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Abstract—What if a robot could detect when you think it got
too close to you during its approach? This would allow it to
correct or compensate for its social ‘mistake’. It would also allow
for a responsive approach, where that robot would reactively find
suitable approach behavior through and during the interaction.
We investigated if it is possible to automatically detect such social
feedback cues in the context of a robot approaching a person.

We collected a dataset in which our robot would repeatedly
approach people (n=30) to verbally deliver a message. Approach
distance and environmental noise were manipulated, and our
participants were tracked (position and orientation of upper body
and head). We evaluated their perception of the robot’s behavior
through questionnaires and found no single or joint effects of the
manipulations. This showed that, in this case, personal differences
are more important than contextual cues – thus highlighting the
importance of responding to behavioral feedback. This dataset
is being made publicly available as part of this publication†.

On this dataset, we then trained a random forest classifier to
infer people’s perception of the robot’s approach behavior from
features generated from the response behaviors. This resulted
in a set of relevant features that perform significantly better
than chance for a participant-dependent classifier; which implies
that the behaviors of our participants, even with our relatively
limited tracking, contain interpretable information about their
perception of the robot’s behavior.

Our findings demonstrate, for this specific context, that the
observable behavior of people does indeed contain usable infor-
mation about their subjective perception of a robot’s behavior.
As such they, together with the dataset, provide a stepping stone
for future research into the automatic detection of such social
feedback cues, e.g. with other or more fine-grained observations
of people’s behavior (such as facial expressions), with more
sophisticated machine learning techniques, and/or in different
contexts.

Index Terms—Social robotics, Social positioning, Responsive-
ness, Social feedback cues, Social interaction dynamics.

I. INTRODUCTION

In real-world social situations, it is impossibly difficult to
fully predict which behavior will be appropriate. People make
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social ‘mistakes’ regularly, notwithstanding our extensive ex-
perience – from making someone slightly uncomfortable by
getting closer to them than they prefer, to any kind of faux
pas or bigger social blundering. So too, if not more so, do
our current social machines – from notifications interrupting
conversations, to mobile robots miscalibrating their social
positioning behavior.

And yet, among others in the context of social positioning
behavior for mobile robots, most current approaches still focus
heavily on systems that try to predict the ‘right’ action through
model-based reasoning and/or learning (e.g. [1]–[3]). While
such work will be helpful in ensuring a reasonable starting
point for social positioning behavior, it does not yet reliably
account for those minor and major social mistakes that are
prevalent in our social interactions. As we have argued [4],
such purely model-based approaches may well be inherently
unable to do so, given the size of the state space and the many
unobservable variables that play a role in social interactions.

We propose that, instead or in addition, robots should detect
when people think their behavior is not appropriate – infer
when people feel it is getting uncomfortably close, too far
away for a conversation, and so on. This would allow such
robots to immediately and continuously use those detections
to tune their behavior. We have previously referred to this
dynamic ‘dance’ of adapting to feedback as responsiveness
[4]. Such responsiveness is found in many forms in human-
human interaction, e.g. during various dyadic interactions [5]
and even during speed dates [6]. We have similarly found
people to be responsive to robots. For example, when we
left people relatively free to move during an interaction,
they would actively and pro-actively adapt their positioning
behavior to a robot, e.g. dynamically adjusting their distance
to a robot, and urging a robot to pass through a group to ease
its navigation [7]. Recent work suggests that people may even
adapt their own distancing preferences to the effective sensor
range of a robot [8].

In our theory of responsiveness, we have hypothesized
that this dynamic of active adaptation is enabled by (sub-
conscious) non-verbal cues that signal how people perceive
the appropriateness of social behaviors, and that may even
indicate the desired direction of improvement. We will here

http://doi.org/10.4121/uuid:b76c3a6f-f7d5-418e-874a-d6140853e1fa


refer to these signals as social feedback cues. For example,
if someone thinks a robot (or other person) seems to be
getting uncomfortably close, their non-verbal behaviors might
indicate that they would like more space. Literature on human-
human interaction has discussed various non-verbal behaviors
that could potentially serve as social feedback cues, such as
averting gaze and leaning behavior [5], [9], [10]. And previous
work on social agents has used easy-to-detect cues, e.g. the
use of estimated subjective task difficulty to try and adapt
the difficulty of a learning task [11], and the use of specific
non-verbal utterances to guide the adaptive behaviors of a
conversational agent [12].

But can our systems automatically detect and correctly
interpret subtle social feedback cues? Can a robot (learn to)
detect from a person’s non-verbal cues if that person thinks it
got too close, did not get close enough, or is in a comfortable
position? To our knowledge, there is no previous work in
this direction, nor any datasets collected for the purpose of
investigating these questions.

In this paper we investigate these questions, in the context
of social positioning behavior for a mobile robot. More
specifically, we investigate whether we can train a detector
and find features from pose tracking that indicate that a robot’s
approach distance is subjectively perceived as too close, too
far, or sufficiently comfortable. As our robot platform, we
used the Giraff hardware (with modifications made in the
context of the Teresa project [13]). To keep our scope focused,
we have deliberately (1) limited ourselves to this specific
context and robot, and (2) used a straightforward machine
learning pipeline with little parameter tweaking. While this
limits the generalizability of our current findings, and likely
the performance of our detector as well, it does allow our
findings to provide a first stepping stone and various leads for
the automatic detection of social feedback cues.

