source code lines (NCSL).
Overall, we studied 7,139 distinct bug-fix commits comprising of
2.2 Million total buggy lines. Subsequently, we confirmed our re-
sults across the entire history of each studied project, using snap-
shots at 6-month intervals (157 snapshots, 63,301 commits, 23,664
bug-fixes). Due to page limitations, we are presenting results from
our study of 1-month snapshots only.

Next, for Phase-1I (see Section 3.2), we focused only on post-
release bugs to evaluate NBF’s performance as a release-time bug
prediction tool. We used the data set from Rahman er al. [43],
in which snapshots of the five Apache projects were taken at se-

Table 2: Summary data per project used in Phase-II. The dataset is
taken from Rahman et al. [43]

Project NCSL #Warnings

#K FindBug PMD #lssues
Derby (7) 420-630 1527-1688 140-192K 89-147
Lucene (7) 68-178 137-300 12-31K 24-83
OpenJPA (7) | 152-454 51-340 62-171K 36-104
Qpid (5) 212-342 32-66 69-80K 74-127
Wicket (4) 138-178 45-86 23-30K 47-194

lected project releases. The project snapshot sizes vary between 68
and 630K NCSL. The bugs were extracted from Apache’s JIRA
issue tracking system; the bug count per release, across all the
projects, varies from 24-194 (see Table 2). We further used warn-
ings produced by two static bug finding tools: FINDBUGS [5] and
PMD [10], as collected by Rahman et al.. PMD operates on source
code and produces line-level warnings; FINDBUGS operates on
Java bytecode and reports warnings at line, method, and class level.

3.2 Data Collection
Phase-1

Here we describe how we identified the buggy lines in a snapshot
corresponding to the bugs that developers fixed in an ongoing de-
velopment process.

Estimating bug-fixing commits. Development time bug fixes are
often not recorded in an issue database. Thus, to estimate bug
fixing activities during an ongoing development process, we ana-
lyzed commit messages associated with each commit for the en-
tire project evolution and looked for error related keywords. First,
we converted each commit message to a bag-of-words and then
stemmed the bag-of-words using standard natural language pro-
cessing (NLP) techniques. Then similar to Mockus et al. [33], we
marked a commit as a bug-fix, if the corresponding stemmed bag-
of-words contains at least one of the error related keywords: ‘error’,
‘bug’, “fix’, ‘issue’, ‘mistake’, ‘incorrect’, ‘fault’, ‘defect’, ‘flaw’,
and ‘type’. This method was adapted from our previous work [46].
For the Apache projects, as well as Atmosphere, and Netty we
further improved the classification with information available from
the JIRA issue database.

To evaluate the accuracy of the above classification, we man-

ually verified the result for 300 commits (30 from each project,
chosen randomly). Here, we only evaluated whether the author of
a presumed bug-fix commit really marked their commit as a bug-
fix. Out of these 300 commits, 288 were classified correctly (96%),
3 commits (1%) were described as a potential “issue” (thus may
have developed into a bug later) and 9 commits (3%) were classi-
fied incorrectly—>5 false negatives and 4 false positives. Thus, our
approach achieves 96% accuracy (95% conf.int.: 93.8% to 98.2%).
Selecting snapshots. To evaluate NBF in continuous active devel-
opment, ideally we need to study all the commits made to a project
for its full history. But using git blame to get line-level bug data
at this scale is not feasible. Thus, we chose 1-year evaluation pe-
riods for each project. Since our focus is studying bugs, we con-
sidered the one-year period of each project that contained the most
bug fixes. Within these periods, we looked at monthly snapshots
thereby simulating near-continuous usage of our tool. For instance,
snapshots were taken at 1-month intervals between 2006-07-06 and
2007-07-06 for project Derby (see Table 1).
Identifying buggy lines in a snapshot. This part consists of three
steps: (1) identifying lines related to a bug, (2) identifying commits
that introduced the bug, and (3) mapping the buggy lines to the
snapshots of interest.

In step (1), we assumed that all the lines deleted (or changed) in
a bug-fix commit were buggy lines. To find these lines, we looked
at the versions of a file before and after a bug-fix. We used git
diff to identify the deleted/changed lines in the old version and
marked them as ‘buggy’; the added/changed lines in the new ver-
sion are marked as ‘fixed’. Next, in step (2), we used git-blame
to locate the commits that had introduced these buggy lines in the
system. The first two steps are analogous to the SZZ algorithm [50].
Once we know where the buggy lines originated, we used git-bl-
ame with *~-reverse’ option to locate these lines in the snap-
shots of interest. This step ‘maps’ the buggy lines to specific snap-

Map onto S2 '

Project
! Time Line

Figure 1: Collecting bug data: vertical dashed lines are snapshots
(S1...S3) and triangles are commits (cl. . .c5) that occurred between
these snapshots. For every bug-fix commit (e.g. c4), we first git-blame
the buggy lines (blue arrowed lines) and then map them to the corre-
sponding snapshots (red arrowed lines).

shots. Figure 1 explains the procedure where commit c4 is a bug-fix
commit. The corresponding buggy lines (marked red in the old ver-
sion) are found to originate from two earlier commits c1 and c2. We
then map the buggy lines from c1 to both S1 and S2, whereas the
buggy lines from c2 are mapped only to S2.

Note that we considered all the bugs that appeared at any time in
the entire evolution and map them back to the snapshots of interest.
However, we lose the buggy lines that were fixed before, or arose
after, our study period as we cannot map these to any snapshots of
interest. We also miss some transient bugs that appeared and were
fixed within a snapshot interval (thus lasting less than a month). At
the end of this step, we know exactly which lines in each of our
snapshots are buggy (and were fixed in some future commit) and
which ones are benign, modulo time-window censoring effects.

Phase-11

In Phase-1I, we studied post-release bugs for the Apache projects,
using Rahman et al. [43]’s dataset. Rahman et al. selected a num-
ber of release versions of each Apache project and, for each release,
identified post-release bugfix commits from the JIRA issue tracking
system. They then identified buggy and non-buggy lines for each
release version similar to steps 2 and 3 of the previous section.

3.3 Entropy Measurement

Choice of language model. We measured entropy using Tu ef al.’s
cache-based language model ($gram) tool [53], as described in Sec-
tion 2.1. We computed the entropy over each lexical token in all
the Java files of all the snapshots. For a given file in a snapshot, the
tool estimates a language model on all the other files of the same
snapshot. It then builds a cache by running the language model on
the given file, computing the entropy of each token based on both
prolog (preceding tokens) and epilog (succeeding tokens). Finally,
based on the training set and locally built cache, the tool computes
the entropy of each token of the file; the line and file entropies are
computed by averaging over all the tokens belong to a line and all
lines corresponding to a file respectively.

