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Abstract
With the prospects of decentralized multi-agent
systems becoming more prevalent in daily life, au-
tomated negotiation agents have made their place in
these collaborative settings. They are an approach
to promote communication between the agents in
reaching solutions that are better for all involved.
Recent literature has shown great potential in us-
ing machine learning, particularly model-free deep
reinforcement learning like Proximal Policy Opti-
mization (PPO), to develop more performant auto-
mated negotiation strategies. This work focuses on
using information from the opponent’s sequence of
offers in a bilateral negotiation to further improve a
baseline PPO agent. This involves extracting and
representing information from the opponent’s se-
quence of offers into a state vector with a fixed di-
mension to modify the input to the agent’s policy,
and then comparing the utilities this modified agent
achieves to the baseline PPO agent. Since there is a
large variety of numerical measures to represent a
sequence of offers, an ablation study is conducted
to investigate the effectiveness of each.
The modified agents consistently reached solutions
that had higher social welfare, although the agent’s
own utility did not improve or diminish signifi-
cantly in comparison to the base PPO agent.

1 Introduction
Intelligent agents are being embedded rapidly into daily life.
As a result, there is a need to study collaborative agents more,
with DeepMind’s exploration into Hanabi in 2020 being a
prime example of such focus [6]. There exist scenarios where
multiple agents need to collaborate to reach the most optimal
action; examples include search and rescue missions, self-
driving cars, and medical decision-making aids. In these sce-
narios, agents must negotiate with each other to collabora-
tively agree on a solution and thus the next action. However,
much of the current research focuses on competitive games
involving resource management and competition and not so
much on cooperative settings where actions need to be agreed
on by multiple parties.

Although automated negotiation agents have primarily
been created with heuristic approaches [1], Bagga et al. [4]
and Bakker et al. [5] have recently shown high potential for
a machine learning approach to creating agents. Particularly,
Bagga et al. [4] demonstrate the effectiveness of their vari-
ation of a model-free deep reinforcement learning algorithm
in the context of training an automated agent partaking in bi-
lateral negotiations in an e-market that outperforms existing
strategies and exhibits adaptive behavior in unknown envi-
ronments. Similarly, the agent in this paper uses the Proximal
Policy Optimization (PPO) [11] model-free deep reinforce-
ment learning algorithm.

The research question this paper aims to answer is: Can
a reinforcement learning negotiation agent’s performance be
improved with the information from the opponent’s sequence

of offers?. An improved agent would consistently reach ne-
gotiation agreements that have higher utility for the agent
and the opponent in comparison to the current baseline PPO
agent.

Sengupta et al. [12] have shown that by analyzing the se-
quence of offers made by the opponent, the agent’s negoti-
ation strategy can be adapted to perform significantly better.
This demonstrates the importance of the sequence of offers,
but their research uses this information to switch between a
set of predefined strategies. As a result, there is potential to
instead use the information gained from the opponent’s se-
quence of offers to improve an already effective strategy us-
ing PPO that does not need to rely on preexisting heuristic
strategies. Ultimately, this insight that the information from
the sequence of offers contributes significantly to the effec-
tiveness of an agent’s strategy is to be incorporated into the
base agent that uses PPO.

Introducing this information into the baseline PPO agent
involves representing the opponent’s sequence of offers into a
state vector with a fixed dimension which would be the input
to the agent’s policy. As a fixed dimension is needed for the
state, while the length of sequence of offers increases as nego-
tiation progresses, numerical measures are employed. How-
ever, the numerical measures that can represent a sequence
are diverse, and as such, an ablation study is conducted to ef-
fectively investigate the contributions of each measure. Sec-
tion 4 provides further details into this process.

2 Related Work
There are two main categories of related work: work showing
the effectiveness of using the opponent’s sequence of offers
to determine the agent’s strategy, and, literature demonstrat-
ing the effectiveness of various machine learning approaches
used by automated negotiation agents, specifically ones that
use reinforcement learning.

