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Randomness is an indispensable resource in modern science and information technology. Fortunately, an
experimentally simple procedure exists to generate randomness with well-characterized devices: measuring a
quantum system in a basis complementary to its preparation. Towards realizing this goal one may consider using
atoms or superconducting qubits, promising candidates for quantum information processing. However, their
unavoidable interaction with the electromagnetic field affects their dynamics. At large time scales, this can result
in decoherence. Smaller time scales in principle avoid this problem, but may not be well analyzed under the usual
rotating wave and single mode approximation (RWA and SMA) which break the relativistic nature of quantum
field theory. Here, we use a fully relativistic analysis to quantify the information that an adversary with access to
the field could get on the result of an atomic measurement. Surprisingly, we find that the adversary’s guessing
probability is not minimized for atoms initially prepared in the ground state (an intuition derived from the RWA
and SMA model).

DOI: 10.1103/PhysRevA.94.022321

I. INTRODUCTION

Randomness is a fundamental resource for tasks as varied
as numerical simulations, cryptography, algorithms, or gam-
bling [1,2]. It is known that quantum systems can be used to
generate truly unpredictable outcomes. While measurements
on entangled states allow one to certify this randomness under a
small set of assumptions [3], measurements on single systems
can already produce certified randomness if a higher “level
of characterization” is taken into consideration [4]. Here, we
consider the randomness that can be certified by measuring a
single atom in the latter case.

Atoms do not exist isolated: They always, and unavoidably,
interact with the electromagnetic field. If we want to use an
atomic system as a source of randomness, for example by
preparing a state in one basis and then measuring in a mutually
unbiased basis, one has to consider that between the time of
preparation (t = 0) and the time of measurement (t = T ), the
atom interacts with the field, thus effectively sharing some
information with the field. If this information can be retrieved
by an adversary having access to the field at a later time, it may
compromise the unpredictability of the atom’s measurement
result.

When the time between preparation and measurement is
large decoherence may leave the atom in a mixed state,
thus significantly impacting the efficiency of an atomic
random number generator. One could hope to circumvent this
problem by considering a short time between preparation and
measurement. However, certifying randomness in this regime
requires special care since relativistic effects are expected to
influence the leading order contributions to the correlations
between the atom and the field in this situation, in a similar
manner as in the case of entanglement harvesting [5–8].

It has been discussed in the context of relativistic quantum
information that atomic probes which interact with the electro-
magnetic field become, in general, entangled with these fields.

This is true even when the dynamics of the atom-field system
is dominated by vacuum fluctuations [7,8]. These correlations
are neglected in quantum optics when working under the
usual rotating wave approximation (RWA) and the single
mode approximation (SMA) [9] – two approximations which
break the Lorentz covariance of the interaction theory and
allow for causality violations and superluminal signaling [10].
However, since such correlations could be used by an adversary
to guess the result of the atomic measurement, neglecting
them potentially results in an underestimate of the adversary’s
power.

In this paper, we focus on the regime of short time between
preparation and measurement, and take into account the
fully relativistic1 light-matter interaction model. Our analysis
applies for instance to the case of an atomic probe in an optical
cavity or free space, or to a superconducting qubit coupled to
a transmission line.

We show that, even for atoms in the ground state in
the presence of vacuum, the field fluctuations drive the
creation of field-atom entanglement at a significant level. This
implies, perhaps contrary to intuition, that reducing the time
from preparation to measurement generally does not spare a
decrease in the randomness extractable from the atom, even for
extremely short time scales. We hence conclude that relativistic
effects need to be taken into account in the short-time regime.

We also show that, even for relatively long waiting times
between preparation and measurement, the ground state of the
atom together with the vacuum state of the field is not the
optimal state for randomness extraction when all relativistic
considerations are factored in. This contradicts the intuition

1By relativistic, we mean here that the detector is locally coupled to a
Lorentz covariant field. This excludes any possibility of superluminal
signaling (present within the SMA and RWA) [10] and guarantees a
proper description of high-frequency modes relevant at short times.
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(a) Preparation (b) Evolution

(c) Measurement (d) Guessing

FIG. 1. Certifying randomness of an atomic measurement after
interacting with a field. (a) Preparation: A two-level atom is prepared
in some state (here the ground state) and starts interacting with
an empty field. (b) Evolution: the atom and the field evolve for a
time T . (c) Atomic measurement: a random outcome is obtained by
measuring the state of the atom in an appropriate basis. (d) Guessing:
the adversary can access the field (possibly at a later time) to try to
guess the result of the atomic measurement.

stemming from the SMA and RWA according to which, if
an atom starts in its ground state and the field is not excited,
then the atom would not get entangled with the field, and so
it would share no information with the field. Thus, our results
demonstrate that the actual behavior is really different from
the one given by these usual approximations. Quantitatively,
for typical time scales and coupling regimes of strong and
ultrastrong coupling in quantum optics and superconducting
qubits in transmission lines, we estimate that the use of the
SMA and RWA leads to an overestimation of the amount of
randomness that can reach magnitudes of the order of 10%.

