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Abstract   

 

Lithium is a significant material of the energy transition, powering electric vehicles and grid storage, 

and surging demand is expanding extraction, yet lithium mining is energy intensive and can impose 

significant environmental burdens. This thesis evaluates whether on-site renewables plus battery 

energy storage systems (BESS) can provide reliable, cost-competitive, lower-carbon electricity for 39 

lithium mines across 10 countries. I compare solar, wind, and hybrid systems paired with either 

about 3 hours (near autonomous) or about 12 hours (fully autonomous) of storage. The calculated 

levelized cost of electricity (LCOE) spans from USD 0.07 to 0.17 per kWh, consistently below diesel 

generation costs (0.24–0.38 $/kWh) and broadly competitive with grid tariffs (0.06–0.15 $/kWh) 

across the countries studied. Internal rates of return (IRR) range from −4 percent to +48 percent, and 

paybacks from 0.4 to 10 years under a 20-year baseline life. Life-cycle assessment indicates more 

than 90 percent CO₂ reductions versus diesel or carbon-intensive grids. A clear autonomy-versus-

cost trade-off emerges: moving from about 98 percent renewable power supply with 3 hours of 

storage to 100 percent supply with 12 hours raises capital intensity, lifting LCOE and lowering IRR 

and net present value (NPV), while adding only modest extra emissions abatement. Technology 

choice is second order but directional: where wind resources are strong it tends to deliver the lowest 

LCOE and highest returns, while hybrids reduce resource mismatch risk and often beat baseline 

tariffs. Sensitivity and robustness tests show IRR and NPV are driven mainly by avoided-cost factors 

such as diesel and grid prices, and economics weaken at grid-supplied sites and in short-life mines of 

10 to 5 years. Beyond economics, the study shows that all-renewable systems reduce emissions but 

shift the environmental burden onto land and raw materials. Photovoltaic (PV) systems occupy more 

land than wind, while longer storage multiplies demand for critical raw materials and adds pressure 

to their supply chains. Overall, renewable energy systems with BESS can decarbonize lithium 

extraction at competitive cost where resources and lifetimes are favourable and conventional 

energy is expensive, though they also introduce new land and material pressures that must be 

managed.  
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Abbreviations  

BESS Battery Energy Storage System(s) 

BOS Balance of System 

CAPEX Capital Expenditure 

CO₂ Carbon Dioxide 

CO₂eq Carbon Dioxide Equivalent 

CRF Capital Recovery Factor 

CRM Critical Raw Materials 

CSP Concentrating Solar Power 

DCF Discounted Cash Flow 

DoD Depth of Discharge 

EEA European Environment Agency 

EPA U.S. Environmental Protection Agency 

GHG Greenhouse Gas(es) 

GWh Gigawatt-hour(s) 

HOMER (Pro) Hybrid Optimization of Multiple Energy Resources (software) 

HRES Hybrid Renewable Energy System 

IEA International Energy Agency 

IRENA International Renewable Energy Agency 

IQR Interquartile Range 

IRR Internal Rate of Return 

kW Kilowatt 

kWh Kilowatt-hour 

Li-ion Lithium-ion (battery) 
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LCE Lithium Carbonate Equivalent 

LCOE Levelized Cost of Energy (or Electricity) 

LHV Lower Heating Value 

MW Megawatt 

MWh Megawatt-hour(s) 

NREL National Renewable Energy Laboratory 

NCF Net Cash Flow 

NEA Nuclear Energy Agency 

NPV Net Present Value 

NPC Net Present Cost 

O&M Operations & Maintenance 

OECD Organisation for Economic Co-operation and Development 

PBT Payback Period 

PV Photovoltaic 

PVPS (IEA-PVPS) Photovoltaic Power Systems Programme 

R² Coefficient of Determination 

RTE Round-Trip Efficiency 

TAC Total Annualized Cost 

TEA Techno-Economic Analysis 

WACC Weighted Average Cost of Capital 

USD United States dollar 

t tonne (metric ton) 

kt kilotonne 

GW Gigawatt 
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1. Introduction  

 

Mining operations are responsible for a substantial share of global greenhouse gas (GHG) emissions, 

contributing 4–7 % of the worldwide total (Aramendia et al., 2023). Most operations rely on diesel 

generators or carbon-intensive electricity grids, leading to high operating costs and significant 

emissions (Aramendia et al., 2023; Ataei & Barabadi, 2023). Cutting this reliance on fossil energy will 

require new approaches, and one promising way is to incorporate more renewable energy directly 

into mining operations. Several studies demonstrate that renewable energy systems can supply 

reliable power to mines while improving sustainability indicators (Aramendia et al., 2023; 

Pouresmaieli et al., 2023). These carbon free technologies themselves depend on raw materials 

supplied by mining, and as a result, it is essential that the mining sector be decarbonized to avoid 

undermining their overall positive environmental impact of renewable energy (Li et al., 2024; Zharan 

& Bongaerts, 2017; Dellicompagni et al., 2021). 

Certain raw material stand out as strategic priorities for carbon free energy technologies. Among 

them, lithium is of particular interest serving as a key material for lithium-ion batteries that power 

electric vehicles and support grid-scale renewable energy storage (Li et al., 2024). As global 

economies electrify transport systems and expand renewable deployment, the demand for lithium is 

expected to rise rapidly in the coming decades (Huang et al., 2024; Li et al., 2024). However, lithium 

extraction remains energy and carbon intensive, leaving operators vulnerable to volatile fuel prices 

and undermining the climate benefits of the technologies that depend on lithium (Mertens et al., 

2024; Aramendia et al., 2023).  

In this thesis, lithium mining is used as a representative case study to explore the wider potential for 

renewable energy integration across the mining sector. Lithium sites offer a relevant test case due to 

their strategic importance in the energy transition and diverse geographical distribution. 

To that end, I analyse lithium mines worldwide using a consistent dataset of electricity expenditure 

records. At each site, I apply the same input values and sizing rules to six predefined renewable 

power systems alongside with battery storage (solar, wind, and a 50:50 hybrid, each with 3 h or 12 h 

of storage) and compare their performance across geographies and operating contexts. The sample 

includes all lithium sites for which the available data support a credible techno-economic and 

environmental assessment, although it does not cover every mine globally. The overarching 

objective is to evaluate the techno-economic feasibility and environmental  trade offs of renewable-

plus-storage systems in mining. The study main research questions is  what is the techno-economic 
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and environmental performance of on-site renewable-energy systems with storage across lithium 

mining sites in different regions and operating conditions? and aims to addresses three sub-

questions questions: 

 

• RQ1: How does techno-economic indicators performance vary across different scenarios and 

lithium mining sites? 

• RQ2: . How do material requirements, land footprint, and life-cycle GHG emissions of renewable 

integration in mines vary across different scenarios and lithium mining sites? 

• RQ3: How sensitive are the results to changes in key assumptions, and which factors primarily 

drive the differences? 

2. Literature review 

 

In the last decade, solar photovoltaic, wind, and battery energy storage system technologies have 

seen drastic cost reductions, encouraging trials of these technologies at mining sites (Maennling & 

Toledano, 2018). Many of the mining sites still have diesel generators as backup for reliability, even 

if the use of renewable energy is growing (Paneri et al., 2021). In one example, a mine in Australia 

still uses 19 MW of diesel generators while having a 10.6 MW solar PV array and 6 MW of battery 

storage (Ellabban & Alassi, 2021). Researchers frequently incorporate conventional energy sources 

into their simulated studies, due to their role as a backup for resilience or peak demand (Ranjbar et 

al., 2024; Paneri et al., 2021). 

Many works in this area rely on simulation-based approaches to evaluate how renewable energy 

systems might perform in mining environments. One such example is the study by Bitaraf and 

Buchholz (2018), who modelled four off-grid scenarios using the software HOMER Pro for energy 

system optimization. The four scenarios considered were a diesel-only baseline, diesel combined 

with battery storage, diesel with solar PV, and a hybrid configuration combining diesel, PV, and 

batteries (Bitaraf & Buchholz, 2018). Their findings indicated that adding solar and battery storage 

significantly cut fuel use and resulted in lower energy costs per kWh compared to other setups 

(Bitaraf & Buchholz, 2018). The most influential economic factors of those results were the diesel 

price and upfront cost of PV (Bitaraf & Buchholz, 2018). However, this study was limited to a single 

site and tested only one battery configuration without exploring the impact of varying renewables 



 
8 

 

potential across geographical locations, different storage durations, or the feasibility of 100% 

renewable electricity production (Bitaraf & Buchholz, 2018). 

Maronga et al. (2021) model renewable system integration into a grid-connected mine in Zimbabwe 

(platinum, palladium, rhodium, gold, nickel, copper), testing photovoltaics with battery storage and 

sweeping storage from 2–12 h. The cost-optimal setup supplies approximately 63% of annual 

demand, with the grid covering the rest (Maronga et al., 2021). The study does not target near or full 

renewable electricity supply, remains single-site with no cross-site comparison, and does not assess 

off-grid reliability at high renewable penetration (Maronga et al., 2021). 

Ellabban and Alassi (2021) used also HOMER Pro to model optimal hybrid system sizing for three 

Australian mining sites, including a real-world replication a copper and gold mine. Over six years, the 

project reached a renewable penetration of 17%, below the original 21% target. Their analysis 

showed that integrating solar PV and battery storage led to annual reductions of 5 million litres of 

diesel and 12,000 tonnes of carbon emissions (Ellabban & Alassi, 2021). While this real-world case 

supports the potential of hybrid renewable systems, it also highlights that full renewable autonomy 

remains hard to reach because they are still heavily influenced by site-specific factors like solar 

irradiance and load consistency (Ellabban & Alassi, 2021). 

In the South Africa, Nkambule et al. (2023) evaluated a hybrid energy setup integrating floating PV, 

wind turbines, and vanadium redox flow batteries. The system showed promising financial 

outcomes, achieving an internal rate of return of 23.5%, which reflects the profitability of the 

investment relative to its cost over time (Nkambule et al., 2023). The reported payback period was 

4.9 years, showing how long it would take to recover the initial financial investment (Nkambule et 

al., 2023). In terms of cost efficiency, the levelized cost of electricity, a metric that spreads the total 

system costs across its operational lifetime, was estimated at roughly 0.23 USD per kilowatt-hour, 

positioning the system as economically competitive (Nkambule et al., 2023). From an environmental 

standpoint, the hybrid configuration cut annual CO₂eq emissions by roughly 1.74 million kilograms 

(Nkambule et al., 2023). The study scope is confined to a single mine and does not assess 

transferability to other commodities, such as lithium, or to geographically diverse operations 

(Nkambule et al., 2023).  

One study available exploring lithium-specific operations is by Dellicompagni et al. (2021), who 

simulate the integration of concentrating solar power into lithium mining operations in Argentina. 

Their analysis suggests that using a parabolic trough concentrated solar power plant with thermal 

storage could cover more than half of the mine's energy needs and cut emissions by over 400 grams 

of CO₂ per kilogram of lithium carbonate equivalent produced. While these findings shows the 
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technical and environmental potential of concentrated solar power in remote lithium mining 

regions, the study lacks a techno-economic assessment. As noted by Li et al. (2024), who reference 

this work in their review, such modelling attempts remain rare. Despite lithium's central role in the 

global energy transition, dedicated economic and performance modeling for renewable-powered 

lithium mining remains heavily underrepresented in the academic literature (Dellicompagni et al., 

2021; Li et al., 2024). 