2.1 Learning from the Opponent’s Offers
Sengupta et al. [12] discuss that the complexity of automated
negotiation prevents a single strategy being dominant over all
strategies in the variety of negotiation environments and sce-
narios. As a result, their paper focuses on classifying the op-
ponent’s behavior and crucially having a mechanism in the
agent that lets it switch between existing strategies to bene-
fit from multiple “experts” within a negotiation session. Im-
portantly, the paper demonstrates that the information from
the opponent’s sequence of offers is sufficient for an agent to
learn to effectively switch and select different, contextually
more performant strategies. This suggests that the knowledge
of an opponent sequence of offers can have a considerable ef-
fect on this paper’s PPO agent’s strategy. However, Sengupta
et al. [12] do not cover using this understanding to develop an
agent that does not rely on swapping between existing strate-
gies but rather learns a custom heuristic-less strategy that al-
lows it to adapt to the opponent’s sequence of offers.

2.2 Machine Learning Approaches used by
Automated Negotiation Agents

Existing automated negotiation agents use a variety of ma-
chine learning approaches. Choi et al. [7] design an agent that



uses genetic algorithms in an attempt to learn the opponent’s
preferences using their offers on a stochastic approximation.
Zou et al. [15] combines evolutionary algorithms and rein-
forcement learning by using reinforcement learning to decide
when the evolutionary algorithm should evolve, outperform-
ing classic evolutionary algorithms like genetic algorithms.
Although proven effective, these algorithms are less feasi-
ble for modern negotiation settings since they require a large
number of rounds before they have an effective strategy. Yu
et al. [14] propose an agent that uses the Bayesian updating
rule to update its belief about the opponent’s negotiation pa-
rameters, which is then used to adapt its concession strategy
in bidding to maximize its own utility.

More recently automated agents that use reinforcement
learning are being studied. For instance, Bakker et al. [5]
propose a modular reinforcement learning based BOA (Bid-
ding strategy, Opponent model, and Acceptance condition)
[2] framework that implements an agent that uses Q-learning
to learn its bidding strategy. It is important to note, though,
that a Q-learning model can suffer from the curse of dimen-
sionality. Crucially, Bagga et al. [4] show that their agent’s
use of a model-free deep reinforcement learning algorithm
performs better than well-known existing strategies, plus the
agents that use the algorithm perform well and adapt to dif-
ferent scenarios without needing to be adjusted or reworked.

3 Background
The agent performs in the Stacked Alternating Offers Proto-
col (SAOP), a negotiation protocol commonly used in auto-
mated negotiation research, for example. In brief, agents send
bids alternating, and can choose to accept the opponent’s bid
before sending theirs. The goal in such a negotiation is to
maximize the agent’s utility (u) expressed by the given pref-
erences profile they have in the negotiation. Such a protocol
often has a deadline, in this paper represented by the time
available before the negotiation is dropped and the agents re-
sort to their reservation value.

The agent in design has a variation of the component-based
approach of Bidding strategy, Opponent model, Acceptance
Strategy (BOA) agent architecture as described by Baarslag
et al. [2]. Importantly, the agent uses PPO, which results in
some additional vital components in the agent’s architecture.
Table 1 gives a short overview of the main components in
the agent. Notably, due to the nature of PPO, the agent does
not have a specific Acceptance Strategy component, since the
policy that is trained outputs a goal, which if reached by re-
ceived bid the agent ends the negotiation by accepting the bid,
or the agent uses its Bidding Strategy component to make a
counter-offer.

The architecture of the agent using PPO is shown in Fig-
ure 1. The flow of the primary process involves observing
the opponent’s most recent bid, updating the state and Oppo-
nent Model with the observation, and feeding the state to the
policy to receive goal utilities for the agent (ugoal) and the
opponent’s goal utility (uopp goal). If the goals have not been
met by the received bid, the Bidding Strategy then attempts to
find the best bid that would most satisfy the outputted goals
to send as a counter-offer.

Figure 1: Overview of the Proximal Policy Optimization reinforce-
ment learning negotiation agent’s main process.

