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1
Introduction

In architecture, floor plans are diagrams that show a top-down view of the layout and relationships of
rooms in a building. Floor plans are used by architects as a step in the design process to plan the use
of space in a building. Figure 1.1 shows an example of a real world floor plan, as well as a simplified
representation, where rooms are color-coded by their type.

Floor plan retrieval. It would be beneficial for architects to be able to search for similar floor plans
in a database. Similarly, floor plan retrieval could be useful for real estate websites, to recommend
properties with similar floor plans to prospective buyers.

Existing retrieval techniques for finding similar images by example work well for natural photos. How-
ever, image retrieval techniques that work well for photos, are not well suited for retrieving similar floor
plan diagrams images.

For photos, texture, color, and the presence of objects are features that an image retrieval model
can learn to find similar images. Unlike natural photos, the information in a floor plan diagram is largely
contained in the shape of rooms, and the connections between rooms, rather than in their visual texture
or color.

Learning embedding vectors. This thesis explores a new way to find similar floor plans. We define
a floor plan as a simplified drawing that shows a buildings’ layout from above, like the example on the
right in the figure below. The goal is to develop a method that takes as input one of these diagrams,
and finds others that are similar in layout and structure.

To do this, we will try to learn embedding vectors. This means that every floor plan will be converted
into a set of numbers, that can efficiently be compared by a computer. This set of numbers don’t have
a direct meaning or interpretation, but should contain important information about the floor plans layout
and structure.

(a) Real world floor plan taken from wikipedia. (b) Simplified floor plan example from the RPLAN dataset.

Figure 1.1: Examples of floor plan diagrams.
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The process of learning embedding vectors is done using a method called deep representation learning.
This is a type of machine learning, in which a model learns what makes a floor plan unique by showing
many examples.

We explore two new ways to train a representation learning model to learn embedding vectors. These
methods involve creating training pairs, pairs of floor plans that the model is trained on. By comparing
the images in these pairs, the model learns to recognize and match similar floor plans.

Data augmentation. For natural images, representation learning techniques use data augmentation
to learn embedding vectors that capture information in the image. Data augmentation techniques trans-
form an image to randomize its appearance, while preserving essential features. Commonly used data
augmentations include randomly cropping an image, changing the colors, and randomly rotating the
image. The goal of using data augmentations, is to teach the model that the embedding vectors of two
randomly augmented versions of the same image should be similar.

However, for floor plans, relying on standard image augmentations alone leads to poor retrieval results.
The reason is that image augmentations alone may not introduce enough variation in the images, as
floor plans can be similar without having exactly the same room shapes.

To address this, we propose GeomPerturb, an augmentation strategy specifically for floor plans, that
involves randomly shifting the walls. The walls are moved in a manner that ensures that the connec-
tions between rooms remain intact. GeomPerturb in combination with standard image augmentations,
introduces more variation between randomly augmented views of the same floor plan. These randomly
augmented views are used as training pairs for the model, to learn embeddings that are invariant to
small changes in the shape of the rooms.

Training pairs based on graph similarity. Floor plans can be represented by graphs, in addition to
images. In the graph representation of a floor plan, each room (node) is connected to others by doors
(edges). Graph representations of floor plans can be used to select pairs of floor plans from the training
dataset which have similar connectivity between rooms. These training pairs are then used to train the
same representation learning model, instead of using the GeomPerturb data augmentation strategy.

Report structure
The main body of work is presented as a scientific article in chapter 2. After the scientific article, the
report includes technical background sections explaining concepts used in the scientific article.

The background chapter starts in section 3.1 with explanations on the deep learning concepts and
methods used for learning embedding vectors from images. Then, section 3.2 explains how embedding
vectors can be used to build a retrieval system. Finally, section 3.3 explains the concept of graphs, and
goes into graph similarity heuristics, which are used for generating training pairs based on the similarity
between graph representations of floor plans.
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Scientific article
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Exploring Training Pair Strategies for CNN-Based Metric Learning for Floor
Plan Retrieval

Emanuel Kuhn
TU Delft

e.f.m.kuhn@student.tudelft.nl

Abstract

Existing content-based image retrieval models work well
for natural photos, but not for images of architectural floor
plans. Previous work on floor plan retrieval has focused on
graph-based methods, rather than image-based floor plans.
Training a CNN-based representation learning framework
on segmented floor plan images with standard image aug-
mentations does not result in semantically meaningful re-
trievals. This work shows that a CNN-based representa-
tion learning model can learn features for retrieving floor
plans that have similar graphs given the right training sig-
nal. Two methods were investigated here: GeomPerturb, a
data augmentation that perturbs the underlying geometry
of a floor plan, and a weakly supervised method with labels
based on the graph edit distance between a pair of floor
plans. The results show that while GeomPerturb learns rep-
resentations that are correlated with the floor plan graph,
training with GED labels leads to better retrievals both
in terms of the floor plan graph and with respect to room
shapes.

1. Introduction

In architectural design, floor plans are top-down draw-
ings of a physical space, such as a building. Floor plans
show how rooms and spaces are laid out and connected. It
would be beneficial for designers to be able to search for
similar floor plans in a database. In addition, floor plan re-
trieval could be useful on real estate websites to recommend
properties that have similar floor plans to prospective buy-
ers. For these use cases, it is advantageous for retrieval to
be fast, i.e., ideally takes less than a second per query.

The useful features of a floor plan for retrieval are the
shape of the rooms, as well as the connections between the
rooms. Nevertheless, floor plan similarity is hard to define,
as it is inherently multifaceted. A pair of floor plans may be
considered similar by having similar room/overall shapes,
similar relative positions of rooms, similar room types, or

similar connections between rooms, but also other harder
to define aspects. It is unclear how these aspects should be
weighted, or what it even means for the shape to be similar
between floor plans.

Floor plan diagrams are usually in the form of images.
The structure in the floor plan, i.e., the connections between
the rooms, can also be represented as a graph. In this paper,
floor plans are considered to be images, where each room
type is represented by a unique color.

The approach we take is to apply a deep metric learn-
ing model, SimSiam [4], to floor plan images to learn an
embedding vector for each floor plan. These embedding
vectors can then be used to efficiently retrieve similar floor
plans [16]. SimSiam is trained on pairs of images, with
each pair formed by randomly augmenting a training sam-
ple. We find that training a SimSiam model with standard
image augmentations [3] does not lead to relevant retrievals.
We believe this is due to a feature mismatch between natu-
ral photos and floor plan diagram images. Whereas natural
photos have a lot of semantic information in the texture, the
floor plan images are devoid of texture and instead, the in-
formation is in the shape of rooms and adjacencies between
rooms. The image augmentations that are used in SimSiam
were previously developed for learning useful features of
natural photos, and are not tailored for retrieving similar di-
agrams.

To address the poor performance of training SimSiam
with standard image augmentations, we explore two alter-
natives. First, we devise a handcrafted data augmentation,
GeomPerturb, which randomly modifies the underlying ge-
ometry and draws the perturbed room shapes to a new floor
plan image. This method keeps with the spirit of SimSiam
that training pairs are formed as two randomly augmented
views of the same training sample. Second, we select pairs
of similar floor plans from the dataset based on the graph
edit distance (GED) between them, and use these as train-
ing pairs instead of solely relying on data augmentation.

Our contributions are summarized as:

• CNNs can learn features of floor plans that correlate
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with the similarity of floor plan graphs.

• Perturbing room geometries can be used as data aug-
mentation (GeomPerturb).

• We propose a method to train with supervised GED
similarity labels without the need to compute GED for
a large number of pairs.

2. Related work
2.1. Content-based retrieval

Content-based retrieval (CBR) is the task of retrieving
items based on their content, rather than by associated key-
words or tags [37]. One of the querying approaches is re-
trieval by example [37]. For floor plans, this means search-
ing for similar floor plans given an example floor plan,
instead of searching by metadata such as the number of
rooms. A fast CBR algorithm consists of two stages: char-
acterizing the content by a low dimensional descriptor that
can be used as an index, and efficiently searching the in-
dex. Faiss [16] is a library that allows for efficient similar-
ity search in a vector space. Thus, one viable approach for
CBR of floor plan images is to first learn vector embeddings
of floor plans, and efficiently retrieve them using the vectors
as index.

2.2. Floor plan retrieval

Previous floor plan retrieval methods can be divided into
two categories, learned and non-learning-based approaches.
Here, the learned approach refers to models with parameters
that have to be optimized on training data. The approaches
that learn a model can further be subdivided into those that
operate directly on a floor plan image [29,35], and those that
work with a graph representation of floor plans [15, 25, 26].

Image-based models. CNN-based classification models
have been adapted for floor plan retrieval, trained on pre-
dicting floor plan subcategories based on room presence
or manually labeled floor plan ”shape” [29, 35]. For in-
stance, [35] use feature vectors extracted from the VGG-
16 backbone, trained on the floor plan subcategory classi-
fication task, for nearest neighbor search. In our study, we
diverge from the classification-based approach by instead
applying a distance metric learning loss, potentially allow-
ing for more fine-grained embeddings instead of learning to
map floor plans of the same sub-category to the same em-
bedding.

Other works tackle floor plan analysis by segmenting
rooms and objects such as walls and doors [17,21,41]. [41]
extracts a rule-based transformation of a graph from the seg-
mented image, which is subsequently used for retrieval by
using the maximum common subgraph (MCS) as a heuristic
for the similarity between floor plan graphs.

GNN-based models. To train models for measuring the
structural similarity of user interface layouts, [22] proposed
training a graph neural network (GNN) on graphs attributed
with features derived from bounding boxes of layout ele-
ments. The GNN is trained on triplets with similarity la-
bels based on Intersection over Union (IoU) between seg-
mented images. Later [15,26] applied this approach to floor
plans, but used graph matching networks [20] to overcome
the lack of structural information in IoU labels. The use of
graph matching networks improved retrieval performance
but is too slow for fast retrieval in a large database [31].
In our study, we reverse the approach taken in [15, 26] of
using a model with a structural bias and similarity labels
based on IoU. Instead, we use a CNN-based model, without
a prior towards graph structure, and, in one of our experi-
ments, train with similarity labels based on a graph distance
metric.

Another graph-based method ignores the room shapes
and locations completely [25], and instead, a GNN [1] is
trained to approximate the graph edit distance between floor
plan graphs. We similarly use GED for selecting training
pairs of similar floor plans, but instead of predicting GED
for a pair of images, we learn embedding vectors that should
be similar for floor plans with low GED.

