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ARTICLE INFO ABSTRACT

Keywords: The present research analyzes the nonlinear fluid—structure interaction (FSI) of free surface waves with large-
Nonlinear fluid-structure interaction scale polymer offshore floating photovoltaics (LPOFPV). The floating structure is modeled as a nonlinear
Euler Bernoulli-von Kérmén beam Euler Bernoulli-von Karmén (EBVK) beam coupling with water beneath. The EBVK theory takes the in-plane

Large-scale polymer offshore floating
photovoltaics
Perturbation method

force into consideration to account for the moderately large deflection slopes in LPOFPV. A multi-time-scale
perturbation method leads to hierarchic partial differential equations by introducing the wave steepness
squared as the perturbation. The analytical solution of the proposed nonlinear FSI model is obtained up
to the second order. Pontoon structures and LPOFPV are studied and compared. The asymptotic solution
provides the expressions of the propagating wave through the coupled system and its frequency—amplitude
dispersion relation in a closed-form. A property of the solution is that the progressive plane wave through
the coupled system remains linear for small dimensionless amplitudes, and features a second order correction
for moderately large dimensionless amplitudes. Furthermore, it is also theoretically proven that no resonance
occurs in the considered infinite problem. The proposed approach can be extended to the nonlinear coupling
between a EBVK beam and Stokes waves.

1. Introduction some conditions, inertia was neglected in these models (Parau and Dias,
2002; Vanden-Broeck and Parau, 2011).

This article analytically investigates the hydro-elastic wave in an The other category is applied for artificial floating structures that
infinite model for large-scale polymer offshore floating photovoltaics can endure more considerable bending. Since the turn of century, VLFS
(LPOFPV) that are an application of very large floating structures were generally modeled as one or multiple segments of flexible or
(VLFS). even rigid beams and/or plates. The Euler Bernoulli (EB) beam became

The concept of VLFS has invoked the interest of academia over at a popular option for the two-dimensional (2D) FSI problems. Many
least 50 years (Suzuki et al., 2006). In the past two decades, installa- articles with floating support structures for offshore solar farms apply

tions of large-scale floating solar farms (Trapani and Redén Santafé,
2015; Sahu et al., 2016; Ikhennicheu et al., 2021) have been proving
their feasibility and applicability in industrial practice compared to
other VLFS applications such as floating airports (Zhang et al., 2017;
Yesudian and Dawson, 2021), floating bridges (Cheng et al., 2018),
multi-purpose floating structures (Ren et al., 2019), etc. Those VLFS
are still in the conceptual phase.

The dynamics of VLFS can be modeled as waves on an elastic sheet
resting on the sea surface. We have identified two major approaches
to construct the coupled governing equations. The first one is the

curvature-dominant model (Forbes, 1986, 1988; Balmforth and Craster, 3 . .
1999; Piriu and Dias, 2002; Vanden-Broeck and Pariu, 2011). The for- combined a linear structural model and a nonlinear wave model. They

mulae were established based on the curvature expression because the investigated the time-domain FSI dynan.ncs of YLFS_ edge.d with pe.rfo-
considered structural material cannot endure relatively large transverse rated and non-perforated plates and their combination with analytical,
deformation. These models are mostly applied in ice engineering. Under numerical, and experimental methods. In their theoretical part, the

this linear beam model.

To study the influence of structural lengths on hydro-elastic prop-
erties of VLFS, Suzuki et al. (1996) proposed to model VLFS as a beam
on an elastic foundation. Wang and Meylan (2002) considered the FSI
problem of floating plates and gave a solution of linear FSI waves on
a finite floating plate in an infinite water domain with variable depth.
The result was numerically computed with a boundary element method
(BEM). Later on, Chen et al. (2003) coupled the von Karméan plate with
linear wave forces and numerically calculated the floating structure
response to multi-directional waves. Cheng et al. (2014, 2016a,b)
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Fig. 1. Large-scale polymer offshore floating structure for photovoltaics. The large
floating polymer membrane provides the foundation for photovoltaic panels.
Source: Ocean Sun (2021).