To be able to train our detector, we first collected a dataset
in which a robot would approach people, using a range of ap-
proach distances, to provide information through speech, and
we collected both their response behaviors (through a tracking
system) and their perception of the robot’s behavior (through a
questionnaire) (Section II). We then conducted several tests to
confirm that the perception of our participants did not depend
exclusively on the distancing behavior of the robot (Section
III), as that would allow a detector to achieve a reasonable
performance by simply using that distancing behavior (Figure
1). After that, we used our dataset to train a detector of social
feedback cues – achieving a performance significantly better
than chance and identifying various relevant features (Section
IV). Together, these findings indicate that, at least in this
context, there is scope for systems that detect and respond
to social feedback cues (Section V).

II. A DATASET FOR DETECTING SOCIAL FEEDBACK CUES

Our first step, which we will describe in detail in this
section, was to collect a dataset suitable for our purposes.
To this end, we designed our data collection with three key
requirements in mind. Firstly, to ensure a rich and sufficiently

Fig. 1. Put abstractly, as in this model, (manipulated) environmental factors
can influence internal states, which can in turn be reflected in (non-verbal)
behavior. These two relations (represented by arrows) could both be used to
detect internal states, provided that enough data is available. Since our focus is
explicitly on the detection of internal states from non-verbal behavior (the right
arrow), we should make the detection of internal states from environmental
factors impossible, e.g. by introducing relevant environmental factors that are
not represented in the dataset.

diverse dataset, we aimed to elicit a variety of internal states
and leave participants relatively free to display external non-
verbal behaviors as they please. Secondly, to ensure that the
different data points are comparable, the interaction followed
a somewhat controlled pattern. Thirdly, we wanted to make
sure that detection of our participants’ perception of the robot’s
behavior could not be derived from observable contextual cues.
This to ensure that such detection would, in line with the aim
of this paper, instead have to rely on the tracked behavioral
responses (as illustrated in Figure 1).

A. Task and context

To allow for the collection of multiple data points, we
needed a task and context that would allow for the robot to
approach the participants several times in a meaningful way.
To this end, we reused a murder mystery task [7]. Within this
task, the robot would, in 8 iterations: Approach the participant
to give them a clue relevant to the murder mystery, briefly
discuss the clue with the participant, indicate that it would go
collect the next cue, and then retreat from the conversation.

The clues were designed to be comparable in length (20-30
seconds long) and information content; each clue started with
some filler text on how it was collected, e.g. “I have the fourth
clue. The detective chief inspector had a hunch and also had
someone ask around at several hardware stores”, followed
by information relevant to solving the murder mystery, e.g.
“Yesterday, around 6 p.m., the victim visited a local hardware
store to purchase a crowbar.” To make the clues similar in
length, some clues would end with more filler text, e.g. “The
shop assistant positively identified him.”

After sharing the clue, the robot would maintain a brief
conversation about the clue for about 1 minute. To do so,
we implemented a simple Wizard of Oz set-up in which an
experimenter could select and play various pre-recorded audio



files. Beyond the clues, these fit two categories. Firstly, there
were simple answers to questions the participants might ask,
e.g. “Yes”, “No”, “I did not catch that”, “I do not know”.
The experimenter was instructed to avoid giving opinions and
to only give information that was also available in the clues
shared thus far with the participants. Secondly, we included
questions to engage participants in the murder mystery, e.g.
“What do you think happened?”, “Why?”, “Do you already
have a suspect in mind?”, “Can you elaborate?”.

After the brief conversation, the robot would wrap up the
conversation by saying “I will now go and collect the next
clue,” after which it would do so. Each participant would in
this way be presented with a total of 8 clues, which together
provided enough information to solve the murder mystery.
After that, the robot would approach them a 9th time, and
ask them who they suspected. This 9th approach was mainly
included to allow participants to wrap up their interaction with
the robot, and excluded from our analysis.

B. Conditions

We introduced two factors in our data collection. To ensure
that the robot’s behavior would elicit a rich range of reactions,
we manipulated how close it would get during its approach
(within-subject). In an attempt to introduce non-observable
environmental factors and thus keep our detectors from using
environmental factors as a short-cut to detect the internal states
of our participants, we also manipulated environment noise
(between-subject).

1) Interaction distance: Within-subject we manipulated
approach distance of the robot, using the distances 30cm,
70cm, 110cm, and 150cm (measured from head-to-head, in
the floorplane). These distances were chosen to be evenly
distributed, while falling into four distinct informal social
interaction distance classifications of Hall [14, p.126]; not
close intimate, close personal, not close personal, and close
social, respectively. These distances also align with literature
in HRI, where, for human-sized mobile robots, distances
around 30cm are often found as well invading personal space
(e.g. [2], [15]–[17]). Furthermore, as the robot could only be
controlled with limited precision, these distances were chosen
such that even with those minor deviations they would still be
distinguishable.

We used each approach distance twice, resulting in a total
of 8 data points per participant. To counteract order and
sequential effects, we used an 8 × 8 balanced latin square
design to counterbalance.

