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Architectural Design Performance

through Computational Intelligence
A Comprehensive Decision Support Framework
loannis Chatzikonstantinou

Architectural design is a prime example of a complex task. The associated
complexity often poses significant challenges to human cognition. As such, a
systematic approach to design space exploration must be undertaken, to maximize
the potential for discovering optimal solutions to design problems.Recognizing the
impact design complexity has on architectural design , this thesis proposes a
comprehensive computational intelligence decision support system that combines
components based on intelligence with ones based on cognition, with the ultimate
aim of enabling decision-makers manage design complexity and improve decision
making.

This thesis adopts the theoretical standpoint that efficient navigation of an
unknown environment assumes a fusion of intelligence and cognition. In this sense,
and given the already widespread adoption of intelligent approaches (such as
Evolutionary Computation), the main contribution of this thesis is to endow the
intelligent approach with cognitive facilities, so as to improve its efficiency to the
point that it is readily applicable to the early stages of the architectural design
process. Fusion of intelligent with cognitive approaches, as outlined herein, offers
the unique advantage of a decision support approach that is both powerful, owing
to the extensive search capabilities of intelligent search algorithms, and flexible,
owing to the extensive knowledge modeling capabilities of cognitive approaches. As
such, it is uniquely suited to the early conceptual design stage where the need to
explore large design spaces, flexibly redefine the design problem, and satisfy
preferences that are not included in the primary design goals, are all paramount.
The main output of this thesis is a comprehensive decision support framework; it is
a framework, in the sense that it comprises a set of methods and implemented
tools that seek to augment decision making in architectural design; it is termed
comprehensive in that it employs computational cognition and machine learning to
augment the intelligent decision support capabilities throughout the design
decision support process. It is also generic and applicable as-is to a wide spectrum
of architectural design problems. In the context of this thesis, validation of the
proposed approach is performed mainly in case studies relevant to facade design,
recognizing this design topic as a complexity-exhibiting exemplar in architectural
design practice.
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Designing is exploring a landscape. Sometimes the landscape is smooth: its peaks
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Abstract

Identification of design solutions for a built environment that caters to the human
needs at all levels, and more specifically, to the needs of the clients and the so-
ciety, is the main task addressed by architectural design. Architectural design is

a prime example of a design task that is characterized by a high degree of com-
plexity. Architectural design problems by definition entail relationships between
decisions and objectives that are all but transparent. For the decision-maker to be
able to guide design towards fulfilling objectives, a ‘closed-loop’ approach where
variations in design solutions are generated and evaluated in an iterative process is
employed. Due to the sheer number of alternative solutions to problems of even a
moderate scale (due to combinatorial explosion), it is only feasible to iterate over
a minuscule fraction of possible solutions. Design intuition of the professionals in-
volved in design is a strong driving force behind the identification of design direc-
tion, in which alternatives are explored as part of the preliminary design process.
This is an approach that depends on the human cognitive capabilities to navigate
the design space and identify potentially promising solutions. Regardless, the com-
plexity associated with architectural design often poses significant challenges to
human cognition. Human cognition, while formidable in its ability to flexibly and
efficiently navigate challenging environments, is faced with difficulties in address-
ing the complexity factors outlined previously, namely: the excessive (combinato-
rially explosive) number of potential solutions to architectural problems, the com-
plex and non-linear relations between objects and their properties and the conflict-
ing nature of design goals that architectural design entails. Thus, design profes-
sionals are often faced with the real threat that their decisions may be biased due
to the natural limitations of human cognition acting in complex environments.

Due to the reasons highlighted above, a systematic approach to design space explo-
ration must be undertaken, to maximize the potential for discovering optimal solu-
tions to design problems. Due to the nature of such problems that entail multiple
conflicting objectives, a single best solution is generally not attainable. Nonethe-
less, best-tradeoff solutions are distinguished and highly desirable for such multi-
objective design problems. The field of Computational Intelligence, and within
that in particular Evolutionary Computation-based (EC) intelligent approaches,
offer a lucrative option as decision-support tools in design, as they are able to
efficiently address the aforementioned proponents of design complexity. EC ap-
proaches are able to navigate the design space efficiently and systematically, con-
sidering multiple conflicting objectives and hard constraints, and being able to deal
with arbitrary relations between design decision variables and design objectives.

In today’s setting, products of architecture must lead the way to a sustainable and
environmentally friendlier society. As such, the performance of buildings has be-

come the main driving force behind the design process, being referred to as “performance-
driven design”. This initiative emphasizes the quantitative evaluation of a design’s
function in accordance with established design objectives, related to aspects such
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as energy performance, visual and thermal comfort, cost and environmental foot-
print, etc. Simulation-based tools that enable accurate design evaluation are gain-
ing ground and offering valuable insight into the performance of buildings. Nonethe-
less, making decisions in this multi-objective environment is not trivial, and, as
stipulated above, may be challenging to human cognition. Thus, in today’s setting
where the quantitative performance of buildings keeps gaining ground, the research
on the application of EC in architectural design is high on the scientific agenda.

Recognizing the impact design complexity has on architectural design and the po-
tential that EC-based approaches offer in addressing it, this thesis proposes a com-
prehensive computational intelligence decision support system that combines com-
ponents based on intelligence with ones based on cognition, with the ultimate aim
of enabling decision-makers manage design complexity and improve decision mak-
ing. In particular, this thesis adopts the theoretical standpoint that efficient navi-
gation of an unknown environment assumes a fusion of intelligence and cognition.
In this sense, and given the already widespread adoption of intelligent approaches
(such as EC mentioned above), the main contribution of this thesis is to endow
the intelligent approach with cognitive facilities, so as to improve its efficiency to
the point that it is readily applicable to the early stages of the architectural design
process.

Fusion of intelligent with cognitive approaches, as outlined in the approach pro-
posed by this thesis, offers the unique advantage of a decision support approach
that is both powerful, owing to the extensive capabilities of intelligent search al-
gorithms, and flexible, owing to the extensive knowledge modeling capabilities of
cognitive approaches. As such, it is uniquely suited to the early conceptual design
stage where the need to explore large design spaces, flexibly redefine the design
problem, and satisfy preferences that are not included in the primary design goals,
are all paramount.

Thus, the word “comprehensive” as it appears on this thesis’ title obtains a twofold
meaning: On one hand comprehension as in the combination of computational
intelligence and cognition in a single approach; on the other hand, as in compre-
hension of the environment, the result of an intelligent and cognitive approach to
understanding.

Firstly, it seeks to address the excessive computational burden associated with the
use of modern high-fidelity simulation software in architecture, to render compu-
tational optimization more approachable. There is a clear trend in modern design
practice to employ accurate simulation-based performance assessment tools from
the very early stages of design. The use of such tools provides a valuable advan-
tage to the decision-maker, in endowing objective awareness regarding the perfor-
mance of a design solution. On the other hand, such tools are associated with a
heavy computational burden, which may limit their application to the conceptual
design stage. There exist methods to alleviate the computational burden through
the use of computational cognitive machine learning tools, also known as surro-
gate modeling. However, training of surrogate models can be time-consuming it-
self, thus limiting the application. This thesis proposes a surrogate model that is
modular in that it considers each space of the building in question as a separate
entity, encoded through generic variables, and as such promotes model reuse in
different design cases.

Architectural Design Performance through Computational Intelligence xii



Secondly, it seeks to advance the state of the art on post-Pareto decision support
by proposing a cognitive machine-learning based approach that enables the decision-
maker to combine near-optimality with preferences regarding concrete features

of the design solution. Post-Pareto decision making is an important step of the
decision-making process, that seeks to identify a best-tradeoff solution among the
possible ones that best matches the decision-maker’s preferences in terms of per-
formance. Such preferences are termed second-order because they follow design ob-
jectives in terms of importance. Nonetheless, it is often in architectural design that
preferences are expressed in terms of design properties and not performance. Due
to the non-linearity between the objective function space and the decision variable
space that dictates object properties, it is challenging to exercise decision making
using second-order preferences. Here the contribution of this thesis is a machine
cognitive approach that learns the underlying relationships between object proper-
ties, distinguishing those that are relevant when the object is optimal with respect
to design objectives. In other words, only imposing relations that are relevant to
achieve optimality, it enables the expression of preferences by the decision-maker
that are minimally constrained.

The main output of this thesis is a comprehensive decision support framework; it
is a framework, in the sense that it comprises a set of methods and implemented
tools that seek to augment decision making in architectural design; it is termed
comprehensive in that it employs computational cognition and machine learning
to augment the intelligent decision support capabilities throughout the design de-
cision support process. It is also generic and applicable as-is to a wide spectrum
of architectural design problems. In the context of this thesis, validation of the
proposed approach is performed mainly in case studies relevant to facade design,
recognizing this design topic as a complexity-exhibiting exemplar in architectural
design practice.
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Samenvatting

De identificatie van ontwerpoplossingen voor een gebouwde omgeving die voorziet
in de menselijke behoeften op alle niveaus, en meer in het bijzonder in de behoeften
van de opdrachtgevers en de samenleving, is de voornaamste taak die door het
architectonisch ontwerpen wordt aangepakt. Architectonisch ontwerpen is een
uitstekend voorbeeld van een ontwerptaak die wordt gekenmerkt door een hoge
mate van complexiteit. Ontwerpcomplexiteit wordt door ontwerpprofessionals in
de dagelijkse ontwerppraktijk ervaren, maar het is een fenomeen dat in de theo-
rie geworteld is. Architectonische ontwerpproblemen brengen per definitie relaties
tussen beslissingen en doelstellingen met zich mee die alles behalve transparant
zijn. Om de besluitvormers in staat te stellen het ontwerp te sturen in de richt-
ing van het bereiken van de doelstellingen, wordt een ”gesloten-lus” benadering
toegepast waarbij variaties in ontwerpoplossingen worden gegenereerd en geéval-
ueerd in een iteratief proces. Door het enorme aantal alternatieve oplossingen voor
problemen van zelfs maar bescheiden omvang (als gevolg van combinatorische ex-
plosie), is het slechts haalbaar om een minuscuul deel van de mogelijke oplossin-
gen te itereren. De ontwerpintuitie van de bij het ontwerp betrokken profession-
als is een sterke drijfveer achter het bepalen van de ontwerprichting, waarbij al-
ternatieven worden verkend als onderdeel van het voorlopige ontwerpproces. Dit
is een benadering die athankelijk is van de menselijke cognitieve vermogens om
door de ontwerpruimte te navigeren en potentieel veelbelovende oplossingen te
identificeren. Hoe dan ook, de complexiteit van architectonische ontwerpen stelt
de menselijke cognitie vaak voor grote uitdagingen. Hoewel de menselijke cognitie
formidabel is in haar vermogen om flexibel en efficiént door uitdagende omgevin-
gen te navigeren, wordt zij geconfronteerd met moeilijkheden bij het aanpakken
van de eerder geschetste complexiteitsfactoren, namelijk; het buitensporige (com-
binatorisch explosieve) aantal potentiéle oplossingen voor architectonische prob-
lemen, de complexe en niet-lineaire relaties tussen objecten en hun eigenschappen
en de conflicterende aard van ontwerpdoelen die architectonisch ontwerp met zich
meebrengt. Beroepsbeoefenaren in de ontwerpsector worden dus vaak geconfron-
teerd met de reéle dreiging dat hun beslissingen worden vertekend als gevolg van
de natuurlijke beperkingen van de menselijke cognitie in complexe omgevingen.

Om bovengenoemde redenen moet de ontwerpruimte systematisch worden verk-
end, zodat optimale oplossingen voor ontwerpproblemen kunnen worden gevonden.
Door de aard van dergelijke problemen, die meerdere conflicterende doelstellingen
met zich meebrengen, is één enkele beste oplossing over het algemeen niet haal-
baar. Niettemin zijn best-trade-off oplossingen voor dergelijke multi-objective on-
twerpproblemen onderscheidend en zeer wenselijk. Het gebied van de computa-
tionele intelligentie, en daarbinnen in het bijzonder de op Evolutionary Compu-
tation gebaseerde (EC) intelligente benaderingen, bieden een lucratieve optie als
beslissingsondersteunende hulpmiddelen bij het ontwerpen, omdat zij in staat zijn
de bovengenoemde voorstanders van ontwerpcomplexiteit efficiént aan te pakken.
EC-benaderingen zijn in staat om efficiént en systematisch door de ontwerpruimte
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te navigeren, rekening houdend met meerdere conflicterende doelstellingen en harde
beperkingen, en kunnen omgaan met arbitraire relaties tussen ontwerpbeslissingsvari-
abelen en ontwerpdoelstellingen.

In de huidige omgeving moeten architectuurproducten de weg wijzen naar een
duurzame en milieuvriendelijker samenleving. Als zodanig zijn de prestaties van
gebouwen de belangrijkste drijvende kracht achter het ontwerpproces geworden,
wat wordt aangeduid als “prestatiegericht ontwerpen”. Dit initiatief legt de nadruk
op de kwantitatieve evaluatie van de functie van een ontwerp in overeenstemming
met vastgestelde ontwerpdoelstellingen, gerelateerd aan aspecten zoals energieprestatie,
visueel en thermisch comfort, kosten en ecologische voetafdruk, enz. Op simu-
latie gebaseerde hulpmiddelen die een nauwkeurige evaluatie van het ontwerp mo-
gelijk maken, winnen terrein en bieden een waardevol inzicht in de prestaties van
gebouwen. Toch is het nemen van beslissingen in deze multi-objectieve omgev-

ing niet triviaal en, zoals hierboven gesteld, kan dit een uitdaging zijn voor de
menselijke cognitie. In de huidige context, waarin de kwantitatieve prestaties van
gebouwen steeds meer terrein winnen, staat het onderzoek naar de toepassing van
EC in architectonisch ontwerp dan ook hoog op de wetenschappelijke agenda.

Ontwerpcomplexiteit heeft een groot impact op het architectonisch ontwerp. EC-
gebaseerde benaderingen bieden een potentiéle oplossing hiervoor. Deze scriptie
stelt daarom een alomvattend computational intelligence decision support systeem
voor dat onderdelen combineert die gebaseerd zijn op intelligentie en cognitie, met
het uiteindelijke doel om besluitvormers en ontwerpprofessionals in staat te stellen
ontwerpcomplexiteit te beheersen en besluitvorming te verbeteren. In het bijzon-
der gaat deze dissertatie uit van het theoretische standpunt dat efficiénte navigatie
in een onbekende omgeving een samensmelting van intelligentie en cognitie veron-
derstelt. In deze zin, en gezien de reeds wijdverbreide toepassing van intelligente
benaderingen (zoals EC hierboven vermeld), is de belangrijkste bijdrage van deze
dissertatie de intelligente benadering te begiftigen met cognitieve faciliteiten, om
zo de efficiéntie ervan te verbeteren tot het punt dat het gemakkelijk toepasbaar is
in de vroege stadia van het architectonische ontwerpproces.

De fusie van intelligente met cognitieve benaderingen, zoals geschetst in de aan-
pak die in dit proefschrift wordt voorgesteld, biedt het unieke voordeel van een
beslissingsondersteunende aanpak die zowel krachtig is, vanwege de uitgebreide
mogelijkheden van intelligente zoekalgoritmen, als flexibel, vanwege de uitgebreide
kennismodelleringsmogelijkheden van cognitieve benaderingen. Als zodanig is het
bij uitstek geschikt voor de vroege conceptuele ontwerpfase waarin de behoefte om
grote ontwerpruimten te verkennen, flexibel het ontwerpprobleem te herdefiniéren,
en te voldoen aan voorkeuren die niet zijn opgenomen in de primaire ontwerpdoel-
stellingen, allemaal van het grootste belang zijn.

Het woord “begrip” zoals het in de titel van deze dissertatie voorkomt, krijgt dus
een tweeledige betekenis: Enerzijds begrip als in de combinatie van computationele
intelligentie en cognitie in een enkele benadering; anderzijds als in begrip van de
omgeving, het resultaat van een intelligente en cognitieve benadering van begrip.

In de eerste plaats wordt getracht iets te doen aan de buitensporige computerdruk

die het gebruik van moderne high-fidelity simulatiesoftware in de architectuur met
zich meebrengt, om zo computationele optimalisatie toegankelijker te maken. In de
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moderne ontwerppraktijk is er een duidelijke tendens om vanaf de allereerste on-
twerpstadia gebruik te maken van nauwkeurige, op simulatie gebaseerde hulpmid-
delen voor de beoordeling van de prestaties. Het gebruik van dergelijke hulpmid-
delen is een waardevol voordeel voor de besluitvormer, omdat het objectief inzicht
verschaft in de prestaties van een ontwerpoplossing. Anderzijds gaan dergelijke
instrumenten gepaard met een zware rekenlast, waardoor hun toepassing tot de
conceptuele ontwerpfase kan worden beperkt. Er bestaan methoden om de com-
putationele belasting te verlichten door gebruik te maken van computationele cog-
nitieve machine-leermiddelen, ook bekend als surrogaatmodellen. Het trainen van
surrogaatmodellen kan echter zelf tijdrovend zijn, waardoor de toepassing beperkt
wordt. Deze dissertatie stelt een surrogaatmodel voor dat modulair is in die zin
dat het elke ruimte van het gebouw in kwestie als een aparte entiteit beschouwt,
gecodeerd door generieke variabelen, en als zodanig het hergebruik van het model
in verschillende ontwerpgevallen bevordert.

Ten tweede wordt getracht de stand van de techniek op het gebied van post-Pareto-
beslissingsondersteuning te verbeteren door een cognitieve, op machinaal leren
gebaseerde aanpak voor te stellen die besluitvormers in staat stelt bijna-optimaliteit
te combineren met voorkeuren met betrekking tot concrete kenmerken van de on-
twerpoplossing. Post-Paretobesluitvorming is een belangrijke stap in het besluitvorm-
ingsproces, waarbij wordt getracht uit de mogelijke oplossingen een best-tradeoft-
oplossing te vinden die qua prestaties het best aan de voorkeuren van de besluitvorm-
ers voldoet. Dergelijke voorkeuren worden tweede-ordevoorkeuren genoemd, omdat
zij in termen van belangrijkheid op de ontwerpdoelstellingen volgen. Niettemin

is het vaak in architectonisch ontwerp dat voorkeuren worden uitgedrukt in ter-

men van ontwerpeigenschappen en niet van prestaties. Vanwege de niet-lineariteit
tussen de ruimte van de objectiefunctie en de ruimte van de beslissingsvariabele die
de objecteigenschappen dicteert, is het een uitdaging om besluitvorming uit te oe-
fenen met behulp van tweede-ordevoorkeuren. De bijdrage van dit proefschrift is

een machine cognitieve benadering die de onderliggende relaties tussen objecteigen-
schappen leert, en daarbij onderscheid maakt tussen die relaties die relevant zijn
wanneer het object optimaal is met betrekking tot de ontwerpdoelstellingen. Met
andere woorden, door alleen die relaties op te leggen die relevant zijn om opti-
maliteit te bereiken, maakt het de expressie van voorkeuren door de beslisser mo-
gelijk die minimaal beperkt zijn.

Het belangrijkste resultaat van dit proefschrift is een uitgebreid beslissingsonder-
steunend raamwerk; het is een raamwerk, in de zin dat het een reeks methoden
en geimplementeerde hulpmiddelen omvat die trachten de besluitvorming in archi-
tectonisch ontwerp te vergroten; het wordt uitgebreid genoemd omdat het com-
putationele cognitie en machinaal leren gebruikt om de intelligente beslissingson-
dersteunende capaciteiten te vergroten gedurende het gehele beslissingsonderste-
unende proces van het ontwerp. Het is ook generiek en toepasbaar als zodanig op
een breed spectrum van architectonische ontwerpproblemen. In het kader van dit
proefschrift wordt de validatie van de voorgestelde aanpak voornamelijk uitgevo-
erd in casestudies die relevant zijn voor het ontwerpen van gevels, waarbij dit on-
twerponderwerp wordt gezien als een complexiteit-experimenteel voorbeeld in de
architectonische ontwerppraktijk.
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Introduction

Architecture has been long acclaimed as a paradigm of cultural enterprise, being
uniquely situated in the intersection of art and science. Indeed, products of archi-
tecture need to cater to a wide range of diverse requirements: On the one hand,
there are “hard” requirements that support functionality, feasibility, efficiency, and
safety, aspects that are fundamental to a sustainable society. On the other hand,
there are “soft” requirements that pertain to experiential aspects of the built envi-
ronment, such as perception or aesthetics. At the same time, it is fair to say that
the decisions made as part of the design process of a building are responsible for
shaping the built environment we live in, and therefore have a profound and far-
reaching influence on our lives. Therefore, it is certainly the case that the decisions
made during the architectural design process are markedly important and therefore
need to be founded on concrete assumptions and exercised in an informed manner.

Given the complex nature of architectural design, as well as the importance asso-
ciated with the overall quality of its products, a considerable effort has been made
up to this point from the scientific community to research and develop appropriate
systems that are able to support decision making. One of the most recent develop-
ments in this direction is decision support systems based on Computational Intel-
ligence (CI), whereby nature-inspired design optimization is a key representative.
The research carried out in this thesis finds its place as part of this effort and aims
to complement it, proposing advances that may further the usefulness of modern
CI decision support systems.

Design Complexity

Why is design complex? To begin understanding design complexity, one should
begin understanding complexity itself as a phenomenon. Complexity is a phe-
nomenon that is hard to describe and formalize, yet it is something that is encoun-
tered commonly every day. On every scale from micro- to macroscopic, the world
is full of examples of complex behavior. Concerning artificial systems, in particu-
lar, cities, if seen in vertical integration, are considered one of the most complex
human-made arrangements in existence. More recently, social networks have been
found to display novel properties of emergent complexity and their study gives
birth to novel methodologies for the study of complexity (Butts 2001). Other ex-
amples of complexity are abundant and may be found in the study of nature, soci-
ety, materials, etc.

Identifying a definition for complexity as a phenomenon is a challenging ques-
tion that has occupied the scientific community for a long time, especially since



complexity is a ubiquitous phenomenon. The following excerpt from (Bechtel and
Richardson 2010) offers an enlightening introduction to the topic of complexity
and a sound definition:

[...] Many machines are simple, consisting only of a handful of parts
that interact minimally or in a linear way. In these machines we can
trace and describe the events occurring straightforwardly. [...] Some
machines, however, are much more complex: one component may af-
fect and be affected by several others, with a cascading effect; or there
may be significant feedback from “later” to “earlier” stages. In the lat-
ter case, what is functionally dependent becomes unclear. Interaction
among components becomes critical. Mechanisms of this latter kind are
complex systems.

As evident from the definition above, the nature of relationships between parts
in a system is mainly responsible for the phenomenon of emergent complexity. In
addition, the definition offered by Simon (Simon 1962) places importance on rela-
tionships between system components:

[A complex system is| a system that can be analyzed into many com-
ponents having relatively many relations among them, so that the be-
havior of each component can depend on the behavior of many others.

In a system that consists of several densely interconnected parts, local effects have
the potential to affect the global state of the system, and, in turn, local states are
affected by global fluctuations.

Design problems such as the ones encountered in real-world architecture practice
involve making numerous design decisions, each of which is required to produce
the final output, and also affects the satisfaction of design criteria and design con-
straints in ways that are difficult to anticipate. In a design context, complexity is
evident in the dense and non-linear causal relationships between design decisions,
design goals, and design constraints. In addition, another characteristic of the de-
sign process is that the effects of decisions taken in the early conceptual design
stages may only be identifiable much later in the process, often when the project
enters the detailed design stage. This important characteristic mandates a pro-
cess that is ipso facto not linear, but rather entails one or more feedback loops,
and is often required to backtrack and amend decisions taken during early design
stages. This is a prime example of a complex system with delayed feedback, and
the main reason that led to the emergence of performance-oriented design prac-
tices, where concrete, quantitative feedback on design goals is sought to be inte-
grated as early as possible in the design process, through the use of advanced mod-
eling techniques, rendering the design into a closed-loop system.

The abstraction of complexity that occurs as part of the architectural design pro-
cess is beneficial because it allows one to study complexity in design without con-
sideration of the specifics of each design case. This in turn leads to another bene-
fit, namely the ability to apply tools, methods, and techniques developed as part
of other research disciplines that deal with complex problems, to tackling complex-
ity in architectural design, such as the representative example of Multi-Objective
Evolutionary Algorithms (MOEAs).

Architectural Design Performance through Computational Intelligence 2
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FIGURE 1.1 London Aquatics Center, architect: Zaha Hadid. Large-scale com-
plex projects with innovative forms and materials call for advanced
decision support tools and methods to support complex decision
making. Image source: Héléne Binet/Archdaily

Performance-Based Design

Architectural design and the disciplines involved in it underwent a significant
evolution throughout the 20th century, as a result of the ever-increasing com-
plexity in design introduced by advancing technology and evolving design require-
ments. This resulted in a paradigm shift in the way that architectural design was
approached. Up until the mid-20th century, the design of buildings and complexes
was defined by prescriptive practices, which would stipulate design actions for
commonly occurring design problems. This kind of accumulated knowledge would
be found in design handbooks or would be part of the tacit knowledge of an expe-
rienced architect or engineer. Around the second half of the 20th century, and in
the face of ever-increasing design complexity, it became clear to many that this
practice would not be sustainable as design complexity increased. Thus the fo-
cus began to move away from acceptance and use of established means, including
rule-of-thumb and common practices. The new focal point that the shift in design
thinking brought revolved around the understanding of the design process as one
that would put improvement towards achieving design goals first, focusing on how
buildings would perform. Thus, performance became the driving force behind all
of the aspects considered in the architectural design process, including aesthet-
ics and construction methods. Performance-based design, as this novel approach
would come to be called, formalized around a mission statement that is accurately
outlined in Gibson (1982):

[Performance-Based Design] is concerned with what a building or a
building product is required to do, and not with prescribing how it is to
be constructed.

Performance-based design introduces a new way of design thinking, which pro-
motes efficiency and innovation in architecture and building design. The Performance-
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based design approach goes beyond the application of pre-existing expert knowl-
edge in design, rather adopting investigation and evidence-based practices as its
primary tool, therefore also generating novel design knowledge as part of its pro-
cess. An important part of the Performance-Based design process is the evalu-
ation of performance and validation of results concerning constructed products.
Solutions can be evaluated and validated against demand using many different
approaches and tools. In practice, a key feature of a contemporary performance-
based design process is that it involves advanced computational simulation tools to
inform the design process with valuable data on a design’s performance according
to different criteria (Kolarevic and Malkawi 2005). In general, there is no specifi-
cation of the type of criteria that may be involved in a performance-based design
process. However, it is often that criteria related to energy consumption, indoor
comfort, daylighting, project cost and sustainability are part of the performance-
based design use case.

In addition to improvement in building performance, such a shift in design think-
ing, and the use of advanced modeling and simulation tools also targets the re-
duction in failure costs, which at the moment amounts to 20% of the construction
budget (Love et al. 2018). This utilization is a direct result of the shift in design
thinking as described previously. In a performance-based design approach the ap-
plication of investigative design practices, to identify designs that cater to the re-
quirements of a given brief would generally be preferable to the application of rule-
of-thumb and heuristic design approaches.

Softness in Design Criteria

The ability to quantify design criteria in engineering disciplines, in general, is
considered a cornerstone of modern engineering, and it is a fundamental require-
ment for enabling widespread application of computational methods and tech-
niques, which has brought forth tremendous advancements in engineering. Archi-
tecture is differentiated from other design and engineering disciplines in that it
incorporates design criteria that are not easily quantifiable, yet they form a funda-
mental quality of the envisioned design products. Such criteria are termed ‘soft’,
in contrast to ‘hard’ criteria where a mathematical expression is readily avail-
able. Some soft criteria can be expressed verbally, e.g. when it is claimed that
a building is ‘transparent’, there is a more-or-less common understanding of the
corresponding quality. Or, when one refers to a building’s architecture as ‘monu-
mental’; even without having seen the building, it is possible to deduce its quali-
ties. There exist still other criteria that are expressed as part of a designer’s tacit
knowledge, and these are only revealed as part of design activity, or evident in the
design result. In cases where such criteria are involved, which is quite common in
architecture, it is difficult to even verbally communicate a design quality, let alone
quantify it. Consider, for instance, the case of aesthetics. Aesthetics is a funda-
mental design quality in architecture, however, it is widely acknowledged as an
elusive concept, which defies concrete definition (Arnheim 1976; Hassenzahl 2008).
As a result, reaching a consensus on aesthetic terms is generally a challenging task.
Even more so is the quantification of such criteria as aesthetics, which is met with
great difficulty in practice. In the face of an ever-increasing design complexity
brought forth by intensification and diversification of design criteria, there exists
the risk that design qualities that are not readily quantifiable and based on tacit

Architectural Design Performance through Computational Intelligence



§ 1.1.4

§ 1.1.5

knowledge, such as but not limited to aesthetics, are not treated to the extent cor-
responding to their importance in architectural design. As such, in researching and
developing a suitable decision support framework, it is necessary to consider a sys-
tematic and scientific approach that fully addresses both hard as well as soft and
subjective design criteria in an integrated manner.

Conflicting Nature of Design Objectives

Design performance is not defined by a single design objective, rather it is de-
fined by a set of objectives, and in many cases these objectives are conflicting. The
presence of conflicting objectives by definition precludes “utopic” solutions, where
all objectives are fully satisfied. Of interest in such problems are so called “best-
tradeoft” solutions, or Pareto-optimal solutions, owing to the seminal study of
Pareto Pareto (1896) that defined the term. A solution is termed Pareto-optimal,
Pareto-efficient or non-dominated, if none of the objective functions defined in the
optimization problem can be improved in value without degrading some of the
other objective function values.

The importance of identifying Pareto-optimal solutions is that during the decision-
making process, it is possible to sample a set of solutions that represent what is
optimal given the problem definition at hand, thus allowing the acquisition of knowl-
edge regarding problem-related optimality prior to decision making Bittermann
(2010).

Computational Intelligence and Cognition

The terms computational intelligence and cognition have a significant role in
the context of this thesis, however it is often that the distinction between these
terms is inconspicuous. This section will attempt to clarify the distinction between
the two terms, in the context that they serve to support the arguments presented
within this thesis.

An agent is tasked to perform a goal-oriented exploration of an environment. Ex-
amples of such an environment and task may be considered as diverse as an il-
lustrative, simplistic problem where a person is trying to find an object within

an office, to real-world problems where a design professional is exploring the de-
sign space, striving to identify well-performing solutions to an architectural design
problem. For an intelligent search approach, it is merely enough that an objective
function exists, in other words, the agent should be able to receive feedback on the
fitness of their actions concerning the goal at hand. In the case of the design prob-
lem, such actions would be to make decisions to produce a design solution; the re-
ward would be the performance of that solution. The intelligent approach hints at
a search strategy for performing actions within the design space. In general, an in-
telligent approach aims to achieve exploration of the environment, minimizing the
effort required to arrive at an optimal result. Such a strategy is made of rules that
may be simple or involved, with intelligent approaches such as Evolutionary Com-
putation involving complex rules that make up their strategy. Nonetheless, in the
intelligent approach there is no knowledge of the particular properties of the envi-
ronment at hand, which suggests that to identify the relations between properties

ot
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of solutions in any design environment, it is necessary to instantiate the solution
(i.e. visit the corresponding point in the design space) every time.

