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Executive Summary
The purpose of this thesis is to find solar-sail transfer trajectories to a constellation of solar-sail displaced
L2 vertical Lyapunov orbits in the Earth-Moon system, to support communication with the far side of
the Moon and the lunar South Pole. The far side of the Moon is scientifically interesting as it includes
the Aitken Basin which reveals deeper layers of the lunar crust. The lunar South Pole is considered a
possible location for a future human base, as it provides access to continuous solar power and possibly
water ice in permanently shadowed craters. For proposed missions to the far side of the Moon or the
human base at the lunar South Pole, a communication link with Earth will be required.

Spacecraft in natural L2 halo orbits have been considered for lunar farside coverage, but cannot
guarantee continuous coverage of the lunar South Pole. By utilizing a solar sail, new types of orbits
can be found with a coverage optimized for a specific region. Solar sails generate a small but contin-
uous control force by reflecting and absorbing photons. This control force can be utilized to steer a
spacecraft along a specific non-Keplerian orbit, such as a lunar pole-sitter orbit, which provides con-
tinuous coverage of the lunar South Pole. The solar-sail acceleration can also be used to displace
the natural L2 halo orbits by pitching the solar sail with respect to the Earth-Moon plane. A previously
found constellation consisting of two solar-sail displaced L2 vertical Lyapunov orbits can provide con-
tinuous coverage of both the lunar South Pole, and the Aitken basin at the far side of the Moon. Both
spacecraft are placed in an identical orbit, but phased half a orbital period apart. The constellation is
achievable with solar sails at a constant attitude profile, opposed to the lunar pole-sitter concept. In
order to assess the feasibility of this constellation, the corresponding transfer trajectories starting from
a parking orbit around Earth have to be designed, which in turn determines the injectable spacecraft
mass and achievable transfer time.

The transfers have been found using reverse time propagations of the dynamics in the Earth-Moon
circular restricted three-body problem, where the control is provided by a steering law. A locally optimal
steering law allows for the quickest transfer trajectories, but requires rapid changes in attitude, which
results in unfeasible singularities in the control history. Furthermore, the found trajectories require a
long spiral Earth escape phase and are not connected to standard parking orbits. Nevertheless, the
method provides continuous trajectories connected to the designated target orbits in the chaotic Earth-
Moon system.

To further improve the design of these trajectories, the results found by applying the reverse time
propagations are used as an initial guess for a 12th-order Gauss-Lobatto collocation method. In this
method, path and point constraints are incorporated, thereby increasing the feasibility of the results.
The minimum altitudes with respect to the Earth and the Moon are constrained to 10 000 km and four
lunar radii, respectively. The minimum altitude constraints eliminate low-altitude flybys, which can
generate solar-sail drag or gravitational perturbations. In addition, a maximum sail rotation rate of
20 deg/day is enforced, to remove the control singularities introduced by the locally optimal steering
law. The transfer time of the trajectories is reduced by allowing the spacecraft to depart from Soyuz’s
highly elliptical parking orbits, which are defined by a perigee altitude of 250 km, an inclination of 6 deg
and an argument of perigee of 178 deg. The spacecraft depart from the highly elliptical orbit by deploy-
ing the solar sail eliminating the need for a kickstage.

The constraints are consecutively enforced, such that the effect on the performance of the transfer
trajectory can be monitored. First, a map is generated by carrying out the reverse time propagations
of the locally optimal steering law using 2000 trajectories. The shortest trajectory achieves a transfer
within 50.7 days, while trajectories longer than one year are also found, containing the previously
mention long duration spiral Earth escape phase departing from medium Earth orbits. Secondly, the
feasibility of the found trajectories is improved by enforcing the altitude and departure point constraints.
The fastest trajectory found using the collocation method completes the transfer within 39.6 days. If
the rotation rate constraint is enforced as well, the transfer time increases to 41.8 days. Finally, sets
of feasible trajectories for both spacecraft with identical launch conditions are sought, such that the
constellation can be initiated using a single rocket launch. The Soyuz launch can deliver two 1160-kg
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spacecraft in the fastest set of transfer trajectories, where the first spacecraft reaches its target orbit
after 53.1 days, while the second spacecraft takes 67.9 days to complete its transfer.

This thesis shows that the 12th-order Gauss-Lobatto collocation method is a powerful tool to find
solar-sail transfer trajectories, while applying multiple path and point constraints on the trajectory. The
research furthermore demonstrates that solar-sail transfer trajectories are feasible in the Earth-Moon
system without requiring long transfer times, low-altitude flybys or singularities in the control.
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1
Introduction

This chapter introduces the concept of solar sailing and the background to the thesis work. First, the
solar-sail mission and concept heritage is presented in section 1.1. Secondly, the application of solar
sailing for lunar exploration is presented in section 1.2, followed by section 1.3 that covers the field of
solar-sail trajectory design. The research questions are established in section 1.4. Finally, the structure
of the thesis is presented in section 1.5.

1.1. Solar-sail heritage
Solar sails can provide a continuous thrust over the entire mission duration without consuming a pro-
pellant [1]. This continuous thrust enables spacecraft to travel along non-Keplerian orbits, optimized
for a certain mission objective. This allows for the development of new mission concepts, as propel-
lant consumption is no longer a limiting factor. The first mission using solar radiation pressure as the
main propulsion system was JAXA’s IKAROS mission [2]. In 2010, using a 16 × 16 m2 solar sail, the
IKAROS mission demonstrated that solar sails can be utilized during interplanetary transfers. IKAROS
demonstrated several additional technologies, including the deployment mechanisms for the sail, the
application of thin-film solar cells for power generation and cells with variable surface reflection prop-
erties for attitude control. The NanoSail-D2 mission was launched in 2011 and proved the concept of
deorbiting spacecraft using a small solar sail [3]. The solar sail generated a thrust from solar radiation
pressure, reducing the altitude of the spacecraft, while the large sail area also generated a significant
drag force. A final additional solar-sail technical demonstration mission was LightSail-1 [4].

Some conceptual applications of solar-sail technology have recently received attention. The La-
grangian points in the Sun-Earth system can be displaced by applying a continuous thrust by means of
a solar sail. For example, in the GeoStorm concept, the spacecraft is located at a sunward displaced
L1 point, which allows for increased warning times for solar activity [5]. Earlier detection of solar storms
provides the opportunity for the implementation of more adequate countermeasures, limiting the risk
to exposed spacecraft and Earth-based infrastructure. As another example, the solar-sail acceleration
can also be used to counter Earth’s gravity and place a spacecraft in a pole-sitter position. A solar
sail placed in a pole-sitter position allows for continuous coverage of Earth’s polar regions [6, 7], but
are located at an altitude in the order of 3 × 106 km. A family of solar sail orbits in Ref. [8], provides
continuous coverage of Earth’s poles at lower altitudes, allowing for higher resolution imaging.

1.2. Lunar exploration and coverage
In addition to exploiting the solar-sail acceleration in the Sun-Earth system, the solar sail can also be
used within the Earth-Moon system, to generate non-Keplerian orbits. One such example is the family
found in Ref. [8] which provides coverage of the lunar South Pole as well as the far side of the Moon.
The far side of the Moon is an interesting site for a future radio telescope, as it is shielded from Earth-
based radio noise [9]. Furthermore, the Aitken Basin reveals deeper layers of the lunar crust, providing
insight on the composition and origin of the Moon. Finally, the lunar South Pole is believed to contain
water ice in its permanently shadowed crates and would thus be an interesting location for a future

1



2 1. Introduction

human outpost [9]. For these proposed concepts, a satellite link is required that provides continuous
communications with Earth.

Natural halo orbits at the Earth-Moon L2 point have been considered to provide such a link between
the far side of the Moon and the Earth. However, such orbits do not guarantee continuous coverage
of the lunar South Pole [10]. In order to provide such continuous coverage, combinations of two halo,
vertical, and butterfly orbits have been considered at the Earth-Moon L1 and the L2 points, which can
achieve continuous coverage of the lunar South Pole [11]. Other studies have proposed a single lunar
pole-sitter mission, where a solar sail is used to provide the required control acceleration to continuously
hover below the South Pole of the Moon [12]. These orbits provide continuous coverage for the lunar
South Pole, but provide no continuous coverage of the Aitken Basin.

A constellation of two spacecraft in solar-sail displaced L2 vertical Lyapunov orbits found in Ref. [8]
can achieve this needed continuous coverage of both the lunar South Pole and the Aitken Basin. The
constellation requires a solar-sail characteristic acceleration of 0.3mm/s2 and maintains a constant
attitude with respect to the Sun, simplifying the attitude control of the solar sail. Although a detailed
design of the orbits of the constellation has been conducted, the design of transfer trajectories to the
constellation is still to be explored and will determine the feasibility of such a mission.

1.3. Solar-sail trajectory design
Previous solar-sail transfer trajectories have been designed using predefined steering laws [13]. The
trajectories are then generated by reverse time propagations of the dynamics, where the defined steer-
ing law is used to provide the control. This results in spiral trajectories escaping Earth and reaching
the targeted orbit. Various steering laws have been proposed such as the locally optimal steering law,
the velocity tangent steering law or the on-off switching law [1]. These steering laws require fast ro-
tations of the sail and result in unfeasible singularities in the control. Furthermore, the trajectories are
not connected to standard parking orbits, which are often specified by a set perigee altitude, inclination
and argument of perigee [14].

In order to address these discrepancies, constraints have to be imposed on the trajectory. Such
solar-sail transfers have been successfully designed using multiple-shooting [7, 15] and collocation
techniques [12]. Multiple-shooting techniques are fast to implement and can be designed using a small
number of optimization variables. On the downside, they require significant computational power as
every segment is integrated for each applied perturbation and can be very sensitive to small changes
in the design variables [16]. Collocation methods allow for easy implementation of path and point
constraints and do not require a separate integration of the dynamics [16]. Multiple Gauss-Lobatto
collocation methods have been successfully implemented in Ref. [12] to find solar-sail orbits and tra-
jectories. When employing the sparsity of the Jacobi matrix, problems containing 100 000 variables are
permitted [16, 17]. Although the transfer trajectories found in Ref. [12] converged, no path constraints
were enforced. The feasibility of solar-sail transfer trajectories can therefore be further improved by
enforcing constraints on, for example, the minimum altitude with respect to Earth and the Moon, and
on the maximum rotation rate of the solar sail.

1.4. Research questions
Based on the context in this chapter, the following research objective is defined:

The research objective of this thesis is to contribute to the development of solar-sail missions, by
designing transfer trajectories to the constellation of solar-sail displaced L2 vertical Lyapunov orbits in
the Earth-Moon system, to support communication with the far side of the Moon as well as the lunar
South Pole.

In order to assess the performance of the transfer trajectories, the transfer time and possible trans-
fer mass for a given launcher will be calculated. Subsequently, constraints will be enforced in order to
increase the feasibility of both the trajectory as well as the control history. Finally, for a realistic mission
concept, both spacecraft of the constellation will have to be launched using a single rocket launch. In
order to fulfill the research objective, the following main research question and research subquestions
are formulated:
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What are the achievable transfer times and spacecraft masses for a solar-sail trajectory from an
Earth-based parking orbit to a constellation of solar-sail displaced L2 vertical Lyapunov orbits in the
Earth-Moon system?

a) What transfer time can be achieved by solving the trajectory problem through the application of
locally optimal steering laws?

b) What transfer times can be achieved through the application of the 12th-order Gauss-Lobatto
collocation method?

c) What is the effect on the found transfer trajectories if the maximum solar-sail rotation rate is
constrained to 20 deg/day?

d) What is the performance of the found transfer trajectories in terms of spacecraft mass for a realistic
mission scenario involving a single Soyuz launch?

By answering these research questions and fulfilling the research objective, feasible solar-sail trans-
fer trajectories are designed, hereby contributing to the development of both future lunar and solar-sail
missions.