Heuristic approaches. Instead of learning a similarity
metric, heuristic-based approaches are also used for com-
puting similarity between floor plans. [41] use the maxi-
mum common subgraph (MCS) as a metric to compare floor
plan graphs. Graph edit distance (GED), which assigns a
cost to change one graph into another, is likewise used as a
measure of dissimilarity in [33, 38]. A variant of GED for
trees is used in [19]. SSIG [38] use a combination IoU and
GED as similarity metric. Most heuristic approaches need
time-consuming pairwise computation during retrieval. In
this paper, we make use of the GED, IoU, and SSIG heuris-
tic metrics for generating training examples but do retrieval
based on learned embedding vectors.

Retrieval speed. Not all the methods for retrieval take the
same amount of time to return a result. Methods that use
time-consuming pair-wise computation are orders of mag-
nitudes slower at retrieval compared to those that use fast
pair-wise computation on compact representations. Table 1
shows reported retrieval times for the methods that included
a reported retrieval time. Note that for methods that map
each floor plan to an embedding vector [22, 35], fast al-
gorithms [16] exist for nearest neighbor (k-NN) search in
such a vector space. Table 1 shows that lookup in a vector
space is faster than any of the reported pairwise computa-
tions used by other methods. A method that learns vector
representations of floor plans is thus desirable for enabling
fast retrieval.
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Method Reported retrieval
time 1

LayoutGMN [26] 55 min
FP recommendation GNN [25] 6.6 min
SSIG [38] 2-9s
Vector Space Retrieval (Faiss) [16] 30ms 2

1 Extrapolated to a database of 100k candidate floor plans based on re-
ported pairwise compute times.

2 Benchmark ours for (randomly generated) 1024 dim vectors with ex-
haustive k-NN search, on a single CPU.

Table 1. Comparison of retrieval compute time for various methods.
This table presents the time required for retrieving a single query
from a dataset of 100k candidate floor plans, based on the times
reported in respective papers.

2.3. Deep metric learning

The goal of metric learning is to learn a mapping from
data samples to an embedding space, such that similar data
samples are close together in the embedding space and dis-
similar samples are further apart. Use cases for learning
embedding vectors include face [28] verification, speaker
recognition [6], and tasks with an informational retrieval
aspect [23, 27]. Embeddings can be extracted from models
trained on a classification task [34], or trained with an em-
bedding loss function based on pairs [11] or triplets [28,39]
of similar and dissimilar examples.

Siamese networks. Siamese networks [2] employ weight
sharing between two branches to map two inputs to the same
embedding space. Siamese networks are a natural tool for
comparing entities [4] and are often used in conjunction
with metric learning losses.

Metric learning losses. The contrastive loss [5] functions
on a pair of data samples which is either labeled as posi-
tive, i.e., similar, or negative. The triplet loss [28] instead
works on triplets of an anchor, a positive and negative sam-
ple, and pushes the distances between anchor and positive
to be smaller than between anchor and negative. For effec-
tive training, it is important to select positive and negative
examples that are currently hard for the model [28]. An
alternative to negative hard-mining, is using all other exam-
ples in a mini-batch as negative examples in combination
with a large batch size [3, 32].

Contrastive learning for SSL. Self-supervised learning
(SSL) is a paradigm for learning from unlabeled data. In
[3, 13, 42], contrastive learning is used in conjunction with
data augmentation for self supervision. Two randomly aug-
mented views of the same image form a positive pair, and

Figure 1. Illustration of the preprocessing steps for RPLAN im-
ages to be used with GeomPertub. From left to right: RPLAN
categorical mask image, extracted shapes, enlarged shapes, ren-
dered RGB image.

randomly augmented views of different images can be used
as a negative examples.

Non-contrastive learning. Other variants of SSL repre-
sentation learning methods have found that the contrastive
component of the loss, i.e., contrasting with negative ex-
amples, is not always necessary to learn useful embed-
dings [4,10]. Although it is still not entirely well understood
why non-contrastive learning works [36, 43, 44], we choose
to use the SimSiam [4] representation learning framework
for its simple architecture and robustness to training with
smaller batch sizes.

3. Method

3.1. Dataset

We use the RPLAN [40] dataset for our experiments.
RPLAN was originally proposed for studying floor plan
generation, and is a densely annotated dataset of floor plans
from real residential buildings [40]. It consists of around
80k segmented floor plan images, where pixel values in the
image correspond to a room type or structural element that
is present at that location. See the left most image in Fig. 1
for an example.

Preprocessing. For the GeomPerturb augmentation pro-
posed in Sec. 3.3, the segmented floor plan images need
to be preprocessed to a specific vector geometry format.
Figure 1 shows an overview of the preprocessing steps.
First, the room masks are turned into polygon shapes using
the features.shapes method of the rasterio [8]
python library. Then, each room is enlarged such that neigh-
boring rooms exactly touch, i.e., making the walls between
the rooms have zero thickness. Around 46k of the 80k
RPLAN floor plans were successfully preprocessed in this
manner. Finally, the preprocessed room geometries can be
drawn to a new image. Note that the appearance of the
drawn image, such as the thickness of the walls, can be con-
trolled when drawing the geometries.

3



Figure 2. Figure of the floor plan graph overlaid on a floor plan.
The nodes are labeled by room type. The edges are colored blue
if there is a door between the rooms, and red if they only share a
wall. Doors are colored yellow.

Graph representation. Floor plans can also be repre-
sented as graphs. We define the floor plan graph by con-
struction: for each room, create a node labeled with a room
category attribute. Now connect each pair of room nodes
with an edge if they have a wall in common. Label the edge
with a door attribute that indicates if the rooms are also con-
nected by a door. See Fig. 2 for a visualization of the floor
plan graph overlaid on a floor plan. The code for prepro-
cessing RPLAN samples will be made available.

3.2. Siamese representation learning framework

SimSiam. In all our experiments, we use the SimSiam
framework [4] with a ResNet-18 [14] backbone. The Resnet
backbone consists of CNN layers with skip connections,
and an MLP head that outputs a feature vector. During
training, the SimSiam framework takes two randomly aug-
mented views x1, and x2 from the same image x. The ob-
jective of the model is to map these two views to similar
representation vectors. The SimSiam model [4] consists of
two components, an encoder network and a predictor head.
First, the two views are processed by the encoder network
f, consisting of the ResNet backbone and a 3 layer projec-
tion MLP head, that maps the input image to an N(=512)
dimensional vector. Then the predictor head h transforms
the output of one of the two views. The predictor head is a
2 layer MLP with a hidden dimension of 128, and the same
output dimension N, forming a bottleneck structure. After
applying the encoder and transforming one of the two views
using the predictor, there are two vectors, p1 = h(f(x2))
and z2 = f(x1). The loss function minimizes the negative
cosine similarity between p1 and z2:

D(p1, z2) = −
p1 · z2
|p1|2|z2|2

where ∥ · ∥2 is the Euclidean norm. The authors [4] found
that using a stop-gradient (stopgrad) operation on the z
branch of the loss is an essential part of training the Sim-
Siam model. In PyTorch, stop-gradient is implemented by
calling the z.detach() method. The final loss is also

symmetrized following [10], thus yielding the following
loss function:

L =
1

2
D(p1,stopgrad(z2)) +

1

2
D(p2,stopgrad(z1))

Image-space augmentations. SimCLR [3] studied the
effect of combinations of image augmentations, and found
that combinations of strong image augmentations lead to
better performance. The augmentations used in SimSiam
are based on previous works and are RandomResizedCrop
with scale (0.2, 1.0), RandomHorizontalFlip, ColorJitter,
random grayscale and blurring.

Image augmentations & floor plans. The set of augmen-
tations used in previous work specially makes sense for nat-
ural images, and less so for segmented floor plan images.
For example, commonly used RandomResizedCrop param-
eters are set such that for a pair of views, one view can be
a crop of the other view. For floor plans of single apart-
ments, such as RPLAN, this is undesirable as a crop of just
a few rooms is not indicative of the floor plan as a whole.
For natural images, it makes sense to only use horizontal
flips, as upside-down symmetry does not occur often in na-
ture. For floor plans, however, horizontal and vertical flips
both make equal sense, and 90-degree rotations addition-
ally preserve the layout. Color augmentation was found to
make a large impact on generalization on natural images [3]
because otherwise, two random crops of an image will have
similar color distributions. For segmented images, however,
color augmentations do not make sense as color carries the
semantic meaning much more compared to natural images.

The image augmentations used in this paper are: random
horizontal and vertical flips, randomly applied 90 degree ro-
tations, and random resized crops with scale (0.8, 1.0) and
ratio (3/4, 4/3). These augmentations are used in addition
to the proposed GeomPerturb augmentation (Sec. 3.3) or
weakly supervised approach (Sec. 3.4). In addition, it is
shown in Sec. 4.1 that both image space augmentations and
either GeomPerturb or weakly-supervised labels are needed
to learn useful representations.

3.3. GeomPerturb

The standard method for training a SimSiam model is
to generate pairs of two randomly augmented views of the
same image. We used the set of image augmentations listed
in Sec. 3.2 as a baseline for learning representation vectors
with SimSiam. As shown in Sec. 4.1, these representations
fail to correlate with how rooms are connected to each other
in a floor plan. This makes it clear that image augmenta-
tions alone are not sufficient for learning semantically use-
ful representations of floor plan layouts, and that alternative
methods should be investigated.
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3.3.1 Augmenting underlying geometry

Intuitively, the model should learn that floor plans that have
similar floor plan graphs should be mapped to similar em-
bedding vectors. This means that floor plans that have
(slightly) different room shapes, but with the same connec-
tions between rooms, should be similar. This leads to the
idea that instead of augmenting the image representation
of the floor plan, the underlying geometry should be aug-
mented to introduce variation in the shapes while keeping
the same connections between rooms.

Room geometries. For the RPLAN dataset, the floor
plans are stored as segmentation masks that can be pre-
processed into polygon shapes. The proposed GeomPer-
turb augmentation makes use of that by first extracting the
preprocessed shapes from the images, then perturbing the
shapes, and finally rendering the perturbed room shapes
back to an image format. For processing geometries, the
shapely python library [9] was used.

GeomPerturb method. GeomPerturb starts by picking a
random wall element in the floor plan, and translating it per-
pendicularly by a random amount, resulting in the proposal
of a geometrically perturbed floor plan. A heuristic accep-
tance function either accepts or rejects the proposal, gener-
ating new proposals until one is accepted. Then this proce-
dure of moving a random wall is repeated M times. Figure 3
shows an example of a sequence of random wall moves used
to generate a GeomPerturbed floor plan. In Fig. 4 examples
of accepted versus rejected proposals are shown.

The steps in GeomPerturb are explained in more detail
in the following:

1. Sample wall move. The first step consists of randomly
picking a wall element, and then moving it perpendic-
ularly by a random amount.