But what if indeed knowledge regarding the environment could be obtained and
exploited? After all, the intelligent search is a process that readily produces knowl-
edge, in the form of establishing relations between object properties for every point
in the environment that is visited. Exploitation of such readily available knowl-
edge hints at a cognitive approach. Cognition, in this respect, is understood as the
ability of a technical system to perceive the environment as well as to aggregate
and abstract knowledge (Ahle and Soffker 2006; Ciftcioglu and Bittermann 2015b).
Whereas the intelligent approach performs an unbiased search of the environment,
the cognitive approach exploits already accumulated knowledge to derive gener-
alized rules regarding relations between solution properties in the environment,
which are embedded in a model of the environment. The computational cognitive
model, as such, presupposes the existence of information regarding the environ-
ment — and is biased by it. The clear advantage in this case is that the relations
present in the environment are embedded in the cognitive model — insofar as the
knowledge used to generate the model is expressive of those relations. As such, in-
stantiation of solutions is no longer necessary as in the case of intelligent search,
which results in an instantaneous response.

Knowledge for computational cognition may come from many sources, however it
has been established that intelligent search is a knowledge producing process, gen-
erating high-quality knowledge that is extremely relevant to the design goals at
hand. In other words, considering a design problem, the intelligent search would
output solutions that are well-performing concerning the goals put forward. It is
therefore reasonable to utilize the knowledge embedded in those solutions to de-
rive the cognitive model. In this sense, the output of the cognitive model forms a
suitable action for satisfying required design performance, and in addition to that,
produces a desirable design with respect to its properties. This action, then, is
suggestive of a state of comprehension of the environment (Ciftcioglu and Bitter-
mann 2015b).

The complexity arising out of factors outlined in the previous section gives rise
to significant challenges in decision making. The sheer amount of design variables
at play, the complex non-linear relations between decisions, design criteria and
constraints, as well as the multitude and conflicting nature of design criteria them-
selves places an unprecedented burden to human cognition during design (Bitter-
mann 2009; Chatzikonstantinou and Sariyildiz 2017). To address such challenges
and support the cognitive decision making during design, a broad research effort
has been targeted towards the development of methods, tools and techniques for
decision support in architectural design. The dissemination of Information, Com-
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munication and Knowledge Technologies (ICKT) throughout the last half of the
20th century has resulted in increased research interest for applications of compu-
tational methods, tools and techniques towards realizing advanced decision sup-
port systems. One of the most recent developments along this research direction
has been Computational Intelligence-based techniques, and specifically MOEAs.
MOEAs have been applied to a series of architectural design problems (Chatzikon-
stantinou et al. 2015; Ekici et al. 2016; Kirimtat et al. 2016a; Yufka et al. 2017;
Chatzikonstantinou et al. 2019) achieving promising results, and an increasing in-
terest towards this technology is an evident trend.

As an intelligent approach, MOEAs have been proven able to identify promising
solutions to challenging design problems in various engineering fields. However,
concerning their application in the field of architectural design, a fundamental
limitation exists, namely the difficulty in applying MOEA-based decision support
methods to early, conceptual-stage decision making. This is the main limitation
that constitutes a starting point for the research conducted as part of this thesis,
which aims to propose methods and techniques to tackle it. In particular, following
an analysis that is based both on the current State of Art (SoA) in relevant fields
of Computational Intelligence (CI) as well as personal experience of the author in
application of MOEAs in real-world design projects, two issues are identified that
contribute to the limitation outlined above, which are identified henceforth.

Accounting for the complex nature of relationships between design decisions and
criteria satisfaction, as well as the fidelity of simulations required to ensure ac-
curate estimation of building performance, in general it is the case that in archi-
tectural design numerous simulation iterations are required. This is also the case
when MOEASs are used as decision support tools, for the algorithm to reach opti-
mality. The cost associated with those simulations is often prohibitive for appli-
cation to real-world problems. This is especially true for the stage of conceptual
design where design iterations are fast-paced and decision support tools are often
not able to keep up with constant changes. This issue has been empirically docu-
mented by the author during participation in a design project concerning the de-
sign of a large-scale facade shading device in the Netherlands, where it was neces-
sary to carefully plan design iterations and stakeholder meetings to allow a cluster
of computers to perform the costly optimization process in the meantime, and ob-
tain results for decision making. It is obvious that this should not be the case in
conceptual design stage, as the flexibility that characterizes it is severely compro-
mised. To this end, a system is developed whereby computational cognitive ma-
chine learning models of relevant simulation figures are used instead of the actual
simulation, to approximate those figures at a fraction of the computational cost.

Besides, another issue is identified focusing on post-Pareto decision making in ar-
chitectural design and in cases where MOEAs are used as decision support sys-
tems. Even though MOEAs naturally offer a series of best-tradeoff design solutions
as a result, the process of inspection for selecting the most desirable solution is
generally a tedious undertaking, while the result is often an unfavorable compro-
mise of preferences of stakeholders, as the latter are expressed in terms of concrete
design attributes. To amend this situation, computational cognitive a method

and tool is envisioned herein, whereby second-order preferences will be able to

be expressed by directly manipulating design variables. At the same time, the

tool itself, informed by the properties of optimal designs as determined by multi-
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objective optimization, will provide a “guiding system” that responds accordingly
with complementary variable adjustments as necessary, and that ensures that the
preferences are satisfied to the best degree possible, while optimality of the design
is not compromised.

Throughout the manuscript, the term “decision-maker” is extensively used. This
term is used in the context of the design process, to denote, in the context of a
project, the group of agents that influence design-related decisions. Such agents
may be project stakeholders, architects, engineers, experts, or any combination
thereof. A singular form of the term (i.e. “decision-maker” vs “decision-makers”)

is used in order to enhance the illustrative power of explanations found through-
out this thesis, by assuming that a single agent interacts with the system at hand.
This does not constrain application of discussed systems to a single agent. An ex-
ception to the single-form rule occurs when referring to a specific group of decision-
makers, or when referring to the decision makers as a generic category of agents.

Problem Statement

Through the above, the concrete problem that is dealt with by this thesis is
brought forward. Despite the powerful nature of Cl-based decision support meth-
ods and techniques, application to early-stage architectural design is problematic,
owing to limitations in being able to support preference-intensive design decisions,
in a rapidly changing problem definition context. It is stipulated that these limi-
tations call for an augmentation of the intelligent capabilities of CI methods and
specifically MOEAs, in order to be able to combine intelligence offered by the
methods with cognition required for rapid decision making in conceptual design
stages.

Research Questions

Under the scope of the problem definition discussed above, this thesis stipulates
the following research questions.

Main Research Question:

How can Computational Intelligence (CI)-based methods and techniques (including
intelligent as well as cognitive methods) better support decision making during
architectural design, especially in the early conceptual design stage?

To elaborate the above general research question, two urgent focus areas are iden-
tified, namely: The need for managing computational complexity of simulations
and the need for addressing design preferences beyond the satisfaction of concrete
design goals. These areas are deemed to be the ones having the greatest impor-
tance with the aim of proposing computational decision support systems that can
respond to design problems comprehensively, accurately addressing the high-level
needs of contemporary design research & practice. Under this assumption, a num-
ber of sub-research questions have been further stipulated with the aim of better
focusing the research. Those are as follows.

Sub-research Questions:

Architectural Design Performance through Computational Intelligence 8



§ 1.2.4

§ 1.3

§ 1.3.1

e How can cognitive methods augment intelligent decision support tools, in or-
der to lead to better and more agile decision making in design?

e How can methods and techniques borrowed from the field of machine learn-
ing contribute to alleviating computational complexity of simulations?

e How can decision-maker preferences be effectively incorporated alongside de-
sign goals in computational multi-objective optimization?

e At which stage should decision-maker preferences be addressed (before, dur-
ing, after optimization)?

e How can the above specifically be applied to current and challenging design
problems in architecture?

Research Objectives and Scope

The research reported herein belongs broadly to the field of design computing.
In accordance with the specific challenges stipulated previously in section 1.2.2; it
is aimed at developing tools, methods, and techniques for improving the usefulness
and extending the application of computational decision support methodologies in
the application area of architectural design, and specifically early design stages.
More specifically, assuming the stipulations regarding design complexity men-
tioned and considering computational optimization as a viable candidate for deci-
sively addressing complexity; the focus of the research is two-fold. On one hand, to
propose methods to alleviate the computational complexity of complex simulations
through the application of machine learning techniques, and on the other hand to
enrich post-Pareto decision making through ample consideration of decision-maker
preferences. In both cases, the research output consists of both the elaboration of
a method as well as a tool in the form of an application or plugin that allows the
proposed method to be readily applied to design tasks.

Research methodology refers to the principles of the methods by which scien-
tific research can be carried out (Fellows and Anita 2008). In this sense, this sec-
tion aims to elaborate on the principles of the methods considered in this thesis.
The research methodology applied throughout the elaboration of this thesis com-
prises several stages. A preliminary research stage is followed in order to identify
issues of interest and formulate a concrete research framework, including research
question formulation. Following this, a model development stage takes place fo-
cusing on identification of the approach and specific methods to address the re-
search questions. This is followed by an experimental research part where the pro-
posed methods are comprehensively validated through application to real-world
case studies. An overview of the applied research methodology is available in figure
1.2 and elaborated hereon.

Preliminary Research
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Through the preliminary research stage, the main aim has been to generate in-
sights about the needs of design agents in the context of architectural design. This
has been based on two main poles: On one hand, extensive literature review, and
on the other hand, qualitative data and empirical observations. This initial re-
search step is a form of exploratory research (Fellows and Anita 2008) that aims
to put forward the fundamental ideas that guide the next research steps. This ini-
tial step has been more than often carried out as a form of action research, in the
sense that the author of this thesis is an active participant in the processes that
are being observed. This has occurred with several cases, and this thesis reports
one of them, as the most significant. It is noted that among all cases this particu-
lar one took place later in the research timeline.

The application of computational decision support in academia and architectural
practice undeniably opens up novel opportunities that enable treatment of com-
plexity in large-scale, real-world projects and complex, multi-faceted performance
requirements and constraints. Despite the potential brought forward, there exist
challenges in effectively applying computational decision support in contempo-
rary education and practice. As stipulated previously in this thesis and specifically
within section 3.2, two fundamental challenges are related to the following two is-
sues:

e Unmanageable computational complexity of stochastic optimization due to
use of accurate simulation models, and,

e the lack of an efficient approach that allows decision-maker preferences to be
integrated with design objectives.

Identification of these two challenges and substantiation through real-world educa-
tion and design experience has been the main output of the preliminary research,
which leads to the concrete methodological specification of the next step.

An extensive review of the state of art in computational decision support and ap-
plications in architectural design has been performed. The result of this investi-
gation is presented in chapter 2. The main aim here, as related to the research
methodology applied, is to identify existing approaches that may potentially be
helpful in addressing the issues identified in the previous research stage. This pro-
cedure consists of the identification of works, establishing usefulness in address-
ing issues, pinpointing potential shortcomings, and, finally, establish the potential
for improvement of the identified work with the aim of better addressing issues at
hand.

this stage comprises formulating specific research questions and hypotheses, as well
as developing the necessary methodological insight to enable the establishment of
specific methods that will be implemented in the next experimental research stage
to address the research questions.

Model Development

The second part of the overall research methodology is concerned with the devel-

Chapter 11



§ 1.3.3

§ 1.4

opment of the model, which encompasses the development of the approach and the
formulation of the concrete method, as well as the development of software tools
that implement the theoretical findings. This part of the research focuses on the
use of insights gained previously in the initial research stage as well as in a more
focused review the of state of art, in order to formulate a course of action for ad-
dressing the issues identified as part of the preliminary research.

It is noted that this focused review of literature, in contrast to the general state of
art established in the Preliminary Research, will often be found alongside model
development within the structure of the thesis. This has been a conscious deci-
sion on the part of the author for two reasons. The first is to allow some degree of
fidelity to the timeline of performed research, which consists of a series of publica-
tions that encompass both establishing of state of art as well as development, and
the second is that content-wise, it is really fitting to combine these specific investi-
gations into the state of art with the development that they are related to.

Experimental Research

In previous research stages, and based on the needs and requirements estab-
lished and the investigation of the state of art, a proposed approach is formulated,
and its elaborations in specific methods, tools, techniques are proposed, and their
implementations are developed.

As a next step, the main goal of this research stage is to implement and validate
the applicability and performance of proposed methods in addressing the issues of
concern. As part of this goal, a two-fold experimental research endeavor is under-
taken that focuses on the following:

e The research and implementation necessary to establish the proposed meth-
ods and techniques, supporting infrastructure, functional testing components,
as well as integration thereof in a software framework.

e The planning and implementation of case studies that aim to ultimately val-
idate the performance and applicability of the proposed approaches. Valida-
tion of proposed approaches is performed through the application to design
case studies that are inspired by real world complex design problems.

The results of the experimental research stage, together with previous stages are
evaluated in order to formulate research conclusions and recommendations for fu-
ture research directions.

The overall outline of the research methodology followed in this thesis is presented
in figure 1.2.

No claim is made as to the validity or accuracy of design objectives as they are
established in the context of an architectural design project. Through the pro-
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posed approach it is possible to satisfy DM preferences insomuch as they are not
in direct conflict with design objectives; in this sense, it is proper to use the term
“second-order preferences”, in order to denote the precedence of design objectives
in the post-Pareto analysis. Concerning the above, the establishment of specific
soft criteria as they could be introduced in a design problem is an important as-
pect, however one that is not dealt with in this thesis.

Computational optimization offers tremendous potential for improving decision
making in the field of architectural design. Under this assumption the main contri-
bution of the work described herein is the identification of proposed methods and
techniques to extend the generic computational optimization framework so as to:

i improve adoption of simulation-based testing in the initial phase of design, by
alleviating arduous computational effort spent on design performance evalua-
tion, especially in the early, conceptual design stage,

ii enable decision making that is closer to the needs of project stakeholders, by
extending post-Pareto decision support with emphasis on the satisfaction of
preferences pertaining to concrete object attributes.

overall, improve informed decision making throughout the design process, which
can provide benefits such as overcoming building failures during the construc-
tion stage (calculated to be 20% of the building costs).

=

ii

The aforementioned contributions are expected to serve in promoting informed de-
cision making and, ultimately, through the improvement of the design process, to
a better-built environment. It is to be noted that, while focusing on architectural
design, the products of this thesis apply to other fields of design where qualitative
criteria have a key role, such as product design, graphic design, Human-Machine
Interface (HMI) design, and so forth.

The expected output of this thesis is two-fold: On one hand, it comprises the
methodological and technical novelties that are proposed herein. This includes i.
descriptions of the proposed methods including mathematical or algorithmic for-
mulations where relevant, and ii. descriptions of methods to validate the perfor-
mance of the former. The above have been incorporated in a series of journal and
conference publications, some of which have been distilled into parts of this thesis.
On the other hand, it comprises the concrete software implementations of the pro-
posed methods and techniques, which are fully functional components, at TRL 5
and above, that are ready to be used in practice.
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§ 1.7

§ 1.8

Computational optimization constitutes a powerful tool that carries the poten-
tial for groundbreaking advances in design research and practice. However, ap-
plications still fall behind as crucial aspects present challenges in applying said
methods, tools, and techniques to real-world architectural design problems. This
research aims at identifying prominent said problematic areas and proposing the
necessary advancements to alleviate related shortcomings. The proposed advance-
ments constitute a novel body of knowledge, that focuses on the research of spe-
cific aspects involved in the application of existing CI methods in the field of archi-
tectural design, as well as the technical advances necessary to enable successful
application thereof. The contribution to knowledge comprises advances in cog-
nitive methods to enable the seamless application of intelligent decision support
methods in architectural design. Besides, the tools, methods, and techniques pro-
posed as part of this work are expected to yield advancements in the application
of computational decision support in real-world architectural design problems by
making them more applicable and able to more accurately address high-level prob-
lems faced by decision-makers in the field of architectural design, which constitutes
significant dissemination of scientific research.

The societal relevance of this work resides in the premise that through the adop-
tion of the proposed tools methods and techniques, decision-makers in the field of
architecture will obtain powerful assets that can orchestrate a better application
of computational decision support tools overall, with emphasis on computational
multi-objective optimization, which is the most relevant for architectural design.
The societal relevance is thus directly evident, in that complex architectural design
problems as those commonly tackled in contemporary architectural practice will
be addressed with greater confidence due to the augmented cognitive capabilities
that the synergy of man (decision-maker) and machine (optimization algorithms
and cognitive models) is expected to offer. As a result, increased efficiency in de-
sign and construction is expected to translate into the reduction of costs associated
with the built environment, which in itself is a clear benefit both for the individ-
ual as well as for society. Ultimately, it is expected that furthering the state of the
art in this field will lead to a better-built environment, where, not only technical
but also qualitative aesthetic and individual/cultural preferences may be readily
addressed in everyday design practice.

A significant portion of the content of this thesis is based on a series of publi-
cations that have been published throughout the course of the author’s PhD re-
search, and which have lead up to the definition of the methodological and techni-
cal findings outlined hereafter.

The thesis is structured as follows. In chapter 2, an extensive literature review on
the state of the art on design Decision Support Systems, and in particular Com-
putational Intelligence-based decision support is presented. In chapter 3, the first
stages of research are presented. This preliminary research has been carried out
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as part of the author’s participation in architectural education and practice, and
culminated in the stipulation of the problem statement and research questions of
this thesis. Chapter 4 focuses on model development, elaborating on the individual
components that make up the proposed approach as well as their integration in a
consistent and comprehensive decision support method. Chapter 5 elaborates on
two case studies, each focusing on different aspects of the proposed approach; in
the first case, the application of a machine learning surrogate model to accurately
model indoor daylight distribution is discussed. In the second case, the applica-
tion of an auto-associative neural network that models the distribution of Pareto-
optimal solutions to a multi-objective facade design problem is presented, and ap-
plication to preference modeling is discussed. Finally, chapter 6 presents conclud-
ing remarks and future recommendations.

The structure of the thesis, including relevant publications, is outlined in figure
1.3.

Chapter



Chapter | Problem Statement,
Research Questions,
Methodology

Chapter Il Literature Review

Chapter Il Background Investigation - PULSE Project: Application of
Evolutionary Computation in Practice

- Cl Applications in Design Teaching
and Education

Chapter IV Model Development - Modular Surrogate Model
- Post-Pareto Preference Treatment

- Integration & Software Architecture

Chapter V Validation & Case Studies - Surrogate Model Case Study

- Preference Treatment Model Case Study

Chapter VI Conclusions & Future

Recommendations

FIGURE 1.3 Outline of the thesis structure in relation to the research activities
throughout the thesis.
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§ 2.1

Literature Review and State of Art

This chapter aims to provide a concise outline of the technologies that are related
to the present research, present an overview of the state of the art in related fields,
and identify the required developments in the state of art, to be able to propose
relevant methods, tools and techniques that can address the research questions
posed in chapter 1. The focus of this chapter is on approaches that belong to the
field of Computational Intelligence. In particular, the emphasis is two-fold: On
one hand, on the state of art in design decision-support approaches, focusing on
developments in Evolutionary Computation approaches for decision support in ar-
chitectural design, and on the other hand in research and applications of Machine
Learning in the same field.

Decision making is a central activity in architectural design that is characterized
as much by its ubiquity as by its importance in the design process. The complex-
ity involved in the design of architectural projects renders decision making in the
context of design a challenging task for human cognition. The main sources of de-
sign complexity have been previously outlined in section 1.1.2. Together with their
effects on the design process they may be summed up as follows:

1. The excessive number of possible design solutions (due to combinatorial ex-
plosion); exhaustive enumeration of design solutions is thus impossible.

2. The presence of multiple conflicting design objectives; identification of a sin-
gle best performing design is thus unattainable.

3. The presence of complex, non-linear relations between decision variables, ob-
jectives and constraints; exploration of the design space is thus perplexed.

4. The presence of tacit design preferences, independent of design objectives;
exploration cannot be guided by objectives alone.

In order to alleviate excessive cognitive burden, and effectively support cognitive
decision making, a wide range of devices has been utilized throughout the history
of design. The very act of sketching or drafting can be seen as a device that sup-
ports decision making. This is achieved through providing an external memory
mechanism where cognition can readily offload and reacquire information, thus re-
ducing the amount of information that needs to be retained in cognition at any
time. The use of external media as a cognitive extension mechanism has been de-
scribed in the literature (Clark 2001). The act of physical model-making belongs
to the same category, in that it aids in visualization of the projected design result,



§ 2.2

§ 2.3

and therefore facilitates a task that would otherwise prove to be a significant bur-
den to cognition. In a modern interpretation, contemporary Building Information
Modeling (BIM) systems serve a similar but extended purpose, namely to store
rich, hierarchical information pertaining to a multitude of building and construc-
tion aspects, which allows knowledge to be managed in a much more transparent
manner, therefore leading to better collaboration among stakeholders as well as an
overview of the design process and improved decision making.

Architecture, just as many other engineering disciplines, has undergone a pro-
found transformation with the introduction of digital machines. Developments on
ICKT have persisted throughout most of the 20th century, and have had an un-
mistakable effect on designing at multiple levels, including but not limited to rep-
resentation, collaboration, modeling and management (Sariyildiz and Stouffs 2001,
2002). Original work on the topic of ICKT dates back to the seminal dissertation
of Ivan Sutherland on Human-Machine Interface (HMI) and in particular HMI for
design tasks, which culminated to the well-known Sketchpad program (Sutherland
1963). Sketchpad has been a pioneer work in many levels. Some of the innovations
introduced as part of that work include: the use of a novel “light-pen” interface for
sketching on screen; basic associative functionality through the use (and re-use) of
“symbols”, i.e. associative groups of line and arc elements that share changes; ex-
tendability with new kinds of shapes and functionality; and innovations in storage
of drawings. Beginning in the 1980s, commercial Computer Aided Design (CAD)
programs had already found their way outside the academia and into architectural
design practice. Beginning with 2D drawing operations, and later on extending to
3D drawing, animation and Building Information Modeling (BIM) software, ICKT
technologies have provided a groundbreaking transformation of the architectural
design workflow, facilitating mundane tasks and providing novel management, col-
laboration and visualization capabilities.

The majority of ICKT applications in architectural design concern representation
and explicit design knowledge management. CAD software, visualization, represen-
tation and Virtual Reality applications, BIM applications, as well as the recently
popularized analysis tools such as computational simulation tools belong to this
category. Barring the cognitive support offered through facilitating information
management, including representation, there is no further involvement in decision
making of the tools described above. Besides, recent developments in CAD, such
as building information modeling (BIM) and simulation-based design, have mainly
affected the later stages of the design process, where the support offered by com-
puter tools is focused on decisions on specific aspects of the design (Strobbe et al.
2011).

Of greater relevance to the scope of this thesis though, are decision support
systems that are making use of computation to directly support decision making
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§ 2.4

through systematic search of the design space in the early stages of the design pro-
cess, where fundamental design decisions are still taking place. These are mainly
tools that rely on computational optimization. It is important to stress the dif-
ference between analysis and optimization. In analysis, the employed model is re-
sponsible for providing an accurate figure of the performance of a design, where-
upon a decision-maker iteratively performs adjustments that are either informed
by previous knowledge (e.g. through heuristic rules), own design or engineering
experience, or through trial-and-error, to improve performance according to one

or more design criteria. While the use of simulation offers a picture that is much
closer to reality than simplified calculations, rules of thumb or even speculation
could offer, decision making is still left up to the cognition of the decision-maker
to perform. On the other hand, in optimization, the iterative improvement is per-
formed as part of the algorithm, and the decision-maker is responsible for defining
design goals and the design space. Optimization-based approaches offer a clear ad-
vantage in that the human-in-the-loop trial-and-error process is eliminated and

in turn cognitive limitations are alleviated. The decision-maker is thus free to ex-
ercise their choice on designs that are proven to be well-performing, significantly
reducing the burden associated with design decision making overall.

Computational Intelligence (CI) is an umbrella term that encompasses several di-
verse approaches to intelligence, which comprise Machine Learning (ML), Evolu-
tionary Computation (EC) and Fuzzy Logic (FL) (Jang et al. 1997). CI became a
formal area of study in the early 1990s, and is very close to the term Soft Comput-
ing (SC) (Zadeh 1994). SC as a term comes in contrast to Hard Computing, the
essential difference being that SC and methods thereof can tolerate imprecision,
can function using partial truth and may handle uncertainty as part of the process
(Jang et al. 1997). It is interesting to note that these are similar qualities as those
found in the mental processes underlying behaviors in natural organisms. Nature
has become in many cases the inspiration behind approaches that belong to the
domain of Soft Computing, such as Evolutionary Computation and Artificial Neu-
ral Networks. Concerning the aims of the present research, the two most relevant
Soft Computing methods are those of Evolutionary Computation, especially it’s
Multi-Objective counterpart, as well as Artificial Neural Networks.

Computational optimization in building design is a topic that has recently gained
attention by both academia as well as design practice. To clarify, the topic of com-
putational optimization in building design is a performance-based design approach
that is not limited to the use of analysis tools, rather it goes further to integrate
those tools with meta-heuristic optimization algorithms, such as Genetic Algo-
rithms, therefore automating the design search process. Hereby an indicative num-
ber of relevant studies are shortly reviewed.

It is noted that applications of presented studies tend to focus on facade design, as
this topic has been intensively researched due to its relevance with the case studies
that will be presented later on in this thesis. In addition, this particular topic is
a prime example of complex design, as it combines performance aspects that are
related to several different design objective including daylighting, climate comfort,
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cost and aesthetics.

Von Buelow (2008) discusses a digital tool, “Intelligent Genetic Design Tool” that
aims to support in design exploration through presenting decision-makers with
design alternatives that are discovered through genetic exploration in the design
space. The tool is claimed to promote creativity through considering more than
one alternative “near-optimal” solutions. It is worthwhile noting that the genetic
algorithm described in the paper is single objective. The tool is applied in a case
study that involves the design of a truss bridge, for which several alternatives are
presented.

Rusovan and Brotas (2012) propose a method that uses genetic algorithms to op-
timize an external shading screen based on a modular system of three-dimensional
elements gradually changing throughout the facade. The objective of optimization
is indoor daylight distribution, glare reduction and energy expenditure reduction.
Paper authors use Evalglare, Daysim and EnergyPlus simulation software to evalu-
ate shading screen designs.

Choi et al. (2013) develop a method for optimizing sets of rectangular louvers for
thermal performance using genetic algorithms to alternate the angle of rotation,
spacing, projection length, and inclination.

Ercan and Elias-Ozkan (2015) propose a performance based parametric design ap-
proach for the design explorations of shading device, which could optimize daylight
and block excessive amount of solar heat gain.

Gonzdlez and Fiorito (2015) focus on the optimization of external shadings for vi-
sual comfort and energy efficiency in a typical office space; the research tackles
solutions popularly adopted in standard practices, such as blinds and overhangs.

Futrell et al. (2015) compare the performance of four different optimization algo-
rithms to optimize building design, including exterior shading, for daylighting per-
formance to minimize lighting loads. The results indicate the region of optimal
performance is found quickly by all algorithms, but the converge has shown it can
be slow.

Omidfar (2015) presents a set of designs based on optimization of complex archi-
tectural facades using generative algorithms for daylight and structural analysis,
with explicit focus on the value of ornament. Paper authors use a Genetic Algo-
rithm to optimize the Daylight Autonomy of indoor space, however no further
information regarding either the algorithm at use of the optimization results is
given.

Elghazi et al. (2013) focus on origami to generate geometries of modular patterns.
They first studied and then optimized with genetic algorithms a set of kaleidocycle
rings that can be morphed to change the daylight performance in indoor spaces.

Lee et al. (2016) advocate a similar standpoint, by highlighting computer-assisted
parametric techniques can be utilized for daylighting design in a more accurate
way than design considerations based solely on prior knowledge and experience.
Paper authors compare conventional design approaches with indoor lighting condi-
tions obtained by adjusting louver shapes and window patterns using genetic algo-
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rithms.

Mahdavinejad and Mohammadi (2018) proposes a method for optimizing a louvre
system in hot climates based on daylight metrics and energy consumption, using
a genetic algorithm. Paper authors use the Strength Pareto Evolutionary Algo-
rithm - IT (SPEA2) (Zitzler et al. 2001) and aim to minimize energy consumption
while maximizing the Useful Daylight Illuminance metric of natural lighting qual-
ity indoors. Furthermore, they discuss the resulting Pareto optimal distribution
and draw useful design conclusions from the decision variables of the best-tradeoff
designs.

Mangkuto et al. (2018) focus on daylight admission in an open-plan. The admis-
sion was optimized using a genetic algorithm alerting the external and internal
widths, external tilt angles, and specularity of the light shelves with or without
overhangs. The objectives were to maximize the spatial daylight autonomy and
minimize the annual sunlight exposure.

Optimization problems minimize some function of decision variables subject to
hard or soft constraints and are divided into two types:

e Single objective optimization problems (SOP) that involve a single objective
function,

e Multi-objective optimization problems (MOP) that involve more than one
objective functions.

Single objective problems can be solved by exact methods to achieve an optimal
solution for problems with small-size and a strict mathematical formulation, which
does not match real-world problem characteristics (Cui et al. 2017). However, it is
more than often that design problems in architecture and elsewhere are defined by
more than one design criteria. In addition, design criteria may be conflicting with
each other, so that performance improvement according to one criterion leads to
degrading performance according to another. In such cases, a design that satisfies
all design criteria to the full extent is by definition impossible.

As an example, one may consider the case of designing an office building. The
building stakeholders may wish to maximize profit by maximizing the usable floor
area of the building. On the other hand, it is expected that they may wish to min-
imize the investment cost. Satisfying both of these criteria to the fullest is im-
possible by definition. Thus, one has to settle for compromises between them.
Problems like the one mentioned, characterized by more than one conflicting ob-
jectives, are commonly known as Multi-Objective Problems. The field of opti-
mization that deals with such problems is known as Multi-Objective Optimization
(MOO). Multi-Objective Optimization in particular, has enabled efficiently ad-
dressing problems of significant design complexity in engineering (Ravindran et al.
2006), and more recently also in architecture (Evins 2013; Machairas et al. 2014;
Ekici et al. 2019). The rest of this chapter focuses on these methodologies and the
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§ 2.

state of the art of their applications in architectural design.