Importantly, the policy needs to have a fixed number of
inputs and outputs, referred to as the dimension of the state
space and the dimension of the action space, respectively, in
the context of PPO. However, the goal is to learn from the
opponent’s sequence of offers, the dimension of which in-
creases as the negotiation progresses. Therefore, the focus is
on representing the sequence of offers within a fixed dimen-
sion of state space which offers an increase in performance in
comparison to a base PPO agent that does not learn from the
opponent’s sequence of offers, represented as an increase in
the utility reached by the agent.

4 Methodology
4.1 Implementation
The primary challenge to overcome was representing a se-
quence of offers as a fixed dimension of state space to be used
as an input to the policy, since the sequence of offers would
change in dimension as the negotiation progresses. This pa-
per uses numerical statistics to describe the sequence of offers
instead, which results in a set of attributes that can represent
the list of values instead of inputting the values themselves
into the policy [10]. Table 2 gives an overview of the numer-
ical measures considered in this paper and the hypothesised
intuition into their effectiveness in improving the agent’s pol-
icy. As a result of using these measures, regardless of the
number of offers received by the agent, the dimension of the
input to the policy remains fixed.

The technical implementation for the PPO agent is avail-
able on GitHub1. Crucially, the state that is inputted into
the policy is created in the select action function within the
ppo agent.py file. Here the numerical measures as described
in Table 2 are implemented and sent to the policy as a state
vector. The values ugoal and uopp goal that the policy outputs
as its action vector is then used in the agent’s bidding strategy,
which is described in Section 3.

4.2 Experimentation
Since there are 7 available statistical measures, plus the base
agent’s progress within a negotiation session and the utili-

1https://github.com/brenting/negotiation PPO

https://github.com/brenting/negotiation_PPO


Component Description

Bidding Strategy The strategy the agent uses to send their next bid. Often uses the opponent model on top of the strategy
to make a bid that the agent estimates to have a good chance of being accepted and has a good utility.

Opponent Model A model of the opponent that is constructed during negotiation that is used to estimate the opponent’s
utility of a given bid. The Frequency model strategy is used, shown to be effective by Baarslag et al. [3]

Policy The component that is updated during Proximal Policy Optimization. The weights on the input and the
neural network nodes are updated following the reward function during training, while during runtime
the policy outputs actions based on the inputted state.

State The state is the input to the policy. The state can vary in dimension, but an increase in dimension results
in increased complexity for the policy and vice-versa.

Action The action component represents the output of the policy. In this agent, the output is used by the Bidding
Strategy to determine the next action for the agent.

Table 1: Brief overview of a PPO agent’s main components.

ties of the past 3 offers from the opponent inputs, an abla-
tion study will be conducted to have a clear understanding
of each input’s contribution to the performance of the agent.
Each version of the agent within this study is trained by pit-
ted against 17 of the 27 available existing agents developed by
students in the CSE3210 Collaborative Artificial Intelligence
course at the Delft University of Technology by building on
the findings in the Automated Negotiation Agents Competi-
tion (ANAC) [1].

Similar to this paper’s PPO agent, the agents used for train-
ing and testing this agent also follow SAOP and are imple-
mented in the GENIUS framework [9]. These agents’ domains
and preference profiles to be used during negotiation are gen-
erated randomly: for the bilateral negotiation 2 profiles are
randomly created using the full set of issues and values. Ad-
ditionally, the number of issues and the size of the bids in
the domains are also randomized. To maintain reproducibil-
ity, this is all generated pseudo-randomly using a fixed seed.
The remaining 10 of the 27 available existing opponents, thus
none of the agents in the training set are within the test set,
are used in testing the developed agent.

Additionally, each version of the agent is trained 5 times,
and results are then generated on the aggregation of the test
results of the 5 runs. Since the dimension of the state space
can be large for some agent versions, each agent is trained
for 6 hours to allow the algorithm sufficient time to train on
the more complex inputs. Importantly, each of these agents
are trained and tested on the same sets of agents to remove
the variability caused by the differing opponents. Negotiation
sessions have a deadline of 10 seconds.

5 Results
In this section the results according to the experimental setup
in Section 4.2 are presented. Refer to Table 3 for information
on each of the agents and how they affect the input state to
the policy, specifically columns Agent and Details.