1.5. Report outline
In order to answer the research questions and fulfill the research objective, this report’s main body
consists of a draft journal article containing the design and results of this thesis. The article briefly
introduces the purpose of this work, followed by a section describing the solar-sail dynamics in the
Earth-Moon system. The design and applications of the solar-sail displaced L2 vertical Lyapunov or-
bits is discussed. This is followed by a section on the generation of an initial guess to the trajectory
problem, a section on the collocation method and a section on mesh and error control. A separate
section contains the detailed implementation of the algorithm leading to feasible solutions. Finally, the
results section contains the found transfer trajectories. In addition to the conclusions in the paper, this
report contains a separate conclusion and recommendation section where the research questions are
answered and a reflection on the work is presented. To improve the credibility of this work, a verification
and validation chapter is present in the appendix.
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Solar-sail transfers to Earth-Moon L2-displaced

vertical Lyapunov orbits

Thomas D. van den Oever1

Delft University of Technology, 2629 HS Delft, the Netherlands

This paper presents the design of solar-sail transfer trajectories to a constellation of two

spacecraft in displaced vertical Lyapunov orbits at the L2 point of the Earth-Moon sys-

tem. The constellation provides continuous coverage of the Aitken basin and the lunar

South Pole. Initial guesses for the transfers are generated using reverse time propaga-

tions of the dynamics, where the control is provided by a locally optimal steering law.

These initial guesses are subsequently used to initialize a 12th-order Gauss-Lobatto

collocation method. The minimum altitude with respect to the Earth and the Moon

are constrained, as well as the maximum rotation rate of the solar sail. Sets of feasible

trajectories for both spacecraft with identical launch conditions are sought, such that

the constellation can be initiated using a single Soyuz launch. Such a Soyuz launch can

deliver two 1160-kg spacecraft into the found transfer trajectories. The first spacecraft

subsequently requires a transfer time of 53.06 days to enter its constellation orbit,

while the transfer of the second spacecraft takes 67.89 days. This research demon-

strates that solar-sail transfer trajectories are a feasible option for future missions in

the Earth-Moon system.

1 MSc. Student, Faculty of Aerospace Engineering, Kluyverweg 1
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Nomenclature

Ai = matrix of polynomial coefficients P = period

As = sail area Psyn = synodic period of the Sun

a = acceleration vector Re = Earth radius

a = semi-major axis Ri = rotation matrix around axis "i"

a0,EM = scaled characteristic sail acceleration Rm = lunar radius

aEM = scaled characteristic sail acceleration ri = radius vector of body "i"

ai = collocation method constant rij = radius vector of body "i" from body "j"

B = constant matrix r̂43 = axis of Sun-sail frame

b = last column of B−1 t = time vector

bi = collocation method constant tarrival = arrival time

C = dimensionless constant error estimation U = effective potential

c = point constraints Ulength = length unit Earth-Moon system

DF = Jacobi matrix Utime = time unit Earth-Moon system

DX = search direction u = control vector

e = eccentricity v = velocity vector

ei = error over segment "i" vi = collocation method constant

F = constraint vector wi = collocation method constant

Fi = constraint vector over segment "i" X = decision vector

f = EoM in ODE form x(8) = eight-order derivative of the state vector

g = path constraints xi = state vector for node "i"

h = altitude x′i = dimensionless time derivative state vector

I = integral function Xi = decision vector over segment "i"

i = inclination yi = dimensionless 7th derivative of polynomial

mi = mass of body "i" α = cone angle

n̂ = solar sail normal direction αls = line search multiplier

n = number of node points β0 = lightness number
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∆t = time step θS0 = angular progressing of Sun at t = 0

∆ttransfer,max= maximum allowable transfer time µEM = mass fraction of Earth-Moon system

∆φi = sail rotation over segment "i" µi = gravitational parameter of body "i"

δ = clock angle σs = sail loading

δeq = obliquity of Earth’s rotation axis σ∗ = critical sail loading

ε = small number (10−10) τ = normalized time over a single segment

ζiζiζi = defect constraints ϕ̂43ϕ̂43ϕ̂43 = axis of Sun-sail frame

ζ = parameter steering law ϕ2,0 = phase angle Moon

ηηη = slack variables Ω = right ascension of ascending node

θ̂43θ̂43θ̂43 = axis of Sun-sail frame Ωs = synodic angular rate of the Sun

θ = true anomaly ωωωrot = rotation vector of synodic reference frame

θ8 = approximation of x(8) ω = argument of perigee

I. Introduction

Recent developments in solar-sail technology grant opportunities for the advancement of new

mission concepts. The advantage of employing a solar sail is that a continuous acceleration can

be provided without the demand for a mass-consuming propulsion system [1]. This allows for new

types of non-Keplerian orbits and trajectories that are optimized for specific mission objectives,

such as the coverage of specific areas on the Earth [2, 3], the Moon [4, 5] and other celestial bodies

[6], shorter transfer times [7] or longer orbital lifetimes [4]. For example, in the GeoStorm concept,

the spacecraft is located at a sunward displaced L1 point, which allows for increased warning times

for solar activity [8]; a solar-sail pole-sitter allows for continuous coverage of Earth’s poles with

a single spacecraft without the need for a propellant [2, 6]; and, finally, the family of solar-sail

displaced L2 vertical Lyapunov orbits (SSOs) found in Ref. [4], can be used to provide continuous

coverage of interesting features on the Moon (including the Aitken Basin and the lunar South Pole).

The Aitken Basin is scientifically interesting as it reveals deeper layers of lunar crust [9]. Also,

the far-side of the Moon is a perfect site for a radio-telescope as it is continuously shielded from

Earth-based radio noise and can thus study signals that can otherwise not be detected [9]. Finally,
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the lunar South Pole could host a future permanent human outpost, as it is continuously lit by

sunlight, which can provide power, and water ice is believed to exist in its permanently shadowed

lunar craters [9]. For these proposed lunar mission concepts, a satellite uplink is required to provide

communications with Earth. When using a constellation of two spacecraft in the SSOs found in

Ref. [4], continuous coverage can be provided of the Aitken basin and the lunar South Pole, while

maintaining a permanent view of the Earth.

The purpose of this paper is to find feasible transfer trajectories from Earth to the proposed

constellation in Ref. [4]. By designing the transfer trajectory, the feasibility and performance of the

proposed constellation can be assessed, such as the available mass budget and the achievable transfer

time. Previous solar-sail transfer trajectories have been designed using locally optimal steering laws

[10–12], including transfers in the Earth-Moon system [13] or using the velocity tangent steering law

refined with collocation techniques [5]. These methods result in trajectories connecting a parking

orbit such as geostationary transfer orbit (GTO) with a target orbit in the Earth-Moon system, but

contain discontinuities in the sail attitude and require long transfer times.

To further improve the design of solar-sail transfer trajectories, this paper develops a collocation

method with additional path and point constraints and applies it to the L2 constellation. Initial

guesses are generated by reverse time propagations of the dynamics in the circular restricted three-

body problem, where the control is provided by the locally optimal steering law. In order to enforce

constraints on the found trajectories, the 12th-order Gauss-Lobatto collocation method is applied to

transcript the trajectory to a nonlinear programming (NLP) problem [14, 15]. Collocation methods

can incorporate path and point constraints and contrary to multiple shooting methods, do not

require an explicit integration of the dynamics. Collocation methods also have a wider radius of

convergence than multiple shooting methods, as the sensitivity of the trajectory is distributed over

more segments [16]. In order to improve the radius of convergence and accuracy even further, an error

estimation scheme based on Ref. [17] is applied in order to refine the mesh and equidistribute the

error. Consecutively, the NLP-problem is solved using the multivariate Gauss-Newton algorithm [18]

in conjunction with a line search method [16]. In order to find feasible trajectories, the maximum

rotation rate of the sail is constrained to 20 deg/day. Furthermore, the minimum altitude with
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respect to the Earth is set to 10 000 km and to four lunar radii with respect to the Moon. The

departure point of the transfer trajectory is constraint to belong to an Highly Elliptical Orbit (HEO)

of a Soyuz launcher [19], while the arrival point is enforced to match both the states and control of

the SSO. Note that during the first day of the trajectory no solar-sail acceleration is generated, to

allow for solar sail deployment. Once a feasible trajectory is found for the first spacecraft, a similar

trajectory with identical launching conditions is sought for the second spacecraft. By designing both

trajectories for the constellation with identical launching conditions, a feasible mission scenario using

a single Soyuz launch results. Finally, for this feasible mission scenario, a preliminary mass budget

is constructed based on reference satellites.

II. Dynamics

The dynamics of the transfer trajectory are modelled in the framework of the circular restricted

three-body problem (CR3BP), taking into account the gravity of the Earth and Moon, as well as the

solar radiation pressure (SRP) originating from the Sun. This section will first discuss the dynamics

of the CR3BP, followed by a model for the ideal solar-sail acceleration. Finally, the motion of the

Sun with respect to Earth-Moon system is described.

A. Circular restricted three-body problem

At large distances from the Earth, such as distances beyond geostationary Earth orbit (GEO)

altitude, the gravitational pull of the Moon can no longer be neglected and requires to be included in

the spacecraft dynamics. The dynamics concerning three bodies are modelled through the CR3BP,

similar to the proposed constellation in Ref. [4] and considers the Earth (body 1), the Moon (body

2) and the spacecraft (body 3). The CR3BP utilizes a synodic reference frame (SYN) shown in

Fig. 1. The origin of the SYN frame is located at the Earth-Moon barycenter. The x̂SY N -axis is

aligned with the Earth-Moon line, while the ẑSY N is perpendicular to the Earth-Moon orbital plane

and coincides with the rotational direction of the reference frame, ωrot. Subsequently, the ŷSY N

completes the right-handed reference frame.

In the CR3BP, the distances, time and mass are made dimensionless. Distances are made

dimensionless by taking the Earth-Moon distance as the length unit (Ulength). This results in the

5
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Fig. 1 Synodic reference frame employed by the CR3BP.

Earth being located at xSY N = −µEM and the Moon at xSY N = 1−µEM , where the mass fraction

µEM is calculated using:

µEM =
m2

m1 +m2
. (1)

Similarly, the time unit (Utime) is scaled such that the rotational velocity of the Earth-Moon

system becomes 1/rad. The constants given in Tab. 1 are used to model the Earth-Moon system.

Table 1 Parameters for the CR3BP involving the Earth and the Moon, provided by Ref. [20].

The period is calculated using the 2-body period of the Moon around the Earth [4].

Parameter Value Unit Description

m1 5.9723 · 1024 kg mass Earth

m2 0.07346 · 1024 kg mass Moon

µEM 0.01215 - mass fraction according to Eq. 1

r12 0.3844 · 106 km Earth-Moon distance

PM 27.4520 days 2-body period of the Moon’s orbit around the Earth

Ulength 0.3844 · 106 km dimensionless distance unit

Utime 0.3775 · 106 s dimensionless time unit

The framework of the CR3BP exists under a set of assumptions. First of all, the orbits of the

Earth and Moon are assumed to be both coplanar and circular around their common barycenter.

Secondly, the gravitational potential of the Earth and Moon can be approximated as point masses.

Finally, the mass m3 of the spacecraft is much smaller than the masses of the Earth and the Moon

such that (m3/m1 ≈ m3/m2 ≈ 0). Using these assumptions, the equations of motion (EoM) in the
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CR3BP are given by [2]:

r̈3 + 2ωrotωrotωrot × ṙ3 = −∇U(r3) + a(t), (2)

where r3 is the position vector of the solar sail with respect to the SYN frame, ωrotωrotωrot is the rotation

vector of the SYN frame equal to
[
0 0 1

]T
and a is the sum of additional acceleration terms

containing, in this paper, the solar-sail induced acceleration. U is the sum of the gravitational and

centripetal potentials which is given by:

U(r3) = −1− µEM

r13
− µEM

r23
− x2

3 + y2
3

2
, (3)

r13 = r3 +

[
µEM 0 0

]T
, (4)

and

r23 = r3 −
[
1− µEM 0 0

]T
, (5)

where r13 and r23 are the radius vectors of the spacecraft with respect to the Earth and the Moon.

Using U , Eq. 2 can be rewritten as a set of ordinary differential equations dx
dt = f(t,x,u) with state

vector x =

[
r3

T ṙT3

]T
, which can be explicitly integrated if the solar-sail acceleration in the term

a(t) is known.