Multi-Objective Evolutionary Algorithms

Most real world optimization problems are naturally posed as multi-objective
optimization problems. One approach to addressing multi-objective problems is
known as the weighted sum or scalarization technique, where a minimization prob-
lem is expressed as (Deb 2001):

minZ%-fi(Jc) (2.1)

Z% =1 (2.2)

vi>0,i=1,...,n (2.3)

In the above equation, ~; is the ith weight value and f; the ith objective function.
An alternative technique entails converting all but one of the problem objective
functions to constraints, and trying to optimize the functions subject to said con-
straints. Despite the simplicity of the above techniques, the performance of the op-
timization solutions in both approaches is heavily dependent on the chosen weights
or constraint limits (Zitzler 1999).

In the application of these approaches, it is difficult to decide the degree of impor-
tance of each objective whether it is previously determined (weighted-sum method).
Considering the drawbacks of these approaches, multi-objective optimization (MOO)
algorithms, and especially Multi-Objective Evolutionary Algorithms (MOEAs) are
referred to. MOEAs introduce the notion of dominance to effectively deal with
multiple objectives. Simplified, the notion of dominance introduces definitions for
comparing solutions in the presence of multiple objectives. Namely, considering a
minimization problem, a solution x4 is said to dominate another solution zp if the
following conditions are both true (Deb 2001):

Solution x4 is no worse than xp in all objectives, Solution x4 is is strictly better
than xp in at least one objective.

If any of the above conditions are violated, then solution x4 does not dominate
xpg. Since the concept of dominance allows for a comparison of designs in a multi-
objective context, most MOEASs rely on dominance, or an indicator thereof, to
identify and evolve promising solutions.

Besides Evolutionary Algorithms, other algorithms dealing with stochastic opti-
mization, including MO problems, have been developed through inspiration from
behaviors and communication mechanisms in nature (Cui et al. 2017), such as
biology-inspired algorithms, physics-inspired algorithms, geography-inspired algo-
rithms, and social culture-inspired algorithms (Cui et al. 2017). Indicatively, a few
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popular MOEAs are outlined as the Non-Dominated Sorting Genetic Algorithm-
II (NSGA-II) (Deb et al. 2002), the Strength Pareto Evolutionary Algorithm-II
(SPEA-II) (Zitzler et al. 2001), the Multi-Objective Evolutionary Algorithm with
Decomposition (MOEA/D) (Qingfu Zhang and Hui Li 2007) the Hypervolume Es-
timation Algorithm (HypE) (Bader and Zitzler 2011) and the Multi-Objective Dif-
ferential Evolution (DEMO), outlined below.

§ 2.5.1.1 Non-Dominated Sorting Genetic Algorithm II

NSGA-II is an exclusive multi-objective Genetic Algorithm and it is an improved
version of NSGA. It behaves as to preserve variations by not having any variable.
It incorporates a fast and robust non-dominated sorting approach (Deb 2001). The
algorithm demonstrates complexity O(MN?) in finding all members of the first
non-dominated stage in the population. M represents the number of objectives
and N the population size.

In the main loop, Py, which represents an initial random parent population, of
size N, emerges. It contains D-dimensional vectors and it is symbolizing deci-
sion variables. In order to produce an offspring population Qo of size N, binary
tournament selection, recombination, and mutation operators are applied. On the
other hand, elitism is not applied in this stage. In advance, a combined popula-
tion Ry = P:Q: gets formed. Here, size of 2N is the population of R;. Later on,
with nIN being the total number of ranks of the combined population upon non-
domination, the Rt population is sorted into sets Fi, ..., Fj,. As from the set of
non-dominated individuals, Fi, attachment of individuals to P41 is applied. It-
eration for each consequent phase set is the period of insertion. When there is an
addition of set F}, it makes inferences the size of P:y1 in order to be greater than
N, F} is sorted upon the crowded-comparison operator n, and is trimmed to suit
the sustaining places in P;11. In order to generate an offspring population Q:1,
for the next generation, P;11 is used along with binary tournament selection, re-
combination, and mutation.

In order to acquire an approximation of the depth of solutions encircling a specific
formula in the population, the average distance of two points on either side of this
point along each of the objectives is computed. In this step, there is an approxi-
mation of the perimeter of the cuboid. It gets formed by using the closest neigh-
bors as the corners, and this fact is named as “crowding distance” (Deb 2001)If
two solutions a and b have different ranks, the one with the lower rank is selected.
On the other hand, when there is equality between ranks, the one with the biggest
crowding distance is selected.

§ 2.5.1.2 Hyper-volume Estimation Algorithm

The Hyper-volume Estimation Algorithm, abbreviated HypE, was developed by
Bader and Zitzler (Bader and Zitzler 2011). It is based on an effective fitness as-
signment strategy. As can be seen in figure 1, the main loop of HypE started with
a standard evolutionary algorithm process, then continued with the successive ap-
plication of mating selection, variation, and environmental selection procedures
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(Algorithm 1).

Result: P, of Pareto optimal solutions
Initialize population P by choosing N solutions from X uniform at random
where N: popsize, M: nosamplingpoints;
g+ 0
while g < gmaz, where gmaz is number of generations do
P’ «+ matingSelection(P, R, N, M);
P" + environmentalSelection(P U P", R, N, M);
g—g+1
end
Algorithm 1: HypE algorithm main loop (Bader and Zitzler 2011)

During the mating selection process, if the number of objectives is equal or smaller
than three, the hypervolume values are computed exactly; otherwise, these val-
ues are estimated based on a Hypervolume-based Fitness Value Estimation algo-
rithm. Then, binary tournament selection is realized with several tournaments
among a few individuals that are randomly selected from the population. In the
variation process, mutation and recombination processes are combined to produce
an offspring population. Finally, in the environmental selection process, the most
promising solutions are chosen from the parent population and offspring. Then, a
new population is created for the next generation (Algorithm 2).

Result: Mating pool @
where P: population, R: referenceset, N: popsize, M: nosamplingpoints;
if n < 3 then
‘ ¢ < compute Hypervolume(P, R, N);
else
‘ ¢ « estimate Hypervolume(P, R, N);
end
Q0
while |Q| < Ndo do
choose (a,vq), (b, ) € ¢ uniformly at random;
if v, > vp then
| Q@+ Qu{a}
else
| Q< Qu{b};
end
end
Algorithm 2: HypE mating algorithm (Bader and Zitzler 2011)

Multi-Objective Differential Evolution

Differential Evolution, first presented in (Storn and Price 1995) is a successful
Evolutionary Algorithm that uses a greedy selection strategy and a recombination
operator that combines a parent with several other individuals within the popula-
tion. The original Differential Evolution algorithm is single-objective, and several
strategies are reported to extend it to the Multi-Objective domain. Among those,
a particularly successful one is Differential Evolution for Multiobjective Optimiza-
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tion (DEMO) (Robi¢ and Filipi¢ 2005). DEMO proposes an elitist scheme for han-
dling the problem of deciding on parent replacement when parent and offspring are
non-dominated. DEMO proposes that in this case, the offspring is added to the
population, growing its size. Following recombination and selection, the population
is truncated following dominance and crowding distance criteria, similar to the ap-
proach followed in NSGA-II. The algorithm is shown in figure 3.

Evaluate the initial population P of random individuals;
for P;(i =1, ...,popSize) in P do
Create candidate C' from parent P;;
evaluate(C);
if C = P; then
‘ C replaces P;;
else if C' < P; then
‘ C' is discarded;
else
‘ C added to P;

end
if |P| > popSize then
‘ truncate(P);
end
Initialize population P by choosing N solutions from X uniform at random
where N : popSize, M : nosamplingpoints;
Randomly enumerate the individuals in P;
Algorithm 3: Outline of one variant of DEMO algorithm, DEMO /parent (Ro-
bi¢ and Filipi¢ 2005)

Multi-Objective Optimization in Building Design

In this section, an indicative number of studies are presented that focus on the
application of Multi-Objective Evolutionary Computation (MOEC) as a decision
support tool in architectural design.

Sariyildiz et al. (2008) report a novel system with the aim of pursuing Pareto-
optimal designs in multi-objective problems in the application domain of architec-
tural design. The system is capable of quantifying qualitative, linguistic informa-
tion through the use of fuzzy neural trees and thus it is able to incorporate quali-
tative knowledge of design experts as an objective function for optimizing. In addi-
tion, paper authors present a probabilistic visual perception model which they use
to address privacy concerns in architectural design. Finally, they report promising
results with a neighborhood planning case study, where objectives are to maximize
garden area with specific orientation and maximize visual privacy.

Gagne and Andersen (2010) report a tool based on a Genetic Algorithm that facil-
itates the exploration of facade designs considering objectives of improving illumi-
nance and minimizing glare. Paper authors present a bi-objective study where one
objective is related to illuminance and the other is related to glare, where both are
computed through simulation. It is interesting to note that despite the fact that
an efficient lighting engine (Lightsolve Viewer) is employed, the computation time
for a single scene is reported at 10 seconds. As such, a significant time cost is asso-
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ciated with the whole endeavor, which may scale to the range of many hours if not
days, for large populations and many generations. Paper authors combat this cost
through the use of a small population “Micro Genetic Algorithm”, and through
limiting the total generation number. However, it is seen from the results that
with such limitations convergence to the Pareto front is not achieved. Nonetheless,
they report interesting and novel architectural facade solutions.

Khoroshiltseva et al. (2016) employ as objective functions reducing the overheating
time of the building, providing a high level of visual comfort, and minimizing the
level of energy consumption for heating, cooling, and lighting and formulate a bi-
objective optimization problem thereof.

Zhang et al. (2017) propose a multi-objective approach for the design of either
Venetian blinds and roller shades in the design variables (comprising orientation,
room depth and corridor depth, the window-to-wall ratio of different interfaces,
glazing materials in addition to shading type) of a school in mainland China. The
proposed approach make use of the SPEA2 algorithm and aims to minimize the
energy use for heating and lighting and the summer discomfort time and to maxi-
mize the useful daylight illuminance, in a cold climate.

Wright et al. (2014) reports a Multi-Objective Evolutionary Algorithm-based de-
sign tool for the design of cellular fenestrations in building facades, considering

the objectives of minimizing energy consumption and capital cost for an interior
atrium of a three-story commercial building. The author employs a matrix of bi-
nary values denoting the presence or absence of types of elements on a grid on the
building facade. Energy consumption is derived through EnergyPlus simulation. In
addition to the multi-objective constrained optimization, paper authors also report
the results of a sensitivity analysis as well as perform comparisons between the op-
timization performance of different design encodings. There are no figures reported
regarding the computational cost of running simulations.

Turrin et al. (2013) report an application of multi-objective optimization to the
free-form design of thermal mass panels, similar in concept to a Trombe wall, lo-
cated in a multi-story atrium in Shenyang, China. Paper authors make use of sim-
ulation to define a bi-objective optimization problem with objectives of minimizing
panel mass and energy costs for heating and cooling the atrium. A series of emer-
gent designs is achieved, however selection is performed through manual inspection
and selection, i.e. no post-Pareto optimality analysis is performed.

Kirimtat et al. (2016a) report on the design of exterior facade shading devices us-
ing two different Multi-Objective Evolutionary Algorithms, with the objectives of
improving indoor daylighting distribution (as indicated using the Useful Daylight
Iluminance (UDI) metric Nabil and Mardaljevic (2005)) and minimizing energy
consumption. This is one of the few studies that report detailed figures of the op-
timization time, and it is surprising to see that the total optimization time for an
evolutionary run of 30 generations extended to 3.75 days. This extreme computa-
tional complexity brings forward the demand for methods to alleviate the compu-
tational burden. As a conclusion, paper authors demonstrate design solutions that
are picked from the ultimate population through manual inspection.

Zani et al. (2017) propose the design of a high-performance concrete static shading
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FIGURE 2.1 Evolutionary design of thermal mass panels for a multi-story atrium
(Turrin et al. 2013).

system using a parametric design approach based on radiation control, outdoor
view, daylight indexes, and energy performance. Optimization by genetic algo-
rithms is used to define the openness’ sizes and cutting angles to minimize solar
radiation entrance throughout the year, maintaining an outdoor view. The result
includes geometries with gradient changes and smooth transitions.

Manzan and Clarich (2017) focus on the optimization of an external fixed inclined
panel combined with deployable internal Venetian blinds for an office room with a
south exposed window. The problem definition includes three continuous decision
variables and two objectives, namely the primary energy consumed during a whole
year for maintaining healthy internal conditions and the total number of hours in
a year, computed during the occupancy time, with internal blind deployed with an
inclination of 45 degrees. Their research focuses on the application of a Response
Surface Model algorithm termed FAST, designed to reduce long simulation times,
during optimization. FAST fits several different models, among which neural net-
works, radial basis function networks and support vector machines, and uses the
most accurate meta-model for each objective and constraint evaluation. The algo-
rithm starts from an initial dataset derived through Design of Experiments (DoE)
and refines the results near the area of optimal solutions. Paper authors compare
FAST with NSGA-II and report that results are similar, i.e. Pareto fronts are sim-
ilar, while FAST offers significantly reduced computational times.

It is seen through the above works that there is increased interest in the past years
in the applications of Multi-Objective Optimization (MOO) in architectural de-
sign. The use of MOO algorithms in itself is a significant decision support tool
that may reveal a wealth of design solutions to the decision-maker, contributing
significantly to informed decision making during the early stages of design. The
sections that follow aim to attempt to discuss the important issues that applica-
tion of computational optimization and especially Multi-Objective Optimization

is facing in its application to architectural design, to set the foundations for re-
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searching contributions that may improve the efficiency of such decision support
techniques, and widen the field of potential applications.

Table 2.1 provides a concise summary of studies that have been reviewed as part
of the previous sections. In the table in question, “S.0.” corresponds to a single-
objective problem, “M.0O.” to a multi-objective problem, and the “Galapagos” Ge-
netic Algorithm is a GA implementation incorporated in the popular “Grasshop-
per” parametric design platform. To the best of the author’s knowledge, this algo-
rithm has not been published.

Computational Complexity

A significant concern with the application of EAs in complex problem-solving is
the increased requirements in computation. EAs approximate optimal solutions by
iteratively improving on a population of candidate solutions, and as such they re-
quire continuous evaluation of solutions according to the prescribed design criteria.
If those criteria involve evaluation of computationally demanding models, such as
the elaborate daylighting or thermal models employed in contemporary practice,
the computational complexity of an optimization run can easily become unman-
ageable, especially in the early stages of design, where radical design changes are
frequent and may incur re-definition of the optimization problem or change in ob-
jective functions and constraints.

As previously mentioned, Multi-Objective problems comprise more than one
conflicting objectives, and as such, there is no single attainable solution that can
fully satisfy all objectives. Decision making in the context of MOO concerns the
settlement on an optimal objective function tradeoff that best satisfies the pref-
erences of the stakeholders. According to (Zitzler 1999), referencing (Horn 1996;
Hwang and Abu Syed Md. Masud 1979) there are three main approaches to treat-
ing preferences, in general:

e Decision making before search (a-priori decision making): The objectives
of the MOO problem are aggregated into a single objective by determining
weighting factors, or alternatively by selecting a single objectives and select-
ing constraint violation thresholds for the remaining ones. In both cases,
preferences and design knowledge of the decision-maker are implicitly ex-
pressed through the weighting factors or constraint violation thresholds

e Decision making during search (interactive decision making): The DM can
articulate preferences during the optimization process through interaction.
After each optimization step the DM specifies further preference information
whereby the search is further guided towards preferred areas in the design
space. This approach is also termed “Interactive Optimization” (Takagi 2001;
Meignan et al. 2015), with applications also in architectural design.

e Search before decision making (a-posteriori decision making): Optimization is
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TABLE 2.1 Summary of Reviewed Computational Optimization Approaches in
Architectural Design and their Characteristics
Study Type  Algorithm Topic Objectives
Choi et al. S.0. ?Galapagos” GA Sunshading Thermal Perfor-
(2013) Facade mance
Ercan and S.0. ?Galapagos” GA Sunshading Solar Irradiation
Elias-Ozkan Facade
(2015)
Elghazi et al. S.O. Not mentioned Sunshading Daylight Distri-
(2013) Facade bution
Futrell et al. ~ S.O. Simplex (O’Neill, 1971),  Sunshading Visual Comfort
(2015) Hooke Jeeves (Hooke Device & Energy Effi-
and Jeeves, 1961), Parti- ciency
cle Swarm Optimization
(Kennedy and Eberhart,
1995)
Gagne and M.O.  Micro-GA (Coello Sunshading Illuminance &
Andersen Coello Coello and Facade Glare
(2010) Toscano Pulido, 2001)
Gonzélez S.0. ?Galapagos” GA Sunshading Visual Comfort
and Fiorito Element & Energy Effi-
(2015) ciency
Lee et al. S.0. ?Galapagos” GA Sunshading Daylight Distri-
(2016) Facade bution
Khoroshiltseva M.O.  Harmony Search (Lee Composite Energy Con-
et al. (2016) and Geem, 2005) Shading De- sumption, Over-
vice heating, Device
Area
Mahdavinejad M.O.  SPEA2 (Zitzler et al., Internal Lou- Daylight Distri-
and Mo- 2001) vre bution, Energy
hammadi Consumption
(2018)
Mangkuto M.O. SPEA2 (Zitzler et al., Light Shelf Daylight Distri-
et al. (2018) 2001) Geometry bution
Manzan M.O. FAST, NGSA-II (Deb Shading De- Energy Con-
and Clarich et al., 2002) vice sumption, Day-
(2017) light
Omidfar S.0. Gene Arch (Caldas, Sunshading Daylight Distri-
(2015) 2008) Device bution
Rusovan S.0. ?Galapagos” GA & In- Sunshading Daylight Distri-
and Brotas teractive Element bution
(2012)
Sariyildiz M.O.  Own implementation Urban Block Visual Privacy,
et al. (2008) Spatial Config- Outdoors Area
uration
Turrin et al. M.O.  NGSA-II (Deb et al., Indoor Ther- Thermal Mass
(2013) 2002) mal Mass Distribution,
Exposure to the
South, Deflec-
tion
Von Buelow S.0. CHC-GA (Eshelman, Truss Design Weight
(2008) 1991) & Interactive
Wright et al.  M.O.  NGSA-II (Deb et al., Facade Design  Cost, Energy
(2014) 2002) Consumption
Zhang et al. M.O. SPEA2 (Zitzler et al., Spatial Config- Heating, Dis-
(2017) 2001) uration comfort, UDI
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performed without any preference information given. The result of the search
process is a set of (ideally Pareto-optimal) candidate solutions from which
the final choice is made by the DM.

In this thesis, the focus is on the third paradigm as outlined above. Decision mak-
ing before search (first paradigm) requires a-priori domain knowledge that is usu-
ally not available, let alone in the early stages of architectural design, which is the
focus of this thesis. Decision-making during search is a promising alternative, how-
ever, it presents drawbacks such as increased uncertainty, cognitive drift, and cog-
nitive fatigue, that usually prohibit application to complex design scenarios such
as the ones found in real-world architectural design problems. Thus the focus is on
a-posteriori decision making, where preference-oriented decision making is post-
poned until the design solutions that are of interest, namely the best tradeoff solu-
tions, have been established through multi-objective optimization. For more infor-
mation on this type of approaches, the reader is invited to study references (Coello
2000; Jaimes 2011; Wagner and Trautmann 2010; Carrese et al. 2012; Koksalan
and Karahan 2010), among others. Besides, a brief review of recent post-Pareto
optimality analysis approaches is presented next.

Approaches to Post-Pareto Optimality Analysis

Surpassing the common practice of exhaustive inspection and empirical selection
of solutions, several approaches to post-Pareto optimality exist in literature. An
indicative set of works is briefly reviewed hereby.

Obayashi and Sasaki (2003) propose the application of Self-Organizing Maps (SOM)
to address the problem of post-Pareto optimality analysis in the case of the aero-
dynamic wing and fuselage design. Paper authors apply SOM as a dimensionality
reduction technique to manage the high-dimensional objective function distribu-
tion of the resulting Pareto-optimal solutions to a quad- and bi-objective problem
respectively. Following an initial derivation of a two-dimensional SOM encoding
objective function distribution, they derive cluster-averaged codebook vectors and
use those for the generation of a second SOM revealing interactions and trends of
decision variables in objective function values.

Wagner and Trautmann (2010) introduce Desirability Functions (DFs), previously
introduced by Harrington (Harrington 1965) in multi-objective problem solving as
a non-linear mapping of objective function values to the [0, 1] range, parametrized
by decision-maker preference information regarding exemplary objective function
values. Besides, paper authors develop the Desirability Index which is an aggre-
gate of individual objective function DFs into a single index representing the desir-
ability of a solution. Finally, they present an integration into an indicator-based
MOEA and experimental results.

Carrillo et al. (2011) present the non-numerical ranking preferences method as an
approach to post-Pareto optimality preference treatment. In particular, through
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the proposed algorithm the paper authors seek to progressively prune Pareto opti-
mal solutions that are of less relevance to decision-maker preferences that are ex-
pressed through non-nominal ranking of objective functions. Paper authors demon-
strate application to a Pareto-optimal set identified from a multi-objective problem
from literature.

Bandaru and Deb (2011) propose an automated method for identifying innova-
tive principles through analysis of Pareto-optimal sets in multi-objective problems.
The paper authors aim to derive basis functions that are characteristic of the set
of Pareto optimal solutions, in an automatic manner. In doing so, paper authors
propose an evolutionary algorithm that evolves mathematical relationships aim-
ing to maximize their generality, applicability, and validity over the set of Pareto
optimal solutions. Applications to several engineering problems is presented.

Carrese et al. (2012) introduce a Particle Swarm Optimization (PSO) algorithm
that makes use of a reference point, determined through decision-maker prefer-
ences, to focus the search on a particular region of interest on the Pareto front in
multi-objective problems. The paper authors apply the proposed method to an
aerodynamic design problem and propose the reduction of computational complex-
ity through the use of a Kriging model.

Through the above brief review, it is deducted that in the general field of multi-
objective problem solving and decision support for engineering the focus is on so-
lution performance as expressed in the objective function space and less so in the
decision variable space. Even when some emphasis is on the latter, such as in the
works of Obayashi and Sasaki (Obayashi and Sasaki 2003) and less so Bandaru
and Deb (Bandaru and Deb 2011), the goal is to derive principles that support
high performance and less so to explore preferences in terms of object properties.

Despite the existence of a wealth of methods for post-Pareto optimality analysis, it
is stressed that addressing preferences on object properties is not achievable purely
by examining the objective function space, due to the complex non-linear relations
between objectives and constraints. As such, handling of such kind of preferences
is non-trivial, as will be further elaborated in chapter 4.

In Architectural Design and Related Disciplines

The aforementioned approaches form useful contributions concerning post-Pareto
optimality analysis and decision making. In engineering applications, the domain
of importance is that of the objective function space, and effective treatment of
preferences therein is enough to conclude decision making and identify an optimal
choice among best-tradeoffs. However, a significant difference exists when the ap-
plication domain is not engineering but also comprises soft, qualitative aspects. In
such a case,

It is underlined that, despite the importance of the subject, especially in the do-
main of architectural design, few authors report attempts at addressing this issue.
It is surmised that the elusive nature of the topic is the reason behind the seem-
ingly limited research interest, which does not corroborate with the importance of
the issue at hand. Some relevant studies are hereby briefly summarized.
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Ansuini et al. (2012) report on a methodology for the design of decision support
systems in conceptual design phases capable of fostering the exploration of design
alternatives through statistical inference. The approach is probabilistic, based on
Bayesian Networks (BNs). In the proposed BN, graph nodes represent design pa-
rameters and performances, and graph edges represent relationships among param-
eters, parameters, and performances, or performances. Relationships are obtained
through statistical analysis of simulation results. In the paper authors’ paradigm,
a design decision is translated to value assignment in a node, which corresponds
to a 100% likelihood for the given value. The remaining nodes in the graph obtain
probability distributions corresponding to probabilistic conditional dependency re-
lations among them. Paper authors make the case for building knowledge through
linking of multiple BNs, and present an extended example in energy-conscious ar-
chitectural design.

Thomsen (2014) propose a method for post-Pareto optimality taking into account
design intention. The method is based on k-means clustering. The novelty of the
approach lies in that clustering is performed in a modified design space that is
generated by transforming the original through decision-maker defined functions.
Paper authors present application in the case of designing a vault structure.

Preferences in Multi-Objective Decision Making

In the context of MOO where conflicting objectives are present, the notion of
preference is usually associated in literature with the relative importance among
problem objectives (Jaimes 2009). As Obayashi puts it, “Design is a process to
find a point in the design variable space that matches with the given point in the
objective function space” (Obayashi and Sasaki 2003). As such, preferences in the
canonical meaning pertain to the objective function space. In a-priori decision
making, preferences are implicitly embedded in the combination of weight vec-
tors. In interactive decision making, preferences are expressed via the selection
performed throughout the optimization process. In a-posteriori decision making,
the full front of trade-off solutions is available, and the decision-maker expresses
preferences by selecting a Pareto optimal solution. Through this selection, the rel-
ative importance among objective functions is implicitly established.

Through multi-objective optimization, it is generally feasible to achieve a set of
solutions that are evenly distributed along the Pareto surface in the objective func-
tion space. These are termed non-dominated solutions. However, relationships in
the objective function space do not extend to the decision variable space and vice
versa. The reason behind this phenomenon is rooted in the non-linearities intro-
duced by the objective functions defined in the context of the design problem. As
a result, neighboring relationships between solution representations in the objec-
tive function space do not necessarily correspond to relationships in the decision
variable space. Two solutions that demonstrate similar decision variable compo-
sitions (neighboring solutions) may occupy far-away points in objective function
space. Similarly, solutions nearby in the objective function space may occupy two
distant points in the decision variable space. It is thus impossible to make compre-
hensive design decisions by considering the similarity of solutions in either space
alone since similarity in the other of the two spaces is not guaranteed. Fig. 2.2
graphically outlines this condition.
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FIGURE 2.2 Description of a possible decision making process in architectural
design. On the left, the Objective Function Space is depicted. On
the right the Decision Variable space. Note that in both cases, the
spaces are low dimensional, in order to aid representation. Solution
A is a best-tradeoff, that is lacking desirable features. The decision-
maker may choose to adjust decision variable values to impose de-
sired properties. This generally is expected to lead to a sub-optimal
solution, B. Ideally, the goal would be to guide the decision-maker
to obtain a solution that combined both performance and desirabil-
ity, C.
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Preferences on Object Properties

In this section, an alternative notion of preferences is introduced, namely prefer-
ences on the decision variable space, in place of objective function space. In archi-
tectural design, the ultimate decision of the architect lies in determining the con-
crete properties of the designed objects, that is establishing values for the decision
variables of the problem at hand. This is a process that is guided by the satisfac-
tion of goals as much as by the satisfaction of preferences in terms of concrete ob-
ject attributes. Thus in many cases, decisions are guided to ensure that desirable
attributes are present.

In other words, identifying a point in decision variable space that corresponds
to a given (optimal) point in objective function space, as per the statement of
Obayashi, does not tell the whole story, when it comes to architectural design.

An example of this is often seen in a-posteriori decision making, where the exam-
ination of Pareto-optimal solutions is carried out to identify visually interesting
ones. On the contrary, expressing decision variable preferences in a-priori decision
making is near impossible, as it pertains to multiple optimization iterations with
different sets of weights.

Generally speaking, designing is about identifying compositions of physical fea-
tures that are generally desirable and suitable. Here, “suitable” and “desirable”
reflect two distinct criteria, namely: suitability of a particular design is evaluated
concerning first-order design goals and objectives, that have been predetermined
e.g. as part of a design brief, and are mostly unyielding and essential for the ac-
ceptance of a design solution. Simply put, suitable solutions are those that maxi-
mize performance concerning design goals or objectives while satisfying constraints.
The role of goals and objectives on the domain of object properties is that of im-
posing certain relationships between them. Designs that possess properties that
adhere to the relations established by design goals are those that maximize design
suitability for the intended purpose. Through the establishment of such relations,
decision-makers are provided with the necessary mechanism to abstract away the
excessive complexity that arises in design problems such as those in the field of
architecture, for example, when dealing at the level of detailed properties of the
objects.

On the contrary, desirability is a design quality that is to be found at the lowest
abstraction level, which is that of design features. At this level, designers gener-
ally express preferences concerning some or all the decision variable values that are
involved in the design task at hand. These preferences are notwithstanding the de-
sign goals mentioned above, which need to be satisfied with maximum priority.

Through establishing goals and constraints in design, explicit relationships are
formed between concrete object properties, design goals, and constraints. These
relationships are generally complex and are not known by decision-makers at the
time of designing. It should be understandable, nonetheless, that successful designs
combine the requirements for suitability and desirability; in other words, they are
well-performing designs that are characterized by desirable feature compositions.

While plain selection out of a set of Pareto optimal solutions is a widely adopted
practice, given the above realizations it is hardly an efficient one if both suitabil-
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ity and desirability are to be considered. A limited set of solutions, such as those
present in the Pareto front may miss desirable attributes entirely, and as such a
decision-maker examining it will not be introduced to solutions of interest con-
cerning decision variable preferences. This is especially true in the case of complex
objective functions or problems of high-dimensional design spaces. Besides, due

to the non-linear and multi-modal relationships between objective functions and
decision variables, an extensive inspection of every single best-tradeoff solution is
often required to ensure comprehensive identification of desirable attributes. This
is cumbersome in large population sizes and may result in cognitive fatigue and
subsequent suboptimal decision making.

Through the above, the need for a better approach to decision making for the sat-
isfaction of preferences on physical object attributes is clear and underlines the
importance of the associated research goal of this thesis.

The field of machine learning is concerned with the question of how to construct
computer programs that automatically improve with experience. On the definition
of learning from experience, (Mitchell 1999) presents the following definition:

A computer program is said to learn from experience E with respect
to some class of tasks T' and performance measure P, if it’s perfor-
mance at tasks 7', as measured by P, improves with experience E.

It is noted that this is a form of learning which is much closer to the way humans
and animals learn through stimulation from and reaction to the environment, and
in contrast to traditional machine programming, where knowledge and reasoning
are embodied in the form of explicit instructions.

In the sections that follow a brief, general introduction to a series of machine learn-
ing algorithms that have been used in the context of this thesis is presented.