finite length of the structure enabled the modal expansion technique
essential for the FSI analysis. Cheng et al. (2017) applied EBVK into the
numerical simulation utilizing a nonlinear numerical wave tank. The
numerical tool was based on a higher-order BEM. The research objec-
tive was to investigate the nonlinear interaction between the structure
and water waves traveling over a dam-shaped bathymetry. Their results
showed that the influence of structural nonlinearity increased with
waves propagating along the submerged breakwater. When traveling
along the waveward slope, the primary wave dominated, and the higher
harmonics significantly increased when arriving at the leeward slope.
More recent research on the FSI model of pontoon-type structures can
be found in Ilyas et al. (2018), Singla et al. (2018), Koley (2020), Liu
et al. (2020), Karperaki and Belibassakis (2021), Meylan (2021), all of
which applied the EB beam and potential flow.

Many studies investigate the hydro-elastics of continuous floating
structures by locally coupling a finite structure and an infinite or semi-
infinite water domain. Belibassakis and Athanassoulis (2005) proposed
a method worthy of attention that expanded the local-mode series
of the wave potential and coupled it with the finite linear beam.
The system formed a local-global model for the infinite problem.
A similar modal coupling principle was also applied to investigate
dispersion relations of floating structures modeled by Rayleigh beam
theory and thick beam theory (Athanassoulis and Belibassakis, 2009;
Papathanasiou and Belibassakis, 2014).

In recent years, plate-array floating structures gained researchers’
interest. The model can be seen as multiple beam segments with con-
nections in between. Riyansyah et al. (2010) implemented a numerical
scheme to study the optimal design of the connection between two
floating beam segments. The beam was modeled by EB and discretized
with the finite element method (FEM), while the water was modeled by
potential theory and discretized with BEM. lijima and Fujikubo (2018)
numerically and experimentally investigated the hydro-elastoplasticity
of a floating structure with two elastic segments connected with a
plastic hinge. The linear potential with BEM represented the hydrody-
namics, while the beam with FEM described the structural dynamics.
lijima and Fujikubo (2019) analytically investigated the same model in
which the hydrodynamic force was modeled as a distributed spring.

The literature shows that (a) fully analytical models for wave-beam
interaction problems in infinite domains are rare and (b) many studies
were based on the numerical computation by means of BEM.

Large-scale polymer offshore floating photovoltaics (LPOFPV) were
successfully deployed in industrial projects, as illustrated in Fig. 1. The
smaller stiffness of the polymer membrane results in moderately large
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bending deflections and strong hydro-elastic interaction with water
waves (Schreier and Jacobi, 2020). As indicated by Magkouris et al.
(2021), the response of floating solar to waves has a non-negligible
influence (0 to 15%) on the performance of photovoltaic production.
Hence, a better understanding and prediction of the hydro-elastic be-
havior of LPOFPV is needed. Compared with linear EB beam theory,
EBVK introduces the nonlinearity in the in-plane strain—displacement
relation, thus taking the effects of a moderately large slope and a mem-
brane force into account. Hence, EBVK models LPOFPV better. At the
same time, a small structural stiffness already is a filter for the depth of
troughs and the acuteness of peaks associated with steeper free surface
waves and modeled by nonlinear potential theory. It is reasonable to
assume that the nonlinearity in water waves some distance away from
the edge is small and thus negligible. Hence, linear potential (Airy)
theory is applicable in the large part of the structure away from the
edges. Therefore, we propose to combine the EBVK beam and Airy
waves to formulate the infinite FSI problem for LPOFPV. Our nonlinear
structure-linear water model can be considered complementary to the
linear structure-nonlinear water model proposed by Ma et al. (2020)
for pontoon-type VLFS.

In a this recent study, Ma et al. (2020) derived a fully analytical
solution up to the second order by coupling a linear EB beam with non-
linear potential waves. Numerical simulation was also performed with
a weakly coupled algorithm using FEM for the beam and smoothed-
particle hydrodynamics (SPH) for water. Significant findings were (a)
that there existed a critical wave period and (b) that steeper crests and
flatter troughs occurred when the incoming wave period was larger
than the critical and vice versa.

In this article, we will seek a fully analytical solution of the com-
bined theory of EBVK with Airy waves for the application of LPOFPV.
Our objectives are: (a) to demonstrate the applicability of the proposed
model for LPOFPV, (b) to study the influence of nonlinearity on the
FSI waves, and (c) to investigate if resonance occurs in the considered
problem in an infinite domain.