On environmental impacts, most peer-reviewed studies focus narrowly on CO₂ emissions from 

renewable integration in mining. At the Fekola Gold Mine in Mali, for instance, a 30 MW solar PV 

array with 17 MWh of battery storage preventing approximately 39,000 tonnes of CO₂ emissions 

annually and saving 13 million litres of fuel (Issa et al., 2023). According to Dellicompagni et al. 

(2021), modelling in lithium brine mining with CSP and thermal storage achieved over 50% 

renewable electricity share, which translates to 403.3 g CO₂ saved per kilogramme of lithium 

produced. Despite these encouraging results, wider environmental trade-offs such as the land 

transformation and material footprint associated with manufacturing and operating the renewable 

power system remain largely unaddressed in most studies (Issa et al., 2023; Li et al., 2024; 

Dellicompagni et al., 2021). 

While much of the existing research is site-specific, Li et al. (2024) provide a broad overview of 

international RE projects in mining but do not conduct a harmonised techno-economic comparison 

across countries. This is where my thesis steps in, using a consistent global framework. A further gap 

in the literature is the lack of detailed techno-economic analysis comparing longer battery storage 

durations with partial diesel backup. While one mine study does sweep battery storage duration for 

PV plus batteries (Maronga et al., 2021), it is grid-connected and reaches only ~63% annual 

renewable electricity supply, with the grid covering the remainder. My thesis examines this by 

evaluating 3-hour and 12-hour battery configurations to assess whether extended storage is 

required to achieve 100% reliability or if a 2% diesel backup offers a more cost-effective solution. 

Unlike previous studies that only model partial renewable electricity supply, my work examines 

systems designed to meet 100 % of annual mining electricity demand with renewables and at the 

same time compare different storage capacities. 

In short, although the literature provides valuable examples of renewable energy deployment in 

mining, it is still narrow in scope, often restricted to one or two sites and largely confined to GHG 

metrics without considering other environmental burdens. My thesis aims to fill these gaps through 

a global comparative analysis of 39 lithium mining sites, applying standardised modelling 

assumptions across all cases. By comparing short- and long-duration BESS configurations and 
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applying a 1.5× overbuild factor, I provide a systematic assessment of fully renewable mining power 

systems, moving beyond isolated case studies to deliver cross-regional insights on economic 

feasibility and environmental trade offs. 

3. Methods 

 

In order to assess the economic viability and environmental impact of integrating renewable energy 

at mining sites, I calculate the required energy system capacity and evaluate economic and 

environmental indicators. I calculate each site’s electricity demand from reported electricity 

expenditures and use this to size the renewable generation and battery-energy-storage system. 

After sizing the systems across all sites and scenarios, I compute the techno-economic metrics: net 

present value (NPV), internal rate of return (IRR), levelized cost of energy (LCOE), and the discounted 

payback period. These metrics assess economic feasibility and enable comparisons across sites and 

technologies. To evaluate environmental trade-offs, I quantify the material intensity and land-use of 

the sized renewable systems, and I assess life cycle CO2eq emissions relative to the pre-transition 

baseline (diesel or grid) to report avoided emissions. 

 

3.1 Overview of methodology 

 

This section outlines the tools and methodology employed to conduct a techno-economic and 

environmental assessment of 39 lithium mines transitioning to run on fully renewable energy 

systems. By converting reported per-tonne electricity expenses, expressed in dollars spent on 

electricity per ton of Lithium carbonate equivalent (LCE) produced, I calculated the total site 

electricity consumption and sized the renewable generation and battery‐storage capacities by 

applying the overbuild factors and storage‐hour requirements outlined by Tong et al. (2021) to 

achieve 98 or 100% system reliability. For each mine I evaluate six distinct renewable 

configurations—wind-only, solar-only and a 50/50 wind-solar hybrid, each paired with either 3 h or 

12 h of battery storage. The analysis therefore models an integrated energy system comprising 

photovoltaic arrays, wind turbines, battery‐energy‐storage systems, and (in the few cases where 100 

% reliability cannot be met by renewables alone) diesel back up. 
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I test NPV per tonne LCE, LCOE, IRR, and the discounted payback period across all system 

configurations and sites. Those metrics allow to test economic feasibility and compare performance 

across scenarios (Samatar et al., 2025). A Python script was used to perform the techno-economic 

analysis by combining the site-level inputs and converting them into annual cash-flow streams. 

Those streams include capital expenditures, O&M costs, scheduled asset replacements, end-of-life 

and energy savings. I use the term “energy savings” on the positive cash flows that are not spent on 

buying conventional energy, in order to provide more insight into the financial benefits of 

transitioning to renewable energy. The annualize total costs is calculated and used to derive the 

levelized cost of energy in dollars per kilowatt-hour of electricity provided to the mining site. The 

main inputs for the technoeconomic assessment can be found in table 2.  

 

3.2 Renewable system design 

 

3.2.1 Scenario design 

 

This study examines 39 lithium-extraction mining sites across ten countries, China, Australia, 

Argentina, Brazil, Chile, Canada, Mali, Portugal, Zimbabwe, and the United States, with annual 

outputs ranging from under 1 kt to over 200 kt of LCE. Annual energy demand about each site can be 

found in Table A1 (Appendix A). 

To compare viable pathways for decarbonizing mine-site electricity, I evaluate six standardized 

renewable configurations formed by crossing two dimensions: 

• Generation mix: solar-only (PV), wind-only (Wind), and a 50:50 PV–Wind hybrid  

• Storage duration: 3 hours vs 12 hours of storage sized to the site’s mean load. 

I use six standardised mixes: PV-only, wind-only, and a 50:50 PV–wind hybrid, each evaluated with 3 

h and 12 h storage. As shown in the literature review, there are no studies in which a mine receives 

100% of its electricity needs from renewables. I therefore set two reliability targets to test whether 

renewables can supply almost all site electricity. Tong et al. (2021) report results for optimized 

solar–wind systems, where the solar share typically ranges between about 15% and 45% when 

applying their 1.5× overbuild and storage approach. In their analysis, these optimized mixes deliver 

electricity with 98% reliability when paired with 3 h battery storage, while extending storage to 12 h 
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raises this further to around 99.9%, though some countries still experience rare multi-day shortages. 

Tong et al. (2021) do not report values for Portugal, Mali, or Zimbabwe; for comparability I assume 

the same pattern for these three countries. In my study, I apply Tong’s reported reliability outcomes 

to three designs (solar-only, wind-only, and 50:50 hybrid) in order to explore techno-economic and 

environmental trade-offs across 39 lithium mine sites. This represents a simplification, since pure-

solar or pure-wind systems would not typically reach the same reliability at equal overbuild and 

storage, so my results likely overstate the reliability of single-technology cases. Accordingly, the 3 h 

designs are treated as “near-renewable,” supplying 98% of annual electricity with 2% diesel back-up, 

while the 12 h designs are assumed to achieve 100% renewable supply (no diesel). For the 3 h 

scenarios the 2% comes from diesel, and only the price of diesel is taken into account, leaving out 

equipment and maintenance costs. This framing allows me to quantify the incremental economic 

(LCOE, IRR, NPV per t LCE, payback) and environmental (CO₂, materials, land) effects of adding extra 

storage across different lithium sites and countries. 

 

3.2.2 Baseline Annual Electricity Demand and Renewable Energy Generation  

 

I obtained the data on annual lithium carbonate equivalent (LCE) output and electricity spend (USD/t 

LCE) for each mine from the S&P Capital IQ Pro platform database (S&P Global Market Intelligence, 

2025). Because the only reported data are annual LCE output and electricity spend, I make a few 

assumptions to recover each site’s annual electricity demand. First, I assign a benchmark electricity 

intensity (kWh/t LCE) by production route for each site. For brine sites, I use site-specific values 

where available and otherwise country-level values from Schenker and Pfister (2025), with 1,200 

kWh/t applied as a fallback. For hard-rock sites, a value of 7,718.75 kWh/t is applied uniformly 

across all mines (author’s calculation; see Appendix I).  

I multiply this benchmark by the national grid tariff (USD/kWh) to obtain an expected grid cost per 

tonne and use it to classify the power source, either grid electricity or diesel generators. In the 

absence of data, I assume the energy source through a parity based imputation: if my calculated 

estimate (in which I use grid prices) is equal or smaller than the reported spend, the site is treated as 

it supplies electricity through grid, otherwise as it uses diesel. Because detailed fuel mixes are 

unavailable, I assume one primary source per site in this step (i.e., without combining grid with 

diesel generators).  I test the impact of this assumption in the sensitivity analysis by forcing all sites 

use electricity produced by diesel generators or grid. 
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Once the primary electricity source is determined, the electricity intensity per tonne of LCE produced 

is calculated. For grid-classified sites, I derive electricity intensity (kWh/LCE) by dividing reported 

spend ($/t) by the grid tariff ($/kWh). For diesel-classified sites, I convert the pump price of diesel 

(USD/L) into an effective electricity price (USD/kWh) by dividing it by the fuel’s lower-heating-value 

energy per litre and the generator’s electrical efficiency (see Appendix K).Multiplying the resulting 

kWh/t by annual LCE output (t/y) gives each site’s annual electricity demand (kWh/y). 

 

Renewable generation is sized against this demand using an overbuild factor of 1.5× to reflect the 

variability of wind and solar and to target high reliability (Tong et al., 2021). Concretely, I convert 

annual demand to mean load (kW), apply the 1.5× overbuild to mean load, and divide by the 

applicable national or regional capacity factor is applied to obtain the installed capacity for each 

option, following Tong et al. (2021). 

 

Following Tong et al. (2021), I bracket storage depth with two designs (3 h and 12 h) sized to the 

site’s mean load. Because only part of a battery is usable and cycling incurs losses, I convert the 

target delivered energy to nameplate using 80% depth-of-discharge and 85% round-trip efficiency 

(Augustine & Blair, 2021). Battery lifetime can range from 7 to 15 years depending on site conditions 

and location; for this study, I assume a global average of 10 years (Smith, Shi, Wood, & Pesaran, 

2017; International Renewable Energy Agency, 2017). I assume the mine’s project life matches the 

renewable system life, both set to 20 years, consistent with common practice in mining-microgrid 

studies (Nkambule et al, 2023).  All parameter values and their sources are summarized in Table 1. 

 

Table 1 Key input parameters and assumptions for baseline electricity demand estimation and renewable system sizing 

Parameter Unit Value / Rule Citation   

Benchmark 

electricity 

intensity (brine) 

kWh/t Site-specific where available; 

else country-level values; if 

unavailable,  1,200 kWh/t  

Schenker & Pfister (2025)   

Benchmark 

electricity 

intensity (hard 

rock) 

kWh/t 7,718.75  Burgess (2012); Góralczyk et 

al. (2020); Dessemond et al. 

(2019) 
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Diesel density kg/L 0.846 
EEA (2024) 

 

  

Diesel lower 

heating value 

(mass basis) 

kWh/kg 11.83 
EEA (2024) 

 

  

Energy prices 

(grid, diesel) 

$/kWh; 

$/L 

Country-specific  GlobalPetrolPrices, 2025   

Capacity factors 

(PV, wind) 

– Country/region averages;  Tong et al. (2021)   

Generator 

electrical 

efficiency 

(baseline) 

– 0.35 U.S. EPA (2017)   

 

 

3.3  Techno-economic analysis  

 

Building on Sokolov (2024) and adopting the TEA structure from Samatar et al. (2025), I evaluate 

each configuration using CAPEX, NPV, IRR, discounted payback, LCOE, and NPV per tonne of LCE. 