B. Solar-sail acceleration

Momentum carried by solar photons can be exchanged with an object by reflecting, absorbing

and re-radiating these photons. This principle can be exploited as a propulsion method by utilizing

a thin, large, reflective surface called a solar sail. In this work, an ideal solar sail is assumed, where

every photon is reflected specularly. In that case, the acceleration produced by the solar radiation

pressure (SRP) acts along the sail normal direction n̂. The resulting acceleration is thus a function

of the orientation of the sail. In order to describe this orientation with respect to the Sun, a new

Sun-sail fixed reference frame, SSF
(
r̂43, θ̂43, ϕ̂43

)
, is defined [2], see Fig. 2. The r̂43-axis is defined

along the incoming SRP direction:

[̂r43]SY N =
[r43]SY N

|[r43]SY N |
. (6)
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The other two axes, θ̂43 and ϕ̂43, are defined as:

[θ̂43]SY N =
[ẑ]SY N × [̂r43]SY N

|[ẑ]SY N × [̂r43]SY N |
, (7)

and

[ϕ̂43]SY N = [̂r43]SY N × [θ̂43]SY N . (8)

δ

ො𝒓𝟒𝟑

෡𝜽𝟒𝟑

ෝ𝝋𝟒𝟑

ො𝒓𝟒𝟑
𝛼

ෝ𝒏

sail
sail Sun

Sun

Fig. 2 Sun sail fixed (SSF) reference frame.

Using the three reference directions, expressed in Cartesian coordinates, the rotation matrix

from frame SY N to SSF is given by:

[n̂]SY N =

[
[̂r43]SY N [θ̂43]SY N [ϕ̂43]SY N

]
[n̂]SSF (9)

The orientation of the sail normal can be defined with respect to the SSF frame by two rotations.

First, a rotation around the r̂43-axis over the clock angle δ defines a new surface. On this surface,

the cone angle α pitches the solar sail with respect to the Sun-sail line. The Cartesian elements of

the resulting normal vector are then given by:

[n̂]SSF = R1(−δ)R2(−α)

[
1 0 0

]T
=

[
cos(α) sin(α) sin(δ) sin(α) cos(δ)]

]T
, (10)

which can be used to calculate the solar-sail acceleration:

aSRP = a0,EM (r̂43 · n̂)2n̂. (11)
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The characteristic solar-sail acceleration (a0,EM ) is the maximum achievable solar-sail acceleration

for a given spacecraft mass and solar sail size. As the SRP induced acceleration always cannot

act in direction of the Sun, the domain of the cone angle is limited to 0 deg ≤ α ≤ 90 deg. The

constellation in Ref. [4] requires a value for a0,EM of 0.1 in dimensionless units, which will be used

throughout this report. It is assumed that the spacecraft mass, solar sail size and solar radiation

pressure in the Earth-Moon system are constants, resulting in a constant a0,EM . If the position

of the Sun with respect to the SYN frame is known, i.e. r̂43, the solar-sail acceleration can be

calculated.

C. Motion of the Sun

The Earth-Moon system orbits around the Sun, which causes the direction of the SRP in the

synodic reference frame to change over time. In this work, it is assumed that the orbit of the Earth-

Moon barycenter around the Sun is circular and that it is coplanar with the Earth-Moon orbital

plane. This results in a clockwise, circular motion of the Sun in the (x̂SY N , ŷSY N )-plane around

the Earth-Moon barycenter [4], see Fig. 3.

MoonEarth

Sun

Spacecraft

Ω𝑠𝑡 + 𝜃𝑠0

ො𝐲𝐒𝐘𝐍

ො𝐱𝐒𝐘𝐍

ො𝐫𝟒𝟑

ො𝐫𝟒

Fig. 3 Earth-Moon synodic reference frame with position of the Sun.

The position of the Sun is determined by the angular progression of the Moon around Earth

and the angular progression of the Earth around the Sun. Therefore, the synodic angular velocity

of the Sun ΩS is used to determine the position of the Sun as a function of time, which is calculated

using:

Psyn =
1

1
PM
− 1

PE

(12)
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and

ΩS =
2π

Psyn
. (13)

The periods of Earth’s orbit around the Sun, PE , and the Moon’s orbit around the Earth, PM , can

be seen in Table 2. The direction of the SRP in the synodic reference frame can then be described

Table 2 Periods and angular velocities of the orbits of the Earth, Moon and Sun [20].

Parameter Values Unit Description

PE 365.256 days Orbital period Earth

PM 27.3217 days Orbital period Moon

Psyn 29.5306 days Sun’s synodic period

ΩS 2.4626 · 10−6 rad/s Angular rate Sun in SYN frame

ΩS 0.9252 rad/− Dimensionless angular rate Sun in SYN frame

with [4]:

[̂r4]SY N = −
[
cos(Ωst+ θs,0) − sin(Ωst+ θs,0) 0

]T
, (14)

where θs,0 is the angular progression of the Sun at t = 0 since the last full Moon. During this

work, it is assumed that the distances in the Earth-Moon system are small with respect to the

Sun-Earth distance, resulting in: r̂34 ≈ r̂4. With r̂4 known, the solar-sail acceleration in Eq. 11

can be evaluated for a given normal vector. If a steering law for the normal direction of the sail is

assumed, the differential equations in Eq. 2 can be integrated to find the corresponding solar-sail

trajectory.

III. Problem description

As highlighted in the introduction, this paper searches for transfers between an Earth-based

parking orbit and solar-sail displaced L2 vertical Lyapunov orbits (SSOs). In this section, the

departure and arrival conditions of the trajectories are discussed. First, the design of the SSOs

is presented. Secondly, the geometry of the parking orbit is given, followed by the general layout

of the transfer trajectory. Finally, the required transformations are given to determine the orbital

elements of the departure point in the Earth Centered Inertial (ECI) frame.
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A. Solar-sail displaced L2 vertical Lyapunov orbits

Solar sails can be used to create families of non-Keplerian orbits [4]. One such family of orbits

is found starting from a classical Earth-Moon L2 vertical Lyapunov orbit with a period (PSSO)

equal to 2PSY N = 59.34 days. Using a stepwise increase in the characteristic acceleration of the sail

a0,EM , in combination with a differential correction technique, the trajectory is slightly displaced

from the classical orbit. In particular, the solar sail is pitched at an angle of α = −35.26 deg with

respect to the Earth-Moon orbital plane in order to increase the out-of-plane acceleration, such

that the found orbits are displaced towards the Southern hemisphere of the Moon to provide better

lunar South Pole coverage. The resulting family of orbits is shown in Fig. 4 as a function of the

dimensionless characteristic solar-sail acceleration a0,EM in the SYN frame.

0.2
-0.3

y [-]

-0.2

0

-0.1

0

1

x [-]

z
 [
-]

0.1

0.2

1.15 -0.2
0

0.02

0.04

0.06

0.08

0.1

a
0,EM

Moon L
2

Fig. 4 Family of solar-sail L2-displaced vertical Lyapunov orbits in the SYN frame, as function

of a0,EM. Taken from Ref. [4]

Using a constellation of two solar-sail spacecraft with a0,EM = 0.1, it is possible to provide

continuous coverage of the Aitken basin and the lunar South Pole, as well as maintaining a direct

link with the Earth [4]. The two spacecraft, SC1 and SC2, are placed in identical orbits with a phase

difference of half an orbital period which equals 29.67 days. In order to advance the development

of this proposed constellation this paper will contain the design of feasible transfer trajectories to

these orbits.
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B. Earth-centered Highly Elliptical Orbits

The initial parking orbit for the spacecraft is assumed to be a Soyuz highly elliptical orbit

(HEO). The geometry of the HEO is described using Keplerian elements expressed in the Earth

Centered Inertial (ECI) reference frame [21, 22]. The HEOs have a perigee altitude of 250 km, an

argument of perigee of 178 deg and an inclination of 6 deg. The other Keplerian elements, such as

the apogee altitude, true anomaly and right ascension of ascending node can be chosen freely. The

transfer mass of the Soyuz rocket to this family of HEOs as a function of the apogee altitude is

given in Fig. 5 [19].

Fig. 5 Transfer mass to HEO as a function of apogee altitude for a Soyuz launch from Guiana

Space Centre [19].

C. Trajectory design

The trajectories contains various segments which are shown in Fig. 6.

The initial HEO is described using Keplerian elements, which adhere to 2-body dynamics. It

is assumed that the spacecraft departs from the HEO at geostationary Earth orbit (GEO) altitude,

where a switch is made to 3-body dynamics, including the gravitational pull of the Moon. The

first day of the trajectory is modelled as a ballistic segment to allow the sail to deploy. After the
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Fig. 6 Design of the transfer trajectory, including various trajectory segments.

first day, the solar sail is deployed and the main part of the trajectory will be propagated, until the

trajectory arrives at the SSO.

D. Reference frame transformations

In order to connect the initial condition of the transfer trajectory to the HEOs in section III B,

its Cartesian elements in the SYN frame are transformed to Keplerian with respect to the ECI

frame. The first step in this transformation is to transform the spacecrafts position vector with

respect to Earth r13 from the SYN frame to the ecliptic (ECL) reference frame. The ECL frame is

an Earth-centered pseudo-inertial right-handed reference frame, where the x-axis is coincides with

the vernal equinox and the z-axis is aligned with the angular momentum vector of Earth’s orbit

around the Sun [21]. The transformation from the SYN frame to the ECL frame is given as:

[r3]ECL = R3(Ω2)R1(i2)R3(ω2 + θ2(t))[r13]SY N · Ulength. (15)

Similarly for the velocity vector ṙ3:

[ṙ3]ECL = R3(Ω2)R1(i2)R3(ω2 + θ2(t)) ([ṙ3]SY N +ωωωrot × [r3]SY N ) · Ulength

Utime
, (16)

where Rj(Ψ) is a clockwise rotation matrix of angle Ψ around the ’jth’-axis of a right-handed

reference frame. Ω2, i2, ω2 and θ2 stand for the right ascension of ascending node, inclination,

argument of perigee and true anomaly of the Moon with respect to the ECL frame. Since the

angular progression of the Moon’s orbit is equal to the time unit in the CR3BP, θ2(t) = θ2,0 + t,

where θ2,0 is the true anomaly of the Moon at t = 0. The Moon has an inclination of 5.145 deg with

respect to the ecliptic, however, during this work it is assumed that the Moon’s orbit coincides with
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the ecliptic plane, resulting in a lunar inclination of 0 deg. For this inclination, Ω2, ω2 and θ2 are

not defined and are thus replaced replaced by a fixed phase angle ϕ2,0 = Ω2 + ω2 + θ2,0, which is

assumed to be constant over the course of a trajectory. As a result, the rotational matrices in Eq.

15 and 16 can be rewritten as:

R3(Ω2)R1(i2)R3(ω2 + θ2(t)) = R3(ϕ2,0 + t). (17)

The coordinates expressed in the ECL frame, are then transformed to the ECI frame using:

[r3]ECI = R1(δeq)[r3]ECL, (18)

and

[ṙ3]ECI = R1(δeq)[ṙ3]ECL, (19)

where δeq is the obliquity of Earth’s rotation axis equal to 23.44 deg [20]. The Cartesian state

6× 1 vector
[
[r3]TECI [v3]TECI

]T
can then be transformed to find the Keplerian elements of the

corresponding parking orbit.

IV. Initial guess generation

In order to design feasible transfer trajectories to the SSOs introduced in subsection IIIA,

initial guesses are first generated. Due to the chaotic nature of the CR3BP, it is challenging to

find trajectories departing from Earth and arriving at the SSO by just varying the conditions of

the departure point and assuming a particular steering law. Therefore, instead, the trajectory

is designed by selecting a state vector along the SSO, from which the dynamics are propagated

backwards in time while reducing the energy with respect to Earth. The integration is terminated

if a set altitude is reached, resulting in an initial guess for the trajectory. Along this trajectory a

locally optimal steering law (LOSL) is used to determine the optimal sail attitude.

The LOSL determines this optimal sail attitude, by maximizing the solar-sail acceleration along

the velocity vector
[
v3

]
SSF

for every point along the trajectory. A complete derivation of the LOSL

can be found in Ref. [1]. Here, only the result is presented. To compute the optimal attitude, first
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the velocity vector is transformed to the SSF frame, using Eq. 20:
vx,SSF

vy,SSF

vz,SSF

 = [v3]SSF =

[
r̂43 θ̂43 ϕ̂43

]T
SY N

([v3]SY N + ωrot × [r3]SY N ). (20)

Secondly, the parameter ζ is calculated as a function of the velocity components:

ζ =
−3vx,SSF vy,SSF ± vy,SSF

√
9v2

x,SSF + 8(v2
y,SSF + v2

z,SSF )

4(v2
y,SSF + v2

z,SSF )
, (21)

which results in two values for ζ due to the ± sign. Both values of ζ are used to evaluate the desired

sail orientation using:

nx,SSF =
|vy,SSF |√

v2
y,SSF + ζ2(v2

y,SSF + v2
z,SSF )

, (22)

ny,SSF = ζnx,SSF (23)

and

nz,SSF =
vz,SSF

vy,SSF
ny,SSF . (24)

From the two solutions found, the attitude is selected which maximizes the acceleration along the

velocity vector:

as
T [v]SSF = a0,EMn

2
x,SSF (nx,SSF vx,SSF + ny,SSF vy,SSF + nz,SSF vz,SSF ). (25)

The LOSL allows for a larger SRP acceleration along the velocity direction than other steering laws,

such as the velocity tangent steering law or the on-off switching law also described by Ref [1]. The

LOSL can generate small accelerations along the velocity direction, even if the spacecraft is moving

towards the Sun. The found trajectories adhere to the dynamics, but contain attitude singularities,

perform flybys at unfeasible altitudes and do not depart from Soyuz HEOs.