(a) r ∼ {set of rooms}

(b) w ∼ {set of walls in room r}

(c) t ∼ Uniform(−20, 20)

(d) r′ ← room r with wall w translated by t

(e) If r′ overlaps with other rooms, remove the over-
lap from the other rooms.

(f) Return new proposal floor plan

2. Acceptance heuristic. The heuristic acceptance func-
tion either accepts or rejects the wall move. The
following constraints are checked by the acceptance
heuristic:

(a) All rooms should be valid polygons

(b) The area of each new room should be at least half
of the previous area

(c) The walls should still be horizontal or vertical

(d) The new floor plan should not have empty spaces

(e) The ratio between the exterior and area should
increase by at most 5%

(f) Compute the room adjacency graph of the pro-
posal, the new adjacency graph should be the
same as the original adjacency graph

these constraints make sure that the proposed floor
plan keeps the same room connections as the origi-
nal, and doesn’t result in unrealistically complex room
shapes. If the proposal is rejected, generate proposals
until one is accepted.

3. Repeat steps 1 and 2 M times, where M is a hyperpa-
rameter. The result is the geometries of a new floor
plan with randomly perturbed room shapes.

The GeomPerturb method has the following hyperpa-
rameters: the number of wall moves M, the maximum trans-
lation amount, and the criteria of the acceptance heuristic.
We chose the hyperparameters by visually inspecting the
generated augmentations for feasibility.

GeomPerturb is compute-heavy. Thus, we precompute a
fixed amount of augmentations, draw them to an image and
store as an array of 50 images per floor plan. In the train-
ing loop, a precomputed augmentation is randomly sampled
each time a floor plan is used.

We found that it works best to combine the GeomPer-
turb augmentation with image augmentations. This finding
is inline with SimCLR’s findings [3] that a combination of

Figure 3. GeomPerturb example sampling trajectory. The wall that was moved is highlighted in red.
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Figure 4. Visualization of accepted and rejected wall move propos-
als by the heuristic acceptance function. The accepted proposals
generally look plausible, while the rejected proposals do not.

Figure 5. Illustration of generating a pair of GeomPerturb aug-
mented views of a floor plan with masking. First, GeomPerturb
is used to generate two augmented views. Then for each view, a
randomly selected room is masked (in red) with a probability of
75%.

strong augmentations leads to better results. Let Gi,k with
1 ≤ k ≤ 50 be the k-th precomputed GeomPerturb aug-
mented version of floor plan i. Then, during training, a pair
of floor plan images x1, x2 can be sampled in the following
way: x1 = t1(Gi,k1

) and x2 = t2(Gi,k2
) with random im-

age space augmentations t1 and t2 , and k1 and k2 sampled
from the indices of precomputed GeomPerturbed images of
floor plan i.

3.3.2 Category masking

In addition to the geometric augmentation, we introduce
a room masking strategy to improve the learned embed-
dings. While GeomPerturb keeps the floor plan graph iden-
tical, two floor plans should also be considered similar if
not all the room types match, for instance if a living room
is switched for a bedroom. Otherwise, the model would
not learn that two floor plans with the same room shapes
and connections, but with the function of a room swapped,
should also be considered similar. The GeomPerturb aug-
mentation is modified by randomly masking the room cate-
gory of one of the rooms, hypothesizing that the model will
learn that room categories don’t always have to be identical
for floor plans to be similar. The idea of masking a ran-
dom room is inspired by the method of masking random
patches in masked auto encoders [12, 18]. Figure 5 illus-
trates the process of first sampling two GeomPerturb aug-
mented views, and then masking one room with a probabil-
ity of 75%.

3.4. Weakly-supervised pairs

Instead of creating input pairs by generating two aug-
mented versions of the same sample, it is also possible to
train on pairs of samples from the dataset.

3.4.1 SimSiam with GED pairs

The GeomPerturb method resulted in representations that
align quite well with the floor plan graph, and less with the
IoU score. This led us to ask what would happen if we
directly created the training pairs based on a graph edit dis-
tance (GED) metric, which measures the dissimilarity be-
tween graphs by the number of edits needed to change one
into another. Previous work has used IoU pairs to train GNN
embedding models [22, 26]. To the best of our knowledge,
however, GED has not been used yet as a metric for obtain-
ing training pairs in the context of a representation learning
model.

GED pair generation To generate GED pairs, we pro-
pose an approximate filtering-verification scheme based
on Weisfeiler-Lehman subgraph hashing. The proposed
scheme does not find all similar graphs, but speeds up find-
ing a subset of similar pairs. Note that as training data, it is
not necessary to find all similar pairs but just a large enough
amount.

WL graph hashing Weisfeiler-Lehman (WL) graph
hashes [30] are a graph-kernel based method for comput-
ing hashes of graphs which have the following properties:
the hashes are identical for isomorphic graphs, and hashes
are likely to be different for non-isomorphic graphs. The
graph hashes are computed in iteratively. In every iteration,
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Figure 6. Plot showing the correlation between high WL subgraph
hashes in common count and low graph edit distance (GED).

each node gets labeled based on its previous hash, as well
as the hashes of adjacent nodes. The concatenation of the
previous iteration’s hash and the hashes of adjacent nodes
is used to assign a new hash to each node. The final graph
hash is computed by hashing a sorted list of the individual
node hashes.

WL subgraph kernel The Weisfeiler-Lehman subgraph
kernel is built on counting common intermediate subgraph
hashes between two graphs. In the WL-kernel on two
graphs as defined in [30], the WL-kernel is computed as the
inner product of the two vectors that count how often each
subgraph hash occurs in each graph. In this study, we use
a slight variation, which counts how many subgraph hashes
occur in both graphs, counting each subgraph only once.

Filtering based on WL graph kernel Using this WL
subgraph kernel, subsets of pairs can be generated that are
likely to have low graph edit distance. Figure 6 shows the
correlation between pairs with high number of subgraphs
in common and low GED. For the most likely subsets, the
GED is computed for each pair. Training pairs can then
be generated by thresholding by the computed GED. The
benefit of this filtering scheme is that the number of GED
computations is reduced substantially compared to enumer-
ating all possible pairs, while still yielding enough pairs to
be useful for training.

The result of Algorithm 1 is a list of candidate GED pairs
with computed GED value. Training pairs can now be se-
lected by filtering based on the computed GED. We trained
both on pairs with GED ≤ 1, i.e. only include pairs that
differ at most one edit operation. As well as on GED ≤ 2
pairs that differ by at most 2 graph edit operations.

3.4.2 SimSiam with IoU and SSIG pairs

In addition to generating training pairs by selecting based on
graph edit distance, we also train with pairs selected based
on IoU as well as SSIG. In [15,26] graph matching network

Algorithm 1 Procedure for generating GED pairs

• Compute dictionary of unique floor plan graphs by
their WL hash

• For each floor plan graph, compute WL subgraph
hashes

• For each subgraph hash, create a hash bucket of all the
floor plan IDs that share the subgraph hash

• Create a dictionary mapping from pair to an in-
common count

• Loop over all hash buckets, and increment the count
dictionary item for each pair

• Now sort the pairs into subsets based on their in-
common count

• For the subsets with the highest in-common counts,
compute the GED for each pair

• Threshold the GEDs to generate a list of pairs based
on GED

• Map unique floor plan graphs back to the original floor
plans that share the same graph

models were trained on IoU. SSIG [38] was recently pro-
posed, partly with the aim to be used for training floor plan
retrieval models.

3.5. Evaluation

The learned embeddings will be evaluated in a retrieval
setting. Previous work [26] used user studies in which Me-
chanical Turk workers were asked to indicate which re-
trievals they considered relevant given a query. Instead, we
use retrievals generated for a set of N = 100 queries by
pairwise computation of IoU, GED, and SSIG metrics as
ground truth. Even though in practice pairwise computation
of especially GED is infeasible for retrieval given a large
dataset, it is feasible to generate ground truth retrievals for
a limited set of queries within a reasonable amount of time.

Using IoU, GED, and SSIG retrievals to determine the
relevancy of a retrieval gives insights into how well the re-
trievals from the models align with metrics that have pre-
viously been proposed to measure similarity between floor
plans. IoU measures shape overlap, GED measures the dis-
tance between floor plan graphs, and SSIG [38] is a com-
bined metric.
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3.5.1 Mean Average Precision (MAP@R)

MAP@R [23] is chosen as the evaluation metric for its
properties of being a single value that is more informative
than other metrics [23, 37]. MAP@R is a variant of MAP
where only the first R retrievals are taken into account for
each query, with R set to the number of relevant items in
the dataset for that query. To compute the MAP@R, first
the AP@R is computed for each of the N = 100 randomly
sampled queries, and then the MAP@R is the mean of the
AP@R scores. If all relevant items are contained within
the first R retrievals, the AP@R score is 1. Otherwise, the
AP@R is equal to the average of the precision scores for
each relevant retrieval.

For each query:

AP@R =
1

R

R∑
i=1

P (i) · rel(i) (1)

where: P (i) = the precision at i

rel(i) =

{
1 if the ith retrieval is relevant
0 otherwise

The MAP@R is the mean over AP@R for each query in the
dataset:

MAP@R =

∑Q
q=1 AP@R(q)

Q
(2)

where: Q = the number of queries

3.5.2 Relevancy based on ground truth retrievals

The relevancy of a retrieval is based on ground truth re-
trievals generated from pairwise evaluation of the IoU,
GED, and SSIG metrics. For each of the 100 evaluation
queries, the floor plans in the database are ranked by pair-
wise computation of IoU, GED, and SSIG. For each metric,
the top K highest ranked retrievals are labeled as ground
truth relevant for that query. Setting the value of K makes
an assumption on how many relevant retrievals exist in the
dataset for each query, when ranked by these metrics. We
compute the evaluation metrics with the top 5, 10, and 50
highest ranked ground truth retrievals labeled as relevant.

In some cases, especially for GED, items can have the
same metric score. This happens for instance when many
floor plans share the same graph, and thus have a GED of
zero. When multiple floor plans have the same metric score,
it is arbitrary which ones are labeled as relevant. To fix this,
any floor plan for which the computed metric score equals
that of the k-th retrieval is also labeled as relevant.

Relevancy labels Thus, formally, for a relevancy
metric ∈ {IoU,GED,SSIG} and a single query q, let L∗

k

be the k-th ground truth retrieval ranked by metric. Then
metric(q, L∗

K) is the relevancy metric score of the k-th
ground truth retrieval.