To generate entropies of the fixed lines, we leveraged the data-set
gathered for the entire evolution period with 6 months interval, as
mentioned in Section 3.1. This was necessary because a bug may
get fixed after our studied period. For each bug-fix commit, we
trained the dataset on its immediate preceding snapshot and tested
it on the new file version corresponding to the bug-fix.
Determining parameters for cache language model. Several fac-
tors of locality can affect the performance of the cache language
model: cache context, cache scope, cache size, and cache order. In
this work, we built the cache on the entire file under investigation.

In this light, we only needed to tune cache order (i.e. maximum
and minimum order of ngrams stored in the cache). In general,
longer ngrams are more reliable but quite rare, thus we backed off
to shorter matching prefixes (or suffixes) [25] when needed. We
followed Tu et al. [53] to set the maximum order of cache ngrams
to 10. To determine the minimum back-off order, we performed ex-
periments on the Elasticsearch and Netty projects looking for opti-
mal performance measured in terms of entropy difference between
buggy and non-buggy lines. The maximum difference was found
at a minimum backoff order of 4 with no change in the backoff
weight. Thus, we set the minimum backoff order to 4, and the
backoff weight to 1.0.

Adjusting entropy scores. Language models could work for de-
fect prediction at line-granularity if bug-prone lines are more en-
tropic. For instance, a non-buggy but high-entropy line would be a
false positive and worsen the language model’s performance at the
prediction task. For example, lines with previously unseen iden-
tifiers, such as package, class and method declarations, have sub-
stantially higher entropy scores on average. Vice versa, for-loop
statements and catch clauses — being often repetitive — have much
lower entropy scores. Such inter-type entropy differences do not
necessarily reflect their true bug-proneness. In fact, for-statements,
though less entropic, are often more bug-prone than the more en-
tropic import-declarations.

This observation led us to using abstract-syntax-based line-types
and computing a syntax-sensitive entropy score. First, we used
Eclipse’s JDT” to parse an Abstract Syntax Tree (AST) of all files
under consideration. Any line in a Java file is always contained
by either a single AST node (e.g., Compilation Unit root-node) or
several AST nodes in hierarchical order, e.g., a nested line with
if-statement, method-declaration, and class-declaration. For each
line, its syntax-type is the grammatic entity associated with the
lowest AST node encompassing the full line. Examples include
statements (e.g., if, for, while, return), declarations (e.g., variable,
structure, method, import) or other AST nodes that tend to span
one line, such as switch cases and annotations. We then computed
how much a line’s entropy deviated from the mean entropy of its
line-type using normalized Z-score: Ziine, ype = W’
where fiyp denotes mean $gram entropy of all the lines of a given
type, and S Dy denotes standard deviation. This gave us a syntax-
sensitive entropy model $gram+type.

The above normalization essentially uses the extent to which a
line is “unnatural” w.rz. other lines of the same type. In addition,
based on the fact that all line-types are not equally buggy, we com-
puted relative bug-proneness of a type based on the fraction of bugs
and total lines (LOC) it had in all previous snapshots. Here we used
the previous snapshots as training set and computed bug-weight of a

buglype/Loclype
e b2g /LOC,” where the bugs and LOCs

per type were counted over all previous snapshots. We then scaled
the z-score of each line by its weight w to achieve our final model,
which we name $gram+wType.

Phase-I and Phase-II data set and the entropy generation tool are
available at http://odd-code.github.io/.

line-type as: Wype =

4. EVALUATION

This section discusses the answers to Research Questions intro-
duced in Section 2.4. The First two RQs are primarily based on the
Phase-I data set. RQ3 uses Phase-II data to evaluate NBF’s capa-
bility as a File level defect predictor. Line level defect prediction
is evaluated using both data sets (RQ3, RQ4, and RQS5). We begin
with the question that is at the core of this paper:

2Java development tools, http://www.eclipse.org/jdt/

Table 3: Entropy Difference and Effect Size between buggy vs. non-
buggy and buggy vs. fixed lines

buggy vs. non-buggy (RQ1) | buggy vs. fixed (RQ2) | %Unique
Bug-fix Entropy diff. Cohen’s d | Entropy diff. Cohen’s d bugs
threshold | (bug > non-bug) effect (bug > fix) effect detected
1 1.95 to 2.00 0.61 1.58 to 1.67 0.60 14.92
2 1.68 to 1.72 0.53 1.43t0 1.51 0.52 23.93
4 1.37 to 1.40 0.43 1.16 to 1.23 0.41 34.65
7 1.15t0 1.17 0.36 0.98 to 1.04 0.34 43.94
15 0.91 t0 0.93 0.29 0.75 to 0.81 0.26 5591
20 0.81t0 0.83 0.25 0.62 to 0.68 0.21 60.16
50 0.58 to 0.59 0.18 0.39 to 0.44 0.13 71.68
100 0.55t0 0.57 0.17 0.36 to 0.41 0.12 80.96
Overall 0.86 to 0.87 0.26 0.69 to 0.74 0.19 100.00

Buggy lines have higher entropy than non-buggy lines. Buggy lines
also have higher entropy than fixed lines. Entropy difference decreases
as bug-fix threshold increases. Entropy differences are measured with
t-test for 95% confidence interval and shows statistical significance (p-
value < 0.05). Cohen’s d effect size: 0.2 = ‘small’, 0.5 = ‘medium’, and
0.8 =‘large’.

RQ1. Are buggy lines less “natural' than non-buggy lines?

To evaluate this question, we compare entropies of buggy and
non-buggy lines for all the studied projects. A Wilcoxon non-
parametric test confirms that buggy lines are indeed more entropic
than non-buggy lines with statistical significance (p < 2.2%107'°).
Average entropy of buggy lines is 6.21 while that of non-buggy
lines is 5.34. However, Cohen’s D effect size between the two is
0.26 (see last row in Table 3), which is considered small.

One explanation for the small effect size across bugs of all sizes
is an impact of tangled bug fixes—lines that are changed in a bug-
fix commit but are not directly related to the bug. Herzig ez al. [21]
showed that around 17% of all source files are incorrectly associ-
ated with bugs due to such tangled changes. The impact of tangled
changes on bug entropy is more visible for larger bug-fix commits.
Some of the lines changed in a larger bug fix may not be directly
associated with the erroneous lines and thus may not be “unnatu-
ral”. In contrast, for smaller bug-fix commits, say for 1 or 2 lines
of fix, the fixed lines (i.e. the lines deleted from the older version)
are most likely to be buggy.

o

1 15
z g
g 9
S0 £10
c c
L L
g° 2°
4 o | 0

non_buggy buggy fixed low medium high

duration duration duration
(b) Entropy difference between
buggy lines of different bug du-
ration.

(a) Entropy difference between
non-buggy, buggy, and fixed
lines at bug-fix threshold 7.