15



V. Trajectory transcription

In order to increase the feasibility of the found transfer trajectories, additional path and point

constraints need to be enforced along the trajectory. The trajectory optimization problem contains

an infinite number of dimensions, since the states and controls are described by continuous functions.

In this section, the 12th-order Gauss-Lobatto collocation method is described, which approximates

these continuous functions using 7th-degree piecewise polynomials. The continuous trajectory prob-

lem then reduces to finding a finite number of polynomials. A set of defect constraints is enforced

over these polynomials such that the dynamics are satisfied. Furthermore, path and point con-

straints are added, resulting in a collection of constraints as a function of the states and controls.

The trajectory optimization problem is thus rewritten as a non-linear programming (NLP) problem,

which is consequently solved using the Gauss-Newton algorithm in conjunction with a line search

method.

A. 12th-order Gauss-Lobatto collocation method

The 12th-order Gauss-Lobatto collocation method is described in detail in Ref. [14] and is

applied to a solar-sail trajectory problem in Ref. [5]. Higher-order methods, like the 12th-order

Gauss-Lobatto collocation method, provide accurate solutions with fewer variables than lower-order

methods, such as trapezoid and Hermite-Simpson methods [23]. Furthermore, the required compu-

tation time for higher-order methods is significantly lower than the required computation time for

lower-order methods.

The method starts by diving the trajectory into n nodes, connected by n − 1 segments as

illustrated using Fig. 7(a), where every segment is described by a 7th-degree piecewise polynomial,

as shown in Fig. 7(b). The polynomial in Fig. 7(b) can be determined by evaluating both the states

and dynamics at the two node points, which would result in a 3rd-degree polynomial. In order to

increase the degree and thus accuracy of the interpolating polynomial, two internal points are added,

namely xi2 and xi3, which results in a 7th-degree polynomial. In addition, three collocation points

xi1, xic and xi4 are added, that are used to evaluate the dynamics and increase the accuracy of the

method to O(∆t12) [14].
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Fig. 7 a) Trajectory divided into nodes and segments. b) Single segment described by a

piecewise polynomial as applied in the Gauss-Lobatto method.

Table 3 Position of internal and collocation points along τ . [5, 14, 15]

Parameter Type of point Value

τi node 0

τi1 defect 8.48880518607166e-2

τi2 internal 2.65575603264643e-1

τic defect 5.00000000000000e-1

τi3 internal 7.34424396735357e-1

τi4 defect 9.15111948139283e-1

τi+1 node 1

The position of the internal and defect points along the segment are given by the parameter τ :

τik =
tk − ti

∆ti
, (26)

where ∆ti is the timestep over the ith segment, tk is the time of the kth internal or defect point

along the segment and ti is the time of the ith node point. Values of τ for the internal and defect

points are given in Table 3.

The six polynomials representing the six states over a segment are described by:

xi(τ) = Ai

[
1 τ τ2 τ3 τ4 τ5 τ6 τ7

]T
. (27)

where the 8× 6 matrix Ai contains the eight coefficients of each 7th-degree polynomial for the six

states on segment i. Matrix Ai can be extracted by matching the polynomial with the states and

17



normalized dynamics at the node and internal points:

AiB =

[
xi x′i xi2 x′i2 xi3 x′i3 xi+1 x′i+1

]
, (28)

where xik
′ = ∆tif(tik,xik,uik) and matrix B is given by:

B =



1 0 1 0 1 0 1 0

0 1 τi2 1 τi3 1 1 1

0 0 τ2
i2 2τi2 τ2

i3 2τi3 1 2

0 0 τ3
i2 3τ2

i2 τ3
i3 3τ2

i3 1 3

0 0 τ4
i2 4τ3

i2 τ4
i3 4τ3

i3 1 4

0 0 τ5
i2 5τ4

i2 τ5
i3 5τ4

i3 1 5

0 0 τ6
i2 6τ5

i2 τ6
i3 6τ5

i3 1 6

0 0 τ7
i2 7τ6

i2 τ7
i3 7τ6

i3 1 7



. (29)

If matrix Ai is known, the states can be interpolated at any given point on the ith segment using Eq.

27. The control defines the sails normal direction n̂SSF (t) over each segment through the variables

ui and u̇i, and is modelled to vary semi-linearly over each segment and such that |n̂SSF (t)| = 1:

n̂SSF (t) = u(t) =
ui + (t− ti)u̇i

|ui + (t− ti)u̇i|
. (30)

B. Defect constraints

Although the polynomial in Fig. 7(b) describes the states over a segment, it does not auto-

matically satisfy the dynamics. Therefore, at the three defect points xi,1, xi,c and xi,4, the defect

constraints are evaluated, forcing the polynomial to adhere to the dynamics. The defect constraints

can be illustrated using Fig. 8.

The states at the defect points are found using [14]:

xi1 = ai1xi + ai21xi2 + ai31xi3 + aip1xi+1 + ∆ti (vi1fi + vi21fi2 + vi31fi3 + vip1fi+1) , (31)

xic = aicxi + ai2cxi2 + ai3cxi3 + aipcxi+1 + ∆ti (vicfi + vi2cfi2 + vi3cfi3 + vipcfi+1) , (32)

and

xi4 = ai4xi + ai24xi2 + ai34xi3 + aip4xi+1 + ∆ti (vi4fi + vi24fi2 + vi34fi3 + vip4fi+1) , (33)
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Fig. 8 Sketch containing a visualization of the defect constraints ζiζiζi. Adapted from Ref. [5].

where the required constants a and v are given in Table 4. Using the node, internal and defect

points, the defect constraints ζζζ are evaluated as [14]:

ζζζi1 = bi1xi +bi21xi2 +bi31xi3 +bip1xi+1 +∆ti (wi1fi + wi11fi1 + wi21fi2 + wi31fi3 + wip1fi+1) , (34)

ζζζic = bicxi + bi2cxi2 + bi31xi3 + bipcxi+1 + ∆ti (wicfi + wi2cfi2 + wiccfic + wi3cfi3 + wipcfi+1) (35)

and

ζζζi4 = bi4xi +bi24xi2 +bi34xi3 +bip4xi+1 +∆ti (wi4fi + wi24fi2 + wi34fi3 + wi44fi4 + wip4fi+1) , (36)

where the constants b and w are also given in Table 4. If the value of ζζζ is equal to zero, the dynamics

over the polynomial are accurately approximated up to O(∆t12
i ) [5].

C. Path constraints

The defect constraints are used to comply with the dynamics of the system. For a feasible

trajectory, it is also required to comply with path (in)equality constraints. As inequality constraints

cannot be solved directly by NLP solvers [16], they are rewritten to introduce slack variables ηηη,

transforming the inequality constraints in equality constraints [5]. The introduction of the slack

variables enables the inequality constraint to be active at every node point. Although this requires

the algorithm to always evaluate every constraint, it eliminates the need for determining the active-

set of constraints.
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Table 4 Constants used for determining defect points and defect constraints. [14, 15]

Constant Value Constant Value

vi1 2.57387738427162e-2 ai1 6.18612232711785e-1

vi21 -5.50098654524528e-2 ai21 3.34253095933642e-1

vi31 -1.53026046503702e-2 ai31 1.52679626438851e-2

vip1 -2.38759243962924e-3 aip1 3.18667087106879e-2

vic 9.92317607754556e-3 aic 1.41445282326366e-1

vi2c 9.62835932121973e-2 ai2c 3.58554717673634e-1

vi3c -9.62835932121973e-2 ai3c 3.58554717673634e-1

vipc -9.92317607754556e-3 aipc 1.41445282326366e-1

vi4 2.38759243962924e-3 ai4 3.18667087106879e-2

vi24 1.53026046503702e-2 ai24 1.52679626438851e-2

vi34 5.50098654524528e-2 ai34 3.34253095933642e-1

vip4 -2.57387738427162e-2 aip4 6.18612232711785e-1

wi1 1.62213410652341e-2 bi1 8.84260109348311e-1

wi11 1.38413023680783e-1 - -

wi21 9.71662045547156e-2 bi21 -8.23622559094327e-1

wi31 1.85682012187242e-2 bi31 -2.35465327970606e-2

wip1 2.74945307600086e-3 bip1 -3.70910174569208e-2

wic 4.83872966828888e-3 bic 7.86488731947674e-2

wi2c 1.00138284831491e-1 bi2c 8.00076026297266e-1

wicc 2.43809523809524e-1 - -

wi3c 1.00138284831491e-1 bi3c -8.00076026297266e-1

wipc 4.83872966828888e-3 bipc -7.86488731947674e-2

wi4 2.74945307600086e-3 bi4 3.70910174569208e-2

wi24 1.85682012187242e-2 bi24 2.35465327970606e-2

wi34 9.71662045547156e-2 bi34 8.23622559094327e-1

wi44 1.38413023680783e-1 - -

wip4 1.62213410652341e-2 bip4 -8.84260109348311e-1
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1. Path constraints on the control vector

The control, u(t) = n̂SSF (t) is described by a Cartesian unit vector. As the cone angle is

allowed to vary only between 0 and 90 deg, the uix,SSF element needs to be constrained to be larger

than zero:

gi1 = uix,SSF − η2
i1. (37)

The corresponding slack variable ηi1 should thus equal √uix,SSF . If uix becomes smaller than zero,

the constraint in Eq. 37 will always be violated for any real ηi1, and thus the constraint ensures

uix ≥ 0.

As the control describes an unit vector, it is also required for the norm of the control to be

equal to 1; |ui| = 1, which can be expressed into a path constraint as:

gi2 = 1−
√
u2
ix,SSF + u2

iy,SSF + u2
iz,SSF . (38)

Finally, three control continuity constraints across the segments are included, which ensures that

the control over the trajectory is described by a piecewise linear function:

gi3 = uix,SSF + u̇ix,SSF ∆ti − ui+1,x,SSF , (39)

gi4 = uiy,SSF + u̇iy,SSF ∆ti − ui+1,y,SSF (40)

and

gi5 = uiz,SSF + u̇iz,SSF ∆ti − ui+1,z,SSF . (41)

2. Path constraints altitude

In order to avoid impact and numerical integration issues during flybys, altitude constraints

are introduced. First of all, a minimum altitude with respect to Earth is enforced of h31,min =

10 000 km. Similarly the minimum altitude with respect to the Moon is set equal to four Moon

radii or h32,min = 6952 km. The minimum altitude constraints are scaled to dimensionless units

and rewritten to equality constraints through the slack variables ηi2 and ηi3 resulting in:

gi6 = Re + h31,min − ri31 + η2
i2, (42)
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and

gi7 = Rm + h32,min − ri32 + η2
i3. (43)

3. Path constraint on sail rotation rate

Finally, the maximum allowable rotation rate of the sail is constrained. A solar sail is a flexible

structure with a large moment of inertia. Rapid changes in attitude are therefore not feasible for

large sails. Therefore the maximum rotation rate of the solar sail with respect to the Sun-sail line

is constrained to u̇max = 20 deg/day. If ∆φi is a rotation of the solar sail over segment i, it can be

assumed that ∆φi/∆ti ≈ |u̇| for small ∆ti. By converting the 20 deg/day to dimensionless units,

the rotation rate constraint is enforced in the form:

gi8 = 0.01
(
u̇max −

√
u̇2
ix,SSF + u̇2

iy,SSF + u̇2
iz,SSF − η

2
i4

)
, (44)

where the constraint is scaled by a factor 0.01 to improve convergence of the NLP-solver.

As can be seen, a total of eight path constraints are active at each node point. In addition to

the path constraints, point constraints must be added to the trajectory.