For practical and safety reasons, the approach behavior of
the robot was controlled by the experimenter using a Wizard-
of-Oz approach.

2) Environment noise: For our other condition, we aimed to
find a between-subject factor that would effectively influence
participants’ perception of different approach behaviors, with-
out being directly observable from the tracking data recorded.
Through pre-studies (stop-task) we tried a range of potential
factors (smell, team membership, perception of the robot as

safe/unsafe), but found no strong indication that these had an
effect on the preferred approach distance.

In the end, we found environment noise to be a suitable
factor. Previous work has suggested that perceptual challenges
can be related to proxemic preferences in interactions with
robots [8], [18], [19]. This also aligns with Hall’s work,
where he explicitly tied his informal social interaction dis-
tance classification to different perceptual qualities [14]. We
conducted a plain stop task with high/low environment noise
as a small pilot (n=12), which we explicitly framed in the
context of having a conversation with the robot. While we
found relatively big individual differences in stop distances
(ranging from 5cm-95cm), the data suggested a clear effect of
high/low environment noise on stop distance.

To implement our manipulation of environment noise, we
hid 4 speakers above the drop ceiling of the experiment room
and played white noise from them. In the low condition, we
set it to a low volume such that it was audible but not invasive
– sounding akin to the noises made by some air conditioning
systems. In the high condition, we set it to the highest volume,
such that to the experimenter it was challenging to follow the
robot’s speech if it was about 100cm away.

We started the white noise before the participants would
enter the experiment room, apologizing for it if participants
asked about it without suggesting it pertained to the experi-
ment. The majority of participants in the high noise condition
did ask about it, while none in the low noise condition did so.
Participants were debriefed about this afterward.

C. Data collection

Throughout the experiment, we tracked the position of our
participants and made video recordings of the interaction. In
between each interaction with the robot, the experimenter
would present participants with a between-session question-
naire, and after participants had gone through all interactions
we presented them with a post-experiment questionnaire.

As discussed above, we needed to strike a balance between
allowing our participants to move and react freely, while also
keeping the collected data comparable. To this end we used
three cover stories. Firstly, we told participants that all equip-
ment used in the data collection was intended for autonomous
robot behavior. This reinforced the idea that the robot was
autonomous, while also serving to make the participants less
aware of their actions and reactions being recorded. Secondly,
we wanted to ensure that participants would be forced to let
the robot approach them, and not the other way around. To
achieve this, we used a wired skin conductance measuring
device – the wire, connected to the participants’ left hand,
effectively limited their movement range to the wire’s length
(approximately 1 meter) around the device. Thirdly, when
handing the participants the between-session questionnaires,
the experimenter would always do so from the same position.
This served as a means to roughly (and softly) ‘reset’ the
position of the participants in between each approach. All
participants were, of course, debriefed after the experiment
about the deception involved in these cover stories.



1) Objective measures: To track the position of our par-
ticipants, we equipped them with two uniquely identifiable
markers. One marker was worn on the back of the chest,
with two straps going around the shoulders. The other marker
was worn on a cap. The robot was similarly equipped with
markers. All markers were tracked by an OptiTrack (www.
naturalpoint.com/optitrack) motion capture system using 12
infra-red cameras. This set-up allowed for sub-centimetre level
precision tracking of both position and orientation of each
marker.

In addition, we also recorded the whole interaction with a
video camera present in the room. While we also equipped par-
ticipants with the sensors to measure their skin conductance,
the resulting data was not reliable and thus discarded.

2) In-between questionnaire: With our in-between ques-
tionnaires, we intended to get, for each of the interactions with
the robot, a comparable indication of our participants’ comfort
level, perception of the robot, and how they would suggest the
robot change its behavior. This had to be balanced with the
need to keep the questionnaire short so as to not disturb the
flow of the interaction too much.

Specifically, we asked participants how comfortable they
were with the behavior of the robot (sliding scale, 1–100) and
to rate the robot as being intelligent, sensitive, pleasant, and
thorough (7-point Likert scales, Not at all–Very much). To
keep them focused on the task, we also asked how relevant
the latest clue was towards solving the case. Lastly, we asked
them to indicate desired changes to positioning behavior (7-
point scale, The robot should... get much closer–not change its
position–stay much further away) and, similarly, to its volume
settings (The robot should... increase its volume–not change its
volume–decrease its volume). We concluded each in-between
questionnaire with an open question in which participants
could give other suggestions for improvement.

After the 9th interaction we used the same questionnaire,
but swapped out the question on the relevance of the clue for
an open question on who they suspected to have committed
the murder.

3) Post-experiment questionnaire: After the experiment
was over, we asked the participants for demographic informa-
tion that could pertain to their social distancing preferences.
Specifically, we asked for gender, age, education, country of
origin, history of pet ownership [16], and prior experience
with robots. In addition, given our manipulation of environ-
ment noise, we checked participants’ hearing loss, and asked
participants to indicate how they experienced the noise level
in the lab (7-point Likert scale, no noise at all - a lot of noise).