Any retrieved floor plan that is at least as relevant as the
k-th ground truth retrieval is considered relevant:

relmetric(Li, q) = metric(q, Li) ≥ metric(q, L∗
K)1 (3)

where: Li = the ith retrieval from the model given
query q

3.5.3 Floor plan similarity metrics

We define metrics in the following manner:

metric(i, j) : F × F → R+ (4)

where F is the set of floor plan indices in the dataset. For
each floor plan index i ∈ F , gi is the floor plan graph.
Xi ∈ CH×W is the categorical image representation of that
floor plan with C = {c ∈ Z | 0 ≤ c ≤ 9} the set of room
categories with 0 representing the background category.

GED Metric The graph edit distance (GED) between two
floor plan graphs gi and gj is the minimum cost of changing
floor plan graph gi, into floor plan graph gj . Each addition,
removal, or change of nodes or edges incurs the same edit
cost of 1:

GED(i, j) = min
(e1,...,ek)∈π(gi,gj)

k (5)

where π(gi, gj) denotes the set of possible edit paths that
transform gi into gj and each en is an edit operation that
changes a vertex or edge in gi.

IoU Metric Intersection over Union (IoU) is defined as
the area where the room classes are equal, divided by the
area of the union of the two floor plans. The background
class, which has value 0, is not taken into account. Thus,
IoU is defined as:

IoU(i, j) =

∑
k 1(Xik = Xjk ̸= 0)∑

k 1(Xik ̸= 0 ∨Xjj ̸= 0)
(6)

where 1(·) is an indicator function, and the summation is
over all pixels.

1For the GED metric the ≥ sign is swapped for ≤.
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Rotation and flip invariant IoUD4 The rotation of a floor
plan is somewhat arbitrary, as it depends on which direction
is north. In addition, in this evaluation, we choose to regard
mirrored version of the same floor plan as similar because
they are compositionally equivalent 2.

In RPLAN walls are all axis aligned, and thus are invari-
ant to rotations and flips, only 90deg rotations and horizon-
tal and vertical flips need to be taken into account. To con-
struct an IoU metric that is invariant to rotations and flips,
we take inspiration from [7] and define

IoUD4(x1, x2) = max
t∈D4

{IoU (t(x1), x2)} , (7)

as the maximum IoU over the 8 possible rotation and flip
combinations of the D4 symmetry group.

SSIG Metric Recent work proposed Structural Similarity
by IoU and GED (SSIG) [38] as a metric for measuring floor
plan similarity. SSIG is a weighted combination of GED
and IoU, and should capture floor plan similarity better than
either GED or IoU alone [38]. The equation for SSIG is
given by:

SSIG(i, j) =
IoU(i, j) + (1−

(
GED(i,j)
|Ni|·|Nj |

)γ

2
, (8)

where |Ni| depicts the number of rooms of floor plan i, and
γ = 0.4 is a constant to balance the relative influence of
IoU and GED.

When the SSIG metric is based on IoUD4 instead of on
the untransformed IoU, it is written as SSIGD4.

3.6. Baselines

SimSiam with image augmentations only We compare
the GeomPerturb augmentations to training SimSiam with
image augmentations only, as this is the original use case
for SimSiam. The augmentations used in this baseline are
the same as those used for GeomPerturb, and when training
with weakly-supervised pairs, see Sec. 3.2.

Graph2vec. Graph2vec [24] is Doc2Vec like model that
can learn representation vectors of graphs. In Doc2Vec, the
δ dimensional vectors are learned for a vocabulary of words,
and the aim is to maximize the similarity between a docu-
ment and the words it contains. Similarly, Graph2Vec learns
δ dimensional representations of a vocabulary of Weisfeiler-
Lehman subgraphs of a certain depth that occur in the train-
ing data, and fit representations of graphs that maximize the
similarity between the vector of a graph and the subgraphs
it contains.

2The authors are aware that floor plans with mirrored or differently
oriented layouts still can feel different to the building user.

This baseline uses a graph representation of floor plans,
where the rooms are nodes and adjacent rooms are con-
nected by edges. Graph2Vec was chosen as a baseline, be-
cause it predicts a 128-dimensional vector embedding for
each graph, and thus, like the SimSiam models, can also
be used for fast nearest neighbor search in the embedding
space.

LayoutGMN. LayoutGMN has been used for predicting
floor plan similarity, and can be used for floor plan retrieval.
LayoutGMN predicts similarity on pairs of floor plan graph
representations, employing a graph matching network to
identify similar nodes across the graphs. To retrieve similar
floor plans given a query, the similarity has to be predicted
using the GMN model for each pair of query and candidate
graph.

Brute force baselines. It is possible to obtain retrievals
by pairwise computation of the IoU, GED, and SSIG met-
rics. While in practice these methods are often too slow for
fast retrieval, especially computing the graph edit distance
is computationally expensive, they can serve as a compari-
son for what the best retrievals available in the dataset are
given the metric. These baselines are the same as those used
to label which retrievals are relevant.

For the IoU brute-force baseline, the IoU is computed
pairwise between each query and candidate floor plan im-
age. For the GED brute-force baseline, the graph edit dis-
tance is computed pairwise for each query and candidate
floor plan graph. For the SSIG brute-force baseline, the
IoU and GED are computed pairwise for each query and
candidate. Retrieval scores for the brute-force baselines are
shown in Appendix A.

SSIG top 50 IoU Retrievals based on the SSIG metric, are
based on first filtering by the top 50 floor plans with highest
IoU, and then sorting these based on SSIG. This filtering-
based SSIG method is claimed to be faster than Layout-
GMN [38], which is why it is included in the comparison.

The difference between the SSIG top 50 IoU baseline,
and the brute-force SSIG baseline, is that the graph edit dis-
tance does not need to be calculated for all pairs of query
and candidate floor plan, but only for the candidates that
have the highest IoU with respect to the query. Comput-
ing the IoU is reasonably fast, although still magnitudes
slower compared to nearest neighbor search in an embed-
ding space.

4. Results
4.1. GeomPerturb results

Table 2 shows that training with only image augmenta-
tions leads to retrievals that are not relevant when evalu-
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ated against ground truth GED retrievals. With GeomPer-
turb, the MAP@R score increases from 1.8 to 10.6. Adding
the masking strategy further improves the MAP@R score
to 17.8. Thus, with a specially designed data augmentation
for floor plans, it is possible to improve the retrieval results
of a CNN based representation learning model.

Image augmentations should be used in combination
with GeomPerturb. Training without image augmentations
leads to a 4.1 MAP@R score for GED ground truth rel-
evancy labels, compared to 10.6 when training with both
GeomPerturb and image augmentations, or 17.8 with Ge-
omPerturb + masking and image augmentations.

4.2. Weakly supervised pairs

Table 3 shows that training with GED pairs consider-
ably improves the MAP@R retrieval performance on GED
ground truth retrievals compared to GeomPerturb (Tab. 2).
Training with GED pairs also performs better on the SSIG
and SSIGD4 metrics, and performs similarly to training
with GeomPerturb + masking on the IoU and IoUD4 met-
rics. Thus, training with GED pairs selected from the
dataset performs better than training with the proposed Ge-
omPerturb augmentation.

An interesting observation is that training with both
GED pairs and GeomPerturb – with or without masking –
leads to worse performance compared to training with just
GED pairs. Thus, the GeomPerturb augmentation does not
add useful variation to the training pairs on top of selecting
by low graph edit distance.

GED training pairs threshold Table 3 shows that train-
ing with GED pairs based on a threshold of less than or
equal to 2 performs better than GED pairs with a threshold
less or equal to 1. This is somewhat surprising, as pairs with
a GED of 2 are intuitively less similar and thus less relevant
than those with a GED of 1. It suggests that training with
a more varied set of pairs increases performance, instead of
only using pairs with a GED of 0 or 1.

IoU rotation invariance Even though the models are
trained with rotation and flip augmentations, the MAP@R
of the SimSiam model trained on IoU pairs is higher on the
IoU compared to on the IoUD4 metric. This indicates, that
although the model is trained to be rotation invariant, it is
biased towards floor plans with high IoU in the original ori-
entation.

SSIG based training pairs Surprisingly, training with
SSIG pairs gives worse performance on both the SSIG and
SSIGD4 ground truth metrics, compared to training with
GED pairs. This indicates that in order to retrieve floor
plans that are relevant with respect to SSIG and SSIGD4,

GED IoU IoUD4 SSIG SSIGD4

10 10 10 10 10

Image aug only 1.8 3.5 2.6 3.4 1.9
GeomPerturb w/o img aug 4.1 17.1 7.6 14.9 6.4
GeomPerturb 10.6 8.3 6.4 14.5 9.5
GeomPerturb + masking 17.8 5.2 5.5 14.2 13.2

Table 2. MAP@R for SimSiam models trained with different data
augmentation strategies. The top K=10 ground truth retrievals
generated using GED, IoU, IoUD4, SSIG, and SSIGD4 metrics
are labeled as relevant. The table shows that training with Geom-
Perturb + masking significantly improves retrieval MAP@R for
GED compared to training with image augmentations only.

GED IoU IoUD4 SSIG SSIGD4

10 10 10 10 10

GED pairs ≤ 1 22.8 9.6 7.0 21.2 19.3
GED pairs ≤ 2 33.8 8.0 6.5 25.4 22.9
GED pairs ≤ 1 + masking 22.0 8.3 6.5 20.0 16.9
GED ≤ 2 + GeomPerturb + mask 31.5 6.9 5.6 24.2 20.7
SSIG pairs 12.4 14.2 10.5 22.3 17.6
IoU pairs 3.3 26.4 16.5 15.2 8.7

Table 3. MAP@R for SimSiam models trained with weakly su-
pervised pairs. The table shows that training with GED pairs im-
proves performance on the GED metric compared to GeomPer-
turb. Training with GED pairs also leads to better performance on
the SSIG metrics compared to training with SSIG pairs. Training
with IoU pairs gives the highest performance on the IoU metric.

retrieving floor plans with low GED is more important than
retrieving plans with high IoU. Additionally, an explanation
for this could be that the SSIG training pairs are selected by
first filtering on the top 50 highest IoU floor plans, and are
thus less diverse than the GED training pairs.

4.3. Comparison to baseline methods

LayoutGMN The LayoutGMN model, while performing
slightly better than SimSiam with GED pairs on the IoU
metric (8.8 vs 8.0), scores significantly lower on both the
GED metric (4.6 vs 33.8), and the SSIG metric (11.6 vs
25.4). Compared to Graph2Vec, LayoutGMN performs
slightly lower on SSIG top 10, but slightly better on SSIG
top-5 (see Tab. 6). A limitation to keep in mind is that our
reproduction of the LayoutGMN might perform worse than
in the original paper due to differences in training; alterna-
tively, Appendix B shows a qualitative comparison to Lay-
outGMN based on retrievals presented in the LayoutGMN
paper.