2. Theoretical model

Structurally, LPOFPV mainly consist of a membrane and a floating
ring at the edge, see Fig. 1. The ring provides a protective environment
for PV modules and keeps the membrane stretched. LPOFPV are usually
deployed in coastal waters where long waves hardly occur. The struc-
tural length with a magnitude of over 50 meters at the present stage
is large compared with the wavelengths. Therefore, it is assumed that
edge-effects modeled by boundary conditions at the upstream side and
the downstream side can be neglected. Other important assumptions
are (a) that the structure is impenetrable and (b) that a vacuum does
not occur. Thus, the LPOFPV can be modeled as a 2D EBVK beam in an
infinite domain that considers geometrical nonlinearity because of the
moderately large transverse deflections. Fig. 2 depicts the idealized 2D
model of LPOFPV floating on the sea surface in an open area. Linear
potential theory describes water motion. A train of waves traveling in
horizontal direction through the coupled system is considered.

2.1. Governing equations

2.1.1. Nonlinear Euler Bernoulli-von Kdrmdn theory for beam

The membrane material used in a LPOFPV, on which PV panels
are installed, has less bending stiffness than steel used often for plates
or beams. It experiences relatively large deflection in waves compared
to metal structures (Schreier and Jacobi, 2020). The moderately large
rotations and strains are non-negligible (Vadlamani and Arun, 2019).
The nonlinearity in the EBVK beam model is derived by keeping the
axial normal strain and neglecting other nonlinear terms (Paavani et al.,
2020), which is representative of a membrane force. Neglecting the
rotary inertia (Chia, 1980; Jang, 2013; Jain et al., 2018; Krysko et al.,
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Fig. 2. The 2D sketch of LPOFPV floating on the sea surface. The structure is modeled
by an EBVK beam, moving together with water waves.

2018; Xu and Wellens, 2021), the equation of motion (EOM) of the
EBVK beam reads

Qw tw 3 ow\? Q*w ow Pw

Wi SE(g) CE bt bt =y,
The beam has material density p,, cross-section area S = bd, Young’s
%. Here, d stands for
the beam thickness (in z-direction), b for the beam width and v for
the Poisson ratio. ¢; and ¢, are the external and internal damping
coefficients (Banks et al., 1994) with units [N's/m®] and [N ms], consid-
ered per unit area. w is the transverse displacement of the beam. The
external distributed load ¢ is the hydrodynamic load when assuming
initial floating equilibrium. Note that g has unit [N / m] because the load
is distributed over length in the 1D beam model.

(€Y

modulus E and inertial moment I =

2.1.2. Linear potential theory for water

The water has density p,, and uniform depth A. Linear potential
theory gives the governing equations of the inviscid, irrotational and
incompressible flow
2¢ , I
ox2  0z2
where ¢ represents the fluid velocity potential.

The seabed is impenetrable at the bottom:
% _
0z
where 4 is the uniform water depth.

At the free surface, the kinematic boundary condition reads

on _ d¢

—=— at z=0, 4
ooz F “
where 5 stands for the free surface elevation. And the Bernoulli equa-
tion gives the dynamic boundary condition:

=0, ()]

at z=-—h, 3

a
p+pw6—q:+pwg;1:0 at z=0, 5)

where p is the water pressure with unit [N/m?|, and g = 9.81m/s? is
the acceleration of gravity.

2.1.3. FSI equations
The beam and water models are coupled through the interface
conditions:

w=n and ¢, =pb at z=0. (6)

Note that the distributed force on the beam is obtained from multiply-
ing the hydrodynamic pressure p with the beam width b for consistency
of the unit [N/m].
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Fluid and structure are coupled at the free surface, leading to:
ow _ ¢

= = t =0 7
o "9z 7 2
and
P w Ed®*  o*'w 3 ow\? %w
d— + —= 72 _Zpd(Z5) = 40w
P T (o) o 2 (55) S ot ®

+, 0 ow,  Pw
Py ot T T 2 054
Here, S, I and #n have been replaced or eliminated by S = bd, I =

bd?
T and Eq. (6).