Figure 2

To understand the effect of tangled changes on the naturalness
of buggy code, we compute entropy difference between buggy and
non-buggy lines at various bug-fix size thresholds. We define bug-
fix threshold as the number of lines in a file that are deleted from the
older version of a bug-fix commit. Table 3 shows the result. Both
entropy difference and effect size decrease as the bug-fix threshold
increases. For example, for a threshold size of 1, entropies of buggy
lines are on average 1.95 to 2.00 bits higher than non-buggy lines
(95% confidence interval). Cohen’s D effect size between the two
lies between medium and large (0.61). 14.92% of the bug-fixes lie
below this threshold. For a threshold size of 7 3, buggy lines have
1.15 to 1.17 bits higher entropy than their non-buggy counterpart.
In this case, we see a small to medium effect (effect size = 0.36).

375% of all changes (both bug-fixes and feature implementations)
in our data set contain no more than 7 lines of deletion

This is also shown in Figure 2(a). At bug-fix threshold 100, we see
only 0.55 to 0.57 entropy difference with small effect (0.17). These
results indicate that the lines that are indirectly associated with real
buggy lines in tangled bug-fix commits may have lower entropy,
and thus would diminish the overall entropy of buggy lines.

We further observe that bugs that stay longer in a repository tend
to have lower entropy than the short-lived bugs. Bug duration of
a buggy line is measured as the number of months until a buggy
line is fixed starting from the day of its introduction (bug_duration
= bug-fix date minus bug-introduction date). The following table
shows the summary of bug duration in our data set (in months):

Min. 1stQu. Median Mean 3rd Qu. Max.
0.03 8.33 23.40 29.03 39.83 125.6

Based on bug duration, we divide all the buggy lines into three
groups: low, medium, and high. The bugs in low group “survived”
for less than 9 months (1°% quartile); bugs in medium group sur-
vived from 9 to 24 months (1°! quartile to median), and the re-
maining bugs are in the high group. Figure 2(b) shows their entropy
variation. The low group has significantly higher entropy than the
medium and high group, with Cohen’s d effect size of 0.62 and
0.75 respectively (medium to large effect size). The difference is
also confirmed with Wilcoxon non-parametric test with statistical
significance. The medium group is also slightly more entropic than
the high group with statistical significance, although the effect size
is very small (0.10). These results indicate that the bugs that are
fixed more quickly are more “unnatural” than the longer-lived bugs.
We hope to explore the reasons in future work: perhaps the highly
entropic bugs are easier to locate, diagnose and fix, and thus get
speedily resolved—or perhaps (more intriguingly) highly-entropic
code is more strongly associated with failures that are more likely
to be quickly encountered by users.

In summary, we have the overall result:

Result 1: Buggy lines, on average, have higher entropies,
i.e. are “less natural”, than non-buggy lines.

A natural question is whether the entropy of the lines in a bug
drops once the bug is fixed. This leads us to the following question:

RQ2. Are buggy lines less “natural’ than bug-fix lines?

To answer RQ2, we collected bug-fix commit patches of all the
bugs that exist in any snapshot under study. In a bug-fix commit,
the lines deleted from the original version are considered buggy
lines and lines added in the fixed versions are considered fixed lines.
We collected all such buggy and fixed lines for all the projects, as
described in Section 3.2. Establishing a one-to-one correspondence
between a buggy and fixed line is hard because buggy lines are
often fixed by a different number of new lines. Hence, we compare
the mean entropies between buggy and fixed lines across all the
patches. Wilcoxon non-parametric test confirms that entropy of
buggy lines, in general, drops after the bug-fixes with statistical
significance (see Figure 2(a)).

Similar to RQI, tangled changes may also impact the entropies
of bugs and their fixes. To measure the impact, we further com-
pare the entropy differences between buggy and fixed lines at vari-
ous bug-fix thresholds. Table 3 shows the result. Both the entropy
difference and effect size decreases as bug-fix threshold increases.
For example, at a bug-fix threshold of one line, average entropy
drops, upon fixing, between 1.58 to 1.67 bits (95% confidence in-
terval and with statistical significance). The Cohen d’s effect size is
medium to large (0.60). However, with threshold size at 30, mean

Table 4: Examples of bug fix commits that NBF detected successfully.
These bugs evinced a large entropy drop after the fix. Bugs with only
one defective line are shown for simplicity purpose. The errors are
marked in red, and the fixes are highlighted in green.

Example 1 : Wrong Initialization Value
Facebook-Android-SDK (2012-11-20)
File: Session.java
Entropy dropped after bugfix : 4.12028
if (newState.isClosed()) {
// Before (entropy = 6.07042):
- this.tokenInfo = null;
// After (entropy = 1.95014):
+ this.tokenInfo = AccessToken.createEmptyToken
(Collections.<String>emptyList ());

}

Example 2 : Wrong Method Call
Netty (2013-08-20)
File: ThreadPerChannelEventLoopGroup. java

Entropy dropped after bugfix : 4.6257
if (isTerminated()) {
// Before (entropy = 5.96485):
- terminationFuture.setSuccess (null) ;
// After (entropy = 1.33915):
+ terminationFuture.trySuccess (null);

Exarhple 3 : Unhandled Exception
Lucene (2002-03-15)
File: FSDirectory. java
Entropy dropped after bugfix : 3.87426
if (!directory.exists())
// Before (entropy = 9.213675):
- directory.mkdir();
// After (entropy = 5.33941):

+ if (!directory.mkdir())
+ throw new IOException

("Cannot create directory: " +
directory);

entropy difference between the two are slightly more than half a bit
with a small effect size of 0.18. Such behavior suggests that tan-
gled changes may be diluting the entropy of buggy code and their
fixes.

Bug duration also impacts the drop of entropy after bug fix. For
bugs with low duration, the entropy drop is significant: 2.68 to 2.75
bits on average (effect size: 0.59). For medium duration bugs, en-
tropy drops from 0.09 to 0.18 bits (effect size: 0.04), while entropy
does not necessarily drop for high duration bugs.

Table 4 shows three examples of code where entropy of buggy
lines dropped significantly after bug-fixes. In the first example,
a bug was introduced in Facebook-Android-SDK code due
to a wrong initialization value—tokenInfo was incorrectly re-
set to null. This specific initialization rarely occurred elsewhere,
so the buggy line had a rather high entropy of 6.07. Once the
bug was fixed, the fixed line followed a repetitive pattern (indeed,
with two prior instances in the same file). Hence, entropy of the
fixed line dropped to 1.95, an overall 4.12 bit reduction. The sec-
ond example shows an example of incorrect method call in the
Netty project. Instead of calling the method t rySuccess (used
three times earlier in the same file), the code incorrectly called the
method setSuccess, which was never called in a similar con-
text. After the fix, entropy drops by 4.63 bits. Finally, example 3
shows an instance of missing conditional check in Lucene. The
developer should check whether directory creation is successful by
checking return value of directory.mkdir () call, following
the usual code pattern. The absence of this check raised the entropy
of the buggy line to 9.21. The entropy value drops to 5.34 after the
fix.