CAPEX is the sum over components of installed capacity multiplied by unit cost. I then construct the 

annual cash-flow series: CAPEX, O&M, scheduled replacements, and (for the 3 h cases) diesel backup 

on the cost side; avoided diesel/grid purchases as positive inflows (Miller et al., 2021; Brady et al., 

2020). Definitions and practical interpretations of these metrics are summarized in Table 2. 
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Table 2 Definitions of techno-economic metrics 

Metric Definition What it means in 
practice 

Source 

Net present value 
(npv)  

The discounted sum 
of all future cash 
inflows minus 
outflows over the 
project’s life. A 
positive NPV 
indicates that the 
project generates 
more value than it 
costs. 

If NPV > 0, the 
project increases 
wealth and is 
financially viable.  

(Sokolov, 2024) 

Internal rate of 
return (irr) 

The discount rate 
that makes NPV = 0. 
It measures the 
project’s effective 
rate of return. 

In practice, IRR is 
compared against 
the required return 
(hurdle rate). If IRR 
exceeds this, the 
project is considered 
attractive. In this 
report the hurdle 
rate is 10%.  

(Sokolov, 2024) 

Payback period (pp) The time required for 
cumulative cash 
inflows to equal the 
initial investment 
(can be simple or 
discounted). 

Shows how quickly 
invested capital is 
recovered. A payback 
of 3 years means the 
project “breaks 
even” in 3 years. 
Often preferred in 
risky contexts where 
early recovery is 
valuable. 

(Sokolov, 2024; 
Samatar et al., 2025) 

Levelized cost of 
electricity (lcoe) 

The average lifetime 
cost per unit of 
electricity generated, 
including capital, 
O&M, fuel, and 
replacements. 

Enables comparison 
across technologies. 
Example: LCOE = 
$0.05/kWh → every 
kWh costs 5 cents 
over the system’s 
life. A project is 
competitive if its 
LCOE is below 
grid/diesel prices. 

(Samatar et al., 2025) 
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The IRR is the rate that sets NPV = 0 (Sokolov, 2024). I define NPC as the present value of cost-only 

cash flows (CAPEX, O&M, replacements, backup in 3 h cases), explicitly excluding savings, consistent 

with Samatar et al. (2025). The discounted payback period is the first year in which cumulative 

discounted net cash flow becomes non-negative (Sokolov, 2024). Finally, I report NPV per tonne of 

LCE to normalize across different site sizes. 

I assume a 20-year project life, with sensitivity analyses at 10 and 5 years. A real discount rate of 5% 

is applied to OECD sites and 7.5% to non-OECD sites. The analysis is pre-tax, excluding inflation, 

subsidies, carbon pricing, owner’s costs. All capital expenditure (CAPEX) is incurred at t=0, while 

operating and other cash flows are accounted for at the end of each year. In the 3 h storage cases, 

the 2% diesel backup share is costed as fuel only, assuming existing standby gensets without 

additional CAPEX or O&M. No export revenues are considered, as systems are modeled as off-grid 

self-supply. Component replacements follow stated lifetimes (e.g., BESS at 10 years). Constant 

annual delivered electricity is assumed between replacements, with no explicit performance 

degradation modelled. Key input values used for these calculations are shown in Table 3.  

 

Table 3 Base input values for techno-economic analysis  

Input Base value  Citation 

IRENA (2022) 

 

PV CAPEX $758/kW IRENA (2022)  

PV O&M rate 1.5% of CAPEX/yr IRENA (2022)  

Wind CAPEX $1,160/kW IRENA (2022)  

Wind O&M rate 3% of CAPEX/yr IRENA (2022)  

Battery CAPEX $273/kWh IRENA (2022)  

Battery O&M rate 0.43% of CAPEX/yr Mongird et al. (2020)  

Discount rate (OECD) 5% real IRENA (2022)  

Discount rate (non-

OECD) 

7.5% real IRENA (2022)  
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3.3.1 Key metrics  

  

1) Net Present Value 

 

The Net Present Value represents the total lifetime net benefit of the system in today’s dollars by 

discounting each year’s net cash flow back to time zero: 

NPV = ∑
CFt

(1 + R)t

N

t=0

 

 

•   CF0 = −𝐶𝐴𝑃𝐸𝑋 ,  is the negative up-front investment cost, entered as a negative value to 

reflect the outflow in year 0. 

• CFt = Et − O&Mt − Rt − Bt (t = 1, … , N − 1),  

• 𝐶𝐹𝑁 = 𝐸𝑁 − 𝑂&𝑀𝑁 − 𝑅𝑁 − 𝐵𝑁 + 𝑆 

• R is the real discount rate; N is the project life (years); Et is the energy-cost savings in year t; 

Rt is the replacement cost in year t; Bt is the backup energy cost in year t; and S is the net 

salvage value at year N (positive if a benefit, negative if a decommissioning cost). A positive 

NPV means the discounted inflows exceed the discounted outflows at the rate R. 

 

2) Total Annualized Cost 

 

Having isolated all purely cost‐side cash flows (CAPEX, O&M, replacements, backup, salvage) into a 

NPC, the TAC is simply that NPC annualized via the CRF:  

 

TAC = NP𝐶 × CRF 

This spreads capital expenditure, O&M, replacements, backup, salvage value, etc., evenly over each 

year. 

 

3) Levelized Cost of Electricity    

The LCOE expresses the average cost per unit of electricity over the system’s life by dividing the TAC 

by the yearly discounted energy output Ey:      



 
18 

 

LCOE =
TAC

Ey
 

  

Ey is the annual delivered electricity.  The LCOE thus indicates how much each Kwh “costs” when 

both capital and operating expenses are spread evenly across actual production. 

 

 

3.4 Environmental assessment 

 

In this study, I evaluate three key environmental impact indicators. Total material requirement, land-

use, and lifecycle GHG emissions (expressed as CO₂-eq) are calculated by scaling well-established, 

per-unit benchmarks to each system’s installed capacity (see Appendix E for the benchmark values 

and Appendix F for their source references). 

 

3.4.1 Material requirement 

 

I derive the critical materials (aluminium, copper, graphite, silver, neodymium, dysprosium, lithium) 

contained in each energy system by multiplying a published material intensity (kilograms per 

kilowatt-hour or per kilowatt of capacity) by the system’s total renewable and battery capacity 

(Carrara et al., 2020; Elshkaki & Hilali, 2021; Davis, 2021; Dunn, 2022). I then normalise these totals 

to t/GWh and t per 1,000 t LCE to make results comparable across sites and countries with different 

scales and electricity intensities. 

 

3.4.2 Land-use  

 

To quantify the spatial footprint of each scenario, I employ benchmark land-occupation factors 

expressed in square metres per kilowatt of installed capacity (m²/kW). Multiplying these per-

kilowatt figures by the system’s capacity yields the total area occupied. For the wind turbines the 

direct land transformation was calculated. I report land both as hectares per GWh delivered and 
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hectares per 1,000 t LCE to make results comparable across sites and countries with different scales 

and electricity intensities.   

 

3.4.3 Lifecycle GHG emissions 

 

I estimate lifecycle greenhouse-gas emissions by applying published emission-factors (grams CO₂-

equivalent per kilowatt-hour or per kilowatt) to each system’s total energy delivery or capacity. 

These emission factors come directly from a variety of sources (Appendix E.) each with its own 

system boundary and allocation methodology. I have not further harmonized these differing scopes 

or allocation rules, so the resulting CO₂-equivalent estimates for each technology are not strictly 

apples-to-apples. In the 3 h scenarios, I also include additional CO₂ from burning diesel to meet 2 % 

of their energy requirements. Emission factors are used as-published, without reconciling 

methodological inconsistencies, and therefore my calculated burdens carry the limitations inherent 

to each original study’s boundary and allocation choices. Multiplying these per-unit values by the 

system’s installed capacity yields the total CO₂-equivalent burden. By using fossil and grid emissions 

factors, I calculated the CO₂ emissions of the sites (in the scenarios that they use diesel or grid only) 

and then I calculated CO₂ reduction of each site and scenario.  

 

3.5. Sensitivity analysis 

To quantify the robustness of the economic results I conducted three complementary analyses: 

 

3.5.1 Key parameters sensitivity 

 

For PV CAPEX, the baseline is 758 $/kW with bounds 691 and 1000 $/kW (IRENA, 2022). Wind CAPEX 

bounds of 1041–1800 $/kW capture the global weighted-average lower costs and the upper end 

seen in high-cost markets (IRENA, 2024). Battery CAPEX lower and upper bounds taken from the 

IRENA-reported range of 139 and 339 dollars per Kwh (IRENA, 2025). Discount-rate bounds of 3–10% 

follow IEA/NEA (2020), while in the model I use 5% for OECD and 7.5% for non-OECD cases per 

IRENA (2022). For diesel prices I apply −40% and +30% around each baseline, reflecting the large 

downshifts seen in 2014–2015 and 2020 (Baffes et al., 2015; World Bank Group, 2020). Similar for 



 
20 

 

grid tariffs I apply −30% and +50%, consistent with the broad tariff declines in 2023–2024 and 

plausible future surges from supply or weather shocks (Eurostat, 2024; IEA, 2025). The full set of 

parameters applied in the sensitivity analysis is summarized in Table 4. 

Table 4 Input parameters for sensitivity analysis 

 

 

 

3.5.2 Energy-Source Sensitivity Analysis 

 

The methodology assigns each mine’s electricity to either grid or diesel based on some assumptions. 

To bracket the effect of this classification, I performed two “what-if” supply scenarios for all sites: 

• All-Diesel Case: 100 % of the sites have their electricity supplied by diesel generators.  

• All-Grid Case: 100 % of the sites have their electricity supplied by the local grid. 

Parameter Baseline  Lower 

bound 

Upper 

bound 

Citation    

Battery CAPEX 

($/kWh) 

273  139 339 IRENA (2022, 2025)    

Discount rate 

(%) 

5 (OECD), 

7.5 (non-

OECD) 

3 10 IRENA (2022); IEA/NEA (2020)    

PV CAPEX 

($/kW) 

758 691 1000 IRENA (2022, 2024)    

Wind CAPEX 

($/kW) 

1160 1041 1800 IRENA (2022, 2024)    

Diesel 

electricity 

price ($/kWh) 

Country-

specific  

0.6× 

base 

(−40%) 

1.3× 

base 

(+30%) 

GlobalPetrolPrices.com (2025); 

Baffes et al. (2015); World Bank 

(2020) 

   

Grid electricity 

price ($/kWh) 

Site-specific  0.7× 

base 

(−30%) 

1.5× 

base 

(+50%) 

GlobalPetrolPrices.com (2025); 

Eurostat (2024); IEA (2025) 
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The mean changes in LCOE, IRR, discounted payback period and NPV per tonne under the 100 % 

diesel and 100 % grid scenarios were calculated relative to the baseline mixed-supply case to 

quantify the economic impact of energy sourcing assumptions. 

 

3.5.3 Mine-Life Sensitivity 

 

Finally, I examined the effect of project life assumptions by comparing the baseline 20-year mine life 

against 10-year and 5-year horizons. For each life span, the model outputs (LCOE, IRR, payback, NPV 

per tonne) were averaged and the differences from the 20-year case plotted in tornado charts. 

Because a substantial number of sites exhibited “no payback” cases that are excluded from the 

mean calculations the tornado figures also annotate how many projects in each life-span scenario 

failed to achieve a usable payback or IRR. This allows direct comparison of how many sites are non-

viable under 20-, 10- and 5-year assumptions.  