D. Point constraints

The defect and path constraints allow for the construction of feasible trajectories. In order to

find feasible trajectories that are actually connected to the SSO, nine point constraints are added

on the final node to ensure that the final states and controls comply with the SSO.

cn =

xn

un

−
xSSPO(tn)

uSSPO(tn)

 (45)

In addition, point constraints are added on the departure node, such that the trajectory departs

from GEO-altitude, rGEO = 35 786 km, and from a parking orbit that coincides with a Soyuz HEO:

c1 =



√
(x1,SY N + µ)2 + y2

1,SY N + z2
1,SY N

iECI

ωECI

−

rGEO/Ulength

iHEO

ωHEO

 , (46)

where the two-body inclination and argument of perigee are determined in the ECI frame using the

equations in subsection III B.
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E. The Gauss-Newton algorithm

In order to solve the trajectory problem, the states and constraints are rewritten as an NLP

problem. Let the decision variables for a single segment be collected in a decision vector Xi of size

28× 1:

Xi =

[
xi

T ui
T u̇T

i xi,2
T xi,3

T ηηηTi

]T
, (47)

subjected to the 26× 1 constraint vector:

Fi =

[
ζi1ζi1ζi1

T ζicζicζic
T ζi4ζi4ζi4

T gi
T

]T
. (48)

For all segments, the decision vector becomes:

X =

[
X1

T X2
T . . . Xn−2

T Xn−1
T xn

T un
T

]T
, (49)

with the corresponding constraint vector:

F =

[
c1

T F1
T F2

T . . . Fn−2
T Fn−1

T cn
T

]T
. (50)

For a trajectory consisting of n segments, a total of 28(n − 1) + 9 decision variables are used

to satisfy 26(n − 1) + 12 constraints. For a trajectory of 50 nodes, this would result in 1381

variables subject to 1286 constraints, which would be excessively large to solve using grid searches,

Monte-Carlo methods or genetic algorithms. Since all constraints are smooth and differentiable, the

Gauss-Newton algorithm is used to find decision vector X for which F = 0 [5]. The Gauss-Newton

algorithm minimizes the sum of squared constraint violations, converges quadratically [18] and does

not require the computation of second order derivatives. Although there are an infinite number of

search directions DX which satisfy:

F(X) =
∂F(X)

∂X
·DX, (51)

the Gauss-Newton algorithm solves for the minimum norm value ofDX, such that the characteristics

of the initial guess are best preserved [18]. Since the initial guess is a locally optimal solution with

respect to increasing the spacecraft’s energy, it is indeed desired to find a feasible trajectory close

to the initial guess.
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First the derivative of the constraint vector F with respect to X is calculated, resulting in the

Jacobi matrix (DF = ∂F(X)
∂X ). Note that Fi is only dependent on Xi, xi+1 and ui+1. Similarly,

the point constraints c1 and cn are only dependent on the departure and arrival node. In order

to calculate DF efficiently, only the relevant derivatives have to be evaluated, while the other

derivatives are known a priori to be equal to zero.

The efficient calculation of the derivatives is achieved by using the complex step method, which

gives an accuracy similar to that of the central step method, with only a single function evaluation

[24]. The jth column of DFi can be calculated by adding a small imaginary number to the jth

element of vector Xi and evaluating Fi using the complex step method:

∂Fi

∂Xij
=

Imag

(
Fi

([
Xi1 . . . Xi(j−1) Xij + ε

√
−1 Xi(j+1) . . . Xi28 xi+1

T ui+1
T

]T))
ε

, (52)

where the partial Jacobi matrix ∂Fi

∂Xi
has size 26× 19 and ε is a small constant of value 10−10. Note

that the partial derivatives ∂Fi

∂xi+1
, ∂Fi

∂ui+1
, ∂c1

∂X1
, ∂cn

∂xn
and ∂cn

∂un
also need to be evaluated. The structure

containing the non-zero elements of the complete Jacobi matrix using seven nodes is shown in Fig.

9.

The Jacobi matrix is applied in the Gauss-Newton algorithm to determine the search direction

DX [5]:

DX = −DF(X)
([
DF(X) ·DF(X)T

]−1
F(X)

)
. (53)

Note that if n = 50, the matrix DF has dimensions 1234×1381, containing just 26959 (1.582%) non-

zero elements, which can be efficiently stored using MATLAB®’s "sparse.m" function. Furthermore,

the matrix multiplications and inverses of DF are efficiently calculated using the unsymmetric

multifrontal method provided by UMFPACK [25].

The found search direction varies in quality due to nonlinear changes in the dynamics or con-

straints, especially if the initial guess is far away from a solution or if close flybys around the Earth

or Moon are present. In order to improve the radius of convergence, a line search algorithm is used

in the form [16]:

Xnew = X + αlsDX, (54)
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Fig. 9 Structure of nonzero elements of the Jacobi matrix (DF) for a trajectory problem with

six segments and seven nodes.

where αls is a parameter with a value selected between 0.1 and 1.0 that minimizes
∑

F(X+αlsDX).

If the search direction points in an unfeasible direction, the linesearch algorithm multiplies the search

direction with a small number, resulting in a new estimate of Xnew. From this new point, a new and

potentially better search direction can be found. This procedure is repeated untill are constraints

are satisfied up to O(10−10).

VI. Mesh and error control

Although the 12th-order Gauss-Lobatto method is highly accurate, an discretization error is

made across every segment, which can become unbounded during approaches of the Earth or Moon.

In order to decrease the discretization error over the trajectory, the number of linear spaced nodes can

be increased, but this would increase the computation time. A more efficient method is to estimate

the error made over each segment and adjust the mesh spacing accordingly. An optimal mesh
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distributes the nodes such that the error over each segment is constant. The piecewise polynomials

have degree seven, for which the error over the ith segment can be approximated using:

ei = C∆t8i ||x
(8)
i ||+O(∆t9i ) (55)

where C is a dimensionless constant equal to 2.935 793 951 418 95× 10−9 [26] and x(8) is the eight-

order derivative of the state vector. Since x is described by a seventh-degree polynomial in Eq. 27,

the eight-order derivative is unknown. However, it can be approximated by applying a difference

formula in order to evaluate x(8) over multiple segments [17]:

||x(8)|| ≈ θ8(t) = max
[
2 |y1−y2|

∆t1+∆t2

]
over (t1, t2) (56)

||x(8)|| ≈ θ8(t) = max
[
|yi−1−yi|

∆ti−1+∆ti
+ |yi+1−yi+2|

∆ti+1+∆ti+2

]
over (ti, ti+1) (57)

||x(8)|| ≈ θ8(t) = max
[
2 |yn−2−yn−1|

∆tn−2+∆tn−1

]
over (tn−2, tn−1) (58)

where yi is the dimensionless seventh order derivative on segment i, given by:

yi =
x(7)(τ)

∆ti
= 7 !

[
xi x′i xi2 x′i2 xi3 x′i3 xi+1 x′i+1

]
· b

∆t7i
, (59)

in which b is the last column of B−1. The new mesh points can now be computed using [5]:

ti+1 = I(ti+1)−1

[
iI(tn)
n−1

]
(60)

where

I(t) =

∫ t

t1

θ8(s)1/8ds. (61)

Since θ8(t) is a piecewise constant function, the integral I(t) is a piecewise linear function, which

can be solved for ti+1 in Eq. 60. Using the new mesh, the states are interpolated using Eq. 27, such

that the dynamics are conserved. Similarly, the control and control derivative are also interpolated.

Finally, the slack variables (ηηη) are recalculated for the new controls and states, such that the path

constraint violation of the new mesh is minimized.

Note that the activation of the solar sail after the one-day ballistic phase generates a discontinu-

ity in the dynamics. Therefore, the trajectory before activation and the trajectory after activation

of the solar sail are treated as different phases in the error estimation algorithm. As a result, the

moment at which the solar sail is activated, always coincides with a node point.
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VII. Design process

In order to generate feasible transfer trajectories, the theory described in the previous sections

is applied in a systematical manner. First, an initial guess to the trajectory optimization problem

is generated. Secondly, the departure altitude as well as the perigee altitude of the HEO orbit

are reduced using a stepwise approach. If a transfer trajectory with a perigee altitude of 250 km is

found, the parking orbit inclination and argument of perigee constraints are enforced. Subsequently,

the found trajectory for SC1 is used as an initial guess for the trajectory problem of SC2. Finally,

a subsystem mass analysis is carried out for the fastest trajectories.

A. Generating the initial guess

To generate an initial guess for SC1, first a fixed arrival time (tarrival) on the SSO is selected.

To find the corresponding state, xSSO, the states are integrated along the SSO from t = 0 to tarrival

using MATLAB®’s "ode45.m" function [27] in accordance with subsection IIIA. An initial guess for

the transfer trajectory is subsequently generated by propagating the dynamics of the CR3BP from

xSSO in reverse time, where the LOSL is used to determine the control along the trajectory. The

backwards propagated trajectory is truncated in the interval
[
tarrival tarrival −∆ttransfer,max

]
at

the point with the closest approach to GEO-altitude. Here ∆ttransfer,max is the maximum allowable

transfer time. The trajectory is rewritten as the NLP problem described in section V, by evaluating

the states, controls, rotation rates and slack variables on the node and internal points. In total, 100

equally spaced node points per lunar period are used to describe the initial guess. A flowchart for

generating the initial guess appears in Figure 10.

Integrate SSO over  
[t = 0, tarrival]

Backwards
integration over

[tarrival,  
tarrival-Δttransfer,max]

Cut at closest
approach to  
GEO-altitude

Save variables in
NLP format

Locally optimal
steering law

Load SSO

xSSO,0  
uSSO xSSO

xguess(t) 
uguess(t) 

uLOSL(t) 

Calculate altitude

r31(t) 

xguess,cut(t)  
uguess,cut(t)

Fig. 10 Flowchart used for generating the initial guess using the LOSL
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B. Enforcing altitude constraints

In order to increase the feasibility of the trajectory, constraints are enforced through the col-

location method. In addition to the constraints, the sail acceleration is set to zero during the first

day of the trajectory, allowing enough time for the solar sail to deploy. The approach in Fig. 10

does not ensure that the start of the trajectory occurs at GEO-altitude. Therefore, the altitude

constraint on the departure point is gradually introduced, reducing the altitude of the departure

point to GEO-altitude using ten consecutive steps. During each step, the constraints in the NLP

problem are enforced using the Gauss-Newton algorithm, followed by a new mesh refinement with

an equidistributed error. Such a stepwise approach is applied as the initial guess may be far from a

constraint-satisfying solution and the NLP-solver might diverge for such large constraint violations.

Furthermore, intermediate mesh refinements will improve the convergence to a feasible solution.

When the departure point coincides with GEO-altitude, the orbital elements of the parking orbit

corresponding to the departure point are calculated. The GEO-altitude constraint is then replaced

by the perigee altitude constraint and is reduced in a similar stepwise approach to 250 km using 20

steps. During the perigee reduction steps, no altitude constraint on the departure point is enforced.

The altitude of the departure point might therefore depart from GEO-altitude and thus, the tra-

jectory is trimmed by cutting or propagating the starting point up to GEO-altitude. This allows

for small variations in the overall transfer time during each iteration and enables a wider radius

of convergence. The flowchart for enforcing the GEO-altitude and perigee altitude constraints is

shown in Fig. 11.

C. Trajectory for SC1

If a trajectory is found with a perigee altitude of 250 km and a departure altitude equal to GEO

altitude, additional constraints are enforced, such that the trajectory coincides with a HEO of the

Soyuz launcher described in section III B. An inclination constraint of 6 deg as well as an argument

of perigee constraint of 178 deg are enforced in a single step. Note that, in order to complete the

transformation between the ECL and SYN frames, a phase angle ϕ2,0 in Eq. 17 is selected through

a grid search, for which the discrepancy with respect to the newly enforced constraints is minimal.
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Fig. 11 Flowchart used for enforcing the GEO-altitude and perigee altitude constraints using

a stepwise approach

D. Trajectory for SC2

Once a feasible trajectory for SC1 is found, a second trajectory is sought for SC2. Preferably,

both spacecraft are launched at the same time with the same launcher, reducing mission cost and

complexity. This requires two distinct transfer trajectories with different arrival points along the

SSO, but with identical departure conditions. It is difficult to exactly match six states at a set

departure time, even using the collocation method described in this work. Therefore the following

method is adapted. It appears that the transfer trajectories and departure conditions remain close

to the Earth-Moon orbital plane. In addition, the SSOs of the two spacecraft are close to symmet-

rical in the (x̂SY N , ŷSY N )-plane. The found trajectory for SC1 can therefore be mirrored in the

(x̂SY N , ŷSY N )-plane and used as an initial guess for SC2. This results in a feasible trajectory satisfy-

ing the dynamics and path constraints, but with minor constraint violations on the departure point

and major constraint violations at the arrival point. Furthermore, since the entire trajectory is mir-

rored, the arrival control, nz,SSF , is pitched in the opposite direction with respect to the desired SSO

attitude. Also, the SSO is not perfectly symmetric in the (x̂SY N , ŷSY N )-plane, which causes a small

offset between the final node and the SSO. In order to reduce the constraint violations, an additional

trajectory phase is added at the end of the transfer to allow the control to reverse its z-component.