2.2. Normalization

Introducing the normalized variables

X=kx, Z=kz, t=kt, e=A’%> H=kh,
K2E 3E Pug ¢l ke,
:—,a:—,[}: ,0=——,¢=——,
12 (1 =v2) pg 2p, pedk? ep,dk epyd ©)
X,
W (X,7)= WD ond @ (X,Z,7)= Aiqs(x,z,r),
g

in which A and k are the wave amplitude and wave number. The
perturbation ¢ = A2k’ equivalently represents the wave steepness
squared. Note that here we introduce the new damping coefficients ¢
and ¢ to scale two kinds of damping to the same degree of nonlinearity.
This treatment is credible because (a) the external and internal damping
coefficients are small, usually in the order of a percent or even lower
than one percent, (b) the effect of damping (energy dissipation) on
wave propagation is part of the scope of this study, and not the exact
numbers for the type of material in LPOFPV.

Substitution of Eq. (9) into Egs. (7) and (8) yields the normalized
EOM for the nonlinear FSI system:

i’ o

oxz oz =0 (o

g =0 (11)
Z=—H

oW g od

C_E2 o 12)

*;w W oW \? *W oD

+x Y a<—) IW s pw + 522
o072 ox4 d X2 0t |z=0 (13)
+ SO'M +&¢ W =0

or dtoX*4

Eq. (13) demonstrates that the nonlinear term is of high order
O (¢). In other words, the wave steepness squared (ak)? scales the
nonlinearity. The nonlinear effect becomes significant for moderately
large hydro-elastic waves, which is in agreement with the underlying
assumptions of von Kédrmén theory.

3. Analytical solution
3.1. Multi-time-scale expansion

Introducing the multi-time-scale with the two-term expansion:

T~Ty+1, T9=7 and 7| =¢rT. 14
Eq. (14) also expands partial differential operators acting on time

T

J 0

—_—~—

2 2 2
+si+(9(52) and a—~a—+2e 9
072 afg 07407

2
5~ o oo +0(£%). (15)

The as of yet undetermined solution of plane wave W (X,7) is
expanded accordingly:

W (X,7t)~ Wy (X, 79, 7) + W) (X,TO,TI)-I-O(SZ). (16)
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Note that the water wave potential is linear and thus needs no
solution expansion but only the time-scale expansion:

DX, Z,7)~D (X, Z,7,7)). a7)
3.2. Hierarchical partial differential equations

Substituting Eqgs. (14) and (16) into Egs. (12) and (13) and collecting
terms ¢ of the same order, yields a series of hierarchically linear partial
differential equations (PDE) with nonlinear inhomogeneous terms on
the right-hand side from the second-order on. Retaining up to the first
order of perturbation:

. (9(80)
’d o
oxz Tz =0 as)
oD
A =0 19
Z=—-H
MWy _goo|  _ (20)
aTO koZ Z=0
*>wW, W, 0D
+ Wy + f— =0 21
615 K Sxe W, ﬁaro o (21)
c O
IV (B0) W _poe) oW
o7 ox* ! ox ) axz  Tor |y,  or

1w, *W,
—— -2
01y0*X 0707y

(22)
3.3. The first-order

3.3.1. The first-order solution in normalized form

First separate the potential into three parts, namely the time-
dependent part ¢(zy,?, ), the horizontal space-dependent part £(X) and
the vertical space-dependent part {(Z)

D (X, Z,79,71) = ¢ (10.71) EX) (). (23)
Substitution of Eq. (23) into Egs. (18) and (19) yields
@ (X,Z,79,7) = ¢ (79,7, ) cos (X)cosh (Z + H). 249

Here, two arbitrary integral constants of é(X) and {(Z) merge into the
undetermined time-dependent function ¢(z, 7, ). We also get rid of the
arbitrary phase shift of £(X) because only the plane propagating wave
is of our interest.