II. QUANTIFYING THE RANDOMNESS EXTRACTABLE
FROM AN ATOMIC DETECTOR

We consider the situation in which a user wants to generate
random bits by performing a quantum measurement on an
atom. For this purpose, he prepares the atom in a pure
state |ψA〉, and then performs an optimal von Neumann
measurement on it (e.g., in a complementary basis).2 Since
the measurement is not performed simultaneously with the
state preparation, this leaves some time T for the atom to
interact with the electromagnetic field between its preparation
and measurement (cf. Fig. 1). In particular, this interaction
modifies the optimal measurement to be performed at time T

with respect to the initial mutually unbiased measurement.
Typically, this joint evolution results in the state of the atom

and the field being partially entangled. After this interaction,
the field thus contains some information about the outcome
observed by the user upon measurement of the atom. Assuming
that the field is not fully under control of the user, but can
eventually be accessed by someone interested in guessing the
outcome of the atom measurement (i.e., an adversary), one
must evaluate how much information about the atom’s state
was shared with the field during this interaction time T in order

2We leave the question of performing more general positive
operator-valued measures (POVMs) on possibly mixed initial states,
perhaps by involving additional ancillas [4], for further study.
This could potentially certify up to two bits of randomness per
measurement [11].

to certify the amount of randomness that can be extracted from
the atom’s measurement.

Throughout this paper, unless otherwise stated, we use
natural units (� = c = 1) and work in the interaction picture.
Let us consider a two-level atom and a massless scalar
field φ(x,t) in 1 + 1 dimensions initially prepared in the
state ρi = |ψA〉〈ψA| ⊗ |0〉〈0|. The free Hamiltonian of such
a system is given by H0 = H atom

0 + H field
0 . If we write the

Hamiltonian that generates translations with respect to the
laboratory frame, which is also the field quantization frame,
the free Hamiltonians of the atom and the field are given by
the well-known expressions

H atom
0 = �σ+σ−, (1)

where � is the energy gap between the two atomic levels and
σ+ and σ− are SU(2) ladder operators, and

H field
0 = 1

2

∫ ∞

−∞
dx[π2(x,t) + [∇φ(x,t)]2], (2)

where π is the field’s canonical conjugate momentum. We
model the atom-field interaction via a derivative coupling given
by the following interaction Hamiltonian in the interaction
picture:

HI (t) = λ

∫ ∞

−∞
dx F (x − xa)χ (t)μ(t)∂tφ(x,t). (3)

Here, λ is the coupling strength, F (x − xa) is the spatial profile
of atom positioned at xa (henceforth assumed symmetric
about xa), χ (t) is the coupling switching function, and μ(t) =
(ei�tσ+ + e−i�tσ−) is the atom’s monopole moment.

Let us make a few remarks about the choice of this Hamil-
tonian. First, this is a simplified version of the light-matter
interaction [9]: it can be thought of as a polarization-insensitive
direct coupling to the electric field which is the derivative
of the vector potential in the Coulomb gauge E = ∂t A in
a one-dimensional (1D) cavity such as an optical fiber. The
derivative coupling has been employed in the past to ameliorate
the infrared (IR) behavior of the model in many different
contexts [12–14]. In our case, the use of this model also
allows us to minimize the impact of neglecting the zero-mode
dynamics in case of the periodic cavity [15] [see Eqs. (17)
and (18)]. Despite the simplicity, this family of Unruh-DeWitt
detector models have been proved to capture some of the
fundamental features of the light-matter interactions [16–18].

Second, observe that this model assumes neither the RWA
nor the SMA, and as a consequence is a causally well-behaved
theory [10]. This is crucial in the current context, where we
expect vacuum correlations to play a role in the amount of
randomness that can be extracted by measuring an atomic
system in short times after preparation.

Last, the model assumes an instantaneous coupling to all
points of the atomic distribution as seen from the laboratory
frame. This may lead to the unsatisfactory consequence that
the Hamiltonian is no longer explicitly Lorentz covariant.
However, it has been proved that the Unruh-Dewitt detector
model yields Lorentz invariant predictions for smooth switch-
ing functions with arbitrary atomic profile [19] and for sudden
switching functions provided the atomic profile is smooth with
no problems to relativistic causality or covariance [10,20].
In any case, in our setting we write the Hamiltonian in the
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laboratory frame and always make the reasonable hypothesis
that the atoms are at rest with the laboratory frame (or moving
at nonrelativistic speeds with respect to it). Nevertheless, the
fact that all the points of the atom are coupled simultaneously to
the field calls for some care in handling the claims made with
this model: we will consider interaction times in the atom’s
frame much longer than the light-crossing times of the atomic
radius (an almost pointlike atom, so that the atom does not
interact with the field in spacelike separated points in times
not enough for a signal to propagate through the full extension
of the atom), yet too short for the rotating wave approximation
to be fulfilled. For a further discussion about the covariance of
the model we refer to Sec. III E.

We will discuss the relevance of taking particular choices
of the switching function χ (t) and the spatial profile F (x) in
Sec. III E after we assume concrete forms for both functions;
for now we are going to keep the analysis general.

After the interaction with the field, the global state is given
by

ρAF = |ψAF 〉〈ψAF | = UρiU
†,

U = T exp

(
−i

∫ ∞

−∞
dtHI (t)

)
,

where T represents time ordering.
After a time T , the atom is measured in some basis.

The global pure state of the atom and field then effectively
“collapses” into a state of the form ρx

XF = |x〉〈x| ⊗ τ x
F with

probability pX(x). Here, x is the result of the measurement
and τ x

F = TrA(Px |ψ〉AF〈ψ |)/ Tr (Px |ψ〉AF〈ψ |) is the state in
which the field is left when the measurement result is x, for
a von Neumann measurement {Px}. This part of the state is
the one that an adversary Eve could get in contact with, and
eventually measure in order to infer the value of x.