D. Materials

For our data collection we used the hardware of a Giraff
telepresence robot. However, rather than using it as a telep-
resence robot, we modified it to show two animated eyes
on its screen which would occassionally blink. We prepared
a Wizard-of-Oz set-up which allowed the experimenter to
control the robot, and to quickly and efficiently select and
play pre-recorded audio files on the robot. The experimenter

Fig. 2. Overview of the experiment room, showing the Wizard-of-Oz set-up
with the experimenter (top-right), and the interaction between the participant
and the robot (middle). Behind the participant was a table with a device for
measuring skin conductance, to which they were connected through a wire.
The overview also shows the location of the video camera (bottom-right).
Located on and just below the drop ceiling were the infrared cameras (hatched
squares with circle) and the speakers (hatched square with speaker icon).

controlled the robot from a laptop, located in a screened off
corner of the experiment room (Figure 2).

E. Procedure

Participants came in, received a briefing, and read and
signed an informed consent form. After that we equipped them
with the markers, under the ruse that those markers would help
the robot to navigate autonomously. We also hooked them up
to the sensors for measuring skin conductance – which forced
them to stay relatively close to the measurement tool.

They were then instructed on the task: Solve a murder
mystery, the robot will go collect the cues. We told participants
that the aim of the study was for them to collaborate with
the robot and we encouraged them to talk with the robot,
while warning them that its capacities for natural speech were
limited. We further instructed them that each time the robot
would go collect the next clue, the participants would be pre-
sented with a brief questionnaire (presented on a tablet). Just
before the interaction started, we started the data collection
and conducted a brief calibration.

The interaction then proceeded as described in Section
II-A. Each time the robot went to collect the next clue, the
experimenter would present the participant with an in-between
questionnaire on a tablet. Otherwise, the experimenter hid in
a screened off section of the experiment room and controlled
the robot (Section II-D).

After the interaction with the robot was completed, partici-
pants were asked to fill in the post-experiment questionnaire.
After the experiment was over, we fully debriefed our partic-
ipants and offered them C6 for their efforts.

F. Participants

A total of 30 participants joined in our data collection. Of
these, 21 (70%) identified as male, the rest as female. Most
were students, with ages between 17 and 27 (mean age 21.73).
The majority (73%) of our participants had the Netherlands as
their country of origin. In our other demographic questions,
we saw many participants who still/once owned or took care
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of a pet (83%), and a fair distribution of prior experience with
robots (2 with no prior experience, 14 who had seen robots
before, 9 who had interacted with robots before, and 5 who
had worked with or programmed robots before).

None of our participants ever wore a hearing aid, and a great
majority did not feel they had a hearing loss (90%), nor did
their friends or family think they had a hearing loss (90%).
One participants rated their hearing as poor, while the rest
rated it as fair (4 participants) or better.

III. TESTING FOR EFFECTS OF APPROACH DISTANCE AND
ENVIRONMENT NOISE ON PERCEPTION

The controlled data we collected can be seen as an exper-
iment testing for the single and joint effects of approach dis-
tance and environment noise on perception. Within the context
of this work, our main goal was to ensure that perception of the
robot’s behavior would not depend exclusively on the approach
distance. Specifically, we expected a joint effect of approach
distance and environment noise.

As mentioned above, in contrast to what we expected, our
results were null-results. In this section we will briefly discuss
the research question and hypotheses that guided our analysis
(Section III-A), the results (Section III-B), and the implications
of those results (Section III-C).

A. Research question

In our data collection set-up, we used two manipulations
(approach distance and environment noise) and a subjective
measure (the in-between questionnaires). The questions in
the in-between questionnaires reflected several aspects of our
participants’ perception of the robot. As such, we defined the
following research question;

What are the single and joint effects of approach distance
and environment noise on the way a robot is perceived?

Our main interest in this question was to ensure that
perception of the robot would not exclusively depend on its
used approach distance (Figure 1). In addition, if we had found
environment noise to have an effect, it would have been an
additional piece of evidence within the relatively small body
of literature on the effect of perceptual needs on proxemic
preferences in human-robot interaction.

As discussed in more detail in Section II-B, both our
conditions were chosen because, based on the literature and
our small pilot, we would expect them to have an effect.

B. Results

A principal component analysis (PCA) was run on the
8 items of the in-between questionnaires. Inspection of the
correlation matrix showed that the question about the relevance
of the clue had no correlations with the other questions greater
than 0.3, which is not surprising as it was primarily included to
check that the relevance of the clue would not influence our
measures; that question was excluded from further analysis.
Overall Kaier-Meyer-Olkin was reasonable (0.779), though
individual measures for the items on the robot changing its
position (0.442) and its volume (.547) were low. When these

items were recoded to a scale from ‘strong change suggested’
to ‘no change suggested’, these individual measures improved
(to .541 and .559 respectively, with overall Kaier-Meyer-Olkin
.774). Data was likely factorizable (Bartlett’s test of sphericity,
p=.000).

PCA revealed two components that had eigenvalues greater
than one and which together explained 68.0% of variance
(48.4% and 19.6%). The first component had strong loadings
of the questions on perception of the robot (Comfortable,
Intelligent, Sensitive, Pleasant, Thorough), while the second
component had strong loadings of the two questions about the
robot changing its position and its volume.