Taking the partial derivative about 7, of Eq. (21) and using Egs. (20)
and (24), we obtain a linear ordinary differential equation (ODE) about

@(7):
) )
gtanh(H) — + kff— + gftanh (H) ¢ + kgtanh (H) ¢ = 0. (25)
013 613
The solution of Eq. (25) is

[gtanh(H)(ﬁ+1<)
(p(To,Tl):CO (T])COS m’l’oﬁ-@(‘ﬁ) 5 (26)

in which C; (7;) and 6 (7;) are two arbitrary functions of the slow
time scale r; stemming from integration. The coefficient in front of the
regular time scale 7, in Eq. (26) is the primary angular frequency

Q= ‘/M_ @7)
gtanh (H) + kf
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Note that Eq. (27) is the linear dispersion relation in normalized form.
Combining Egs. (24) and (26) into a right-ward propagating wave
as shown in Fig. 2, gives

Wo (X, 79, 71) = Ag (71) cos (X — Q79 + O (1)) 28)
and

kS cosh(Z + H)

¢(X’Z’TO’T1):AO(TI) g W

sin (X — Q75+ 9 (7y)) .
(29)
in which
gsinh (H)
AO (T1)=k—[20CO (Tl). (30)
Although Egs. (28) and (29) gives the forms of the first order
waves and potential, their amplitude Ay(r,) and phase shift §(z,) are

unknown functions of the slow time scale . The unknown functions
will be solved to second order, see Section 3.4.

3.3.2. The first-order solution in original form

The linear dispersion relation is widely used in engineering. Hence
we would like to explicitly give the linear expression in dimensional
form by inversely utilizing Eq. (9):

Pyg I2d2E
g tanh (kh) (M_zd + m)

Pwg
ookd + gtanh (kh)

wy =k (31)

3.4. The second-order

3.4.1. The second-order solution in normalized form

The first-order solution Egs. (28) and (29) is substituted into the
right-hand-side of Eq. (22) and then terms with the same trigonomet-
ric functions are collected. There exist primary trigonometric terms,
ie., sin(X — Q7 +0(r))) and cos (X — Qyzy+0(z;)). Their coeffi-
cients are respectively

_ PR 9% oty ayag + 20,20 (32)
S = tanh (H) o7, |0 &0 TG
and
a 3 BkQy 00 200
Cope=—2A3- 092 504,22,
cos 470" gtanh (H) or, 0705z, (33
Avoiding secular terms requires
Cin=0 and C,=0. (€D
Egs. (32) and (34) can solve Ay(7):
gtanh (H)
A =A _—
o () = Aexp { Pkt 2gtanh () CTOT (35)

where A is the constant wave amplitude independent of the slow
time-scale 7.
Substitution of Eq. (35) into Eq. (33) leads to

o (T ) _ A2q exn d — 2gtanh (H)
V=82 @ +0) P\ Bk + 2g tanh (H)

(o‘+g)’rl}+C]. (36)

Next, we simplify the exponential part of Eq. (36) by a Taylor
expansion around the small damping ¢ + ¢ ~ 0, and then get rid of
the constant part by setting the arbitrary integral constant C; to zero.
After these manipulations, we obtain

A’agtanh (H)

(0] =- .
() 4, (Bk + 2gtanh (H)) !
Eq. (37) is substituted back into the first-order solution Eq. (28).
The solution of the propagating wave then reads
A2agtanh (H)
4Q, (Pk + 2gtanh (H)) "

37

Wy = Ay (1) cos <X - Qyr — (38)



P. Xu and P.R. Wellens

Ocean Engineering 249 (2022) 110829

3EdK? (1 —v?) (tanh (kh) dkp, + p k(o +
wy(x,1)=€A ( ) ( : W) exp —32[]gpsg(—g)t cos (3kx — 3wt) (43)
S4Ed3k*p,, + 8 (1 — v2) + 48p kd tanh (kh) <d3k4E - %gpw (1- v2)) e +2psgtanh (kh)
Box I.
Therefore, the nonlinear angular frequency up to the second-order Table 1
is Physical parameters of Case A and Case B.
2 Case description Symbol Value Unit
eA“agtanh (H)
Q=0+ . (39) P 6.0 102 kg/m?
49, (Bk + 2g tanh (H)) d 20% 107

Case A 9x o m

Substituting Egs. (35), (37) and (39) into the second-order surface Metal pontoon for VLFS E ;-84161(?_110 Pa
dynamic condition Eq. (22), we obtain, after some manipulation, the (Ma et al., 2020) , 1‘02X5>< 108 ;g Jm?

second-order wave: " 8.0 x 10! m
W, (X.79.11) = A, () cos (3X —321,) . 40 ps 116 102 kg/m’

1 ( 0 l) 1 ( l) ( 0) (40) Case B d 5.0x 1073 m

whose amplitude equals Polymer film for LPOFPV E 5.6 x 10° Pa

(Schreier and Jacobi, 4.0x 107! -
Ag (7)) @ 2020) Pu 1.025 x 10° kg/m?