 

3.5.4 Optimized hybrid renewable system 

 

In order to see how much the results differ when not using the optimized solar–wind hybrids 

reported by Tong et al. (2021), I performed a sensitivity analysis comparing optimized hybrids (3 h 

and 12 h storage) with non-optimized counterparts at the same storage duration, and then 

compared these outcomes with my own scenario results. In the non-optimized dataset, results are 

reported separately for PV-only, wind-only, and uniform 50:50 hybrids, while the optimized dataset 

applies country-specific fractions from Tong et al. (2021) to generate hybrid configurations. 

The optimized dataset was restricted to the seven countries (China, Australia, Argentina, Brazil, 

Chile, Canada, and the United States) due to data availability, while the non-optimized dataset 

covered all ten countries, including Portugal, Mali, and Zimbabwe. From each dataset I calculated 

the share of sites meeting key investment thresholds (IRR > 10%, NPV per tonne > 0, and positive 

discounted payback) as well as medians for IRR, NPV/t, payback, and LCOE. 
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3.6 Assumptions and Limitations 

 

There are multiple assumptions made throughout this report. This analysis applies global-average 

capital and O&M costs for photovoltaic, wind and battery technologies across all 39 sites, with 

renewable capacity factors drawn from national or regional averages rather than site-specific 

meteorology. I assume each mine’s operational lifetime matches that of its primary renewable 

technology and adopt a ten-year lifespan for all battery systems (reflecting the typical 7 – 15-year 

range). I use a real discount rate of 5 % for OECD and 7.5 % for non-OECD countries. Historical grid 

and diesel tariffs from 2022 are used to infer 2024 electricity consumption, while the most recent 

prices inform projected savings under the new systems. I apply country-specific electricity-

consumption benchmarks (kWh /LCE) for brine operations where available; where data are absent, I 

default to 1 200 kWh /LCE. I classify mines as grid- or diesel-supplied by comparing the benchmark-

derived cost per LCE to the reported cost per LCE, and assume a generator efficiency of 35 % in all-

diesel scenarios. 

 

One of the limitations of the study is that I rely on global averages and regional proxies for costs, 

capacity factors, and tariffs, so I do not capture local cost fluctuations, project-scale economies, or 

site-specific resource variability. I address uncertainty only via a deterministic, one-at-a-time 

tornado sensitivity on six cost and financial parameters, while a full probabilistic Monte Carlo 

analysis, needed to capture joint and non-linear effects and tail risks, is left for future work. I do not 

model component degradation, inflation or future escalation of conventional energy prices, which 

likely leads to conservative estimates of avoided costs. No end-of-life salvage or redeployment value 

is assigned, and policy instruments such as carbon pricing or emissions credits are excluded. The rule 

used to assign grid versus diesel supply is approximate, so “mixed” sites may behave differently in 

reality. Finally, I fix a 20-year project horizon, which overlooks mines with shorter remaining lives, 

where lifespans under ten years severely hamper project viability. 
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4. Results  

4.1 Technoeconomic results  

Table 4. Median values and ranges of techno-economic metrics across all mining sites and scenarios 

Metric Median Range (Min–Max) 

LCOE ($/kWh) 0.123 0.070 – 0.171 

IRR (%) 17.56% -4.21% – 49.36% 

Payback (years) 5.04 2.19 – 19.60 

NPV per t LCE ($/t) 667 -783 – 4,316 

Share with IRR ≥ 10% 65.0% — 

 

By taking a first glance in table 4, which shows the median value of key metric across all scenarios 

and sites, key metrics results vary significantly from the median. The  wide spreads from the medians 

because outcomes are strongly shaped by the differences of the input values of each scenario. First, 

baseline energy price sets the size of avoided-cost cash flows: diesel or high-tariff grids push returns 

up; cheap grids pull them down (Bitaraf & Buchholz, 2018; Ellabban & Alassi, 2021; Issa et al., 2023). 

Second, storage duration trades reliability for cost: moving from short to long BESS raises CAPEX and 

typically LCOE, lengthening payback (Maronga et al,. 2021). Third, resource quality varies by site: 

capacity factors shift annual generation and net savings, widening both LCOE and IRR (Paneri et al., 

2021; Li et al., 2024).  

 

However, consistent with Bitaraf & Buchholz (2018) and Issa et al. (2023), our first results show that 

incorporating a renewable energy system into a mine can raises returns at today’s tech costs and the 

price of electricity can be lower than the baseline. We adopt 10% as the benchmark IRR, meaning 

that projects are considered valuable for investors only when IRR > 10% (Wang et al., 2020). Overall, 

across all scenarios, 65% of all mining sites have an IRR higher than the 10% threshold, with a 

median IRR of 17.6% (−4.2% to 49.4%). Only 59 cases out of the 234 site–scenario combinations 

studied fail to pay back the initial investment within the 20-year horizon, while the median payback 

time is 5 years. In this report, all scenarios that did not pay back the investment correspond to sites 

that would receive electricity from the grid, which is much cheaper than electricity generated by 

diesel. The median LCOE is $0.123/kWh and in 74.8% of the scenarios (74.8%) the LCOE is below the 

site’s baseline price.  
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Figure 1.  Distribution of battery storage needs across mining sites, showing medians, quartiles, and outliers 

 

4.1.1 System scale and feasibility  

 

Across 39 off-grid sites, my systems span PV 0.003–1.239 GW, wind 0.002–0.783 GW, and BESS (12 

h) 0.008–3.212 GWh to serve 4.1–1,594.6 GWh per year (mean power 0.00047–0.182 GW) (Figure 2; 

Figure 1). Relative to real mining integrations, typically tens of MW of PV/wind with tens of MWh of 

BESS, most of my designs are larger, especially storage, mainly because I size for 100% off-grid 

coverage rather than partial displacement. Moreover, scale explains part of this: production spans 

0.4–200 kt LCE per year, with 5 sites 60 kt (including 200 kt and 164 kt) where hundreds or even 

thousands of MW/MWh of solar panels, wind turbines and BESS are needed. In many sites the 

generation size is not the problem, but the main constraint is storage: multi-GWh (12 h) batteries 

are beyond current mining precedents (Figure 1). Smaller and mid-tier producers (30 kt LCE per year) 

align more closely with today’s deployments (tens of MW, 0.1–0.2 GWh BESS). At high-demand sites, 

meeting 100% of power needs with renewables can require up to 3 GWh of battery storage, bigger 

than many of the largest BESS projects worldwide (Jessen, 2025). PV and wind builds can reach 1 

GW, comparable to flagship projects (Jessen, 2025; Figure 2). Although the techno-economic results 

are favourable for most sites, the technical feasibility of the biggest energy systems remains 

uncertain and should be examined in future work. Detailed results are provided in Appendix G (Table 

G.1). 
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Figure 2. Distribution of installed generation capacities across mining sites, showing medians, quartiles, and 
outliers for solar, wind, and hybrid systems 

 

 

 

 

 

 

 

 

 

 

4.2 Technoeconomic key metrics across scenarios 

 

Figures 8,9,10 and 11 below depict box-and-whisker distributions for 4 key techno-economic 

indicators based on scenario. Net present value per tonne of LCE, payback period, internal rate of 

return and levelized cost of energy across six renewable-plus-storage configurations (hybrid 3 h, 

hybrid 12 h, PV 3 h, PV 12 h, wind 3 h, wind 12 h). 

 

4.2.1 Effects of storage duration 

 

Extending storage from 3 h to 12 h shifts the medians in a consistent negative way: LCOE increases 

by $0.053–0.059/kWh (Figure 12), IRR falls by 9.4–10.3 percentage points (Figure 11), discounted 

payback lengthens by 1–1,5 years, and NPV per tonne declines by about $209/t (Figure 9) across PV, 

wind, and hybrid. Because storage energy capacity scales directly with hours of coverage, extending 

duration materially increases BESS CAPEX and replacements, while avoided-cost inflows change little 

between 98% and 100% supply; the larger battery therefore pushes annualised cost up and weakens 

returns. 

In comparing storage durations, systems configured with 3 h battery capacity consistently 

demonstrate superior techno-economic performance relative to their 12 h counterparts. Median 
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LCOE is substantially lower (0.087 $/kWh vs. 0.146 $/kWh), and a greater proportion of sites achieve 

positive net present value (80% vs. 64%) and investment-attractive returns (IRR > 10% in ≈ 73% vs. 

56%). Furthermore, short-duration storage allows the majority of projects to undercut prevailing grid 

or diesel tariffs ( 85% vs. 64%). These findings underscore a clear trade-off: while long-duration 

storage enhances system autonomy, it imposes a significant economic penalty, thereby narrowing 

the pool of viable projects. 

 

4.2.2  Effects of technology  

 

Within-scenario technology choice shifts the medians in a consistent way across all metrics with 

100% wind and 3h storage scenarios performing better. Wind posts the lowest median LCOE at both 

storage levels (3 h ≈ 0.084 $/kWh; 12 h ≈ 0.137 $/kWh), with Hybrid close behind and PV slightly 

higher (Figure 12).Wind produces more energy per installed kW, cutting required capacity and 

spreading fixed costs. The hybrid scenario mixes the two profiles and naturally falls in the middle. 

And even though PV is cheaper per kW, that price advantage alone isn’t enough to offset wind’s 

higher output per kW. Under 3 h scenarios, wind also leads on returns, highest median IRR (≈ 24–

25%), highest median NPV/t (≈ $0.7 k/t), and the shortest median payback (4.4 y) (Figures 11, 9, 10 

respectively). More kWh per kW means larger avoided-cost cash flows for the same spend, so IRR 

and NPV climb and payback shortens.  

However on the likelihood of having cheaper electricity cost per kWh (LCOE) than the conventional 

(baseline) supply, Hybrid-3 h performs best (about 87% of sites). Wind-3 h and PV-3 h are essentially 

tied, each at 84.6% of sites. This higher frequency reflects the hybrid’s averaging of PV and wind 

across heterogeneous sites, which reduces the risk of leaning entirely on a locally weak resource and 

increases the chance of pricing below the baseline. 

 

In the 12 h set, technology effects compress even more: medians converge near 14% IRR, paybacks 

cluster around 5.0–5.4 y, and LCOE distributions sit higher with little separationf among PV, wind, 

and hybrid (Figures 11, 10, 12); all three show the same shares of around 65% having IRR ≥ 10% and 

LCOE below baseline, and each records 14 no-payback cases (Figure 10). Overall, technology only 

shifts the results slightly, while storage duration is the main factor driving differences in LCOE, IRR, 

NPV per tonne, and payback. 
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Figure 3. Distribution of net present value per tonne LCE across energy generation–storage scenarios, showing medians, 
quartiles, and outliers. 

Figure 4. Distribution of payback periods across energy generation–storage scenarios, showing medians, quartiles, and 
outliers (x = no payback) 
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Figure 5. Distribution of internal rates of return (IRR) across energy generation–storage scenarios, showing medians, 
quartiles, and outliers  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Distribution of levelized cost of energy (LCOE) across energy generation–storage scenarios, showing medians, 

quartiles, and outliers 



 
29 

 Figure 7. Distribution of levelized cost of electricity (LCOE) across countries, showing medians, quartiles, and outliers  

4.3 Technoeconomic findings by country 

Because the number of sites varies widely, China (11), Australia (9), Argentina (5), Brazil (4), 

Zimbabwe (3), Chile (3), and one each in Canada, Portugal, Mali, and the United States, comparisons 

are inherently more robust for countries with many sites and may be less representative for those 

with only a single location. In the figures a wide spread on the sperate results of each country driven 

by the fact that half of the scenarios have 4 times more storage capacity and due to limited sites per 

county.Before interpreting these results, it is also important to consider production capacity. Not all 

countries contribute equally to the available lithium supply: Australia, Chile, and China together 

account for roughly three-quarters of modelled production. Zimbabwe and Argentina are medium 

contributors (1/6 of total production combined), while Brazil, Canada, and Mali represent a smaller 

share ( approximately 7%). The United States and Portugal contribute less than 1%, and although 

their results can be extreme, they have little importance overall. 