In certain cases these observations do not hold. For instance, in
example 4 of Table 5, entropy increased after the bug fix by 5.75

Table 5: Examples of bug fix commits where AN/BF did not perform
well. In Example 4, NBF could not detect the bug successfully (marked
in red) and after bugfix the entropy has increased. In Example 5, NBF
incorrectly detected the line as buggy due to its high entropy value.

Example 4 : Wrong Argument (NBF could not detect)
Netty (2010-08-26)
File: HttpMessageDecoder. java
Entropy increased after bugfix : 5.75103
if (maxHeaderSize <= 0) {
throw new IllegalArgumentException (
// Before (entropy = 2.696275):
- "maxHeaderSize must be a positive integer: "
+ maxChunkSize);
// After (entropy = 8.447305):
+ "maxHeaderSize must be a positive integer: "
+ maxHeaderSize);
1
Example 5 : (VBF detected incorrectly)
Facebook-Android-SDK (multiple snapshots)
File: Request. java
// Entropy = 9.892635
Logger logger = new Logger (LoggingBehaviors.
REQUESTS, "Request");

bits. In this case, developer copied maxChunkSize from a differ-
ent context but forgot to update the variable name. This is a classic
example of copy-paste error [45]. Since, the statement related to
maxChunkSize was already present in the existing corpus, the
line was not surprising. Hence, its entropy was low although it was
a bug. When the new corrected statement with maxHeaderSize
was introduced, it increased the entropy. Similarly, in Example 5,
the statement related to 1ogger was newly introduced in the cor-
pus. Hence, its entropy was higher despite not being a bug.

However, for all bug-fix thresholds, Wilcoxon non-parametric
test confirms with statistical significance that the entropy of buggy
lines is higher than the entropy of fixed lines. Overall, we see 0.69
to 0.74 bit entropy drops after bug fixes with a small effect size of
0.19. Thus, in summary:

Result 2: Entropy of the buggy lines drops after bug-fixes,
with statistical significance.

Having established that buggy lines are significantly less natural
than non-buggy lines, we investigate whether entropy can be used
to direct inspection effort towards buggy code. We start with the
following research question:

RQ3. Is “naturalness'’ a good way to direct inspection effort?

Baseline: detecting Buggy Files. We first consider file-level defect
prediction (DP), the de facto standard in the literature. Specifically,
we evaluate whether ordering files by entropy will better guide us
to identifying buggy files than traditional logistic regression and
random forest based DP.
DP is typically used at release-time to predict post-release bugs [35,
57,42, 36, 11]; so, for this comparison we use the post release bug
data collected in Phase-II. DP is implemented using two classi-
fiers: logistic regression (LR) [43, 42] and Random Forest (RF),
where the response is a binary variable indicating whether a file
is buggy or not. The predictor variables are the process metrics
from [42, 11], such as #developers, #file-commit, code churn, and
previous bug history; prior research shows that process metrics are
better predictors of file level defects [42]. For each project, we train
our model on one release and evaluate on the next release: a defect-
proneness score is assigned to every file under test. We repeat this
procedure for all releases for all the projects under study.

A file’s entropy is measured as the average entropy of all the lines
in that file. We rank each file in each release based on entropy and

—_ AUCEC_20

o .

O -

.NO0.3- -

© _ - T

EO 5 - methc;_cll ‘
.2° - vg file entro

8] - %%ﬁ tic regreggion

O .7 . ‘an 8% forest

0.1~ -

L -

O /]

:)0_0, | A N I N

< 5 10 15 20

Percentage Inspected Lines

Figure 3: Performance Evaluation of NBF w.r.t. DP for identifying
buggy files

logistic regression-based prediction score. Figure 3 shows the nor-
malized AUCEC performance of all the classifiers, similar to [4].
Here, the y-axis shows the AUCEC scores as a fraction of the “per-
fect" score (files ranked using an oracle) for each model. At the
higher inspection budget of 20% SLOC, the logistic regression and
Random Forest DP models perform 56.5% and 30.4% better than
the entropy-based model respectively. However, at the stricter in-
spection budget of 5% of SLOC, the entropy-based predictor per-
forms 30% better than LR, and only 4.2% worse than RF, all are
measured w.r.t. entropy-based predictor.

Detecting Buggy Lines. Having shown that entropy can help de-
tect bug-prone files, we now focus on a finer granularity: can the
entropy of a line of code be used to direct inspection effort towards
buggy lines? Specifically, will ordering lines by entropy will guide
inspection effort better than ordering lines at random? In all our
experiments, the random baseline choosess lines at random from
Non-Commented Source Lines (NCSL), picking just as many as
NBF and SBF (in RQs 4&5). For the reasons outlined in Sec-
tion 2.3, we evaluate the performance of entropy-ordering, with
the AUCEC scores at 5% and 20% of inspected lines (AUCECs5 29
in short) according to two types of credit: partial and full (in de-
creasing order of strictness). Since this is a line-level experiment,
comparing AUCEC values here with file-level optimum, as we did
earlier in Figure 3, risks confusion arising from ecological infer-
ence [41]; so we just present the raw AUCEC scores, without nor-
malization.

We further calculate AUCEC for different bug-fix thresholds, as
entropy is better at predicting smaller bug-fixes. When measuring
AUCEC at a threshold of, say, n lines, we ignore bug-fixes span-
ning > n lines. Performance is evaluated in terms of percentage

gain of AUCEC over random_AUCEC:

project@ucec — random_aucec)

> project Tandom_aucec

gain =

Figure 4(a) shows AUCEC, scores for partial credit, averaged
over all projects for bug-fix threshold 7. Under partial credit, the
default $gram model (without the syntax weighting described in
§3.3) performs better than random, particularly at > 10% of in-
spected lines. At 20% of inspected line, $gram performs 41.95%
better than random. Figure 4(b) focuses on the performance on
10 studied projects, up to 5% of the inspected lines. At this level,
$gram’s performance varies. For projects Facebook, Netty, and
Qpid $gram performs significantly better than random; but in other
projects $gram either performs similar or worse than random.