The amount of randomness that can be extracted from the
outcome of the measurement performed at time T with respect
to an adversary having access to the quantum field can be
quantified by the conditional min-entropy

Hmin(X|F )ρXF
= − log2 Pg(X|F )ρXF

, (4)

where Pg(X|F )ρXF
is the probability that the outcome (random

variable) X is guessed correctly given the state of the
quantum field F , and ρXF = ∑

x pX(x)ρx
XF . Note that from

a mathematical standpoint, the infinite dimensionality of the
quantum field as side information may a priori require some
special care [21]. The interpretation of the min-entropy in this
context as well as its characterizing properties remain however
intact. Using the invariance of the conditional min-entropy
under local isometries [21, Lemma 1] and the fact that the atom
under consideration can only be excited in a finite number
of levels, we can effectively treat the quantum field F as a
finite-dimensional system. To see this, we consider the state
|ψAF 〉 of the atom and field just before the von Neumann
measurement. By the Schmidt decomposition [22], there exists
orthonormal field states {|f0〉,|f1〉} in which this state can be
written as |ψ〉AF = √

λ0|0,f0〉 + √
λ1|1,f1〉, where λ0 and λ1

are the eigenvalues of the reduced atomic state ρA. For the
purpose of the computation, we are not required to know
explicitly the field modes |f0〉 and |f1〉 (although they can
be identified by the Schmidt decomposition algorithm); it is

the job of the adversary Eve if she wants to optimally guess
X given the field E. An isometry can be set up between
the field F and an arbitrary qubit E of Eve so that all the
information relevant for the min-entropy between A and F

can be transferred to |ψ〉AE = √
λ0|0,0〉 + √

λ1|1,1〉. We can
thus compute the min-entropy on ρXE = ∑

x pX(x)|x〉〈x| ⊗
τ x
E where τ x

E = TrA (Px |ψ〉AE〈ψ |)/ Tr (Px |ψ〉AE〈ψ |) is the
qubit state hold by Eve whenever the atom is projected into
outcome x.

To arrive at an analytic expression for the min-entropy, we
recall two facts. First, the guessing probability Pg for classical-
quantum states (cq) [23] can be interpreted as the optimal
success probability for Eve to distinguish the (normalized)
ensemble of states {τ x

E}:
Pg(X|E)ρXE

= max
E

∑
x

pX(x)〈x|E(τ x
E

)|x〉

= max
�x

∑
x

pX(x)Tr
(
�xτ

x
E

)
,

where optimizing over TPCPMs E is equivalent to optimizing
over POVMs {�x = E†(|x〉〈x|)}. Second, the optimal success
probability for distinguishing an ensemble consisting of only
two states is given be the Holevo-Helstrom theorem. Hence
we find that the conditional min-entropy is given by

Hmin(X|E) = − log2

[
1
2 + 1

2

∣∣∣∣pX(0)τ 0
E − pX(1)τ 1

E

∣∣∣∣
1

]
.

The measurement providing the largest amount of ran-
domness from the atom can be found by optimization
over all von Neumann measurements, namely H ∗

min(X|E) =
max{Px } Hmin(X|E)ρXE

. One can check that the result of this
optimization can be expressed in terms of the purity Tr(ρ2

A) of
the reduced density matrix ρA only as

H ∗
min(X|E) = − log2

⎡
⎣1

2
+
√

1 − Tr
(
ρ2

A

)
2

⎤
⎦. (5)

To see this, note that given the assumed form of
|ψ〉AE and orthogonal projection P0 := |m0〉〈m0|, P1 :=
|m1〉〈m1| with |m0〉 = cos θ |0〉 + eiφ sin θ |1〉, |m1〉 =
sin θ |0〉 − eiφ cos θ |1〉, the operators pX(0)τ 0

E = |e0〉〈e0| and
pX(0)τ 1

E = |e1〉〈e1| can be explicitly computed

|e0〉 =
√

λ0〈m0|0 〉|0〉 +
√

λ1〈m0|1 〉|1〉,
|e1〉 =

√
λ0〈m1|0 〉|0〉 +

√
λ1〈m1|1 〉|1〉,

which gives∣∣∣∣pX(0)τ 0
E − pX(1)τ 1

E

∣∣∣∣
1 =

√
1 − 4|〈e0|e1 〉|2.

Finally, it is useful to note that the fidelity between |e0〉 and
|e1〉 reaches its maximum at (λ0 − λ1)2/4 = Tr(ρ2

A)/2 − 1/4.
The computation of the conditional min-entropy thus

reduces to a computation of the reduced atomic state after
the interaction with the quantum field. This is the subject of
the next subsections.

A. Final atomic state from perturbation theory

For small enough values of the coupling strength λ, the
time-evolved density matrix is well approximated by the
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following perturbative expansion:

ρ � ρi + ρ(1) + ρ(2), (6)

where ρ(1) = U (1)ρi + ρiU
(1)† and ρ(2) = U (1)ρiU

(1)† +
U (2)ρi + ρiU

(2)† are the first- and second-order perturbation
terms in λ, and

U (1) = −i

∫ ∞

−∞
dt HI (t),

U (2) = −
∫ ∞

−∞
dt

∫ t

−∞
dt ′HI (t)HI (t ′). (7)

Since we are going to consider three different boundary
condition scenarios (free space, Dirichlet (reflective) cavities,
and periodic cavities), we will give the full detail of the
calculations for the continuum case and skip directly to the
final results for periodic and Dirichlet cavities.