For the remainder of our analysis, we will use the
component-based averaged scores for these components, la-
beled as ‘Perception’ and ‘Suggested improvement’.

We conducted a two-way mixed ANOVA to investigate the
single and joint effects of approach distance and environment
noise on Perception and Suggested improvement.

For Perception, there was no significant interaction between
our conditions (F(3,78)=.306, p=.821). Therefore, we looked
into the main effects, but found no significant effects of either
approach distance (F(3,78)=1.357, p=.262) or environment
noise (F(1,26)=.161, p=.691).

For Suggested improvement, there was no significant inter-
action between our conditions either (F(3,78)=1.100, p=.343).
Therefore, we looked into the main effects, but again found no
significant effects of either approach distance (F(3,78)=1.851,
p=.165) or environment noise (F(1,26)=2.805, p=.106).

C. Conclusions and discussion

These results show that, in this particular dataset, there is
no strong effect of approach distance and/or environment noise
on perception of our participants – i.e. we had null results.

These null results also pose an interesting question: why
did we not find results, despite following an extensive body
of work on social positioning behavior? It is important to
note that absence of evidence is not evidence of absence; our
findings do not disprove this body of work, especially not with
our relatively limited sample size.

We want to here speculate about one possible explanation;
a key difference between this study and much of the previous
work on social positioning, is that we explicitly allowed our
participants to move in response to the behaviors of the robot.
In other words, it might be that being able to adapt your
own position can alleviate the effects of a robot’s distancing
on the perception of people. This makes intuitive sense, as
people frequently make small adaptations to find an interaction
distance with which they are comfortable (as discussed in a.o.
the equilibrium theory [20]). This also aligns with our findings
in earlier studies, where we also allowed participants to move
around, and also found no significant effect of approach
distance on perception of the robot [7], [21].

IV. DETECTING SOCIAL FEEDBACK CUES

Our aim was to get insights in the relation(s) between non-
verbal cues from body posture and perception of a robot as
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TABLE I
OVERVIEW OF THE FEATURES WE GENERATED FROM OUR TRACKING DATA, USING DIFFERENT MEASURES OF THE DISTANCE AND ANGLE BETWEEN TWO
MARKERS, ON A REPRESENTATIVE SET OF MARKER PAIRS AND TIME WINDOWS, IN A RANGE OF FEATURE FUNCTION TEMPLATES (‘CONFIGURATIONS’).

being appropriately positioned (or not) – such that it could be
automatically detected. To this end, we tried to implement an
effective classifier.

Within the scope of this paper, implementing an effective
classifier is a means, not the end. In other words, we are and
were not aiming for “perfect scores” and one should not expect
them, as we are trying to read peoples’ inner thoughts from a
relatively small dataset. Instead, we have searched for relevant
insights about what factors would play a role in developing
and optimizing feature selection for such a classifier. For this
reason, we focused on feature selection, and used a standard
random forest classifier with 500 trees [22] as our classifier,
without further tuning.

We will in this section discuss how from the raw data
we derived a wide range of features and our labels (Section
IV-A) and then tried to find which features were relevant for
a classifier (Section IV-B).

A. Data preparation and feature extraction

From our data collection, we ended up with relatively clean
data. The OptiTrack gave us temporal data on position (x,y,z)
and 3D orientation (quaternion) for the four markers we used:
participant head, participant body, robot head, and robot body.
From the in-between questionnaires we further had a measure
of participants’ perception of the robot for each interaction
(8 per participant). We used the questionnaire data to derive
our labels (IV-A1) and the tracking data to derive our features
(IV-A2).

1) Labels: As our labels, we used the participants’ answers
to the question on how the robot should change its positioning.
We chose to do so, because those directly reflected their
opinion, in contrast to the two constructs we derived from

the questionnaire (Perception and Suggested improvement,
Section III-B).

To limit the number of classes, we translated the 7-point
scale into three bins: 1-3 ‘get closer’, 4 ‘don’t change po-
sition’, and 5-7 ‘stay further away’. These bins resulted in
a uneven distribution of the classes, with stay further away
being chosen with roughly twice the frequency of get closer
and don’t change position.

2) Features: Even though we only tracked four markers,
there are already many different aspects that could be relevant.
These include different relations that exist between markers
(we used several measures of distance and angle) and that
have been hypothesized to serve as social cues in the context
of social positioning (see, e.g. [5]), different time-windows
that we could consider around the end of the approach, and
different ways of combining these measures in a way that
takes temporal aspects into account. A concise overview of
the features we generated, and the way in which we generated
them, can be found in Table I.

a) Marker pairs: We selected the two marker pairs that
most richly encoded the relative positioning of the robot and
our participants – (robot-head, participant-head) and (robot-
body, participant-body). Since we did not change the robot’s
posture (just its position) and were mostly interested in the
participant’s behavior, other pairs that included markers on the
robot did not really provide additional information and were
thus excluded. We did include the pair of the two markers
worn by the participant (participant-head, participant-body),
as that would yield several features that could serve as social
cues, such as gaze aversion and leaning behavior [5], [9], [10].

b) Time windows: Time windows were defined by their
start and end time (ta, tb), with the window (W) also encom-



passing all time frames in between (W = {t|t ≥ ta, t ≤ tb}).
As our temporal point of reference (t = 0), we used the end of
the robot approach. This had the practical benefit that it was
easily and reliably derivable from the robot reducing its speed
to zero (we did this automatically, using an over-sensitive
metric, and then manually removed the false positives and
checked the outcomes).

c) Generating features: We deliberately generated an
exhaustive set of features with all combinations of these
aspects, rather than making assumptions on which features to
pick. The downside hereof was that it resulted in 4410 unique
features1, which is excessive for this small a dataset and thus
necessitated the use of feature selection. At the same time, this
had the advantage that said feature selection could potentially
provide us with information on which features were effective
for our classifier.