Graph2Vec Section 4.3 shows that on the GED metric,
the Graph2Vec baseline outperforms SimSiam trained with
GED pairs. However, the difference in MAP@R perfor-
mance is not large (36.2 vs 33.8), showing that an image
based model can learn embeddings that are similar in terms
of performance for retrieving floor plans based on graph
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GED IoU IoUD4 SSIG SSIGD4

10 10 10 10 10

SimSiam w/ GeomPerturb + masking 17.8 5.2 5.5 14.2 13.2
SimSiam trained on GED pairs 33.8 8.0 6.5 25.4 22.9
LayoutGMN 4.6 8.8 5.3 11.6 6.7
Graph2Vec 36.2 2.5 2.5 13.7 19.1
SSIG top 50 IoU - 40.3 14.1 67.6 23.3
SSIGD4 top 50 IoUD4 - 13.1 37.8 17.9 61.4

Table 4. Comparison of MAP@R scores of SimSiam models to
baseline methods. The table shows that SimSiam trained on GED
pairs performs better than LayoutGMN on almost all metrics. Ad-
ditionally, SimSiam w/ GED pairs outperforms Graph2Vec on the
SSIG and SSIGD4 metrics, while performing slightly worse on
GED. Notably, while the SSIG filtered by top 50 IoU, leads signif-
icantly on the SSIG metric, SimSiam w/ GED pairs shows com-
parable performance on the SSIGD4 metric, which accounts for
different orientations across floor plans.

similarity, compared to Graph2Vec, a general method for
learning embedding vectors from graphs.

SimSiam trained on GED pairs outperforms Graph2Vec
on the IoU and IoUD4 metrics, as well as on the SSIG and
SSIGD4 metrics. This implies that the SimSiam model has
an inherent bias towards visually similar floor plans, even
though it is trained on floor plan pairs based solely on sim-
ilarity of the floor plan graphs. This indicates that just as
LayoutGMN is a graph based model trained on IoU pairs, it
similarly makes sense to train a CNN based model on pairs
derived from the floor plan graph.

SSIG top 50 IoU The SSIG top 50 IoU based retrievals
perform well on the SSIG ground truth metric. However,
the performance drops significantly on the SSIGD4 metric,
which takes the highest IoU of flipped and rotated versions,
instead of just the IoU in the original orientation. This high-
lights the importance of aligning the retrieval method with
the evaluation method, particularly the relevance of flipped
or rotated floor plans when using SSIG as a heuristic for
floor plan similarity.

When there is a mismatch in considering rotations and
flips – computing either the highest IoU from flipped and
rotated version or only in the original orientation – the per-
formance of SSIG/SSIGD4 top 50 IoU based methods be-
comes similar to that of the SimSiam model trained on GED
pairs. This suggests that when it is uncertain if floor plan
orientation is important to the user, the SimSiam trained on
GED pairs model performs competitively.

It was not possible to calculate the MAP@R scores on
the GED metric for the SSIG-based retrieval methods. La-
beling candidate floor plans with the same or lower GED
as the 10th best retrieval relevant, often leads to more than
50 relevant retrievals. This makes it impossible to compute
MAP@R, as the number of relevant documents is higher
than the number of retrievals.

4.4. Effect of data preprocessing steps for weakly
supervised pairs

The GeomPerturb method needs specialized preprocess-
ing of the floor plan geometry, see Fig. 1. The same pre-
processing steps were applied for training with weakly su-
pervised positive pairs as well, for a fair comparison. Ta-
ble 5 shows that the MAP@R score with the default pre-
processing steps is similar to the MAP@R score obtained
without the geometry preprocessing steps. The run labeled
”cat img” uses the categorical image from RPLAN directly,
as visualized in the left most image of Fig. 1. The run la-
beled ”rplanpy rgb”, uses floor plans drawn with the same
RGB colors as those used in the default preprocessing, but
without altering the wall geometries. The rplanpy [40] li-
brary was used for drawing this ”rplanpy rgb” version of
the dataset.

This result implies that training with GED pairs is not de-
pendent on specific preprocessing, making the method ap-
plicable to other floor plan datasets, for which both a floor
plan graph, and floor plan images are available.

4.5. Qualitative evaluation

Figure 7 shows a comparison of the same two queries
across different models and brute-force baselines. The re-
trievals are rotated to the orientation with the highest Inter-
section over Union (IoU) with respect to the query for eas-
ier visual inspection. The original orientation is indicated
by the line and square overlaid on the image; when in the
original orientation, the line is at the bottom and the square
is at the top left.

The query in the left figure of Fig. 7 highlights the impor-
tance of taking flips and rotations into account. All the re-
trievals based on the brute-force SSIGD4 metric are flipped
or rotated with respect to the query floor plan. The SimSiam
with GED pairs model, which is trained on pairs formed by
GED, and thus irrespective of room positions, provides the
most relevant retrievals for this query.

5. Conclusion
The representation learning framework SimSiam was ap-

plied to floor plan retrieval in two novel ways: a data aug-
mentation that perturbs the underlying geometry of the floor
plan, and training based on pairs supervised by graph edit
distance on the floor plan graph. In contrast to previous
methods using graph-based GNN models and weakly su-
pervised IoU pairs, this work demonstrates that training a
CNN model with pairs supervised by graph edit distance
is a feasible alternative. In addition, the results highlight
that it is advantageous to be able to retrieve flipped or ro-
tated versions of the same floor plan, as these often occur
in the RPLAN dataset. A limitation of this work is that
the floor plan images have a uniform style, which is not the
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GED IoU IoUD4 SSIG SSIGD4

5 10 50 5 10 50 5 10 50 5 10 50 5 10 50

SimSiam trained on GED pairs 36.8 33.8 31.0 10.3 8.0 5.6 8.4 6.5 4.9 25.9 25.4 19.3 25.1 22.9 22.6
SimSiam GED pairs cat. img 32.4 30.1 28.7 10.2 8.3 5.4 7.7 6.1 4.5 23.5 23.3 16.9 21.4 20.3 19.0
SimSiam GED pairs rplanpy rgb 38.6 34.9 33.1 8.1 6.3 4.7 7.1 5.2 3.8 24.6 23.0 18.4 22.4 21.1 19.8

Table 5. The table shows that MAP@R is similar for different preprocessing methods when trained on GED pairs. With relevancy labels
based on labeling the top 5, 10, and 50th ground truth retrievals generated by GED, IoU, IoUD4, SSIG, and SSIGD4 metrics relevant.

Figure 7. Retrieval comparisons for two randomly sampled query floor plans. The average precision (ap) is calculated based on SSIGD4

as relevance metric, with an adaptive threshold based on the SSIGD4 value of the top 50th brute-forced SSIGD4 retrieval. Retrievals are
highlighted as relevant (green) or not relevant (red). In the original orientation, the dot is at the top left, and the line is at the bottom.

case in general for real world floor plans drawn by archi-
tects. Future work could investigate if it is feasible to train a
model on floor plan images collected in the wild with GED
as a learning signal, in order to retrieve structurally similar
floor plans end-to-end. This work shows that CNN models
trained with graph edit distance can be competitive on the
floor plan retrieval task. This exploratory research opens
up a new avenue to approach end-to-end floor plan retrieval
based on CNN models as an alternative to having to parse a

graph representation at inference time.
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12



Guyon, Yann LeCun, Cliff Moore, Eduard Säckinger, and
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A. Additional results

Table 6 shows additional results, including brute-force
baselines, which retrieve based on pairwise computation of
the proposed evaluation metrics. The brute-force baselines
show how optimal retrieval, for one of the evaluation met-
rics, scores on the other evaluation metrics.

In addition, Tab. 6 includes MAP@R scores for rele-
vancy labels based on marking the top 5, 10, and 50th
ground truth retrievals relevant. The top 5 and top 10 are
results are most relevant for evaluating the retrieval quality,
as top 50 is only relevant if users of the system are interested
in looking at 50 retrievals per query.

Brute-force baselines Table 6 shows that for each brute-
force baseline, the MAP@R score on the same ground truth
metric is 100. This is expected, as all ground truth relevant
retrievals, are returned by each brute-force baseline.

Effect of rotation and flip invariance Comparing the re-
sults of retrieving by IoU evaluated on IoUD4 shows that the
MAP@R score drops to around 30, implying that when ro-
tated and flipped versions of a floor plan are also considered
to be relevant, retrieving based on IoU leaves performance
on the table, by not including flipped or rotated versions.

The other way round, retrieving based on IoUD4, and
evaluating on IoU, only labeling floor plans with high IoU
in the original orientation as relevant, leads to an even worse
MAP@R score of around 15. Thus, it is important to know
whether the user is interested in only floor plans with similar
orientations, or also in flipped or rotated versions.

SSIG baseline The ”SSIG top 50 IoU” method proposed
in [38] filters candidate floor plans on IoU, and only com-
putes the GED and SSIG for the top 50 IoU candidates. Its
high MAP@R scores of around 60, show that this seems
to be a reasonable compared to full pairwise computation
of SSIG. However, the large drop in MAP@R to around 20,
when evaluated on rotation and flip invariant SSIGD4, high-
lights that the reliance on IoU can be a limitation when the
query floor plan has a different orientation.

On RPLAN, the small set of rotations and flips from
the D4 symmetry group achieves invariance to flips and
rotations, due to the axis aligned nature of RPLAN floor
plans. While SimSiam could be adapted to arbitrary rota-
tions through data augmentation at training time, extending
SSIG to handle more arbitrarily rotated floor plans would
be challenging without greatly increasing the computational
cost. Specifically, computing IoU for many different ori-
entations, instead of just four 90 degree rotated versions,
would significantly slow down the filtering stage.