4.3.1 Levelized cost of energy and scale effects by country  

As shown in figure 13, the median LCOE’s per country differ ≈ 0.06/kWh between the lowest 

recorder in the United States (≈ $0.10/kWh) and the highest in  Zimbabwe (≈ $0.16/kWh), Mali (≈ 

$0.16/kWh). Within the countries the big difference is driven by the different capacity storage 

between scenarios which raises significantly total initial investment. Against each country’s baseline 

energy price, every scenario in Australia, Chile, Portugal, Zimbabwe, and Mali have LCOE below the 

baseline. Brazil and China also perform strongly, with 75% and 62% of scenarios, respectively, 

beating the baseline. In contrast, Argentina underperforms: only 33% of its scenarios have an LCOE 

below the baseline, meaning that the electricity produced by the system is costlier than 

conventional energy. This is driven mainly by Argentina’s cheaper grid electricity and the high LCOE 

values under the 12 h scenarios.  
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Figure 8. Distribution of payback periods across countries, showing medians, quartiles, and outliers (x = no payback)  

4.3.2 Payback period by country 

 

Figure 14 shows that across countries, the median payback spans from 2.9 years in Portugal and 3.4 

years in Zimbabwe to 17 years in Argentina and the United States. Mid-range medians include Brazil 

4.7, Mali 4.0, Australia 4.4, China 5.8, Chile 10.4, and Canada 11.6. 

The median payback period for most countries is low indicating a healthy investment, but we should 

take into account that those values are medians calculated by the scenarios that actually paid back. 

Many sites had scenarios that did not paid back in the assumed 20 year life span of the mines. 

Argentina and China had 20 and 25 of the total 30 and 66 respectively. While Australia, Chile, Mali, 

Portugal, and Zimbabwe have no no-payback cases. Payback time is significantly affected by the 

energy savings (from conventional energy not being bought), the country-specific energy price is a 

major driver, as it is the only positive cash flow. All the scenarios that did not paid back the 

investment was compared to a site with grid connection. Though there are exceptions, for example, 

some sites in Argentina can achieve payback under the right configuration, but the payback period is 

so long that it approaches the mine’s operating life. Moreover all the sites in Chile are connected 

with Grid and manage to achieve a median payback of approximately 10 years.  
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Figure 9. Distribution of net present value per tonne LCE across countries, showing medians, quartiles, and outliers  

4.3.3 Net present value by country 

 

The median NPV per ton of LCE is positive for most countries. Especially, Portugal and Mali post the 

highest median NPVs (≈ $3,905/t and ≈ $2,508/t), followed by Zimbabwe (≈ $1,336/t) and Australia 

(≈ $1,135/t). Mid-pack countries include China (median ≈ $508/t,), Brazil (≈ $372/t), and Chile (≈ 

$323/t). The countries with negative NPV/tonne LCE are Canada (≈ −$80/t), Argentina (≈ −$87/t), 

and the United States (≈ −$112/t). The net present value is influence by the positive inflows ( energy 

savings) and negative outflows of cash (capex, o&m, replacements). In addition to medians, the 

share of scenarios with NPV > 0 shows how consistently each country performs: Australia, 

Zimbabwe, Portugal, Mali, and Chile are 100% positive across scenarios. Brazil and China sit in the 

middle with 75% and 55% respectively. While Canada with 33%, United States  with 33%, and 

Argentina with 30% sit at the lower end.   

 

 

 

 

 

 

 

 

 

 

 

4.3.4  Internal rate of return by country 

 

Portugal and Zimbabwe have the highest IRRs (about 35–40%), followed by Mali (30–35%) and 

Australia (25–30%). Brazil and China vary substantially by site; Chile sits in the mid-teens. Argentina, 

Canada, and the United States are near zero, with several cases below zero. All modelled cases in 
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Figure 10. Distribution of internal rates of return (IRR) across countries, showing medians, quartiles, and outliers 

Australia, Portugal, Mali, and Zimbabwe exceed the 10% IRR threshold, while the shares are 75% in 

Brazil, 55% in China, 50% in Chile, 17% in Canada, 13% in Argentina, and 0% in the United States. 

Since there are non other returns than the assumed energy the mine otherwise  would buy, IRR is 

higher in countries with sites relying on diesel or expensive energy. It also improves where the 

system delivers more energy due to stronger wind/solar resource.  

 

 

 

 

 

 

 

 

 

Countries with stronger solar or wind capacity factors, higher baseline diesel or grid prices, and 

lower electricity intensity tend to exhibit lower LCOE, shorter payback, higher NPV, and higher IRR. 

Higher capacity factors raise annual MWh for the same capital stock, higher energy prices increase 

avoided-cost cash flows, lower electricity intensity reduces required system size and energy, shorter 

storage reduces capital intensity. Moreover a lower discount rate (oecd countries) lowers annualized 

cost and raises present value returns (IRENA., 2022).  

 

4.4 Environmental impact   

4.4.1 Land use 

 

I report land transformation both per unit of energy (ha/GWh) and per unit of output (ha per 1,000 t 

LCE) (Table 5; Table 6). Across scenarios, land intensity follows a stable technology hierarchy, with 

solar photovoltaic systems having the highest values, followed by hybrid systems, and wind systems 

the lowest (medians: 0.0494, 0.0349, 0.0246 ha/GWh). This ranking also carries through to the per-

tonne metric. Cross-country variation is explained by capacity factors and processing intensity, not 
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mine size since the results are normalized: Mali, Portugal, and China sit highest, while Brazil and the 

United States are lowest. Practically, spatial footprint is minimized by technology choice and site 

resource quality (which set ha/GWh), while the per-tonne footprint additionally reflects processing 

energy intensity which scales ha per 1,000 t but not ha/GWh. Typical lithium-site footprints range 

from the low hundreds of hectares for hard-rock operations to the low-thousands for brine-

evaporation systems, reaching 4,200 ha at Salar de Atacama (Torres et al., 2024). My renewable-

plus-storage systems (PV, wind, and BESS) have a land-transformation range of 1.5 to 1,430 ha, 

meaning that if these installations cannot be hosted within the already transformed mine area, a 

significant amount of additional land (equal to the entire mine’s footprint) will be needed. 

 

Table 5  Land use intensity by energy generation–storage scenario, expressed per 1,000 t LCE and per GWh delivered 

Scenario ha/1000 t LCE ha/GWh delivered 

Solar 12.26 (4.84–28.80) 0.0494 (0.0396–0.0705) 

Wind 5.94 (2.34–14.45) 0.0246 (0.0169–0.0381) 

Hybrid 9.10 (3.59–21.33) 0.0349 (0.0282–0.0481) 

 

 

Table 6 Land transformation intensity by country, expressed per 1,000 t LCE and per GWh delivered annually. 

Country ha/1000 t LCE ha/GWh delivered annually 

Argentina 6.18 (2.52–9.41) 0.0338 (0.0178–0.0494) 

Australia 8.50 (2.34–19.83) 0.0349 (0.0227–0.0470) 

Brazil 5.81 (2.53–10.97) 0.0294 (0.0169–0.0396) 

Canada 11.83 (5.11–18.55) 0.0450 (0.0194–0.0705) 

Chile 6.70 (4.73–11.04) 0.0330 (0.0246–0.0412) 

China 14.31 (4.41–28.21) 0.0440 (0.0297–0.0581) 

Mali 21.06 (13.33–28.80) 0.0402 (0.0254–0.0548) 

Portugal 18.12 (14.35–21.90) 0.0481 (0.0381–0.0581) 

United States 5.05 (3.87–6.23) 0.0321 (0.0246–0.0396) 

Zimbabwe 6.99 (3.50–13.69) 0.0414 (0.0279–0.0548) 
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4.4.2 Material consumption 

For the interpretation of these results, I normalized in the same way as for land transformation: per 

unit energy (t/GWh) and per unit output (t per 1,000 t LCE). I use material intensity as a design and 

risk indicator. It highlights where the bill of materials is concentrated and how technology mix and 

storage size shift that exposure. These intensities reflect annualized capital material requirements 

(20-year system life assumed), normalized against annual LCE output and annual electricity delivered 

(GWh) (Tables 7–8; Appendix H, tables H.1–H.4). 

 

By scenario, storage predominantly scales battery materials: moving from 3 h to 12 h increases 

lithium from 0.031 to 0.125 t/1,000 t LCE (and from 0.002 to 0.010 t/GWh), with graphite showing 

the same pattern (Tables 7–8). Technology effects are distinct: PV concentrates aluminium, copper, 

and silver; wind concentrates neodymium and dysprosium; and hybrid sits between (Appendix H, 

tables H.1–H.2). Silver appears only in PV, while wind carries Nd/Dy which are unchanged across 

storage. In PV 12 h as many as 8.61 tonnes of aluminium and 3.68 tonnes of copper would be 

needed (in an assumed 20-year life span) to produce 1,000 tonnes of LCE yearly. Shifting the 

scenario to PV 3 h would decrease aluminium to 5.14 tonnes and copper to 2.75 tonnes. In the least 

material-intensive scenario 1.57 and 0.78 tonnes of aluminium and copper will be used (an 80% 

decrease in comparison to the PV 12 h scenario) (Table 7). 

 

On a per-GWh basis, countries cluster closely because I use identical PV/wind/hybrid + storage 

designs across all sites and differences mainly reflect local resource quality (Appendix H, table H.4). 

Per-1,000-t LCE values spread more because they also reflect electricity intensity of the production 

route: higher values in energy-intensive Mali (Al ~10.97; Cu ~3.88 t/1,000 t) and Portugal (Al ~8.22; 

Cu ~3.06) versus lower values in Argentina (Al ~3.51; Cu ~1.19) and Brazil (Al ~3.23; Cu ~1.26) which 

have many lesser energy-intensive brine operations (Appendix H, table H.3). The difference in 

material usage per ton of LCE between countries is bigger even than that of different technologies: 

the renewables energy system aluminium, copper and graphite usage per ton of LCE extracted in the 

mines in Mali can be 210–280% higher than the mines in United States and Argentina (Appendix H, 

table H.3). 
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Table 7 Per Scenario material intensity per 1000 t LCE (medians) 

Scenario Aluminium Copper Graphite Silver Neodymium Dysprosium Lithium 

PV 3h 102.795 55.058 7.118 0.212 0.000 0.000 0.623 

PV 12h 172.232 73.677 28.473 0.212 0.000 0.000 2.493 

Wind 3h 31.394 15.633 7.118 0.000 2.533 0.412 0.623 

Wind 12h 100.622 34.252 28.473 0.000 2.533 0.412 2.493 

Hybrid 3h 45.120 20.776 7.118 0.053 0.633 0.103 0.623 

Hybrid 12h 114.556 39.395 28.473 0.053 0.633 0.103 2.493 

  

 

 

Table 8 Per Scenario material intensity  per GWh delivered annually (medians) 

Scenario Aluminium Copper Graphite Silver Neodymium Dysprosium Lithium 

PV 3h 8.200 4.415 0.547 0.017 0.000 0.000 0.048 

PV 12h 13.530 5.844 2.186 0.017 0.000 0.000 0.191 

Wind 3h 2.464 1.260 0.547 0.000 0.211 0.034 0.048 

Wind 12h 7.794 2.690 2.186 0.000 0.211 0.034 0.191 

Hybrid 3h 3.508 1.604 0.547 0.004 0.053 0.009 0.048 

Hybrid 12h 8.839 3.034 2.186 0.004 0.053 0.009 0.191 

 

4.4.3 Greenhouse gas emissions  

Extending battery storage from 3 h to 12 h consistently lowers total system CO₂ emissions under 

both minimum and maximum range (Figure 11). Among the generation options, wind-only 

configurations yield the smallest lifecycle footprints, hybrid wind-solar systems occupy an 

intermediate position, and PV-only scenarios incur the highest emissions—reflecting the relatively 

greater embedded carbon intensity of the production of solar PV components. 
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Figure 11. Annual CO₂-equivalent emissions across energy generation–storage scenarios, showing minimum and maximum 
system values.  