B. Feature selection

After generating this many features, our next step was to
try and conduct suitable feature selection. At first, we used
a combination of feature pre-selection based on a variance
threshold, selection of features having the highest chi-squared
scores, and feature selection based on gini-importance in a
random forest. Initial results on a participant-independent train
set and test set seemed barely above chance level (Appendix
A1), which improved to a very small but significant difference
on a participant-dependent train set and test set (Appendix
A2). Performance in both cases had a very high variance,
which suggested that there were meaningful features to be
found, but the feature selection had difficulty finding them. We
confirmed this by using a set of features that was successful
in one of the training folds and showing that, without further
tuning, these features significantly improved performance on
the participant-dependent test set.

Based on our findings with automatic feature selection we
expected that suitable features existed and were occasionally
but unreliably found by our automatic feature selection. To
investigate this, we tried how effective classification would
be if we used a set of features that had been found to be
‘successful’.

To find this set of supposedly suitable features, we looked
into the features that were found during automatic feature
selection. Specifically, we selected features by using those
from the (outlier) highest-performing classifier in one of the
training folds (participant dependent, using all types of feature
selection with t=3,k=10,n=50 (see Appendix A)), with a
precision of .609. Cross-validation of these features on the
other folds in the train set also seemed promising, with an
average precision of .394. An overview of these four features
can be found in Table II, along with our interpretations on
what these features could entail. It is important to note that
these are only hypotheses; further work will be necessary to

17 relations × 3 marker pairs × 21 time windows × 11 configurations =
4831, minus the duplicate5 features resulting from ignoring the second time-
marker for single moment features (7 × 3 × 14) and ignoring the second
marker for time-compare features (7× 1× 21).

investigate our interpretations, and to see if and how these
features generalize.

Since we found these features based on their performance
within one fold of the participant-dependent train set, we
needed to test them on the participant-dependent test set as
well.

Performance on the test set was reasonably good (see Table
III), and better than what we had previously found with
automatic feature selection. Performance on the individual
classes aligned with their frequency in the train and test set,
with performance on ‘stay further away’ being higher than
performance on ‘not change its position’, which in turn was
higher than performance on ‘get closer’. The latter performs
below chance level, which indicates that our classifier is better
at detecting when the robot was perceived as uncomfortably
close than when it is perceived as annoyingly distant. This
might indicate that humans tend to give feedback when they
feel their personal space is violated and less so, or would
compensate themselves, if they felt their conversation partner
is respecting their personal space too much.

We further investigated if performance was significantly
better than what would be expected of a random classifier
taking into account the relative frequencies of the different
classes. For this, we used repeated holdout validation, splitting
the full dataset into different random train and test sets, on
which we then trained and tested our classifier with the chosen
features. We repeated this a total of 20 times and then com-
pared against the expected value of the random classifier. To
compare the outcomes, we ran a one-tailed Wilcoxon signed-
rank test, which showed a significant increase in average
precision between our trained classifier (median of .483) and
the random classifier (median of .366), Z=3.360, p=.001.

Overall, these findings show that in a participant-dependent
case there are indeed social feedback cues that a robot might
use to detect if people think it chose an appropriate interaction
distance. As noted before, our approach in selecting these fea-
tures here does not allow for generalizations to a participant-
independent case.

V. CONCLUSIONS AND DISCUSSION

In this paper we have investigated if it is possible to
automatically detect and interpret social feedback cues, in the
context of approach distance for our specific robot platform.
In other words, we have investigated if people’s nonverbal
behaviors (position/orientation upper body and head, over
time) contain detectable information about their perception of
a robot’s approach behavior.

We started by collecting an extensive dataset, manipulat-
ing approach distance and environment noise, measuring the
perceived appropriateness, and tracking temporal positioning
information. This dataset is being made publicly available as
part of this publication.2. The two conditions in this dataset,
approach distance and environment noise, were, unexpectedly,
not found to have any significant single or joint effects on

2http://doi.org/10.4121/uuid:b76c3a6f-f7d5-418e-874a-d6140853e1fa

http://doi.org/10.4121/uuid:b76c3a6f-f7d5-418e-874a-d6140853e1fa


Feature Interpretation of what the feature could capture Average gini-importance

∆t=-5,-3
(
d3D

(
t
PH , t

RH

))
“anticipatory leaning” .263
anticipation based on earlier trials could cause the odd time window (-5,-3)?

MAX
({

m|(t ∈W(-3,0))∆u=t,t+1

(
a1SIDE

(
u
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))})
“abruptness of body up-down rotation” .232
caused by stepping away from/towards the robot?