For the case of a field in free space (e.g., an open optical
fiber or open transmission line) the field can be expanded in
plane-wave modes as

φ(x,t) =
∫ ∞

−∞

dk√
4πωk

(a†
ke

i(ωkt−kx) + H.c.) (8)

so that the interaction Hamiltonian becomes

iλχ (t)μ(t)
∫ ∞

−∞
dk

√
ωk

4π
F̃ (k)(a†

ke
i(ωkt−kxa ) − H.c.),

where F̃ (k) = ∫
dx f (x)eikx is the Fourier transform of the

atomic spatial profile. We trace out the field to obtain the
time-evolved state of the atom. The first-order contribution to
the time-evolved density matrix is traceless on the field for our
initial state, therefore for an initial detector state given by

|ψ〉A = a|g〉 +
√

1 − a2|e〉 (9)

and choosing a matrix representation such that

|ψ〉A =
(

a√
1 − a2

)
, (10)

the second-order contributions in (6) are given by

TrF (U (2)ρi) =
(

a2X++ a
√

1 − a2X++
a
√

1 − a2X−− (1 − a2)X−−

)
,

TrF (U (1)ρiU
(1)†) =

(
(1 − a2)J−− a

√
1 − a2J−+

a
√

1 − a2J+− a2J++

)
.

Thus, the final state of the atom up to second order in
perturbation theory is

ρA =
(

a2 a
√

1 − a2

a
√

1 − a2 1 − a2

)
+
(

(1 − a2)J−− + 2a2 Re (X++) a
√

1 − a2(J−+ + X++ + X∗
−−)

a
√

1 − a2(J+− + X∗
++ + X−−) a2J++ + 2(1 − a2) Re (X−−)

)
, (11)

where we define for r,s ∈ {+,−}

Xr,s = −λ2
∫ ∞

−∞
dk

ωk

4π
F̃ (k)2

∫ ∞

−∞
dt

∫ t

−∞
dt ′χ (t)χ (t ′)e−i(ωk+r�)t ei(ωk+s�)t ′

Jr,s = λ2
∫ ∞

−∞
dk

ωk

4π
F̃ (k)2

∫ ∞

−∞
dt

∫ ∞

−∞
dt ′χ (t)χ (t ′)ei(ωk+r�)t e−i(ωk+s�)t ′

(free space). (12)

For atoms inside a cavity of length L, the field modes are no
longer continuous but discrete. More specifically, for periodic
boundary conditions (e.g., a closed optical fiber loop) we can
make the following replacements:

k → kn = 2πn

L
, ωk → ωn = 2π |n|

L
, (13)

∫ ∞

−∞

dk√
4πωk

→
∞∑

n=−∞

1√
2ωnL

, (14)

while for Dirichlet cavity (e.g., reflective walls)

k → kn = πn

L
, ωk → ωn = πn

L
, (15)

∫ ∞

−∞

dk√
4πωk

→
∞∑

n=1

1√
ωnL

. (16)

Moreover, we make the physical assumption that the atom is
much smaller than the size L of the cavity, allowing us to

simplify∫ L/2

−L/2
dx F (x − xa)e±iknx

= e±iknxa

∫ L/2−xa

−L/2−xa

dx F (x)e±iknx

≈ e±iknxa

∫ ∞

−∞
F (x)e±iknx = e±iknxa F̃ (kn)

for a periodic cavity and similarly∫ L

0
dx F (x − xa) sin(knx)

≈ [eiknxa F̃ (kn) − e−iknxa F̃ (−kn)]/2i

= F̃ (kn) sin(knxa)

for a Dirichlet cavity.
The form of the final state up to second-order pertur-

bation remains unchanged, and X and J now take the

022321-4



CERTIFIED RANDOMNESS FROM A TWO-LEVEL SYSTEM . . . PHYSICAL REVIEW A 94, 022321 (2016)

following form:

Xr,s = −λ2
∞∑

n=1

ωn

L
F̃ (kn)2

∫ ∞

−∞
dt

∫ t

−∞
dt ′χ (t)χ (t ′)e−i(ωn+r�)t ei(ωn+s�)t ′ (periodic)

(17)

Xr,s = −λ2
∞∑

n=1

ωn

L
F̃ (kn)2 sin2(knxa)

∫ ∞

−∞
dt

∫ t

−∞
dt ′χ (t)χ (t ′)e−i(ωn+r�)t ei(ωn+s�)t ′ (Dirichlet),

Jr,s = λ2
∞∑

n=1

ωn

L
F̃ (kn)2

∫ ∞

−∞
dt

∫ ∞

−∞
dt ′χ (t)χ (t ′)ei(ωn+r�)t e−i(ωn+s�)t ′ (periodic)

(18)

Jr,s = λ2
∞∑

n=1

ωn

L
F̃ (kn)2 sin2(knxa)

∫ ∞

−∞
dt

∫ ∞

−∞
dt ′χ (t)χ (t ′)ei(ωn+r�)t e−i(ωn+s�)t ′ (Dirichlet).

B. For comparison: Final atomic state under the single mode
and rotating wave approximations

When the coupling strength λ is small, it is frequent in
quantum optics to simplify the interaction Hamiltonian (3) to
the Jaynes-Cummings model where the single mode (SMA)
and rotating wave (RWA) approximations are carried out
when the atomic frequency is close to resonance with one
of the cavity modes [9]. We discussed in the Introduction
that these two approximations yield nonrelativistic models for
light matter interaction. In this paper we will compare the
predictions of extracted randomness of the fully relativistic
calculation with the prediction of the usual RWA-SMA
prediction in the Jaynes-Cummings model.

One may wonder why in this paper we do not analyze the
SMA and RWA separately, and that perhaps only performing
one of these two approximations could lead to valid results in
the regimes that we are studying. However, we note that these
two approximations are not independent, and in fact they derive
from the same assumption: long evolution time as compared
to the inverse of the atomic frequency gap. Moreover, in both
approximations we neglect terms which are of the same order
of magnitude, so it would be inconsistent to consider either
of them individually (see the Appendix). Therefore, it makes
sense to either do both approximations jointly (as we do in
this section) or none of them (as we did in the previous
section).