Figure 12. Percentage reduction in CO₂ emissions across energy generation–storage scenarios, showing best-case and 
worst-case outcomes 

 

 

 

 

 

 

 

 

 

 

 

 

When compared to each site’s conventional baseline, all-renewable configurations deliver median 

CO₂ reductions exceeding 90 %, with 12 h storage systems achieving the greatest abatement since 3 

h designs still rely on a 2 % diesel fallback. As illustrated in Figure 12, even under ideal operating 

conditions a shift to renewables alone leaves residual emissions of 2–4 % in the best case and 6–9 % 

in the worst case of the original baseline, reflecting life-cycle impacts of equipment manufacture and 

backup. Although this represents a massive reduction in electricity-related CO₂ output, achieving 

truly net-zero mining will require carbon-neutral production and supply chains for the renewable 

generation and storage technologies themselves. 
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Figure 13. Change in internal rate of return under variation in key parameters 

 

4.5 Sensitivity analysis  

4.5.1 Robustness of financial performance under parameter variation  

Internal rate of return. Diesel price is the dominant driver of IRR. Moving diesel to the lower end 

reduces the mean IRR by about 7 percentage points, while the upper end raises it by about 5 

percentage points. Grid-electricity price and battery CAPEX are the next most consequential levers 

and each shifts IRR by a few percentage points; wind and PV CAPEX have smaller effects. The 

discount rate does not change IRR: by definition IRR is the rate that makes NPV equal to zero, so it is 

independent of whatever discount rate is applied. Overall, operating-cost variables shape returns 

most strongly, technology CAPEX is secondary, and the discount rate is irrelevant for IRR. 

  

 

 

 

 

 

 

 

 

 

 

 

Levelized cost of energy. LCOE is governed primarily by the discount rate and battery CAPEX. Taking 

the discount rate to its upper end increases LCOE by roughly $0.03/kWh, while moving battery costs 

to the low end reduces LCOE by about $0.02–0.03/kWh. PV and wind CAPEX have smaller yet visible 

effects, and diesel and grid prices have negligible influence at the scale of a few ten-thousandths of a 

dollar per kWh. In short, the levelized cost of energy is driven mainly by the upfront capital required 

and the discount rate, not by fuel prices. 
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Figure 14. Change in levelized cost of electricity under variation in key parameters 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

NPV per tonne of LCE. Diesel price again dominates. Across its range, NPV per tonne shifts by 

approximately −$0.5k to +$0.4k. The discount rate and grid price follow with effects in the order of 

several hundred dollars per tonne, then battery CAPEX, with PV and wind CAPEX smaller still. This 

reflects that NPV is driven by avoided energy expenditures. 
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Figure 15. Change in net present value per tonne of lithium-carbonate-equivalent production under variation 
in key parameters 

 

 

 

 

 

 

 

 

 

 

 

 

Payback time. Payback responds most to diesel and grid prices. A high-diesel case shortens payback 

by about three years, whereas a low-grid case can lengthen it by up to roughly two years. Battery 

CAPEX and the discount rate typically shift payback by around one year, while PV and wind CAPEX 

changes are generally sub-year. In viability terms, diesel and grid are the parameters most likely to 

move configurations across the payback versus no-payback threshold, with battery CAPEX and the 

discount rate next. 

In the baseline, 59 configurations fail to achieve payback. Grid-electricity prices are the dominant 

lever: a 30 percent decrease increases the non-payback count by 23 (to 82), whereas a 50 percent 

increase reduces it by 35 (to 24). The discount rate is next in influence: lowering it to 3 percent 

reduces the count by 28 (to 31), while raising it to 10 percent increases the count by 18 (to 77). 

Battery capital cost is also material: reducing it to 139 USD per kWh lowers the count by 29 (to 30), 

whereas increasing it to 339 USD per kWh raises the count by 9 (to 68). Wind capital cost changes 

have smaller effects, decreasing the count by 11 (to 48) at the lower bound and increasing it by 15 

(to 74) at the upper bound. Photovoltaic capital cost changes decrease the count by 7 (to 52) at the 

lower bound and increase it by 7 (to 66) at the upper bound. Diesel price has a mixed but 

comparatively small effect: a 40 percent decrease increases the count by 14 (to 73), and a 30 

percent increase raises it by 2 (to 61). 
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Figure 16. Change in payback period under variation in key parameters (no-payback counts indicated) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5.2  Energy-supply assumption robustness 

 

In order to assess the robustness of the baseline assumptions regarding the predominant energy 

supply at each mining site, I conducted a targeted sensitivity analysis in which all sites were forced to 

transition exclusively to either grid-electricity or diesel-generated electricity. The figures of the 

results of this sensitivity analysis can be found in Appendix C. In the original scenario, each mine was 

assigned to its most-likely primary energy source, either grid or diesel, and 59 mines failed to 

achieve payback within the project horizon. Under the “All-Grid” assumption, the mean levelized 

cost of energy (LCOE) changes only slightly, while the “All-Diesel” assumption produces a similarly 

small shift. Constraining all sites to grid power also lengthens the average payback time by ~4.95 

years and raises the number of non-payback sites from 59 to ~130. By contrast, the diesel-only 

scenario still lengthens average payback (+2.04 years) but eliminates all non-payback incidents (0 
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sites). In terms of project value, the “All-Grid” case reduces mean net present value per tonne of LCE 

(NPV/t) by ~US$584 t⁻¹, whereas “All-Diesel” increases mean NPV/t by ~US$455 t⁻¹. Finally, average 

internal rate of return (IRR) declines by ~10.8 percentage points under the “All-Grid” configuration 

but rises by ~9.35 percentage points under “All-Diesel.” Transitioning lithium mining sites that rely 

on grid electricity uniformly degrades financial performance—raising effective capital burden 

through longer payback and creating a larger cohort of non-viable mines—whereas moving to diesel 

leaves LCOE virtually unchanged but substantially improves IRR and NPV and removes no-payback 

cases. This pattern reinforces that the assumed conventional energy price is a significant driver of 

financial viability: where the counterfactual energy is more expensive (diesel), the avoided-cost 

benefit of renewables is larger. 

 

4.5.3 Mining sites lifespan assumption robustness 

 

To explore the influence of mine operational lifespan on the economic performance metrics, I re-ran 

the model shortening the assumed project life from the 20-year baseline to 10 and 5 years. Since 

most of the capital costs are paid up front, shortening the mine’s operating life greatly reduces its 

value, raises its costs, and lowers its returns. The figures for this sensitivity analysis are in Appendix 

D. 

Projecting a 10-year operating life instead of 20 years reduces mean NPV per tonne of LCE by 304 

USD/t; shortening to 5 years yields a mean loss of 1,086 USD/t (Figure D3). In parallel, LCOE 

increases: with a 10-year life, mean LCOE rises by 0.047 USD/kWh, and with a 5-year life it climbs by 

0.119 USD/kWh (Figure D2). Because the same upfront CAPEX is recovered over fewer years and 

fewer total kWh per tonne, the cost per unit increases when project life shortens. IRR is similarly 

degraded: a 10-year life reduces mean IRR by 5.44 percentage points, and under a 5-year scenario 

mean IRR falls by 17.35 percentage points (Figure D1). 

Shorter lifetimes raise the share of projects that never pay back, from 59 of 234 (25.1%) at 20 years 

to 88 of 234 (37.6%) at 10 years and 150 of 234 (64.1%) at 5 years (Figure D4). Among the projects 

that do pay back, the median payback period becomes shorter when lifespan is reduced (5.02 to 

4.73 to 3.45 years), which is expected because the maximum attainable payback is capped by project 

life, lowering medians even as no-payback cases increase (Figure D4). Taken together, these results 

demonstrate that assumptions about mine longevity are among the most critical drivers of economic 
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viability: overly optimistic life estimates can substantially overstate NPV, understate LCOE, and mask 

the risk of no-payback sites. 

4.5.4 Effects of hybrid renewable system optimization on technoeconomic 

results 

 

At 3 h storage, optimized hybrids do not outperform the uniform 50:50 design or the leading single-

technology options (Table 9; Figures 3–6). Median IRR is 17.1%, lower than wind (25%), PV (24%), 

and uniform hybrids (21%). Median NPV per tonne is 500 USD/t, below PV (700 USD/t) and wind 

(700 USD/t), and slightly below uniform hybrids (570 USD/t). Payback at 4.9 years is broadly 

comparable to wind (4.4 years), PV (5.0 years), and hybrids (4.7 years). LCOE at 0.10 USD/kWh is 

somewhat higher than uniform hybrids (0.080 USD/kWh) but falls within the range of PV and wind. 

These results show that optimization narrows differences across metrics, but it does not shift 

hybrids ahead of the strongest PV or wind cases. 

At 12 h storage, optimized hybrids perform worse than the uniform 50:50 design and remain weaker 

than the single-technology systems. Median IRR is 9.9%, compared with 14% for PV and wind and 

11.4% for uniform hybrids. Median NPV per tonne is 240 USD/t, well below PV (667 USD/t) and wind 

(700 USD/t) and only slightly below the uniform hybrid (308 USD/t). Payback extends to 6.6 years, 

longer than PV (5.0 years), wind (5.4 years), and the uniform hybrid (6.0 years). Median LCOE is 0.16 

USD/kWh, higher than all non-optimized options. Thus, under long-duration storage, optimization 

offers no clear economic advantage, with hybrids remaining less attractive than single-technology 

alternatives. 

These results confirm that optimized hybrids are financially viable under 3 h storage, with a median 

IRR above 10%, positive NPV in most cases, and median payback within 5 years. However, their 

performance is weaker than the non-optimized renewable systems. At 12 h storage, optimized 

hybrids become borderline: the median IRR falls to around the 10% threshold, only about half the 

sites achieve positive returns, and payback extends well beyond the median values for PV and wind. 
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Table 9. Median techno-economic performance values of optimized hybrid scenarios (3 h, 12 h, and combined) 

Metric Optimized 3 h Optimized 12 h Optimized all 

 IRR> 10% (%) 64.7 50.0 57.4 

 NPV/t > 0 (%) 64.7 58.8 61.8 

Payback achieved (%) 64.7 58.8 61.8 

Median IRR (%) 17.1 9.9 13.0 

Median NPV/t ($/t) 500 240 372 

Median payback (yrs) 4.9 6.6 5.7 

Median LCOE 
($/kwh) 

0.10 0.16 0.13 

 

5. Discussion 

5.1 Interpretation of key findings 

The results show that deploying wind, solar, and BESS to deliver 100% of electricity demand is not 

worthwhile under current conditions. In practice, what is often reported as 100% reliability is closer 

to 99.9% for most countries, since there will always be a few days when system reliability cannot be 

fully met (Tong et al., 2021). Achieving true 100% reliability would require three times overbuild, 

meaning roughly double the solar and wind capacity compared to the 1.5× factor used here, and 

even then some countries cannot reach full reliability (Tong et al., 2021). Extending storage from 3 h 

to 12 h raises LCOE, reduces IRR by 9 to 10 percentage points, and lowers NPV per tonne by 209 $/t 

(Figure 12; Figure 11; Figure 9). Material requirements also increase steeply, with lithium and 

graphite tripling and copper and aluminium rising by 30 to 70% (Tables 7–8; Appendix H, Tables H.1–

H.4). The additional emission savings are small, only 5 to 8% beyond the roughly 90% already 

achieved with 3 h storage, and renewables themselves still carry life-cycle emissions from 

manufacturing (Dunn, 2022). For mining companies this means that striving for complete autonomy 

is an expensive strategy with limited environmental benefit. For policymakers it suggests that near-

fully renewable systems are a better focus, because almost all of the emission reductions can be 

achieved without the much higher costs and much higher raw material demands.  