On closer examination, we found that some program constructs
are intrinsically more entropic than others. For example, method
declarations are often more entropic, because they are less frequent.
This observation led us to consider syntactic line-type in bug pre-
diction, as discussed in Section 3.3. Scaling the entropy scores by
line type improves AUCECs performance in all but Facebook

’
’5o
/,'
/(4
0.034 s
‘.
o //‘»
4 method
S' /,/,’/’ $gram
i 0.02 ’,/' - - $gram + Type
(&) //‘f' — $gram + wType
E)(PR random
7.7
0.01 ot
e
PR
. L
0.00 et

5 10 15 20
Percentage Inspected Lines

(a) Overall AUCEC upto inspecting 20% lines for all the projects

atmosphere|| derby |plasticsearch| facebook lucene
J ! ’
0.003 7 /
/7 . /
0.002+ /7 4 U
A ?'/ //
- 3 4 i 8 p o' il
L{)‘0.001 ‘{‘,‘. /{f«' /v ///", ";»/, method
0.0004=" - == ‘< == $gram
(L'_-)' netty || openjpa || presto |[gpid wicket | -~ $gram + Type
S . —$gram + wType
<0.003- 7 7 random
’ Ve v
0.002- 7 4 y 4 ’
V4 S ’ y S
0001+ s A te. At /2
Pr 701 . / X
» o P A
0.0004 e sl = ot

12345612345123451234512345
Percentage Inspected Lines

(b) Closer look at low order AUCEC, upto inspecting 5% lines for
individual project

Figure 4: Performance Evaluation of A/BF with Partial Credit.

and Atmosphere and significantly improves performance in all
cases where $gram performed no better than random. Including the
bugginess history of line-types ($gram+wType) furthermore out-
performs random and $gram in all but Lucene and Atmosphere
and achieves an overall AUCECs5 scores 92.53% higher than ran-
dom at bug-fix threshold 7. These results are similar under full
credit (see Table 6). Since $gram+wType is the best-performing
“naturalness" approach so far, we hereafter refer to it as NBF.

Table 6: Performance evaluation of AN/BF with random for different
bug-fix threshold

Full Credit | Partial Credit
Bugfix random gain random gain
threshold aucec aucec (%) aucec aucec (%)
AUCEC_5
2 | 0.0035 0.0016 122.74 | 0.0027 0.0013 113.46
4 | 0.0037 0.0019 94.35 | 0.0025 0.0013 102.22
7 | 0.0038 0.0023 64.98 | 0.0024 0.0013 92.53
14 | 0.0041 0.0028 47.38 | 0.0023 0.0013 87.77
all | 0.0051 0.0051 -0.21 | 0.0022 0.0013 76.60
AUCEC_20
2 | 0.0531 0.0252 110.62 | 0.0403 0.0200 101.60
4 | 0.0543 0.0300 81.15 | 0.0388 0.0200 93.93
7 | 0.0559 0.0345 59.02 | 0.0370 0.0200 85.15
14 | 0.0565 0.0401 40.89 | 0.0362 0.0200 81.03
all | 0.0619 0.0567 9.29 | 0.0345 0.0200 72.52

Table 6 further shows that N/BF performance worsens with larger
bug-fix thresholds, for both AUCECs and AUCEC2q. For exam-
ple, for AUCECs, with bug-fix threshold 2, we see 122.74% and
113.46% performance gain over random AUCEC for full and par-
tial credit respectively. These gains drop to 47.38% and 87.77% at
a threshold of 14.

Notice that, in Table 6, under Partial Credit, the random selection
approach yields constant AUCECs and AUCECy scores, indepen-
dent of the bug fix threshold. Partial credit scoring assigns credit to
each line based on the size of the bug-fix that it is part of (if any);
thus, selecting 5% of lines at random should, in expectation, yield
5% of the overall credit that is available (see also Section 2.3). Full
Credit, on the other hand, assigns the credit for detecting a bug as
soon as a single line of the bug is found. Therefore, the AUCEC
scores of a random selection method under full credit will depend
on the underlying distribution of bugs: large bugs are detected with
a high likelihood even when inspecting only a few lines at random,
whereas small bugs are unlikely to be detected when inspecting
5% of lines without a good selection function. This is reflected in
Table 6: as the bug-fix threshold increases, the random AUCEC
scores increase as well. The A/BF approach, on the other hand, ex-

cels at detecting small bugs under both full and partial credit, which
we also found to be the most entropic (see Figure 2). Thus, al-
though its performance increases slightly with an increasing bugfix
threshold, its gain over random decreases. Overall, we summarize
that:

Result 3: Entropy can be used to guide bug-finding efforts
at both the file-level and the line-level.

RQ4. How do SBF and NBF compare in terms of ability to
direct inspection effort?

To compare NBF with SBF, we use $gram+wType model on
Phase-II data set. To investigate the impact of tangled changes, we
choose the overall data set and a bug-fix threshold of 14 (roughly
corresponds to the fourth quartile of bug-fix sizes on this dataset).
Further, we select PMD and FINDBUGS from a pool of available
SBF tools, because they are popular and have been studied in pre-
vious research [43, 23, 26].

As discussed in Section 2.3, Rahman er al. developed a measure
named AUCECL to compare SBF and DP methods on an equal
footing [43]. In this method, the S5F under investigation sets the
line budget based on the number of warnings it returns and the DP
method may choose a (roughly) equal number of lines. The mod-
els’ performance can then be compared by computing the AUCEC
scores both approaches achieve on the same budget. We follow this
approach to compare SBF with NBF.

Furthermore, we also compare the AUCEC5 scores of the algo-
rithms. For the $gram+wType model, this is analogous to the re-
sults in RQ3. To acquire AUCECs scores for the SBF, we simulate
them as follows: First assign each line the value zero if it was not
marked by the SBF and the value of the SBF priority otherwise
({1, 2} for FINDBUGS, {1 - 4} for PMD); then, add a small random
amount (tie-breaker) from U|0, 1] to all line-values and order the
lines by descending value. This last step simulates the developer
randomly choosing to investigate the lines returned by SBF: first
from those marked by the SBF in descending (native, SBF tool-
based) priority, and within each priority level at random. We repeat
the simulation multiple times and average the performance.

Figure 5(a) and 5(b) show the AUCEC5; and AUCECL scores for
PMD using partial credit and at bug-fix threshold 14. The results for
FINDBUGS were comparable, as were the results using full credit.
As can be seen, performance varied substantially between projects
and between releases of the same project. Across all releases and
under both AUCEC; and AUCECL scoring, all models performed
significantly better than random (paired t-test: p < 1072), with

Partial Credit

Partial Credit
derby lucene openjpa qpid wicket
0.008+
fil -
[14 » .
0.006 /‘l |‘\ | VAl method
2 A S AV FERRIA NBF
Ogo0al” V. A AT 1! LAY | N S, - PMD
2 ’ ' SO\ NN LR T A -~ PMD_Mix
R AR T U -V random
0.002+ : vy !
1]
0.000+——— L i ——
2 46 246 246123451 2 3 4

Release

derby lucene openjpa qpid wicket
0.100
n
noo
4 I\ 7
, 0.075 L) . method
[¢] l N/ NBF
$0.0501 : ~-PMD
2 A \ fe - PMD_Mix
< RS LN random
00254 ML T ! -\ =
NN f,/ S ~
0.000-—— o S S S S S R s
2 4 2 46 246 123451 2 3 4

Release

(a) AUCECs performance of $gram+wType vs. PMD and the
combination model

(b) AUCECL performance of $gram+wType vs. PMD and the
combination model

Figure 5: Partial Credit: Performance Evaluation of $gram+wType w.r.t. SBF and a mix model which ranks the S5F lines by entropy.

large effect (Cohen’s D > 1). SBF and NBF performed com-
parably; NBF performed slightly better when using both partial
credit and the specified bug-fix threshold, but when dropping the
threshold, and/or with full credit, no significant difference remains
between NBF and SBF. No significant difference in performance
was found between FINDBUGS and PMD either.