As an initial guess for this phase, the states of the SSO are used over which the control varies

semi-linear from n̂SC2,SSF , (tf,SC1) =

[
cosα 0 sinα

]T
to n̂SC2,SSF (tf,SC2) =

[
cosα 0 − sinα

]T
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in accordance with Eq. 30, with α = 35.26 deg as in section IIIA. A total of 50 nodes are used to

describe this phase, with a time length of π/Ωs or 0.25PSSO, which equals 14.84 days. The flowchart

used for enforcing parking orbit constraints for SC1 and finding the trajectory with identical launch

conditions for SC2 can be seen in Fig. 12.

Equidistribute error
and solve NLP

problem

Mirror trajectory and
add 50 nodes of
SSPO for SC2

Equidistribute error
and solve NLP

problem
Save variables SC1

and SC2
Enforce parking orbit
constraints and solve

NLP problem

Xperigee,solved  
tperigee,solved 

XSC2  
tSC2 

XSC1 tSC1 

Load NLP variables

XSC2,guess  
tSC2,guess 

XSC1  
tSC1 

XSC1  
tSC1 

Fig. 12 Flowchart used for enforcing the parking orbit constraints for SC1 and finding a

feasible trajectory for SC2.

E. Spacecraft mass budget

A preliminary spacecraft mass budget is investigated for the set of trajectories for SC1 and SC2

with the shortest transfer time. Two scenario’s are presented. The first scenario considers the mass

breakdown for a large satellite, utilizing the complete payload capacity of a single Soyuz launch.

The second scenario considers a cubesat demonstration mission, with an assumed spacecraft mass of

10 kg. A parametric mass analysis is carried out to find an estimation of the subsystem masses. As

solar-sail technology is relatively new, no reliable mass estimation can be made based on reference

satellites. Instead mass fractions for communication satellites are used from Ref. [28], where the

mass fraction used for the propulsion subsystem is replaced by a calculation of the required sail area

and consequently the required sail mass. The used mass fractions are shown in Table 5.

The solar-sail mass can be calculated as a function of the solar-sail area As using the critical

sail loading σs of 1.53 g/m2 [1] and the lightness number β0:

β0 = σ∗
As

m3
=
aEMr

2
4

µ4
, (62)

where r4 is the distance to the Sun equal to 149.6× 106 km [20] and µ4 is the gravitational parameter

of the Sun equal to 132 712× 106 km3/s2 [20]. Using these values and an aEM equal to 0.2698 mm/s2
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Table 5 Mass fractions for communication satellites from Ref. [28]. Normalized mass fractions

found by removing the propulsion subsystem.

Mass fractions

Payload Structure Thermal Power TT&C ADCS Propulsion

Fractions 0.274 0.213 0.036 0.319 0.048 0.069 0.038

Normalized fractions 0.2857 0.221 0.0375 0.3326 0.0501 0.0719 -

it is found that β0 equals 0.0455. The spacecraft mass m3 is extracted from Fig. 5 and is used to

determine the required sail area. The solar-sail mass can then be calculated using:

ms = Asσs (63)

where the sail loading σs is equal to 0.010 kg/m2, which is assumed feasible for near-term sail

technology [29].

VIII. Results

This section presents the results of the approach outlined in section VII. First, the trajectories

created with the LOSL are presented. Subsequently, suitable trajectories are selected from this set,

which are used as an initial guess for the collocation scheme. The results are initially presented

without the rotation rate constraint active, followed by results that assumes a maximum rotation

rate of 20 deg/day. Finally the results of a subsystem mass analysis are presented for the trajectory

with the shortest transfer time.

A. Trajectories with the LOSL

In order to generate a complete map of possible initial guess transfers, 2000 trajectories are

generated using the reserve time LOSL propagation approach, by varying the arrival location along

the SSO. A subset of 200 trajectories propagated for 12 days is shown in Fig. 13. It can be seen

that the trajectories are not symmetric, due to the clockwise motion of the Sun, and thus the SRP

direction. If the spacecraft is placed along one of these trajectories and applies the LOSL, it will

arrive at the targeted SSO.
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Fig. 13 Set of 200 trajectories connected to the SSO, propagated for twelve days.

By extending the propagation time to 365 days, the results in Fig. 14 are obtained. In Fig. 14,

the distance of 2000 trajectories with respect to Earth is shown as a function of the arrival time on

the SSO, expressed in orbital periods (PSSO), and the transfer time.

Fig. 14 Distance as a function of the arrival time on the SSO and transfer time to the SSO,

including the cutoff points for the initial guesses of the collocation method.
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In Fig. 14, the grayscale indicates that the trajectory starts at a large distance from Earth.

Over the reverse time propagation, the trajectory will start to decrease its distance with respect to

Earth, which is shown by the darker shaded areas. The propagation is terminated when the perigee

altitude becomes less than 250 km, if the altitude reaches two Earth-Moon distances or if the solar

sail crashes into the Moon. In most cases, the spacecraft will ultimately enter a spiral trajectory

around Earth until a perigee altitude of 250 km is reached. The geometry of the trajectory varies

significantly by changing the arrival location along the SSO. The quickest trajectory that reaches

a perigee altitude of 250 km departs at 0.1205PSSO and achieves a transfer time of 50.7 days. On

the other hand, if an arrival time in the range of 0.890PSSO − 1PSSO is selected, trajectories are

found containing a lengthy Earth escape spiral connected to a parking orbit similar to geostationary

transfer orbit. A trajectory that arrives between 0.456PSSO − 0.507PSSO travels past the L2 point

and escapes the Earth-Moon system, while a trajectory arriving between 0.556PSSO − 0.573PSSO

crashes into the Moon.

An example trajectory for 0.35PSSO is shown in Fig. 15(a), with the corresponding control in

Fig. 15(b). It can be seen that this trajectory departs from an highly elliptic orbit around Earth

and performs multiple flybys close to the Earth. After a total transfer time of 108.88 days, the

spacecraft arrives at the SSO. Furthermore, the rapid changes in the Cartesian components of the

control in Fig. 15(b) require an extremely agile solar sail.
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Fig. 15 a) Transfer trajectory using locally optimal steering law for

tarrival = 1.4π/Ωs = 0.35PSSO. b) Corresponding sail attitude.
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While for the transfers that are truncated at an Earth altitude of 250 km match the required

perigee altitude of the Soyuz parking orbits, the required inclination and argument of perigee of the

HEO are currently unaccounted for. Furthermore, although the control is locally optimal, it can

not be concluded that the global trajectory is optimal. Especially the lengthy Earth escape spirals

contain multiple flybys at altitudes lower than 1000 km, which is not considered feasible for solar

sails [30]. Also, the control provided by the LOSL contains singularities in attitude, which is not

feasible with current or near-term technology [31]. Finally, the arrival attitude of the sail does not

match the required attitude for the SSO. In order to address these discrepancies and improve the

feasibility of the results, the collocation method of section V is employed.

B. Inactive rotation rate constraint

The initial guesses for the 12th-order Gauss-Lobatto collocation method are extracted from the

trajectories in Fig. 14. A maximum transfer time interval of 3π to 6π is imposed with steps of

π, on which the closest flyby with respect to GEO is selected as cutoff point, as shown in Fig.

14 by the white crosses. The arrival time on the SSO is furthermore discretized using 40 points

equally spaced along the SSO, i.e., at intervals of 0.1π/Ωs in dimensionless units. This results in

160 possible initial guesses that are subsequently transferred into the collocation method, where

the performance of all resulting trajectories is shown in Fig. 16. On the x-axis, the transfer time

of the trajectory is shown, while on the y-axis the apogee altitude of the corresponding HEO can

be seen. If the apogee altitude of the parking orbit increases, the maximum deliverable spacecraft

mass of a Soyuz launch to such orbit decreases as given in Fig. 5. Furthermore, the marker color

describes the arrival time on the SSO and thus the used geometry for the initial guess. If a feasible

trajectory with a perigee altitude of 250 km is found, it is shown as a circle in Fig. 16. In addition,

converged trajectories with the desirable inclination and argument of perigee are indicated with a

triangle symbol. Finally, if a feasible trajectory for SC2 is found, it is shown as a star in Fig. 16.

Out of 160 initial guesses only 36 transfers are found for which the perigee altitude constraint

is satisfied. Other initial guesses failed to converge while reducing the altitude constraint using the

stepwise approach. The quickest feasible trajectory requires a transfer time of 39.6 days and arrives
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Fig. 16 Feasible transfer trajectories without rotation rate constraint active.

at the SSO at 0.125PSSO. After constraining the inclination and argument of perigee, 24 feasible

trajectories remain, of which many have a close overlap between the round and triangular markers

indicating that the perigee-altitude satisfying trajectories were already close to matching with a

Soyuz HEO. Finally, the 8 trajectories for SC2 are represented by the star-shaped markers. Note

that after SC2 arrives in proximity of the SSO, an additional period of π/Ωs is added, which results

in a constant increase in the transfer time of 14.84 days for SC2. The quickest trajectory for SC2

completes the transfer in 67.8 days, while the trajectory for SC1 with identical departure conditions

arrives at the SSO in 53.0 days. These trajectories are shown in Fig. 17 with respect to the SYN

frame, where the corresponding control as a function of time is given in Fig. 18.

Both trajectories follow the same path during the initial ballistic phase. After one day, the

solar sail deploys and the two trajectories as well as the control history start to diverge. Over time,

two flybys close to the Earth are performed at altitudes higher than 10 000 km. A major difference

between the trajectories can be seen by comparing the arrival conditions in Fig. 17(c) and 17(d),

as both spacecraft are connected to different points along the SSO. The control for both spacecraft

is given in Fig. 18, which depicts an initial ballistic phase, followed by a rapidly varying control

profile since no rotation rate is enforced. The results show that solar-sail transfer trajectories are

possible, although the control still contains singularities.
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Fig. 17 (a) Trajectory for SC1 projected on (x̂SY N , ŷSY N )-plane. (b) Trajectory for SC2 pro-

jected on (x̂SY N , ŷSY N )-plane. (c) Trajectory detail for SC1 projected on (x̂SY N , ŷSY N )-plane.

(d) Trajectory detail for SC2 projected on (x̂SY N , ŷSY N )-plane.
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Fig. 18 (a) Control for SC1, expressed in Cartesian coordinates. (b) Control for SC2, expressed

in Cartesian coordinates. (c) Control for SC1, expressed in cone and clock angle. (d) Control

for SC2, expressed in cone and clock angle
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C. Active rotation rate constraint

In order to address the singularities in the control, the same trajectories are regenerated but

with an active rotation rate constraint. These results are shown in Fig. 19.
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Fig. 19 Results with rotation rate constraint active.

By comparing Fig. 16 and 19, it can be seen that similar transfer times are found, irrespective

of the activation of the maximum rotation rate constraint. However, the average apogee altitude is

increased, indicating that constraining the rotation rate results in less energy efficient trajectories.

This is expected as the locally optimal steering law requires high rotation rates and thus constraining

the rotation rate results in a less optimal control. Furthermore, by enforcing a maximum rotation

rate, the constraint violation is increased, requiring more iterations in the Gauss-Newton algorithm

with respect to the unconstrained case. These iterations will cause the control profile to diverge from

the initial guess, which can cause either an increase or decrease in performance. As the results are

feasible and not optimal, a direct comparison of the performance between Fig. 16 and 19 cannot be

made. However, the results do show that multiple feasible solar-sail trajectories continue to exists

while including a maximum rotation rate constraint of 20 deg/day.