B. Qualitative comparison to LayoutGMN
In their paper, LayoutGMN includes retrieval examples

with RPLAN IDs shown in the figure. These allow for a fair
comparison irrespective of our reproduction of LayoutGMN
performing as well as the original implementation. Fig-
ure 8 shows a comparison of LayoutGMN retrievals (left)
to retrievals of a SimSiam model trained on GED ≤2 pairs
(right). As the preprocessing pipeline shown in Fig. 1 does
not work for all RPLAN images, the SimSiam model in
this comparison is trained on the segmented RPLAN im-
ages without preprocessing.
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GED IoU IoUD4 SSIG SSIGD4

5 10 50 5 10 50 5 10 50 5 10 50 5 10 50

Bruteforce by GED 100.0 100.0 100.0 2.0 1.5 1.4 3.5 3.3 3.0 13.2 15.0 13.6 28.4 29.3 27.7
Bruteforce by IoUD4 6.2 5.1 4.4 19.8 15.7 12.1 100.0 100.0 100.0 10.4 9.1 10.1 24.0 24.6 30.9
Brutefoce by untransformed IoU 4.3 3.0 2.4 100.0 100.0 100.0 30.0 28.2 27.0 27.3 28.3 37.0 12.3 11.8 12.2
Bruteforce by SSIGD4 55.2 47.5 38.0 10.2 8.6 7.0 24.8 25.1 28.5 21.9 22.6 21.5 100.0 100.0 100.0
Bruteforce by SSIG (untransformed IoU) 29.3 25.6 20.3 27.3 27.1 33.6 13.2 11.7 13.3 100.0 100.0 100.0 31.8 34.4 34.1
SimSiam trained with image augmentations only 2.7 1.8 1.7 4.3 3.5 2.6 3.3 2.6 1.9 3.4 3.4 2.9 2.7 1.9 2.0
SimSiam trained with GeomPerturb + masking 19.2 17.8 17.9 7.1 5.2 4.2 6.7 5.5 4.2 15.4 14.2 12.4 15.0 13.2 14.2
SimSiam trained on GED pairs 36.8 33.8 31.0 10.3 8.0 5.6 8.4 6.5 4.9 25.9 25.4 19.3 25.1 22.9 22.6
SimSiam trained on IoU pairs 4.4 3.3 3.4 29.0 26.4 26.0 18.0 16.5 20.9 15.0 15.2 19.4 8.7 8.7 12.7
SimSiam trained on SSIG pairs 13.3 12.4 15.2 15.8 14.2 12.7 11.4 10.5 12.0 23.9 22.3 23.3 16.9 17.6 22.1
LayoutGMN 6.1 4.6 4.3 10.7 8.8 10.2 6.3 5.3 4.3 14.1 11.6 13.6 7.1 6.7 6.1
Graph2Vec 46.6 36.2 20.6 3.5 2.5 1.5 3.5 2.5 2.2 12.0 13.7 10.6 19.2 19.1 16.2
SSIG top 50 IoU - - - 35.3 40.3 100.0 15.5 14.1 19.2 71.0 67.6 47.8 23.3 23.3 19.1
SSIGD4 top 50 IoUD4 - - - 13.2 13.1 11.8 33.6 37.8 100.0 18.8 17.9 12.1 63.7 61.4 42.7

Table 6. Mean average precision at R (MAP@R), where R is the amount of relevant retrievals for each query in the dataset, based on GED,
IoU, IoUD4, SSIG, and SSIGD4 ground truth relevance labels. Retrievals are labeled relevant if they are at least as relevant as the k-th
ground truth retrieval per query, shown for k ∈ {5, 10, 50}. For 100 randomly sampled evaluation queries.

Figure 8. Comparison of LayoutGMN retrievals taken from fig. 15 of the LayoutGMN [26] paper (left) to retrievals of the SimSiam model
trained on GED≤ 2 pairs (right). The SimSiam model is trained on the category channel of RPLAN without additional preprocessing
(”SimSiam GED pairs cat. img” in Tab. 5).
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3
Background

3.1. Deep Learning
Deep learning is a subfield of machine learning that uses neural networks to approximate functions.
Traditional machine learning methods usually require manual feature engineering, that is, extracting
features from raw data to use as input. This process can be time-consuming and may not capture all
the relevant information. In contrast, deep learning methods can be trained end-to-end, with the neural
network acting as a feature extractor. The ’deep’ in deep learning refers to the multiple layers that deep
neural networks have. This depth is essential to deep learning’s success in training models in many
domains, ranging from image and speech recognition to natural language processing.

Neural networks are general function approximators. That means that given some target function y =
f(x), a neural network can be trained to approximate f̂θ(x). The target function is usually not known,
but given implicitly by a dataset of training examples {(x1, y1), (x2, y2), . . . , (xn, yn)}.

A neural network consists of many individual neurons, which have learnable parameters that can be
trained. Neurons are grouped together in layers, and layers are connected to each other to form a
network.

3.1.1. Multi Layer Perceptron

Figure 3.1: Illustration of an MLP with two hidden layers.

A Multi Layer Perceptron (MLP) [17] is composed of input and output layers, and one or more hidden
layers. Each layer is composed of neurons. Neurons are functions that take the outputs of neurons of
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the previous layer as input, and compute a new value based on a set of parameters. The output of the
MLP is computed by the last layer.

Figure 3.1 shows an MLP with two hidden layers. The input layer has 3 neurons, the first hidden layer
has 4 neurons, the second hidden layer has 3 neurons, and the output layer has 2 neurons. MLPs
have fully connected layers, that means that each neuron takes as input the output of all the neurons
in the previous layer.

The learnable parameters of a neuron consist of weights for each incoming connection and a bias term.
Let’s take the first neuron of the first hidden layer as an example. It has three incoming connections,
one from each input neuron. This neuron thus has three weights and one bias. Its output is computed
as follows:

h1
1 = f(w

(1)
1,1 · x1 + w

(1)
1,2 · x2 + w

(1)
1,3 · x3 + b

(1)
1 ). (3.1)

Here w
(1)
1,i is the weight for the i-th incoming neuron of the first neuron of the first hidden layer, and b

(1)
1

is the bias term for the first neuron of the first hidden layer. The function f is an activation function to
introduce non-linearity, see section 3.1.1.

MLP layer as matrix multiplication Equation (3.1) shows how to compute the output of a single
neuron in an MLP layer. MLP layers usually have many neurons. The notation for a weight, e.g. w1,3,
already hints that the weights of an MLP layer can be stored as a matrix. The first index identifies which
neuron it is in the layer, and the second index is the incoming connection the weight should be applied
to. Thus, the weights of a fully connected MLP layer are an N ×M matrix where N is the number of
neurons in the layer, and M is the number of neurons in the previous layer.

The output of an MLP layer can be computed as f(Wx+b1) whereW is theNxM weight matrix, and x
is theM×1 dimensional output vector of the previous layer. The result of theW ·xmatrix multiplication
as an N × 1 dimensional vector, i.e., one value for each of the N neurons in the layer. The bias term
likewise is also an N × 1 dimensional vector, namely one bias for each neuron, and can thus be added
to the result of the weight matrix multiplication.

Activation functions
Without activation functions, an MLP would just be a weighted sum of weighted sums, i.e., a linear func-
tion. Thus, to learn more complex relations, a non-linear function needs to be introduced somewhere.
This is the purpose of the activation function, f in equation (3.1), that gates the output of each neuron.
There exist many possible activation functions. The most commonly used are ReLU, sigmoid, and tanh.
Figure 3.2 illustrates the behavior of these functions.

3.1.2. Training a neural network
A randomly initialized neural network is very unlikely to approximate the target function well. Thus, the
neural network should be trained on the dataset to learn to approximate the target function. In order

Figure 3.2: Illustration showing the behavior of the ReLU, sigmoid and tanh activation functions for input between -7 and 7.
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to optimize the parameters of a neural network, a loss function should be defined. A loss function
is a function of the model parameters and the training examples that measures how well the model
approximates the target function. The goal of training is to find parameters that minimize the loss
function.

Loss functions
For regression problems, where the output is a real valued number, mean squared error is a common
loss function. For classification problems, where the output is one of multiple discrete classes, and the
task is to predict the class of the input image, cross entropy is a common loss function.

The mean squared error loss,

MSE(y, ŷ) =

N∑
i=0

(yi − ŷi)
2, (3.2)

computes the mean L2 distance between the target values in the dataset, yi, and the values predicted
by the network, ŷi.

Optimization
Now that we have defined a neural network with trainable parameters, a loss function, and we have a
dataset, we can optimize the neural network to learn to fit the data. The common method for optimiz-
ing a neural network is through gradient descent and backpropagation [17]. Gradient descent entails
computing the derivative of each neuron’s weights with respect to the loss function. Backpropagation
is a technique to efficiently compute the gradient of the weights w.r.t. the loss, and update the weights.

The loss function is evaluated by computing the output of the network for some input features x for a
pair of training data (x, y), and computing the loss, e.g., for MSE loss: error = MSE(y, fθ(x)). Here, y
is the ground truth label for input x, and fθ(x)) is the prediction by the network.

Figure 3.3: Visualization of the
loss landscape for a network
with two weight parameters.

Taken from [23].

Gradient descent For different weights, a neural network will give a dif-
ferent output. If you plotted the weights of the network versus the loss on
the training data, you could imagine this as a hillscape of peaks and val-
leys. See figure 3.3 for an illustration for a model with only two weights,
in practice neural networks can have millions of weights, making it infea-
sible to visualize. Here, valleys have a low loss and are desirable. The
dimensionality of the weights of a neural network is large, and thus it would
be inefficient to compute the loss value for many different weight configu-
rations and choose the weights that yield the lowest loss value. Luckily,
neural networks are differentiable, and thus the slope of points in the loss
hillscape can be computed. Knowing the slope means that you know in
which direction to step to go to a point with a lower loss value. The slope of
the loss function is also known as the gradient, and stepping in the direction
of a lower loss is called gradient descent.

When optimizing the loss by making individual steps in the loss landscape, you can get stuck in a local
minimum. This is an area where if you step in any direction, the loss will increase, but where the loss is
not as low as possible. The amount that the weights are changed at each step, i.e., the size of the step,
is called the learning rate. The learning rate should be adjusted such that the optimization process does
not get stuck in small local minimums, but also not so large that it steps over valleys with a minimum
loss. What is often done, is decreasing the learning rate during training, a process called learning rate
decay.

Mini-Batch Stochastic Gradient Descent In the standard gradient descent method, the gradient is
computed using the loss calculated over the entire dataset. Instead, weights can also be updated by
computing the gradient using the loss of just a single randomly training example. Doing this iteratively
for each training example in the dataset is called Stochastic Gradient Descent (SGD). It is stochastic,
because the choice of a random example at each iteration introduces randomness into the process.
SGD helps avoid local minima, and can lead to faster convergence for large datasets [23].
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A variation of SGD that is commonly used in practice is mini-batch SGD. Mini-Batch SGD strikes a
balance between the two by updating the weights based on the gradient computed on a small subset
of the data. The subset is called a mini-batch. This mini-batch is randomly sampled, and the size
of the mini-batch has an influence on how fast the optimization converges, as well as on how many
computational resources are needed. Common choices for the mini-batch size are around 32–128
samples. It can be advantageous to use a smaller or a lot larger batch size, depending on the problem
and model architecture.

Regularization
In training a neural network, the weights can take on many configurations while still predicting the train-
ing data with the same accuracy. However, not all model configurations are able to generalize well
to unseen data. Regularization entails methods to change the training process to result in a ”simpler”
solution space. A ”simpler” solution space means constraining the space of possible weight configura-
tions in some way. This can be explicit, such as by using weight decay, or implicit, such as drop out or
early stopping.