MAX
({
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(
a1TOP
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u
PH, u

RH

))})
“abruptness of head left-right rotation” .260
caused by participants aiming an ear to the robot (to hear it better)?

∆t=-5,1
(
d3D

(
t
PH , t

PB

))
“increased tilting towards/away from the robot” .244
using the measure at t=-5 as a baseline?

TABLE II
OVERVIEW OF THE FEATURES USED BY OUR EVALUATED CLASSIFIER, AND THE CLASSIFIERS USED IN THE CROSS-EVALUATION. AS AN INDICATOR OF

THEIR (RELATIVE) IMPORTANCE WE HAVE GIVEN THEIR AVERAGE GINI-IMPORTANCE IN THE CLASSIFIERS USED IN THE CROSS-EVALUATION.

The robot should... Average
...get closer ...not change

its position
...stay further
away

Precision .166 .500 .692 .453
Recall .333 .364 .692 .463
F1-score .222 .421 .692 .445

TABLE III
PERFORMANCE OF OUR CLASSIFIER ON THE TEST SET, TRAINED WITH

ONLY THE SET OF FEATURES LISTED IN TABLE II. WE HAVE LISTED
PERFORMANCE IN TERMS OF PRECISION, RECALL, AND F1-SCORE FOR
EACH OF THE THREE CLASSES, AS WELL AS AVERAGE PERFORMANCE.

perceived appropriateness. We have hypothesized that this was
caused by our participants having the freedom to compensate
for the behavior of the robot by repositioning themselves, but
further research will be necessary to test this hypothesis.

After initial struggles to get our classifier to detect and
interpret social feedback cues in our dataset with the many
features we generated, we managed a small but significant
improvement over a random classifier. As we suspected that
these struggles were caused by a difficulty in reliably iden-
tifying suitable features, we also looked at a specific set of
features (Table II) that performed particularly well on one of
the training folds. Use of these features resulted in a classifier
with a somewhat more substantial improvement over random
for a participant-dependent case.

Together these findings show that in this context, at least
in the participant-dependent case, features can be found that
provide information about subjectively perceived appropriate-
ness. As the four found features all use time-windows that can
be computed within 1 second after the end of the approach,
this detection may well be quick enough to allow a robot to
respond and try improving its behavior.

At the same time, there are several things that the current
work deliberately does not do. Firstly, our findings are based
on this specific context and robotic platform, so we cannot
make strong claims on the generalizability of our findings.
Secondly, though significantly better than chance, there is still
a lot of space for improvement in the automatic detection
of social feedback cues. And thirdly, we have only looked
at the nonverbal cues encoded in position/orientation of our
participants’ upper body and head; there may be many other
relevant cues, e.g. in facial expressions, in perspiration, in

verbal utterances, or in various aspects of body language.
The different parts of the work reported here can, however,

serve as a starting point for further work in these directions.
The methods and considerations involved in our collection of
the dataset could be a starting point for data collections with
similar aims in a wide range of different contexts – with robots,
or with other kinds of social agents. Furthermore, such data
collections could focus on a rich variety of different nonverbal
cues as well. In addition, the dataset we collected could be
used with more sophisticated machine learning techniques to
try and achieve a better performance.

Overall, we have taken the first steps, showing that a robot
could detect it got too close during its approach. This provides
an initial investigation of our main question of how to get
robots to detect social feedback cues, and opens the door to
the practical implementation of robots that behave responsively
in social situations.
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APPENDIX

A. Automatic feature selection

Our dataset consisted of 240 data points (30 participants × 8
interactions), with for each data point 4410 feature values and
1 label. This dataset was split in a train and a test set, further
reducing the number of data points available for training. As
such, our dataset is relatively small and any classifier is likely
prone to overfitting. These challenges motivated our decision
for which classification procedure to use.

Firstly, we chose to use two forms of feature selection, to
reduce the number of used features and reduce the risk of
overfitting. We used a chi-squared score based method to pre-
select a subset of k features with the highest scores, after a
pre-selection based on variance threshold (cutoff at .8). We
then further selected from these features by training a random

forest with n trees, and then selecting features that had a gini-
importance higher than 1/k.3

For completeness, we tested four cases; no feature selection,
only chi-squared score based feature selection, both forms
of feature selection mentioned above, and manual feature
selection. The latter, manual feature selection, was added as an
alternative and had resulted in a selection of 8 features together
representing stepping away, leaning away, and averting gaze
in the (0,+1s) and (-1s,+3s) time frames. Using only random
forest based feature selection (without chi-squared score based
feature selection) was not included as a case as it is ineffective;
with 4410 features, gini-importance of each individual feature
would become so low that selection based on those gini-
importances would be too sensitive to noise.

Secondly, as we were interested in the relevance of the
different time-windows to the performance of the classifier,
we also manipulated the time-windows that would be included
in the dataset. Introducing t, as a variable taking one of the
moments [-3s, -1s, 0s, +1s, +3s, +5s], we would only include
features in the dataset that had values for time-windows up to
and preceding that moment.

Together, this introduced several hyper-parameters that we
wanted to investigate; k, n, t, and type(s) of feature selection
to use. For this we used cross validation within the training
set.