In all comparisons, all approaches retrieved relatively bug-prone
lines by performing substantially better than random. In fact, at 5%
inspection budget, both the line-level NBF and the two SBF per-
formed substantially better than the earlier presented DP method
and file-level NBF (compare Figure 5(a) and Figure 3).

Result 4: Entropy achieves comparable performance to
commonly used Static Bug Finders in defect prediction.

Notably, NBF had both the highest mean and standard devia-
tion of the tested models, whereas PMD’s performance was most
robust. This suggests a combination of the models: we can order
the warnings of the SBF using the $gram+wType model. In par-
ticular, we found that the standard priority ordering of the SBF is
already powerful, so we propose to re-order the lines within each
priority category.

RQS. Is “naturalness' a useful way to focus the inspection ef-
fort on warnings produced by SBF?

To answer this question, we again assigned values to each line
based on the SIBF priority as in RQ4. However, rather than add
random tie-breakers, we rank the lines within each priority bin by
the (deterministic) $gram+wType score. The results for PMD are
shown in Figure 5, first using the AUCECs measure (5(a)) and then
using the AUCECL measure (5(b)). PMD_Mix refers to the com-
bination model as proposed.

Overall, the combined model produced the highest mean per-
formance in both categories. It significantly outperformed the two
SBFsin all cases (p < 0.01) and performed similarly to the N'BF
model (significantly better on Lucene and QPid, significantly
worse on Derby (p < 0.05), all with small effect). These results
extended to the other evaluation methods, using full credit and/or
removing the threshold for max bug-fix size. In all cases, the mix
model was either significantly better or no worse than any of the
other approaches when averaged over all the studied releases.

We further evaluated ranking all warnings produced by the SBF
by entropy (ignoring the SBF priorities) and found comparable but
slightly weaker results. These results suggest that both NBF and
SBF contribute valuable information to the ordering of bug-prone
lines and that their combination yields superior results.

Result 5: Ordering SBF warnings by priority and entropy
significantly improves SBF performance.

S. THREATS TO VALIDITY

Internal Validity. A number of threats to the internal validity arise
from the experimental setup. First, our identification of buggy lines
could be wrong, as we used a simple key-word based search to
identify buggy commits (see Section 3.2). To minimize this threat,
we manually evaluated our bug classification tool and reported an
overall accuracy of 96%.

Another source of false negatives is the presence of (yet) unde-
tected bugs that linger in the code-base. Also, developers may “tan-
gle” unrelated changes into one commit [20, 12]. However, given
the high significance of entropy difference between buggy and non-
buggy lines, we consider it unlikely that these threats could invali-
date our overall results. Furthermore, ABF s positive performance
on (higher quality, JIRA-based) Phase-1I dataset confirms our ex-
pectations regarding the validity of these results.

A threat regarding RQ2 is the identification of ‘fixed’ lines, which
replaced ‘buggy’ lines during a bugfix commit. The comparisons
between these categories could be skewed, especially when the
bugfix commits replace buggy lines with a larger number of fixed
lines. In fact, small bug-fixes do indeed add more lines than they
delete on average (the reverse holds for fixes spanning over 50
lines). However, a majority of bugs of any size were fixed with
at most as many lines. In particular, more than two-third of one
and two-line bugs, which demonstrated the greatest decrease in en-
tropy were fixed with one and two lines respectively. Thus, these
findings minimize the above threat. Other non-bugfixing changes
(e.g., introduction of clone) may also show drop in entropy w.rt. its
previous version.

Our comparison of SBF and NBF assumes that indicated lines
are equally informative to the inspector, which is not entirely fair;
NBF just marks a line as “surprising”, whereas SBF provides spe-
cific warnings. On the other hand, we award credit to SBF whether
or not the bug has anything to do with the warning on the same
lines; indeed, earlier work [52] suggests that warnings are not often
related to the buggy lines which they overlap. So this may not be a
major threat to our RQ4 results.

Finally, the use of AUCEC to evaluate defect prediction has been
criticized for ignoring the cost of false negatives [56]; the develop-
ment of better, widely-accepted measures remains a topic of future
research.

External Validity. External Validity concerns generalizability of
our result. To minimize this threat, we use systems from different

domain from Github and Apache, having a substantial variation in
age, size and ratio of bugs to overall lines (see table 1). We also
confirmed our overall result by studying entire evolutionary history
of all the projects, analyzed with 6 months snapshot interval.

Next, does this approach generalize to other languages? There is
nothing language-specific about the implementation of n-gram and
$gram models ($gram+wType model, however, does require pars-
ing, which depends on language grammar). Prior research showed
that these models work well to capture regularities in Java, C, and
Python [22, 53]. To investigate N/BF’s performance for other lan-
guages, we performed a quick sanity check on 3 C/C++ projects:
(Libuv,Bitcoinand Libgit), studying evolution from Novem-
ber 2008 - January 2014. The results are consistent with those pre-
sented in Table 3 and Figure 2—buggy lines are between 0.87 and
1.16 bits more entropic than non-buggy lines at bug-fix threshold
15 (slightly larger than in Table 3). Also, the entropy of buggy lines
at this threshold drops by nearly one bit. These findings strongly
suggest that our results generalize to C/C++; we are investigating
the applicability to other languages.

Finally, even though we showed good empirical results with our
approach, this does not assure that it actually helps developers in
their bug finding efforts, as was shown in a similar scenario (with
automated debugging techniques) by Parnin et al. [40]. To tackle
this, the natural next step would be a controlled experiment with
developers using our approach.

6. RELATED WORK

Statistical Defect Prediction. DP aims to predict defects yet to
be detected by learning from historical data of reported bugs in is-
sue databases (e.g., JIRA). This is a very active area (see [8] for
a survey), with even a dedicated series of conferences (i.e. PRO-
MISE [1]). D’Ambros et al. survey and provide a direct com-
parison of a number of representative DP approaches (including
those using process metrics, such as previous changes [34, 17]
and defects [27], and product metrics, such as code complexity
metrics [6]). While earlier work evaluated models using IR mea-
sures such as precision, recall and F-score, more recently non-
parametric methods such as AUC and AUCEC have gained in pop-
ularity. D’ Ambros et al. follow this trend and conduct an evaluation
similar to ours.