41) h 1.0x 10° m

A (r) = —2
Hm) =g (=92 + § + 81x)

3.4.2. The second-order solution in original form

For the convenience of engineering practice, we give the expression
of the second-order nonlinear solutions in dimensional form. The nor-
malized arbitrary amplitude A is set to 1 for generality. In addition, we
choose to keep the damping terms in the normalized form, i.e., ¢ and ¢
for simplicity because damping values are out of interest of the present
work.

 The first-order wave

gk (o +
wy (x,1) = Aexp {—6 ook Pk (@ +¢)

T 2pgtanh (kh)

t} cos (kx — wt) (42)

* The second-order wave (see Eq. (43) in Box I).
» The nonlinear dispersion relation

rwg K22
¢ tanh (kh) (,,sku + 1zps(1_v2))
o=k P
pokd + gtanh (kh)
(44)
SE\/g tanh (kh) (;’L,j +gtanh (kh))
+ ek °
Pwg Pwg K2d2E
8p, (m n 2gtanh(kh)> e

One can readily construct the expression of the two-term asymptotic
solution according to Egs. (9) and (16).

4. Case study and discussion

We perform a case study on two typical conditions by choosing the
values of the physical parameters according to two recently published
papers. The upper part of Table 1 gives parameters for metal pontoon
structures used by Ma et al. (2020). We will name this Case A. The
pontoon-type VLFS is a multi-hollow structure, typically consisting of
buoyancy boxes and stiffness girders. We simplify the deformation of
the VLFS as the transverse deflection of a beam in our 2D model, which
is consistent with the simplification of Ma et al. (2020). Note that these
physical parameters are adapted from and equivalent to but not exactly
equal because of different notations and units. The lower part of Table 1
contains parameters for LPOFPV tested by Schreier and Jacobi (2020),
named Case B from here on. The latter article describes model tests to
investigate the hydro-elastic interaction of a polymer film with water
waves.

4.1. Smallness

The classical perturbation method establishes hierarchical PDEs in
Section 2 and generates solutions in Section 3. This method mathemat-
ically requires the perturbation ¢ <« 1. Considering that £ = a*k? (see
Eq. (9)), the perturbation requires the square of the traveling wave
slope (a’k?) much smaller than one. Eliminating the square leads to
the conclusion that the requirement on the wave slope is less strict.
The perturbation method mathematically requires that the wave slope
e = ak < 1 in a model with a linear beam and a nonlinear water
wave (see Schwartz, 1974; Dingemans, 1997). It is our argument that
the model that couples the nonlinear beam with linear water has a
larger range of application in terms of wave slopes than models with
linearized beams.

4.2. Damping

Egs. (37) and (44) imply that the damping does not affect the dis-
persion relation, or the phase velocity equivalently, up to second-order.
Egs. (42) and (43) show that wave amplitudes exponentially attenuate
in the propagation direction due to damping that is represented by o
and ¢.

In absence of damping (¢ +¢ = 0), the nonlinear amplitude Eq. (35)
becomes

A (1)) = A, (45)

where A on the right-hand side is an arbitrary constant (see also
Section 3.4.1). Eq. (45) indicates that the amplitude remains constant
without damping. Note that the phase-shift solution Eq. (37) that
is expanded with the Taylor series is equivalent to the solution of
substituting Eq. (45) into Egs. (32) and (33).

4.3. Dispersion relation

The dispersion relation is important in the problem of wave prop-
agation. Egs. (31) and (44) give the linear and nonlinear expressions
of the hydro-elastic dispersion relation. In Eq. (44), the first term is
the linear dispersion relation that is also given by Eq. (31) and the
second term is the nonlinear correction. Fig. 3 illustrates both linear
and nonlinear dispersion relations in Case A and Case B calculated
by Egs. (31) and (44).
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Case A Linear
35 | |= — —Case A Nonlinear
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Fig. 3. Dispersion relations of Case A (VLFS) and Case B (LPOFPV). (a) shows the overall reasonable range of wave numbers; (b) and (c) are the enlargements of Case A and
Case B in (a), in which the wave length ranges are identical to those in Ma et al. (2020) and in Schreier and Jacobi (2020) respectively. Note that the dispersion relation of wave

period over wave length is equivalent to wave frequency over wave number.