Weight decay Weight decay is an explicit form of regularization that works by adding a term to the
loss that penalizes the norm of the weights [14]:

L
′
(θ; y, ŷ) = L(θ; y, ŷ) + αΩ(θ), (3.3)

here Ω(θ) is the regularization term based on the norm of the weights, and α controls how much the
regularization term effects the loss. Usually Ω(θ) is either the L1 or L2 norm of the weights θ. The L1

norm constrains the solution space to prefer sparse solutions [14], i.e., solutions where some weights
are set to zero. On the other hand, training with L2 regularization reduces the magnitude of the weights,
resulting in a model that is less likely to overfit [14].

Dropout Dropout [10] randomly sets some activations of the network to zero during training, thus
dropping out individual neurons. Each dropped out network can be seen as a subnetwork of the full
model. Training with dropout can be seen as a form of model averaging [10], thus making the model
less prone to overfitting.

Early stopping To train a model, usually the dataset will be split into three disjoint sets: training,
validation and test set. The model is trained on the training set, and the validation set is used for tuning
the training process. Finally, in the end, the performance of the model is tested on the test set once, to
get an unbiased estimate of the performance on unseen data from the same distribution.

While training, the training loss usually goes down, and as long as the model is not overfitting on the
training data, the loss on the validation set will also go down. With early stopping [14], the validation
loss is checked every epoch, and training is stopped after the validation loss stops to improve after
a certain amount of epochs. Early stopping can be seen as a regularization method, which works as
a stronger regularizer when the stopping condition is reached after a small number of epochs without
improving the validation loss [14].

Backpropagation
When computing the output of a neural network, the input is fed to the network, and the result of each
layer is computed based on the output of the previous. This is called the forward pass. Backpropagation
is a method that is used to efficiently compute the gradient for each neuron w.r.t. to the loss function.
Backpropagation works by first computing and storing the output of each layer during the forward pass.
Then the error is computed by evaluating the loss function using the output of the network, and the loss
function. Now the derivative of the final layer’s weights w.r.t. the error is easy to compute. Computing
the gradient of each layer is possible by iteratively computing it using the gradient of the next layer.
Thus, this method is called backpropagation.
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3.1.3. Convolutional Neural Networks
Training a neural network to classify images with high accuracy takes both a large dataset, and a
network with many parameters. To reduce the amount of parameters, and speed up training, it is ad-
vantageous to incorporate prior knowledge into the model. For images, training image based models,
the use of Convolutional Neural Networks (CNN), was popularized by AlexNet [12] who improved clas-
sification performance on a large scale image dataset using a fast GPU based implementation of CNNs.
Instead of representing each pixel by an input neuron, CNNs learn convolution filters, which are applied
to each pixel in an image. CNNs thus encapsulates the prior knowledge that information in images is
often translation invariant, and that many image features are local.

An example of translation invariance is that to detect a cat, the position of the cat in the image does not
matter. An example of the locality of image features is that to detect the presence of an edge at a pixel
location in the image, only the surrounding pixels are needed to detect the edge. In contrast, a fully
connected network, such as an MLP, would require the model to learn analogous pixel relationships
from the data. Thus, an MLP would need more parameters, computation, and potentially a larger
training dataset to achieve the same accuracy as a CNN based model.

CNN filters A convolution filter is a square kernel matrix, that is slid across the image. Figure 3.4
shows how such a kernel is applied pixel wise to the input. To compute the output of the convolution
at a pixel location, the pixel values are element wise multiplied with the overlapping filter values, and
summed together. The same filter is applied to all pixels in the image . The values of the convolution
kernel values are learned, similar to neurons in an MLP.

Figure 3.4: Illustration of a 3× 3 convolution kernel (dark blue) sliding over a 7× 7 input image (blue). The output is a 5× 5
feature map (green). Illustration taken from [9].

3.1.4. Siamese representation learning
Output of a neural network as embedding vector
The output of a hidden layer of a neural network can be used as a feature extractor [2]. Take the
output of an intermediate fully connected layer, and put it into a feature vector of the same length as
the number of neurons in the layer. This results in a feature vector that can be used for downstream
tasks such as image retrieval.

Triplet loss
Instead of using the activations of a network trained on image classification, a specialized distance met-
ric learning loss function can be used. One of these is the triplet loss [18]. A use case for the triplet loss
is face-verification. For face-verification the model is trained on triplet of anchor, positive and negative
examples. The anchor and positive are faces of the same person, and the negative example is a face
from a different person. The triplet loss training objective is now to learn that the distance between fea-
tures vectors extracted from anchor and positive should be smaller than the distance between anchor
and negative. The negative examples needed to form a triplet given an anchor are generally sampled
from the dataset, excluding the positive samples of the anchor. If the distance between the predicted
representation vectors for the anchor and positive is already smaller than the distance between an-
chor and negative, the gradient of the loss is small, and the triplet was not informative for training the
model. Thus, during training, it is important to choose negative examples that are currently hard for the
model [18]. Choosing negative examples that are currently hard, is called negative hard-mining.
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Contrastive losses
Instead of working on triplets of anchor, positive, and negative, the contrastive loss [6] works on image
pairs that are labeled as similar or not similar. An extension of the contrastive loss, is to use all pairs of
training examples in a mini-batch as part of the loss computation. In N-pairs loss [21], all non-positive
examples in a mini-batch are used as negative example. Using all negative examples from a batch, in
combination with a large batch size can be used as an alternative to negative hard-mining [21, 4].

Siamese networks
In Siamese networks [3], two branches of the network share identical weights during training. Siamese
networks can be seen as a form of incorporating prior knowledge into a model. Whereas CNNs are a
prior for extracting features from images, Siamese networks are a prior for comparing entities [5]. In a
contrastive learning setting, the training examples consist of pairs which are labeled as similar or not
similar. In this setting, each branch of the Siamese network computes a representation vector for each
of the samples in a pair. The loss function then acts on the distance between the vectors, and if the pair
is labeled as similar or not. Thus, Siamese networks incorporate the prior information that similarity is
symmetric, i.e., to compute the distance between the representation vectors of a training pair, the order
of the examples within a pair does not matter.

3.2. Retrieval
In this chapter, the basics of building a content-based image retrieval system, based on learning rep-
resentation vectors for each document, will be explained. Throughout the text, the words image and
document are used interchangeably to refer to items that are retrieved.

3.2.1. Building an index and querying
The goal of an information retrieval system is to return relevant results to a user, and do this efficiently.
Information retrieval systems need two essential components to facilitate fast retrieval: building an
index structure, and a method for efficiently searching the index [22].

Without an index, querying would require comparing the query to every document in the database.
Thus, for the goal of enabling fast retrieval, building an index beforehand is essential. For text search,
an inverted index can be build analogous to the index in a book: for every word in the documents,
keep track of the documents that are relevant for that word. Then sort the words alphabetically to
make efficient querying possible. Text can naturally be broken down into words, making it possible to
construct an inverted index. Unlike text, images are represented by as high-dimensional pixel data,
necessitating a different approach: low dimensional feature vectors that characterize each image.

Vector representations
For content-based image retrieval, where images are retrieved by example, the indexing step should
compress and characterize each image by a low dimensional descriptor to enable efficient querying
[22]. Traditionally, this was done by using hand-crafted feature extractors, such as a color histogram
[7]. A recent trend is to use learned feature descriptions based on deep learning methods [8].

Learned feature descriptors can take the form of binary hash codes or real-valued vectors. These
feature vectors are the output of a deep neural network and are of low dimensionality compared to the
input image. An example of a neural network that outputs a real-valued feature vector computed from
an image are the Siamese networks described in section 3.1.4.

Nearest neighbor search
With an index based on vector representations, the distance between two vectors is used as a measure
of similarity of the images. The problem of retrieving K images, based on a query image, is thus to
return the K-nearest neighbors of the query representation vectors. To define the distance between
two vectors, a commonly used metric is the L2 distance [11].

Faiss [11] is a collection of algorithms for efficient nearest neighbor search of real-valued vectors. Exact
nearest neighbor search can be done efficiently for a database of up to 1M̃ vectors. For even larger
databases, faiss includes approximate methods for k-nearest neighbors search.
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A retrieval system build on nearest neighbor search of representation vectors, is a type of ranked re-
trieval system. In a ranked retrieval system, instead of retrieving a set of documents, the documents
are sorted by how relevant they are, in this case by distance of their representation vector to the repre-
sentation vector of the query.

3.2.2. Retrieval evaluation
The goal of developing a retrieval system is to provide relevant documents to the user. To achieve this
goal, it is essential to measure the performance of the retrieval system. To evaluate an information
retrieval system, you need [13]:

• A document collection
• A set of queries
• A set of relevance labels for each <query, document> pair

The document collection is the set of all candidate documents from which the system should retrieve
relevant documents. The set of queries express an information need by the user, and the relevance
labels express a binary judgement for if the retrieved document is relevant to the query.

Relevance labels The relevance label of a document given a query is used as ground truth judgement
for the relevance of a retrieved document given the query. The relevance of a document depends on
the information need of the user. The measured performance of a retrieval system can vary a lot
between different queries. Thus, it is important that the set of queries is large enough to average the
performance over different queries, a set of at least 50 queries has been found to be sufficient [13].

Evaluation metrics
Many metrics exist for evaluating retrieval systems. However, not all of them paint an accurate picture
of how well a retrieval system performs [16].

Precision One of the simplest metrics, is computing the ratio between howmany retrieved documents
are relevant, and the amount of documents that were retrieved [13]:

Precision =
#(relevant items retrieved)

#(retrieved items)
. (3.4)

Note that the precision score is calculated for a single query.

Precision@K Precision can be calculated for a retrieval system that returns a set of retrievals. To
this metric to a retrieval system that instead ranks all documents, the precision of first K retrievals can
be calculated instead. The precision@K is thus defined as the ratio of relevant documents within the
first K retrievals:

P@K =
#(relevant items retrieved in top K)

K
. (3.5)

R-precision R-precision is a variant of P@K, where K is taken as the number of relevant documents.
The relevant number of documents depends on the query. The advantage of this metric, is that a
perfect retrieval system, that ranks all the relevant documents higher than any non-relevant document,
achieves a P@R score of 1 [13]. In contrast, a perfect retrieval system evaluated on P@20 with a query
that only has 5 ground truth relevant documents, would get a score of 5

20 = 0.25.

P@R =
#(relevant items retrieved in top R)

R
, (3.6)

where R is the number of relevant items in the document collection for the query.
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Figure 3.5: Figure showing precision@R and MAP@R scores for different retrieval systems. It is assumed that R, the amount
of relevant items for the query, is equal to 10. Green is used for relevant retrievals, and red for non-relevant ones.