A DP may work beyond file granularity; Giger et al. presented
a DP at the level of individual methods [16]. We are the first to
predict defects at a line-level using only statistical models.
Static Bug Finders. SBF can work at line granularity as opposed
to DP, hence the comparison with our approach. The work closely
related to ours is by Rahman et al. [43]; by comparing DP perfor-
mance with SBF they reported that popular SBF tools like Find-
Bugs and PMD do not necessarily perform better than DP. We
also find that NBF can be used to rank SBF warnings, but we
are not the first to tackle this challenge. Kremenek ef al. use z-
ranking and a cluster-based approach to prioritizing warnings based
on the warnings’ previous success rate [29, 28]. Kim and Ernst
mine information from code change history to estimate the impor-
tance of warnings [26]. Our approach ranks warnings based on
properties of the source code rather than the output of the SBF
or whether and how warnings have been fixed in history. Future
research could evaluate how our approaches can complement the
work above. Ruthruff er al. propose a filtering approach to detect-
ing accurate and actionable SBF warnings [49]. They use priority
of warnings, defined by the SBF, type of error detected, and fea-
tures of the affected file (e.g., size and warning depth) to do the
filtering. Our approach ranks warnings on a different aspect of
source code than those they consider and could be used to com-

plement their model. Finally, Heckman et al. proposed Faultbench,
a benchmark for comparison and evaluation of static analysis alert
prioritization and classification techniques [18] and used it to vali-
date the Aware [19] tool to prioritize static analysis tool warnings.
Since results of our approach are promising, further research could
investigate our approach against this additional benchmark.

The field of SBF has advanced rapidly, with many develop-
ments; researchers identify new categories of defects, and seek to
invent methods to find these defects efficiently, either heuristically
or though well-defined algorithms and abstractions. Since neither
method is perfect, the actual effectiveness in practice is an empiri-
cal question. A comprehensive discussion of related work regard-
ing SBF and their evaluation can be found in Rahman et al. [43].
Inferring rules and specifications. Statistical language models
are employed to capture the repetitive properties of languages, in
our case of programming languages, thus inferring the style or even
some latent specification about how the language is supposed to be
used in a specific project and context. As such, our work is re-
lated to previous research that tries to automatically infer specifica-
tions and use it to identify outliers as probable defects. Kermenek
et al. present a framework based on a probabilistic model (namely,
factor graph [31]) for automatically inferring specifications from
programs and use it to find missing and incorrect properties in a
specification used by a commercial static bug-finding tool [30]. In
our case, we allow errors to be localized without language-specific
tuning, without defining the set of annotations to infer, and without
modeling domain-specific knowledge. Wasylkowski et al. mine us-
age models from code to detect anomalies and violations in meth-
ods invoked on objects and demonstrated that these can be used
to detect software defects [54]. Similarly, Thummalapenta and Xie
develop Alattin, an approach to mine patterns from APIs and detect
violations [51]. In contrast, our model is less specialized and tries
to highlight unexpected patterns at token level, without focusing on
the specific case of method invocations.

7. CONCLUSION

The predictable nature (“naturalness”) of code suggests that code
that is improbable (“‘unnatural”) might be wrong. We investigate
this intuition by using entropy, as measured by statistical language
models, as a way of measuring unnaturalness.

We find that unnatural code is more likely to be implicated in
a bug-fix commit. We also find that buggy code tends to become
more natural when repaired. We then turned to applying entropy
scores to defect prediction and find that, when adjusted for syntac-
tic variances in entropy and defect occurrence, our model is about
as cost-effective as the commonly used static bug-finders PMD and
FindBugs. Applying the (deterministic) ordering of entropy scores
to the warnings produced by these static bug-finders produces the
most cost-effective method. These findings suggest that entropy
scores are a useful adjunct to defect prediction methods. The find-
ings also suggest that certain kinds of automated search-based bug-
repair methods might do well to have the search in some way influ-
enced by language models.

In the near future, we plan to build extensions into PMD, Find-
Bugs and other static bug finders that order warnings based on
our $gram+wType regime. Further ahead, we plan to study other
applications of these approaches including dynamic fault-isolation
methods and automated bug-patching tools.

Acknowledgment. This material is based upon work supported
by the National Science Foundation under Grant No. 1414172.

[1]

(2]

(3]

[4

—_

(5]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

REFERENCES
PROMISE ’14: Proceedings of the 10th International

Conference on Predictive Models in Software Engineering,
New York, NY, USA, 2014. ACM.

M. Allamanis, E. T. Barr, C. Bird, and C. Sutton. Learning
natural coding conventions. In Proceedings of the 22"
International Symposium on the Foundations of Software
Engineering (FSE’14), 2014.

M. Allamanis and C. Sutton. Mining idioms from source
code. In SIGSOFT FSE, pages 472-483, 2014.

E. Arisholm, L. C. Briand, and E. B. Johannessen. A
systematic and comprehensive investigation of methods to
build and evaluate fault prediction models. JSS, 83(1):2-17,
2010.

N. Ayewah, D. Hovemeyer, J. D. Morgenthaler, J. Penix, and
W. Pugh. Using static analysis to find bugs. IEEE Software,
25(5):22-29, 2008.

V. R. Basili, L. C. Briand, and W. L. Melo. A validation of
object-oriented design metrics as quality indicators. [EEE
Trans. Software Eng., 22(10):751-761, 1996.

J. C. Campbell, A. Hindle, and J. N. Amaral. Syntax errors
just aren’t natural: improving error reporting with language
models. In MSR, pages 252-261, 2014.

C. Catal and B. Diri. A systematic review of software fault
prediction studies. Expert systems with applications,
36(4):7346-7354, 2009.

B. Chelf, D. Engler, and S. Hallem. How to write
system-specific, static checkers in metal. In Proceedings of
the 2002 ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, PASTE *02,
pages 51-60, New York, NY, USA, 2002. ACM.

T. Copeland. PMD applied. Centennial Books San Francisco,
2005.

M. D’ Ambros, M. Lanza, and R. Robbes. An extensive
comparison of bug prediction approaches. In Mining
Software Repositories (MSR), 2010 7th IEEE Working
Conference on, pages 31-41. IEEE, 2010.

M. Dias, A. Bacchelli, G. Gousios, D. Cassou, and

S. Ducasse. Untangling fine-grained code changes. In
Proceedings of the 22nd International Conference on
Software Analysis, Evolution, and Reengineering, 2015.

D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: A general approach to inferring
errors in systems code. In Proceedings of the Eighteenth
ACM Symposium on Operating Systems Principles, SOSP
’01, pages 57-72, New York, NY, USA, 2001. ACM.
FindBugs. http://findbugs.sourceforge.net/. Accessed
2015/03/10.

C. Franks, Z. Tu, P. Devanbu, and V. Hellendoorn. Cacheca:
A cache language model based code suggestion tool. In /CSE
Demonstration Track, 2015.

E. Giger, M. D’ Ambros, M. Pinzger, and H. C. Gall.
Method-level bug prediction. In Proceedings of the
ACM-IEEE international symposium on Empirical software
engineering and measurement, ESEM 12, pages 171-180,
2012.

A. E. Hassan. Predicting faults using the complexity of code
changes. In Proceedings of ICSE 2009, pages 78-88, 2009.
S. Heckman and L. Williams. On establishing a benchmark
for evaluating static analysis alert prioritization and
classification techniques. In Proceedings of the Second
ACM-IEEE international symposium on Empirical software
engineering and measurement, pages 41-50. ACM, 2008.