4.3.1. Linear dispersion relation

Eq. (31) confirms that all physical parameters associated with FSI
waves are positively defined. The positive definition proves that the
floating structure always stiffens the hydro-elastic system, increasing
the wave frequency.

Fig. 3 visualizes the linear dispersion relation calculated by Eq. (31)
for Case A and Case B. Table 1, and Fig. 3(a) demonstrates that
the stiffening effect in the hydro-elastic description of pontoon-type
floating structures is significant, especially for shorter waves. In con-
trast, the change in wave propagation due to the film-type floating
structure is relatively small. These phenomena are expected physically.
The explanation is that the floating structure resists bending of the
free surface, adding stiffness to the hydro-elastic system. The plate-like
structure in Case A has a larger Young’s modulus than the membrane-
like structure in Case B. As a consequence, the pontoon makes the
coupled system harder to bend, while the film almost follows the water
waves. Figs. 3(b) and 3(c) indicate that the floating structures do not
significantly affect the dispersion relation in the ranges chosen for Case
A and Case B. Shorter waves could illustrate the effect of stiffening
better: the hydro-elastic effect would be more pronounced from k >
7rad/m on.

The dispersion relation in the case of only water is

oow = Vkgtanh (kh), (46)

Setting p, = E = 0 in Egs. (31) and (44) also leads to this expression.
The two curves for Case A and Case B in the situation of only water
without structure are almost equal to each other because of the water
depths in the two cases being similar (74, = 0.8m and hz = 1 m).

4.3.2. Nonlinear dispersion relation

Solutions in Section 3.4.1 show that all the nonlinear effects, in-
cluding the nonlinear dispersion relation Eq. (44), are scaled by the
perturbation ¢, i.e., the wave steepness squared (ak)’. Furthermore,
Eq. (44) is also positively defined, which implies that an infinite phase
velocity cannot occur in the nonlinear description of hydro-elastic
waves either.

The nonlinear dispersion relations are illustrated in Fig. 3, in which
Fig. 3(a) shows the range of wave lengths, Figs. 3(b) and 3(c) presents
the same ranges in Case A and Case B, respectively. Because the wave
steepness squared & = (ak)” scales the nonlinear solution, we plot Fig. 3
by fixing the perturbation ¢ = 0.01 and varying the wave number k
in ranges corresponding to literature. In other words, the amplitude
decreases when the wave becomes shorter, keeping the same small
steepness ak = 0.1. Take Case A for example, k € [0.8263, 1.9530] and
L € [3.2172,7.6036] corresponds to T € [1.5,2.9] of Fig. 6 of Ma et al.
(2020). Fig. 3 includes this range. Varying with k, wave amplitude
a €0.121,0.0512] in Case A. The same applies to Case B.

Fig. 4 shows the nonlinear dispersion relations of Case A and Case
B. The wave frequency w varies with both the wave number k and
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Fig. 5. The denominator in Eq. (43) over a large range of wave numbers. The unit of
the ordinate is omitted because it is physically meaningless.

the first-order amplitude a. The range of k and the maximum of « are
extracted from Case A and Case B, respectively; the minimum of « is set
to zero to illustrate the linear dispersion relation. The nonlinear wave
frequency monotonically increases with both the wave number and the
first-order amplitude as indicated by the positively defined dispersion
relation Eq. (44). Note that the perturbation contains the amplitude
squared a?.

4.4. The second-order amplitude

The magnitude of wave amplitudes is of interest, too. First of all,
the exponent in Egs. (42) and (43) indicates that both the first- and
second-order amplitudes decrease in the direction of wave propagation
in the presence of damping ¢ + ¢.

Secondly, we take a more detailed look at the second-order am-
plitude by assuming zero damping for perspicuity, as Eq. (45). The
second-order amplitude Eq. (43) is also positively defined: the numera-
tor is certainly positive; the denominator is always positive although it
contains a negative term. Fig. 5 shows the denominator in Eq. (43) over
a large range of wave numbers. The denominator is always larger than
zero. It demonstrates that a singularity is not possible mathematically
and that resonance and an unbounded amplitude cannot occur, as we
would expect from a physical point of view.