Figure 2 displays the resulting utilities collected from the
ablation study. Due to the nature of the results initially col-
lected (Agents B and S1-S6), more state modifications were
tested and are displayed already in order to clarify effects.

Figure 2: Average utility for the agent versions in an ablation study.

This is discussed in greater depth in Section 6.

usocial = u+ uopp (1)
Social welfare (usocial) computed as equation 1 is a simple

notion of fairness - the overall utility achieved in the negotia-
tion. During analysis in Section 6 it was noted that the mod-
ified agents were reaching negotiation agreements that con-
sistently had higher opponent utilities (uopp), thus Figure 3
displays the usocial values for each agent developed.

Table 3 gives an overview of all the results collected during
the study, as well as the changes each agent represents on the
state.

Finally, a trace of the negotiation session the best perform-
ing agent, S12, had with one of the test agents, Agent 78, is
compared with the session Agent B had in the same environ-
ment in Figure 4.

6 Analysis
Initially, when the 7 numerical measures in Table 2 were used
in the ablation study and compared to the utilities achieved by
the base Agent B, the results showed insignificant changes in
the agent’s achieved utilities. The average utilities of Agents
S1-S7 were hovering around 0.622-0.802, well within the



Numerical measure Intuition

Dimension (L) The length of the sequence of offers made by the opponent can provide the policy insight
into the importance and weight on the rest of the numerical measures. Understandably, if
the negotiation session has just started the general numerical statistics do not provide the
full picture of the opponent and what strategy should be employed by the agent.

Sample Mean (µ) The mean of the utilities the opponent’s bids give to the agent provides a simple negotia-
tion environment-independent understanding of the opponent and the current negotiation
session between the agent and the opponent.

Sample Standard Deviation (σ) Demonstrates the variability in the opponent’s strategy. A low σ could suggest a hard-
lining opponent, for example. [1]

Sample Median (M ) The median can provide the policy with a more stable understanding of the opponent’s
position in comparison to µ alone, which can strongly vary if the opponent concedes
rapidly, for example.

Sample Mode (Mo) If an opponent strongly favors a certain bid and sends it multiple times, this would reflect
in the sample mode as the same utility would be received by the agent, information the
policy can use to concede effectively.

Sample Range (R) The range can indicate how high and low the utilities are reaching during the negotiation,
and indicate the profile of the opponent and the overall potential of the current domain.

Correlation (ρ) The correlation between the utilities the agent has on the received bids and the estimated
utilities the opponent has (from the Opponent Model), can provide vital information on
the strategy the opponent is using and the likeliness of a negotiation having both the agent
and the opponent get high utilities.

Table 2: Overview of the numerical measures used to represent the opponent’s sequence of offers and an intuition into their effectiveness for
the agent’s policy.

Figure 3: Average simple social welfare utility for the agent versions
in an ablation study.

margin of Agent B’s 0.779 ± 0.317. However, interestingly,
the opponent’s utilities have been consistently higher for the
modified agents compared to Agent B. As a result, since the
utilities of the agents themselves did not change significantly
compared to Agent B, but the opponent utilities are higher,
the modified agents have a higher usocial and therefore are
considered more fair.

With this observation, the experiment was extended to add
the same numerical measures but instead on the predicted op-
ponent utilities using the Opponent Model component. The
goal here was to explore whether this trend of higher oppo-

nent utilities without sacrificing the agent’s own utility can
be continued and further reach higher usocial values. Intu-
itively, the modifications made to Agents S1-S7 are increas-
ing the opponent’s utility, therefore adding information about
the effects of the opponent’s sequence of offers on the oppo-
nent’s utilities can potentially provide the policy with more
resources to work with in maximizing the opponent’s utility
(while maintaining high own utility). Agents S8-S12 were
trained and tested (refer to Table 3 for details) and their results
can be seen in Figure 2 alongside Agents S1-S7. Although
Agent S7 did not have the most promising results, being the
first agent that uses the Opponent Model to predict utilities
and compute the ρ between the predictions and the agent’s
utilities, Agents S8-S12 continue the trend of a mostly stable
agent utility, but higher opponent utility.