Artificial Neural Networks

Artificial Neural Networks (ANNs) are a category of machine learning algo-
rithms that draw inspiration from the functioning of the neural system in living
organisms. In principle, ANNs belong to the machine learning paradigm of connec-
tionism (Rumelhart and McClelland 1986). In this paradigm, the processing of in-
formation is performed within massive networks of simple interconnected units in
a parallel and distributed manner. Such an architecture bears direct resemblance
to the neural networks that are ubiquitous in higher animals, although the artifi-
cial counterpart performs computation at a smaller scale. In such networks, knowl-
edge is stored in the weights of the connections, and learning occurs by adaptation
of said weights. One of the most compelling characteristics of ANNs is that it is
proven that they can universally approximate any continuous function (Hassoun
1995; Haykin 2005) although it is accepted that complex functions may require
vast networks for efficient approximation. For the purposes outlined in the present
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research, two types of ANNs are relevant namely the Feed-Forward ANN and the
Radial Basis Function ANN (RBFN), which will be briefly outlined henceforth.

FEED-FORWARD NETWORKS A Feed-Forward ANN (FFN) is a network
that is organized in layers of neurons of variable size. The only connections in this
type of network are between adjacent layers, and in particular connections between
any layer to the next one, hence the term “Feed-Forward”. The neurons in each
layer receive as input a weighted summation of the output of each neuron in the
previous layer. This is termed the propagation function and is expressed as:

pi(t + 1) = Z 0; (t)wij (2.4)

i

Where 0;(t) is the output of a neuron of layer t. Each neuron produces its output
by transforming the input through an activation function f. A common activation
function is the sigmoid:

1

5@ =Tz

(2.5)

FFNs are trained using the backpropagation algorithm (Rumelhart et al. 1985) or
variations thereof. A gradient descent algorithm is used to adapt the connection
weights based on the gradient information derived from backpropagation. The op-
timization objective is usually minimization of the squared error over the training
dataset.

RADIAL BASIS FUNCTION NETWORKS  Radial Basis Function Networks
(RBFNs) (Moody and Darken 1989) are a different category of ANNs that are
based on Radial Basis Functions (RBFs) as activation functions. RBFNs have two
layers: The first layer comprises RBFs that act as pattern detectors at the input
space, and the second layer forms the output of the network through a linear com-
bination of the RBF outputs. The output of an RBFN is formed as follows:

£o(@) = 20+ 3" Al — i) (26)

Where Ao forms the network bias, A; the linear weight values and ¢ is the radial
basis function.

The conspicuous property of RBF networks is that the output of the network, as
shown in the formula above, is a linear combination of the radial basis function
outputs. This property is significant as it allows linear least-squares techniques to
be used to determine the output weights, without resorting to non-linear optimiza-
tion, which may be costly and lead to local optima. Thus the problem of fitting
an RBF network is reduced to selecting suitable basis functions given a dataset.

In turn, this task can be performed very efficiently through algorithms such as

Architectural Design Performance through Computational Intelligence 36



Orthogonal Least Squares (Chen et al. 1992). Thus RBF networks offer a sound
alternative to other neural network types.

§ 2.7.2 Random Forests

A Random Forest (RF) is a prediction model based on ensembles of decision
trees. Decision trees are hypotheses created by constructing a binary tree with
simple decision functions at the internal nodes and output values at the leaves.
The definition of RFs for classification according to is as follows (Breiman 2001):

A random forest is a classifier consisting of a collection of tree-structured
classifiers h(x, k), k =1,. .. where the k are independent identi-
cally distributed random vectors and each tree casts a unit vote for the
most popular class at input x.

An important concept in training RFs is that of bagging. Bagging, short for “boot-
strap aggregating”, was introduced in (Breiman 2001) as a device for reducing the
prediction error of learning algorithms. Bagging is performed by generating new
training datasets through sampling from a dataset with replacement. In RF train-
ing, several of those datasets are generated, and each one is used to grow a tree-
structured predictor. The ensemble of these predictors forms the RF model.

§ 2.7.3 Support Vector Machines

SVM is a machine-learning approach based on the principle of structural risk
minimization (Vapnik 2000), which enables better prediction generalization while
enabling limiting of the number of learning patterns. For the scope of this study,
the variant of SVM that is suitable for regression, support vector regression (SVR),
will be used to approximate the visual comfort values.

output

FIGURE 2.3 Schematic illustration of a support vector machine, showing input,
kernels and linear output.
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The method will hereby be very briefly outlined. In the simplest case, the prob-
lem of fitting a linear function f to data in R™ is considered. In -SVR, the goal
is to find a (linear) function f that has at most deviation from each point in
the dataset and is at the same time as “flat” as possible (Basak, Pal, and Patran-
abis 2007), that is, the values of the linear weights of the model are minimized. A
schematic diagram of a regression SVM is presented in Figure 2.3.

Let w denote the vector of first-order coefficients in the linear function. Then, the
learning problem is formulated as follows:

Minimize
[|w]|? (2.7)

yi — (w,zq) —b<e

2.8
(w,3) +b— g < c (28)

The above formulation suggests a quadratic optimization problem where the objec-
tive is to minimize model weights, subject to prediction error being smaller than a
value €. Thus, the conspicuous difference in the objective function between ANNs
and SVMs is evident: While the prediction error is introduced as a minimization
goal in the case of ANNs, the objective function in the case of SVMs is to mini-
mize the values of the model weights thus maintaining model parsimony, while the
model error is introduced as a constraint. In other words, SVM attempts to iden-
tify the most parsimonious model that demonstrates an error no greater than e.
The parsimony of generated models introduces an advantage in model generaliza-
tion performance.

Surrogate modeling is an application of the field of Machine Learning (ML) in
optimization problems where repeated sampling of the objective function is non-
trivial due to computational complexity. Simulations of complex phenomena (in-
cluding building performance aspects such as daylight and thermal modeling) re-
quire enormous processing power and take a large amount of time. Repetition of
such phenomena for hundreds or thousands of times, as required by most stochas-
tic optimization algorithms, becomes infeasible even for problems of moderate size.
Therefore in complex engineering applications, it is common to fit an ML model
with previously gathered examples and make use of it in optimization. Thus the
evaluation of the original function (which may entail costly simulation) is only sel-
dom required, which results in a significant reduction of computational complexity
related to performance evaluation.

Surrogate Modeling in Building Performance Simulation

The topic of surrogate modeling has gained significant attention concerning ar-
chitectural design, in particular as related to attaining reduction of computational
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complexity in simulations of building energy consumption, daylight performance,
and visual comfort. A number of indicative studies are briefly reviewed hereby.

In a relatively early study in function approximation, Bhatnagar et al. have illus-
trated the applicability of FFNs, trained using backpropagation, in the problem
of thermal design of wall and roof sections (Bhatnagar et al. 1997). The study fo-
cused on fitting a model that could suggest suitable dimensions for building com-
ponents, given input regarding environmental conditions.

Dong et al. (2005) have successfully applied Support Vector Machine Regression
(SVM-R) in predicting the landlord energy consumption of four commercial build-
ings situated in Singapore, based on consumption figures derived from utility bills.
The application of SVM has outperformed existing approaches to landlord energy
consumption, reaching a % error ranging from 3.44 to 0.68 in their test cases.

Neto and Fiorelli (2008) have compared the accuracy of an approximation model
based on FFNs and a simulation model based on Energy Plus for forecasting build-
ing energy consumption. Their findings indicate a slightly better performance of
the ANN-based approach when trained on actual building consumption data.

Kazanasmaz et al. (2009) propose a feed-forward artificial neural network for esti-
mating daylight illuminance levels of buildings, based on time, weather and building-
related parameters, for a total of 13 inputs. A single output gives the estimated
illuminance in lux. The employed model is a single hidden layer neural network

with seven hidden nodes and tanh activation function both at the hidden nodes as
well as at the output. In addition to model derivation, authors perform a sensitiv-
ity analysis on the model intending to identify the most significant inputs, where
four inputs are identified, however, authors concede significant model performance
deterioration with just these four inputs considered.

Ekici and Aksoy (2009) examined the applicability of FFNs trained by backprop-
agation in predicting energy needs of buildings benefiting from orientation, insu-
lation thickness, and transparency ratio. Their study focused on buildings in the
Elazig region in Turkey, and they managed to achieve an accuracy of 94.8-98.5%
in their predictions.

Hawkins et al. (2012) have introduced an FFN trained by backpropagation to rec-
ognize patterns between building early-stage design parameters and display energy
certificate energy use data and subsequently performed a causal strength analysis
to determine the effect of independent variables on the energy use change. They
reported satisfactory but improvable results in prediction.

Wilkinson et al. (2012) propose an inductive model for approximating the distri-
bution of wind surface pressure on a building’s facade surface. The proposed ap-
proach entails the derivation of a local shape descriptor for each sampling point
and the subsequent input to a machine learning model, where the estimated pres-
sure output is derived. Authors train the model using derived data from an ac-
tual CFD simulation and perform cross-validation, where a cross-validation error
of 4.8% - 18.3 % on real buildings is reported.

Tsanas and Xifara (2012) aim to identify the statistical relation between eight in-
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dependent variables describing a total of 768 residential buildings and two depen-
dent variables corresponding to the heating and cooling load of said buildings. Au-
thors report on the use of descriptive statistical techniques. Besides, given pairs of
input and output variables, authors derive and compare two regression models, one
using iteratively reweighted least-squares (IRLS) and one using the random forest
(RF) technique, introduced by Breiman (Breiman 2001), where they find that the
non-linear Random Forest regression significantly outperforms its linear counter-
part.

Melo et al. (2014) propose an ANN-based surrogate model for building energy
certification use, focusing on the use case of a Brazilian city. Authors make use

of actual data used in energy certification as input to a single hidden layer net-
work with nine hidden nodes and a sigmoid activation function, which is trained
through backpropagation. In addition to deriving the model, authors perform sen-
sitivity analysis on each model input as well as an analysis of model performance
for different building types and finally compare the performance of the proposed
model to the surrogate approach found in the existing certification approach in
Brazil, where they highlight the potential of the ANN-based approach.

Hu et al. (2015) discuss evaluating lighting performance risk in retrofit scenarios,
using a neural-network surrogate model trained using simulation data from Ener-
gyPlus. Authors consider independent variables of occupancy level, weather con-
ditions, control strategy, and lamp type, which they term risk factors in the con-
text of lighting retrofit. Training of the surrogate model is reportedly performed
through an adaptive sampling technique, however, no further details regarding this
technique are reported. Results of the study indicate a negligible error in lighting
energy consumption prediction (R? = 0.9999) and a small error in HVAC energy
consumption prediction (R? = 0.946).

Wortmann et al. (2015) present an argument pro the use of surrogate models as
a means of guiding design exploration and contrast this approach to the use of
metaheuristic algorithms in design. Admittedly, the author of this thesis is un-
able to fully comprehend the state of contrast between the two as expressed by
the paper; especially since metaheuristic algorithms often employ surrogate mod-
els as a means of managing computational complexity. In turn, authors define an
optimization problem of Useful Daylight [lluminance and compare two alterna-
tive software in deriving optimized solutions: The “RBFOpt” library (Costa and
Nannicini 2018), and the “Galapagos” program, which is an implementation of a
genetic algorithm. It should be noted that the algorithm implemented in the Gala-
pagos program does not constitute published work. Authors find that the results
of the “RBFOpt” library are superior.

Yang et al. (2016) present a study on the effects problem scale and sampling strat-
egy have on the accuracy of the surrogate model approximating Useful Daylight
Iluminance (UDI) and Energy Usage Intensity (EUI). Authors evaluate the ef-
fect of the above in a series of different surrogate models, namely Polynomial Sin-
gular Value Decomposition (SVD); Stepwise Regression (STEP); Kriging (KR);
Shepard K-Nearest (KN) and Radial Basis Functions (RBF), and using a series of
model accuracy indicators. In comparing the above algorithms for different prob-
lem scales, namely a design problem with two and another one with 41 variables,
authors find that RBF performs best in the low-dimensional problem, while SVD
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performs best in the high dimensional one. In comparing different sampling strate-
gies, authors report results that lean in favor of the adaptive sampling strategies.

Chen et al. (2017) propose a two-stage optimization approach for improving en-
ergy usage in residential buildings. The first step of the proposed method is the
derivation of the surrogate model based on detailed energy usage simulations using
EnergyPlus, and simulating building HVAC control through a control algorithm.
Authors report that a Support Vector Machine-based surrogate model performs
best in minimizing the Generalized Cross-Validation (GCV)-adjusted training er-
ror. In the next step, the surrogate model is used in a bi-objective optimization
problem formulation with the objectives of minimizing lighting demand and cool-
ing demand, and which is optimized using the NSGA-II genetic algorithm. It is
interesting to note that authors report varying Pareto fronts according to the dif-
ferent surrogate models in use; this highlights the importance of an accurate surro-
gate model in achieving realistic optimization results.

Chen and Yang (2017) develop a surrogate model using Multivariate Adaptive
Regression Splines (MARS) to approximate lighting levels, air change rate, and
ASHRAESS comfort time in energy-efficient building designs. The proposed model
has nine inputs. Authors perform a sensitivity analysis to evaluate the effect of
each independent variable on the dependent variables of the model. In addition,
authors examine the effects of sample size for predicting illuminance levels and re-
port a sufficient sample size of 1000 examples. Finally, formulas of predictive mod-
els with R? values ranging from 0.703 to 0.926 are reported.

For a comprehensive review of recent advances in surrogate modeling applied to
architectural and energy-efficient building design, the reader is referred to Wester-
mann and Evins (2019).

It is seen that in most reviewed cases the figures obtained through the surrogate
models concern a building or complex as a whole, with little consideration to fig-
ures of individual building parts and/or areas or spaces within the building. Day-
light performance, for instance, is considered for a building as a whole, with only
a few studies concerned with the quality of daylighting within individual spaces
and locations. Even though useful for general design performance evaluation, such
abstract figures are not useful for evaluating the performance of specific spaces of
the building. In addition, it is seen through the above studies that the input to
the surrogate models consists of design-specific or building type-specific global de-
scriptors, such as shape characteristics, percentage of glazing, etc. The use of de-
scriptors usually leads to abstraction so that more detailed, localized information
regarding different areas of the building cannot be derived through a model-based
purely on global descriptors. This in turn has a significant impact if the model is
to be used in decision making, as it is often that the decision-maker need to obtain
specific information on the performance of a part of a building design. Even if a
strategy of separate models for individual building parts or spaces is considered, a
radical design change of change in design requirements during the conceptual de-
sign process may necessitate fitting surrogate models anew, which of course is a
tedious process, unfit to the rapid pace that conceptual design progresses. Such
considerations offer a starting point for research on surrogate models that would
eventually be more readily applicable to the conceptual design stage.
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§ 2.8.2

§ 2.9

Surrogate-Assisted Evolutionary Computation and Applications in
Architecture

Surrogate-Assisted Evolutionary Computation (SAEC) is a research field that
makes use of surrogate models to model computationally complex objective func-
tions, with the aim of reducing the computational requirements to solve challeng-
ing optimization and design problems. Essentially, SAEC combines the advances
in two fields, that of Surrogate Modeling and that of Evolutionary Computation.
Several approaches adopt an adaptive strategy that is based on indicators of model
accuracy and prediction confidence. These indicators are used to guide whether
the evaluation of subsequent solution performance will be performed by the sur-
rogate model or by the actual objective function. For a review of such adaptive
algorithms, see Jin (2005) and especially section 3.1.3 therein.

Aydin et al. (2015) propose an Artificial Neural Network-based surrogate model to
estimate the energy consumption and daylight autonomy of L plan-shaped office
buildings, using inputs of footprint area, number of levels, fenestration, shading,
U-values of building elements, and HVAC system selection. The derived model is
an ANN with a single hidden layer with five nodes, trained using 5000 training it-
erations, and L2 regularisation factor of 0.0001. The model demonstrates an R?
value of 0.958 for the Daylight Autonomy approximation, and 0.922 for the En-
ergy Consumption approximation. In turn, paper authors utilize the derived surro-
gate model in performing a bi-objective optimization using the NSGA-II algorithm
(Deb et al. 2002) with a population of 500 and achieve convergence to Pareto front
after 30 generations. Finally, they report an exponential fit to the non-dominated
solution distribution correlating the two objectives.

Kirimtat et al. (2019) report on the performance of irregular-shaped shading de-
vices that are designed through parametric modeling. Initially, the paper authors
discuss the derivation of a linear regression surrogate model for approximating
UDI (Useful Daylight Illuminance) (Nabil and Mardaljevic 2005) and subsequent
model validation. Subsequently, they make use of the model in addition to Ener-
gyPlus simulation in optimizing the shape of the shading devices so as to minimize
combined (heating and cooling) energy consumption and maximize UDI. Paper au-
thors compare the performance of two population-based multi-objective optimizers,
namely NSGA-IT and self-adaptive continuous genetic algorithm with differential
evolution, namely JcGA-DE, with the latter performing better in terms of hyper-
volume indicator. Overall, they report a 14% reduction in total energy consump-
tion results while maintaining UDI above 50%.

This chapter presented a concise overview of a number of relevant fields in Com-
putational Intelligence, namely Multi-Objective Evolutionary Computation, Multi-
Objective Decision Making, Machine Learning, and related technologies, in relation
to the state of art relevant to the research questions and initial research direction
of this thesis. Namely, the focus was on one hand on machine learning technologies
that aim to reduce the computational cost of performance evaluation in the con-
text of optimization, and on the other hand, on technologies to facilitate decision
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making through incorporating decision-maker preferences in the decision-making
process.

More specific to the architecture discipline, this chapter presented a brief overview
of the state of art in the application of computational intelligence-based decision
support tools to architectural design. Such application, while not plentiful, are
identifiable in literature. Several studies focus on the intelligent aspect, making
use of single- or multi-objective computational optimization to tackle design prob-
lems. In addition, there are studies that combine the intelligent part of optimiza-
tion with a cognitive part, where a surrogate model is used to alleviate computa-
tional complexity during the design process.

Despite the fact that studies, exist that combine intelligent with cognitive ap-
proaches, it is claimed that further intelligent-cognitive integration is possible with
the aim of augmenting the decision support capabilities of intelligent-cognitive sys-
tems. The direction that this thesis is taking, as such, is that of building on ex-
isting approaches of intelligent decision support, and introducing novel cognitive
components towards achieving the aim outlined above.

In this direction, and taking into account the state of art as presented in this chap-
ter, it is possible to identify opportunities for development that may address the
research questions initially posed in 1, as follows:

e Through formulating machine-learning-based surrogate models for use in ap-
proximating building simulation results in a way that is flexible enough to be
incorporated in the early stages of conceptual design, where drastic design
changes as part of the design process are commonplace.

e Through considering the relative lack of approaches addressing decision mak-
ing with a focus on second-order preferences, by establishing a novel approach
for post-Pareto decision support that places emphasis on the role of decision
variable values as representatives of desirable concrete design features.

The aforementioned research directions are further elaborated in subsequent chap-

ters where the research methodology is substantiated and the individual model
components elaborated.
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§ 3.1

§ 3.2

Background Investigation

The primary aim of this chapter is to present the background investigation that
has served to establish the research premises for putting forward the problem state-
ment and research questions proposed by this thesis. The investigation presented
in this chapter, together with the literature review presented previously, form the
foundations of this thesis. However, in contrast to the literature review, the inves-
tigation presented herein resembles a research-by-design process, where the experi-
ence of design technologies in practice forms the main source of conclusions being
drawn.

The chapter consists of two main sections. The first section comprises a published
journal article that outlines the application of an intelligent decision support sys-
tem, as well as the development of supporting tools and techniques to a real-world
design process of a state-of-the-art facade design. Drawing on this application, a
series of observations related to the potential of computational intelligence as deci-
sion support for complex design tasks are outlined. Considering the conclusions of
the first section, urgent issues pertaining to design applications of computational
intelligence and considering user requirements are established. It is noted here that
the chronological placement of the research outlined in this section is around the
middle of the research timeline. By that time, there were already other cases that
supported the premise of this thesis, however, due to the importance of this partic-
ular case study and its strong connection to a real-world case study, it is outlined
extensively herein.

The second section comprises an analysis of published works that the author has
performed in collaboration with MSc students during the course of design stu-

dios taught at Yagar University, with the main aim being the teaching of advanced
computational intelligence-based design approaches. The main aim of this section
is to identify challenges that are being faced in the works of the students, in order
to pinpoint opportunities for evolving intelligent and cognitive tools to better serve
their design decision support goal.

The main points from the investigation and their connection with the research

questions and problem statement are summarized and shortly discussed at the end
of the chapter.



Introductory Note

In the present section, research is presented wherein an investigation is con-
ducted as to the application of a Computational Intelligence Decision Support ap-
proach to a real-life complex design problem. The problem at hand concerns the
design of a shading device for a large facade in a public university building in the
Netherlands. The proposed approach is not tied to the specific problem but is ap-
plicable to a range of facade design problems. This section introduces the relation
between design complexity and sustainability requirements of modern buildings,
through the lens of the complexity proponents discussed in Chapter 1, and espe-
cially discussing the issues of combinatorial explosion and complex non-linear rela-
tions between object properties and performance.

Preliminary Research

Background Investigation

Literature Review to Participation in Design Research

establish State of Art real-world projects c Tk
(PULSE Project) and leaching

FIGURE 3.1 The specific aspects of methodology that this chapter focuses on.

In the context of this thesis, the research reported hereafter highlights the follow-
ing relevant points:

e On one hand, the applicability of Evolutionary Computation to an emerging
kind of design problems whose main characteristic is complexity and where
decision making without the help of computation is otherwise a process that
may easily overwhelm the decision-maker

e On the other hand, it aims to establish the foundation for the work that will
be the focal point of this thesis, through pinpointing the requirements of the
decision-maker wherein the EC-based decision support framework is deter-
mined to be in need of extensions in order to address them effectively.

The research reported in this section has been published under the following title:

I. Chatzikonstantinou M. Turrin, C. Cubukcuoglu, A. Kirimtat and
S. Sariyildiz, “A Comprehensive Optimization Approach for Modular
Facades: The Case of PULSE Sunshading” International Journal of De-
sign Sciences and Technology, 23: 2, 2019.

The following acknowledgement is included in the aforementioned publication:

The authors wish to acknowledge the team from Ector Hoogstad Ar-
chitecten, in particular Joost Ector, Lennaert van Capelleveen, Lau-
rence van Benthem, Daniel Diez-Ausias, and Rena Logara for facilitat-
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§ 3.2.1

ing the project and leading the architectural design process. David Mai-
mone contributed to the preliminary daylight analysis. The 3D printing
research was carried out by/with the leadership of Paul de Ruiter. The
post-optimization parametric modeling of detailed modules was carried
out by Milou Teeling as the main researcher; Pirouz Nourian helped to
define the mathematical models behind the geometry. Rob Nijsse and
his team, especially Peter Eigenraam, designed the structure and deter-
mined the parametric constraints to be incorporated within the digital
model. Mark van Erk contributed to involving manufacturing aspects
and preparing the geometry for 3D-printing. Leapfrog provided 3D-
printing support.

Introduction

It is a common understanding that architectural design is characterized by com-
plexity (Chatzikonstantinou and Sariyildiz 2017; Chatzikonstantinou et al. 2019).
Architectural design is expected to solve an architectural design problem com-
prising a set of requirements and constraints, by creating something new (a new
building or built item). Increasingly, this is achieved through complex geometries,
which on the one hand enable achieving better performance, however on the other
hand add further complexity to decision making. Efficiently exploring possible so-
lutions among all possible design alternatives is a challenging task, especially in
the early stage of the design process. The architectural design problem could be
also defined as a multi-objective optimization problem since it is characterized by
several conflicting objectives and is also subject to challenging constraints. Com-
putational intelligence-based decision support tools can play an important role in
managing complexity and present promising alternatives in design.

Within the domain of architectural design, facades are a greatly relevant design
topic. Nowadays, building facades are required to respond to a multitude of design
criteria. A few of the most important ones are ensuring a comfortable climate in-
doors and promoting energy conservation. In this respect, shading systems play

a crucial role. For instance, in the European Union buildings are responsible for
nearly 40% of the total final energy use and 36% of the total emissions of the EU
Member States (of the European Union 2010). Thus the European policies aim

to improve energy efficiency to accentuate energy guarantee and climate change
(Carvalho 2012) and aim to reduce the green gas emissions at least to 20% lev-

els until 2050 (of the European Union 2010). In both cases, facade systems are
crucial. To provide daylight and more external view, architects and engineers de-
sign facades with large, glazed portions in the buildings, yet a risk of creating high
heating and cooling loads in these buildings should be considered (Poirazis et al.
2008; Hien et al. 2005). Therefore the use of shading devices is one of the most
significant precautions to prevent overheating during cooling periods. In order to
provide energy efficiency in the buildings, there are various shading device types
such as overhangs (Tavil and Lee 2006), external roller shades (Tzempelikos and
Athienitis 2007), Venetian blinds (Simmler and Binder 2008) and internal shading
(Florides et al. 2000). In (Kirimtat et al. 2016b), the shading device types used in
the building sector were reviewed in detail and a description of the performance
aspects of these shading devices by introducing different simulation tools was also
given. These performance aspects are generally linked with daylight comfort levels,
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visual comfort, and low energy consumption.

Controlling daylight is one of the essential functions of a shading device. Efficient
control of daylight may contribute to productivity, energy conservation, and the
overall well-being of the building users. Many studies exist that explore daylight
as a primary objective of the design of facades and facade shading elements. Draw-
ing inspiration from such studies, in this chapter daylight, is the main objective of
facade design.

It is not uncommon for contemporary buildings to present complex design require-
ments concerning daylighting. Complexity in this case stems from the diverse de-
sign requirements corresponding to different spaces within the building. A large
scale public building may comprise a multitude of spaces of different functions, ca-
pacities and locations within the building. To ensure that a suitable distribution
of daylight is assigned to each of the spaces is a challenging design task. Careful
planning needs to be exercised even for spaces with similar requirements and func-
tions, as other properties such as their location and configuration have an effect on
the interior distribution of daylight throughout the operating period of the build-
ing. It is a goal, therefore, to apply the proposed method to complex real-world
designs whose requirements concerning daylight are directly in line with the way of
thinking outlined above. Therefore, the goal is to establish a model that can pro-
vide a concise but accurate figure of whether the daylight distribution guaranteed
by a facade is adequate concerning building requirements.

In very broad terms, a designer wishes to ensure that all spaces within a building
receive at least the minimum amount of daylight required for the function associ-
ated with each space, for the maximum amount of time possible. This constitutes
a good use of daylight which promotes conservation of energy and is associated
with the well-being of building tenants (Andersen 2015; Mardaljevic et al. 2009).
On the other hand, extreme amounts of daylighting is generally avoided as it is
associated with undesirable visual or thermal discomfort (Nabil and Mardaljevic
2005; Mardaljevic et al. 2011). A desirable level of daylighting thus lies in a range
that is dependent on the function of the space. Sun-shading elements in the facade
contribute mainly to this end, mediating the extremes of sunlight intake while en-
suring the minimums are met for the longest time possible. As the sun position
and climate are subject to constant change, daylight distribution for a fixed site is
subject to perpetual temporal fluctuations. It is important, therefore, to consider
temporal, as well as spatial, distribution of daylight in assessing a space.

The introduction of new manufacturing techniques enable the design to depart
from traditional concerns of standardization, and embrace a condition where fine-
grained component variability is desirable, though more complex. Besides, the use
of accurate tools for estimating facade behavior allow a better prediction of the re-
sulting performances. However, this implies also the understanding of the highly
non-linear relationships between design decisions and resulting performances.

Each of the design aspects outlined above introduce additional design complexity
that leads to challenges throughout the design decision making process in general,
while in the case of facade design additional design aspects that will be outlined
throughout the rest of the chapter intervene and increase complexity. Intending
to address these issues, this study presents a method for addressing complex de-
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§ 3.2.2

§ 3.2.2.1

sign problems with application to facade design. In addition, this study acknowl-
edges and adopts the general approach introduced in (Sariyildiz 2012) comprising
“form generation”, “performance evaluation” and “optimization”, available in Fig-
ure 3.2. The proposed method comprises innovative techniques for form generation
and performance evaluation, and couples those with advanced multi-objective com-
putational optimization algorithms namely the Hyper volume Estimation (HypE)
algorithm. The proposed method is applied and validated on a real-world complex

facade design problem.

Form Performance
Generation Evaluation

Optimization

FIGURE 3.2 The loop of the Performance Driven Conceptual Design as concep-
tualized by Sariyildiz (2012). Performance-based Computational
Design is at the center of research of the Chair of Design Informat-
ics (TOI/DI) at the Delft University of Technology.

Proposed Method

It is noted that the method outlined has been developed with application in
a computational optimization context in mind, forming a comprehensive deci-
sion support system. Within this context and as already outlined in the introduc-
tion, the general outline of the proposed method comprises three elements: Solu-
tion instantiation and form generation, performance evaluation, and finally multi-
objective optimization. In the subsections hereafter, each of these components are
outlined in detail.

Form Generation

In the proposed method, the form generation is conceived as a process that ac-
cepts an abstract description (an encoding) and generates detailed geometry for
the needs of evaluating performance based on simulation. The main aim of the
proposed geometry generation method is to minimize the required input, thereby
reducing the dimensionality of the search space. In the context of facade design,
the proposed method achieves exactly that, and is further elaborated in the follow-
ing section.

DESIGN CONSIDERATIONS: MODULARITY  Most facade systems are based
on modules (being the modules all equal or different from each-others). Conse-
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quently, the proposed method considers the general architectural facade prob-
lem definition, where the facade comprises a set of elements or building blocks F
placed according to a predetermined regular arrangement. Common cases may re-
fer to rectangular, hexagonal or rhomboidal arrangements of elements, however
any regular arrangement is possible without limitation. The physical elements are
held together by any means of interlocking (e.g. mechanical, chemical etc.) and
may have an underlying support structure, whether visible or not. The elements
may form any part of the facade; for instance, they may be shading elements, or
they may be integrated elements including glazing, shading and even specialized
devices.

Concerning the individual elements, it is assumed that each one may vary in shape
within certain boundaries that do not violate design requirements as set forward
by the facade and element definition. Besides, it is considered that each element is
defined by its cartesian position on the facade plane. Thus any facade element is
uniquely defined by e = {Ve, P.},e € E. The vector V. € R"™ comprises parame-
ters that completely define the shape of a single element according to a geometry-
generating function g(V.) defined parametrically. The vector P. € R? corresponds
to the position of the element on the facade plane. Due to the regularity of the
facade described previously, the shape of the elements is dependent solely on V.
and does not otherwise depend on their position on the facade Pe., or features of
neighboring elements. Besides, it is assumed that g is defined so that the domain
of valid value combinations V. results in elements that do not in any way break ge-
ometric continuity of the facade. This last requirement may be easily achieved by
defining so that geometric features close to interface points remain constant and
independent of V..