Out of 160 initial guesses, 23 trajectories are found with a perigee altitude of 250 km, of which

the quickest trajectory achieves a transfer in 41.8 days. For this trajectory however, no matching

trajectory for SC2 was found. Instead, out of 9 found trajectories for SC2, the quickest result
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completes the transfer in 67.89 days, while a trajectory for SC1 with identical departure conditions

completes its transfer in 53.06 days. These trajectories are shown in Fig. 20 with respect to the

SYN frame, where the corresponding control as a function of time is given in Fig. 21. In order to

determine the departure conditions, a value of φ2,0 = 135.4 deg has been assumed in Eq. 17.
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Fig. 20 (a) Trajectory for SC1 projected on (x̂SY N , ŷSY N )-plane. (b) Trajectory for SC2 pro-

jected on (x̂SY N , ŷSY N )-plane. (c) Trajectory detail for SC1 projected on (x̂SY N , ŷSY N )-plane.

(d) Trajectory detail for SC2 projected on (x̂SY N , ŷSY N )-plane.

The trajectories shown in Fig. 17 and 20 have a similar shape as they are both derived from

the same initial guess. Major differences can be seen in Fig. 21, as the maximum rotation rate

constraint requires a smooth control profile. Note that δ is undefined for α = 0, which allows for

rapid change in δ without violating the rotation rate constraint. These results show that solar-sail

transfer trajectories are feasible in the Earth-Moon system without requiring long transfer times,

low-altitude flybys or singularities in the control.
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Fig. 21 (a) Control for SC1, expressed in Cartesian coordinates. (b) Control for SC2, expressed

in Cartesian coordinates. (c) Control for SC1, expressed in cone and clock angle. (d) Control

for SC2, expressed in cone and clock angle

Table 6 Spacecraft subsystem mass estimations in kg.

Payload Structure Thermal Power TT&C ADCS Sail Total

2.01 1.56 0.26 2.34 0.35 0.51 2.97 10.00

232.89 181.04 30.60 271.13 40.90 58.65 344.90 1160.00

D. Mass budget analysis

The transfer trajectories in Fig. VA are used for the analysis on the mass budget. Two mass

budgets are constructed, one for a large spacecraft utilizing the full Soyuz capacity, and another for

a 10-kg cubesat demonstration mission. Based on the HEO apogee altitude of 335 200 km, the Soyuz

launcher can deliver two spacecraft of 1160 kg each (see Fig. 5), which is comparable to the solar-sail

spacecraft described in Ref. [6]. Table 6 contains the results of the preliminary mass budget. By

estimating the required sail size, it is found that the 1160-kg mission requires a solar-sail area of

185.71× 185.71 m2 and allows for a 232.89 kg payload, while the 10-kg cubesat mission requires a

sail area of 17.24× 17.24 m2 and allows for a 2.01 kg payload.
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IX. Conclusion

The purpose of this work was to find feasible solar-sail transfer trajectories to a constellation

proposed in previous work. The constellation consists of two spacecraft placed in solar-sail displaced

Earth-Moon L2 vertical Lyapunov orbits and can provide continuous coverage of the Aitken basin

and the lunar South Pole, while maintaining a permanent view of the Earth.

The transfer trajectories, opposed to previous Earth-Moon solar-sail trajectory designs in the

literature, do not contain singularities in the control history and depart from standard Soyuz Earth

parking orbits. The 12th-order Gauss-Labotto collocation method and an adaptive mesh refinement

method are applied to rewrite the trajectory problem to a nonlinear programming problem, which

is consequently solved using the Gauss-Newton algorithm. It is shown that eight path constraints,

such as altitude, rotation rate and continuity constraints, can conveniently be implemented through

the application of the collocation method.

The collocation method is used to find sets of two feasible trajectories with identical launch

conditions, that can be used to transfer both spacecraft simultaneously to their correctly-phased

positions along the solar-sail displaced L2 vertical Lyapunov orbits. During the transfers, the mini-

mum altitudes with respect to Earth and the Moon are constrained to 10 000 km and four lunar radii,

respectively. Also, the maximum rotation rate of the solar sail is constrained to 20 deg/day, which

mitigates undesirable control singularities. The quickest transfer time solution shows that the first

spacecraft will reach its target orbit after a transfer time of 53.06 days, while the second spacecraft

requires a transfer time of 67.89 days. A single Soyuz launch can deliver two 1160-kg spacecraft

into these transfer trajectories. A subsystem mass estimation based on reference satellites shows

that the spacecraft can carry a 232.89-kg payload and require a solar-sail area of 185.71× 185.71

m2. Similarly, a 10-kg cubesat mission would be able to carry a 2.01-kg payload and requires a

17.24× 17.24 m2 solar sail. These results show that solar-sail transfer trajectories in the Earth-

Moon system are feasible without requiring long transfer times, low-altitude flybys or singularities

in the control.
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3
Conclusions and Recommendations

This chapter presents the conclusions of the research work carried out during this thesis. In section 3.1
the research questions are answered, followed by proposed recommendations in section 3.2. Finally,
the implications of the results with respect to the development of space exploration in general are
evaluated in section 3.3.

3.1. Conclusions
The research objective of this thesis is to contribute to the development of solar-sail missions, by de-
signing transfer trajectories to the constellation of solar-sail displaced L2 vertical Lyapunov orbits in
the Earth-Moon system, to support communication with the far side of the Moon as well as the lunar
South Pole. The found transfer trajectories, opposed to previous designs if transfers to orbits in the
Earth-Moon system, are connected to standard Soyuz highly elliptical parking orbits and do not contain
singularities in the control history. The 12th-order Gauss-Labotto collocation method and an adaptive
mesh refinement method are applied to rewrite the trajectory problem to a nonlinear programming prob-
lem. Search directions are sought using the Gauss-Newton algorithm, while a line search method is
applied to find a new estimation of the decision vector. It is shown that eight path constraints, such as
altitude, solar-sail rotation rate and continuity constraints, can conveniently be implemented through
the application of the collocation method.

The research objective is achieved by answering the main research question and evaluating the
research subquestions:

What are the achievable transfer times and spacecraft masses for a solar-sail trajectory from an
Earth-based parking orbit to a constellation of solar-sail displaced L2 vertical Lyapunov orbits in the
Earth-Moon system?

a) What transfer time can be achieved by solving the trajectory problem through the application of
locally optimal steering laws?
In total, 2000 trajectories have been generated through the reverse-time integration of the locally
optimal steering law. The 2000 trajectories originate from equally spaced initial conditions along
the solar-sail displaced L2 vertical Lyapunov orbit, providing a complete set of all possible transfer
trajectories using this steering law. It is shown that some trajectories arrive from outside the Earth-
Moon system through the L2 point while other trajectories crash on the Moon. However, most
trajectories contain spiral trajectories around Earth. The highly elliptical spiral trajectories depart
from a highly elliptical orbit and have a short transfer time, with a minimum of 50.7 days. The more
circularized spiral trajectories contain transfer times longer than a year and depart from medium
Earth orbits. It is shown that transfer trajectories are found, but the results contain singularities
in the attitude control and do not connect to actual parking orbits.

b) What transfer times can be achieved through the application of the 12th-order Gauss-Lobatto
collocation method?
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50 3. Conclusions and Recommendations

The results generated under research subquestion a) require long transfer times and do not com-
ply with all constraints. In order to improve the quality of the results, the trajectories have been
further constrained in the 12th-order Gauss-Lobatto collocation method. The transfer time of the
trajectories is reduced by truncating the trajectory close to geostationary orbit altitude. Boundary
constraints are subsequently enforced, such that the departure point of the trajectory coincides
with a parking orbit with a perigee altitude of 250 km. Path constraints are enforced containing
a minimum altitude of 10 000 km with respect to Earth and four lunar radii with respect to the
Moon. Then, transfer times are achievable starting from 39.6 days. The obtained trajectories
have a higher feasibility than the results found using the locally optimal steering law, due to the
elimination of low-altitude flybys. Furthermore, the achievable transfer time has been reduced by
11.1 days.

c) What is the effect on the found transfer trajectories if the maximum solar-sail rotation rate is
constrained to 20 deg/day?
The results found under research subquestion b) still contained singularities in the control. A more
realistic control profile is found by constraining the maximum rotation rate of the sail to 20 deg/day.
The fastest trajectory with a constrained rotation rate achieves a transfer within 41.8 days. The
rotation rate constraint causes a larger initial constraint violation, requiring more iterations to solve
the trajectory problem. The increase in iterations leads to a solution which is further located from
the initial guess, which can cause a decrease or increase in transfer time. As the trajectories
are not optimized, the decrease in performance due to the constraint cannot be estimated by a
direct comparison. However, it can be concluded that feasible transfer trajectories continue to
exist after constraining the maximum rotation rate, with an increase in transfer time of 2.2 days.

d) What is the performance of the found transfer trajectories in terms of spacecraft mass for a realistic
mission scenario involving a single Soyuz launch?
The trajectories found under research subquestion c) are further constrained to coincide with
Soyuz parking orbits, by enforcing inclination and argument of perigee constraints on the initial
condition of the transfer. Trajectories are found for both spacecraft, with identical departure con-
ditions, such that the entire constellation can be initiated using a single Soyuz launch. The fastest
set of trajectories achieves a transfer time of 53.1 days for the first spacecraft, while the transfer
for the second spacecraft takes 67.9 days. These trajectories depart from a highly elliptical or-
bit with an apogee altitude of 335 200 km, to which the Soyuz launcher can deliver two 1160-kg
spacecraft. A preliminary subsystem analysis shows that the spacecraft requires a sail area of
185.7 × 185.7 m2 and can carry a payload mass of 232.9 kg. For a hypothetical 10-kg cubesat
spacecraft, a sail area of 17.24 × 17.24 m2 is required and a payload mass of 2.01 kg will be
available.

From the answers to the research questions it is clear that the objective of this thesis has been
achieved as the combined answers to the research sub questions resolve the main research question.
The results show that solar-sail transfer trajectories are feasible in the Earth-Moon system without
requiring long transfer times, low-altitude flybys or singularities in the control.

3.2. Recommendations
Several recommendations are proposed for further research on solar-sail trajectory design. First of
all, some of the assumptions need to be eliminated, resulting in a more accurate dynamical model.
Secondly, chosen threshold values used in the constraints formulation can be varied in order to inves-
tigate their influence on the performance of the trajectories. Finally, the used collocation method and
trajectory transcription can be expanded for future trajectory optimization.

• Expand the dynamical model
The dynamical model adopted in this thesis uses the framework of the circular restricted three-
body problem, which assumes circular orbits for the Earth and Moon. In addition, it has been
assumed that the Earth-Moon system progresses along a circular orbit around the Sun and that
all orbits of the Sun-Earth-Moon system are coplanar in the ecliptic plane. However, in fact,
the lunar orbit has an eccentricity of 0.0549 [18], the inclination of the Earth-Moon system with
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respect to the ecliptic is 6.68 deg [18] and Earth’s orbit around the Sun has an eccentricity of
0.0167 [18]. In order to improve the accuracy of the dynamical model, the elliptical restricted
three-body problem can be used to model the Earth-Moon system, inclined to the ecliptic plane,
as has already been considered for the orbits of the constellation [8]. Furthermore, as the position
of the Sun is already known with respect to the Earth-Moon system, the solar gravity perturbation
and the varying solar radiation pressure inside the Earth-Moon system can be included as well.
Finally, a detailed trajectory design requires a model utilizing the actual ephemeris of the planets
and the Moon, such as DE421 [19].

• Expand the solar-sail model
In this thesis, the ideal solar-sail model has been adopted to model the acceleration originating
from the solar radiation pressure. The ideal solar-sail model assumes that every encountered
photon will be reflected specularly. In fact, a realistic solar sail will absorb part of the photons,
diffusely reflect part of the solar radiation and will also degrade over time [20]. Due to the thin
structure of the sail, deformations and buckling will occur, causing a further reduction in the gen-
erated acceleration [1]. When taking these deficiencies into account by employing a non-ideal
sail model, the feasibility of the transfer trajectories can be further improved.

• Relax the altitude constraints
In the results of this thesis, minimum altitude constraints are active to reduce possible gravity
gradient perturbations and drag on the solar sails. A rather conservative altitude of 10 000 km is
assumed with respect to the Earth and a value of four lunar radii with respect to the Moon. In fact,
faster and more efficient transfer trajectories might be possible if low-altitude flybys are allowed.
In order to relax the altitude constraints, a detailed analysis is required on solar-sail drag and
gravitational perturbations. Note that, at low-altitude flybys, the dynamics change faster, requiring
more nodes and mesh refinements in order to accurately model the trajectory.