Figure 3 shows the social welfare computations of each
agent. Agents S1-S12 show consistently higher social wel-
fare in comparison to Agent B, and show a mostly inconclu-
sive but slight trend of a gradual increase in social welfare
as further numerical measures are added. This trend is more
concrete when considering that the results of Agent S1 seem
to lie outside the general trend of all the results. Notably, the
variance in its achieved utilities between the 5 trained ver-
sions of itself are far lower than the other agents. Table 3
shows that its standard error is less than half most of the other
agents’ standard errors for social welfare. Therefore, it is
plausible that since these PPO agents show wide variance in
performance each time they are trained, the 5 versions of S1
happened to train 5 stronger than usual agents. A further ex-



Agent Ablation Level u uopp usocial Dimension Details

B - 0.779 ±0.317 0.530 ±0.348 1.309 ±0.567 4 Base (last 3 bids + progress)
B+5 - 0.725 ±0.379 0.437 ±0.341 1.163 ±0.643 6 Last 5 bids + progress
B+50 - 0.665 ±0.390 0.435 ±0.373 1.099 ±0.652 51 Last 50 bids + progress
S1 1 0.771 ±0.178 0.796 ±0.234 1.566 ±0.281 5 B + µ
S2 2 0.707 ±0.346 0.557 ±0.358 1.264 ±0.593 6 S1 + L
S3 3 0.622 ±0.363 0.575 ±0.392 1.196 ±0.582 7 S2 + σ
S4 4 0.759 ±0.291 0.640 ±0.317 1.399 ±0.511 8 S3 + M
S5 5 0.802 ±0.275 0.640 ±0.313 1.442 ±0.513 9 S4 + Mo
S6 6 0.727 ±0.296 0.615 ±0.356 1.343 ±0.578 10 S5 + R
S7 7 0.702 ±0.350 0.490 ±0.357 1.192 ±0.625 11 S6 + ρ
S8 8 0.761 ±0.333 0.533 ±0.348 1.294 ±0.602 12 S7 + µopp

S9 9 0.739 ±0.260 0.707 ±0.305 1.447 ±0.469 13 S8 + σopp

S10 10 0.689 ±0.298 0.717 ±0.342 1.406 ±0.527 14 S9 + Mopp

S11 11 0.763 ±0.308 0.777 ±0.356 1.540 ±0.539 15 S10 + Moopp
S12 12 0.811 ±0.315 0.794 ±0.359 1.605 ±0.642 16 S11 + Ropp

Table 3: Overview of the ablation study results.

(a) Trace of the utilities in the negotiation between S12 (red) and
Agent 78 (blue).

(b) Trace of the utilities in the negotiation between B (red) and Agent
78 (blue).

Figure 4: Comparison of the negotiation sessions Agents B and S12 had with Agent 78.

ploration into these agents and a greater number of versions
per ablation level can clear up these doubts.

Overall, Agent S12 averaged the highest performance. It
achieved marginally higher utility compared to Agent B,
0.811 ± 0.315 and 0.779 ± 0.317 respectively, while at the
same time achieving significantly higher opponent utility
0.794 ± 0.359 compared to 0.530 ± 0.348. As a result, it
has the highest social welfare of 1.605± 0.642.

However, unfortunately, it is important to note that the re-
sults for each of the agents show high variance within their
trained versions. As a result, it is quite difficult to make con-
crete analysis on the contributions of each numerical mea-
sure on the performance of the agents in the ablation study,
as the differences cannot be directly attributed to the effects
of adding or removing the numerical measure from the state.
Moreover, even though the number of agents trained and
compared is quite large, any specific patterns and trends ob-
served here need to considered critically.