S. S. Heckman. Adaptively ranking alerts generated from
automated static analysis. Crossroads, 14(1):7, 2007.

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

(35]

[36]

K. Herzig and A. Zeller. Untangling changes. Unpublished
manuscript, September, 2011.

K. Herzig and A. Zeller. The impact of tangled code
changes. In Mining Software Repositories (MSR), 2013 10th
IEEE Working Conference on, pages 121-130. IEEE, 2013.
A. Hindle, E. Barr, M. Gabel, Z. Su, and P. Devanbu. On the
naturalness of software. In ICSE, pages 837-847, 2012.

B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge.
Why don’t software developers use static analysis tools to
find bugs? In Software Engineering (ICSE), 2013 35th
International Conference on, pages 672—-681. IEEE, 2013.
S. Karaivanov, V. Raychev, and M. Vechev. Phrase-based
statistical translation of programming languages. In
SPLASH, Onward!, pages 173-184, 2014.

S. Katz. Estimation of probabilities from sparse data for the
language model component of a speech recognizer. IEEE
Transactions on Acoustics, Speech and Signal Processing,
35:400-401, 1987.

S. Kim and M. D. Ernst. Which warnings should i fix first?
In Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering,
pages 45-54. ACM, 2007.

S. Kim, T. Zimmermann, J. Whitehead, and A. Zeller.
Predicting faults from cached history. In Proceedings of
ICSE 2007, pages 489—498. IEEE CS, 2007.

T. Kremenek, K. Ashcraft, J. Yang, and D. Engler.
Correlation exploitation in error ranking. In ACM SIGSOFT
Software Engineering Notes, volume 29, pages 8§3-93. ACM,
2004.

T. Kremenek and D. Engler. Z-ranking: Using statistical
analysis to counter the impact of static analysis
approximations. In Static Analysis, pages 295-315. Springer,
2003.

T. Kremenek, P. Twohey, G. Back, A. Ng, and D. Engler.
From uncertainty to belief: Inferring the specification within.
In Proceedings of the 7th symposium on Operating systems
design and implementation, pages 161-176. USENIX
Association, 2006.

F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor
graphs and the sum-product algorithm. /EEE Transactions
on Information Theory, 47(2):498-519, 2001.

Z. Liand Y. Zhou. Pr-miner: Automatically extracting
implicit programming rules and detecting violations in large
software code. In Proceedings of the 10th European Software
Engineering Conference Held Jointly with 13th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, ESEC/FSE-13, pages 306-315, New
York, NY, USA, 2005. ACM.

A. Mockus and L. G. Votta. Identifying reasons for software
changes using historic databases. In /CSM, pages 120-130,
2000.

R. Moser, W. Pedrycz, and G. Succi. A comparative analysis
of the efficiency of change metrics and static code attributes
for defect prediction. In Proceedings of ICSE 2008, pages
181-190, 2008.

N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. In Software
Engineering, 2005. ICSE 2005. Proceedings. 27th
International Conference on, pages 284-292. IEEE, 2005.
N. Nagappan, T. Ball, and A. Zeller. Mining metrics to
predict component failures. In Proceedings of the 28th
international conference on Software engineering, pages
452-461. ACM, 2006.

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

A.T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N.
Nguyen. Statistical learning of api mappings for language
migration. In /CSE Companion, pages 618-619, 2014.
A.T. Nguyen, T. T. Nguyen, and T. N. Nguyen. Lexical
statistical machine translation for language migration. In
SIGSOFT FSE, pages 651-654, 2013.

A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen. Migrating
code with statistical machine translation. In /CSE
Companion, pages 544-547, 2014.

C. Parnin and A. Orso. Are automated debugging techniques
actually helping programmers? In Proceedings of the 2011
International Symposium on Software Testing and Analysis,
pages 199-209. ACM, 2011.

D. Posnett, V. Filkov, and P. Devanbu. Ecological inference
in empirical software engineering. In Proceedings of the
2011 26th IEEE/ACM International Conference on
Automated Software Engineering, pages 362-371. IEEE
Computer Society, 2011.

F. Rahman and P. Devanbu. How, and why, process metrics
are better. In Proceedings of ICSE, pages 432441, 2013.

F. Rahman, S. Khatri, E. T. Barr, and P. T. Devanbu.
Comparing static bug finders and statistical prediction. In
ICSE, pages 424-434, 2014.

F. Rahman, D. Posnett, and P. Devanbu. Recalling the
imprecision of cross-project defect prediction. In
Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering,
page 61. ACM, 2012.

B. Ray, M. Kim, S. Person, and N. Rungta. Detecting and
characterizing semantic inconsistencies in ported code. In
ASE, pages 367-377, 2013.

B. Ray, D. Posnett, V. Filkov, and P. Devanbu. A large scale
study of programming languages and code quality in github.
In SIGSOFT FSE, 2014.

V. Raychev, M. Vechev, and A. Krause. Predicting program
properties from “big code”. In POPL, pages 111-124, 2015.

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]
[56]

(571

V. Raychev, M. Vechev, and E. Yahav. Code completion with
statistical language models. In PLDI, pages 419428, 2014.
J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum, and
G. Rothermel. Predicting accurate and actionable static
analysis warnings: an experimental approach. In
Proceedings of the 30th international conference on
Software engineering, pages 341-350. ACM, 2008.

J. gliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? In MSR, pages 1-5, 2005.

S. Thummalapenta and T. Xie. Alattin: Mining alternative
patterns for detecting neglected conditions. In Proceedings of
the 2009 IEEE/ACM International Conference on Automated
Software Engineering, pages 283-294. IEEE Computer
Society, 2009.

F. Thung, D. Lo, L. Jiang, F. Rahman, P. T. Devanbu, et al. To
what extent could we detect field defects? an empirical study
of false negatives in static bug finding tools. In Proceedings
of the 27th IEEE/ACM International Conference on
Automated Software Engineering, pages 50-59. ACM, 2012.
Z.Tu, Z. Su, and P. Devanbu. On the localness of software.
In SIGSOFT FSE, pages 269-280, 2014.

A. Wasylkowski, A. Zeller, and C. Lindig. Detecting object
usage anomalies. In Proceedings of the 6th joint meeting of
the European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software
engineering, pages 35-44. ACM, 2007.

I. H. Witten and E. Frank. Data Mining: Practical machine

learning tools and techniques. Morgan Kaufmann, 2005.
H. Zhang and S. Cheung. A cost-effectiveness criterion for

applying software defect prediction models. In Proceedings
of the 2013 9th Joint Meeting on Foundations of Software
Engineering, pages 643-646. ACM, 2013.

T. Zimmermann, R. Premraj, and A. Zeller. Predicting
defects for eclipse. In Predictor Models in Software
Engineering, 2007. PROMISE’07: ICSE Workshops 2007.
International Workshop on, pages 9-9. IEEE, 2007.