• Elaborate on the rotation rate constraint
In this thesis, a constraint is applied enforcing a maximum rotation rate of the solar sail. The as-
sumed value for the maximum rotation rate can be further investigated by analyzing sail attitude
dynamics. In practice, not only the maximum rotation rate, but also the maximum angular accel-
eration will be a limiting factor for attitude control. When rotating the normal direction of a spinning
solar sail, nutation and precession can occur [21]. Finally, during detailed mission design, both
the attitude and orbital dynamics need to be coupled and solved for simultaneously.

• Construct a detailed mass budget
The current mass budget is constructed using reference data for communication satellites. Incor-
porating a solar sail will influence the design of the satellite structure, the attitude control system
and the propulsion subsystem. Since only a limited number of solar-sail missions have been car-
ried out to date, an accurate estimation using reference spacecraft cannot be made and thus a
detailed spacecraft mass budget needs to be defined.

• Include a variable time vector
In this work, the time vector that describes the time at the nodes of the discretized transfer is
described as a constant vector and remains constant during iterations of the transfer trajectory.
By varying the fixed departure and arrival time of the transfer trajectory, the radius of convergence
can be increased leading to more transfer trajectories. Furthermore, a variable time vector can
later be optimized using optimization algorithms.

• Expand the collocation method with an optimization technique.
The posed problem in this thesis has been solved using a robust and efficient collocation method.
Equality and inequality constraints are conveniently implemented without the need for an active-
set strategy. This leads to feasible trajectories that do not require low-altitude flybys or singular-
ities in the control. Although the found trajectories are feasible, the trajectories have not been
optimized for a specific mission objective. By combining the collocation method with an opti-
mization technique, optimal trajectories may be found subjected to the imposed constraints, with
shorter transfer times or higher payload masses.
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3.3. Implications
In addition to the conclusions, which answer the technical research questions, the contributions by this
thesis to space exploration on a more higher level are discussed in this section.

First, the presented method in this thesis is applied to design transfer trajectories to solar-sail dis-
placed L2 vertical Lyapunov orbits in the Earth-Moon system. However, the application of the developed
method is not limited to solar-sail displaced L2 vertical Lyapunov orbits. Instead, the method can be
applied to other trajectory problems, by replacing the selected target orbit in the Earth-Moon system.
This way, the method can be applied to find transfers departing from a parking orbit around Earth to
the clover-shaped constellation in Ref. [22], the lunar pole-sitter mission in Ref. [12] or other solar-sail
orbits in the Earth-Moon system. The dynamical system can also be altered, by replacing the used set
of ordinary differential equations. If the Sun-Earth circular restricted three body problem is included,
the method can be used to find transfers to the so called quasi-pole-sitters in Ref. [7], without the need
for any propellant consumption. The method may also be applied to find transfers between the North
pole-sitter and South pole-sitter orbits, providing a propellant-free alternative to the work in Ref. [6].

Second, the solar-sail transfer trajectories are designed using minimum altitude as well as maxi-
mum rotation rate constraints. Opposed to previous results [12, 13], no singularities in the controls are
present, resulting in feasible solar-sail transfer trajectories within the Earth-Moon system. This demon-
strates that the 12th-order Gauss-Lobatto collocation method can be applied to highly constrained prob-
lems. Furthermore, by considering both the control, u, as well as the derivative of the control, u̇, as
decision variables, it was possible to constrain the solar-sail rotation rate. The representation of the
control can be applied to other solar-sail problems as well, leading to an increased feasibility of the
design of future solar-sail orbits and trajectories.

Finally, the design of the transfer trajectories is required for future solar-sail missions, such as the
proposed constellation. By designing the transfer trajectory, the transfer times as well as possible
spacecraft mass are found, addressing a gap in literature. The designed trajectories also show the
applicability of solar-sail transfers in the Earth-Moon system, advocating for solar-sail technology as an
propellant-free alternative to low-thrust propulsion systems.
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A
Appendix: Verification and Validation

This appendix contains the results of the verification and validation procedures which have been con-
ducted to support the credibility of the results. First, it is verified that the individual building blocks are
correctly implemented with respect to the conceptual model. Secondly, it is validated that the model
output resembles feasible solutions to the trajectory problem.

A.1. Verification
In order to do verify the implementation of the solar-sail acceleration, the so-called solar-sail accelera-
tion ”bubble” is reconstructed [1]. Furthermore, the implementation of the overall dynamics is verified
by reintegrating the solar-sail displaced L2 vertical Lyapunov orbit.

A.1.1. Verification of the solar-sail acceleration bubble
For a perfect solar sail, the solar-sail acceleration acts along the solar-sail normal vector. By varying
the controls, such as the cone or clock angle, the direction and magnitude of the acceleration vector
changes. To verify the implementation of the acceleration model, the acceleration bubble from Ref. [1]
is reconstructed, by varying the cone angle, 𝛼, over a range from 0deg to 90 deg for a clock angle of
both 0 deg and 180deg. The resulting acceleration bubble is shown in Fig. A.1. It can be seen that
the shape of the acceleration bubble agrees with the reference solution in Ref. [1]. Also, the maximum
acceleration corresponds to the value of 𝑎0,𝐸𝑀 = 0.1 as considered in this thesis.
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Figure A.1: Solar-sail acceleration for varying sail attitudes. Acceleration given in dimensionless units for the Earth-Moon system.
Vector r43 is the sails position vector with respect to the Sun.
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A.1.2. Verification of the dynamical model
The dynamical model used in Ref. [8] is identical to the dynamical model used in this thesis, the solar-
sail augmented Earth-Moon circular restricted three body problem. In order to verify that the dynamical
model has been correctly implemented, the solar-sail displaced L2 vertical Lyapunov orbit from Ref.
[22] is reconstructed. For each point along the integrated orbit, the position error with respect to the
reference solution provided by the authors of Ref. [22] is evaluated, where the result is shown in Fig.
A.2. It can be seen that the integration error after one period equals only 7.59m, and thus the dynamical
model is assumed to be verified.
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Figure A.2: Position error of integrated solution with respect to the reference solution from Ref. [8] for one period of the solar-sail
displaced L2 vertical Lyapunov orbit.

A.2. Validation
First, it is validated that the used dynamics represent the actual accelerations in the Earth-Moon system.
Secondly, the initial guess generator is validated by reconstructing results from Ref. [13]. Furthermore,
the accuracy of the input and output of the collocation method are validated by reintegrating trajectories
and determining the constraint violation. Finally, the mesh of a found trajectory is compared to the mesh
of MATLAB®’s ”ode45.m” function [23], validating that the error is equidistributed along the segments.

A.2.1. Validation of the dynamical model
The correct implementation of the dynamical model was verified by reintegrating the solar-sail dis-
placed L2 vertical Lyapunov orbit in section A.1.2. It is assumed that the used approximations of the
dynamical model including the circular restricted three-body problem, solar-sail attitude model and pla-
nar Sun model are sufficiently validated by Ref. [8] and [12]. Based on this assumption, no validation
is required in which the approximations in the dynamical model will be compared with respect to the
actual dynamics of a solar sail in the Earth-Moon problem.

A.2.2. Validation of the initial guess generator
In this thesis, the locally optimal steering law is applied to generate initial guesses for the collocation
method. In order to validate the output of the initial guess generator, the results from Ref. [13] are
reproduced. Transfer trajectories are generated departing from geostationary transfer orbit (GTO) to an
L1 Lyapunov orbit in the Earth-Moon system. The specific Lyapunov orbit has a period of approximately
12 days and a Jacobi value of 3.1630. The transfers are generated using reverse time propagations,
similar to the approach in this thesis. An 𝑎0,𝐸𝑀 value of 0.5mm/s2 is assumed as well as the ideal
sail model. The planar Sun model is replaced by a model where the Sun is inclined with respect to
the Earth-Moon system. The trajectories travel along the stable manifold of the Lyapunov orbit for
approximately 18 days, before arriving at the L1 Lyapunov orbit. In order to limit the eccentricity of the
found transfer trajectories, the solar sail is feathered at regions around apogee. The found trajectory
can be seen in an inertial frame in Fig. A.3(a), where Fig. A.3(b) contains the reference solution. The
inertial ̂xIRF-axis coincides with the synodic ̂xSYN-axis of the Earth-Moon system at 𝑡 = 0, where 𝑡 = 0
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is chosen as the arrival time of the spacecraft on the stable manifold. Furthermore, the altitude as a
function of time can be seen in Fig. A.3(c), which should be compared to the altitude of the reference
solution in Fig. A.3(d).
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Figure A.3: Figures contain a transfer trajectory found using the locally optimal steering law. (a) Trajectory in an inertial reference
frame. (b) Reference trajectory in an inertial reference frame, image taken from Ref. [13]. (c) Altitude of trajectory plotted against
time. (d) Altitude of reference trajectory plotted against time, image taken from Ref. [13].

Some small discrepancies can be seen, which can be attributed to the following issues. First of all,
the exact geometry of the L1 Lyapunov orbit is not given. Secondly, the exact arrival time on the L1
Lyapunov orbit and travel time along the stablemanifold are rounded off to full days. Finally, the size and
definition of the constrained region around apogee is unknown. Small changes in the initial conditions,
or definition of the constrained region around apogee, cause major changes in the trajectory geometry.
It is assumed that all of these discrepancies, are not caused by the implementation of the locally optimal
steering law or the initial guess generator, but rather by the definition of the initial conditions. From the
similarities in geometry and transfer time in Fig. A.3(a) to A.3(d), it can be assumed that the initial
guess generator indeed produces the desirable transfer trajectories and is thus correctly implemented.

A.2.3. Validation of collocation method input and output
The initial guesses produced in this thesis are much shorter than the results in Fig. A.3(b). In order to
validate that the input for the collocation method contains a near-feasible trajectory, the initial guess,
transcripted to collocation nodes, is reintegrated in MATLAB®’s ”ode45.m” function [23]. After the collo-
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cation method converges, it should also be validated that the collocation method output complies with
the dynamics as well as the constraints. The results for both the input and output are shown in Fig.
A.4(a) to A.4(f).
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Figure A.4: (a) Trajectory of the initial guess versus the reintegrated dynamics. (b) Trajectory found using the collocation method
versus the reintegrated dynamics. (c) Position error of the initial guess versus the reintegrated dynamics. (d) Position error of
the output of the collocation method versus the reintegrated dynamics. (e) Constraint violation of the initial guess. (f) Constraint
violation of the output of the collocation method.
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The reintegrated trajectories are shown in Fig. A.4(a) and A.4(b). The general shape of the initial
guess trajectory is preserved even when integrating for periods longer than a month. The same is true
for the converged trajectory, although the trajectory starts to diverge after the final flyby near the Moon.

The position error along the integrated trajectory is shown in Fig. A.4(c) and A.4(d). The position
error after completing the 40-day trajectory of the initial guess is equal to 2033 km, while the converged
trajectory has a total integration error of 22 800 km. Note that the accumulated error for the position
grows significantly during the first and second flyby, causing a larger error for the converged solution
than for the initial guess. The position error shows a small dip at high altitudes due to smaller velocities.

The constraint violation of the initial guess is shown in Fig. A.4(e). A large constraint violation exists
at the moment of sail deployment, due to the non-continuity of the dynamics between two nodes. This
problem is addressed during the numerous mesh refinement iterations, where the non-continuity of
the dynamics is placed exactly on the node points. The maximum error is below 10−4, except for the
segment on which the solar sail deploys and the final node, where the locally optimal attitude profile
creates an offset with respect to the required attitude for the solar-sail orbit. The model solves the
trajectory problem according to the imposed constraints. In Fig. A.4(f), it can be seen that the constraint
violation is significantly reduced for the output of the the collocation method, with the maximum error
being lower than 10−12.

A.2.4. Validation of the mesh refinements
In this thesis, the collocation method is applied using an mesh refinement technique based on Ref.
[12, 24], which attempts to equidistribute the error over each segment. The found mesh within the collo-
cation technique is compared to the mesh distribution when reintegrating the solution using MATLAB®’s
”ode45.m” function [23], see Fig. A.5.
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Figure A.5: Mesh distribution of both the collocation algorithm and MATLAB®’s ”ode45.m” function [23]. Time is given in dimen-
sionless units for the Earth-Moon system.

In Fig. A.5 can be seen that the mesh distribution of the collocation method approximates the mesh
distribution of MATLAB®’s ”ode45.m” function. Concentrations of nodes are placed at flybys, while
fewer nodes are used when the spacecraft is further removed from either the Earth or Moon. Using
the results from MATLAB®’s ”ode45.m” function as a reference solution, it can be assumed that error
is successfully equidistributed, validating the mesh refinement technique.
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