The analysis shows that financial outcomes depend significantly on the mine’s energy source. In Mali 

and Zimbabwe, where sites run on diesel, renewables give high IRR and short payback because they 

replace expensive fuel (Appendix A, Table A1; Figure 13). This indicates that companies should focus 

integration efforts where avoided costs are highest, while policymakers aiming for wider adoption 
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must consider carbon pricing or targeted support to make renewables competitive in regions with 

low-cost grids.  

Scaling to the largest operations creates additional challenges. Meeting demand at site which have 

the highest electricity demand would require near-GW generation and multi-GWh storage, 

capacities comparable to utility-scale projects yet untested at individual mines (Appendix G, Table 

G.1). This introduces execution risk and indicates that companies should pursue phased strategies 

rather than immediate giga-scale deployment. Policymakers, meanwhile, must consider permitting 

frameworks that can motivate for large renewable infrastructures in mining regions. 

Land requirements rise sharply with system size. Median land transformation spans from 0.0246 

ha/GWh for wind to 0.0494 ha/GWh for PV (Tables 5–6; Appendix E, Table E2). As mentioned earlier 

in the land-use results, some renewable systems can occupy areas comparable to the footprint of 

the mines themselves. This makes it essential for companies to place new systems on land that is 

already used by mining, while policymakers must set clear land-use rules that balance renewable 

expansion with biodiversity protection. 

Finally, the analysis shows that deeper decarbonization requires substantially more materials. This 

surge in demand for critical raw materials introduces supply-chain risks for companies and heightens 

global pressure on resources that are already strategically important. At the same time, solar, wind, 

and BESS cannot be considered carbon-free technologies, since their production still relies on 

carbon-intensive supply chains (Dunn, 2022). Decarbonizing these technologies therefore also 

requires decarbonizing the supply chains of the raw materials they depend on, including aluminium, 

copper, lithium, graphite, and rare earths. Until this is achieved, solar, wind, and BESS alone cannot 

deliver net-zero outcomes, and other carbon-free or carbon-neutral technologies should be 

investigated alongside them.  

 

 

5.2 Comparison with literature 

 

I find LCOE of $0.07–0.171/kWh (median $0.123/kWh), IRR around 17.6% on median (with 65% of 

cases 10%), and a median payback 5.0 years (but 59/234 cases don’t pay back within 20 years). 

These results line up with reported projects: the South African hybrid shows IRR 23.5%, payback 4.9 

y, LCOE $0.23/kWh (Nkambule et al., 2023), and the off-grid PV+BESS case shows IRR 16%, payback 
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5.2 y, LCOE $0.304 to 0.289/kWh (Bitaraf et al., 2018). Higher LCOE values in these reports are driven 

by significant usage of conventional energy (Bitaraf et al., 2018; Nkambule et al., 2023). I deliberately 

test near-full and full renewable electricity supply, and the levelized cost of electricity seems to 

perform better in comparison to projects with partial renewable integration (Bitaraf et al., 2018; 

Nkambule et al., 2023). Environmentally, the median CO₂-eq reduction is above 90% versus diesel or 

carbon-intensive grids, consistent with published mining case studies reporting large operational 

abatement for South African HRES and for CSP integrated into lithium-brine operations (Nkambule 

et al., 2023; Dellicompagni et al., 2021). 

 

What’s new in this report is that I model two reliability targets: 100% renewable electricity in half of 

the scenarios and 98% in the other half to test the impact of extra storage on cost and returns, and I 

compare key techno-economic metrics and environmental impacts across countries. The main 

outcomes are: moving from 98% (3 h) to 100% (12 h) renewables raises LCOE by $0.053–0.059/kWh, 

cuts IRR by 9–10 percentage points, lengthens payback by 1–1.5 years, and reduces NPV per tonne 

by about $209, while the incremental CO₂eq reduction is only 5–8% in comparison to 3 h. Land 

transformation changes only by generation technology, not by storage hours, since the indicators 

used measure land transformation per kW, not kWh. The difference in land use between 

technologies is substantial: PV systems require up to 100% more land per unit of energy than wind, 

with hybrids sitting in between at around 40–45% higher than wind. By contrast, changing storage 

hours (3 h to 12 h) makes almost no difference for land. Material requirements differ a lot by 

technology and by storage hours: PV-heavy systems start with more aluminium and copper (plus a 

little silver), wind uses less Al/Cu but adds rare earths (Nd/Dy), and hybrids sit in between. Increasing 

storage from 3 h to 12 h doesn’t change those tech-specific metals, but it drives battery materials up 

sharply (lithium and graphite +300%) and also lifts aluminium/copper by roughly 30–70% 

6. Conclusion 

 

This study shows that on-site wind and solar with batteries can power mining sites with electricity at 

competitive cost while cutting electricity-related CO₂eq emissions by more than ninety percent. Two 

reliability targets frame the results. With about 3 h of storage and a small (~2%) diesel fuel-only 

backup, systems deliver near-autonomous supply and generally outperform local diesel or carbon-

intensive grids on cost and returns. Pushing to full autonomy with about 12 h of storage removes the 
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residual diesel but raises capital requirements enough to lift LCOE and weaken IRR and NPV for most 

sites, while the extra emission savings are small. 

 

Technology choice matters but is secondary to context. Wind tends to post the lowest LCOE and the 

highest returns; PV’s lower $/kW rarely compensates for lower capacity factors. Geography explains 

most of the spread: higher conventional energy prices, better renewable capacity factors, and lower 

electricity intensity of production correlate with lower LCOE, shorter payback, and higher IRR and 

NPV per tonne. Project lifetime is a decisive filter. The baseline assumes 20 years; shortening life to 

10 or 5 years sharply raises LCOE, cuts IRR, and increases the share of no-payback cases. Even with 

good resources, short-life mines struggle to amortize storage-heavy systems. Scale is a practical 

constraint at the largest, highest-demand sites. Meeting 100% of load there implies multi-GWh 

batteries and near-GW generation, which exceed typical mining precedents and warrant staged 

delivery plans and focused execution risk assessment. 

 

Deeper decarbonization, through longer battery storage, also comes with higher material 

requirements. Extending storage from 3 h to 12 h increases lithium and graphite demand and raises 

copper and aluminium needs by 30 to 70%, adding supply-chain risks and intensifying pressure on 

already critical resources. Moreover, solar, wind, and BESS are not yet carbon-free technologies, 

since their production still relies on carbon-intensive supply chains. Achieving net-zero mining will 

therefore require decarbonizing these upstream industries over time, and investigating other 

carbon-neutral  technologies alongside solar, wind, and BESS. 
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Appendices 

Appendix A. Annual energy demand and energy source of mining sites 

Table A1. Annual energy demand of each site  

Mining 

site 

Source 

of 

Energy 

Energy demand 

(GWh) 

Site 1  Diesel 73,64626484 

Site 2 Diesel 3,897244297 

Site 3 Diesel 138,689733 

Site 4 Diesel 242,7799443 

Site 5 Diesel 231,4273161 

Site 6 Diesel 494,1526596 

Site 7 Grid 64,6 

Site 8 Diesel 298,4251407 

Site 9 Diesel 687,1662665 

Site 10 Diesel 164,2579507 

Site 11 Diesel 314,1978469 

Site 12 Diesel 8,795077382 

Site 13 Diesel 502,0997697 

Site 14 Diesel 293,2364415 

https://doi.org/10.3390/su12208703
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Site 15 Diesel 1013,006237 

Site 16 Diesel 454,8798483 

Site 17 Grid 5,603116883 

Site 18 Grid 141,38045 

Site 19 Diesel 43,82395645 

Site 20 Grid 23,8719 

Site 21 Grid 121,6851833 

Site 22 Grid 272,8441875 

Site 23 Grid 31,73583333 

Site 24 Grid 2,747168831 

Site 25 Diesel 220,2679408 

Site 26 Diesel 224,7733624 

Site 27 Diesel 628,0043081 

Site 28 Grid 120,9823333 

Site 29 Diesel 92,96514149 

Site 30 Grid 150,3402338 

Site 31 Grid 105,1120779 

Site 32 Grid 179,9357273 

Site 33 Grid 176,772961 

Site 34 Grid 136,3210067 

Site 35 Grid 20,46231325 

Site 36 Grid 353,5742267 

Site 37 Grid 1063,053891 

Site 38 Grid 194,6842188 

Site 39 Grid 384,5554844 

 

 

Appendix B. Techno-economic assessment inputs 

 

Table B1. Parameters (inputs) for techno-economic assessment 

Parameter Value Unit 
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 Figure C1. Change in IRR under energy supply scenario 

PV cost 758 $/kW 

PV O&M rate 1.5 % 

Wind cost 1160 $/kW 

Wind O&M 3 % 

Battery cost 273 $/kWh 

Batt. O&M 0.43 % 

Battery lifetime 10 years 

Mine life 20 years 

Sources: IRENA (2022) [technology CAPEX/O&M]; Mongird et al. (2020) [battery O&M]; Author’s assumptions[Battery and 

Mine lifetime]. 

Table B2. Discount rates by country group 

Country 

group 

discount rate 

OECD 5% 

non-

OECD 

7.5 % 

Sources: IRENA (2022). 

Appendix C.  Energy-supply assumption robustness 
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Figure C2. Change in mean Net present value per ton of LCE produced under energy supply scenario 

Figure C3. Change in mean payback period under energy supply scenario 
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Figure D1. Impact of shortened mine life on internal rate of return 

Figure C4. Change in mean levelized cost of energy under energy supply scenario 

 

 

 

             

 

 

 

 

 

 

 

 

 

 

 

Appendix D. Mine life assumption robustness 
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Figure D3. Impact of shortened mine life on mean net present value per tonne of LCE 

Figure D2. Impact of shortened mine life on levelized cost of energy 
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Figure D4. Impact of shortened mine life on mean payback period  and total no paybacks 

 

 

 

 

 

 

 

 

 

 

Appendix E. Life-cycle inventory data 

 

 

Table E1. Material intensity for solar PV, wind turbines and lithium-ion batteries 

 

 

 

 

 

 

 

 

Material Solar (t / kW) Wind (t / kW) Battery (kg / kWh) 

Silver (Ag) 0.00002 - - 

Copper (BOS cabling & fittings) 0.0046 - - 

Aluminium 0.0075 0.0014 3.528 

Copper - 0.0016 0.946 

Neodymium - 0.00043 - 

Dysprosium - 0.00007 - 

Graphite - = 1.085 

Lithium - - 0.095 

 

 

 Sources: Carrara et al. (2020); Elshkaki & Hilali (2021) [PV/wind]; Davis (2021); Dunn (2022) [batteries] 
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Table E2.  Land transformation per megawatt of installed capacity for fixed-tilt PV, onshore wind and utility-

scale battery storage 

Technology Land transformation (ha / MW) 

Fixed-tilt PV 1.15 

Onshore wind (Total direct impact) 1.0 ± 0.7 

Utility-scale BESS (Li-ion, UK) 0.0202 

Sources: IEA-PVPS (2020); Barbose et al. (2024) [PV]; Denholm et al. (2009); Arvesen & Hertwich (2012) [wind]; Abdul Latif 

Jameel (2023) [BESS]. 