For the purpose of the comparison we suppose that the
atom is on resonance with the mth (m > 0) mode of the cavity,
namely � = 2πm/L for the periodic cavity and � = πm/L

for the Dirichlet cavity (which can be obtained by controlling
the cavity’s length). With bm = 1√

2
(a

m
eikmxa + a−m

e−ikmxa ),
km = � as the resonant standing-wave mode of the periodic
cavity, the interaction Hamiltonian under RWA and SMA
becomes

HI = iλχ (t)

√
�

L
F̃ (km)(−σ+bm + σ−b†m)

for a periodic cavity, and

HI = iλχ (t)

√
�

L
F̃ (km) sin(kmxa)(−σ+am + σ−a†

m)

for a Dirichlet cavity. This model can be solved exactly for all
times, yielding the final state

ρm
A =

(
a2 + (1 − a2) sin2 (�) a

√
1 − a2 cos (�)

a
√

1 − a2 cos (�) (1 − a2) cos2 (�)

)
,

where

� =
{

λ�√
2πm

F̃ (�)T (periodic)
λ�√
πm

F̃ (�) sin(�xa)T (Dirichlet)

and therefore the predictions of the SMA-RWA Jaynes-
Cummings model can be compared with the fully relativistic
model within the perturbative regime. More precisely, we use
the following second-order expansion of the previous final
state:

ρm
A =

⎛
⎝ a2 + (1 − a2)�2 a

√
1 − a2

(
1 − �2

2

)
a
√

1 − a2
(

1 − �2

2

)
(1 − a2)(1 − �2)

⎞
⎠, (19)

in the comparison.

III. SIMULATION RESULTS

A. Concrete simulation model

Between the instant the atom is prepared in the state |ψ〉A
and its measurement, the atom interacts with the field for a
duration T in a manner that can be captured by the sharp
switching function

χ (t) =
⎧⎨
⎩

0 if t � 0
1 if 0 < t � T

0 if t > T .

(20)

We assume that the atom has the following simple spatial
profile:

F (x) = 1

σ
√

π
e−x2/σ 2

, F̃ (k) = e−σ 2k2
. (21)

where σ gives the characteristic length scale of the atomic
species [see Sec. III E below for further details about these
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choices of χ (t) and F (x)]. Under these conditions, we have

X±,± = −λ2
∫ ∞

0
dk

k

2π
F̃ (k)2

[
T

i(k ± �)
− 1

(k ± �)2
(e−i(k±�)T − 1)

]
(free space)

X±,± = −λ2
∞∑

n=1

2πn

L2
F̃

(
2πn

L

)2[
T

i
(

2πn
L

± �
) − 1(

2πn
L

± �
)2 (e−i( 2πn

L
±�)T − 1)

]
(periodic)

X±,± = −λ2
∞∑

n=1

πn

L2
F̃

(
πn

L

)2

sin2

(
πnxa

L

)[
T

i
(

πn
L

± �
) − 1(

πn
L

± �
)2 (e−i( πn

L
±�)T − 1)

]
(Dirichlet),

J±,± = λ2
∫ ∞

0
dk

2F̃ (k)2k

π (k ± �)2
sin2

(
(k ± �)T

2

)
(free space)

J±,± = λ2
∞∑

n=1

8πn

L2
F̃

(
2πn

L

)2 1

( 2πn
L

± �)2
sin2

(
( 2πn

L
± �)T

2

)
(periodic)

J±,± = λ2
∞∑

n=1

4πn

L2
F̃
(πn

L

)2
sin2

(πnxa

L

) 1

(πn
L

± �)2
sin2

(
(πn

L
± �)T

2

)
(Dirichlet),

J±,∓ = λ2
∫ ∞

0
dk

F̃ (k)2k

2π (k2 − �2)

[
1 + e±2i�T − 2 cos(kT )e±i�T

]
(free space)

J±,∓ = λ2
∞∑

n=1

2πn

L2
F̃

(
2πn

L

)2 1(
2πn
L

)2 − �2

[
1 + e±2i�T − 2 cos

(
2πn

L
T

)
e±i�T

]
(periodic)

J±,∓ = λ2
∞∑

n=1

πn

L2
F̃
(πn

L

)2
sin2

(πnxa

L

) 1(
πn
L

)2 − �2

[
1 + e±2i�T − 2 cos

(πn

L
T
)
e±i�T

]
(Dirichlet),

where the notation X±,± refers to either the upper X+,+ or
the lower X−,− combination of signs to be taken on the right-
hand side (the same for the others). Given these expressions,
the final state after the interaction (11) can be numerically
approximated with high accuracy by performing the numerical
integration or numerical summation up to a cutoff Nc/σ . Here,
we normalize the numerical cutoff Nc by the atomic size σ .
Since the Fourier transform of the spatial profile is a Gaussian
centered at zero with standard deviation proportional to σ−1,
taking Nc � 6 already gives an extremely precise numerical
approximation, independently of the atom’s size.

B. Randomness certification in free space

From the final states computed in the previous sections, one
can compute the number of random bits that can be extracted
per atom measurement using Eq. (5). In Fig. 2 we report the
result of this computation for the free field case [i.e., using
Eqs. (11) and (12)].

A first clear observation from Fig. 2 is that for most initial
states, the randomness rate quickly decreases from 1 as soon
as T > 0 (see also solid line in Fig. 3). This shows that high-
frequency terms play an important role in the evolution of the
state for short times, and therefore they cannot be neglected.