Under these assumptions, the dimensionality of the search space may be easily cal-
culated. As an example, a facade comprising elements in a rectangular grid with
elements in the horizontal dimension and elements in the vertical will be consid-
ered. This gives the cardinality of F as |E| = hv. If each element comprises n pa-
rameters as described above, it is easy to see that the dimensionality of the search
space would be d = |E||V| = hvn. This may easily turn out to be an extensive
search space, as the values of the variables h and v may easily range into the hun-
dreds for moderate to large size facades. Such search spaces may turn out to be
challenging to search, due to combinatorial explosion. Therefore, it is often de-
sirable that constraints on object properties and their relations are established so
that the effective dimensionality of the search space is reduced.

To investigate potential strategies for dimensionality reduction, aesthetic proper-
ties of architectural facade designs are considered. It may be empirically observed
that the vast majority of real-world facade design cases exhibit patterns that may
be exploited to reduce search space. Such patterns are often the result of stylistic
or aesthetic preferences and are established as part of the overall facade concept.
Through considering these patterns, it is possible to stipulate that at any given
time, only a very small subset of possible design alternatives is of interest to the
decision-maker, even before having any knowledge regarding facade performance.
An example of aesthetic preference that can be seen in many recent architectural
design examples, is facade designs where the composition of element parameters
gradually varies along the facade plane. This seems as a preferable design direc-
tion for many real-world design applications. Some recent architectural examples
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of this type of facades are demonstrated in figure 3.3.
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FIGURE 3.3 Recent examples of facades that follow a module-based approach.
a. Al Bahar Towers, AEDAS, Image Credit: AEDAS; b. Nanjing
International Youth Culture Centre, Zaha Hadid Architects, Image
Credit: Khoo Guo Jie; c. Nantong Urban Planning Museum, Henn
Architekten, Image Credit: Bartosz Kolonko/HENN

Another example would be facades that exhibit periodicity of the element-defining
properties over their surface. Considering a facade with specific assumptions con-
cerning the distribution of decision variable values over its surface allows us to im-
pose constraints that may help in reducing the dimensionality of the decision vari-
able space and therefore enable more efficient search in more relevant regions of
the search space. A relevant strategy is proposed in the next section.

A variety of approaches for simplification of design problems has been proposed

in literature, the majority of which is statistical and rely on techniques such as
Design of Experiments (DOE), sensitivity analysis, clustering approaches etc. to
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identify the influence individual design variables have on design performance, be-
fore proceeding to intelligent optimization. It should be noted that the technique
outlined so far in this section, and elaborated in the next section, is to be differen-
tiated from statistical dimensionality reduction techniques, and the main points of
differentiation are as follows:

e The proposed technique aims to provide a lower dimensional control scheme
of a high-dimensional parametric object,

e the proposed technique is not statistical in nature,

e the proposed technique does not consider relations between decision variables
and objective functions/constraints,

e the proposed technique is specific to designs that can be analyzed as n-dimensional
arrangements of parametrically defined elementary units, and,

e the proposed technique is much less complex, comprising few elementary re-
lations and applicable using elementary geometric tools.

In fact, statistical analysis and dimensionality reduction approaches, such as those
described by Yang et al. (2018) can be a natural next step following the approach
proposed herein, and offering further complexity reduction through identification
of the most influential decision variables in relation to objective functions and con-
straints.

MANAGING COMPLEXITY THROUGH INDUCING LOCALIZED MODULE
TRANSITIONS  To alleviate combinatorial complexity due to the factors dis-
cussed in the previous section and focus on a more relevant subset of the search
space, this section identifies constraints that may be applied to the decision vari-
able distribution of the facade elements. In particular, and as already stipulated,
smooth formal transitions between neighboring elements throughout the search
space are considered, while maintaining the expressiveness of the model to allow
facade design professionals expressive power. In this section, a model where the
decision variable corresponding to elements’ properties becomes a dependent vari-
able that varies in accordance to the element’s proximity to a set of control nodes
spatially distributed along the facade area is proposed. Similarly to the facade
elements’ definition, the control nodes are defined by w = {V,,, P}, w € W.

Vw € R™. is a decision variable value vector, with each of its values correspond-
ing to one facade element parameter. Each node is additionally characterized by

a vector P, € R%, which denotes their position on the facade plane. The control
nodes act to“affect” the parameter composition of each of the facade’s elements,
with a magnitude that varies according to some function of the Euclidean distance
between an element and a node. As an example one may consider that the effect
of a node on an element varies inversely proportional to the Euclidean distance be-
tween them. In this case the following equation holds:

1

Aew) =1 —p

ot
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Thus the effect that a node has on an element is maximized the closer the element
is to the node.

Since each element’s parameter composition is affected by each node on the facade,
the effect of all nodes needs to be taken into account when defining the element’s
final decision variable composition. Towards this end, an aggregation function that
considers the magnitudes of each of the nodes’ effects and the decision variable
composition corresponding to each node would be sufficient to determine all of the
elements’ compositions, and as such their final forms. A straightforward aggrega-
tion function, although not unique as will be seen later on, is a weight-proportional
summation of decision variable values, with node magnitudes as weights:

Zwew 6(67 w)Vw

Ve =
ZwEW cle,w)

(3.2)

The resulting V. is a vector in decision variable space that corresponds to a sin-
gle facade element. Together with the element’s position vector P., the element is
completely defined. Repeating the same process for all facade elements allows us
to obtain a definite composition of the facade.

The effect of the above approach on managing search space complexity can be seen
in the reduction of the effective multiples of the vector V' that need to be deter-
mined for a complete facade definition. It has been mentioned previously that

the search space dimensionality in the case of unconstrained element control is

d = |E||V]. On the contrary, in the constrained case the search space dimension-
ality would be d = |W||V|, where W pertains to the set of control nodes. If the
assumption is made that the control node cardinality ranges at most in the tens,
then it is true that |W| < |E|, because |E| = hv, which as previously mentioned
may well range in the thousands, and as such is orders of magnitude greater than
|W|. It is thus evident that the proposed method offers a favorable way of manag-
ing complexity of facade designs.

It is clearly seen that the above mathematical formulation may be easily adapted
in a geometry-generating parametric model of the facade. Most parametric plat-

forms offer tools that allow the high-level expression of the above mentioned rela-
tions while iteration over facade elements and control nodes is handled internally
by the parametric program’s data structures.

FACADE DESIGN EXAMPLE  As mentioned at the beginning of the section,
the technique presented above is generally applicable to any facade design that
comprises regular patterns of individual modules. As an example of a simplified
parametric model, a Grasshopper definition is presented in the figure 3.4.a, which
makes use of a total of three control nodes and 18 parameters in total to adjust
the properties of a facade comprising 66 facade elements, with four parameters
each, for a total of 264 parameters. This definition translates to facade available
in figure 3.4.b, and demonstrates a few alternative arrangements of modules corre-
sponding to varying attributes.

The control magnitude metric used in this example is the biased inverse of the Eu-
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FIGURE 3.4 (a) An exemplary parametric definition demonstrating the method
presented in section 3., that allows a facade comprising 264 parame-
ters in total to be varied using three control nodes and a total of 18
parameters, (b) three example facade configurations.

54

Architectural Design Performance through Computational Intelligence



§ 3.2.2.2

clidean distance, which is analytically expressed as follows:

1
\/(Px,a — Pz,b)2 + (Py,a - Py,b)Q

(P, Py = (3.3)

Replacing equation 3.3 into 3.2 thus gives us the ultimate value function for each
of the facade modules’ properties as follows:

Dwew : Vo
w PJ C_wa 2 P.E_P w 2
V. = V(Po.e =P Py e~ Pyyw) (3.4)

Lwew V/(Po,c—Pa,w)2+(Py,c— Py w)?

Daylight Indicators and Modeling

As has been stipulated previously, control of daylighting is a fundamental func-
tion of a facade, and especially its shading system. As part of the present investi-
gation, daylight control has been introduced as a main objective of optimization
for the shading device that is to be designed. To this end, daylight indicators are
used instead of raw daylight levels, as indicators give a good summary value of the
daylighting conditions throughout the year, at hours that are of interest for the
function of the building. In particular, the widely adopted Useful Daylight Illu-
minance (UDI) (Nabil and Mardaljevic 2005) metric is used as a base evaluation
metric for building a comprehensive daylight evaluation scheme. The definition of
UDI begins by defining illuminance ranges concerning the level of comfort associ-
ated with them (Nabil and Mardaljevic 2005):

Daylight illuminances less than 100 lux are generally considered insufficient to

be either the sole source of illumination or to contribute significantly to artificial
lighting. Daylight illuminances in the range of 100-/500 lux are considered effec-
tive either as the sole source of illumination or in conjunction with artificial light-
ing. Daylight illuminances in the range of 500-2000 lux are often perceived either
as desirable or at least tolerable. Daylight illuminances higher than 2000 lux are
likely to produce visual or thermal discomfort or both.

A two-level hierarchal model is considered, which is analyzed as follows: In the
lowest level, an accurate daylighting simulation offers information regarding the
distribution of daylight within a single space, for each relevant space of the build-
ing. Given these results, the highest level comprises an aggregation scheme that
combines individual results into a single figure, which is subsequently used in com-
putational optimization as an objective.

With the above assumptions and considering a single point that is on the horizon-
tal plane of a workstation, a simple piecewise function may be devised that allows

ot
ot
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one to quantify the above reasoning scheme at any given point in time:

0,ifL(p, t,g) < 100

L2100 3100 < L(p,t, g) < 500
1,if500 < L(p,t, g) < 2000
0,if2000 < L(p, t, g)

UDI(p,t,g) = (3.5)

In the above formula, L(p, ¢, g) corresponds to a function that outputs horizontal
illuminance in lux for a given point indoors and time within the year. UDI | thus,
is a dimensionless figure that takes the value zero if current daylighting conditions
do not serve the purpose of the workstation corresponding to the indoors measure-
ment point, one if conditions fully serve said purposes, while in-between values de-
note intermediate conditions. Given the above formula, it is possible to derive a
figure that corresponds to the time throughout a year during which daylighting for
a particular indoor point is useful:

UDI,(p,g) = /y UDI(p,t,g)dt (3.6)

In the above equation, y denotes the final time point within the year, and depends
on the unit of measure of time. If the assumed unit is hours, then y = 8760. Fig-
ure 4 presents a visual depiction of the UDI calculation over a year. For practical
purposes, the above definition may be discretized with an hourly interval as fol-
lows:

UDIan(p,g) = »_UDI(p,t,9) (3.7)

t=0

The above figure gives the annual Useful Daylight Illuminance for a single indoor
point. However, for the goal of this study multiple points of relevance within a sin-
gle space (e.g. multiple workstations) need to be characterized, as well as multiple
spaces with varying requirements. Therefore, the UDI definition needs to be ex-
tended so that is is possible to:

e Obtain an aggregate figure of the daylight performance for multiple points
within a single or within different indoor spaces, and,

e Be able to specify alternative thresholds for minimum illuminance in the UDI
formula.

The rationale behind the requirement for varying illuminance thresholds comes
from the function of each space. An open, public space may warrant a more at-
mospheric lighting solution compared to a strictly functional space such as e.g. a
reading room or a laboratory. It is, therefore, appropriate to adjust one’s expecta-
tions regarding the quantity and type of daylight that is experienced. To accom-
modate the above requirements, the UDI definition is reformulated with additional
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parameters for the minimum thresholds as follows:

0,ifL(p, t, g) < my

L(p,t,g)—m;

=SB II ifmy < Lp, t, g) < M

UDI(Pat7g,mz,mu) = T”u—mz L > (p g)
1,ifm. < L(p,t, g) < 2000

0,if2000 < L(p,t,g)

This extension allows for a detailed specification of the UDI gain slope at the lower
illuminance levels. The high-end threshold has not been modified as it has been
considered a reasonable value for avoiding undesirable side effects of extreme illu-
minance. However, it is trivial to add a parameter for that in the above formula.

The second extension builds on the previous one by allowing the integration of
multiple measurements in different spaces each with its own requirements in day-
lighting levels. The extension considers a set of spaces S, each of which includes
a set of measurement points Ps. A set of requirements R contains a tuple of re-
quired illuminance levels indexed by elements in S. Under these assumptions, the
formula is defined as follows:

1
s 15 > > aUDIon(p, g, mis, Mas), Mis, Mus € Rs (3.9)

sUDI(S,R) =
( : 2ses| s€S pePg

The formula above may be used to comprehensively compare different designs with
respect to satisfaction of daylighting requirements. One limitation stems from the
dependence of sUDI on the cardinality of the measurement points, such that nat-
urally, a greater number of points will generally yield higher values. This may be
addressed by adding a normalization factor to the formula above so that the out-
put becomes a factor instead of absolute values.

Lux

uuuuuu
total howrs of acceptable daylight

erformance =
A p f total operation hours

A

Day 1 Day2 Day 3

FIGURE 3.5 Visual diagram of the UDI calculation for daylight performance.
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§ 3.2.2.3 Computational Complexity

The daylighting evaluation outlined above requires accurate indoor illuminance
distribution figures which can be obtained using simulation. One of the most widespread
daylighting computation software is the RADIANCE tool (Ward 1994). RADI-
ANCE is an advanced ray-tracing software that can accurately determine the il-
luminance values at the required indoors measurement points, for different times
of the year and outdoor skylight distributions. This study utilizes software that
allows the use of RADIANCE from within a Parametric Modeling environment,
namely the DIVA software (Jakubiec and Reinhart 2011). The use of simulation
enables the accuracy of the proposed method, however it contributes significantly
to the computational complexity of the proposed method. Concerning the use of
simulation there are, in fact, several factors that contribute to computational com-
plexity:

e Complexity of indoors and facade geometry affects daylighting model execu-
tion time.

e Multiple indoors measurement points require separate computations.

e In the context of computational optimization which is the main concern of
this study, a multitude of evaluations of varying facade configurations.

In order to alleviate issues related to computational complexity, a parallelization
scheme is used that is compatible with both the simulation software at use and the
population based optimization algorithm that will be outlined hereafter.

The proposed scheme consists of two levels of parallelized computation:

e The first is offered by the RADIANCE program and concerns the use of mul-
tiple processors in the same computer, to accelerate daylighting computa-
tions. As the daylighting computations are by far the most computationally
intensive task in the proposed method, use of multiple processors translates
into a computational gain that is nearly proportional to the number of pro-
cessors at use in a single machine.

e The second layer concerns the use of multiple machines to distribute the
computation of individual solutions within a population. A simple queueing
scheme allows for the use of heterogeneous infrastructure where each machine
may receive one or more tasks depending on its capabilities and the compu-
tational complexity of each task. A compute cluster size of up to the popula-
tion size of the tasks for each population can be used for parallelization.

A diagram of the proposed scheme is available in figure 3.6.

§ 3.2.2.4 Multi-Objective Optimization

In order to address the multi-objective optimization problem at hand, Multi-
Objective Evolutionary Algorithms (MOEAs) are employed. This class of algo-
rithms has been extensively covered in section 2.5.1. In particular the Hypervol-
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§ 3.2.3

§ 3.2.3.1

§ 3.2.3.2

Evaluation Queue

Processor 1 lLALRJl Processor n

Individual within Population s simulation thread

FIGURE 3.6 Hierarchical organization of available compute infrastructure: Each
individual in a population is assigned to a machine where the rele-
vant simulation is performed on multiple threads.

ume Estimation Algorithm (HypE) (Bader and Zitzler 2011) is selected as a com-
petitive indicator-based MOEA.

Case Study: The PULSE Project

In order to provide validation for the proposed method, a real-world architec-
tural facade design problem is chosen.

Overview

PULSE is the name of the newest addition to the university campus of the Delft
University of Technology, an education building that serves as a central place bring-
ing students and lecturers together to make contacts, collaborate, acquire and
share knowledge and develop themselves. The Western facade of the building fea-
tures a striking large glass area, which is protected by innovative shading elements.
The design of said elements has been the focus of an extensive research effort be-
tween the Chair of Design Informatics (TOI/DI), Department of Architectural
Engineering and Technology of the Faculty of Architecture of Delft University of
Technology, Ector Hoogstad Architects, the architectural firm leading the design
of the PULSE building, and researchers Cemre Cubukc¢uoglu and Ayca Kirimtat
from Yasar University in Izmir, Turkey. PULSE is the first energy-neutral build-
ing on the TU Delft campus, and as such, the demand for an efficient facade that
promotes energy conservation and generates a comfortable indoor climate has been
high on the design agenda. At the same time, it was a requirement for the facade
to employ a unique aesthetic that may easily be used to identify the building.

Daylighting Requirements

The PULSE building includes several indoor areas that are adjacent to the fa-
cade in question. Each of these spaces has different requirements concerning ac-
ceptable illuminance ranges. These are presented in figure 3.7. For each indoor
space in question, a grid of measurement points is established in simulation. The
grid has a fixed size of 1m. Values from each measurement point are combined in a
single objective function by applying the method outlined in section 3.

Chapter 59



A 300 lux
B 600 lux
C 800 lux
\ D 400 lux
N B c D c B D
/ g
2nd Floor A A
72
2nd Floor
A C D C D
Facade Area
A B

1st Floor
1st Floor

FIGURE 3.7 Location of interior spaces in relation to the facade (dotted green
line), and minimum lighting requirements. Image and design by Ec-
tor Hoogstad Architecten & TU Delft/Chair Design Informatics.

In addition to daylighting, a second objective function aims to minimize material
volume of the shading elements. For this case study, material volume is associated
with several cost aspects of the project such as direct material costs, shading ele-
ment fabrication time, total facade weight (and associated structural requirements)
and so on. As such reduction of shading element material has been established as
an objective.

§ 3.2.3.3 Shading Element Design

The form of the shading element has an abstract wave shape as inspiration. A
visual pattern of waves is formed when the elements are in arrangement on the
facade. A 3D printed prototype of the element form is available in figure 3.8. The
main form of the element is constructed by sweeping a profile curve along the curved
axis, with different profile curves along various axis points. The profile of the ele-
ment is thus wider at the center, where it offers most of the potential for mediat-
ing direct sunlight. Each element offers three connection points to neighboring ele-
ments: Two on each edge of the “wave”, and one at the center of the element. The
connection pattern is edge-to-center, with two elements connecting to a third ele-
ments’ center. The elements include hollow paths along their diagonal, which are
run by steel reinforcement cables under tension. The purpose of the cables is to
increase the stiffness of the shading device along the surface so that it can better
withstand lateral loads (e.g. wind load). The configuration of the elements along
with the reinforcement system is available in figure 3.8.
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§ 3.2.3.5

FIGURE 3.8 Physical prototype of a single shading element. Image and design
by Ector Hoogstad Architecten & TU Delft/Chair Design Informat-
ics.

Rapid Prototyping and Material Technologies

To realize the individually varying forms of the shading modules in a cost-efficient
way, 3D printing has been decided as the fabrication technology. Individual ele-
ments are printed on a large-scale printer as hollow elements with the bulk of the
material volume concentrated on the element surface. Therefore, it is possible to
accurately approximate material volume by computing the surface of the element
and multiplying it with a fixed thickness value. Concerning computational per-
formance evaluation, this allows for simplifications that reduce the computational
burden. In practice, the reduction of the material volume is redefined as the re-
duction of the surface area of the facade element. Under these assumptions, the
material usage of a shading device design may be defined as follows:

w(X) = Awor = Y algs(Ve)) (3.10)

ecE

In the above equation, a is introduced as a function that computes the area of a
given surface entity, and g, as a simplified geometry generation function that gen-
erates the shading device geometry given a parameter vector.

Parametric Definition of Shading Device

The PULSE facade parametric definition has been developed with the aim of
testing and optimizing the element parameters of the facade shading device, by
application of the method outlined in the previous section. The shading device
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is a rectangular region that occupies the front of the Western glazed area of the
PULSE building. The arrangement of elements is fixed. There are a total of 3800
individual elements arranged in a diamond-shaped grid that measures 76 elements
in each row and 50 elements in each column. The angles for each side of the dia-
mond are 45 and 30 degrees accordingly. A schematic view of the shading elements
in combination with the supporting wire arrangement is available in figure 3.9.

FIGURE 3.9 Diagonal arrangement of shading elements on facade. Image and
design by Ector Hoogstad Architecten & TU Delft/Chair Design
Informatics.

The form of each individual shading element is controlled by three parameters:
Two parameters control the shading element’s angle, one along each of the two
steel wire directions, and one parameter controls the width along the element cen-
terline. A visualization of the element’s parameters is available in figure 3.10.

As the parametric model is only used for evaluating the quality of daylight and
optimizing shading element arrangement, the geometry of the shading device is a
simplified version of the geometry outlined previously. In particular, each shading
element consists of a single swept surface that passes through five guiding lines.
The central line is the one that determines the width of the element. The middle
three lines, together with the central one, determine the angle of the element along
the two directions of the supporting steel wires.

A regularly located grid of 21 control nodes covers the surface of the shading de-
vice in order to control the shading elements configuration. The control nodes uti-
lize a biased inverse-distance-proportional control aggregation function with con-
stant falloff, like equation 3.4. A separate problem instance that included variable
falloff modifiers as decision variables has been tested, however, it was deemed that
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FIGURE 3.10 Cross-section of a single facade element, where decision variables
effects are demonstrated. Element design by Ector Hoogstad Ar-
chitecten & TU Delft/Chair Design Informatics.
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§ 3.2.3.6

it did not offer advantages that would justify the increase in search space com-
plexity. There are seven control nodes in each row of the control grid, and three in
each column. Each control node controls separately the three parameters that cor-
respond to a single element’s configuration. This corresponds with a search space
of 63 dimensions in total. It is interesting to note that had each shading element
have had its own parameters as decision variables in the problem definition, the
dimensionality of the search space would be 11250, which would make a challeng-
ing to navigate the search space. The configuration of control nodes is available in
figure 3.11.

FIGURE 3.11 Location of control nodes for the PULSE facade (TU Delft/Chair
Design Informatics).

The geometry of the facade at the end of the parametric composition process con-
sists of several surfaces corresponding to the shading elements in their current con-
figuration. This geometry is converted to a mesh and is output to the daylight
computation software RADIANCE via the Diva plugin. In addition to the shading
device, the entirety of the building geometry is also input to the daylight simula-
tion, in the correct orientation and with appropriate material properties for each
of the surfaces. Finally, for each space that is in contact with the facade, relevant
measurement points are defined and input to the daylight simulation. The output
of the simulation consists of a structured representation of values that correspond
to the fraction of time that each of the measurement points is within the defined
illuminance thresholds. These values are combined to form an aggregate perfor-
mance figure that is used as an objective function.

Finally, the material usage for each panel is approximated by summing up the
computed surface area of each panel individually.

Problem Definition

Under the assumptions outlined above, a real-coded, bi-objective unconstrained
optimization problem is formulated, which aims to be addressed using evolutionary
computation and in particular, the HypE algorithm outlined in section 3.4. The
decision variables together with their indexing and variable bounds are available in
table 3.1. The optimization problem definition is as follows:

Minimize
1—-sUDI(S,R,g(X))

w(X) (3.11)

As shown in the above formula, to obtain a minimization problem, it is required
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§ 3.2.3.8

to convert maximization of sUDI to minimization. To obtain an understandable
relation between the two quantities, the remainder of the daylight compliance is
used. u(X) above denotes the material use of the shading element.

Experimental Set-up

The experimental setup consisted of a parallel computing cluster that is coor-
dinated by a remote master running the optimization algorithm and relevant task
synchronization algorithms. A communication protocol based on HTTP was de-
signed to convey the decision variables and receive the objective values from each
of the clients. The values were encoded in a dictionary in JSON format. The com-
puting cluster used for optimization trials resulted from the use of a highly hetero-
geneous mix of project partners’ existing computing infrastructure. The machines
in question varied highly in the following aspects:

e Technical specifications
e Robustness of network connections

e Machine availability throughout the daily schedule

The above variations introduced unexpected delays in objective function evalua-
tions. As such, computation time became the most significant constraining factor
in the optimization trials. It was eventually identified that an optimization run of
50 generations with a population of 100 individuals could be completed within a
single weekend on the available computing cluster, and as such these values were
chosen. In particular and in both trials, the required simulation computations were
performed in a heterogeneous cluster of machines using the parallel computation
scheme outlined previously. The cluster comprised 25 machines of varying process-
ing power and availability that was mainly during weekends. To maintain project
schedule, it was decided that each trial would be carried out within one weekend —
allowing for two additional weekends prior to trials to perform test runs. The run-
ning time for each simulation was near five minutes, as such an optimization run
of 50 generations of 100 individuals would have a minimum duration of 18 hours.
However, due to unexpected phenomena such as machine shutdowns and data loss
over the remote connection, the actual duration was slightly more than 24 hours,
allowing a time window enough for a single run per weekend. The algorithm pa-
rameters are available in table 3.1.

TABLE 3.1 Parameters of the Radiance simulations

Parameter Symbol Type Range Count
Vertical Inclination Iy Real [-1,1] 21
Sideways Inclination Ig Real [-1,1] 21
Width W Real [0, 1] 21

Results and Discussion
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FIGURE 3.12 Overview of the performance optimization process as applied in
the PULSE case study (TU Delft/Chair Design Informatics).
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Figure 3.12 presents an overview of the performance optimization method as ap-
plied in the PULSE case. Two extended trials using the proposed method were
performed during the PULSE project. The first was performed at an intermediate
design point, where the precise constraints related to manufacturing and structural
aspects were not fully known by project partners. The second trial was performed
at the end of the preliminary design stage, where such aspects were known to a
detailed degree.

The objective function space of the algorithm population pertaining to generations
1 and 50 of the first trial is presented in figure 3.13. As may be observed in this
figure, the final population comprises mostly non-dominated solutions, however, it
seems that the algorithm did not fully converge and convergence may be achieved
if the algorithm is allowed to run further. Still, looking at the results at hand it

is possible to see that the optimized designs offer significant material savings (up
to 67% for the one end of the Pareto front) and overall better compliance to the
daylight requirements of roughly 2% on average.
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FIGURE 3.13  Objective function space visualization for individuals in the first
generation (grey) and the final generation (black), first trial (TU
Delft /Chair Design Informatics).

The second trial utilized a geometry generation model that was much more con-
strained in terms of the formal variation that could be achieved by the shading
element. This is due to structural requirements that dictated much of the shading
element shape, apart from a narrow region close to its middle. In particular, it was
decided that pre-tensioned steel cables would run the two diagonals the elements
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were organized on, to improve the stiffness of the facade. As a result, the second
optimization trial demonstrated modest improvement in comparison to the first
trial.

Objective function charts pertaining to generations 1 and 50 of the second trial are
available in figure 3.14. As in the first trial, the 50th generation is not fully con-
verged and further generations may be able to improve optimality. As seen in the
figure, there is a 5% improvement on average in the use of material in comparison
to the initial population, and a 1% improvement in terms of daylight requirements
compliance. Figure 3.15 presents six Pareto optimal designs corresponding to the
colored points in that figure. As can be observed, areas of the facade where less
daylight is required overall are denser on solutions with more material use. The
opposite is also true, areas with more daylight requirements are generally less oc-
cluded by the shading device. Solutions that demonstrate minimal material use do
not show significant variations in occlusion, however, the orientation of the shad-
ing elements is still affected to either allow or block daylight as required.
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FIGURE 3.14  Objective function space visualization for individuals in the first
generation (grey) and the final generation (black), final trial (TU
Delft /Chair Design Informatics).

The proposed optimization approach results in a set of Pareto-optimal solutions
to the multi-objective facade design problem, which has been also the case in the
PULSE application. Following optimization, the process of identifying the most
suitable out of the presented solution has taken place. Selection among Pareto-
optimal solutions may happen either on the basis of considering the tradeoff be-
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FIGURE 3.15 Visualization of facade configurations post optimization, samples
according to the distribution in figure 3.15.

tween objectives or considering additional preferences that have not been explic-
itly treated in the course of optimization. In the case of PULSE, decision-makers
went through an iterative process to examine each of the resulting solutions and
decide on the most suitable one, where both tradeoffs between objectives as well as
preferences concerning the formal properties of the design were considered. More
specifically, some of the designs that had better daylighting performance were
also preferred due to the variation they presented in terms of element transitions.
However, the same designs were generally on the higher end of the range of to-
tal facade material cost. It is noted here that while this is one approach to post-
optimality decision making, other approaches that consider soft objectives and
preferences also exist. Addressing soft objectives in the context of computational
decision support is a challenging task that has been extensively researched and
comprises diverse strategies, such as those presented in Takagi (2001), Meignan
et al. (2015) and Chatzikonstantinou and Sariyildiz (2017); Ciftcioglu and Bit-
termann (2015b). One future direction for the present work is to research poten-
tial methods for augmenting cognitive decision support during the post-optimality
phase, to better address preferences and satisfy soft objectives beyond those speci-
fied before optimization.

Discussion

This study presented a novel approach in computational decision support focus-
ing on supporting the design of complex component-based facades and shading de-
vices where components are dissimilar and individually manufactured. Such prob-
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FIGURE 3.16 Project stakeholders visually inspecting solutions post optimiza-
tion for selection (T'U Delft/Chair Design Informatics).

lems present high-dimensional decision spaces that are challenging to manage. The
proposed method comprises a complexity reduction step that redefines and sim-
plifies the facade or shading device parameter space, combined with a stochastic
population-based optimization algorithm that optimized the simplified parameter
space according to multiple functions. Besides, a novel definition of a composite
objective function for computing compliance to daylight requirements that can
handle complex multi-space buildings and complexes, as well as individual day-
lighting requirements, complements the approach. The second part of this section
presents a real-world case study where the proposed method is tested. The study
concerns the design of a large-scale shading device for a new university building in
the campus of the Delft University of Technology. Results indicate that the pro-
posed method can offer well-performing design results in a design environment
that would be difficult to manage and make decisions in.

Even though the proposed approach does offer an approach to tackling complex,
high-dimensional facade and shading device problems, this is done purely from a
performance perspective, and considerations regarding soft design aspects are not
explicitly treated. This observation is not necessarily a shortcoming of the method
in itself, however, it presents a promising opportunity for future research, where
soft aspects such as aesthetics or other types of preferences are incorporated in the
decision making process in a well-formulated and consistent manner. Incorpora-
tion and augmentation of the proposed method through such approaches offers a
promising direction for future research.
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Introduction

This is the second section of chapter 3, which has as the main objective to present
an analysis of a series of scientific contributions that have been published by MSc
students as part of computational design studios that they participated, with the
author as an advisor to the work. The significance of this section is to provide
complementary background information that, together with the findings presented
in section one above, can support a justification of the starting point of the re-
search presented in this thesis. Specifically, the brief analysis of the works that
follow, serves to indicate, on one hand, the potential applications of computational
decision support systems in problems commonly encountered by students in ad-
vanced design studio settings, and on the other hand, to pinpoint potential short-
comings that the applied methodologies may suffer from, and identify opportuni-
ties for improvement. The latter is performed in a separate discussion section at
the end of the chapter.