 

Table E3.  Life-cycle greenhouse gas emission ranges (g CO₂-eq /kWh) for renewables, battery manufacturing 

and baseline electricity 

Source / Technology Min (g CO₂-eq /kWh) Max (g CO₂-eq /kWh) 

Onshore wind 3 45 

Solar PV 12.3 58.8 

Battery manufacturing (Li-ion) 54 000 69 000 

Grid electricity (baseline) 506 837 

Diesel generation (baseline) 710 930 

Sources: Peiseler et al. (2024); Stylos & Koroneos (2014); Luderer et al. (2019); IEA (2025). 

 

Appendix F. Model parameters and baseline assumption 



 
60 

 

Parameter Unit Value Citation 

PV CAPEX $/kW 758 IRENA, 2022 

PV O&M rate % 0.015 IRENA, 2022 

Wind CAPEX $/kW 1160 IRENA, 2022 

Wind O&M rate % 0.03 IRENA, 2022 

Battery CAPEX $/kWh 273 IRENA, 2022 

Battery O&M rate % 0.0043 IRENA, 2022 

Battery lifetime years 10 Assumption 

PV lifetime years 20 Assumption 

Wind lifetime years 20 Assumption 

Mine lifetime years 20 Assumption 

Discount rate 

(OECD) 

% 5 IRENA, 2022 

Discount rate (non-

OECD) 

% 7.5 IRENA, 2022 

Salvage value – 0 Assumption 

Inflation / Price 

Escalation 

% 0 Assumption 

Depth of Discharge % 80 Augustine & Blair, 2021 

Round-trip 

Efficiency 

% 85 Augustine & Blair, 2021 

Diesel generator 

efficiency 

% 40 Assumption 

Overbuild factor × 1.5 Tong et al., 2021 

Battery storage 

durations 

hours 3 or 12 Tong et al., 2021 

PV module size 

(small/large) 

MW 0.25 / 0.5 Assumption (standard commercial sizes) 

Wind turbine size 

(small/large) 

MW 0.5 / 2.5 Assumption (standard commercial sizes) 

Battery module size kWh 13.5 / 100 Assumption (standard commercial sizes) 
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Appendix G. System sizing by site 

 

Table G.1 Renewable and battery storage sizing 

Site 

Battery 

storage 

GWh  

Battery 

storage 

GWh    

Wind capacity (GW) Solar capacity (GW) Hybrid (GW)  

Electricity 

consumption – 

Brine 

kWh/LCE Depends on country Li et al., 2024 (ACS ES&T)  

Electricity 

consumption – 

Hard Rock 

kWh/LCE 7,718 Author’s calculation (0.025 kWh/kg × 0.008 

kg Li₂O) 

Electricity 

consumption per 

site 

kWh Back-calculated for 

each site from 

electricity cost and LCE 

S&P Global Market Intelligence, 2025 

Grid/diesel prices $/kWh Country-specific GlobalPetrolPrices.com 

Solar capacity 

factor 

% Country/regional 

average 

Tong et al., 2021 

Wind capacity 

factor 

% Country/regional 

average 

Tong et al., 2021 

Material Intensity 

(PV, Wind, Battery) 

kg/kW or 

kg/kWh 

Varies by material (see 

Appendix E) 

Carrara et al., 2020  

Land 

Transformation 

(PV, Wind, Battery) 

ha/MW Varies by technology 

(see Appendix E) 

Fthenakis & Kim, 2009; IEA-PVPS, 2020; 

Denholm et al., 2009; Arvesen & Hertwich, 

2012; Elshkaki & Hilali, 2021; IEA, 2022; 

Abdul Latif Jameel, 2023 

Lifecycle CO₂ 

Emissions (PV, 

Wind, Battery) 

g CO₂-

eq/kWh 

3–930 depending on 

technology 

Peiseler et al., 2024; Stylos & Koroneos, 

2014; Luderer et al., 2019 
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(3 

hours)  

(12 

hours)  

Mine_1 0,06 0,22 0,07 0,11 0,09 

Mine_2 0 0,01 0 0 0 

Mine_3 0,1 0,42 0,13 0,21 0,17 

Mine_4 0,18 0,73 0,2 0,35 0,28 

Mine_5 0,17 0,7 0,21 0,35 0,28 

Mine_6 0,37 1,49 0,41 0,71 0,56 

Mine_7 0,05 0,2 0,06 0,1 0,08 

Mine_8 0,23 0,9 0,2 0,37 0,29 

Mine_9 0,52 2,08 0,47 0,84 0,65 

Mine_10 0,12 0,5 0,14 0,23 0,19 

Mine_11 0,24 0,95 0,16 0,32 0,24 

Mine_12 0,01 0,03 0,01 0,01 0,01 

Mine_13 0,38 1,52 0,38 0,72 0,55 

Mine_14 0,22 0,89 0,2 0,36 0,28 

Mine_15 0,77 3,06 0,69 1,24 0,96 

Mine_16 0,34 1,37 0,31 0,56 0,43 

Mine_17 0 0,02 0,01 0,01 0,01 

Mine_18 0,11 0,43 0,08 0,18 0,13 

Mine_19 0,03 0,13 0,04 0,07 0,05 

Mine_20 0,02 0,07 0,02 0,03 0,02 

Mine_21 0,09 0,37 0,07 0,16 0,11 

Mine_22 0,21 0,82 0,16 0,5 0,33 

Mine_23 0,02 0,1 0,02 0,04 0,03 

Mine_24 0 0,01 0 0 0 

Mine_25 0,17 0,67 0,15 0,27 0,21 

Mine_26 0,17 0,68 0,15 0,27 0,21 

Mine_27 0,47 1,9 0,56 0,95 0,75 

Mine_28 0,09 0,37 0,07 0,16 0,11 

Mine_29 0,07 0,28 0,08 0,14 0,11 
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Mine_30 0,11 0,45 0,14 0,23 0,18 

Mine_31 0,08 0,32 0,1 0,16 0,13 

Mine_32 0,14 0,54 0,16 0,27 0,22 

Mine_33 0,13 0,53 0,16 0,27 0,21 

Mine_34 0,1 0,41 0,09 0,17 0,13 

Mine_35 0,02 0,06 0,02 0,02 0,02 

Mine_36 0,27 1,07 0,24 0,43 0,34 

Mine_37 0,8 3,21 0,78 1,14 0,96 

Mine_38 0,15 0,59 0,15 0,21 0,18 

Mine_39 0,29 1,16 0,28 0,41 0,35 

 

 

 

Appendix H. Material intensity results  

 

Table H.1  Per Technology material intensity  per 1000 t LCE (medians) 

Technology Aluminium Copper Graphite Silver Neodymium Dysprosium Lithium 

Solar 130.91 66.60 13.47 0.21 0.00 0.00 1.18 

Wind 55.85 22.86 13.47 0.00 2.53 0.41 1.18 

Hybrid 71.79 27.87 13.47 0.05 0.63 0.10 1.18 

 

 

Table H.2 Per technology  material intensity per GWh delivered annually (medians) 

Technology Aluminium Copper Graphite Silver Neodymium Dysprosium Lithium 

Solar 0.8698 0.3833 0.1028 0.0013 0.0000 0.0000 0.0090 

Wind 0.3911 0.1550 0.1028 0.0000 0.0158 0.0025 0.0090 

Hybrid 0.4768 0.1824 0.1028 0.0003 0.0040 0.0006 0.0090 
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Table H.3 Per country material intensity per 1000 t LCE (medians) 

Country Aluminium Copper Graphite Silver Neodymium Dysprosium Lithium 

Argentina 70.24 23.71 10.23 0.04 0.35 0.06 0.90 

Australia 75.02 33.89 11.38 0.05 0.63 0.10 1.00 

Brazil 64.64 25.28 11.79 0.03 0.45 0.07 1.03 

Canada 113.05 39.40 17.98 0.08 0.54 0.09 1.57 

Chile 75.24 28.21 14.15 0.03 0.51 0.08 1.24 

China 134.02 48.48 14.48 0.08 1.04 0.17 1.27 

Mali 219.46 77.61 35.85 0.12 1.42 0.23 3.14 

Portugal 164.36 61.15 25.81 0.09 1.54 0.25 2.26 

United States 57.92 21.96 10.77 0.03 0.41 0.07 0.94 

Zimbabwe 72.99 32.59 10.25 0.06 0.74 0.12 0.90 

 

 

 

 

Table H.4  Per country material intensity per GWh delivered annually (medians) 

Country Aluminium Copper Graphite Silver Neodymium Dysprosium Lithium 

Argentina 0.5962 0.2103 0.1026 0.0003 0.0029 0.0004 0.0090 

Australia 0.5864 0.2122 0.1024 0.0003 0.0036 0.0005 0.0090 

Brazil 0.5447 0.2123 0.1028 0.0003 0.0029 0.0004 0.0089 

Canada 0.6443 0.2245 0.1024 0.0004 0.0031 0.0004 0.0090 

Chile 0.5595 0.2108 0.1024 0.0003 0.0040 0.0004 0.0089 

China 0.6438 0.2319 0.1025 0.0004 0.0048 0.0004 0.0089 

Mali 0.6272 0.2218 0.1024 0.0003 0.0040 0.0003 0.0090 

Portugal 0.6541 0.2434 0.1027 0.0004 0.0061 0.0004 0.0089 

United States 0.5519 0.2093 0.1026 0.0003 0.0040 0.0006 0.0090 

Zimbabwe 0.6300 0.2257 0.1024 0.0003 0.0045 0.0008 0.0089 
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APPENDIX I. Hard rock mining sites energy intensity calculations  

 

Electricity per kg Li₂O = (0.025 kWh/kg material) ÷ (0.008 kg Li₂O/kg material) = 3.125 kWh/kg Li₂O 

(Burgess, 2012; Góralczyk, Krot, Zimroz, & Ogonowski, 2020; Dessemond, Lajoie-Leroux, Soucy, 

Laroche, & Ammar, 2019). 

 

Electricity per kg LCE = (3.125 kWh/kg Li₂O) × (2.473 kg LCE/kg Li₂O) = 7.71875 kWh/kg LCE 

(California Department of Tax and Fee Administration [CDTFA], n.d.). 

 

Electricity per tonne LCE = 7,718.75 kWh/t LCE 

 

APPENDIX K. Diesel scenarios, energy demand (kwh/LCE) 

 

Effective diesel electricity price (USD/kWh): 

C_diesel= ( $/L ) / ( 0.846 kg/L * 11.83 kWh/kg * η ) 

4)   where η = diesel generator efficiency (0.35)  

5)  $/L= diesel price  

 

Electricity per tonne LCE (kWh/t LCE): 

Electricity intensity (kWh/LCE) = ( Electricity spend per LCE [$/t] ) / c_diesel 

 

 