One expected result that is verified in Fig. 2 is that
preparing the atom in an excited state (a = 0) always gives
less randomness, at all interaction times within the limits of
perturbation theory, than preparing it in the ground state. The

reason for this behavior is clear: an atom in the excited state
can be deexcited by the rotating wave terms in the interaction
Hamiltonian with an elevated probability by emitting real
field quanta. For short times, these field quanta are therefore
correlated with the state of the atom, giving away information
about the atomic state to an adversary having access to the

FIG. 2. Randomness in the free space scenario for different initial
states at different measurement time after preparation, with chosen
parameters λ = 0.01, σ = 0.001, � = 1, and Nc = 6. Notice the use
of natural units throughout.
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FIG. 3. Randomness for (from left to right) |e〉, |+〉, and |g〉 states at different measurement time after preparation, with chosen parameters
λ = 0.01, σ = 0.001, � = 1, Nc = 6, L = 3, and xa = πL/6. Notice the use of natural units throughout. As the length L of the cavities
increases, we observed that the cavity curves (blue dashed and red dot-dashed) converge to the free space curve (black solid). Note that the
position of the atom in the Dirichlet cavity is chosen to be the default position xa = πL/6 which is roughly in the middle of the cavity. The
peaks correspond to the light-crossing time of the cavity: The perturbation caused by the introduction of the atom returns to the atom after
scattering with the Dirichlet or periodic boundaries of the cavities.

quantum field. Conversely, an atom in the ground state (a = 1)
can only be correlated with the field via the counter-rotating
part of the Hamiltonian. Even though in that case the atom
also gets correlated with the field through vacuum fluctuations,
the excited state is always less secure. This behavior is indeed
expected from the nonrelativistic intuition that an excited atom
may emit a photon that an adversary can capture and learn
about the state of the atom.

However, Fig. 2 also reveals a less intuitive effect. Namely,
the ground state is not always the optimal state to extract
randomness: depending on the other parameters, most notably
the lag time between preparation and measurement T , it may
be better to prepare the atom in a superposition of ground and
excited states (see also solid line in Fig. 3).

It is clear that the ground state cannot be fully secured,
because it is not an eigenstate of the interaction Hamiltonian.
Therefore the interaction introduces correlations between the
atom and the field even when starting from the ground state.
These correlations can later be used by an adversary (that does
not need to be in light contact with the first atom) to learn about
the result of a measurement on the original atom. An example
of how an adversary can gain information about the outcome of
measurements even without receiving any energy from it is the
“quantum collect calling” (virtual-photon mediated timelike
communication) [24–26].

It is worth noting that the randomness certified when
starting from the ground state, after rapidly decreasing, seems
to attain an asymptotic value (see Fig. 3). While it is out of
the scope of the present paper, it may constitute an interesting
followup work to check whether this is still the case in the
long-time regimes, or whether nonperturbative effects may
still significantly change the purity of the reduced state of the
atom ρA for long times.

In Fig. 4, we study the effect of the atomic size on the
certified randomness. One observes that more randomness is
certified in the presence of large atoms. The reason for this
is that the bigger the atom gets the less the atom couples
to the highest frequencies of the field, so the less the initial
state is affected. Notice that the single mode approximation
is recovered here when the atom is taken to be infinitely
large and, thus, couples to a single frequency. This case,

of course, breaks the relativistic approach (the single mode
approximation strongly violates causality [24]) which is not
surprising since the atom sees the field at all points in space at
the same time. In this case, the amount of certified randomness
is essentially uniform over all states.

C. Randomness extraction in cavity

Atoms inside cavities are a more realistic experimental
scenario compared to atoms in free space [27–32]. There
are two main differences when atoms are put inside a cavity.
First, the cavity only supports a countable infinite number of
modes, as opposed to the continuously many modes in free
space. Second, although there are fewer modes to interact, the
interaction may be made stronger than in free space [33–36].

The resulting effect of these two differences on the guessing
probability is presented in Fig. 3. The periodic and Dirichlet
curves in this graph were obtained by computing Eq. (5) with
Eqs. (11), (17), and (18). Notice that the length of the cavity
in this case is three orders of magnitude larger than the size
of the atom, so our physical assumption of a small atom in a
large cavity is met. This figure also compares the randomness
rate with respect to the one obtained in the free field case.
The peaks in Fig. 3 correspond to the light-crossing time of
the cavity (the perturbation caused by the switching of the
interaction bounces back on the boundary of the cavity and
returns to the atom).

One would expect that for larger and larger cavities, the two
cavity results converge to the free space one. This is verified
in Fig. 5.

Also, in a Dirichlet cavity, the randomness output depends
explicitly on the position of the atom, unlike in a periodic
cavity. Figure 6 shows that this dependence is negligible.

Finally, in Fig. 7 we analyze the role of the coupling
strength on the randomness rate. We observe that the behavior
is the same for all the boundary condition scenarios. This
can be understood because we know from Eq. (5) that the
min-entropy only depends on the purity of the final state Tr ρ2

A,
and from (3), (6), and (7), we see that the purity of the atomic
state scales as 1 − λ2 for any set of boundary conditions.
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D. Comparison with the rotating wave approximation

In order to compare the above results with predictions of
the RWA model, we introduce the difference ratio

R = H RWA
min − H full

min

H RWA
min

, (22)

where H full
min is the randomness computed according the the

method presented in the precedent paragraphs, i.e., from
the state (11) with the terms described in Sec. III A, and
H RWA

min stands for the randomness computed directly from the
state (19).

Since the RWA randomness is computed under the assump-
tion that the atom is resonant with some mth mode of the cavity,
throughout this section, the length of the cavity is always
fixed based on the chosen resonant mode m according to
L = 2πm/� for periodic cavity and L = πm/� for Dirichlet
cavity. Note that for the sake of numerical simulation, m cannot
be chosen too small relative to σ because this violates the
assumption of a relatively big cavity with respect to the atom’s
size which we have made before.