Mean average precision @R The precision metrics measures the system’s ability to only retrieve
relevant documents, without taking the order of the retrievals into account. Figure 3.5 shows an exam-
ple where two systems, system 1 and system 2, have the same precision score for some query, even
though system 1 is preferable. System 1 is preferable because it retrieves relevant results at higher
spots compared to system 2.

A metric that incentivizes retrieving relevant results earlier, while still being a number that can be com-
pared, is the average precision metric. Average precision is defined as [16]:

AP@R =
1

R

R∑
i=1

P (i) · rel(i), (3.7)

where P (i) is the prevision at i, and rel(i) denotes if the i-th retrieval is relevant. Mean average
precision at R (MAP@R), is the AP@R average over the query set (3.2.2).

Figure 3.5 shows that MAP@R gives a higher score for the system that returns relevant results earlier.
It also shows that the MAP@R for a system that retrieves all relevant results for a given query is 1.0
(system 4).

3.3. Graph (dis)similarity
3.3.1. Graphs
A graph is a mathematical structure consisting of nodes and edges. Nodes are objects, and objects
that are related to each other are connected by an edge. Edges model pairwise relations between
the nodes. Thus, mathematically a graph G = (V,E) is represented by nodes v ∈ V , and edges
e = (u, v) ∈ E with V the set of nodes, and E the set of edges.

Two nodes u ∈ V and v ∈ V in a graph are adjacent if there is an edge (u, v) ∈ E between them. The
set of neighbors N (v) of a node v is the set of all nodes that are adjacent to v.

Labeled graphs Nodes and edges can have labels. For example: a graph representation of a floor
plan can have rooms as nodes, with the nodes of adjacent rooms connected by an edge. The node
label can then be the type of room, and the edge label can indicate if the rooms are connected by a
door.

The structure of a graph carries information. In the floor plan graph example, the structure conveys
which rooms are adjacent.

Sub graphs A sub graph Gsub is a subset of the nodes Vsub ⊂ V and edges Esub ⊂ E of the graph.
To be a valid sub graph, all nodes which are end points of an edge (u, v) ∈ Esub should be in the nodes
set of the sub graph Gsub.
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3.3.2. Graph representations of floor plans
There are multiple feasible graph representations of floor plans. The one used in this work is the
following: rooms are represented by nodes. Edges are used to represent the pairwise adjacency
relation between rooms. That is, two nodes are connected by an edge if the rooms they represent
have at least one wall in common. The nodes have the room type as a label. The edges have as label
either door or wall, to indicate if they are only adjacent, or if a door also connects them.

An alternative graph representation could be one where edges indicate a door connection. In this case,
the nodes would be the same, but the edges would be a subset of only the edges with the door label.

For visualizing the floor plan graph on top of the floor plan image, nodes can have the x and y coor-
dinates of a representative point in the room as additional label. The graph can then be visualized by
drawing the nodes in their respective rooms.

Graph isomorphism
Informally, graph isomorphism is the problem of checking if the structure of two graphs is identical. Two
graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there exists a one-to-one mapping from the
nodes in G1 to the nodes in G2 f : V1 → V2 such that u and v are adjacent in G1 if and only if f(u) and
f(v) are adjacent in G2.

In this work, graph isomorphism for labeled graphs is defined, such that two labeled graphs G1 and
G2 are isomorphic if there exists a mapping f : V1 → V2 that demonstrates isomorphism without
considering labels, and the label of u ∈ V1 is equal to the label of f(u) ∈ V2 for all u ∈ V1. If the graph
also has edge labels, then each edge (u, v) ∈ E1 needs to have the same label as (f(u), f(v)) ∈ E2

for all edges (u, v) ∈ E1 for the graphs to be isomorphic.

3.3.3. Graph edit distance
Graph isomorphism only tests if two graphs have exactly identical structure. Even though two graphs
might not be identical, they can still be more similar to each other compared to a third graph. Thus, it
would be nice to have a measure of similarity between graphs.

Graph edit distance is a method for computing an “edit distance” of how many elementary edit oper-
ations are needed to transform one graph into another. Each of these edit operations occurs a cost,
and the graph edit distance is the minimum cost of a sequence of edit operations that transforms one
graph into the other. Graph edit distance is thus a measure of a measure of dissimilarity, with a lower
distance indicating a higher similarity.

Edit operations The elemental edit operations either change a single node or edge. The node op-
erations are: inserting a new node, removing a node, or substituting a node by altering the node label.
The edge operations are: inserting an edge between two nodes, removing an edge, or substituting an
edge by altering the edge label without changing the endpoints.

An edit path is a sequence of edit operation that transforms some graph G1 into another graph G2.
Each of these edit operations incurs a certain cost. The cost of an edit path is the summed cost of each
edit operation. Let c(e) be the cost of edit operation e. The graph edit distance is then the cost of the
minimum edit path:

GED(G1, G2) = min
(e1,...,ek)∈π(gi,gj)

k∑
i=1

c(ei)

The cost c(e) can be different for each type of edit operation. If the cost of each type instead is equal
to 1, the equation can be simplified to

GED(G1, G2) = min
(e1,...,ek)∈π(gi,gj)

k

which is just the length of the edit path (e1, ..., ek).
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3.3.4. Approximate graph similarity
Computing the graph edit distance between two graphs is computationally expensive. To efficiently find
pairs of graphs with common sub structures, graph kernels can be used to approximate the similarity
between graphs. The Weisfeiler-Lehman graph kernel is a fast subtree graph kernel that counts the
number of common subtree patterns based on the Weisfeiler-Lehman isomorphism test [19].

Weisfeiler-Lehman isomophism test
The Weisfeiler-Lehman (WL) isomorphism test works by iteratively relabeling the nodes in a graph
based on the labels of its neighboring nodes [19]. Initially, for labeled graphs, the node labels l0(v) are
set to the initial labels of the graph.

WL iteration For iterations i > 0, first a multiset 1 label Mi(v) is assigned to each node consisting of
{li−1(u) | u ∈ N(v)}. The labels in Mi(v) are sorted and concatenated into a string si(v). Set si(v) to
si(v) by li−1(v). Now map each string si(v) into a new label li(v) using an injective function f : Σ∗ → Σ
such that f(si(v)) = f(si(u)) if and only if si(u) = si(v). In practice f can be implemented using a hash
function that makes collision where f(si(v)) = f(si(u)) even though si(u) ̸= si(v) unlikely.

Isomorphism test The WL iteration is repeated h times. The labels after the final iteration can be
used to test if two graphs are non-isomorphic. If {lh(v) | v ∈ G1} ̸= {lh(u) | u ∈ G2}, then graphs G1

and G2 are not isomorphic. Otherwise, the test is inconclusive, although it has shown to be a valid test
for isomorphism for almost all graphs [20, 1].

Extension with edge labels In the standard WL-test iteration, the string si(v) is the concatenation
of the previous iteration’s labels of neighboring vertices prefixed by the previous iteration’s label of the
current node. To include edge labels in the isomorphism test, the multiset label Mi(v) consisting of
neighboring nodes labels can be changed to Mi(v) = {(li−1(u), l

′(u, v)) | u ∈ N(v)} where l′(u, v) is
the label for the edge (u, v).

Isomorphic graph hash The Weisfeiler-Lehman graph hash is defined as the hash resulting of sort-
ing the final node labels {lh(v) | v ∈ V }, concatenating them into a string and applying a hash function.
The resulting graph hash allows for efficiently finding subsets of isomorphic graphs using a hash map
data structure.

Weisfeiler-Lehman graph kernel
The definition of the Weisfeiler-Lehman kernel on two graphs G1 and G2 is given by [19] as:

k
(h)
WL(G1, G2) = |{(si(u), si(v)) | f(si(u)) == f(si(v)), u ∈ V1, v ∈ V2, i ∈ [1, h]}|, (3.8)

where f is injective, and {f(si(v)) | v ∈ V1 ∪ V2} and {f(sj(v)) | v ∈ V1 ∪ V2} for all i ̸= j are disjoint.
Here, the notation |{·}| denotes the size of a multiset.

Thus, the WL kernel counts common subtree labels in two graphs, using the labels produced by the
first h iterations of the WL-test.

WL-kernel as inner product of feature maps TheWL-kernel can also be written as an inner product
of feature map ϕWL(G)s [15]. For each WL iteration i, ϕi(G) is a feature vector in N|Σi|

0 where each
ϕi(G)c counts the number of occurrences of the label c ∈ Σi. Then with the alphabet Σi known before-
hand, and padded with zeroes for elements that do not occur in iteration i, ϕWL(G) is the concatenation
of ϕi(G):

ϕ
(h)
WL(G) = [ϕ0(G), ..., ϕh(G)].

1A multiset is a set that allows elements to occur multiple times
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Then the WL-kernel for h iterations becomes:

k
(h)
WL(G1, G2) = ⟨ϕ(h)

WL(G1), ϕ
(h)
WL(G2)⟩,

with ⟨·, ·⟩ denoting the inner product.

Alternative based on presence An alternative to counting the number of common subtree pairs is
counting how many subtree labels are in common, counting each common label only once. This can
be implemented by counting each pair of (si(u), si(v)) in equation (3.8) only once if it occurs more than
once in the multiset.

The same can be accomplished by taking the element wise max(ϕ
(h)
WL(G), 1) to make each element

ϕi(G)c of the feature map denote the presence of label c ∈ Σi instead of the occurrence count of label
c.

3.3.5. Filtering-verification for finding similar graphs
Computing the graph edit distance for a pair of graphs is an expensive operation. Instead of computing it
on all graphs, a filtering-verification approach, which consists of twomain steps: filtering and verification,
can be used to efficiently find pairs of similar graphs.

Filtering-verification works in two steps: filtering out candidates pairs that are too dissimilar to pass the
verification step, and then verifying which of the remaining pairs are below some graph edit distance
threshold. When the filtering-verification method finds all pairs would pass the verification step, it is
called complete [24].

Depending on the application, it might not be necessary to find all the pairs that would pass the verifi-
cation step. The rest of this section will go into an approximate filtering-verification method based on
the Weisfeiler-Lehman graph kernel.

Filtering based on WL graph kernel
The output of the WL graph kernel is the count of common subtree patterns between two graphs. The
filtering step consists of computing the WL kernel for each pair of graphs, and sorting the pairs de-
creasingly on the kernel output. For the verification step, group the graphs by the WL-kernel output.
For each group in descending order, compute the graph edit distance for all graphs in the group, and
add the pairs with a GED below some threshold to a list of generated pairs. Continue with the next
group until some compute budget is reached, or enough pairs have been generated.
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