Analysis of Published Contributions

A brief outlook of each of the selected contributions is presented first, to briefly
introduce their approach.

Kirimtat et al. (2016a) focus on the design of shading devices for residential build-
ing through a computational optimization approach. The paper discusses the de-
sign in the form of an optimization problem formulation where there are two ob-
jectives. The first objective concerns the minimization of total energy consump-
tion and the second is the maximization of natural daylighting, through the Use-
ful Daylight Illuminance (UDI) indicator. The particular type of shading devices
that are studied are the horizontal louvers. As such parameters to the problem
are the size, inclination and density of the louvers. The multi-objective problem is
addressed by employing MOEAs, namely NSGA-II and jDEMO. Evaluation of so-
lutions is done through the use of Radiance, for daylighting, and EnergyPlus, for
energy calculations. The Pareto front results together with indicative solutions are
presented in figure 3.17.

Yufka et al. (2017) discuss the problem of dimensioning a series of skylight mod-
ules located over an indoor atrium in an education building. The design objectives
as formulated are to maximize incident daylighting throughout the working hours
and minimize construction cost of the skylight assemblies. A flexible dimensioning
scheme is derived, where it is possible to control the top and bottom dimensions
of each skylight individually, thus yielding potentially interesting formal results

in the ceiling of the space in question. Through this problem definition, a total

of 21 decision variables and two objective functions are stipulated. Paper authors
present comparative results by evaluating two evolutionary algorithms, a variant of
Differential Evolution and a Genetic Algorithm. Figure 3.18 presents the derived
Pareto front and a few picked solutions.

Unlii et al. (2017) propose an evolutionary computation approach applied to the
design of an urban public shelter structure, located in Izmir Turkey. The study
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considers the dimensioning of a unique type of structural supports that branch

to better support the wide roof above them. The objectives defined in he study
concern the minimization of structural displacement in various load cases, and the
minimization of member sizes, which suggests a view towards minimizing the ma-
terial cost of the structure. Authors utilize NSGA-II to derive a Pareto front to
the bi-objective design problem.

Ugurlu et al. (2015) focus on a unique field of architectural research, namely that
of the design of floating settlements. Floating settlements are relevant and inno-
vative solutions for dealing with new challenges in the development of cities and
settlements. However, their design poses a lot of considerations and technical chal-
lenges, a fact that contributes significantly to design complexity. To alleviate com-
plexity issues and support decision making in design, authors turn to CI tech-
niques and namely MOEAs. Authors consider the design of floating settlements

at an urban scale in a coastal region near Izmir, Turkey. The problem is formu-
lated as one of locating functions within an allowable area of sea, with the goal of
satisfying objectives of accessibility and visual privacy. The location of each func-
tion forms a decision variable, and there are also constraints related to allowable
sea depth and proximity to existing coastal settlements. Authors present compar-
ative results of two different MOEAs, namely NSGA-IT and multi-objective DE.
Indicative results are demonstrated in figure 3.19.
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Finally, Aydn et al. (2015) propose an intelligent-cognitive approach to sustain-
able design, through the optimization of a surrogate model-assisted performance of
an office building in terms of energy consumption and daylight autonomy. The pa-
per authors generate a database of designs based on a series of typical office floor-
plans (figure 3.20), variations of which are subsequently simulated to derive per-
formance figures for each. The parameters considered are Fenestration ratio, Over-
hang projection factor, U-value of external walls, U-value of the roof, U-value of
windows, Number of floors, Footprint area, and HVAC type. The design parame-
ter and performance pairs are used to fit an artificial neural network (ANN) model
for each office type, for daylighting, and for energy consumption. As a final step

in the proposed method, the paper authors formulate a bi-objective problem and
perform optimization using an MOEA, namely NSGA-II, yielding a Pareto front of
office variations.
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FIGURE 3.20 Office types considered and resulting Pareto front distribution
(Aydm et al. 2015)

In table 3.2, a summary of the outlined contributions is presented.
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TABLE 3.2 Summary of Presented Contributions and their Characteristics

Study Algorithm Topic Objectives
Kirimtat NSGA-II Deb et al. Sunshading Energy Con-
et al. (2016a) (2002), DEMO w/ ens. Device sumption, UDI
approachRobi¢ and Fil-
ipi¢ (2005); Tasgetiren
et al. (2010)
Yufka et al. NSGA-II Deb et al. Daylighting Daylight Distri-
(2017) (2002), DEMO w/ ens. Cupolas bution, Cost
approachRobic¢ and Fil-
ipi¢ (2005); Tasgetiren
et al. (2010)
Unlii et al. NSGA-II Deb et al. Shelter Struc- Displacement,
(2017) (2002) ture Cost
Ugurlu et al.  NSGA-II Deb et al. Urban Con- Visual Privacy,
(2015) (2002), DEMO w/ ens. figuration of Accessibility
approachRobi¢ and Fil- Floating Set-
ipi¢ (2005); Tasgetiren tlement
et al. (2010)
Aydin et al. NSGA-II Deb et al. Facade Di- Energy Con-
(2015) (2002) mensioning & sumption, Day-
Material Selec-  light
tion
Discussion

It is clear from the above publications that the focus, with the exception of Ay-
din et al. (2015) is on intelligent optimization of designs. As the presented works
are carried out in the context of a post-graduate studio environment, there is a
conspicuous educational value of introducing students to advanced intelligent deci-
sion support. On the other hand, it is worthwhile to consider the benefit that in-
tegration of intelligence with cognitive approaches may bring to the table; in par-
ticular, it is seen that two of the most important shortcomings commonly present
in the aforementioned works could be addressed, namely: The excessive compu-

tational complexity associated with detailed energy simulations, leading to lengthy
processing times, and the lack of systematic post-Pareto decision making approaches,
that go beyond the simple choice of alternatives among the ones sampled from the
Pareto front.

Concerning the latter, it is seen in the above works that post-Pareto selection is

done through a strategy of selecting solutions that are approximately equidistant
on the Pareto front, to demonstrate the full range of design alternatives that the
multi-objective approach guarantees.

The above condition is suggestive of the fact that, at least as far as architectural
design is concerned, there is a tacit principle in post-Pareto decision making that
is indeed concerned with the composition of decision variables characterizing each

~
ot
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§ 3.5

solution. Even though this may seem obvious in everyday design practice, it is an
important observation when it comes to justifying the approach taken for support-
ing post-Pareto design decisions.

Nonetheless, even though sampling from the non-dominated solutions found may
be a viable approach in some cases, in others it is clear that it is too limited to
reveal the full spectrum of potential formal expression suggested by the problem
definition. As an example in Yufka et al. (2017) it is seen that, even though solu-
tions that balance objectives are abundant within the population, they are still not
enough to reveal potentially interesting formal combinations of the skylight mod-
ules. One can thus wonder if the set of discovered near-optimal solutions could be
used in a cognitive strategy that could learn and generalize principles and patterns
found therein, to augment the decision-maker’s choice when exercising their prefer-
ences in a post-Pareto manner.

This chapter presented a series of applications of intelligent computational de-
cision support, in particular evolutionary computation, to a series of design prob-
lems that have been published throughout and in parallel to this research. The
publications that have been reviewed demonstrate the application of intelligent
methods and techniques to challenging design problems that demonstrate their po-
tential. At the same time, limitations of such methods are made evident through-
out the chapter. Such limitations have been pinpointed and revealed to establish
the research premises for putting forward the problem statement and research
questions proposed by this thesis, and better frame the proposed approaches that
will be discussed in the following chapters.
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4 Model Development

§ 4.1 Introduction

As already described in previous chapters, the proposed approach aims to ad-
dress two crucial aspects in computational decision support, for architectural ap-
plications, namely: 1. Integrating the treatment of the soft design aspects, and in
particular aspects in the domain of concrete design attributes, and 2. Managing
computational burden due to computational complexity that defines accurate com-
putational simulation models used in performance-based architecture practice.

To address these needed improvements, the proposed method allows to i. derive
surrogate models that can drastically reduce computational cost in the early stages
of design and ii. enable post-Pareto decision making based on preferences on con-
crete design attributes, while maintaining near-optimality concerning design objec-
tives. The former is achieved through performing fitting and subsequent inference
of appropriate machine learning models. The latter is achieved by associative ma-
chine learning models that inductively learn relationships between design features
characterizing highly performing designs. The proposed method comprises a pre-
optimization phase, where a model approximating the problem state-space is de-
rived, an optimization phase where multi-objective optimization is performed, and
a post-optimization phase where the preference model is derived and inference is
performed.

The proposed approach forms a comprehensive Computational Intelligence-based
decision support system for early-stage architectural design. In this sense, the pro-
posed approach incorporates methods already employed in the field of Computa-
tional Intelligence and applications to architecture and augments their capabilities
with novel developments aiming to address the research goals as set forward in this
thesis.

Figure 4.1 presents an overview of the proposed decision support approach. This
in contrast to figure 4.2, where an existing optimization-supported approach is pre-
sented.

§ 4.2 Parametric Model

The main role of the use of a parametric model is to encode the knowledge on
the design problem at the early stage of design. In the parametric modeling paradigm,
this knowledge is made explicit through the definition of constraints and relation-
ships between the properties of the design object. In the context of an optimiza-
tion problem, a-priori knowledge on the problem can be applied using parametric



Proposed Methodology

Design Problem Specification Establishing Generalized
Surrogate Model

Definition of Design Space ‘

Identification of Relevant Spaces

v

‘ Execution of Simulations ‘

|—>| Model Fitting & Validation ‘

|
|

Definition of Design
Obijectives and Constraints

v +

Definition of Parametric Model

Design MO Optimization Post-Pareto Decision Making:
: ‘ AA Design Comprehension Model

v v
: ‘ Execution of Optimization Run
: + > Training of Model

Pareto-Optimal Solutions : *
Querying of Model
Preference Vector Desirable Near-Optimal
Solution

FIGURE 4.1  Overview of the proposed comprehensive Computational
Intelligence-based design decision support approach.

Architectural Design Performance through Computational Intelligence



Existing Methodology

Design Problem Specification

Definition of Design Space ‘

v

Definition of Design
Objectives and Constraints

v

Definition of Parametric Model

Execution of Simulations

v
Model Fitting & Validation

v

Design MO Optimization

v

‘ Execution of Optimization Run ‘

v

Pareto-Optimal Solutions

Post-Pareto Decision Making

Selection Among Alternatives

FIGURE 4.2  Overview of an optimization-based decision support approach.

Chapter

79



§ 4.3

modeling techniques to determine a mathematical problem definition, using geo-
metric and numerical operations. The following aspects related to the design prob-
lem at hand are defined as part of a parametric model:

1. Definition of the quantitative design space, through the definition of design
decision variables, including their type (i.e. continuous, discrete, categorical,
or binary) and range constraints. The design space is the set of all possible
combinations of model decision variable values, within the defined bounds.

2. Definition of relations between decision variables and objectives, through
the definition of the relevant objective functions. This entails multiple sub-
steps, as will be elaborated on right next. It is also noteworthy that in mod-
ern design practice most relevant objective functions are usually not avail-
able in closed form, rather it entails an iterative process of simulation using
a model of the relevant physics domain (e.g. daylighting or thermal simula-
tion), which is itself a computationally costly process.

3. Definition of relations between decision variables and constraints, similar to
point 2.

4. Definition of any problem parameters that are not part of the optimization
(i-e. are not decision variables), that serve to make the model adapt to de-
sign scenario variations.

In practice, a parametric model seldom defines purely mathematical expressions to
achieve the points mentioned above. Rather, the use of advanced geometric gen-
eration, geometric analysis tools, and interfaces to external analysis (simulation)
software is used. Reflecting this composition, a typical parametric model in an ar-
chitectural design application can be broken down into a series of steps, each of
which is necessary to fully define the problem objective functions and constraints.
A usual sequence of steps found in a parametric design model can be summarized
as follows:

1. Generation of problem-specific abstracted geometric forms
2. Establishing of problem-specific geometric analysis tools
3. Establishing of the connection with external analysis software

4. Establishing of the quantitative performance figures through mathematical
combination of the analysis results

The parametric model occupies a central role of the orchestrator of the various

processes involved, integrating them in an automated workflow that may be auto-
matically executed from start to end as required.

In the proposed approach the Multi-Objective Evolutionary Optimization occu-
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pies a central position as it is the intelligent mechanism through which discovery
of Pareto-optimal solutions is guaranteed. The Multi-Objective Evolutionary Al-
gorithm acts in the decision variable space defined by the parametric model and
aims to identify best-tradeoff solutions that optimize objective functions defined as
part of the parametric model. As an application in this thesis, the Non-Dominated
Sorting Genetic Algorithm-II (Deb et al. 2002) is used, the functioning of which
has been elaborated in chapter 2.

Proposed Modular Surrogate Modeling Approach

The main aim of a surrogate model as integrated in the proposed approach is to
address the computational complexity of modeling building performance simula-
tions, in order to facilitate application in the early conceptual design stage. The
aim of using a surrogate model is to approximate the value of an objective func-
tion defined as part of the design problem. As it is often the case that objective
functions entail in their computation computationally complex simulations, the
surrogate model aims at machine-learning-based approximation of the simulation
results.

A common characteristic of simulation studies in architecture is that they refer to
quantities represented by spatial distributions. In particular, these distributions
refer to the indoors spaces of the building design at hand, representing quantities
such as daylight, temperature, humidity, energy expenditure etc. Or, it is often
the case that said indoors distributions concern a synthetic metric such as is often
the case in daylight comfort studies, where metrics such as Daylight Factor (DF),
Useful Daylight Illuminance (UDI), or Daylight Glare Probability (DGP) are rep-
resented by their indoors distributions. Even though aggregation of such distribu-
tions is often reported as a means of gaining an overall performance figure for a
specific design, a decision-maker often needs the detailed information that is repre-
sented by the distribution to conclude as to individual spaces within a building or
even individual arrangements within a space. A simple example is the positioning
and orientation of a set of office desks in space to minimize glare.

Drawing from the above statements, the surrogate model proposed herein aims

to be applicable in modeling quantities that are represented by distributions in
indoor spaces. To this end, a specific type of surrogate model is proposed that has
the following two properties:

e Its input is defined by a variable set that parametrically describe an abstract,
flexible space that is designed to represent a wide range of possible spatial
configurations and location conditions within a project (or even among sev-
eral projects), and,

e its input includes a relative 2D point definition that corresponds to the point
within the proposed space to be sampled.

The input variables of the model are selected in such a way that the model can ap-
proximate distribution in a variety of spaces subject to limitations on size, shape,
and location of openings. In particular, the model that is proposed in detail in the
following chapter applies to rectangular spaces of varying dimensions and window
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positions in one or two adjacent walls. However, considering different or increased
requirements of a specific project it is possible to augment the input variables of
such a surrogate model.

Multiple spaces in a single building may be modeled by multiple model inferences
with different input values. In other words, instead of having a single model that
computes the ultimate performance figure of a specific building design, the pro-
posed model offers the potential of inferring performance figures for spaces within

a building separately, and combine them in a way that is satisfactory to the decision-
maker. Model inference takes a fraction of a second, as such even a large number

of inferences is negligible in terms of computational cost, compared to simulation.

As a result, complete interior arrangements of complex buildings may be modeled
without a practical increase in model or simulation running time.

Besides, due to the flexibility of the model and the fact that it makes minimal as-
sumptions regarding spatial features, there is great potential for model re-use even
if radical changes occur in the building layout, by appropriately adjusting the val-
ues of the input variables. The overall method for deriving the model is presented
in figure 4.3.

Design Problem Specification Establishing Modular
i . i Surrogate Model

Definition of Design Space
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\—ﬂ Model Fitting ‘
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Use in MOEA Model Validation

Optimization

FIGURE 4.3 Proposed Modular Surrogate Model

Application to Parametric Design

In the context of a real-world design task, the interest of course is in the appli-
cation of the proposed model as part of a parametric building definition that can
output detailed figures as to the quantities of interest, for multiple points and/or
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spaces. In practice, if the proposed model is considered as a module within a para-
metric definition, the steps required for model integration are as follows:

1. Identify all indoor spaces that are to be modeled,

2. translate concrete building and spatial properties into model-compatible in-
put variables,

3. indicate required sampling locations and quantities
4. retrieve model outputs for specified locations and process as necessary

Through the above process, it is possible to accommodate major changes in design,
by altering the indoor spaces and their attributes, while the model remains the
same. This is in contrast to an “end-to-end” surrogate model, i.e. one that accepts
design parameters as inputs and outputs aggregate figures, where re-fitting of the
model would be necessary upon a major design change.

Due to the nature of the proposed surrogate modeling approach, it is expected
that increased computational complexity is experienced compared to the case of
an “end-to-end” model. This is understandable since several iterations of model
inference need to be performed, one for each sampling point. However, given that
most models perform inference that is many orders of magnitude faster than ac-
tual simulation, performance gains of even complex projects with 100s of sampling
points are expected to be significant.

Proposed Post-Pareto Preference Approach

It is worth pointing out that real-world design problems usually entail deci-
sion variable spaces of much higher dimensionality than the corresponding ob-
jective function space. On the contrary, the dimensionality of the decision vari-
able space is usually much higher. In such a configuration, solutions that seem to
evenly occupy a surface in the low-dimensional objective function space may be
very sparsely located in the high-dimensional decision variable space. As such, it
is evident that continuity in terms of object properties is not guaranteed to occur,
and one may expect some physical features that might be desirable not to appear
as part of the solutions identified by the stochastic search.

Auto-associative connectionist models

From a structural viewpoint, auto-associative connectionist models are those
whose inputs and outputs are the same, that is, they belong to the same domain.
This is in contrast to, e.g., hetero-associative networks, where model inputs and
outputs belong to different domains. From a functional viewpoint, an auto-associative
network learns the latent relationships found in data during training. Upon excita-
tion with a random input vector, the model exercises constraint satisfaction on the
input data, based on the learned latent relationships. In other words, the model
settles into the most likely interpretation of the input, based on the knowledge it
has learned (McClelland et al. 2010). The relationships learned during the train-
ing of the model thus become so-called “weak” constraints for the input distribu-
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tion (Maia and Cleeremans 2005). Here it is important to distinguish “weak” con-
straints, from the hard constraints commonly encountered in optimization prob-
lems. The precise difference is that, while weak constraints do incur a cost when
violated, it is tenable to come across plausible solutions, even if some of the soft
constraints are violated to some degree. This is in contrast to hard constraints
where even an infinitesimal violation renders the corresponding solution infeasible
in the context of the design problem addressed.

The property of constraint satisfaction has been extensively discussed in the past,
and in various settings, such as machine learning (Maia and Cleeremans 2005;
Vincent et al. 2008) language modeling (Prince and Smolensky 1997; Liou et al.
2008) and neuroscience (Sirois 2004; Maia and Cleeremans 2005), among others.
In many studies, it has been shown that auto-associative models were able to ex-
tract efficient encodings of their environment. It has also been suggested that the
constraint satisfaction function that auto-associative networks perform has been
an important correlate for the function of the brain, and especially memory, e.g.
see (Sirois 2004; Maia and Cleeremans 2005; McClelland et al. 1995; Kumaran

and McClelland 2012), among others. It is especially important to point out the
pattern-completion ability of the auto-associative networks, which stems from their
constraint satisfaction property and corroborates with the auto-associative memory
in human cognition.

Feed-forward and other types of connectionist models used in supervised learning
may be used as auto-associators. The supervised learning task is then converted
into an unsupervised learning task. This is achieved generally by forcing the net-
work to learn a series of examples, where for each example the inputs and target
outputs are the same. This type of model is called an autoencoder. An autoen-
coder takes its name from the fact that it learns an encoding corresponding to the
distribution of its input. The objective of the autoencoder training thus is for the
model to reconstruct its inputs:

min || X — £(X,0)|* (4.1)

Notably, degenerate models learning the identity function are trivial to obtain
given the above objective function. To prevent this, there are several training strate-
gies proposed in the literature. Those are briefly summarized hereby.

One simple strategy when dealing with a Feed-Forward Network is to reduce the
number of hidden nodes to less than that of the inputs. This enforces a compressed
representation of the input at the hidden layer since the size of the layer is not
large enough to be able to represent all the possible input value combinations.
Another similar strategy makes use of an equal or larger number of nodes at the
hidden layer but enforces a sparsity constraint during model training. Sparse en-
codings are those in which only a small fraction of hidden layer neurons are acti-
vated upon excitation of the model with each example. Thus, the loss function is
modified suitably to account for the sparse encoding.

Another approach to training autoencoders is the introduction of a regularization
parameter. Regularization has been used and considered efficient in preventing
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learning the identity function. In this case, the objective function becomes:
min[[X = f(X,0)]* + 2307 (4.2)

In the above formula, the last term corresponds to an L2 regularization term, which
is equivalent to the weighted squared sum of model weights.

Finally, another strategy is to train the autoencoder by partially corrupting the in-
put data, while keeping the output data as is. This strategy enforces a more chal-
lenging reconstruction task to be learned, thus excluding the possibility for the
identity mapping to be learned. In the reconstruction task, the objective function
changes as follows:

min || X — £(X,0)|* (4.3)

In the above, X denotes a vector containing a corrupted version of the target value,
X, obtained by altering some of the attributes of input examples. This training
method produces models termed denoising autoencoders, from their ability to rec-
tify noisy input. It has been applied to the training of feed-forward networks with
many hidden layers (Vincent et al. 2010) and especially in the training of Deep
Learning models.

Auto-associative models in decision support and optimization

Several types of auto-associative networks have been used in optimization tasks.
In a series of studies, auto-associative networks have been used to guide stochas-
tic search. Authors of said studies have applied auto-associative networks known
as Restricted Boltzmann Machines to combinatorial optimization problems (Tang
et al. 2010; Probst 2015; Churchill et al. 2016), as well as autoencoders to real
value and multi-objective problems (Prince and Smolensky 1997). The common
aim in these studies is to take advantage of the constraint-satisfaction properties
of auto-associative models to guide the stochastic search, utilizing them in a way
analogous to the recombination and mutation operators in a genetic algorithm.

While the approach is similar to the one presented here, the objectives are differ-
ent; in this section, the main objective is to use the knowledge embodied in the
auto-associative model to guide decision-maker preferences post-optimization, to
ensure near-optimality of preferable solutions. Thus, the model training is also
modified and happens by considering the non-dominated solutions after the stochas-
tic search has been finalized.

In another series of studies, Ciftcioglu and Bittermann have used RBF networks
to treat second-order preferences in an engineering (Ciftcioglu and Bittermann
2015b) and an architectural problem (Ciftcioglu and Bittermann 2015a) involving
soft objectives. The RBF network has been trained auto-associatively using non-
dominated solutions identified through stochastic search. It is noted that while
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the study in question has objectives very similar to the present one, the present
research is differentiated in the following points:

e The theoretical foundation of the auto-associative learning task differs in
that emphasis is placed on the constraint satisfaction property of auto-associative
models. This helps us expand the application of the proposed method to
other types of models, such as Feed-Forward Networks trained by Backprop-
agation, and to the use of training techniques, such as input corruption (Vin-
cent et al. 2010), to improve model generalization

e In this study quantitative model performance validation metrics are intro-
duced

o In this study the performance of the auto-associative model is validated us-
ing an architectural design problem involving daylight comfort and energy-
related objectives, thus demonstrating potential application to sustainable
design

§ 4.3.6  Outline of the Approach

Successful designs are well-performing concerning design objectives, but also pos-
sess desirable physical features. The latter is an issue not directly addressed by
computational optimization. Desirable physical features, albeit important for de-
sign, are not guaranteed to be present in the set of non-dominated solutions dis-
covered by optimization.

In particular, the main aim of the approach proposed herein is to enable “attribute-
first” post-Pareto decision making that considers preferences in the decision vari-
able space as the driving components of decision making. This is in contrast to
existing post-Pareto optimality analysis approaches as outlined above. At the cen-
ter of the proposed approach is an auto-associative neural network whose main
role is to approximate the empirical distribution of decision variable values derived
from the Pareto-optimal solutions resulting from multi-objective optimization. The
model is auto-associative: the model input is a vector of the same dimension as
the model output, and each input-output pair has the same semantic. In other
words, the model accepts a design solution, expressed as a decision variable value
combination, as input, and produces a transformed combination of the decision
variables in the design space, as output.

What is the significance of this transformation? Let us begin explaining it by con-
sidering that the model input vector encodes the decision-maker design preference,
expressed through selected decision variable values. It is important to stress that
decision variables are associated with the physical attributes of the design solu-
tion. As such, by establishing a vector in design space, a decision-maker is essen-
tially stating their preference in terms of object attributes. It is uncertain to what
degree a decision-maker can comprehensively consider the performance of the de-
sign corresponding to their choice of decision variable values, due to the complex-
ity of the problem at hand. As such, the selected design may or may not be near
the Pareto front. If the selected design is not near the Pareto front, i.e. it is sub-
optimal, there is a significant problem arising as the decision-maker preference
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seems to conflict with design performance.

If the preferred design is sub-optimal, and there is a significant conflict between
the preferred decision variable values and any combination of optimal or near-
optimal decision variable values, then there is little to do. The decision-maker
needs to review their preferences so that they are in line with design performance.
On the other hand, if the adjusted solution is already near-optimal, then there is
no action necessary. There is also a third possibility, however, namely that the
preferred design, as is, is sub-optimal, but it is possible to improve its performance
with the limited transformation of decision variable vector so that the transformed
vector is not unlike the original, but the corresponding performance is significantly
improved.

This is the main premise behind the proposed auto-associative approach: The
model input is transformed based on the model knowledge in such a way that the
model output vector encodes a near solution, in decision variable space, to the pre-
ferred input vector, while having the property that it belongs to the set of Pareto-
optimal solutions. In other words, the system, based on the learned knowledge
matter, can respond so that features and combinations thereof that negatively af-
fect design performance are eliminated, to the degree possible within the bounds of
the problem definition.

In reality, the input to the model is not an arbitrary vector in the design space,
rather it is a near-optimal solution that has been altered by the decision-maker to
better fit their preferences. As such, in practice, it is almost always the case that
an informed and accurate adjustment of decision variable values has the potential
for significant performance increase.

The overall scheme of the proposed method is available in Fig. 4.4. On the left
side of the figure (step 1 & 2), the intelligent search process, implemented through
multi-objective stochastic search, is outlined. The result of this process is a finite
set of non-dominated solutions. This set is used to fit the auto-associative model
through neural network training (step 3). In the inference phase (step 4), a prefer-
ence vector is an input to the resulting model, and the model response is retrieved
as required.

The proposed approach, as outlined above, is most suitable to be implemented
as a decision support system in the early stages of the design process. Owing to
the importance of the parametric model definition, it is generally desirable that
the design process has advanced enough so that the design intention is clearly ex-
pressed in the parametric model.
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FIGURE 4.4 Overview of the proposed auto-associative preference treatment

method. Steps 1 and 2 constitute the intelligent search for optimal
instances. In step 3 instances are used to train the auto-associative
model. In step 4 the trained model receives the preference vector as

input, and responds with a decision variable vector corresponding
to a solution that ensures design performance and desirability, to

the extent possible by the problem definition.

The proposed approach comprises a series of software tools that work together to

execute the desired task. To enable efficient decision making and avoid cognitive
fatigue, a high-level interface is proposed that obscures the underlying technical
complexity of the proposed techniques. This interface is found outside the typi-
cal parametric design environments common to architectural practice nowadays.
The main reason is that even though parametric design tools are becoming more
and more commonplace nowadays, their complexity is still intimidating for many

design professionals, and poses the threat of undermining the attention of the user.

With this in mind, the proposed workflow comprises the following discrete stages:

1. A technical expert, under the guidance of the decision-maker, prepares a

parametric model corresponding to the design intention, performance consid-
erations, and design constraints, including setting up the necessary hardware
and software infrastructure for carrying out the proposed approach.

. A technical expert prepares an initial surrogate model. This process com-
prises several steps, indicatively appropriate sampling of the decision variable
space, statistical analysis to establish distributions and correlations, optional
refinement of sampling according to analysis, fitting of the model, and valida-
tion of model performance.

. The optimization process is carried out and Pareto-optimal solutions are ob-
tained. At this stage, the update of the surrogate model may take place per
the validation of results. In this case, unless the surrogate model is adaptive,
repetition of the optimization process may be necessary.

. A technical expert derives an auto-associative model based on the Pareto-
optimal solutions obtained in the previous step.

. Under the guidance of the expert, the decision-maker can focus on the design
space regions of interest according to their preferences, through the use of
the auto-associative model.
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The role of the technical expert in the above workflow is to ensure that techni-
cal procedures are applied correctly and to identify and amend potential issues
throughout the process. This is mostly necessary as the approach proposed in this
thesis is not at a high TRL at the moment. As future steps, further technical de-
velopment of the workflow and tools involved therein should take place to increase
TRL, which will also result in minimization of the requirement for human experts
and further automation of the overall workflow.

§ 4.4.2 Software Architecture and Implementation Details

The proposed approach is implemented as an integrated application suite that
includes all the necessary components for performing surrogate model fitting, multi-
objective evolutionary optimization, and finally auto-associative model fitting. Be-
sides, the suite includes an interface that allows the user to vary the values of de-
cision variables and discover the response of the auto-associative model in real-
time. From a technical standpoint, the development view of the architecture is
split into two major parts: On one side, a parametric design environment is used
to define the design problem in terms of geometric generation and analysis com-
ponents. Moreover, the parametric design environment offers interfaces to the var-
ious simulation tools used, such as e.g. Radiance for daylight simulations, Ener-
gyPlus for climate and energy simulations, etc. Finally, the parametric setup in-
cludes a simple API that serves to enable altering design decision variables and
obtaining objective function and constraint values. On the other side sits an in-
terface application to Computational Intelligence algorithms outlined in this the-
sis, namely the Evolutionary Computation algorithm, the Surrogate Model, and
the Auto-Associative model. These communicate with the parametric design en-
vironment via the defined API and otherwise perform tasks using internal data.
Part of the interface application is a Human-Machine Interface (HMI) that allows
the decision-maker to interact with the program and receive to the point summary
views of the process.

In line with what has been outlined in this chapter, an important aspect of soft-

ware implementation is the choice of the parametric environment. Due to the fa-
miliarity of the author with a particular parametric design tool, namely the Grasshop-
per parametric design tool, it has been chosen as the platform for this thesis. The
choice has been purely due to the author being accustomed to this particular tool.

It is important to point out that the proposed approach and individual compo-

nents therein should be trivially adaptable to other parametric design software.

A development view of the software architecture is available in figure 4.5. Elabo-
rate treatment of the software architecture of the proposed approach is elaborated
in detail in a relevant publication by the author (Chatzikonstantinou 2016).