As seen in Fig. 8, the randomness obtained from the fully
relativistic calculation is lower than the randomness computed
from the rotating wave approximation model (i.e., R � 0).
We interpret this as coming from the fact that nonrelativisitic
approximations (SMA and RWA) neglect all the correlations
created between the atomic probe and the remaining field
modes. Indeed, the shorter the interaction, the larger the
bandwidth of the field modes that get perturbed by the
interaction (this can be thought of as a consequence of a
time-energy uncertainty).

E. Discussion on the switching function and the spatial profile

In the previous subsections we have made choices for the
switching function [in Eq. (20)] and the spatial profile [in
Eq. (21)]. In this section we are going to discuss the relevance
of these choices.

FIG. 4. Randomness for different initial states and atomic sizes,
with chosen parameters λ = 0.01, � = 1, T = 1, and Nc = 6.
Notice the use of natural units throughout.

First of all, we have taken in (20) a sudden switching
function. There are several reasons why this is a physically
meaningful choice:

(i) As a first example, consider a device that prepares the
state of an atom at the entrance of an optical cavity. The device
would carry out a projective measurement on the atom in
its free energy eigenbasis such that it ends up prepared in
the ground state (i.e., we measure with optical means, and
postselect only on ground states). Then the atom enters the
cavity transversely (or forming some angle with the axis of the
mirrors). If the atom is fast enough, a sudden switching is a
good approximation to the description of the setup.

(ii) Alternatively, we could consider an atom sitting at
a given position of a cavity, and at time t0 we prepare the
atom in a free eigenstate, same as before, and at a time T , a
measurement on the atom (with the goal to extract randomness)
is performed. This case is again another example of a sudden
switching function.

(iii) Consider now a different setup where an atom is trapped
in a very short cavity (of near atomic size) so that the IR cutoff
is well above the energy gap of the atom. That atom would
be highly off resonance with the first cavity mode, and its
effective interaction with the field inside the cavity would be
“frozen.” The cavity is acting as a Faraday cage for the atom
with respect with the EM field outside the cavity. Now imagine
that we release the atom so that it starts interacting with the
field. The switching function would be physically represented
by the speed with which those walls are removed.

(iv) In microwave cavities with superconducting qubits,
it is possible to control the strength of the coupling of a
superconducting qubit with the quantum electromagnetic field
inside a microwave guide as a function of time, and to make it
vary either smoothly or sharply following any desired profile
(see, e.g., [36]).

Note, from purely relativistic considerations, that the
moment we make a choice of a finite interaction time scale, we
need to specify in what reference frame this time scale is fixed.
This puts constraints on the choice of the switching function
and makes the Hamiltonian not explicitly Lorentz covariant
as it would take different forms in different reference frames.
However, the full interaction is still Lorentz covariant in this
case. The details of this, as well as the details of how to write
the Hamiltonian after a given switching function choice in
different reference frames, can be seen in [37]. However note
that we always consider the atom to be either comoving with
the cavity or moving with a speed much smaller than the speed
of light with respect to the cavity, and therefore the reference
frame of the atom and the cavity can safely be considered the
same.

As for the spatial profile, we have chosen a Gaussian spatial
profile in (21) to endow the atom with some finite length
scale and make our analysis more general. Indeed, the spatial
profile function can be thought of as coming from the spatial
probability density of an atom.

As shown in detail in [18], for realistic atoms, the spatial
profile is proportional to the conjugate product of the excited-
and the ground-state orbital wave functions associated to the
excited and the ground atomic states.

Given that the atomic wave functions have an exponential
decay with the distance from the atomic center, which
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FIG. 5. Randomness for various cavity lengths assuming the atom was prepared in the state |e〉, |+〉, or |g〉, with chosen parameters
λ = 0.01, σ = 0.001, � = 1, T = 1, Nc = 6, and xa = πL/6 in natural units. Dirichlet (periodic) cavity randomness converges up (down)
to free space randomness.

is actually slower than a Gaussian (they are proportional
to e−|x|/σ ), their Fourier transform would be a Lorentzian
function, and that means that the tails of the profile F̃ (k) in
momentum space will be thicker (polynomially decaying) than
in the Gaussian profile case. This in turns means that under
equal values of all the rest of the parameters, the single mode
approximation would be even worse fulfilled for the more
realistic case of an atomic orbital profile since the effect of
higher frequencies would be stronger, and therefore the impact
on the randomness extraction would be even more marked.
This makes the choice of the Gaussian profile (which greatly
simplifies the mathematical analysis) a more conservative
assumption than the realistic atomic profile.

Additionally, several relativistic phenomena in the light-
matter interaction have been studied with different smearing
functions (compare for instance the results on entanglement
harvesting and the response of particle detectors in [8] with
the results in [18]). These studies showed that the qualitative
behavior is not significantly altered whether we consider a
Gaussian profile or a realistic atomic profile.

FIG. 6. Randomness vs position of atom in Dirichlet cavity,
with chosen parameters λ = 0.01, σ = 0.001, � = 1, T = 1, L =
10, and Nc = 6. Notice the use of natural units throughout.

Last, let us briefly discuss the assumptions made on
the physical system regarding the covariant nature of the
fundamental theory when we choose a spatial profile.

As discussed in [17,38], a reasonable hypothesis for a
physical atomlike detector is that it has to keep internal
coherence. This means that the internal forces that keep
the atom together (electromagnetic interaction) will prevent
it from being further smeared due to relativistic effects up
to some reasonable acceleration regimes. That means that,
effectively, every point of the detector will accelerate with a
different acceleration in order to keep up with the rest of its
points. For accelerating detectors, the rigorous analysis of a
rigid atomiclike detector in terms of Fermi-Walker coordinates
is analyzed in [38].