Fig. 6 illustrates the variation of the second-order amplitude with
the wave number k and the first-order amplitude a. One can observe
that the second-order amplitude monotonically increases with any sin-
gle one of these two parameters. It is also noticeable that the nonlinear
amplitude increases slowly with the wave number but fast with the
linear amplitude.

The ratio of the second-order amplitude to the first one can be
obtained through dividing the non-oscillating part of Eq. (43) by that
of Eq. (42) and assuming zero damping. As expected, the perturbation,
€ = (ak)* < 1, scales the ratio’s magnitude. It demonstrates that the
nonlinear part of the amplitude is a small term in the order of the wave
slope squared.

Fig. 7 compares the amplitude ratios the of nonlinear wave compo-
nent over the linear wave component. The ratio of the present work is
calculated by the amplitude of Eq. (43) divided by q. The other ratio
is manually measured from Fig. 6 of Ma et al. (2020). The comparison
indicates that resonance does not occur in our derived solution under
the assumption of infinite length that is made by both the present work
and the work of Ma et al. (2020). Our analytical solution is different
from theirs, although they both concern the nonlinear FSI of a floating
sheet in waves. Their model focused on nonlinear water waves because
steeper waves are the major risk for VLFS; our model concentrates on
the structural nonlinearity considering that the water surface slope is
small some distance away from the edges of the structure, because
highly restricted by the LPOFPV, but large enough that structural
nonlinearity cannot be neglected.

By using the parameters shown in Table 1 and fixing the wave
steepness ak = 0.1 (rather than only the amplitude a), Fig. 8 gives a
comparison of ratios of nonlinear wave amplitude over linear wave
amplitude for Cases A and B over a large range of periods. The or-
dinate is the amplitude ratio, which is non-dimensional; the abscissa
is the dimensionless wave period, which includes all the characteristic
parameters for Cases A and B. Three remarks with respect to their
mechanical difference can be made. First, the nonlinear waves are
small, which implies that linear waves dominate the hydro-elastic wave
propagation. Second, the nonlinear waves in our derived solution show
a single maximum for both cases. Last, the dimensionless period at
which the peak occurs in the two cases indicates that the coupled
system with the plate A has a larger response to relatively long-period
waves, while the coupled system with the membrane B responds to
relatively short-period waves.

5. Conclusion

This article theoretically investigates the nonlinear wave propa-
gation in the support structure of large-scale polymer offshore float-
ing photovoltaics (LPOFPV), using a fluid-structure interaction (FSI)
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model. The authors propose to model the considered problem by cou-
pling a nonlinear Euler Bernoulli-von Kdrman (EBVK) beam with linear
Airy waves. The proposed model can be seen as complementary to the
recently developed analytical model of Ma et al. (2020) that couples a
linear Euler Bernoulli (EB) beam and a second-order nonlinear wave.
The theoretical solution is derived with the multi-time-scale perturba-
tion method, in which the square of the wave slope is introduced as
the small perturbation. Based on the asymptotic solution, the authors
present and compare results under two representative conditions, one
being a pontoon-type structure representative of very large floating
structures (VLFS) and the other one being a membrane-type structure
representative of LPOFPV. The nonlinear solution provides expressions
of the first- and second-order waves and the dispersion relation in
closed forms. The following conclusions can be drawn.

I The EBVK theory is better applicable to LPOFPV in waves than
EB theory, because of the larger transverse deformation and
non-negligible membrane force.

II A fully analytic solution is derived for the proposed infinite FSI
model, which is applicable to both pontoon-type and membrane-
type LPOFPV.

III The small damping does not affect the dispersion relation up to
second-order but only leads to exponential attenuation of the
wave amplitude in the direction of wave propagation.

IV The derived analytical solution demonstrates that resonance
does not occur in the considered FSI model in an infinite domain.

The proposed analytic approach can be extended to a fully non-
linear model coupling the EBVK beam and Stokes waves. However,
a nonlinear interface condition considerably increases the complexity
of the hierarchical partial differential equations and the corresponding
solution. Therefore, we leave a fully nonlinear model for the future.
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