§ 4.5 Conclusion

This chapter served to present the proposed cognitive approach in detail, elabo-
rating on each of the individual components and associated methods therein. The
proposed approach comprises two main cognitive components, namely: An adap-
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FIGURE 4.5 Development view of the software architecture of the framework
proposed by thesis

tive and modular surrogate modeling method that enables managing computa-
tional burden due to computational complexity that defines accurate computa-
tional simulation models used in performance-based architecture practice, and a
cognitive method for the treatment of soft design aspects, and in particular prefer-
ences in the domain of concrete design attributes. The proposed approach forms a
comprehensive Computational Intelligence-based decision support system for early-
stage architectural design. In this sense, the proposed approach incorporates meth-
ods already employed in the field of Computational Intelligence (namely, evolu-
tionary multiobjective computation) as well as tools commonly found in advanced
architectural practice such as Parametric Modeling, and augments their capabili-
ties intending to improve decision support in architectural design.
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Case Studies

In this chapter two published case studies are presented, each of which aims to
highlight the application of one of the two components of the proposed approach
to architectural design cases borrowed from real-life design scenarios.

The first case study aims to validate the proposed surrogate modeling method. It
does so through a series of individual investigations namely i. an extended algo-
rithmic comparison and parameter search thereof, ii. a comparison of results be-
tween the algorithms and the actual simulation results, and, iii. an actual small-
scale case study demonstrating the use of the surrogate model as a decision sup-
port tool in the arrangement of an indoor space of an office building.

Through the above, two main aspects of the proposed method aim to be validated.
Firstly, the hypothesis that machine learning algorithms offer models that able to
encode the knowledge embedded in simulations of parametric models, as defined
in the case studies, and to the degree that would be satisfactory for use in the pre-
liminary architectural design stage. This includes a comparison of a few different
algorithms, as well as parameter search to identify the best performing parame-
ter combination. Secondly, it is aimed to validate the usefulness of the proposed
method in a design context, through qualitatively evaluating its applicability in a
small-scale design study of office interior.

The research reported in this case study has been published as part of the follow-
ing paper:

I. Chatzikonstantinou and S. Sariyildiz, “Approximation of simulation-
derived visual comfort indicators in office spaces: a comparative study
in machine learning,” Architectural Science Review, no. August 2015,
pp. 1-16, Aug. 2015.

The second case study aims to validate the proposed post-Pareto decision support
method using an auto-associative model. Here, two aspects aim to be validated:
The first concerns algorithm performance; regarding this aspect, a first step is to
define the notion of performance in the context of the task at hand, which is per-
formed through the introduction of novel performance metrics. Secondly the actual
evaluation and comparison of two different machine learning algorithms underlying
the proposed method and resulting model, and in terms of the proposed metrics, is
presented. The second aspect concerns validating the applicability of the proposed
method in an actual design study. In this case, a scenario is derived for an office
building situated in an urban area, where the facade openings and shading devices
are designed in an integrated manner. The aim is thus to qualitatively validate the
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extent to which the proposed method can satisfy preferences while adhering to de-
sign goal satisfaction.

For this case study, a multi-objective optimization is performed with the objectives
of improving indoors daylight distribution and minimizing energy losses, whereby
a population of Pareto-optimal solutions is identified. Subsequently, the auto-
associative model is trained on that population, and performance is evaluated.
Part of the study focuses on the derivation of novel metrics to evaluate model per-
formance, as the task that the model supports is unique and no such metrics ex-
ist up till now. Moreover, a comparison between two different algorithms is per-
formed, Feed-Forward Networks and Radial Basis Function Networks. Finally,
algorithm outputs are presented in terms of performance as well as a visual com-
parison for the shading device designs.

The research reported in this case study has been published as part of the follow-
ing paper:

I. Chatzikonstantinou and I. S. Sariyildiz, “Addressing design prefer-
ences via auto-associative connectionist models: Application in sustain-
able architectural Fagade design,” Automation in Construction, vol. 83,
no. August, pp. 108-120, 2017.

Case Study I: Surrogate Approximation of Interior Daylight
Distribution

The first case study aims to evaluate the proposed surrogate modeling approach
in approximating the interior daylighting distribution of a single office space set in
an urban setting. The case study primarily aims at determining the accuracy of
the surrogate models that are derived through the proposed method. Besides, the
case study presents a comparison of three models derived using different machine
learning methods. Finally, a model parameter estimation study and an applica-
tion of the resulting models to a decision making problem concerning the interior
arrangement of said single office space optimizing visual comfort are presented.

Algorithm Selection

As part of this case study, three machine-learning techniques are being com-
pared: feed-forward networks (FFNs) trained by backpropagation, support vector
machines (SVMs), and random forests (RFs). Besides, k-nearest neighbors (kNNs)
are included as a performance comparison. FFNs are one of the most widespread
machine-learning algorithms. RFs are a widely adopted algorithm, with multiple
applications in regression, for example (Fanelli et al. 2011; Denil et al. 2014). Be-
sides, SVMs have been frequently used in function approximation tasks in the lit-
erature (Jin 2005). Finally, kNN is added for performance comparison.

Algorithmic Implementations
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The machine-learning experiments outlined in this section have all been carried
out using tools available as part of the R statistical programming language (Bunn
and Korpela 2015). In particular, the following packages have been used:

e nnet Venables and Ripley (1994)
e kernlab Karatzoglou et al. (2004)
e knn Venables and Ripley (1994)

e randomForest Liaw and Wiener (2002)

In addition, the package “caret” (Kuhn 2015) has been extensively used for per-
forming cross-validations and parameter grid search.

Approximation of Visual Comfort Indicators

Visual comfort of interiors is a complex topic, due to the various parameters
that need to be taken into account. Several different factors contribute to a vi-
sually comfortable working environment. Ruck identifies four main performance
factors relating to visual comfort: illuminance, glare, distribution, and direction
(Ruck 2000). For the scope of this study, the first two are investigated: illumi-
nance and glare. The Daylight Autonomy (DA) metric (Reinhart and Walkenhorst
2001) is chosen for illuminance, and the Daylight Glare Probability (DGP) metric
(Wienold and Christoffersen 2005) is chosen for glare.

Daylight Autonomy (DA) has been one of the first of a series of climate-based, an-
nual daylight metrics, which have been introduced in the past few decades. DA,

in its current interpretation, has been introduced by Reinhart and Walkenhorst
(Reinhart and Walkenhorst 2001). In their study, the authors define DA as a phys-
ical quantity that denotes the fraction of a considered time interval during which
a minimum illuminance level can be maintained by daylight alone (Reinhart and
Walkenhorst 2001). In our case, 300 lux has been considered the minimum suit-
able illuminance level for office work (IESNA 2000). Furthermore, the time inter-
val that corresponds to standard weekly working hours in an office environment,
that is, 9 am to 5 pm, is considered. In publications following that of Reinhart
and Walkenhorst, a manual blind control model that predicts the status of mov-
able shading devices at all time steps in the year further refined the concept of DA
(Reinhart et al. 2006). In this study, those refinements are not considered.

Daylight Glare Probability (DGP) is an indicator developed by Wienold and Christof-

fersen, which indicates the probability that a person would experience the effects
of glare from a specific viewpoint in the interior space (Wienold and Christoffersen
2005). DGP is dependent on two factors: glare due to scene brightness, and glare
due to scene contrast. These two are summarized in the calculation of DGP as fol-
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lows:

DGP =5.87-107° - E, +9.18 - 1072

- log( 1+ZE187' pz) + 016

In the above equation, F, is the vertical illuminance at eye level in lux and de-
pends on the orientation of the plane perpendicular to the direction of gaze. L is
the luminance of the source in cd/m2, ws is the solid angle of the source in sr and
P is the Guth position index.

A raytracing-based approach using Radiance, and the Evalglare tool (Wienold
2013) is employed to identify potential glare sources and accurately calculate the
DGP. Initially, radiance is used to generate a high dynamic range, wide-angle im-
age of the interior of the office, from a specific viewpoint. This image is then in-
putted to the evalglare tool, which is responsible for calculating DGP. It should be
noted that the image produced by radiance is an intermediate step only used for
determining DGP, and is not used further for this study.

TABLE 5.1 Independent variables of the office model

Variable Unit Range
Room Meas. Office Width m [3,7]
Office Length m [3,7]
Office Height m [2.5,3.5]
Room Orient. rad [0,27]
Wall A Window X-Pos % [0, 100]
Window Width % [0, 100]
Window Height m [1.2, 2.1]
Wall B Window X-Pos % [0, 100]
Window Width % [0, 100]
Window Height m [1.2, 2.1]
Meas. Point X-Pos % [0, 100]
L-Pos % [0, 100]
Viewing Dir. rad [0,27]
Time Time of Day h [9, 18]
Time of Year (days to 21st June) days [0, 182]

Parametric Office Model

A computational model of an office has been developed using parametric design
techniques. The orientation and dimensions of the room, as well as dimensions of
openings, are the parameters of the model. The model can represent offices rang-
ing from three by three meters up to seven by seven meters, with windows of vari-
able positions and sizes, on one or two adjacent walls. Thus, the model covers the
most common cases of row and corner offices. An overview of the parameters and
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their units and ranges is given in Table 5.1. A diagram showing an instance of the
model together with parameters is presented in Figure 5.1. The office model has
been set in a simplified virtual urban environment, with building volumes enclos-
ing the office volume at a distance of 30 m on all sides, which is presented in Fig-
ure 5.2.

Xmp Ymp

FIGURE 5.1 Parametric model of the office showing parameters and correspond-
ing dimensions.

For the modeling of surfaces and exterior openings, standard materials included
in the radiance materials database have been used. Namely, for the modeling of
the floor, ‘Generic Floor 20% Reflectance’ was used; for walls, “Generic Interior
Wall 50% Reflectance”; for ceiling, “Generic Ceiling 80% Reflectance” and for the
openings, the “EC-Clear” type of glazing. While, for the scope of this research,
properties of materials are not included as independent variables, it is intended to
include them in future research.

FIGURE 5.2 Placement of the office module within a virtual urban context.
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Two similar versions of the model were generated, each specific to the calculation
of the two different metrics, DA and DGP. The calculation of DA is performed an-
nually, and requires location data since it makes use of illuminance figures. The
DGP calculation requires both location and temporal data to be specified. For
both cases, the location of Izmir, a city on the East coast of Turkey, coordinates:
38°26 N 27°09 E, has been selected. The time of day and time of year are indepen-
dent values in the case of DGP, resulting in the dimensionality of the DGP dataset
being higher than that of the DA dataset.

Since the focus of this study is on office environments, it is reasonable to con-

sider that knowledge about visual comfort at working position is most relevant.

As such, DA measurements were performed on the working plane. This has been
considered as a horizontal plane set at 0.75 m over the ground. Concerning glare,
measurements were performed from viewpoints located at a height of 1.22 m, which
approximately corresponds to the average eye level for a person working at a com-
puter terminal. Figures about the eye level and working plane positions were ob-
tained by Neufert (Neufert and Neufert 2002). A visual representation of the work-
ing position while using the table surface is provided in Figure 5.3. The corre-
sponding position while using a computer is given in Figure 5.4. Measurement con-
figuration for DA is available in Figure 5.5 and for DGP in Figure 5.6. Besides,
the latter presents results of the radiance simulation (b, c), as well the areas of the
image that are primary causes of glare, as determined by the evalglare tool (d).

0.75m

B =

FIGURE 5.3 Working position utilizing working surface for reading and writing
tasks. Adapted from (Neufert and Neufert 2002)

Measurement points for the DA analysis were distributed along a one by one-meter
grid. Subsequently, each point was perturbed by a random distance of up to 0.5

m. This was decided to better ensure that generalization is sufficient for a wider
variety of indoor measurement points. As such, a semi-random measurement grid
was derived, which was used for the calculation of DA values.

The light simulations were carried out using the Radiance program (Ward 1994),
version 4.2.a-win32, using high-quality settings. Radiance is a stochastic ray trac-
ing light simulator that has been extensively validated and is suitable for use in
architectural simulations. The glare calculations were carried out using evalglare
version 1.11. Two interface programs, termed DIVA and Honeybee, were used to
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1.22m

0.75m

FIGURE 5.4 Working position utilizing a computer terminal. Adapted from
(Neufert and Neufert 2002)

FIGURE 5.5 Measuring arrangement for daylight autonomy in radiance, showing
the infinitesimal horizontal measurement surface.
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allow easy use of Radiance through the Rhinoceros CAD platform. The values of
the settings used are available in Table 5.2. A screenshot of the measurement set-
up in the Rhinoceros program can be seen in Figure 5.7.

TABLE 5.2 Parameters of the Radiance simulations

Parameter DA Sim Value DGP Sim Value
Ambient Bounces (ab) 3 3

Ambient Resolution (ab) 800 800

Ambient Accuracy (aa) 0.03 0.02

Ambient Divisions (ad) 1500 2000

Ambient Supersamples (as) 192 256

The simulations described above frame the approximation problem sufficiently.
This is a problem of approximating a function with 12 and 15 independent vari-
ables, for DA and DGP respectively, and a single dependent variable in each case.
The functions are highly non-linear and, in the case of DGP, highly sensitive to
factors such as the orientation of space and viewpoint, as well as discontinuous in
some cases. For the case of DGP, it is thus reasonable to expect a lower model fi-
delity than that of DA.

Data Preparation

Two datasets were produced from simulations, according to the procedure de-
scribed above. The first one contains the results of DA simulations and comprises
12 independent variables, one dependent variable, corresponding to DA, and 2000
samples. The second dataset contains the results of DGP simulations and com-
prises 15 independent variables, one dependent variable, corresponding to DGP,
and 3000 samples. The datasets will be herein referred to as DA dataset and DGP

dataset, respectively. Summaries of the dependent variables in the generated datasets

are available in Table 5.3. Dependent variables in both datasets exhibit skewed
distributions. In particular, the dependent variable in the DA dataset exhibits

a negative skewness. It exhibits a minimum of 0.0, a maximum of 97.0, a mean
of 73.9, and a standard deviation of 31.06. The dependent variable of the DGP
dataset exhibits positive skewness. It has a minimum value of 0.002, a maximum
of 1.0, a mean of 0.262, and a standard deviation of 0.148.

To investigate the effect of skewness on the learning performance of the models,
training and validation runs were performed also for a separate series of datasets,
where dependent variables have been transformed to achieve a distribution closer
to normal. The transformations were different for the DA dataset, and the two
DGP datasets. For the DA dataset, with negative skewness, a reflected logarithm-
based transformation was applied:

Xr = —log(—XR + Cl) + s (52)

In the above equation, C1 is selected so that the minimum value of —Xgr + Cj is
equal to 1.0, and C2 so that the minimum value of X7 is equal to 1.0.
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FIGURE 5.6

Chapter

Measuring arrangement for daylight glare probability, showing the
scene set-up with the area of interest (blue circle, a), the output
from a fish-eye rendering in radiance (b, c¢) and the evaluation of
glare sources by evalglare (d).
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FIGURE 5.7 Simulation set-up in the Grasshopper parametric environment.
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FIGURE 5.8 Histograms of the original and transformed DA and DGP datasets.
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TABLE 5.3 Summary of the dependent variables of the two datasets
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In the case of the DGP dataset, values above a DGP of 0.6 were truncated to 0.6.
This led to distribution much closer to normal. The rationale for this transforma-
tion was based on two observations, namely i. very few DGP values exceeded 0.6,
and ii. any value above that threshold can be said to be generally unsatisfactory,
and as such differentiation between values is not strictly necessary.

In all cases, it was found that the transformations were beneficial to the perfor-
mance of the models. In the following discussion, results based on the transformed
datasets are considered. Figure 5.8 presents histograms of dependent variables for
the original and transformed datasets.

Model Configuration

The evaluation of the methods’ prediction accuracy was based on two statistics,
namely the Root Mean Square Error (RMSE):

RMSE = /% Z (yi — fi)? (5.3)

and the Coefficient of Determination R?:

(5.4)

where N is the number of test predictions, y; is the observed value and f; is the
predicted value. The R-squared statistic offers an understanding of the amount of
total variance in the dataset that may be explained by the predictive model. In
all cases, the derivation of prediction performance figures for each model has been
based on 10-fold cross-validation.

Determination of Model Parameters

For each of the models considered, an investigation in establishing suitable hy-
perparameters has been conducted. In this section, a brief mention of each model’s
hyperparameters, as well as the results of the investigation is discussed. This in-
vestigation made use of a grid search along a few crucial parameters of each model.
Where additional parameters beyond the ones considered existed, they were kept
at the default values offered by their respective implementations.

The crucial parameters of the FFN structure are the activation function, the num-

ber of hidden layers, and the size of each hidden layer. Besides, in regularized net-
works, the regularization parameter, Lambda, is of great importance. For this in-
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vestigation, a variable number of hidden nodes, as well as different values for the
regularization parameter Lambda were considered. The most crucial parameter to
determining RFs models is the number of tree estimators that are grown as part
of the training process. This variable is varied ranging from a value of five, up to
200. SVMs are defined mainly by the C parameter, and, in the case of radial ba-
sis function (RBF)-based SVM, as in our case, the width of the kernel plays a sig-
nificant role as well. For this model, a 2D grid search for the above parameters is
performed. Finally, a defining parameter in the case of the kNN model is that of
k, the number of neighbors to consider.

Model Performance vs Parameters in Daylight Autonomy
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Approximation performance for different hyperparameter values,

Results of the hyperparameter grid search are available in Figures 5.9 and 5.10.
Table 5.4 presents a summary of the optimal configurations identified for each
model. The following is observed: (i) the relative insensitivity of the performance
of the RFs predictor to the number of regressors, (ii) on the contrary, the sensi-
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FIGURE 5.10 Approximation performance for different hyperparameter values,
DGP dataset.
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tivity of the FFN and SVM to the regularization parameter Lambda, and the cost
parameter respectively and (iii) the antithetical influence on the kNN predictor,
concerning the two datasets, of the number of neighbors, k.

TABLE 5.4  Optimal parameter configurations for the learning models

SVM-RBF FFN RF kNN
Optimal Value C Sigma A k #regressor  k
DA 66.7 0.1 0.027 30 10 10
DGP 66.7 0.02 0.027 14 10 2

Model Bias and Variance

The Learning Curves method is employed to evaluate the models with respect to
bias and variance. Learning curves represent the generalization performance of the
model as a function of the size of the training set (Perlich 2010). Learning curves
plot the change in training and cross-validation error versus the increase in train-
ing set size. When trained on small training sets, it is expected that estimators
(even high-bias ones) will be able to provide good approximations on the training
set but perform poorly on cross-validation. As the training set increases, the pre-
diction error on the training set increases, but the cross-validation error decreases.
The difference between training and cross-validation error at full training dataset
size provides an indicator of the expected benefit if more training data are added,
which is closely related to the variance of the estimator.

Figure 5.11 depicts the Learning Curves for the case of the DGP dataset. It is ob-
served that the models perform similarly, with training and cross-validation error
of the RF estimator converging to a slightly lower RMSE, and that of SVM-RBF
to a slightly higher, while the kNN estimator demonstrates significantly larger
cross-validation error. Learning curves for the DA dataset indicate a similar sit-
uation, although in that case, the difference between training and cross-validation
prediction is higher, indicating that adding more samples could have a beneficial
effect. However, given the excellent cross-validation performance of the models

in the case of the DA dataset, the choice was not to extend the dataset further.
Given these results, it is reasonable to argue that no further benefit may be ac-
quired by the extension of the datasets.

Results and Discussion

Table 5.5 presents a summary of model performance. In approximating DA, it
can be seen that all models achieve good generalization performance. In terms of
the R2 metric, FFN achieves a cross-validation value of 0.812; SVM-RBF, a value
of 0.941; RF, a value of 0.912 and kNN, a value of 0.927. The best-performing
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Learning Curves for DGP dataset
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FIGURE 5.11 Learning curves for optimal model configuration, DGP dataset.

model is SVM-RBF, while RF exhibits an error that is significantly greater than
the others.

TABLE 5.5 Optimal parameter configurations for the learning models
RMSE (SD) R?(SD)
Method logDA DGP logDA DGP
FFN 0.329(0.009) 0.071(0.004) 0.812(0.023) 0.682(0.044)
RF 0.164(0.015) 0.074(0.004) 0.912(0.018) 0.662(0.039)
SVM-RBF  0.131(0.012)  0.080(0.005) 0.941(0.011)  0.591(0.046)
kNN 0.147(0.019)  0.099(0.004)  0.927(0.021)  0.385(0.051)

Figure 5.12 depicts a visual comparison of two radiance simulations with differ-
ent settings and a prediction made by the SVM-RBF predictor, for the DA metric.
Two scenarios were investigated. In the first scenario, an office of 5 by 6 m, fac-
ing southeast, with windows in the southwest and northwest sides is considered.
The approximation captures the main features of the high-quality DA simulation,
but fails to capture some details, mainly located in the corners of the room. In the
second scenario, an office of 4 by 5 m and a single window in the west wall is con-
sidered. In this scenario, the approximation produces an elongated distribution,
which, in the southmost part of the office, is deviating from the simulated values.

In approximating DGP, the performance of the models drops significantly. In terms
of the R2 metric, FFN achieves a cross-validation value of 0.682; SVM-RBF, a
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FIGURE 5.12 Comparison of simulation-derived and predicted results for day-
light autonomy, for two different office settings. Left: radiance re-
sults, HQ settings, center: SVM-RBF approximation, right: radi-
ance results, DIVA standard settings..

value of 0.591; RF, a value of 0.662 and kNN, a value of 0.385. The reason for the
drop in generalization performance may be attributed to the increase in complex-
ity that the calculation of DGP entails. In contrast to the smooth distribution of
interior daylight, glare is affected by multiple factors, both indoors and outdoors,
whose effect changes rapidly as the viewing angle and the properties of the space
change, possibly introducing discontinuous areas in the DGP function as well.
These properties of the DGP dataset render it harder to approximate. Further-
more, the increase in the dimensionality of the dataset, from 12 to 15 features,
should be pointed out. Especially since RBF and SVMs are being used, this may
partially account for the drop in their performance.

Computational Complexity

All approximation models included in this study have a prediction performance,
that is, orders of magnitude faster than the radiance simulation. Achieving such
performance is, in fact, the main intention behind surrogate modeling. However,
most importantly, model training times are also less time-consuming than the sim-
ulation themselves. In this respect, time cost varies among models. The shortest
training time was achieved by the kNN, as expected, and the longest by the RFs
trainer. All training and prediction time measurements were performed on an Intel
Core i7 machine, with 16 GB of RAM. Table 6 presents a summary of simulation,
model training, and prediction times.
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TABLE 5.6  Optimal parameter configurations for the learning models

RMSE (SD) R*(SD)
Method logDA DGP logDA DGP
FFN 0.329(0.009)  0.071(0.004)  0.812(0.023)  0.682(0.044)
RF 0.164(0.015)  0.074(0.004)  0.912(0.018)  0.662(0.039)
SVM-RBF  0.131(0.012)  0.080(0.005) 0.941(0.011)  0.591(0.046)
kNN 0.147(0.019)  0.099(0.004)  0.927(0.021)  0.385(0.051)

Application in a Design Scenario

It is important to stress that the goal of employing machine-learning models
in the design process should be the improvement in decision-making in the early
stages of the design (Wilkinson et al. 2012). To highlight the potential contribu-
tion of how approximation methods may prove beneficial to building design, an
application to improve the early design decision-making process will be outlined.
Let us consider the following design problem: an office space module is to be de-
signed for a new building, and the window shape, placement, and dimensions need
to be specified. It is considered that the positions of desks within the office are not
strictly determined; on the other hand, they may vary according to the function
of the space, the arrangement, and also through time. Given these assumptions,
the goal is to identify the dimensions of the window that would provide the opti-
mal lighting comfort conditions for as much of the interior space of the office as
possible. In other words, the aim is to identify a window shape that can guarantee
sufficient daylight, with the least glare possible. A quick evaluation of the DA and
DGP values for a multitude of different points within the office, as well as different
configurations, would be beneficial in such a task.

Figure 5.13 presents an overview of the daylight and glare conditions, for different
window dimensions. The values in the plots correspond to a score calculated by
combining the two different values, DA and DGP, as follows:

score = 2 —max(0.2, DGP) — min(0.8, DA) (5.5)

The above formula penalizes the measurement points that display a DGP above
0.2, as well as those that display a DA below 0.8. Such an evaluation may help

the decision-maker in arriving at a more conscious decision concerning the window
shape and dimensions. However, due to the great number of simulations that need
to be carried out, especially for DGP, deriving such figures is enormously time-
consuming. It is thus important to stress that in obtaining overview figures such as
the above, approximation through machine learning models in the form proposed
in this study offers exceptional flexibility.

Despite the reduction in model fidelity compared to simulation, in the conceptual
design stage, the accuracy of estimation need not be the priority, and as such the
decision-maker can afford to trade up some accuracy for immense gains in compu-
tational complexity and thus time spent in decision making. Besides, employing
the proposed approach, the decision-maker may vary other aspects of the design,
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FIGURE 5.13 Variation of indoor lighting conditions in relation to window width
and height. Score is calculated based on a combination of DA and
DGP.

such as dimensions of the office and viewing direction, and get instant feedback on
the conditions corresponding to the new design.

Figure 5.14 presents an alternative investigation into the effect that different win-
dow positions have in lighting conditions, for a row of possible desk positions within
the office space, and at a fixed distance from the window. The first axis corre-
sponds to the possible desk positions. The second axis corresponds to different
window sizes. By examining those charts, it can be seen that placement of the

desk in such a way that the window is next to it but not in front of it provides a
satisfactory DGP while maintaining DA at acceptable levels. The blue dashed line
in the chart outlines the series of most suitable window-desk position configura-
tions.

At this stage, obtaining the results as demonstrated above requires involvement
with specialized software that the decision-maker may not have access to or the
necessary experience to make use of. This is because the approximation method
outlined has not yet undergone any integration with a design environment. How-
ever, a product based on the proposed approximation method should be able to be
trivially integrated with, e.g., parametric design environments such as grasshopper
or dynamo. Integration could happen in the form of a plain input-output node in
the parametric graph, which would replace the original simulation node.
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FIGURE 5.14  Variation of DGP (left) and DA (right) in relation to window size
and working position.

The second case study presents an application of the proposed auto-associative
model for post-Pareto preference treatment. The application concerns the design
of the shading devices of an office block situated in an urban environment, through
multi-objective optimization of interior daylight distribution and unit cost. As part
of the case study, novel developed performance metrics for evaluating the perfor-
mance of auto-associative models for preference treatment are presented. Finally,
the case study presents a comparison of the performance of two different machine
learning models, namely a Feed-Forward Network and a Radial-Basis Function
Network, according to developed metrics.

Design Task

The design of building facades is a topic that is at the forefront of contempo-
rary architectural design. The facade, as a building system and component, affects
its performance in numerous ways. Firstly, it contributes to maintaining an in-
door climate, by regulating heat exchange with the environment. It controls day-
light penetration and protects against excessive solar gains. It often is combined
with the structure of the building and needs to resist various environmental loads,
such as wind, impact, earthquake, etc. Finally, it endows the building with its es-
sential architectural identity, establishes the relationship of the building with its
context, and is mainly responsible for the visual comfort of the building’s inhab-
itants. From the above it is easily understood that facades go far beyond being a
pretty dress for a building; however, at the same time, design preferences are com-
monly found to be concentrating on the composition of the fagade, since it forms
the layer that is most characteristic of the perceptual aspects of the building.

In this study, the performance of the facade system of a typical office building

situated within an urban context is considered, as is visible in Fig. 5.15. The lo-
cation of the office is in the city of Izmir, in Turkey, which is characterized by a
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temperate Mediterranean climate. The performance of the facade is defined along
two aspects, energy performance, and daylight comfort. Thus, the facade is consid-
ered as a thermal barrier, whose efficiency needs to be maximized and at the same
time, as a moderator of the solar radiation, both in terms of its thermal as well as
visual effects. A fagade with rectangular windows at regular intervals and a shad-
ing device in front of each window is considered. The position and sizes of the win-
dows are variable, as are the sizes and positions of the shading device elements. A
complete list of the decision variables, together with their correspondence in phys-
ical quantities is available in Table 1. Fig. 5.16 presents a correspondence between
decision variables and physical features.

FIGURE 5.15 Photo-realistic representation of the fenestration and shading de-
vice considered in this study. Right: Representation of the facade
in an urban context.

A bi-objective problem is considered, with the first objective being that of maxi-
mizing indoors daylight availability, and the second one is that of minimizing en-
ergy consumption of the building. Regarding the first objective, the Daylight Au-
tonomy metric (Reinhart and Walkenhorst 2001; Reinhart et al. 2006) is used to
evaluate the performance of the fagade. Daylight Autonomy (DA) is a climate-
based metric, which corresponds to the annual percentage of hours that a mea-
surement point located indoors achieves a minimum threshold of illuminance, just
through the use of natural daylight. The choice of the measurement location is
usually that of a workstation, with a vertical position slightly above the working
plane. The annual hours for which DA is calculated are calculated as the weekly
office working hours, 9 am—5 pm. To calculate DA, the Radiance software (Ward
1994), a validated lighting simulator based on the ray-tracing technique, is used.

The second objective regards the energy expenditure of the hypothesized office
building. This objective includes the energy spent for heating, cooling, ventila-
tion, lighting, and indoor equipment usage. Heat losses occur by thermal trans-
fer through the building envelope. To calculate energy expenditure, the Energy-
Plus software, a validated simulation engine developed by the US Department of
Energy (Crawley and Lawrie 2000), is used. The exterior walls and windows con-
tribute to a different degree to heat transfer; windows contribute much more than
walls, due to the high U-value of glazing systems. As such, facades with large,
glazed surfaces are generally associated with higher energy usage, although this
may vary with material composition and window to wall ratio. Besides, heat gain
through solar irradiation contributes to indoor temperature rise.
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FIGURE 5.16 Correspondence between decision variables and design features of
the fenestration and shading

All in all, the composition of the fagade, placement, and ratio of the openings, as
well as the size and form of the exterior shading devices, are building features that
have a profound effect on building energy consumption. The two objectives consid-
ered conflict with each other. The improvement in indoor daylighting conditions,
in many cases, proves to be detrimental to energy consumption. This is because,
as glazed surfaces increase, the heat transfer through the envelope increases, and
so does the heat gain through solar irradiation. That being said, a fine synergy
between window positioning and sizing, as well as shading device placement and
formation, should be enough to obtain solutions that achieve the best tradeoff be-
tween energy expenditure and daylighting.