Observing the negotiation traces in Figure 4 shows that
the added information from the numerical measures has con-
tributed to Agent S12’s strategy in allowing it more accept-

able concessions in order to reach an agreement in compar-
ison to Agent B. The negotiation environment and opponent
for both of the agents are the same for these two sessions.
Agent 78 is a difficult negotiator, acting similarly to the Hard-
liner and the time dependent agents like Boulware and Con-
ceder described in Baarslag et al. [1]. It gradually concedes
as time progresses regardless of its opponent’s offers, and ac-
cepts once its Acceptance Strategy deems the received utility
satisfactory. Although both agents start similarly, by approx-
imately round 350 their strategies diverge. Figure 4b shows
that Agent B continues to send hard bids, as it is unable to see
any valuable concessions from the opponent, it ends without
making an agreement at all. Yet, Figure 4a shows that Agent
S12 begins conceding, likely as a result of noticing the very
low σ in its utilities from the opponent’s sequence of offers,
in an attempt to reach an agreement. Thus, Agent S12 is re-
warded with a lower but acceptable utility.

This analysis gives insight into how and why Agents S1-
S12 achieve higher opponent utilities. The opponent agents
were developed in the context of the ANAC [1]. In this con-
text, these agents are given a very low reservation value (the



utility an agent receives if an agreement is not made), with
the goal of promoting any agreement above disagreements.
As a result, since Agents S1-S12 work with the opponent’s se-
quence of offers, they are making concessions and thus reach-
ing more agreements in situations where the baseline Agent
B would end up without an agreement. Due to how Agent B
is designed, significantly conceding to reach an agreement at
low utility is not rewarded and thus reflects the lack of signifi-
cant change in the agent’s u. However, importantly, the oppo-
nents are designed to be rewarded for reaching an agreement,
which could explain the significant improvement in perfor-
mance of Agents S1-S12 in social welfare in comparison to
Agent B.

To verify that these numerical measures are efficient in pro-
viding information to the agent, the base PPO agent was ex-
tended by simply including more previous bids (Agents B+5
and B+50), in case the policy is more effective at extracting
information from the opponent’s sequence of offers than nu-
merical measures. However, as seen in Figures 2 and 3, this
led to a decrease in performance. This is particularly evident
for B+50, potentially as a result of the massive dimension
of the state and resulting difficulty in effectively training the
policy for such a large number of features.

7 Responsible Research
7.1 Reproducibility
Several steps have been taken to maintain reproducibility in
this research. The implementation of this agent is publicly
available on GitHub2. As there is no data needed since the
domains are pseudo-randomly generated, the agent can be
simply trained and tested by running the train.py and test.py
files, respectively. The pseudo-randomness maintains repro-
ducibility in the experiment, and allows one to modify the
experiment and train the agents on the same randomizer seed
to effectively explore the effects of their modifications with
minimal concern of the effects of the random processes in the
agent.

As a result, rerunning the experiment as described in Sec-
tion 4 should result in similar results as presented in this
paper, with only variations due to the nature of PPO [11].
There is, however, one dependency of the results that is dif-
ficult to control; the algorithm is computationally expensive
and time-taking, and therefore improvements or variations in
the agent’s performance might rely on the hardware it was
trained on. This has larger effects if the algorithm is run for
a relatively shorter amount of time, which would not allow
the policy to settle on less powerful hardware and potentially
leading to performance disruptions for the agent. The ex-
periment allowed each PPO agent to train for 6 hours in this
paper with the goal of minimizing the potential effects of the
hardware. To ensure further reproducibility in the results it is
recommended to run this algorithm on a controlled hardware
cluster.

7.2 Ethics
The goal of this research is to improve the performance of au-
tomated agents in a collaborative environment, where agents

2https://github.com/brenting/negotiation PPO

work together to reach better solutions than those they would
have reached on their own. A few examples of coopera-
tive settings that require agents to agree upon a solution in-
clude search and rescue missions, self-driving cars, and med-
ical decision-making aids. Taking an action solely individu-
ally without effectively communicating and negotiating with
other agents could result in never finding the person is dis-
tress due to a lack of consensus on delegating search areas,
car accidents, or an inaccurate medical diagnosis. However,
the agents developed during this paper focused on increas-
ing the agent’s own utility, often leading to a reduction in the
opponent’s utility, sometimes disproportionately. As a result,
agents developed using this method are not sufficient for all
situations of collaboration. In cases where a utilitarian solu-
tion is more appropriate - for instance it is unimportant who
finds the person in distress during a search and rescue mis-
sion, the primary mission is to get them rescued as soon as
possible - the agents would need to be developed with a focus
on social welfare. One one hand, the agents presented in this
paper are not yet satisfactory for all situations of cooperation,
since they prioritize maximizing their own utility above max-
imizing the total utilitarian utility between the agent and the
opponent. On the other hand, the improved agents did sig-
nificantly improve the opponent’s utility while not negatively
affecting the agent’s own utility, which meant that it reached
negotiation solutions that had better social welfare than the
baseline PPO agent.