1) Participant-independent classification: In our first go,
we tried to train a participant-independent classifier. That is,
we split the dataset into a training set and a test set, such
that all data points of a participant were in the same set. We
similarly separated validation sets from the training set for our
cross validation. This ensured that the classifier would always
be tested with data points from a participant it had not been
trained on – which would mean that, in the case of a good
performance, our findings would likely be easily generalizable
to new and previously unseen people. We wanted to avoid too
large an influence of outlier participants, and thus split the
dataset in 5 parts of 6 randomly chosen participants each; one
formed the test set, the others the folds in the training set
(4-fold cross-validation).

Already in our cross-validation, we saw that performance
mostly was barely above chance-level4 – despite feature selec-
tion, and across all hyper-parameters. To our surprise, perfor-
mance on the training set was consistently near-perfect, while
performance on the validate-set would drop to chance-levels.
This seemed to be partly due to the curse of dimensionality –
without feature selection, performance barely increased even
when we included the correct label as a feature, demonstrating
that the algorithm was unable to identify relevant features from

3Since the sum of gini-importances over all features for a random forest
is equal to 1, and k is the number of features used, this method selects all
features that had a higher gini-importance than could be expected based on
chance.

4It is worth noting that performance for a t of -3s was especially low,
being consistently below chance-level with an overall average precision of
.262. This does make intuitive sense, as in that time-window the robot would
have barely started its approach, thus providing participants with little to no
reason to already judge the appropriateness of the robot’s behavior.



a feature set of this size. However, even with small feature sets,
we still had similar results.

We investigated several alternatives, trying to challenge our
assumptions, but found no increase in performance. Firstly,
we investigated our choice for the labels, by also testing with
labels derived from binning participants’ score on Perception
and Suggested improvement (see Section III-B) – this did not
seem to affect performance. Secondly, we investigated our
choice for the random forest classifier. We tried several other
classifiers (Naive Bayes, Support Vector Machines), but to no
avail. We also tried further tuning of other parameters of the
random forest classifier, aiming to make it less susceptible to
overfitting to our feature set; trying several different numbers
for the maximum number of features used by each tree,
enforcing a maximum depth for the trees, and increasing the
number of samples that were required to split an internal node.
Again, this did not seem to affect performance in our cross-
validation.

Since all these alternatives failed, the most likely explana-
tion seemed to be that aspects of individual participants did
matter and should be taken into account. This also posed an
explanation for the recurring observation that performance in
the training set was near perfect, dropping to close to ran-
dom performance in the validation set only. We consequently
decided to try participant-dependent classification instead.

2) Participant-dependent classification: As we suspected
that aspects of individual participants played an important
role, based on our first attempt discussed above, we tried
participant-dependent classification. To do so, we split the
dataset in a train (200 data points) and test set (40 data
points) such that the data points of individual participants were
spread across these two sets. We similarly separated validation
sets from the training set for our cross validation, creating 5
folds with 40 data points each. This ensured that our classifier
would usually have encountered a few data points from each
participant in its training set before validation and testing. In
our initial tests, we found that this already seemed to improve
performance a bit, even without feature selection (average
precision of .433 on the training set), and we thus investigated
this more in-depth.

We then ran our full cross-validation, to find a hyperparam-
eter setting where average performance was high and stable

in terms of standard deviation and average performance with
similar hyperparameter settings. Of the two peaks found, the
peak around t=-1, k=10, and n=5000 (average precision of
.462 with standard deviation .068) was discarded as standard
deviations for those values were relatively high. We thus chose
to go with feature selection based on both chi-squared score
(k=45) and gini-importance in a random forest (n=100) for
time frames up to t=0 (average precision of .452 with standard
deviation of .038, and similarly low standard deviations for
similar hyperparameters).

We trained our classifier on the full training set, with feature
selection using the found hyperparameter settings, and then
tested its performance on the test set (holdout validation). This
resulted in an average precision of .38 on the test set.

As this is but a small improvement relative to what would
be expected of a random classifier with three classes, we
further wanted to investigate if performance was consistently
better than random. To ensure a fair comparison, we used
the expected precision of a random classifier that would take
into account the relative frequencies of the different classes
in the training set – which, given the distribution of labels
in our dataset, resulted in a performance slightly better than
pure random. For this comparison, we used repeated holdout
validation. We took the full dataset and split it into different
random train and test sets. On these splits, using the found hy-
perparameter settings, we then trained and tested our classifier.
We repeated this a total of 20 times to get a reasonable sample.
For each of these splits, we also computed the expected value
of the random classifier. To compare the outcomes, we ran
a one-tailed Wilcoxon signed-rank test, which showed a very
small but significant increase in average precision between our
trained classifier (median of .391) and the random classifier
(median of .376), Z=1.792, p=.037.

While we thus found a small but significant improvement
of our trained classifiers, it is worth noting that the variance
of the trained classifiers was much higher than that in the
random classifier, with standard deviations of .064 and .016,
respectively. As performance improved upon random, we can
conclude that features do contain (some) information on the
labels. At the same time, the small difference and the high
standard deviations strongly suggest that the used automatic
feature selection could not (yet) reliably find these features.
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