The satisfaction of the two objectives to the best extent possible imposes non-
trivial relationships between decision variables, for the computational identification
of which there is no option but to employ costly non-linear stochastic optimization
processes. At the same time, the decision variables correspond to design properties
that largely determine the final image of the building. As such, it is expected that
the decision-maker will express preferences on the decision variables, whose im-
portance may vary depending on the variable. Thus, we arrive at a typical design
problem case of the general problem description, as outlined earlier in this chapter.
To effectively treat the problem at hand, the proposed method is applied, as will
be described immediately.

Derivation of Fagade auto-associative model

A multi-objective GA, namely NSGA-II (Deb et al. 2002) has been applied to
obtain the best tradeoffs to the problem. The optimization was performed using
parameters of 100 population members, Simulated Binary Crossover rate of 0.95,
and Polynomial Mutation rate of 0.05. The optimization ran for 30 generations,
after which it was observed that convergence to the Pareto front was achieved.
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Fig. 5.17 presents the initial generation of randomized individuals and the achieved
Pareto front after 30 generations.
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FIGURE 5.17 Diagram of the Objective Function space, demonstrating perfor-
mance of a. initial (random) population (black crosses), and b.
Non-dominated solutions, as identified after stochastic search (red
circles).

Decision variable compositions of the 100 non-dominated individuals are used to
train predictive models, in auto-associative mode, and compare their performance.
The non-dominated solution set is presented both at the input and as the target
output. Following the training procedure, the obtained predictive model is acti-
vated using randomized decision variable vectors, and record the model response
each time. Subsequently, the vectors of the model response are used to perform
new simulations and record the solution’s performance. Finally, the performance
of each of the two sets, input and output, together with the non-dominated solu-
tions recorded from the optimization, is plotted in charts of the objective function
space.

Two types of models are chosen for this study: a regular Feed-Forward Neural Net-
work, trained using Backpropagation (FFN), and a Radial Basis Function Network
(RBFN), (Moody and Darken 1989) trained using the Orthogonal Least Squares
(OLS) algorithm.

Feed-Forward Networks are connectionist models that comprise a set of artifi-
cial neurons, organized into one or more layers. Each artificial neuron receives a
weighted summation of the previous layer outputs and applies a non-linearity to
produce its output. The process is repeated for each layer. The first layer receives
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the input, and the final one produces the output. A common non-linearity is the
sigmoid:

1
Sa)= —— (5.6)
1+e 2
Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer
Input Weights Summation Nonlinearity Weights  Summation Nonlinearity Weights Output

FIGURE 5.18 Auto-associative feed-forward network with two hidden layers.

The internal knowledge representation of the network is stored in its weights. De-
termining the values of the weights, also known as “training” the network, is per-
formed by gradient descent, and the gradients for each weight are determined by
back-propagating errors from the supervised outputs (Rumelhart et al. 1985). An
auto-associative FFN with two hidden layers is shown in Fig. 5.18. The auto-
associative network is trained by partially corrupting its input, as described in Sec-
tion 3.2. The corruption process alters each attribute of the input dataset with a
probability p, by adding a number according to a Normal distribution with vari-
ance and mean linked to the attribute:

~ P X’L ~ iy 7l25
Xi:{ +e e~ Np, i) (5.7)

otherwise X;

In the above function, and 2 denote the mean and variance of the respective at-
tribute.

The structure of an RBF Network consists of an Input Layer, a Hidden Layer,
and an Output Layer. Each of the three layers has a distinct function. The N-
dimensional input signal arrives in the input layer. The hidden layer consists of a
variable number of units, or neurons, which offer a localized response to the input
signal, based on its Euclidean distance from each regressor center. The response
of the output layer of the network is formed by a linear combination of the hid-
den layer neuron responses. In Fig. 5.19, a schematic representation of the RBF
network structure is available. The output of the network can be summarized as

Architectural Design Performance through Computational Intelligence 114



§ 5.2.3

Input Similarity RBF Weights Output

FIGURE 5.19 Auto-associative RBF Network.

follows:

£o(@) =20+ D2 Nl — bl (9

In the above formula, b denotes the neuron center, the basis function and the
linear weight attributed to the function. Hidden layer nodes in RBF Networks may
use various activation functions. A common choice is the Gaussian:

_(z=b)?

fla) =5 (5.9)

In the above formula, ¢ denotes the bandwidth of the kernel. In these tests, the
OLS training algorithm (Chen et al. 1991, 1992) and multi-output RBF networks
(Chen 1995; Chen et al. 1996) are employed. Besides, a parameter search is per-
formed by varying the kernel function bandwidth, to evaluate its effect on the
performance of the model. The Error Tolerance parameter of the network was
empirically set to 0.005. It should be noted here that, due to the nature of the
learning task in OLS (which trades off accuracy for model parsimony), the net-
work was able to learn an efficient encoding of the input data (non-dominated
solutions), without altering the training method, such as in the case of the FFN.
Off-the-shelf software is used in these parametric model definitions, optimization,
and model training and activation. For parametric modeling, the Rhinoceros CAD
platform is used. For optimization and neural network training, the CIDEA plat-
form (Chatzikonstantinou 2016) is used.

Assessing model performance

The main task of the auto-associative model, as outlined in this study, is the
rectification of a preference vector that appears at its input, so that the output be-
comes a nearby vector that has the property of being on or close by the Pareto
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front. Given this task, one may inquire as to the potential methods of evaluat-
ing algorithm performance, concerning the task at hand. The main criterion by
which to evaluate the algorithm performance is naturally the quality of the solu-
tions produced, concerning design objectives. A model that is capable of producing
solutions closer to the Pareto front may be considered well-performing in the com-
prehension task. It is thus possible to make use of a measure of the proximity of
a resulting solution to the Pareto front, to evaluate algorithm performance. The
Generational Distance (GD) (Van Veldhuizen and Lamont 1998), is a measure of
precisely this quantity, and as such may prove advantageous in evaluating model
performance. GD is defined as a measure of the distance between a tested Pareto
front, and the theoretical Pareto front for a specific problem. Here, this defini-
tion is modified, since information regarding the theoretical Pareto front in most
real-world design problems does not exist. Rather the interest is in approximating
the GD between the finite set of non-dominated solutions discovered by stochastic
search, and the solutions that form the response of the model. The proposed GD
approximation is as follows:

GD = \/Zimm’g‘g"_Pf‘) (5.10)

In the above equation, S indicates a response solution, and P a member of the
non-dominated set. Our approximation assumes that there is at least one non-
dominated solution close by the response. This is a reasonable approximation if

it is considered that the number of objectives is low, and the non-dominated solu-
tions are evenly spread, a requirement easily achieved by modern distance-preserving
stochastic algorithms. Based on this definition, and to evaluate model performance,
the following procedure is employed:

1. Identify the empirical front through stochastic search

2. Train an auto-associative model on the non-dominated solutions resulting
from the search

3. Generate a series of n random decision variable vectors, within the bounds
defined by each variable

4. Excite the model using the random vectors, and record the output

5. Calculate the GD metric for each of the output vectors, and derive the mean
value, GD

G'D may then be used as a comparison metric to evaluate the relative performance
of different models, within the context of a single design problem. In addition to
the absolute value of the GD metric, a useful quantity is the ratio of the GD value
of the response of the model, divided by the corresponding value of its input, GD.
Conceptually, this quantity indicates the improvement in performance that the
model imbues in its input. Based on this, the Coefficient of Pareto Restitution
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(CPaR), is derived and defined as follows:

GD’response

5.11
GDdisto'rted ( )

CPaR=1-—

Through the above formula, a model performance figure is obtained that is simi-
lar in scale to the well-established R-Square metric in regression; a CPaR value of
one would denote a model that can rectify the Pareto solutions from any given one
perfectly. A value of zero would denote a model that does not offer any improve-
ment over the original (input) solution. Negative values denote transformations
that lead to solutions that are worse in terms of preference satisfaction than the
original. Given that, for a negative value to occur, the output decision variable
vector should be different than the input, solutions that correspond to negative
CPaR value are generally unfavorable. Fig. 5.20 depicts a visual explanation of
GD and CPaR indicators.
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FIGURE 5.20 Visual depiction of the GD and C'PaR calculation process. With-
out loss of generality, a bi-objective problem is considered, where
the distance of point B to the Pareto front gives the GD of the
random/corrupted solution. The distance of point B gives the GD
value of the response. Their ratio is used to derive CPaR.

In addition to the performance of the output solution, its similarity to the pref-
erence vector is also a point of interest. This may be easily measured by consid-
ering the Euclidean distance between the two vectors, input, and output, at the
decision variable space. The comparison should happen after each value has been
normalized to the value bounds defined by the problem at hand, to avoid issues of
individual decision variables dominating the results. This indicator is termed the
Normalized Distance between Solutions (NDS), and defined as:

(5.12)

Nps = Gl
n

In the above equation, C indicates a vector corresponding to a corrupted or ran-
dom solution, and R indicates a vector corresponding to the response of the model.
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Fig. 5.21 depicts a visual explanation of the NDS indicator.

It is also worth looking at the architectural features of the solutions resulting from
the model response. For this reason, two experiments are performed: In the first
one, the model is presented with random preference vectors, and the output is
logged. Subsequently, both input and output are inspected and compared.

v3
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B

FIGURE 5.21 Visual depiction of the measurement of NDS in the (normal-
ized) Decision Variable space. Point B corresponds to the ran-
dom/corrupted solution. Point C corresponds to the response. The
Euclidean distance between them gives NDS.

Even though such a scenario may provide a viable figure for the performance of
the network, the proposed approach will rarely be useful in this situation. Our
goal, after all, is not to produce a model that will be a replacement for generic op-
timization algorithms. Instead, it would be more informative to investigate the
reaction of the model to perturbations of solutions close to the Pareto front, which
would in any case more closely resemble real-world design investigations. For this
reason, another investigation is performed, this time by starting from a solution
on the Pareto front, perturbing its parameter values, exciting the model with the
perturbed solution, and recording the output. Subsequently, all three solutions are
instantiated, and a visual inspection is performed.

Discussion

Parameters of both types of models (FFN and RBFN) are varied, and their per-
formance is assessed according to the aforementioned metrics, GD, CPaR, and
NDS. Tables 2 and 3 present a summary of each model with different parameters,
namely c (hidden layer size) for FFN and (kernel bandwidth) for RBFN. Figs.
5.22 and 5.23 summarize the results of the comparison. In the first figure, perfor-
mance indicators CPaR and NDS for different FFN hidden layer sizes are shown.
In the second figure, two characteristics of the resulting RBFNs are superimposed,
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FIGURE 5.22  Performance comparison of different FFN models, according to the
performance measures discussed.

namely kernel bandwidth and the number of selected regressors, as well as the per-
formance indicators CPaR and NDS.

The indicators have been calculated as per the process described previously. Namely,
a calculation was performed by considering a set of solutions obtained by uni-
formly sampling the decision variable space. These solutions become the input to
the auto-associative models, and subsequently, the response is recorded and used

to calculate the values of the indicators. Concerning the result, all models indicate
exceptional performance, being able to almost fully restore the preference vector to
a position very close to the Pareto front. With this in mind, it can be concluded
that the models have identified successfully the latent relationships present in the
set of non-dominated solutions.

The NDS indicator has been calculated by partially corrupting the decision vari-
able values of the non-dominated solutions identified by the stochastic search.
These corrupted inputs were subsequently introduced to the auto-associative model
as preference vectors. The output of the model was recorded and used to calculate
the indicator. Concerning the results, all except three FFN and two RBF networks
indicate performance that is better than choosing a nearby Pareto solution, verify-
ing the value of the proposed method. In particular, it is worth noting that among
the solutions resulting from the model’s reaction, there are several non-dominated
ones, and a few that stand out from others in the Pareto front.

Figs. 5.24 and 5.25 present the model response to the randomized preference vec-
tor, for different hidden layer values, in case of FFN, and bandwidth values, in
case of RBF network. The results are superimposed over the two solution sets of
Fig. 5.17, uniform random and Pareto. The computational time for deriving model
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Performance of Feed-Forward Network for different hidden layer
sizes. It is clear that more complex models are able to rectify the
Pareto front better. Empty circles: Random solutions. Blue di-
amonds: Pareto solutions. Yellow diamonds: Auto-associative
model response.
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Performance of RBF network for different kernel bandwidths.

Empty circles: Random solutions. Blue diamonds: Pareto solu-
tions. Yellow circles: Auto-associative model response.
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responses for both types of auto-associative models is imperceptible, and as such
not discussed here. The models are suitable for real-time use. Training of the mod-
els takes less than a minute on average.

Concerning the architectural characteristics, it is observable that they are always
following what would be expected, for the facades’ performance. For instance, so-
lutions with very good Daylight Autonomy performance demonstrate large open-
ings, with minimal overhangs and shading devices on the outside. As expected,
these solutions exhibit rather poor energy performance. Even more interesting are
the solutions that balance DA and energy performance. It should be noted that
solutions in this area initially appeared after a considerable number of genera-
tions of the stochastic search had passed. Here, we observe an elaborate balance
between the number of shading elements, the dimensions of the overhangs, and
the dimensions and proportions of the windows. Overall, we may observe that the
main performance tradeoff, as expressed in the decision variable space is, as ex-
pected, between the size of the window and the depth of the shading device; the
height of the windows is kept to a narrow value range between 2.0 and 2.4 m, and
the number of shading elements varies between 2 and 3. The results are available
in figure 5.26.

Randomized
Preference Vector RBF Reaction Vector Non-Dominated?
DA: 8.40% DA: 41.02% YES
E: 4187 kWh E: 3998 kWh
DA: 18.64% DA: 62.45% YES
E: 4176 kWh E: 4172 KkWh
DA: 41.09% DA: 60.50% YES
E: 4121 kWh E: 4114 kWh
DA: 1.01% DA: 46.17% NO
E: 4014 kWh E: 4081 kWh
DA: 85.32% DA: 74.10% NO
E: 4917 kWh E: 4287 kWh

FIGURE 5.26  Solutions as a result of randomized decision variable vectors (left
column), and model response (middle column). On the right, it is
indicated whether the model response dominates the model input
in Objective Function space.
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§ 5.2.4.1

Finally, as an illustration of how the proposed method may be used in practice,
the reader is referred to figure 5.27. In this figure, solution A is a solution taken
from the non-dominated set. The solution is well-performing, but it does not pos-
sess desirable features, which in this case refers to the height of the windows. The
decision-maker changes the window height manually by altering the value of the
corresponding decision variable. The new solution (solution B) is now sub-optimal.
By exciting the auto-associative model, a new solution is achieved (solution C),
which has physical features similar to the desirable ones and is also a non-dominated
solution. It is worth noting that to derive solution C, the model acts on all deci-
sion variable values, adapting them in accordance to the preference vector and the
learned knowledge matter.
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FIGURE 5.27 Process of preference-based decision support by auto-associative
network, illustrated on the case study. The decision-maker selects
a solution close to the Pareto front, namely A. They exercise their
preference by reducing the height of the windows. This leads to
solution B, which is clearly sub-optimal. By exercising the auto-
associative model (in this case, a FFN), solution C is obtained.
This solution is near optimal, and characterized by shorter win-
dows than the original (still taller than the preferred though), as
well as shorter shaders.

Beyond the Pareto front

In this study, an auto-associative model learns the decision variable distribu-
tion of non-dominated solutions in a design problem and uses this knowledge mat-
ter to adjust sub-optimal solutions expressing decision-maker preferences, to their
near-optimal counterparts. A question arises though: What if the preference vec-
tor does not have a nearby correspondence that is near-optimal? In this case, as
seen earlier in this section, the algorithm would modify the decision variable com-
position departing significantly from the preference vector as needed to obtain a

Chapter 123



§ 5.2.5

near-optimal solution. To a decision-maker expressing strong preferences regard-
ing design features, this would be unacceptable. Thus the question of a model that
can limit its action on the preference vector arises. While this issue has not been
investigated as part of this research, a proposal is hereby presented for address-
ing it. It is seen that under normal conditions the knowledge matter, i.e. training
data, for the auto-associative model consists of non-dominated solutions. To aug-
ment the knowledge matter, solutions that are dominated bur near-optimal may
be included. This extended training set is expected to have as a result a model
that learns a wider decision variable distribution than that of the non-dominated
solutions alone. Therefore, it is expected that the model action on the preference
vector overall will be softer, thus better-respecting decision-maker preferences, at
the cost of some design performance.

Conclusion

The first case study presented the results of applying the proposed surrogate
modeling method in determining visual comfort indicators in office spaces, and
the modeling thereof. Two factors contributing to visual comfort were consid-
ered, namely DA, an indicator related to the availability of daylight, and DGP,
an indicator related to the probability of experiencing glare. As part of the appli-
cation study, a comparison of the performance of three different machine learn-
ing methods underlying the proposed surrogate modeling method was performed,
namely: FFNs trained using Backpropagation (FFN), SVMs with RBF kernels
(SVM-RBF), and RFs. SVM-RBF and FFN offered the highest prediction accu-
racy in the DA and DGP datasets, respectively, achieving a coefficient of determi-
nation of 0,941 (SVM-RBF, DA) and 0,689 (FFN, DGP).

The validation of model performance has been successfully met by the case study.
It was possible to approximate DA with good precision, while for DGP, the ap-
proximation reached acceptable but not outstanding performance. All of the stud-
ied methods offer a speed of prediction, that is, orders of magnitude faster than
the Radiance simulation and the Evalglare calculation itself and very close to real-
time performance. The derived models, either as-is or through modifications, may
be used to model generic classes of offices in varying building types. Besides, the
presented small-scale design study highlighted the potential of the proposed sur-
rogate modeling method to offer near-instant design feedback concerning changing
design parameters, allowing for design alternatives to be navigated intuitively and
solutions reached quickly.

The second case study focused on applying the proposed auto-associative deci-
sion support method in addressing decision-maker preferences concerning an in-
tegrated shading device design for an urban office building. This is a lucrative
alternative to simply choosing a non-dominated solution in multi-objective opti-
mization. Through this case study, it was first possible to demonstrate the quan-
titative performance of the proposed method. This was through the introduction
of novel performance metrics that can evaluate the potential to satisfy expressed
preferences in the decision variable space, and at the same time adherence to de-
sign goals. The proposed decision support methods were able to quantitatively
demonstrate good performance in both aspects. Secondly, it was possible to qual-
itatively validate the performance of the proposed method through highlighting
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several design instances, generated using the proposed method, guiding decision-
maker choices and the formal alterations to the design that comes thereby. By us-
ing the proposed method, the decision-maker may focus on addressing desirability
aspects of design, having the certainty that resulting solutions will be near-optimal
in any case.
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6 Conclusion

§ 6.1 Introduction

Complexity is an inherent property of architectural design that is born out of
the numerous, intricate relationships between design decisions, design goals, and
design constraints. As a result of design complexity, identifying optimal design
decisions at any time within the design process is a cognitively challenging task.
Due to human cognition being constantly challenged because of design complex-
ity, there is a real danger that decisions taken during the design process are sub-
optimal, which will end up having a detrimental effect on the satisfaction of design
goals by the end design product. Decision-makers, recognizing this condition, have
made use of tools to enhance their cognition since the dawn of the act of design-
ing.

Nowadays, the need to reduce the energy consumption of buildings while improv-
ing indoor conditions has led to the adoption of a multitude of emerging archi-
tectural design requirements that intensify the requirements and constraints that
decision-makers face today. Besides, novel capabilities in materials and construc-
tion techniques broaden the spectrum of potential solutions to design problems
and as such further enlarge the design space. In this setting, the architectural de-
sign presents an overwhelming task for human cognition and the need for design
decision support systems presents itself as a necessity more than an opportunity.

A prominent class of decision support tools is that which is founded on advance-
ments made in the field of computational intelligence, and more specifically in the
fields of computational optimization and machine learning. This thesis’ aims are
aligned with the research agenda on computational intelligence-based decision sup-
port systems with applications in architectural design. It attempts to present a
comprehensive decision support framework, where Computational Intelligence (CI)
techniques are used not just to provide a means of finding optimal solutions to a
design problem, but to do so efficiently and further aid in informed decision mak-
ing that appropriately treats decision-maker preferences in addition to improving
design performance according to set goals and ensuring satisfaction of design con-
straints.

§ 6.2 Revisiting the Research Questions

This section discusses the major findings of the research, arranged according to
the research questions formulated in chapter 1.

How can Computational Intelligence (CI)-based methods and techniques
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(including intelligent as well as cognitive methods) better support deci-
sion making during architectural design, especially in the early concep-
tual design stage?

In addressing this research question, the main aim of this thesis has been to pro-
pose a comprehensive decision support framework based on CI techniques, which
has been extensively elaborated in chapter 4. The proposed DSS is founded on the
use of Evolutionary Computation (EC) as an intelligent approach to exploring the
design space, which, as a central contribution of this thesis, has been augmented
with cognitive capabilities, through a two-fold extension. In particular, Multi-
Objective Optimization (MOO) algorithms such as NSGA-II are considered due to
their inherent ability to deal with conflicting objectives and non-linear constraints.
The comprehensive framework proposed in this thesis aims to make EC-based de-
cision support more agile and adaptive to the rapidly changing environment of the
conceptual design process so that the decision-maker can make timely, informed
design decisions that take all aspects of design into account. Two particular issues
are identified:

e The computational complexity associated with the repeated evaluations of
complex functions as required by the EC

e The post-Pareto treatment of decision-maker preference treatment alongside
objective and constraint satisfaction.

Towards addressing each of these issues, the following methods based on computa-
tional cognition and machine learning are proposed:

e A method for deriving flexible surrogate models that can model generic spa-
tial distributions of values indoors for single spaces, and, iterated, for multi-
ple spaces of varying characteristics.

e A method for deriving auto-associative connectionist models of the distribu-
tion of Pareto-optimal solutions in the decision variable space, and thereafter
guide the decision-maker on decisions concerning preferences in terms of ob-
ject properties.

Through the incorporation of the proposed computational cognitive methods into
an EC-enabled intelligent model, as elaborated in chapter 4 and applied in chapter
5, a comprehensive and flexible DSS is derived that enhances applicability to the
architectural conceptual design stage.

How can cognitive methods augment intelligent decision support tools,
in order to lead to better and more agile decision making in design?

It has been a cornerstone of this thesis that intelligent methods that are already
in application in architectural design, such as Evolutionary Computation-based
optimization methods, can be complemented by computational cognitive methods,
to endow them with the ability to more efficiently navigate the design space and
support the decision making process. As part of this thesis, there have been two
potential contributions of cognitive approaches identified.
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The computational complexity of simulations is a real problem in architectural de-
sign that is hindering the application of accurate simulation models to timely de-
cision making. Surrogate modeling via machine learning is a well-studied approach
towards minimizing computational complexity through the use of machine learn-
ing. In this direction, a method for deriving flexible and re-usable surrogate mod-
els for building performance based on machine learning has been proposed. In this
method, indoor spaces are defined based on their geometric, material and environ-
mental characteristics, and individual surrogate models are applied to each funda-
mental space. The overall performance is derived considering the contribution of
each space to the whole building.

In addition, this thesis proposed a novel method for post-Pareto decision support
in problems where object properties form second-order preferences that need to
be satisfied as part of the problem. An auto-associative neural network is used to
“steer” decision-maker preferences in such a way that design performance is not
compromised trying to satisfy a contradicting preference, as such ensuring near-
optimality of the solution.

How can methods and techniques borrowed from the field of machine
learning contribute to alleviating computational complexity of simula-
tions?

It is established as part of addressing the previous research question that surrogate
modeling may contribute to a reduction in computational complexity, however, the
flexibility of the derived models is an important issue. As part of the framework
proposed in this thesis, a new formulation for a surrogate model is proposed, which
is specifically addressed to the building sector and which is applicable to rapidly
changing design environments such as the conceptual design stage. The proposed
approach uses a common model to predict indoor distributions of the quantity of
interest within individual spaces of the building, incorporating indoor position as
an independent variable. The characteristics of the building spaces are modeled
parametrically to maximize model applicability. Aggregate performance metrics
may be easily derived through elementary descriptive statistics on the model out-
put. The proposed approach allows the model to be derived once (or even re-use
existing models from other projects) and be re-used even if the quantity, arrange-
ment, or properties of indoor spaces change while maintaining detailed insight of
localized performance according to the value of interest. As part of the thesis, an
application to the modeling of indoor visual comfort-related metrics has been pre-
sented.

At which stage should decision-maker preferences be addressed (before,
during, after optimization)?

In relation to a computational optimization-based decision support system, treat-

ment of second-order decision-maker preferences may occur in any of three time
points along the process:

e Before the EC optimization (a-priori approaches)

e During the EC optimization (interactive approaches)
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e After the EC optimization and derivation of Pareto-optimal set (a-posteriori
approaches or post-Pareto preference treatment)

Within the scope of this thesis, post-Pareto decision making is identified as having
an advantage over the other approaches, as the point in time following the estab-
lishment of the Pareto-optimal set is the point where the most information regard-
ing the design problem at hand is available, and thus decision making at this stage
can lead to the most informed decisions. At the same time, though post-Pareto
preference treatment is challenging because it entails taking into account the im-
plicit relations among object properties established by the Pareto-optimal set.

How can decision-maker preferences be effectively incorporated along-
side design goals in computational multi-objective optimization?

An auto-associative neural network model is proposed as part of this thesis, to as-
sist with the cognitively challenging task of ensuring design goal satisfaction in the
face of preferences in terms of object properties, i.e. those found in the decision
variable space. The proposed model is considered a post-Pareto decision support
approach. The model is auto-associative, in that its inputs and outputs correspond
to points in the decision variable space, thus design solutions. The model is ini-
tially fit on the dataset comprising Pareto-optimal solutions resulting from the
multi-objective intelligent search stage. Following this stage, the decision-maker
inputs their preferences to the system by adjusting the decision variables to their
preference. The fit model is then used to “guide” the decision-maker by provid-
ing “corrections” to the adjustments, which act to keep the model in the optimal
region learned by the Pareto-optimal solution composition.

It is claimed that the proposed approach is an effective means of addressing second-
order preferences on object properties as i. it offers an easy to grasp and intuitive
interface to the decision-maker for expressing preferences, ii. it derives all required
knowledge inductively through implicit relations present in a naturally occurring
dataset (set of Pareto-optimal solutions), and iii. it is supported by a well-founded
exact scientific background which enables consistency and explainability in the re-
sulting model behaviors.

How can the above specifically be applied to current and challenging
design problems in architecture?

As part of the thesis, specifically in chapter 5, two case studies, both of which in-
volved real-world design tasks, and in which design instances have been evaluated
according to the objectives using state of art building simulation tools. Besides,
at the beginning of the research, namely in chapter 3 a complex real-world project
has been presented in which evolutionary computation has been identified as the
preferable approach to explore the vast design space associated with the design
task at hand.

The applications of Computational Intelligence (CI) in decision support for ar-
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chitectural design are only bound to become more widespread in the near future,
owing to developments in method as much as in technique. Such a development is
expected to bring plenty of benefits in the design of complex buildings, however,
advances in exact scientific methods should be applied in architecture with the id-
iosyncrasies of the discipline in mind. It is noted that architecture is a blend of sci-
ence and art, and as such the requirements for an efficient decision support system
do not always match those of engineering. The developments presented herein re-
flect such a regard for the contribution that CI research may have on architectural
design, and in particular concerning the role that a CI decision support system
may have in the early stages of architectural design, where the most important
decision decisions are being made, and which govern the direction of the overall
project.

Fusion of intelligent with cognitive approaches, as outlined in the approach pro-
posed by this thesis, offers the unique advantage of a decision support approach
that is both powerful, owing to the extensive capabilities of intelligent search al-
gorithms, and flexible, owing to the extensive knowledge modeling capabilities of
cognitive approaches. As such, it is uniquely suited to the early conceptual design
stage where the need to explore large design spaces, flexibly redefine the design
problem, and satisfy preferences that are not included in the primary design goals,
are all paramount.

As part of the proposed approach, the proposed surrogate modeling method and
derived model for daylight approximation based on computational cognitive ma-
chine learning models, allows increased flexibility at the conceptual design stage,
as the model is flexible enough to represent multiple single spaces within a build-
ing, and prevents model re-fitting even after major design changes. Besides, the
model offers a view of greater detail in the interior distribution of the quantity
modeled, e.g. daylight or glare distribution, in comparison with models that out-
put aggregate values based on either concrete building properties or abstracted
features.

On the other hand, the proposed auto-associative computational cognitive pref-
erence treatment method offers a systematic approach to post-Pareto optimality
analysis, with emphasis on an aspect that is much too often overlooked: second-
order preferences on object properties, i.e. those found in the decision variable
space. The formulation of the model is one that allows the decision-maker to ex-
ercise their preferences as they naturally would — examining solutions in a para-
metric model and adjusting values of decision variables to achieve their desired at-
tributes. The proposed auto-associative model is inserted in between the decision-
maker and the parametric modeler and performs continuous, subtle adjustments as
necessary to keep the solution in the set of near-optimal solutions, allowing some
flexibility in goal satisfaction in favor of preference accommodation.

The overall approach is integrated into a comprehensive workflow, with multi-

objective optimization at its center, complemented by the cognitive machine learn-
ing components described above.

Recommendations
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This section summarizes some recommendations on potential future research di-
rections of the research presented herein.

Given that machine learning is the governing method behind the intelligent-cognitive
approach presented in this thesis, one cannot but consider the extension of the
methods presented through the use of deep learning neural network architectures
as have been pioneered in the past decade. Such a development could potentially
pave the road for applications in even more complex design problems where high
dimensionality and highly non-linear relationships could be addressed by the in-
creased complexity of the models. Naturally, such an application would require
datasets that are orders of magnitude larger than the ones utilized in this thesis,
and for this, a well-planned research project should be conceived.

The genetic algorithm that underlies the intelligent search that is part of the pro-
posed workflow has not been part of this thesis’ investigation, and a standard al-
gorithm has been considered (NSGA-II). However, given the evolving state of art
in Evolutionary Computation and the influence of the No Free Lunch theorem
(Wolpert and Macready 1997), it is recommended that comparison among different
algorithms is performed at least as a cursory investigation into their performance
on the problem at hand.

Finally, it is noted that the models derived as part of the proposed approach (sur-
rogate model, auto-associative model) embody a significant amount of knowledge,
which offers potential for re-use that exceeds the confines of a specific project. To
this end, the research field of knowledge transfer offers a good opportunity for fu-
ture research. In particular, Transfer Learning (TL) (Thrun and Pratt 1998) is
an established paradigm. TL aims to improve learning in a target domain Dr,
through the use of knowledge in a different but related source domain Dg. Con-
sider the knowledge embodied in a model applied to an original design problem is
considered as a source domain. It is desirable to derive another model for a differ-
ent design problem, the target domain, which has similarities to the original. This
can be formulated as a TL problem, where knowledge from the model on the orig-
inal problem may be used to improve the performance of the model pertaining to
the target domain.
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