Although automated negotiation agents have been showing
potential [8], negotiation has primarily been a human activity
[13]. Therefore, if automated negotiating agents progress into
extremely effective negotiators, securing each negotiation re-
gardless of setting to their terms, and the developments are
not distributed well, it could lead to the threat of a consol-
idation of negotiation power. Discrepancies between nego-
tiating performance is of course also human, but one with a
supreme automated negotiating agent would have the reach
and performance that could be untouchable. Although this
can aid humans, this can also be unfair to people also involved
in the negotiation but have no ability to have the same level
of resources to effectively negotiate their own terms against
the superior automated negotiating agent. This goes against
the premise of negotiating to collaborate onto a solution, and
shifts instead of abusing the collaborative system to maximize
personal control. In conclusion, further explorations into au-
tomated negotiation agents should keep in mind the potential
pitfalls of such an agent.

8 Conclusions and Future Work
The purpose of this paper was to improve a reinforcement
learning negotiation agent’s, particularly a Proximal Policy
Optimization (PPO) agent, performance by extracting infor-
mation from the opponent’s sequence of offers. To do so, an
ablation study was conducted to investigate the contributions
of the variety of numerical measures that can represent a se-
quence on the performance of an agent. Importantly, numeri-
cal measures were used to represent the opponent’s sequence
of offers since the state vector the agent’s policy takes as in-
put needs to have a fixed dimension throughout negotiation,

https://github.com/brenting/negotiation_PPO


which is not possible for sequence of offers that increase in
length every round. The effectiveness of the agents in the ab-
lation study was analyzed and compared to the baseline PPO
agent.

Although the ablation study results showed large variance
in the performances of each agent trained within an abla-
tion level, the general trend shows that adding the numer-
ical measures in the state vector does not significantly im-
pact the agent’s own utilities, but it does positively affect the
opponent’s utilities. Once further numerical measures were
added representing the opponent’s predicted utilities for their
sequence of offers, it was seen that social welfare continued
increasing.

This led to Agent S12 - an agent that had all: 5 numeri-
cal measures on its own utilities, 5 measures on the predicted
opponent utilities, and the correlation (ρ) and dimension (L)
measure between them from the opponent’s sequence of of-
fers - having the best performance, particularly when con-
sidering social welfare. It was shown that the reason for a
lack of significant improvement in the agent’s own utilities,
but large improvements in the opponent utilities, has to do
with how the modified agents, like Agent S12, are more will-
ing to work with the opponent and concede. This caused an
increase in the opponent’s utilities since the opponents were
developed in the context of always preferring an agreement
over a disagreement, where disagreements would take place
more commonly with the baseline Agent B.

Future work involves more sophisticated PPO agents,
where training the same agent again does not result in large
variances. From this, several approaches can be taken to fur-
ther the research this paper has conducted. An ablation study
can be conducted again, but this time with focus on the ef-
fects and contributions of each and every numerical measure.
Such a paper has the potential of finding strong links between
effective automated negotiation strategies and the informa-
tion needed, in this case a numerical measure, to develop it.
Furthermore, numerical measures, though effective at repre-
senting the opponent’s sequence of offers, are not the only
way; future work could focus on using a machine learning
algorithm to learn the most important or valuable features
from the opponent’s sequence of offers and use those fea-
tures instead in the state vector for the agent’s policy. Finally,
although a baseline agent was chosen which uses PPO, this
investigation can be done agents which could be using a mul-
titude of model-free deep reinforcement learning algorithms.
There is potentially greater room for improvement in using
information from the opponent’s sequence of offers in other
algorithms of the sort.
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