Note again that the atoms considered in this study are
inertial, and moreover, moving with speeds always much
slower than the speed of light, so all these considerations are
not crucial for our study.

IV. CONCLUSIONS

In this paper we considered an atom coupled for a short
time with the electromagnetic field. By taking into account
the full relativistic description of the atom-field interaction,
we studied the amount of information shared as a result of
this interaction by the atom and the field beyond the rotating-
wave and single mode approximations, as quantified by the
guessing probability. We showed that small waiting times
between preparation and measurement do not rid the atomic
system from the problem of starting to share information
with the quantized electromagnetic field to which the atom
is unavoidably coupled. This is in stark contrast to what the
usual approximated models of light-matter interaction predict.

In particular, the Jaynes-Cummings model under the single
mode approximation and the rotating-wave approximation
would predict that the optimal way to proceed to reduce this
entanglement—and thus increase the randomness extractable
from the atomic probe—would be to prepare the ground state of
the atom and the field. This is easy to understand already from
a classical intuition: If the atom is in the ground state and the
field is not excited, the atom would remain in the ground state
and thus it would not get correlated with the field. This intuition
carries over to quantum optics under RWA and SMA. However,
contrary to this intuition, we show that vacuum fluctuations
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FIG. 7. Randomness vs coupling strength, with chosen parameters σ = 0.001, � = 1, T = 1, Nc = 6, L = 3, and xa = πL/6. Notice the
use of natural units throughout.

entangle the atom with the field even in this case, and that this
entanglement has significant consequences on the amount of
certifiable randomness.

Also contrary to the classical intuition, we showed that the
optimal amount of randomness is obtained for initial atomic
states other than the ground state of the atom. This shows
that the employment of the RWA and SMA in quantum optics
does not provide a reliable lower bound on the amount of
randomness that one can extract from an atomic probe.

As illustrative examples, we have analyzed the randomness
loss due to these effects for the typical time scales and coupling
regimes of strong and ultrastrong coupling in quantum optics
and superconducting qubits in transmission lines, showing that
the relative misestimation of the RWA and SMA models can
indeed have a non-negligible magnitude. The time scales for
these effects can be obtained by changing from natural units
to dimensionful units. In the case of superconducting qubits
coupled to transmission lines, the frequency gap can range
from � ∼ 1 MHz to 10 GHz [33,34,39]. This means that the
time scales analyzed here are in the range of T ∼ 10�−1 ≈
100 ms to 1 ns.

As a next step, it would be interesting to study quantitatively
how the exchange of angular momentum may affect the
randomness extracted from a quantum field when the RWA
and SMA are not fulfilled. Finally, our analysis suggests that
the guessing probability as a function of the time of interaction
converges to a constant value in some circumstances. If this
result also carries to nonpertubative regimes this could allow
for randomness certification independently of the interaction
time. This is an interesting open question in its own right, and
it will be studied elsewhere.
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FIG. 8. Comparison between randomness computed for the full model and for the simplified RWA model in cavities, with chosen parameters
λ = 0.01, σ = 0.001, � = 1, m = 3, Nc = 6, and xa = πL/6. Notice the use of natural units throughout. Observe the horizontal peaks in the
figure on the right at the cavity light-crossing time due to the perturbation introduced by the switching returning to the original position of the
atom after scattering with the boundaries. Note that m = 3 corresponds to a Dirichlet cavity of length L = 3π .
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APPENDIX: RELATION BETWEEN THE SMA AND RWA

In this appendix, we discuss that the terms neglected by
the SMA and RWA are of the same order. Therefore, both
approximations are related.

Recall that we have a two-level atom interacting, according
to Eq. (3), with a quantized quantum field in periodic or
Dirichlet cavity with the form of φ(x,t) given by Eq. (8) with
the appropriate replacement rules. In this case, the dynamics
is completely governed by the unitary time evolution operator
which in the small coupling (λ � �) is determined by Eq. (7).
Let us assume further that the atom is on resonant with the
cavity mode � = ωm for some fixed m.

For illustration, the first-order perturbation U (1) depends on
terms of the form

∫ ∞

−∞
dtχ (t) e±i(�±ωn)t , (A1)

where the terms with e±i(�−ωn)t , corresponding to interaction
terms of the form anσ+ and a

†
nσ−, are usually called the rotating

contributions, and the other terms where e±i(�+ωn)t are called
the counter-rotating contributions. Let us consider a constant
interaction strength in some time interval [tstart,tstop]. Namely
χ (t) = 1 in some �T = tstart − tstop and 0 elsewhere. The
contribution of the resonant mode m to the qubit’s dynamics
grows with �T while the off-resonant modes n �= m contribu-
tion stays bounded ∼(� − ωn)−1. The counter-rotating mode
contributions are also always bounded ∼(� + ωn)−1.

Thus if one makes the assumption of SMA, namely
dropping all contributions from off-resonant modes (because
their contributions stay bounded while that of the resonant
mode grows with interaction time �T ), then for consistency
one must drop the contributions from the counter-rotating
terms since they are smaller, i.e., doing RWA as well.

For both approximations to be faithful already at leading
order in perturbation theory we need to demand that

(i) there is a resonant mode,
(ii) the interaction times are much larger than �−1.
Since the requirement T � �−1 is the same for both

approximations, it is not a consistent approach (in these simple
light-matter interaction models) to consider one and not the
other without any further hypotheses.
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